WO2024071353A1 - 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法 - Google Patents
水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法 Download PDFInfo
- Publication number
- WO2024071353A1 WO2024071353A1 PCT/JP2023/035555 JP2023035555W WO2024071353A1 WO 2024071353 A1 WO2024071353 A1 WO 2024071353A1 JP 2023035555 W JP2023035555 W JP 2023035555W WO 2024071353 A1 WO2024071353 A1 WO 2024071353A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel
- hydrogen
- temperature
- content
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/06—Extraction of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention relates to a steel material with excellent fatigue properties in hydrogen, a manufacturing method thereof, a steel pipe, and a manufacturing method thereof.
- Line pipes for transporting natural gas exist as an existing energy infrastructure. These steel materials have been required to suppress the occurrence of hydrogen-induced cracking in sour environments. Meanwhile, in recent years, hydrogen has been attracting a great deal of attention worldwide as a clean energy source for building a decarbonized society. For this reason, in order to transport large amounts of hydrogen gas, the construction of a hydrogen gas transportation network that uses natural gas mixed with some hydrogen in natural gas line pipes and pressurized hydrogen gas as an alternative is being considered. The transportation pressure during operation of these pipelines is expected to be high pressure of 1 to 40 MPa, and the line pipes will be placed in a high-pressure hydrogen gas exposure environment.
- Austenitic stainless steels such as SUS316L, which are less susceptible to hydrogen embrittlement than low-alloy steels, have traditionally been used for steel structures used in high-pressure hydrogen gas environments.
- austenitic stainless steels such as SUS316L are expensive and have low strength, so if they are designed to withstand high hydrogen pressures, the wall thickness becomes thick, and the price of the hydrogen structure itself becomes expensive. For this reason, there has been a strong demand for low-cost low-alloy steels for hydrogen steel structures that can withstand high-pressure hydrogen gas environments.
- the steel for high-pressure hydrogen environments described in Patent Document 1 is a steel used in high-pressure hydrogen environments, and by making the Ca/S ratio less than 1.5 or 11 or more, the diffusible hydrogen concentration ratio is reduced and embrittlement due to diffusible hydrogen is suppressed.
- Patent Document 2 claims that by using low-alloy high-strength steel adjusted to a specific composition, the reduction in area and elongation values in a 45 MPa hydrogen atmosphere are greater than those of JIS G3128SHY685NS in the air tensile strength range of 900 to 950 MPa, and that the material has excellent resistance to embrittlement in a high-pressure hydrogen environment.
- the low-alloy high-strength steel described in Patent Document 3 is a Cr-Mo high-strength low-alloy steel that is tempered at a relatively high temperature of 560 to 580°C and has a grain size of 8.4 or more after tempering, and its tensile strength is adjusted to an extremely narrow range of 900 to 950 MPa, resulting in a low-alloy high-strength steel that exhibits excellent elongation and drawing characteristics even in a 45 MPa hydrogen atmosphere and has excellent resistance to embrittlement in a high-pressure hydrogen environment.
- Patent Document 4 proposes a low-alloy steel for use in high-pressure hydrogen gas environments.
- the low-alloy steel described in Patent Document 4 adds V, increases the Mo content compared to existing steels, raises the tempering temperature, and utilizes V-Mo carbides, improving the carbide morphology at the grain boundaries and significantly improving resistance to embrittlement in hydrogen environments.
- Patent Document 5 also proposes a steel for high-pressure hydrogen gas storage containers with excellent hydrogen resistance. According to the technology described in Patent Document 5, when manufacturing steel plates, long-term stress relief annealing is performed after normalizing treatment, which causes fine, dense dispersion precipitation of MC-based carbides (Mo, V)C, improving the hydrogen resistance of the steel, including its resistance to hydrogen embrittlement.
- MC-based carbides Mo, V
- Patent Document 6 also proposes a steel material for storing high-pressure hydrogen.
- the steel material described in Patent Document 6 has a metal structure mainly composed of bainite with an area fraction of 90% or more, and cementite with an average grain size of 50 nm or less and an average aspect ratio of 3 or less is dispersed and precipitated in the bainite.
- Non-Patent Document 1 lists the fatigue strength values of low alloy steel.
- Non-Patent Document 1 it is known that the fatigue life of materials decreases in a high-pressure hydrogen environment. In other words, if a line pipe material is designed based on a conventional line pipe for natural gas, the service life of the line pipe material will decrease.
- the above-mentioned conventional technology can suppress the occurrence of hydrogen-induced cracking in a sour environment, it is unable to sufficiently increase the fatigue strength in hydrogen gas. In other words, there is a problem in that it is difficult to suppress the occurrence of hydrogen-induced cracking in a sour environment as well as to obtain high fatigue strength in hydrogen gas, which is more likely to affect the service life.
- the present invention aims to provide a steel material with excellent fatigue properties in a high-pressure hydrogen gas environment, suitable for steel structures to be used in a high-pressure hydrogen gas environment, such as line pipes for 100% hydrogen gas or natural gas containing hydrogen at a partial pressure of 1 MPa or more (natural gas is a gas whose main components are hydrocarbons such as methane and ethane), a manufacturing method thereof, and a steel pipe and a manufacturing method thereof.
- Natural gas containing hydrogen at a partial pressure of 1 MPa or more refers to, for example, a gas in which the hydrogen concentration is 30% or less by volume and the pressure of the entire gas is 30 MPa or less.
- crack growth rate da/dN in a hydrogen environment is 1.0 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less, it is possible to design structural steel for hydrogen use within the range of plate thickness that can be produced by the manufacturing process.
- the inventors have conducted extensive research into the conditions that various steel materials must satisfy in hydrogen gas from the above perspective, and have discovered new steel materials and steel pipes with excellent fatigue properties in hydrogen.
- a pipe-making process in which, after the controlled cooling process, the hot-rolled steel sheet is bent and both ends are butted together and welded, or a pipe-making process in which, after the controlled cooling process, the hot-rolled steel sheet is formed into a cylindrical shape by cold roll forming and both circumferential ends of the cylindrical shape are butted together and electric resistance welded; a dehydrogenation process for dehydrogenating the steel pipe obtained in the pipe-making process; A method for manufacturing a steel pipe having the above structure.
- the present invention makes it possible to obtain steel materials and steel pipes that have excellent fatigue properties in hydrogen under high-pressure hydrogen gas environments, and is extremely useful in industry.
- C 0.02 to 0.15% C is contained to ensure appropriate hardenability, but if it is less than 0.02%, the effect is insufficient. Therefore, the C content is set to 0.02% or more.
- the C content is preferably 0.03% or more.
- the C content is set to 0.15% or less.
- the C content is preferably 0.12% or less.
- the C content is more preferably 0.10% or less, and even more preferably 0.08% or less.
- Si 0.05 to 0.5% Silicon is contained as a deoxidizing agent in the steelmaking stage and as an element for ensuring hardenability, but if the content is less than 0.05%, the effect is insufficient. Therefore, the silicon content is set to 0.05% or more.
- the silicon content is preferably 0.1% or more.
- the silicon content is more preferably 0.15% or more.
- the silicon content is set to 0.5% or less.
- the silicon content is preferably 0.4% or less.
- the silicon content is more preferably 0.3% or less, and even more preferably 0.25% or less.
- Mn 0.3 to 2.0% Mn is contained as an element to ensure hardenability, but if it is less than 0.3%, the effect is insufficient. Therefore, the Mn content is set to 0.3% or more.
- the Mn content is preferably 0.4% or more.
- the Mn content is more preferably 0.5% or more.
- the Mn content is even more preferably 0.6% or more.
- the Mn content is set to 2.0% or less.
- the Mn content is preferably 1.8% or less.
- the Mn content is more preferably 1.5% or less, and even more preferably 1.3% or less.
- Al 0.01 to 0.15%
- Al is contained as a deoxidizing agent, and at the same time, as fine precipitates of Al-based nitrides, it pins austenite grains during heating, suppressing the coarsening of grains.
- the Al content is preferably 0.02% or more.
- the Al content is more preferably 0.03% or more.
- the Al content is set to 0.15% or less.
- the Al content is preferably 0.12% or less.
- the Al content is more preferably 0.10% or less, and even more preferably 0.08% or less.
- N 0.0005 to 0.008% N is contained because it forms nitrides with Nb, Ti, Al, etc. to form fine precipitates, and pins austenite grains during heating, suppressing grain coarsening and improving low-temperature toughness. If the content is less than 0.0005%, the effect of refining the structure is not sufficiently achieved. For this reason, the N content is set to 0.0005% or more.
- the N content is preferably 0.001% or more.
- the N content is more preferably 0.0025% or more.
- the N content is set to 0.008% or less.
- the N content is preferably 0.007% or less.
- the N content is more preferably 0.006% or less, and even more preferably 0.005% or less.
- P 0.03% or less
- an impurity element is prone to segregation at grain boundaries, and if it exceeds 0.03%, it reduces the bonding strength of adjacent grains, and deteriorates low-temperature toughness and fatigue properties in hydrogen. Therefore, the P content is set to 0.03% or less.
- the P content is preferably 0.02% or less, and more preferably 0.01% or less. There is no particular lower limit, but it is preferably 0.001% or more since it leads to increased costs.
- S 0.01% or less S, which is an impurity element, is likely to segregate at grain boundaries and also likely to generate MnS, which is a nonmetallic inclusion. If the content exceeds 0.01%, the bonding strength of adjacent grains decreases, the amount of inclusions increases, and low-temperature toughness and fatigue properties in hydrogen deteriorate. Therefore, the S content is set to 0.01% or less.
- the S content is preferably set to 0.008% or less.
- the S content is more preferably set to 0.005% or less, and even more preferably set to 0.002% or less.
- the lower limit is not particularly limited, but is preferably set to 0.0001% or more since it leads to an increase in cost.
- the S content is more preferably set to 0.001% or more.
- O 0.01% or less O forms oxides with Al and the like, which affects the workability of the material, so the less the better. A content exceeding 0.01% increases inclusions, impairing workability. In addition, fatigue properties in hydrogen also deteriorate with an increase in inclusions. Therefore, the O content is set to 0.01% or less.
- the O content is preferably 0.008% or less, and more preferably 0.005% or less. There is no particular lower limit, but since it leads to an increase in costs, it is preferably 0.0001% or more.
- the O content is more preferably 0.001% or more.
- Nb more than 0% and not more than 2.5% Nb has the effect of improving hardenability, and also pins austenite grains during heating as fine precipitates of Nb-based carbonitrides, suppressing grain coarsening.
- the Nb content is preferably set to 0.005% or more.
- the Nb content is more preferably set to 0.01% or more.
- a content exceeding 2.5% deteriorates the toughness of the welded heat affected zone. Therefore, the Nb content is set to 2.5% or less.
- the Nb content is more preferably set to 2.2% or less.
- the Nb content is further preferably set to 2.0% or less, and most preferably set to 1.5% or less.
- H 0.0010% or less H may be introduced into steel materials in various processes during manufacturing, and if the amount of H introduced is large, the risk of cracking after solidification increases and fatigue crack growth is accelerated. In addition, when the amount of H introduced is large, the crack growth rate increases, so it is important to reduce the amount of hydrogen in the steel material. These effects are not a problem if the H content is 0.0010% or less, so the H content is 0.0010% or less. It is preferably 0.0005% or less. More preferably, it is 0.0002% or less. On the other hand, if the H content is less than 0.00001%, it will be a factor in increasing costs, so the H content is preferably 0.00001% or more.
- the H content is 0.0001% or more.
- the amount of hydrogen is the amount of hydrogen remaining after forming of steel materials, steel pipes, UOE, etc.
- the above H content can be achieved by carrying out a dehydrogenation treatment process.
- the remainder of the above composition is preferably a steel composition consisting of Fe and unavoidable impurities, but depending on the desired properties, it is also preferable to appropriately contain one or more of the following, either individually or simultaneously: Cu: 0-2.5%, Ni: 0-2.5%, Cr: 0-2.5%, Mo: 0-2.0%, V: 0-0.5%, Ti: 0-0.5%, W: 0-2.5%, B: 0-0.005%, Sn: 0-0.03%, Sb: 0-0.3%, Ca: 0-0.01%, Mg: 0-0.01%, REM: 0-0.005%.
- Cu 0 to 2.5% Cu has the effect of improving hardenability. Therefore, when Cu is contained, the Cu content may be 0% or more, but since the above effect is difficult to obtain if the Cu content is less than 0.05%, the Cu content is preferably 0.05% or more. If the Cu content exceeds 2.5%, hot cracks are likely to occur when the steel slab is heated or welded. Therefore, when Cu is contained, the Cu content is set to 2.5% or less. The Cu content is preferably 2.3% or less. The Cu content is more preferably 2.0% or less, and even more preferably 1.8% or less.
- Ni 0 to 2.5%
- Ni has the effect of improving hardenability like Cu, and also has the effect of improving toughness. Therefore, when Ni is contained, the Ni content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.05%, the Ni content is preferably 0.05% or more. If it exceeds 2.5%, the economic efficiency is poor. Therefore, when Ni is contained, the Ni content is 2.5% or less.
- the Ni content is preferably 2.3% or less.
- the Ni content is more preferably 2.0% or less, and more preferably 1.8% or less.
- Cr 0 to 2.5% Cr is an element that ensures hardenability.
- the Cr content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.1%, the Cr content is preferably 0.1% or more.
- the Cr content is 2.5% or less.
- the Cr content is preferably 2.3% or less.
- the Cr content is more preferably 2.0% or less, even more preferably 1.5% or less, and most preferably 1.2% or less.
- Mo 0 to 2.0% Since Mo has the effect of improving hardenability, when Mo is contained, the Mo content may be 0% or more, but since the above effect is difficult to obtain at less than 0.05%, the Mo content is preferably 0.05% or more. On the other hand, a content exceeding 2.0% is less economical. Therefore, when Mo is contained, the Mo content is 2.0% or less. The Mo content is preferably 1.8% or less. The Mo content is more preferably 1.5% or less, and even more preferably 1.2% or less.
- V 0 to 0.5%
- V has the effect of improving hardenability, and also pins austenite grains during heating as fine precipitates of V-based carbides, suppressing grain coarsening. Therefore, when V is contained, the V content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.005%, the V content is preferably 0.005% or more.
- the V content is preferably 0.01% or more.
- the addition of V in a content exceeding 0.5% deteriorates the toughness of the welded heat affected zone. Therefore, when V is contained, the V content is 0.5% or less.
- the V content is preferably 0.4% or less.
- the V content is more preferably 0.3% or less, and even more preferably 0.2% or less.
- Ti 0 to 0.5%
- Ti has the effect of improving hardenability, and also has the effect of pinning austenite grains during heating as fine precipitates of Ti-based carbonitrides, thereby suppressing the growth of the grains. Therefore, when Ti is contained, the Ti content may be 0% or more, but since the above effect is difficult to obtain when the content is less than 0.005%, the Ti content is preferably 0.005% or more. On the other hand, the addition of a content exceeding 0.5% deteriorates the toughness of the welded heat affected zone. Therefore, when Ti is contained, the Ti content is 0.5% or less.
- the Ti content is preferably 0.4% or less.
- the Ti content is more preferably 0.3% or less, and even more preferably 0.2% or less.
- W 0 to 2.5% Since W has the effect of improving hardenability, when W is contained, the W content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.05%, the W content is preferably 0.05% or more. On the other hand, when it exceeds 2.5%, the weldability deteriorates. Therefore, when W is contained, the W content is 2.5% or less. The W content is preferably 2.3% or less. The W content is more preferably 2.0% or less, and even more preferably 1.8% or less.
- B 0 to 0.005% Since B is contained as an element to ensure hardenability, when B is contained, the B content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.0005%, the B content is preferably 0.0005% or more. On the other hand, when it exceeds 0.005%, toughness is deteriorated. Therefore, when B is contained, the B content is 0.005% or less.
- the B content is preferably 0.004% or less.
- the B content is more preferably 0.003% or less, and further preferably 0.002% or less.
- Sn 0 to 0.03%
- Sn has the effect of increasing the corrosion resistance of steel materials. Therefore, when Sn is contained, the Sn content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.005%, the Sn content is preferably 0.005% or more.
- the addition of a content exceeding 0.03% reduces high-temperature ductility and increases the possibility of cracking during casting. Therefore, when Sn is contained, the Sn content is 0.03% or less.
- the Sn content is preferably 0.025% or less.
- the Sn content is more preferably 0.02% or less, and even more preferably 0.015% or less.
- Sb 0 to 0.3%
- Sb has the effect of increasing the corrosion resistance of steel materials. Therefore, when Sb is contained, the Sb content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.005%, the Sb content is preferably 0.005% or more.
- the Sb content is more preferably 0.01% or more.
- the content exceeds 0.3%, the high-temperature ductility and hot rolling property are reduced. Therefore, when Sb is contained, the Sb content is 0.3% or less.
- the Sb content is preferably 0.25% or less.
- the Sb content is more preferably 0.2% or less, and even more preferably 0.15% or less.
- Ca 0 to 0.01%
- Ca has the effect of forming CaS and controlling the form of sulfide-based inclusions, so that instead of MnS, which is an inclusion that is easily elongated by rolling, CaS, which is a spherical inclusion that is difficult to elongate by rolling, is formed. Therefore, when Ca is contained, the Ca content may be 0% or more, but since the above effect is difficult to obtain when it is less than 0.0005%, the Ca content is preferably 0.0005% or more.
- the Ca content is preferably 0.001% or more.
- the content exceeds 0.01%, the cleanliness decreases, and the material such as toughness deteriorates. Therefore, when Ca is contained, the Ca content is 0.01% or less.
- the Ca content is preferably 0.005% or less.
- the Ca content is more preferably 0.003% or less, and even more preferably 0.002% or less.
- Mg 0 to 0.01% Mg may be used as a hot metal desulfurization material. Therefore, when Mg is contained, the Mg content may be 0% or more, but since the above effect is difficult to obtain if it is less than 0.0005%, the Mg content is preferably 0.0005% or more.
- the Mg content is preferably 0.001% or more. On the other hand, addition of a content exceeding 0.01% leads to a decrease in cleanliness. Therefore, when Mg is contained, the Mg content is 0.01% or less.
- the Mg content is preferably 0.005% or less.
- the Mg content is more preferably 0.004% or less, and even more preferably 0.003% or less.
- REM 0 to 0.005% REM forms sulfides as REM (O, S) in steel, thereby reducing the amount of dissolved S at grain boundaries and improving SR cracking resistance. Therefore, when REM is contained, the REM content may be 0% or more, but since the above effect is difficult to obtain if the content is less than 0.0005%, the REM content is preferably 0.0005% or more. On the other hand, addition of a content exceeding 0.005% causes REM sulfides to significantly accumulate in the precipitation zone, leading to deterioration of the material. Therefore, when REM is contained, the REM content is 0.005% or less. The REM content is preferably 0.003% or less. It is more preferable that the REM content is 0.001% or less. Note that REM is an abbreviation for Rare Earth Metal, and is a rare earth metal.
- the remainder other than the above-mentioned components consists of Fe and unavoidable impurity elements.
- the size of the Nb precipitates is set to 10 Nb precipitates having a circle equivalent diameter of 2 nm to 100 nm or more per ⁇ m 2 or more.
- the number of Nb precipitates having an equivalent diameter of 2 nm to 100 nm or less is preferably 15 or more per ⁇ m 2 , more preferably 20 or more per ⁇ m 2 , and even more preferably 25 or more per ⁇ m 2.
- the upper limit is preferably 100 Nb precipitates having an equivalent diameter of 2 nm to 100 nm or less per ⁇ m 2 or less, because hydrogen embrittlement deteriorates if the precipitates become too many.
- Nb precipitates include NbC, NbN, and Nb carbonitride.
- the cooling stop temperature is important for the precipitation of fine Nb precipitates, as described later.
- the reason for focusing on Nb precipitates of 2 nm or more is that they are difficult to confirm, and the reason for focusing on Nb precipitates of 100 nm or less is that if the Nb precipitates become too coarse, they have an adverse effect on hydrogen embrittlement.
- the structure of the present invention is not particularly limited, but the main structure has bainite, and it is preferable that bainite is 60% or more. It is more preferable that bainite is 80% or more, and even more preferable that bainite is 90% or more. In addition, bainite may be 100%.
- the crack growth rate da/dN at a stress intensity factor of 20 MPa ⁇ m in hydrogen of 1 MPa or more is 1.0 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less.
- the fatigue crack growth rate is an important parameter in the design of gas containers such as line pipes and gas containers, and is necessary to obtain a service life that ensures the safety of destructive structural members. In destructive structural members, it is difficult to reduce the number of cracks and crack initiation points to zero, and when subjected to repeated stress, cracks inevitably occur and grow. Therefore, control of the crack growth rate of the steel material used in the destructive structural members is important from the viewpoint of service life.
- the crack growth rate is small when the stress state applied to the crack tip is small, and increases as the stress state at the crack tip increases.
- the crack growth rate da/dN at a stress intensity factor of 20 MPa ⁇ m is preferably 0.9 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less, more preferably 0.8 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less, and even more preferably 0.7 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less.
- the crack growth rate da/dN at a stress intensity factor of 20 MPa ⁇ m in air is 0.05 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1
- the crack growth rate da/dN at a stress intensity factor of 20 MPa ⁇ m should be 0.05 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or more.
- the thickness of the steel plate is not particularly limited, but it is preferable that the thickness is 4 mm or more. It is more preferable that the thickness is 5 mm or more. It is preferable that the thickness is 70 mm or less. It is more preferable that the thickness is 30 mm or less.
- the steel material of the present invention that has excellent fatigue properties in hydrogen gas is not particularly limited as long as it has the above-mentioned component composition and metal structure and satisfies the crack growth rate in hydrogen.
- the steel material of the present invention can be produced by sequentially carrying out a heating step, a hot rolling step, a controlled cooling step, and a dehydrogenation treatment step.
- the steel material of the present invention having excellent fatigue properties in hydrogen gas includes various classifications such as thin plate, thick plate, and steel pipe having the above-mentioned component composition and excellent fatigue crack growth resistance in hydrogen, or may be steel material for hydrogen pipelines formed into a specified shape.
- the temperature refers to the center of the plate thickness of the steel material, steel product, and steel pipe.
- the temperature at the center of the plate thickness of steel product, etc. can be obtained by calculating the temperature distribution in the cross section of the steel plate, etc. by heat transfer analysis, and correcting the result by the surface temperature of the steel plate, etc.
- the above-mentioned "hot-rolled steel plate” also includes hot-rolled plate and hot-rolled steel strip.
- the method of melting the steel material (steel slab).
- any of the well-known melting methods such as converter, electric furnace, vacuum melting furnace, etc. are suitable.
- the casting method There is also no particular limitation on the casting method.
- a steel material of the desired dimensions is produced by a well-known casting method such as continuous casting. Note that there is no problem in applying an ingot casting-blooming rolling method instead of the continuous casting method.
- the molten steel may further be subjected to secondary refining such as ladle refining.
- Heating step Heating temperature 1000°C or more and 1250°C or less
- the heating temperature is set to 1000°C or more.
- the heating temperature is 1050°C or more, more preferably 1100°C or more, and even more preferably 1120°C or more.
- the heating temperature in the hot rolling step is set to 1250°C or less.
- the heating temperature is preferably 1230°C or less.
- the heating temperature is more preferably 1210°C or less, and even more preferably 1200°C or less.
- the present invention can also be used to easily apply energy-saving direct rolling processes in which the slab is not cooled to room temperature, but is instead loaded into the heating furnace while still hot, or is immediately rolled after a short period of heat retention.
- hot rolling including rough rolling and finish rolling is carried out.
- finish rolling is carried out under the following conditions. Hot rolling is carried out in a hot rolling mill.
- Finish rolling end temperature Ar 3 point or more
- the finish rolling end temperature is set to Ar 3 point or more.
- the finish rolling end temperature is preferably 770 ° C or more.
- the finish rolling end temperature is preferably Ar 3 point + 30 ° C or more, and more preferably Ar 3 point + 50 ° C or more.
- the upper limit of the finish rolling end temperature is not particularly specified, but when Ar 3 point is lower than 850 ° C, if it exceeds 850 ° C, the reduction amount in the austenite non-recrystallization temperature range is insufficient, fine austenite grains are not obtained, and fatigue resistance properties in hydrogen may be deteriorated. Therefore, when the Ar3 point is lower than 850° C., the finish rolling end temperature is preferably 850° C. or lower, and more preferably 830° C. or lower. When the Ar3 point is higher than 850° C., the finish rolling end temperature is preferably Ar3 point ⁇ 30° C. or lower, and more preferably Ar3 point ⁇ 50° C. or lower.
- the finished plate thickness is preferably 4 mm or more.
- the finished plate thickness there is no particular upper limit for the finished plate thickness, but from the viewpoint of temperature control of the steel plate, it is preferable to set it to 70 mm or less.
- Ar3 point varies depending on the alloying components of the steel, it may be determined by measuring the transformation temperature through experiments for each steel, but it may also be determined from the component composition using the following formula.
- Ar3 (°C) 910 - 310C (%) - 80Mn (%) - 20Cu (%) - 15Cr (%) - 55Ni (%) - 80Mo (%)
- the content of each alloying element is expressed as mass %.
- Controlled cooling process Average cooling rate at the center of the plate thickness from 1000 to 400°C: 10°C/s or more
- the average cooling rate at the center of the plate thickness is set to 10°C/s or more. It is preferably 12°C/s or more, more preferably 15°C/s or more, and even more preferably 18°C/s or more.
- the average cooling rate at the center of the plate thickness is 60°C/s or less.
- the average cooling rate at the center of the plate thickness is more preferably 55°C/s or less, and even more preferably 50°C/s or less.
- Cooling stop temperature at the center of the plate thickness 250°C or more and 650°C or less If the cooling stop temperature at the center of the plate thickness is less than 250°C, the cooling stop temperature at the surface of the steel plate becomes too low, a large amount of hard structure is generated on the surface of the steel plate, and the steel structure having the structure targeted in the present invention is not obtained, and the fatigue properties in hydrogen are reduced. For this reason, the cooling stop temperature at the center of the plate thickness is set to 250°C or more. It is preferably 280°C or more. More preferably, it is 300°C or more. Even more preferably, it is 390°C or more, and most preferably, it is 480°C or more.
- the cooling stop temperature at the center of the plate thickness exceeds 650°C, the frequency of nucleation of ferrite or bainite decreases and these become coarse, so that the structure having the average crystal grain size targeted in the present invention is not obtained, the strength decreases, and the coarsening of Nb precipitates progresses due to residual heat.
- the cooling stop temperature at the center of the plate thickness is set to 650°C or less.
- the cooling stop temperature at the center of the plate thickness is preferably 620°C or less, more preferably 600°C or less, and even more preferably 580°C or less.
- the most preferable temperature is 550° C. or lower, and the most preferable temperature is 500° C. or lower.
- the winding temperature is 650°C or lower. It is preferably 620°C or lower, more preferably 600°C or lower, and even more preferably 580°C or lower. It is most preferably 550°C or lower. And even more preferably 500°C or lower.
- the temperature is 250°C or higher. It is preferably 280°C or higher. It is more preferably 300°C or higher. It is even more preferably 390°C or higher, and most preferably 480°C or higher.
- the cooling stop temperature of the steel plate surface is not particularly limited, but if it is less than 250°C, a large amount of hard structure is generated on the steel plate surface, the steel structure having the structure fraction targeted in the present invention is not obtained, and the fatigue resistance in hydrogen is reduced. For this reason, it is preferable that the cooling stop temperature of the steel plate surface is 250°C or higher.
- the cooling stop temperature of the steel plate surface is more preferably 280°C or higher.
- the cooling stop temperature of the plate surface is 650°C or lower.
- the cooling stop temperature of the steel plate surface is more preferably 470°C or lower.
- the average cooling rate is the value (cooling rate) calculated by ((temperature at the center of thickness of the steel plate before cooling - temperature at the center of thickness of the hot-rolled steel plate after cooling) / cooling time).
- the cooling method may be water cooling, such as spraying water from a nozzle, or cooling by spraying cooling gas.
- Dehydrogenation process If hydrogen is present in steel, the acceleration of fatigue crack growth increases, and the fatigue life and hydrogen fatigue crack growth rate decrease. Therefore, dehydrogenation must be used to release the hydrogen remaining after manufacturing. Dehydrogenation reduces the amount of hydrogen in the steel by holding it at high temperature for a certain period of time before using the product, and steel plate with excellent fatigue properties in hydrogen under high pressure hydrogen gas environment can be obtained.
- the holding time R (sec) is preferably determined by the following formula (A) using the plate thickness and pipe thickness t (mm) of the steel material and steel pipe, and the hydrogen diffusion coefficient D (mm ⁇ sec ⁇ 1 ) in steel at room temperature.
- the hydrogen diffusion coefficient varies depending on the contained components and metal structure, but may be, for example, 1 ⁇ 10 ⁇ 5 to 5 ⁇ 10 ⁇ 3 mm 2 /s, and more preferably 5 ⁇ 10 ⁇ 4 mm 2 /s or less.
- the dehydrogenation process is carried out before pipe making or welding work for connecting steel pipes. It is preferable that the dehydrogenation process is performed at a high temperature because the hydrogen diffusion coefficient D at high temperatures becomes small and hydrogen is quickly removed. In the case of high temperatures, the diffusion coefficient D' (diffusion coefficient at each temperature) at the temperature at which the value of D in the above formula (A) is maintained may be used for calculation.
- the dehydrogenation process temperature is preferably 550°C or less. It is more preferable that the dehydrogenation process temperature T is 500°C or less. It is even more preferable that the dehydrogenation process temperature T is 400°C or less, and most preferably 300°C or less. In addition, since dehydrogenation at a temperature lowered below room temperature is a factor in increasing the processing time and cost, it is preferable that the dehydrogenation process temperature T is room temperature or higher. It is more preferable that the dehydrogenation process temperature T is 50°C or higher.
- the dehydrogenation process temperature T is 100°C or higher, and most preferably 150°C or higher.
- the dehydrogenation process temperature T mentioned here is the temperature of the atmosphere in the dehydrogenation process. Room temperature refers to 20 ⁇ 10°C.
- At least the former can appropriately control the amount of hydrogen in the steel material at the surface layer of the steel material and steel pipe, and if the latter is also implemented, the amount of hydrogen in the steel material from the surface layer to the center of the thickness of the steel material and steel pipe can be appropriately controlled.
- the thickness center temperature Tc can be measured using a thermocouple or can be predicted using the finite element method.
- the time and temperature of the dehydrogenation process may include the temperature and time applied when heating in the pipe-making process for electric resistance welded pipes, UOE, etc., as described below.
- scale on the steel surface inhibits dehydrogenation, it is preferable to remove the scale before carrying out the dehydrogenation process.
- the removal method There is no restriction on the removal method, but it may be physical cleaning using a high-pressure cleaner, for example, or a chemical method using a scale remover. The effect of scale removal can be obtained if a thickness of about 100 ⁇ m is removed.
- UOE steel pipe which is an example of the steel pipe of the present invention
- the composition, metal structure, and crack growth rate of the steel pipe are the same as those described for the steel material, and the manufacturing method is also performed in the same manner as the heating process, hot rolling process, controlled cooling process, and dehydrogenation process described for the steel material.
- the pipe-making process is performed as follows.
- the UOE steel pipe of the present invention is manufactured by bending a hot-rolled steel sheet, specifically by groove-forming the end of the hot-rolled steel sheet, forming the steel pipe shape with a C press, a U press, or an O press, seam-welding the butt joints with internal and external welding, and then expanding the pipe as necessary.
- Any welding method may be used as long as it provides sufficient joint strength and joint toughness, but it is preferable to use submerged arc welding from the viewpoint of excellent welding quality and manufacturing efficiency.
- pipe expansion can be performed on a steel pipe that has been formed into a tubular shape by press bending and then seam-welded at the butt joints.
- the welding method is not particularly limited, but examples include submerged arc welding.
- the thickness of the UOE steel pipe given as an example of the steel pipe of the present invention is preferably 10 mm or more and 50 mm or less.
- An electric resistance welded steel pipe which is an example of the steel pipe of the present invention, will be described below.
- the chemical composition, metal structure, and crack growth rate of the electric resistance welded steel pipe are the same as those described for the steel material, and the heating process, hot rolling process, and dehydrogenation process of the manufacturing method are performed in the same manner as those described for the steel material.
- the controlled cooling process and pipe making process after hot rolling are performed as follows.
- Controlled cooling process Average cooling rate at the center of the plate thickness from 1000 to 400°C: 10°C/s or more If the average cooling rate at the center of the plate thickness from 1000 to 400°C is less than 10°C/s, the frequency of nucleation of ferrite and bainite decreases and these become coarse, so that the fatigue properties in hydrogen are deteriorated. For this reason, the average cooling rate at the center of the plate thickness from 1000 to 400°C is set to 10°C/s or more. It is preferably 12°C/s or more, more preferably 15°C/s or more, and even more preferably 18°C/s or more.
- the average cooling rate at the center of the plate thickness is 60°C/s or less.
- the average cooling rate at the center of the plate thickness is more preferably 55°C/s or less, and even more preferably 50°C/s or less.
- Cooling stop temperature at the center of the plate thickness 250°C or more and 650°C or less If the cooling stop temperature at the center of the plate thickness is less than 250°C, the cooling stop temperature at the surface of the steel plate becomes too low, a large amount of hard structure is generated on the surface of the steel plate, and the steel structure having the structure targeted in the present invention is not obtained, and the fatigue properties in hydrogen are reduced. For this reason, the cooling stop temperature at the center of the plate thickness is set to 250°C or more. It is preferably 280°C or more. More preferably, it is 300°C or more. The cooling stop temperature at the center of the plate thickness is further preferably 390°C or more.
- the cooling stop temperature at the center of the plate thickness is most preferably 450°C or more. Furthermore, it is most preferably 480°C or more.
- the cooling stop temperature at the center of the plate thickness is set to 650° C. or less. It is preferably 620° C. or less, more preferably 600° C. or less, and even more preferably 580° C. or less. It is most preferably 550° C. or less. And even more preferably 500° C. or less.
- the hot-rolled steel sheet is then wound into a coil.
- the winding temperature is preferably 650°C or less.
- the cooling stop temperature of the steel plate surface is not particularly limited, but if it is less than 250°C, a large amount of hard structure will be generated on the steel plate surface, the steel structure having the structure desired in the present invention will not be obtained, and the fatigue properties in hydrogen will deteriorate. For this reason, on the other hand, if the cooling stop temperature of the steel plate surface exceeds 650°C, the cooling stop temperature at the center of the plate thickness will be too high, reducing the frequency of ferrite or bainite nucleation at the center of the plate thickness and causing them to coarsen, preventing the structure having the structure desired in the present invention from being obtained and reducing the strength.
- the cooling stop temperature of the steel plate surface is preferably 280°C or higher and preferably 470°C or lower.
- the average cooling rate is the value (cooling rate) calculated by ((center-thickness temperature of hot-rolled steel plate before cooling - center-thickness temperature of hot-rolled steel plate after cooling) / cooling time).
- the cooling method may be water cooling, such as spraying water from a nozzle, or cooling by spraying cooling gas.
- the electric resistance welded steel pipe given as an example of the steel pipe of the present invention is manufactured by forming the hot rolled steel sheet into a cylindrical shape by cold rolling, and then butting and welding both circumferential ends of the cylindrical shape (pipe-making process). Furthermore, the electric resistance welded steel pipe may be manufactured by forming the hot rolled steel sheet into an electric resistance welded steel pipe material using a sizing roll that satisfies the following formula (1) (sizing process), and applying an internal pressure p (MPa) that satisfies the following formula (2) to the inner surface of the electric resistance welded steel pipe material (internal pressure application process).
- the cylindrical shape means that the circumferential cross section of the tube is in a "C" shape.
- X (thickness of electric welded steel pipe material (mm) / radius of electric welded steel pipe material (mm)) ⁇ yield strength of electric welded steel pipe material (MPa)
- MPa yield strength of electric welded steel pipe material
- the thickness of the electric resistance welded steel pipe given as an example of the steel pipe of the present invention is preferably 5 mm or more and 30 mm or less.
- bending deformation occurs in the tube axial direction along the roll shape as the tube passes through the rolls, generating residual stress in the tube axial direction.
- the greater the bending strain in the bending deformation the greater the absolute value of the residual stress in the tube axial direction.
- the bending strain increases as the diameter of the sizing rolls decreases and as the thickness of the hot-rolled steel sheet increases.
- the diameter of the sizing roll is set to satisfy the above formula (1) in order to reduce the absolute value of the residual stress in the axial direction of the tube. If the diameter of the sizing roll is less than the right side of the formula (1), the intended residual shear stress of the present invention cannot be obtained.
- the diameter of the sizing roll is preferably 2000 mm or less.
- the electric resistance welded steel pipe material is expanded to generate tensile stress in the circumferential direction of the pipe, thereby reducing the absolute value of the residual stress in the circumferential direction of the pipe.
- the left side (X) of equation (2) above corresponds to the internal pressure p when the tensile stress generated in the circumferential direction of the pipe is equal to the yield stress of the electric resistance welded steel pipe material.
- the internal pressure p is set to a value greater than the left side (X) of equation (2) and the electric resistance welded steel pipe material is expanded to the plastic region.
- the internal pressure p exceeds the right side (X x 1.5) of equation (2), the absolute value of the residual stress in the circumferential direction of the pipe becomes smaller, but the amount of work hardening due to expansion becomes too large, the dislocation density on the pipe surface increases, and the fatigue properties in hydrogen deteriorate.
- steel materials and steel pipes were manufactured under the following manufacturing conditions, and their characteristics were evaluated.
- Steel with the chemical composition shown in Tables 1-1 and 1-2 was melted and cast into a slab.
- Steel materials No. 1 to 71 and 80 were all heated to 1200°C, hot rolled under conditions that the rolling end temperature was 950°C or higher, and cooled (accelerated cooling) by water cooling to the cooling end temperature shown in Tables 1-1 and 1-2 to manufacture the steel materials.
- Steel pipes No. 2 to 71 and 80 were also formed using the obtained steel materials. Nos.
- dehydrogenation treatment was performed by leaving the steel materials and steel pipes at room temperature for 96 hours (h) or more before evaluation. Room temperature refers to 20 ⁇ 10°C. Dehydrogenation treatment was not performed for steel material No. 32. For steel materials Nos. 70 and 71 and steel pipes Nos. 70 and 71, they could not be welded and therefore could not be used as steel pipes, so they could not be evaluated.
- steel Nos. 72 to 79 a slab having the same composition as steel No. 58 was used, and the manufacturing conditions were also examined. In particular, for conditions not described, manufacturing was performed under the same conditions as steel Nos. 1 to 71.
- the heating temperature was 1300°C, which exceeds the upper limit of the invention.
- the rolling end temperature was set to 700°C, which is below the lower limit of the invention.
- the rolling end temperature was 900°C, which is within the scope of the invention.
- the average cooling rate after rolling was 9°C/s, which is outside the scope of the invention.
- the average cooling rate after rolling was 65°C/s, which is within the scope of the invention.
- the heating temperature was 950° C.
- the slab was too hard to be rolled, and therefore the evaluation was not made.
- the cooling stop temperature was 700° C., which is outside the range of the present invention.
- the cooling stop temperature was 240° C., which is outside the range of the present invention.
- the obtained steel materials were used to form a cylindrical shape by cold roll forming, and a pipe-making process was carried out in which both circumferential ends of the cylindrical shape were butted together and electric resistance welded to obtain steel pipes.
- the fatigue crack propagation characteristics were evaluated by a fatigue crack growth test. From each steel material, a CT (compact tension) test piece (a test piece close to a square with a notch at one end) conforming to ASTM E 647 was taken so that the load direction was parallel to the rolling direction, and the fatigue crack length was measured by the compliance method using a clip gauge to obtain the fatigue crack propagation rate in 5 MPa high pressure hydrogen gas.
- CT compact tension
- test piece was ground 0.5 mm from the surface to 2 mm, 5 mm, 8 mm, and 9 mm, respectively, when the plate thickness was 10 mm or less, and a 10 mm thick test piece was taken from the position of t/2 (t: plate thickness) for plate thicknesses other than these, and the front and back of the crack propagation part were mirror polished.
- t/2 plate thickness
- the results are shown in Table 1.
- the level at which the crack growth rate da/dN achieved was 1.0 ⁇ 10 ⁇ 6 m ⁇ cycle ⁇ 1 or less was judged to be acceptable.
- Nb precipitates were evaluated by the following method. Square pieces randomly taken from three locations per sample were machined to a mirror surface and then etched. The size was not specified, but the surface area was unified to 10 cm2 or less. Then, pretreatment was performed by the extraction replica method in which the precipitates were transferred to a replica film generated by carbon deposition and observed, and the Nb precipitates were observed and analyzed by EPMA. If 10 or more Nb precipitates of 2 nm to 100 nm were observed per ⁇ m2 or less, they were marked Y, and if less than the above, they were marked N in Tables 1-1 and 1-2.
- steel materials were manufactured under the following manufacturing conditions and their characteristics were evaluated. Using slabs with the same component composition as steel materials No. 17, 26, 55, and 67 shown in Tables 1-1 and 1-2, steel materials No. 17, 26, 55, and 67 shown in Example 1 were manufactured under the same conditions up to the controlled cooling process to obtain steel materials No. 17A, 26A, 55A, and 67A.
- the obtained steel materials hot-rolled steel sheet
- a pipe-making process was carried out in which both circumferential ends of the cylindrical shape were butted together and electric resistance welded.
- the dehydrogenation treatment of steel materials Nos. 17, 26, 55, and 67 in Example 1 was performed with the dehydrogenation temperature T (ambient temperature) at room temperature for a holding time of 96 hours, but in this example, the dehydrogenation treatment temperature T (ambient temperature) was all performed at 50°C.
- Steel pipes Nos. 81, 84, 86, and 88 were performed with the dehydrogenation temperature T (ambient temperature) at 50°C, and the holding time tc after the plate thickness center temperature Tc reached 50°C was set to satisfy formula (A).
- dehydrogenation holding time t is Y
- dehydrogenation treatment temperature T atmosphere temperature
- holding time t satisfies formula (A)
- dehydrogenation holding time t is N
- holding time tc at steel center temperature Tc is Y
- holding time tc after the plate thickness center temperature Tc reaches 50° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
[1] 質量%で、
C:0.02~0.15%、
Si:0.05~0.5%、
Mn:0.3~2.0%、
Al:0.01~0.15%、
N:0.0005~0.008%、
P:0.03%以下、
S:0.01%以下、
O:0.01%以下、
Nb:0%超2.5%以下、
H:0.0010%以下、
Cu:0~2.5%、
Ni:0~2.5%、
Cr:0~2.5%、
Mo:0~2.0%、
V:0~0.5%、
Ti:0~0.5%、
W:0~2.5%、
B:0~0.005%、
Sn:0~0.03%、
Sb:0~0.3%、
Ca:0~0.01%、
Mg:0~0.01%、
REM:0~0.005%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
円相当径が2nm以上100nm以下であるNb析出物が10個/μm2以上であり、
1MPa以上の水素中の応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼材。
[2] 前記[1]に記載の成分組成を有するスラブを1000~1250℃で加熱する加熱工程と、
前記加熱工程で加熱されたスラブを、仕上圧延終了温度:Ar3点以上の条件で圧延する熱間圧延工程と、
前記熱間圧延工程で得られた鋼板を、1000~400℃までの平均冷却速度が板厚中央の温度で10℃/s以上、冷却停止温度が250~650℃である条件で冷却する制御冷却工程と、
前記制御冷却工程で得られた鋼板を脱水素処理する脱水素処理工程と、
を有する鋼材の製造方法。
[3] 質量%で、
C:0.02~0.15%、
Si:0.05~0.5%、
Mn:0.3~2.0%、
Al:0.01~0.15%、
N:0.0005~0.008%、
P:0.03%以下、
S:0.01%以下、
O:0.01%以下、
Nb:0%超2.5%以下、
H:0.0010%以下、
Cu:0~2.5%、
Ni:0~2.5%、
Cr:0~2.5%、
Mo:0~2.0%、
V:0~0.5%、
Ti:0~0.5%、
W:0~2.5%、
B:0~0.005%、
Sn:0~0.03%、
Sb:0~0.3%、
Ca:0~0.01%、
Mg:0~0.01%、
REM:0~0.005%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
円相当径が2nm以上100nm以下であるNb析出物が10個/μm2以上であり、
1MPa以上の水素中の応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼管。
[4] 前記[3]に記載の成分組成を有するスラブを1000~1250℃で加熱する加熱工程と、
前記加熱工程で加熱されたスラブを、仕上圧延終了温度:Ar3点以上の条件で圧延する熱間圧延工程と、
前記熱間圧延工程で得られた熱延鋼板を、1000~400℃までの平均冷却速度が板厚中央の温度で10℃/s以上、冷却停止温度が250~650℃である条件で冷却する制御冷却工程と、
該制御冷却工程後、前記熱延鋼板を曲げ加工し、両端部を突合せて溶接する造管工程、および前記制御冷却工程後、前記熱延鋼板を冷間ロール成形により円筒状に成形し、該円筒状の周方向両端部を突合せて電縫溶接する造管工程のうちどちらか一方の造管工程と、
造管工程で得られた鋼管を脱水素処理する脱水素処理工程と、
を有する鋼管の製造方法。
[成分組成]
本発明の鋼材の成分組成について、その限定理由を以下に説明する。なお、以下の説明における「%」は、特に断らない限り「質量%」を表すものとする。
Cは、適度な焼入れ性を確保するために含有するが、0.02%未満ではその効果が不十分である。このため、C含有量は0.02%以上とする。C含有量は0.03%以上が好ましい。一方、0.15%を超えると母材および溶接熱影響部の靭性が劣化するとともに、溶接性が著しく劣化する。従って、C含有量は0.15%以下とする。C含有量は0.12%以下が好ましい。C含有量は、0.10%以下がより好ましく、0.08%以下がさらに好ましい。
Siは、製鋼段階の脱酸材および焼入れ性を確保する元素として含有するが、0.05%未満ではその効果が不十分である。このため、Si含有量は0.05%以上とする。Si含有量は0.1%以上が好ましい。Si含有量は、0.15%以上がより好ましい。一方、0.5%を超えると粒界が脆化し、低温靭性および水素中の疲労特性を劣化させる。従って、Si含有量は0.5%以下とする。Si含有量は0.4%以下が好ましい。Si含有量は0.3%以下がより好ましく、0.25%以下がさらに好ましい。
Mnは、焼入れ性を確保する元素として含有するが、0.3%未満ではその効果が不十分である。このため、0.3%以上とする。Mn含有量は0.4%以上が好ましい。Mn含有量は0.5%以上がより好ましい。Mn含有量は0.6%以上がさらに好ましい。一方、2.0%を超えて含有すると、粒界強度が低下し、低温靭性が劣化する。また、制御冷却時に表層部や中心偏析部の硬さが上昇するため、水素中の疲労特性が劣化する。したがって、Mn含有量は2.0%以下とする。Mn含有量は1.8%以下が好ましい。Mn含有量は1.5%以下がより好ましく、1.3%以下がさらに好ましい。
Alは、脱酸材として含有されると同時に、Al系窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する効果があるが、0.01%未満の場合にはその効果が十分でない。そのため、Al含有量は0.01%以上とする。Al含有量は0.02%以上が好ましい。Al含有量は0.03%以上がより好ましい。一方、0.15%を超えて含有すると、鋼の清浄度が低下し、靭性および水素中の疲労特性が劣化する。従って、Al含有量は0.15%以下とする。Al含有量は0.12%以下が好ましい。Al含有量は0.10%以下がより好ましく、0.08%以下がさらに好ましい。
Nは、Nb、Ti、Alなどと窒化物を形成することによって微細析出物を形成し、加熱時にオーステナイト粒をピンニングすることによって、粒の粗大化を抑制し、低温靭性を向上させる効果を有するために含有する。0.0005%未満の含有では組織の微細化効果が充分にもたらされない。このため、N含有量は0.0005%以上とする。N含有量は0.001%以上が好ましい。N含有量は0.0025%以上がより好ましい。一方、0.008%を超える含有は固溶N量が増加するために母材および溶接熱影響部の靭性を損ない、水素中の疲労特性が劣化する。従って、N含有量は0.008%以下とする。N含有量は0.007%以下が好ましい。N含有量は0.006%以下がより好ましく、0.005%以下がさらに好ましい。
不純物元素であるPは、結晶粒界に偏析しやすく、0.03%を超えると隣接結晶粒の接合強度を低下させ、低温靭性、水素中の疲労特性を劣化させる。従って、P含有量は0.03%以下とする。P含有量は0.02%以下が好ましく、0.01%以下がより好ましい。下限は特に限定されるものではないが、コスト増につながることから0.001%以上とすることが好ましい。
不純物元素であるSは、結晶粒界に偏析しやすく、また、非金属介在物であるMnSを生成しやすい。0.01%を超えると隣接結晶粒の接合強度が低下し、介在物の量が多くなり、低温靭性および水素中の疲労特性を劣化させる。従って、S含有量は0.01%以下とする。S含有量は0.008%以下とすることが好ましい。S含有量は0.005%以下がより好ましく、0.002%以下がさらに好ましい。下限は特に限定されるものではないが、コスト増につながることから0.0001%以上とすることが好ましい。S含有量は0.001%以上がより好ましい。
Oは、Alなどと酸化物を形成することによって、材料の加工性に影響を及ぼすため少ないほど好ましい。0.01%を超える含有は介在物が増加し、加工性を損なう。また、介在物増加に伴い、水素中の疲労特性も劣化する。従って、O含有量は0.01%以下とする。O含有量は0.008%以下が好ましく、0.005%以下がより好ましい。下限は特に限定されるものではないが、コスト増につながることから0.0001%以上とすることが好ましい。O含有量は0.001%以上がより好ましい。
Nbは、焼入れ性を向上する作用を有するとともに、Nb系炭窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する。粒のサイズが小さいほど、粒界面積が増加し水素中の疲労特性は向上する。このため、Nb含有量は0%超えとする。Nb含有量は0.005%以上とすることが好ましい。Nb含有量は0.01%以上とすることがより好ましい。一方、含有量が2.5%を超える含有は溶接熱影響部の靭性を劣化させる。従って、Nb含有量は2.5%以下とする。Nb含有量は、2.2%以下がより好ましい。Nb含有量は2.0%以下がさらに好ましく、1.5%以下がもっとも好ましい。
Hは、製造中の種々の工程で鋼材中に導入される場合があり、導入量が多いと凝固後の割れ発生リスクが高まるとともに、疲労き裂進展を加速させる。また、導入量が多い状態ではき裂進展速度を増加させるため、鋼材中の水素量を低下させることが重要である。これらの影響は0.0010%以下であれば問題とならないため、H含有量は0.0010%以下とする。好ましくは0.0005%以下である。より好ましくは、0.0002%以下である。一方、0.00001%未満とするコスト増の要因となるため、H含有量は0.00001%以上とすることが好ましい。H含有量は0.0001%以上がより好ましい。なお、水素量は鋼材、鋼管、UOE等の成形後の残存水素量である。本発明では脱水素処理工程を実施することで、上記のH含有量を達成できる。
Cuは、焼入れ性を向上する作用を有している。そのため、Cuを含有する場合には、Cu含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、Cu含有量は0.05%以上とすることが好ましい。Cu含有量は2.5%を超えると、鋼片加熱時や溶接時に熱間での割れを生じやすくする。従って、Cuを含有する場合には、2.5%以下とする。Cu含有量は2.3%以下が好ましい。Cu含有量は2.0%以下がより好ましく、1.8%以下がさらに好ましい。
Niは、Cuと同様に焼入れ性を向上する作用を有しており、さらに靭性を向上する作用も有する。そのため、Niを含有する場合には、Ni含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、Ni含有量は0.05%以上とすることが好ましい。2.5%を超えると、経済性が劣る。従って、Niを含有する場合には、Ni含有量は2.5%以下とする。Ni含有量は2.3%以下が好ましい。Ni含有量は2.0%以下がより好ましく、1.8%以下が好ましい。
Crは、焼入れ性を確保する元素であり、Crを含有する場合には、Cr含有量は0%以上であってよいが、0.1%未満では上記効果が得られにくいため、Cr含有量は0.1%以上とすることが好ましい。一方、2.5%を超えて含有すると溶接性が劣化する。従って、Crを含有する場合には、Cr含有量は2.5%以下とする。Cr含有量は2.3%以下が好ましい。Cr含有量は2.0%以下がより好ましく、1.5%以下がさらに好ましく、1.2%以下がもっとも好ましい。
Moは、焼入れ性を向上する作用を有するため、Moを含有する場合には、Mo含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、Mo含有量は0.05%以上とすることが好ましい。一方、2.0%を超える含有は経済性が劣る。従って、Moを含有する場合には、Mo含有量は2.0%以下とする。Mo含有量は1.8%以下が好ましい。Mo含有量は1.5%以下とすることがより好ましく、1.2%以下がさらに好ましい。
Vは、焼入れ性を向上する作用を有すると共に、V系炭化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する。そのため、Vを含有する場合には、V含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、V含有量は0.005%以上とすることが好ましい。V含有量は0.01%以上とすることが好ましい。一方、含有量が0.5%を超える添加は溶接熱影響部の靭性を劣化させる。従って、Vを含有する場合には、V含有量は0.5%以下とする。V含有量は0.4%以下が好ましい。V含有量は0.3%以下がより好ましく、0.2%以下がさらに好ましい。
Tiは、焼入れ性を向上する作用を有するとともに、Ti系炭窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の成長を抑制する効果がある。そのため、Tiを含有する場合には、Ti含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、Ti含有量は0.005%以上とすることが好ましい。一方、含有量が0.5%を超える添加は溶接熱影響部の靭性を劣化させる。従って、Tiを含有する場合には、Ti含有量は0.5%以下とする。Ti含有量は0.4%以下が好ましい。Ti含有量は0.3%以下がより好ましく、0.2%以下がさらに好ましい。
Wは、焼入れ性を向上する作用を有するため、Wを含有する場合には、W含有量は0%以上であってよいが、0.05%未満では上記効果が得られにくいため、W含有量は0.05%以上とすることが好ましい。一方、2.5%を超えると、溶接性が劣化する。従って、Wを含有する場合は、W含有量は2.5%以下とする。W含有量は2.3%以下が好ましい。W含有量は2.0%以下がより好ましく、1.8%以下がさらに好ましい。
Bは、焼入れ性を確保する元素として含有するため、Bを含有する場合には、B含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、B含有量は0.0005%以上とすることが好ましい。一方、0.005%を超えると、靭性を劣化させる。従って、Bを含有する場合には、B含有量は0.005%以下とする。B含有量は0.004%以下が好ましい。B含有量は0.003%以下がより好ましく、0.002%以下がさらに好ましい。
Snは、鋼材の耐食性を高める作用を有している。そのため、Snを含有する場合には、Sn含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、Sn含有量は0.005%以上とすることが好ましい。一方、含有量が0.03%を超える添加は高温延性が低下し、鋳造時の割れが生じる可能性を高める。したがって、Snを含有する場合には、Sn含有量は0.03%以下とする。Sn含有量は0.025%以下が好ましい。Sn含有量は0.02%以下がより好ましく、0.015%以下がさらに好ましい。
Sbは、鋼材の耐食性を高める作用を有している。そのため、Sbを含有する場合には、Sb含有量は0%以上であってよいが、0.005%未満では上記効果が得られにくいため、Sb含有量は0.005%以上とすることが好ましい。Sb含有量は0.01%以上であることがより好ましい。一方、含有量が0.3%を超える添加は高温延性が低下し、熱間圧延性が低下する。したがって、Sbを含有する場合には、Sb含有量は0.3%以下とする。Sb含有量は0.25%以下が好ましい。Sb含有量は0.2%以下がより好ましく、0.15%以下がさらに好ましい。
Caは、CaSを形成し、圧延によって展伸しやすい介在物であるMnSの代わりに、圧延により展伸しにくい球状介在物であるCaSへと、硫化物系介在物の形態を制御する作用を有する。そのため、Caを含有する場合には、Ca含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、Ca含有量は0.0005%以上とすることが好ましい。Ca含有量は0.001%以上とすることが好ましい。一方、含有量が0.01%を超えて含有すると清浄度が低下するため、靭性などの材質が劣化する。したがって、Caを含有する場合には、Ca含有量は0.01%以下とする。Ca含有量は0.005%以下が好ましい。Ca含有量は0.003%以下がより好ましく、0.002%以下がさらに好ましい。
Mgは、溶銑脱硫材として使用する場合がある。そのため、Mgを含有する場合には、Mg含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、Mg含有量は0.0005%以上とすることが好ましい。Mg含有量は0.001%以上とすることが好ましい。一方、含有量が0.01%を超える添加は、清浄度の低下を招く。従って、Mgを含有する場合には、Mg含有量は0.01%以下とする。Mg含有量は0.005%以下が好ましい。Mg含有量は0.004%以下がより好ましく、0.003%以下がさらに好ましい。
REMは、鋼中でREM(O、S)として硫化物を生成することによって結晶粒界の固溶S量を低減して耐SR割れ特性を改善する。そのため、REMを含有する場合には、REM含有量は0%以上であってよいが、0.0005%未満では上記効果が得られにくいため、REM含有量は0.0005%以上とすることが好ましい。一方、含有量が0.005%を超える添加は、沈殿晶帯にREM硫化物が著しく集積し、材質の劣化を招く。従って、REMを含有する場合には、REM含有量は0.005%以下とする。REM含有量は0.003%以下が好ましい。REM含有量は0.001%以下とすることがより好ましい。なお、REMとはRare Earth Metalの略、であり、希土類金属である。
Nbのピンニング効果は、所定の析出物量が得られることで確認することが可能である。本発明では、Nb析出物サイズは円相当径で2nm以上100nm以下のNb析出物が10個/μm2以上とする。相当径で2nm以上100nm以下のNb析出物が好ましくは15個/μm2以上であり、より好ましくは20個/μm2以上であり、さらに好ましくは25個/μm2以上である。上限は析出物が多くなりすぎると水素脆化性が悪化するという理由から、円相当径で2nm以上100nm以下のNb析出物が100個/μm2以下であることが好ましい。90個/μm2以下であることがより好ましく、80個/μm2以下であることがさらに好ましい。例えば、Nb析出物はNbC、NbN、Nb炭窒化物などが挙げられる。微細なNb析出物の析出には後述するように冷却停止温度が重要になる。なお、2nm以上のNb析出物に着目した理由は確認が難しいためであり、100nm以下のNb析出物に着目した理由は、Nb析出物が粗大になりすぎると、水素脆化に悪影響を及ぼすためである。
疲労き裂進展速度は、ラインパイプやガス容器などのガス容器の設計において重要なパラメータで、破壊構造部材の安全性を確保した使用寿命を得るために必要である。破壊構造部材においては、き裂やき裂発生個所をゼロにすることは困難で、繰り返し応力を受けるとき、き裂は不可避的に発生し、進展する。そのため、上記破壊構造部材に用いられる鋼材のき裂進展速度の制御は使用寿命の観点からも重要である。き裂進展速度はき裂先端にかかる応力状態が小さい場合は小さく、き裂先端の応力状態が増加すると大きくなる。水素環境においては、鋼材中に水素が侵入し、き裂を進みやすくする。水素によるき裂進展速度の促進度合いは材料の組織や析出物による影響が大きい。1MPa以上の水素中のき裂進展試験において、ASTM E647に準拠して、周波数:1Hz、繰返し波形:正弦波、制御方法:荷重制御、応力比:R=0.1の疲労試験を実施して求めた応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下であれば、高圧水素環境下における鋼構造物の使用寿命も確保できるため、1MPa以上の水素中のき裂進展試験において、応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下とする。応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが好ましくは0.9×10-6m・cycle-1以下であり、より好ましくは0.8×10-6m・cycle-1以下であり、さらに好ましくは0.7×10-6m・cycle-1以下である。下限について、大気中結果を上回りかつ、それに近いほど良好と考えることができ、大気中の応力拡大係数=20MPa√mにおけるき裂進展速度da/dNは、0.05×10-6m・cycle-1であるため、応力拡大係数=20MPa√mにおけるき裂進展速度da/dNは0.05×10-6m・cycle-1以上あればよい。
なお、本発明の水素ガス中の疲労特性に優れた鋼材は、上記の成分組成を有する鋼材であって水素中の耐疲労き裂進展特性に優れる薄板、厚板、鋼管など種々の分類を含み、あるいは所定形状に成形した水素パイプライン用鋼材としてもよい。
加熱温度:1000℃以上1250℃以下
加熱温度が1000℃未満である場合、被圧延材の変形抵抗が大きくなり圧延が困難となる。このため、加熱温度は1000℃以上とする。好ましくは、加熱温度は1050℃以上であり、より好ましくは1100℃以上であり、さらに好ましくは1120℃以上である。一方、加熱温度が1250℃を超えると、オーステナイト粒が粗大化し、後の圧延(粗圧延、仕上圧延)において微細なオーステナイト粒が得られず、水素中の耐疲労特性が低下する。そのため、熱間圧延工程における加熱温度は、1250℃以下とする。前記加熱温度は、好ましくは1230℃以下である。前記加熱温度は、より好ましくは1210℃以下であり、さらに好ましくは1200℃以下である。
上記、加熱後、粗圧延、仕上げ圧延を含めた熱間圧延を行い、仕上圧延は下記条件で実施する。熱間圧延は熱間圧延機で行う。
仕上圧延終了温度がAr3点未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、転位密度の高い加工フェライトが生成し、水素中の疲労特性が低下する。このため、仕上圧延終了温度はAr3点以上とする。Ar3点が770℃よりも低い場合には、仕上圧延終了温度は、好ましくは770℃以上である。Ar3点が770℃よりも高い場合には、仕上圧延終了温度は、Ar3点+30℃以上が好ましく、Ar3点+50℃以上がより好ましい。一方、仕上圧延終了温度の上限は特に規定しないが、Ar3点が850℃よりも低い場合には、850℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られず、水素中の耐疲労特性が低下することがある。このため、Ar3点が850℃よりも低い場合には、仕上圧延終了温度は850℃以下が好ましい。より好ましくは830℃以下である。Ar3点が850℃よりも高い場合には、仕上圧延終了温度はAr3点-30℃以下が好ましく、Ar3点-50℃以下がより好ましい。
Ar3(℃)=910-310C(%)-80Mn(%)-20Cu(%)-15Cr(%)-55Ni(%)-80Mo(%)
各合金元素は含有量(質量%)とする。
1000~400℃までの板厚中央の平均冷却速度:10℃/s以上
板厚中央の平均冷却速度が10℃/s未満では、フェライトおよびベイナイトの核生成頻度が減少し、これらが粗大化するため、水素中の疲労特性が低下する。このため、1000~400℃までの板厚中央の平均冷却速度は10℃/s以上とする。好ましくは12℃/s以上であり、より好ましくは15℃/s以上であり、さらに好ましくは18℃/s以上である。一方、前記平均冷却速度の上限は特に規定しないが60℃/sを超えると、鋼板表面において硬質な組織が多量に生成し、本発明で目的とする組織を有する鋼組織が得られず、水素中の疲労特性が低下する。そのため、板厚中央の平均冷却速度は、60℃/s以下とすることが好ましい。板厚中央の平均冷却速度は、より好ましくは55℃/s以下であり、さらに好ましくは50℃/s以下である。
板厚中央の冷却停止温度が250℃未満では、鋼板表面の冷却停止温度が低くなり過ぎて、鋼板表面において硬質な組織が多量に生成し、本発明で目的とする組織を有する鋼組織が得られずに、水素中の疲労特性が低下する。このため、板厚中央の冷却停止温度は250℃以上とする。好ましくは280℃以上である。より好ましくは300℃以上である。さらに好ましくは390℃以上であり、もっとも好ましくは480℃以上である。一方、かかる板厚中央の冷却停止温度が650℃を超えると、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、本発明で目的とする平均結晶粒径を有する組織が得られず、強度が低下し、余熱でNb析出物の粗大化が進む。このため、板厚中央の冷却停止温度は650℃以下とする。板厚中心の冷却停止温度は、好ましくは620℃以下であり、より好ましくは600℃以下であり、さらに好ましくは580℃以下である。もっとも好ましくは550℃以下である。さらにもっとも好ましくは500℃以下である。
鋼材中にそもそも水素が存在する場合には疲労き裂進展の加速が増大され、疲労寿命および水素中疲労き裂進展速度が低下する。そのため、製造後に残存する水素を放出させるために、脱水素処理を用いる必要がある。脱水素処理は、製品使用前に高温で一定時間保持することで鋼中水素量を低減させることができ、高圧水素ガス環境下における水素中の疲労特性に優れた鋼板を得ることができる。
保持時間R(sec)は、鋼材および鋼管の板厚並びに管厚t(mm)、および室温における鋼中の水素拡散係数D(mm・sec-1)から、以下の式(A)とすることが好ましい。
R≧t2/D・・・(A)
水素拡散係数は含有している成分や金属組織によっても変わるが、例えば、水素拡散係数は1×10-5~ 5×10-3mm2/sを採用しても良い。より好ましくは 5×10-4mm2/s以下である。
脱水素処理工程は、造管または鋼管をつなげる溶接施工前に実施する。なお、脱水素処理は高温の水素拡散係数Dが小さくなり、早く水素が抜けるため高温である方が好ましい。高温の場合は上記(A)式のDの値を保持する温度の拡散係数D’(それぞれの温度における拡散係数)を用いて計算しても良い。一方、脱水素工程の温度Tが高すぎる場合には材料強度が著しく低下するため、脱水素処理温度は550℃以下が好ましい。脱水素処理温度Tは500℃以下とすることがより好ましい。脱水素処理温度Tは400℃以下とすることがさらに好ましく、300℃以下とすることがもっとも好ましい。また、室温よりも温度を低下させた脱水素処理は処理時間およびコスト増の要因であるという理由から脱水素処理温度Tは室温以上とすることが好ましい。脱水素処理温度Tは50℃以上とすることがより好ましい。脱水素処理温度Tは100℃以上とすることがさらに好ましく、150℃以上とすることがもっとも好ましい。ここで述べている脱水素処理温度Tとは、脱水素処理工程における雰囲気の温度である。室温とは20±10℃であることをいう。
以下、本発明の鋼管として挙げられるUOE鋼管について具体的に説明する。鋼管の成分組成、金属組織、き裂進展速度は鋼材で説明した内容と同様であり、製造方法についても加熱工程、熱間圧延工程、制御冷却工程、脱水素処理工程は鋼材で説明した内容と同等の内容で実施される。造管工程は下記にて実施される。
本発明のUOE鋼管は、熱延鋼板を曲げ加工、具体的にいうと熱延鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形する加工を施した後、内面溶接および外面溶接で突き合わせ部をシーム溶接し、さらに必要に応じて拡管工程を経て製造される。また、溶接方法は十分な継手強度と継手靭性が得られる方法であれば、いずれの方法でも良いが、優れた溶接品質と製造能率の観点から、サブマージアーク溶接を用いることが好ましい。また、プレスベンド成形により管状に成形した後、突き合せ部をシーム溶接した鋼管に対しても、拡管を実施することができる。溶接方法は特に限定されるわけではないが、サブマージアーク溶接などが挙げられる。
なお、本発明の鋼管の一例として挙げているUOE鋼管の板厚は、10mm以上、50mm以下であることが好ましい。
以下、本発明の鋼管の一例として挙げられる、電縫鋼管について説明する。電縫鋼管の成分組成、金属組織、き裂進展速度は鋼材で説明した内容と同様であり、製造方法についても加熱工程、熱間圧延工程、脱水素処理工程は鋼材で説明した内容と同様の内容で実施される。熱間圧延後の制御冷却工程と造管工程は下記にて実施される。
1000~400℃までの板厚中央の平均冷却速度:10℃/s以上
1000~400℃までの板厚中央の平均冷却速度が10℃/s未満では、フェライトおよびベイナイトの核生成頻度が減少し、これらが粗大化するため、水素中の疲労特性が低下する。このため、1000~400℃までの板厚中央の平均冷却速度は10℃/s以上とする。好ましくは12℃/s以上であり、より好ましくは15℃/s以上であり、さらに好ましくは18℃/s以上である。一方、前記平均冷却速度の上限は特に規定しないが60℃/sを超えると、鋼板表面において硬質な組織が多量に生成し、本発明で目的とする組織を有する鋼組織が得られず、水素中の疲労特性が低下する。そのため、板厚中央の平均冷却速度は、60℃/s以下とすることが好ましい。板厚中央の平均冷却速度は、より好ましくは55℃/s以下であり、さらに好ましくは50℃/s以下である。
板厚中央の冷却停止温度が250℃未満では、鋼板表面の冷却停止温度が低くなり過ぎて、鋼板表面において硬質な組織が多量に生成し、本発明で目的とする組織を有する鋼組織が得られずに、水素中の疲労特性が低下する。このため、板厚中央の冷却停止温度は250℃以上とする。好ましくは280℃以上である。より好ましくは300℃以上である。板厚中央の冷却停止温度はさらに好ましくは390℃以上である。鋼板表面における硬質な組織の生成を確実に抑制するためには、板厚中央の冷却停止温度は450℃以上がもっとも好ましい。さらにもっとも好ましくは480℃以上である。一方、かかる冷却停止温度が650℃を超えると、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、本発明で目的とする平均結晶粒径を有する組織が得られず、強度が低下する。また、余熱でNb析出物が粗大化する。このため、板厚中央の冷却停止温度は650℃以下とする。好ましくは620℃以下であり、より好ましくは600℃以下であり、さらに好ましくは580℃以下である。もっとも好ましくは550℃以下である。さらにもっとも好ましくは500℃以下である。
本発明の鋼管の一例として挙げている電縫鋼管は、前記熱延鋼板を冷間ロール成形により円筒状に成形し、該円筒状の周方向両端部を突合せて溶接(造管工程)することによって製造される。さらに、以下の(1)式を満たすサイジングロールを用いて電縫鋼管素材に成形し(サイジング工程)、前記電縫鋼管素材の内面に以下の(2)式を満たす内圧p(MPa)を負荷する(内圧負荷工程)ことによって製造してもよい。
なお、前記円筒状とは、管周断面が「C」形状であることを指す。
X<p≦X×1.5 ・・・(2)
なお、X=(電縫鋼管素材の肉厚(mm)/電縫鋼管素材の半径(mm))×電縫鋼管素材の降伏強度(MPa)
前記した内圧の負荷は、例えば、ゴム素材のパッキンで管端を封じて管内部に水圧を負荷することにより実施することができる。また、形状を安定化させるために、必要に応じて外枠として所期した径の金型を使用することもできる。
サイジングロールの直径が前記(1)式の右辺未満の場合、本発明で目的とするせん断残留応力が得られない。なお、特にサイジングロールの直径の上限は規定しないが、サイジングロールが大きくなると設備の負荷が増大するため、サイジングロールの直径は2000mm以下とすることが好ましい。
かかる内圧負荷工程の内圧p(MPa)が大きいほど、管周方向の残留応力の絶対値が小さくなる。管周方向に発生する引張応力は、鋼管の半径が大きいほど、鋼管の肉厚が小さいほど、高くなる。
鋼材No.77では加熱温度:950℃で行うとスラブが硬く圧延できなかったため、評価に至らなかった。
また、鋼材No.78では冷却停止温度が700℃で実施しており、本発明の範囲外である。鋼材No.79では冷却停止温度が240℃で実施しており、本発明の範囲外である。
鋼材No.72~79についても、得られた鋼材を使用して、を冷間ロール成形により円筒状に成形し、該円筒状の周方向両端部を突合せて電縫溶接する造管工程を実施して、鋼管を得た。
鋼管No.83は、脱水素処理温度T(雰囲気温度)は50℃であるが、雰囲気温度の保持時間t、板厚中央温度Tcが50℃に到達してからの保持時間tcがともに上述している(A)式を満足していない。
本発明の発明例は、すべて水素ガス中のき裂進展速度da/dNが1.0×10-6m/cycle以下の条件を満足した。そのなかでも、脱水素処理条件がより好適な条件で実施される方が、き裂伝播特性は優れていた。
Claims (4)
- 質量%で、
C:0.02~0.15%、
Si:0.05~0.5%、
Mn:0.3~2.0%、
Al:0.01~0.15%、
N:0.0005~0.008%、
P:0.03%以下、
S:0.01%以下、
O:0.01%以下、
Nb:0%超2.5%以下、
H:0.0010%以下、
Cu:0~2.5%、
Ni:0~2.5%、
Cr:0~2.5%、
Mo:0~2.0%、
V:0~0.5%、
Ti:0~0.5%、
W:0~2.5%、
B:0~0.005%、
Sn:0~0.03%、
Sb:0~0.3%、
Ca:0~0.01%、
Mg:0~0.01%、
REM:0~0.005%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
円相当径が2nm以上100nm以下であるNb析出物が10個/μm2以上であり、
1MPa以上の水素中の応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼材。 - 請求項1に記載の成分組成を有するスラブを1000~1250℃で加熱する加熱工程と、
前記加熱工程で加熱されたスラブを、仕上圧延終了温度:Ar3点以上の条件で圧延する熱間圧延工程と、
前記熱間圧延工程で得られた鋼板を、1000~400℃までの平均冷却速度が板厚中央の温度で10℃/s以上、冷却停止温度が250~650℃である条件で冷却する制御冷却工程と、
前記制御冷却工程で得られた鋼板を脱水素処理する脱水素処理工程と、
を有する鋼材の製造方法。 - 質量%で、
C:0.02~0.15%、
Si:0.05~0.5%、
Mn:0.3~2.0%、
Al:0.01~0.15%、
N:0.0005~0.008%、
P:0.03%以下、
S:0.01%以下、
O:0.01%以下、
Nb:0%超2.5%以下、
H:0.0010%以下、
Cu:0~2.5%、
Ni:0~2.5%、
Cr:0~2.5%、
Mo:0~2.0%、
V:0~0.5%、
Ti:0~0.5%、
W:0~2.5%、
B:0~0.005%、
Sn:0~0.03%、
Sb:0~0.3%、
Ca:0~0.01%、
Mg:0~0.01%、
REM:0~0.005%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
円相当径が2nm以上100nm以下であるNb析出物が10個/μm2以上であり、
1MPa以上の水素中の応力拡大係数=20MPa√mにおけるき裂進展速度da/dNが1.0×10-6m・cycle-1以下である水素中の疲労特性に優れた鋼管。 - 請求項3に記載の成分組成を有するスラブを1000~1250℃で加熱する加熱工程と、
前記加熱工程で加熱されたスラブを、仕上圧延終了温度:Ar3点以上の条件で圧延する熱間圧延工程と、
前記熱間圧延工程で得られた熱延鋼板を、1000~400℃までの平均冷却速度が板厚中央の温度で10℃/s以上、冷却停止温度が250~650℃である条件で冷却する制御冷却工程と、
該制御冷却工程後、前記熱延鋼板を曲げ加工し、両端部を突合せて溶接する造管工程、および前記制御冷却工程後、前記熱延鋼板を冷間ロール成形により円筒状に成形し、該円筒状の周方向両端部を突合せて電縫溶接する造管工程のうちどちらか一方の造管工程と、
造管工程で得られた鋼管を脱水素処理する脱水素処理工程と、
を有する鋼管の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020257009571A KR20250050112A (ko) | 2022-09-29 | 2023-09-28 | 수소 중의 피로 특성이 우수한 강재, 그의 제조 방법, 강관 및 그의 제조 방법 |
AU2023352243A AU2023352243A1 (en) | 2022-09-29 | 2023-09-28 | Steel material with good fatigue property in hydrogen and method for producing the same, and steel pipe and method for producing the same |
EP23872573.3A EP4578978A1 (en) | 2022-09-29 | 2023-09-28 | Steel material having excellent fatigue characteristics in hydrogen, method for producing same, steel pipe, and method for manufacturing same |
JP2024503435A JPWO2024071353A1 (ja) | 2022-09-29 | 2023-09-28 | |
CN202380068311.9A CN119948189A (zh) | 2022-09-29 | 2023-09-28 | 氢中的疲劳特性优异的钢材、其制造方法、钢管及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022157171 | 2022-09-29 | ||
JP2022-157171 | 2022-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024071353A1 true WO2024071353A1 (ja) | 2024-04-04 |
Family
ID=90478166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/035555 WO2024071353A1 (ja) | 2022-09-29 | 2023-09-28 | 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4578978A1 (ja) |
JP (1) | JPWO2024071353A1 (ja) |
KR (1) | KR20250050112A (ja) |
CN (1) | CN119948189A (ja) |
AU (1) | AU2023352243A1 (ja) |
WO (1) | WO2024071353A1 (ja) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002386A (ja) | 2003-06-10 | 2005-01-06 | Sumitomo Metal Ind Ltd | 高圧水素環境用鋼、鋼管およびその製造方法 |
JP2009046737A (ja) | 2007-08-21 | 2009-03-05 | Japan Steel Works Ltd:The | 耐高圧水素環境脆化特性に優れた低合金高強度鋼およびその製造方法 |
JP2009074122A (ja) | 2007-09-19 | 2009-04-09 | Sumitomo Metal Ind Ltd | 高圧水素ガス環境用低合金鋼および高圧水素用容器 |
JP2009275249A (ja) | 2008-05-13 | 2009-11-26 | Japan Steel Works Ltd:The | 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法 |
JP2010037655A (ja) | 2008-07-09 | 2010-02-18 | Nippon Steel Corp | 耐水素性に優れた高圧水素ガス貯蔵容器用鋼およびその製造方法 |
JP2012107332A (ja) | 2010-10-28 | 2012-06-07 | Jfe Steel Corp | 高圧水素貯蔵用鋼材 |
JP2012122103A (ja) * | 2010-12-09 | 2012-06-28 | Sumitomo Metal Ind Ltd | 耐水素誘起割れ性、脆性亀裂伝播停止特性および耐食性に優れた厚鋼板 |
WO2014156187A1 (ja) * | 2013-03-29 | 2014-10-02 | Jfeスチール株式会社 | 鋼材および水素用容器ならびにそれらの製造方法 |
WO2017047099A1 (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法 |
JP2018012855A (ja) * | 2016-07-20 | 2018-01-25 | 新日鐵住金株式会社 | 低合金鋼材、低合金鋼管および容器、ならびにその容器の製造方法 |
WO2020137812A1 (ja) * | 2018-12-26 | 2020-07-02 | Jfeスチール株式会社 | 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法 |
WO2022030818A1 (ko) * | 2020-08-07 | 2022-02-10 | 주식회사 포스코 | 수소 취화 저항성 및 충격 인성이 우수한 강재 및 이의 제조방법 |
JP2022068942A (ja) * | 2020-10-23 | 2022-05-11 | Jfeスチール株式会社 | 高圧水素ガス環境用鋼材およびその製造方法 |
WO2022209896A1 (ja) * | 2021-03-30 | 2022-10-06 | Jfeスチール株式会社 | 高圧水素用鋼管、高圧水素用容器および前記鋼管の製造方法 |
-
2023
- 2023-09-28 CN CN202380068311.9A patent/CN119948189A/zh active Pending
- 2023-09-28 AU AU2023352243A patent/AU2023352243A1/en active Pending
- 2023-09-28 EP EP23872573.3A patent/EP4578978A1/en active Pending
- 2023-09-28 KR KR1020257009571A patent/KR20250050112A/ko active Pending
- 2023-09-28 WO PCT/JP2023/035555 patent/WO2024071353A1/ja active Application Filing
- 2023-09-28 JP JP2024503435A patent/JPWO2024071353A1/ja active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002386A (ja) | 2003-06-10 | 2005-01-06 | Sumitomo Metal Ind Ltd | 高圧水素環境用鋼、鋼管およびその製造方法 |
JP2009046737A (ja) | 2007-08-21 | 2009-03-05 | Japan Steel Works Ltd:The | 耐高圧水素環境脆化特性に優れた低合金高強度鋼およびその製造方法 |
JP2009074122A (ja) | 2007-09-19 | 2009-04-09 | Sumitomo Metal Ind Ltd | 高圧水素ガス環境用低合金鋼および高圧水素用容器 |
JP2009275249A (ja) | 2008-05-13 | 2009-11-26 | Japan Steel Works Ltd:The | 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法 |
JP2010037655A (ja) | 2008-07-09 | 2010-02-18 | Nippon Steel Corp | 耐水素性に優れた高圧水素ガス貯蔵容器用鋼およびその製造方法 |
JP2012107332A (ja) | 2010-10-28 | 2012-06-07 | Jfe Steel Corp | 高圧水素貯蔵用鋼材 |
JP2012122103A (ja) * | 2010-12-09 | 2012-06-28 | Sumitomo Metal Ind Ltd | 耐水素誘起割れ性、脆性亀裂伝播停止特性および耐食性に優れた厚鋼板 |
WO2014156187A1 (ja) * | 2013-03-29 | 2014-10-02 | Jfeスチール株式会社 | 鋼材および水素用容器ならびにそれらの製造方法 |
WO2017047099A1 (ja) * | 2015-09-17 | 2017-03-23 | Jfeスチール株式会社 | 高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物およびその製造方法 |
JP2018012855A (ja) * | 2016-07-20 | 2018-01-25 | 新日鐵住金株式会社 | 低合金鋼材、低合金鋼管および容器、ならびにその容器の製造方法 |
WO2020137812A1 (ja) * | 2018-12-26 | 2020-07-02 | Jfeスチール株式会社 | 高圧水素ガス環境用鋼材および高圧水素ガス環境用鋼構造物ならびに高圧水素ガス環境用鋼材の製造方法 |
WO2022030818A1 (ko) * | 2020-08-07 | 2022-02-10 | 주식회사 포스코 | 수소 취화 저항성 및 충격 인성이 우수한 강재 및 이의 제조방법 |
JP2022068942A (ja) * | 2020-10-23 | 2022-05-11 | Jfeスチール株式会社 | 高圧水素ガス環境用鋼材およびその製造方法 |
WO2022209896A1 (ja) * | 2021-03-30 | 2022-10-06 | Jfeスチール株式会社 | 高圧水素用鋼管、高圧水素用容器および前記鋼管の製造方法 |
Non-Patent Citations (1)
Title |
---|
MATSUNAGA ET AL., INT J HYDROGEN ENERGY, vol. 40, 2015, pages 5739 - 5748 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024071353A1 (ja) | 2024-04-04 |
CN119948189A (zh) | 2025-05-06 |
KR20250050112A (ko) | 2025-04-14 |
EP4578978A1 (en) | 2025-07-02 |
AU2023352243A1 (en) | 2025-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101511617B1 (ko) | 높은 압축 강도를 갖는 라인파이프용 용접 강관의 제조 방법 | |
KR101511614B1 (ko) | 높은 압축 강도 및 내사우어성을 갖는 라인파이프용 용접 강관의 제조 방법 | |
US9493865B2 (en) | Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same | |
JP5499733B2 (ja) | 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法 | |
CA2844718C (en) | Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof | |
EP2505681A1 (en) | Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same | |
JP5782827B2 (ja) | 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法 | |
JP5141073B2 (ja) | X70グレード以下の低降伏比高強度高靱性鋼管およびその製造方法 | |
WO2007136019A1 (ja) | 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法 | |
JP5499731B2 (ja) | 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法 | |
JP2015190026A (ja) | ラインパイプ用厚肉高強度電縫鋼管およびその製造方法 | |
JP2010037567A (ja) | 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法 | |
CA3087986A1 (en) | Steel material for line pipes, method for producing the same, and method for producing line pipe | |
WO2024071353A1 (ja) | 水素中の疲労特性に優れた鋼材、その製造方法、鋼管およびその製造方法 | |
JP6819835B1 (ja) | ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法 | |
CA3087988C (en) | Steel material for line pipes, method for producing the same, and method for producing line pipe | |
WO2024071356A1 (ja) | 耐水素脆化特性に優れたラインパイプ用鋼材、その製造方法、耐水素脆化特性に優れたラインパイプ用鋼管およびその製造方法 | |
WO2024071357A1 (ja) | ラインパイプ用鋼材とその製造方法、ラインパイプ用鋼管およびその製造方法 | |
WO2024071358A1 (ja) | 水素中破壊靭性に優れた高強度ラインパイプ用鋼材、その製造方法、高強度ラインパイプ用鋼管およびその製造方法 | |
WO2024071354A1 (ja) | 水素中の疲労特性に優れた鋼管とその製造方法、鋼材およびその製造方法 | |
WO2024071352A1 (ja) | 耐水素脆化特性に優れたラインパイプ用鋼管、その製造方法、ラインパイプ用鋼材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2024503435 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23872573 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 819091 Country of ref document: NZ Ref document number: AU2023352243 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 819091 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 2023352243 Country of ref document: AU Date of ref document: 20230928 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20257009571 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020257009571 Country of ref document: KR Ref document number: 2023872573 Country of ref document: EP Ref document number: 2025106958 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2023872573 Country of ref document: EP Effective date: 20250324 |
|
WWP | Wipo information: published in national office |
Ref document number: 2025106958 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020257009571 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2023872573 Country of ref document: EP |