[go: up one dir, main page]

WO2024070060A1 - Air conditioner control system, information processing device, and air conditioner control method - Google Patents

Air conditioner control system, information processing device, and air conditioner control method Download PDF

Info

Publication number
WO2024070060A1
WO2024070060A1 PCT/JP2023/020945 JP2023020945W WO2024070060A1 WO 2024070060 A1 WO2024070060 A1 WO 2024070060A1 JP 2023020945 W JP2023020945 W JP 2023020945W WO 2024070060 A1 WO2024070060 A1 WO 2024070060A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
refrigerant
control
control unit
detection
Prior art date
Application number
PCT/JP2023/020945
Other languages
French (fr)
Japanese (ja)
Inventor
幸生 北出
政則 八下田
和人 仙波
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202380066210.8A priority Critical patent/CN119895206A/en
Publication of WO2024070060A1 publication Critical patent/WO2024070060A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • This disclosure relates to an air conditioner control system, an information processing device, and an air conditioner control method.
  • Refrigerant amount determination systems that can automatically or manually switch the operation mode of a refrigeration cycle device from a normal operation mode to a refrigerant amount determination operation mode after a certain period of cooling or heating operation has elapsed, and remotely monitor whether refrigerant is leaking from the refrigerant circuit to the outside, are known for some time (see, for example, Patent Document 1).
  • Patent Document 1 detects refrigerant leaks by switching the operation mode of the refrigeration cycle device from a normal operation mode to a refrigerant amount judgment operation mode during times when air conditioning is not required, such as on holidays or late at night. However, Patent Document 1 does not mention how to simply detect refrigerant leaks.
  • the purpose of this disclosure is to provide an air conditioner control system, an information processing device, and an air conditioner control method that perform simple refrigerant leak detection.
  • a first aspect of the present disclosure is an air conditioner control system having a control unit that controls an air conditioner, the control unit executing a first refrigerant detection control that performs refrigerant leak detection of the air conditioner at a first predetermined period from the state of the refrigerant while the air conditioner is operating or the refrigerant pressure while the air conditioner is not operating, and executing a second refrigerant detection control that performs refrigerant leak detection of the air conditioner while operating the air conditioner for refrigerant leak detection when a second predetermined period has elapsed since the air conditioner was last operated.
  • a second aspect of the present disclosure is an air conditioner control system according to the first aspect, in which the control unit detects a refrigerant leak from the air conditioner based on the refrigerant pressure when the air conditioner is not operating if the control unit has not detected a refrigerant leak from the air conditioner based on the state of the refrigerant while the air conditioner is operating during the first predetermined period.
  • a third aspect of the present disclosure is an air conditioner control system according to the first or second aspect, in which the control unit performs control to notify a notification destination of a refrigerant leak or to suggest an inspection of the air conditioner when the result of the second refrigerant detection control indicates the presence of a refrigerant leak.
  • a fourth aspect of the present disclosure is an air conditioner control system according to any one of the first to third aspects, in which the second refrigerant detection control is a control that detects a refrigerant leak from the air conditioner based on the state of the refrigerant in the air conditioner while operating the air conditioner at a load of 70% or more of its capacity.
  • the second refrigerant detection control is a control that detects a refrigerant leak from the air conditioner based on the state of the refrigerant in the air conditioner while operating the air conditioner at a load of 70% or more of its capacity.
  • the fifth aspect of the present disclosure is the air conditioner control system of the fourth aspect, in which the second refrigerant detection control is a control that detects a refrigerant leak from the air conditioner based on the state of the refrigerant in the air conditioner after the load operation has been performed for a third predetermined time or more.
  • the second refrigerant detection control is a control that detects a refrigerant leak from the air conditioner based on the state of the refrigerant in the air conditioner after the load operation has been performed for a third predetermined time or more.
  • a sixth aspect of the present disclosure is an air conditioner control system according to any one of the first to fifth aspects, in which the second predetermined period is less than three months.
  • a seventh aspect of the present disclosure is an air conditioner control system according to any one of the first to sixth aspects, in which the control unit records information indicating that the second refrigerant detection control has been executed.
  • An eighth aspect of the present disclosure is an information processing device having a control unit that controls an air conditioner, the control unit executes a first refrigerant detection control that performs refrigerant leak detection of the air conditioner every first predetermined period based on the state of the refrigerant while the air conditioner is operating or the refrigerant pressure while the air conditioner is not operating, and executes a second refrigerant detection control that performs refrigerant leak detection of the air conditioner while operating the air conditioner for refrigerant leak detection when a second predetermined period has elapsed since the air conditioner was last operated.
  • a first refrigerant detection control that performs refrigerant leak detection of the air conditioner every first predetermined period based on the state of the refrigerant while the air conditioner is operating or the refrigerant pressure while the air conditioner is not operating
  • a second refrigerant detection control that performs refrigerant leak detection of the air conditioner while operating the air conditioner for refrigerant leak detection when a second predetermined period has elapsed since the
  • a ninth aspect of the present disclosure is an air conditioner control method executed by a control unit of an air conditioner control system having a control unit that controls an air conditioner, which executes a first refrigerant detection control that performs refrigerant leak detection of the air conditioner every first predetermined period based on the state of the refrigerant while the air conditioner is operating or the refrigerant pressure while the air conditioner is not operating, and executes a second refrigerant detection control that performs refrigerant leak detection of the air conditioner while operating the air conditioner for refrigerant leak detection when a second predetermined period has elapsed since the air conditioner was last operated.
  • FIG. 1 is a configuration diagram of an example of an air conditioner control system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a computer according to the present embodiment.
  • 4 is a flowchart of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment.
  • 4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment.
  • FIG. 4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment.
  • FIG. 4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment.
  • FIG. 4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment.
  • FIG. 1 is a configuration diagram of an example of an air conditioner control system according to this embodiment.
  • the air conditioner control system 1 has an air conditioner 10, an edge device 20, a server device 30, and an administrator terminal 40.
  • the air conditioner 10 and the edge device 20 are communicatively connected via a dedicated communication line or the like.
  • the edge device 20, the server device 30, and the administrator terminal 40 are communicatively connected via a network 50 such as the Internet.
  • the air conditioner 10 has one or more indoor units 12 and one or more outdoor units 14.
  • the number of indoor units 12 and outdoor units 14 of the air conditioner 10 in FIG. 1 is an example.
  • the indoor units 12 and outdoor units 14 of the air conditioner 10 are connected so that they can communicate with each other.
  • the air conditioner 10 is an example of a device that performs a refrigeration cycle by circulating a refrigerant such as freon.
  • refrigerant leakage can be checked from the state of the refrigerant during operation.
  • refrigerant leakage can be checked once a day from changes in refrigerant pressure even if the air conditioner 10 is not operating.
  • the Fluorocarbons Emissions Reduction Act requires that an inspection of the air conditioner 10 be carried out by visiting the site where the air conditioner 10 is installed.
  • Refrigerant leak detection for the air conditioner 10 performed based on the refrigerant pressure while the air conditioner 10 is not operating is less accurate than refrigerant leak detection for the air conditioner 10 performed based on the state of the refrigerant while the air conditioner 10 is operating. Also, if refrigerant leak detection for the air conditioner 10 based on the state of the refrigerant while the air conditioner 10 is operating has not been performed for more than three months, a service technician or the like must be dispatched to the site where the air conditioner 10 is installed to inspect the air conditioner 10.
  • the air conditioner control system 1 therefore ensures that refrigerant leakage inspections are performed once a day, which is an example of a first predetermined period, even if the air conditioner 10 is not in operation, by performing a simple inspection for refrigerant leakage based on changes in refrigerant pressure while the air conditioner 10 is stopped.
  • the air conditioner control system 1 controls so that the interval between refrigerant leakage detections of the air conditioner 10, which is performed based on the state of the refrigerant while the air conditioner 10 is in operation, does not exceed three months, which is an example of a second predetermined period.
  • the air conditioner control system 1 ensures that refrigerant leakage detection from the air conditioner 10, which is performed based on the state of the refrigerant while the air conditioner 10 is operating, will not go undetected for more than three months, and there is no need to dispatch a serviceman or the like to the site where the air conditioner 10 is installed.
  • the air conditioner control system 1 easily checks for refrigerant leakage at least once a day based on the refrigerant pressure while the system is not in operation, and the interval between accurate refrigerant leakage detections based on the state of the refrigerant during operation is set so as not to exceed a second predetermined period. Therefore, even if there is a false detection in the results of the simple inspection, the air conditioner control system 1 according to this embodiment can accurately detect a refrigerant leakage based on the state of the refrigerant during operation before the second predetermined period is exceeded, thereby suppressing the amount of refrigerant leakage.
  • the edge device 20 transmits the data output by the air conditioner 10 to the server device 30 via the network 50.
  • the edge device 20 also transmits the data output by the server device 30 to the air conditioner 10 via the network 50.
  • the server device 30 receives the data output by the air conditioner 10 from the edge device 20 via the network 50.
  • the server device 30 also transmits the data to be output to the air conditioner 10 to the edge device 20.
  • the administrator terminal 40 is an information processing terminal operated by a user who manages the air conditioner 10 (for example, an administrator who manages the building in which the air conditioner 10 is installed, or a serviceman in charge of the air conditioner 10).
  • the administrator terminal 40 displays data received from the air conditioner 10, edge device 20, or server device 30, and notifies the user. For example, the administrator terminal 40 displays a notification that there is a refrigerant leak or a suggestion to inspect the air conditioner 10.
  • the administrator terminal 40 is an information processing terminal such as a PC, smartphone, or tablet terminal.
  • a control program is installed in at least one of the air conditioners 10, the edge devices 20, and the server device 30.
  • the air conditioner 10 can function as the control unit 16 by executing the control program.
  • the edge device 20 can function as the control unit 22 by executing the control program.
  • the server device 30 can function as the control unit 32 by executing the control program.
  • FIG. 1 shows an example in which the air conditioner 10, edge device 20, and server device 30 each have a control unit 16, 22, or 32, this is not limited to the configuration shown in FIG. 1.
  • the air conditioner control system 1 may have a configuration that includes at least one of the control units 16, 22, and 32.
  • the control units 16, 22, and 32 control the air conditioner 10. As described below, the control units 16, 22, and 32 execute refrigerant leakage detection by the first refrigerant detection control of the air conditioner 10 and refrigerant leakage detection by the second refrigerant detection control of the air conditioner 10. Refrigerant leakage detection by the first refrigerant detection control of the air conditioner 10 is performed at first predetermined intervals based on the state of the refrigerant while the air conditioner 10 is operating or the refrigerant pressure while the air conditioner 10 is not operating. Refrigerant leakage detection by the second refrigerant detection control of the air conditioner 10 is performed while operating the air conditioner 10 for refrigerant leakage detection when a second predetermined interval has elapsed since the air conditioner 10 was last operated. For example, the control unit 32 of the server device 30 can remotely control the air conditioner 10 via the network 50.
  • the configuration of the air conditioner control system 1 in FIG. 1 is one example, and for example, the server device 30 may be realized by one or more information processing devices.
  • the server device 30 may also be realized as a cloud computing service. It goes without saying that there are various system configuration examples for the configuration of the air conditioner control system 1 in FIG. 1 depending on the application and purpose.
  • the edge device 20, the server device 30, and the administrator terminal 40 in Fig. 1 are realized by, for example, a computer 500 having the hardware configuration shown in Fig. 2.
  • the air conditioner 10 also has a controller similar to the computer 500 that can execute a control program.
  • FIG. 2 is a hardware configuration diagram of an example of a computer according to this embodiment.
  • the computer 500 in FIG. 2 includes an input device 501, a display device 502, an external I/F 503, a RAM 504, a ROM 505, a CPU 506, a communication I/F 507, and a HDD 508, all of which are interconnected by a bus B.
  • the input device 501 and the display device 502 may be connected and used when necessary.
  • the input device 501 is a touch panel, operation keys or buttons, keyboard, mouse, etc. that the user uses to input various signals.
  • the display device 502 is composed of a display such as a liquid crystal or organic electroluminescence display that displays a screen, and a speaker that outputs sound data such as voice and music.
  • the communication I/F 507 is an interface that allows the computer 500 to perform data communication over a network.
  • the HDD 508 is an example of a non-volatile storage device that stores programs and data.
  • the stored programs and data include the OS, which is the basic software that controls the entire computer 500, and applications that provide various functions on the OS.
  • the computer 500 may use a drive device that uses flash memory as a storage medium (such as a solid-state drive: SSD).
  • the external I/F 503 is an interface with an external device.
  • the external device may be a recording medium 503a. This allows the computer 500 to read and write data from and to the recording medium 503a via the external I/F 503.
  • the recording medium 503a may be a flexible disk, CD, DVD, SD memory card, USB memory, etc.
  • ROM 505 is an example of a non-volatile semiconductor memory (storage device) that can retain programs and data even when the power is turned off. ROM 505 stores programs and data such as the BIOS, OS settings, and network settings that are executed when computer 500 starts up.
  • RAM 504 is an example of a volatile semiconductor memory (storage device) that temporarily retains programs and data.
  • the CPU 506 is an arithmetic unit that reads programs and data from storage devices such as the ROM 505 and HDD 508 onto the RAM 504 and executes processing to realize the overall control and functions of the computer 500, and is an example of the control unit 16, 22, or 32.
  • FIG. 1 performs air conditioner control processing, for example, as shown in Fig. 3.
  • Fig. 3 is a flowchart of an example of air conditioner control processing performed by the air conditioner control system according to this embodiment.
  • the control unit 32 of the server device 30 remotely controls the air conditioner 10 via the network 50.
  • step S10 the control unit 32 determines whether the air conditioner 10 is operating. If the air conditioner 10 is operating, the control unit 32 proceeds to step S12 and performs refrigerant leakage detection processing to detect a refrigerant leakage from the state of the refrigerant during operation, as part of the refrigerant leakage detection processing by the first refrigerant detection control of the air conditioner 10. If the result of the refrigerant leakage detection processing indicates the presence of a refrigerant leakage, the control unit 32 displays a notification of the presence of a refrigerant leakage or a suggestion to inspect the air conditioner 10 on the administrator terminal 40, which is an example of a notification destination. In this way, when the air conditioner 10 is operating, the air conditioner 10 determines the presence or absence of a refrigerant leakage from the state of the refrigerant during operation.
  • step S12 the control unit 32 determines whether or not one day, which is an example of a first predetermined period, has passed. If one day has not passed, the control unit 32 returns to the processing of step S10.
  • step S16 the control unit 32 determines whether or not refrigerant leak detection processing has been performed during the day. If refrigerant leak detection processing has been performed during the day, it is determined that a refrigerant leak inspection has been performed once a day, and the control unit 32 returns to step S10.
  • step S18 the control unit 32 performs the refrigerant leak detection process by the first refrigerant detection control of the air conditioner 10, which detects a refrigerant leak from the refrigerant pressure while the air conditioner 10 is not operating.
  • the refrigerant leak detection process that detects a refrigerant leak from the refrigerant pressure while the air conditioner 10 is stopped is an example of control that performs simple (simplified) refrigerant leak detection, and does not require the air conditioner 10 to operate for refrigerant leak detection.
  • the refrigerant leak detection process that detects a refrigerant leak from the refrigerant pressure while the air conditioner 10 is stopped determines a refrigerant leak by detecting the refrigerant pressure with a pressure sensor. If the result of the refrigerant leak detection process indicates that there is a refrigerant leak, the control unit 32 displays a notification of the refrigerant leak or a suggestion to inspect the air conditioner 10 on the administrator terminal 40, which is an example of a notification destination.
  • step S20 the control unit 32 determines whether a second predetermined period has elapsed since the air conditioner 10 was last operated.
  • the second predetermined period is, for example, less than three months.
  • the second predetermined period is, for example, a period that is shorter than the period during which it becomes necessary to dispatch a service technician or the like to the site where the air conditioner 10 is installed, taking into account the Fluorocarbons Emission Reduction Act.
  • control unit 32 If the second predetermined period has not elapsed since the air conditioner 10 was last operated, the control unit 32 returns to the process of step S10. If the second predetermined period has elapsed since the air conditioner 10 was last operated, the control unit 32 proceeds to the process of step S22.
  • step S22 the control unit 32 performs refrigerant leakage detection processing using the second refrigerant detection control of the air conditioner 10.
  • the refrigerant leakage detection processing using the second refrigerant detection control of the air conditioner 10 performs refrigerant leakage detection processing to detect refrigerant leakage in the air conditioner 10 while operating the air conditioner 10 for refrigerant leakage detection.
  • the refrigerant leakage detection processing using the second refrigerant detection control may perform refrigerant leakage detection from the state of the refrigerant in the air conditioner 10 while operating with a load of a predetermined amount or more (e.g., 70% or more).
  • the refrigerant leakage detection processing using the second refrigerant detection control of the air conditioner 10 may perform an operation with a load on a predetermined amount or more of the indoor units 12 (e.g., 70% or more) for a predetermined time or more (e.g., about one hour), and perform refrigerant leakage detection in the air conditioner 10 from the temperature and refrigerant pressure by the air conditioner 10 after the refrigerant in the air conditioner 10 has stabilized.
  • an operation with a load of 70% or more is an operation with a load of 70% or more of the rated capacity of the outdoor unit 14 (an operation in which the capacity of the operating indoor units 12 is 70% or more of the rated capacity of the outdoor unit 14).
  • an operation with a load of 70% or more may be an operation with 70% or more of the number of connected indoor units 12, or an operation with a load of 70% or more of the total capacity of the indoor units 12 connected to the same system.
  • control unit 32 displays a notification of the refrigerant leak or a suggestion to inspect the air conditioner 10 on the administrator terminal 40, which is an example of a notification destination.
  • the air conditioner control system 1 performs refrigerant leak detection processing using the first refrigerant detection control, which includes a simple refrigerant leak detection process that detects refrigerant leaks from the refrigerant pressure while the system is not operating at a first predetermined time period, thereby ensuring that refrigerant leaks are inspected once a day.
  • the air conditioner control system 1 can perform accurate refrigerant leak detection based on the state of the refrigerant during operation before more than three months have passed since the air conditioner 10 was last operated.
  • the air conditioner control system 1 according to this embodiment can perform refrigerant leak detection with simplicity and accuracy.
  • FIG. 4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to this embodiment.
  • the control unit 32 of the server device 30 remotely controls the air conditioner 10 via the network 50.
  • step S30 the air conditioner 10 notifies the edge device 20 that it has started operating.
  • the edge device 20 notifies the control unit 32 of the server device 30 that it has started operating.
  • step S34 the control unit 32 requests the edge device 20 to perform refrigerant leak detection processing using the first refrigerant detection control while the air conditioner 10 is operating.
  • step S36 the edge device 20 requests the air conditioner 10 to perform refrigerant leak detection processing using the first refrigerant detection control while the air conditioner 10 is operating.
  • step S38 the air conditioner 10 performs refrigerant leakage detection processing using the first refrigerant detection control during operation in accordance with the request received from the edge device 20.
  • the explanation will continue assuming that the result of the first refrigerant detection control during operation in step S38 did not indicate a refrigerant leakage.
  • step S40 the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage.
  • step S42 the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage.
  • the control unit 32 records the notified result of the refrigerant leakage detection process.
  • step S44 the control unit 32 determines whether or not refrigerant leak detection processing has been performed in the air conditioner 10 during one day, which is an example of the first predetermined period.
  • refrigerant leak detection processing is performed by the first refrigerant detection control during operation in step S38, it is determined that refrigerant leak detection processing has been performed once per day.
  • the control unit 32 has determined that refrigerant leak detection processing has been performed once per day, it does not request the air conditioner 10 to perform refrigerant leak detection processing to detect refrigerant leaks from the refrigerant pressure while operation is stopped.
  • step S46 the control unit 32 determines whether or not refrigerant leak detection processing has been performed in the air conditioner 10 during the day. Here, it is assumed that it has been determined that refrigerant leak detection processing has not been performed once a day. Because the control unit 32 has determined that refrigerant leak detection processing has not been performed once a day, the process proceeds to step S48.
  • step S48 the control unit 32 requests the edge device 20 to perform refrigerant leakage detection processing using the first refrigerant detection control while operation is stopped.
  • step S50 the edge device 20 requests the air conditioner 10 to perform refrigerant leakage detection processing using the first refrigerant detection control while operation is stopped.
  • step S52 the air conditioner 10 performs refrigerant leakage detection processing using the first refrigerant detection control while the air conditioner 10 is not in operation, in accordance with the request received from the edge device 20.
  • the explanation will continue assuming that the result of the first refrigerant detection control while the air conditioner 10 is not in operation in step S52 indicates a refrigerant leakage.
  • step S54 the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage.
  • step S56 the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage.
  • the control unit 32 records the notified result of the refrigerant leakage detection.
  • step S58 the control unit 32 determines whether or not a second predetermined period has elapsed since the air conditioner 10 was last operated. Here, it is assumed that the second predetermined period has elapsed since the air conditioner 10 was last operated.
  • step S60 the control unit 32 requests the edge device 20 to perform refrigerant leakage detection processing using the second refrigerant detection control.
  • step S62 the edge device 20 requests the air conditioner 10 to perform refrigerant leakage detection processing using the second refrigerant detection control.
  • step S64 the air conditioner 10 performs refrigerant leakage detection processing using the second refrigerant detection control in accordance with the request received from the edge device 20.
  • the explanation will continue assuming that the result of the second refrigerant detection control in step S64 indicates a refrigerant leakage.
  • step S66 the air conditioner 10 notifies the edge device 20 that there is a refrigerant leak.
  • step S68 the edge device 20 notifies the control unit 32 of the server device 30 that there is a refrigerant leak.
  • step S70 the control unit 32 performs a process of notifying the manager terminal 40, which is an example of a notification destination, of the refrigerant leak.
  • the notification in step S70 may be a process of suggesting an inspection of the air conditioner 10.
  • the manager terminal 40 displays a notification of a refrigerant leak or a suggestion to inspect the air conditioner 10.
  • the notification in step S70 may also be a notification that refrigerant leak detection has been performed by the air conditioner 10 using the second refrigerant detection control.
  • the control unit 32 may inquire of the user of the administrator terminal 40 as to whether or not to perform refrigerant leak detection processing using the second refrigerant detection control of the air conditioner 10. For example, the control unit 32 may cause the administrator terminal 40 to display a screen inquiring as to whether or not to perform refrigerant leak detection processing using the second refrigerant detection control of the air conditioner 10, and allow the user to select whether or not to perform the processing.
  • the sequence diagram in FIG. 4 is an example in which the control unit 32 of the server device 30 determines whether or not it is necessary to execute the refrigerant leak detection process by the first refrigerant detection control and the refrigerant leak detection process by the second refrigerant detection control of the air conditioner 10. Whether or not it is necessary to execute the refrigerant leak detection process by the first refrigerant detection control and the refrigerant leak detection process by the second refrigerant detection control of the air conditioner 10 may be determined by the air conditioner 10, for example, as shown in the sequence diagram in FIG. 5.
  • FIG. 5 is a sequence diagram of an example of the air conditioner control process performed by the air conditioner control system according to this embodiment.
  • the control unit 16 of the air conditioner 10 determines whether or not to execute the refrigerant leak detection process using the first refrigerant detection control and the refrigerant leak detection process using the second refrigerant detection control.
  • step S90 when the control unit 16 of the air conditioner 10 starts operation, it performs refrigerant leakage detection processing by the first refrigerant detection control during operation.
  • the control unit 16 of the air conditioner 10 performs refrigerant leakage detection processing by the first refrigerant detection control during operation.
  • the explanation will continue assuming that the result of the first refrigerant detection control during operation in step S90 did not indicate a refrigerant leakage.
  • step S92 the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage.
  • step S94 the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage.
  • the control unit 32 records the notified result of the refrigerant leakage detection.
  • step S96 the control unit 16 determines whether or not refrigerant leak detection processing has been performed during one day, which is an example of a first predetermined period.
  • refrigerant leak detection processing is performed by the first refrigerant detection control during operation in step S90, it is determined that refrigerant leak detection processing has been performed once per day.
  • refrigerant leak detection processing that detects refrigerant leaks from refrigerant pressure while operation is stopped is not performed.
  • step S98 the control unit 16 determines whether or not refrigerant leak detection processing has been performed during the day. Here, it is assumed that it has been determined that refrigerant leak detection processing has not been performed once per day. The control unit 16 determines that refrigerant leak detection processing has not been performed once per day, and proceeds to processing in step S100.
  • step S100 the control unit 16 performs refrigerant leakage detection processing using the first refrigerant detection control while operation is stopped.
  • the explanation will continue assuming that the result of the first refrigerant detection control while operation is stopped in step S100 did not indicate a refrigerant leakage.
  • step S102 the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage.
  • step S104 the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage.
  • the control unit 32 records the notified result of the refrigerant leakage detection.
  • step S106 the control unit 16 determines whether or not a second predetermined period has elapsed since the air conditioner 10 was last operated.
  • a second predetermined period has elapsed since the air conditioner 10 was last operated.
  • step S108 the control unit 16 performs refrigerant leakage detection processing using the second refrigerant detection control.
  • the explanation will continue assuming that the result of the second refrigerant detection control in step S108 indicates a refrigerant leakage.
  • step S110 the control unit 16 notifies the edge device 20 that there is a refrigerant leak.
  • step S112 the edge device 20 notifies the control unit 32 of the server device 30 that there is a refrigerant leak.
  • step S114 the control unit 32 performs a process of notifying the manager terminal 40, which is an example of a notification destination, of the refrigerant leak.
  • the notification in step S114 may be a process of suggesting an inspection of the air conditioner 10.
  • the manager terminal 40 displays a notification of a refrigerant leak or a suggestion to inspect the air conditioner 10.
  • the control unit 32 of the server device 30 manages the refrigerant leak detection by the first refrigerant detection control and the results of the first refrigerant detection control. Note that the result notifications from the air conditioner 10 to the server device 30 may be sent together as a daily report to the server device 30.
  • FIG. 6 is a sequence diagram of an example of the air conditioner control process performed by the air conditioner control system according to this embodiment.
  • steps S130 to S144 is similar to steps S90 to S104 in FIG. 5, so a description thereof will be omitted.
  • step S146 the control unit 32 determines whether or not a second predetermined period has elapsed since the air conditioner 10 was last operated.
  • a second predetermined period has elapsed since the air conditioner 10 was last operated.
  • step S148 the control unit 32 requests the edge device 20 to perform refrigerant leakage detection processing using the second refrigerant detection control.
  • step S150 the edge device 20 requests the air conditioner 10 to perform refrigerant leakage detection processing using the second refrigerant detection control.
  • step S152 the air conditioner 10 performs refrigerant leakage detection processing using the second refrigerant detection control in accordance with the request received from the edge device 20.
  • the explanation will continue assuming that the result of the second refrigerant detection control in step S152 indicates a refrigerant leakage.
  • step S154 the air conditioner 10 notifies the edge device 20 that there is a refrigerant leak.
  • step S156 the edge device 20 notifies the control unit 32 of the server device 30 that there is a refrigerant leak.
  • step S158 the control unit 32 performs a process of notifying the manager terminal 40, which is an example of a notification destination, of the refrigerant leak.
  • the notification in step S158 may be a process of suggesting that the air conditioner 10 be inspected.
  • step S160 the manager terminal 40 displays a notification of the refrigerant leak or a suggestion to inspect the air conditioner 10.
  • the sequence diagrams in Figures 4 to 6 show an example in which the control unit 32 of the server device 30 or the control unit 16 of the air conditioner 10 determines whether or not to execute the refrigerant leak detection process using the first refrigerant detection control of the air conditioner 10 and the refrigerant leak detection process using the second refrigerant detection control, but this may also be done by the control unit 22 of the edge device 20.
  • refrigerant leakage detection is performed from the state of the refrigerant during operation. Also, according to the air conditioner control system 1 of this embodiment, for example, on days when the air conditioner 10 is not in operation, refrigerant leakage detection is performed from the refrigerant pressure while the air conditioner is not in operation.
  • a second refrigerant detection control can be executed to perform refrigerant leak detection operation and detect refrigerant leaks so that the number of days when a refrigerant leak is detected based on the refrigerant pressure while the air conditioner is not operating does not exceed a second predetermined period.
  • Air conditioner control system 10 Air conditioner 12 Indoor unit 14 Outdoor unit 16, 22, 32 Control unit 20 Edge device 30 Server device 40 Administrator terminal 50 Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner control system has a control unit which controls an air conditioner. The control unit performs first refrigerant detection control for executing, for each first prescribed period, refrigerant leakage detection in the air conditioner from the state of the refrigerant during operation of the air conditioner or the refrigerant pressure during non-operation of the air conditioner, and performs second refrigerant detection control for executing refrigerant leakage detection in the air conditioner while executing operation of the air conditioner for refrigerant leakage detection in cases in which a second prescribed period has elapsed from the last time the air conditioner was operated.

Description

空調機制御システム、情報処理装置及び空調機制御方法Air conditioner control system, information processing device, and air conditioner control method

 本開示は、空調機制御システム、情報処理装置及び空調機制御方法に関する。 This disclosure relates to an air conditioner control system, an information processing device, and an air conditioner control method.

 冷房運転や暖房運転が一定期間経過した場合に、自動又は手動で冷凍サイクル装置の運転モードを通常運転モードから冷媒量判定運転モードに切り替えて、冷媒回路から冷媒が外部に漏洩していないかどうかを遠隔監視できる冷媒量判定システムは、従来から知られている(例えば特許文献1参照)。 Refrigerant amount determination systems that can automatically or manually switch the operation mode of a refrigeration cycle device from a normal operation mode to a refrigerant amount determination operation mode after a certain period of cooling or heating operation has elapsed, and remotely monitor whether refrigerant is leaking from the refrigerant circuit to the outside, are known for some time (see, for example, Patent Document 1).

特開2009-079842号公報JP 2009-079842 A

 特許文献1は、休日や深夜等で空調を行う必要がない時間帯等に、冷凍サイクル装置の運転モードを通常運転モードから冷媒量判定運転モードに切り替えて冷媒漏洩を検知するものである。しかしながら、特許文献1には、冷媒漏洩の検知を簡易的に行うことについての記載がない。 Patent Document 1 detects refrigerant leaks by switching the operation mode of the refrigeration cycle device from a normal operation mode to a refrigerant amount judgment operation mode during times when air conditioning is not required, such as on holidays or late at night. However, Patent Document 1 does not mention how to simply detect refrigerant leaks.

 本開示は、簡易性を有した冷媒漏洩検知を行う空調機制御システム、情報処理装置及び空調機制御方法を提供することを目的とする。 The purpose of this disclosure is to provide an air conditioner control system, an information processing device, and an air conditioner control method that perform simple refrigerant leak detection.

 本開示の第1の態様は、空調機を制御する制御部を有する空調機制御システムであって、前記制御部は、前記空調機が運転中の冷媒の状態又は前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を第1所定期間ごとに行う第1冷媒検知制御を実行し、前記空調機が最後に運転されてから第2所定期間が経過した場合に、前記空調機の冷媒漏洩検知用の運転を行いつつ前記空調機の冷媒漏洩検知を行う第2冷媒検知制御を実行する。 A first aspect of the present disclosure is an air conditioner control system having a control unit that controls an air conditioner, the control unit executing a first refrigerant detection control that performs refrigerant leak detection of the air conditioner at a first predetermined period from the state of the refrigerant while the air conditioner is operating or the refrigerant pressure while the air conditioner is not operating, and executing a second refrigerant detection control that performs refrigerant leak detection of the air conditioner while operating the air conditioner for refrigerant leak detection when a second predetermined period has elapsed since the air conditioner was last operated.

 本開示の第1の態様によれば、簡易性を有した冷媒漏洩検知を行う空調機制御システムを提供することができる。 According to the first aspect of the present disclosure, it is possible to provide an air conditioner control system that performs simple refrigerant leak detection.

 本開示の第2の態様は、第1の態様の空調機制御システムであって、前記制御部は、前記第1所定期間の間、前記空調機が運転中の冷媒の状態から前記空調機の冷媒漏洩検知を行わなかった場合に、前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を行う。 A second aspect of the present disclosure is an air conditioner control system according to the first aspect, in which the control unit detects a refrigerant leak from the air conditioner based on the refrigerant pressure when the air conditioner is not operating if the control unit has not detected a refrigerant leak from the air conditioner based on the state of the refrigerant while the air conditioner is operating during the first predetermined period.

 本開示の第3の態様は、第1の態様又は第2の態様の空調機制御システムであって、前記制御部は、前記第2冷媒検知制御の結果が冷媒漏洩有りであった場合、通知先に冷媒の漏洩有りの通知または前記空調機の点検の提案を行うための制御を行う。 A third aspect of the present disclosure is an air conditioner control system according to the first or second aspect, in which the control unit performs control to notify a notification destination of a refrigerant leak or to suggest an inspection of the air conditioner when the result of the second refrigerant detection control indicates the presence of a refrigerant leak.

 本開示の第4の態様は、第1の態様から第3の態様の何れか1つに記載の空調機制御システムであって、前記第2冷媒検知制御は、空調機の容量の7割以上の負荷をかける運転を行いつつ前記空調機の冷媒の状態から前記空調機の冷媒漏洩検知を行う制御である。 A fourth aspect of the present disclosure is an air conditioner control system according to any one of the first to third aspects, in which the second refrigerant detection control is a control that detects a refrigerant leak from the air conditioner based on the state of the refrigerant in the air conditioner while operating the air conditioner at a load of 70% or more of its capacity.

 本開示の第5の態様は、第4の態様の空調機制御システムであって、前記第2冷媒検知制御は、前記負荷をかける運転を第3所定時間以上行った後の前記空調機の冷媒の状態から、前記空調機の冷媒漏洩検知を行う制御である。 The fifth aspect of the present disclosure is the air conditioner control system of the fourth aspect, in which the second refrigerant detection control is a control that detects a refrigerant leak from the air conditioner based on the state of the refrigerant in the air conditioner after the load operation has been performed for a third predetermined time or more.

 本開示の第6の態様は、第1の態様から第5の態様の何れか1つに記載の空調機制御システムであって、前記第2所定期間は、3ヶ月未満である。 A sixth aspect of the present disclosure is an air conditioner control system according to any one of the first to fifth aspects, in which the second predetermined period is less than three months.

 本開示の第7の態様は、第1の態様から第6の態様の何れか1つに記載の空調機制御システムであって、前記制御部は、前記第2冷媒検知制御を実行したことを示す情報を記録する。 A seventh aspect of the present disclosure is an air conditioner control system according to any one of the first to sixth aspects, in which the control unit records information indicating that the second refrigerant detection control has been executed.

 本開示の第8の態様は、空調機を制御する制御部を有する情報処理装置であって、前記制御部は、前記空調機が運転中の冷媒の状態又は前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を第1所定期間ごとに行う第1冷媒検知制御を実行し、前記空調機が最後に運転されてから第2所定期間が経過した場合に、前記空調機の冷媒漏洩検知用の運転を行いつつ前記空調機の冷媒漏洩検知を行う第2冷媒検知制御を実行する。 An eighth aspect of the present disclosure is an information processing device having a control unit that controls an air conditioner, the control unit executes a first refrigerant detection control that performs refrigerant leak detection of the air conditioner every first predetermined period based on the state of the refrigerant while the air conditioner is operating or the refrigerant pressure while the air conditioner is not operating, and executes a second refrigerant detection control that performs refrigerant leak detection of the air conditioner while operating the air conditioner for refrigerant leak detection when a second predetermined period has elapsed since the air conditioner was last operated.

 本開示の第8の態様によれば、簡易性を有した冷媒漏洩検知を行う情報処理装置を提供することができる。 According to the eighth aspect of the present disclosure, it is possible to provide an information processing device that performs refrigerant leak detection with ease.

 本開示の第9の態様は、空調機を制御する制御部を有する空調機制御システムの前記制御部が実行する空調機制御方法であって、前記空調機が運転中の冷媒の状態又は前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を第1所定期間ごとに行う第1冷媒検知制御を実行し、前記空調機が最後に運転されてから第2所定期間が経過した場合に、前記空調機の冷媒漏洩検知用の運転を行いつつ前記空調機の冷媒漏洩検知を行う第2冷媒検知制御を実行する。 A ninth aspect of the present disclosure is an air conditioner control method executed by a control unit of an air conditioner control system having a control unit that controls an air conditioner, which executes a first refrigerant detection control that performs refrigerant leak detection of the air conditioner every first predetermined period based on the state of the refrigerant while the air conditioner is operating or the refrigerant pressure while the air conditioner is not operating, and executes a second refrigerant detection control that performs refrigerant leak detection of the air conditioner while operating the air conditioner for refrigerant leak detection when a second predetermined period has elapsed since the air conditioner was last operated.

 本開示の第9の態様によれば、簡易性を有した冷媒漏洩検知を行う空調機制御方法を提供することができる。 According to the ninth aspect of the present disclosure, it is possible to provide an air conditioner control method that performs simple refrigerant leak detection.

本実施形態に係る空調機制御システムの一例の構成図である。1 is a configuration diagram of an example of an air conditioner control system according to an embodiment of the present invention. 本実施形態に係るコンピュータの一例のハードウェア構成図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a computer according to the present embodiment. 本実施形態に係る空調機制御システムが行う空調機制御処理の一例のフローチャートである。4 is a flowchart of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment. 本実施形態に係る空調機制御システムが行う空調機制御処理の一例のシーケンス図である。4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment. FIG. 本実施形態に係る空調機制御システムが行う空調機制御処理の一例のシーケンス図である。4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment. FIG. 本実施形態に係る空調機制御システムが行う空調機制御処理の一例のシーケンス図である。4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to the present embodiment. FIG.

 次に、本発明の実施形態について詳細に説明する。 Next, an embodiment of the present invention will be described in detail.

 [第1の実施形態]
 <システム構成>
 図1は、本実施形態に係る空調機制御システムの一例の構成図である。空調機制御システム1は、空調機10、エッジ装置20、サーバ装置30、及び管理者端末40を有している。空調機10とエッジ装置20とは、専用の通信回線等を介して通信可能に接続される。エッジ装置20、サーバ装置30、及び管理者端末40は、例えばインターネット等のネットワーク50を介して通信可能に接続される。
[First embodiment]
<System Configuration>
1 is a configuration diagram of an example of an air conditioner control system according to this embodiment. The air conditioner control system 1 has an air conditioner 10, an edge device 20, a server device 30, and an administrator terminal 40. The air conditioner 10 and the edge device 20 are communicatively connected via a dedicated communication line or the like. The edge device 20, the server device 30, and the administrator terminal 40 are communicatively connected via a network 50 such as the Internet.

 空調機10は、1台以上の室内機12、及び1台以上の室外機14を有している。図1の空調機10が有する室内機12及び室外機14の台数は一例である。空調機10が有している室内機12及び室外機14は、通信可能に接続されている。空調機10はフロンなどの冷媒を循環させて冷凍サイクルを行う機器の一例である。 The air conditioner 10 has one or more indoor units 12 and one or more outdoor units 14. The number of indoor units 12 and outdoor units 14 of the air conditioner 10 in FIG. 1 is an example. The indoor units 12 and outdoor units 14 of the air conditioner 10 are connected so that they can communicate with each other. The air conditioner 10 is an example of a device that performs a refrigeration cycle by circulating a refrigerant such as freon.

 冷媒漏洩の発生を早期に発見するため、フロンを冷媒として使用している機器はフロン排出抑制法により、簡易点検及び定期点検が義務付けられている。簡易点検の手法としては、IoT(Internet of Things)システムを活用することが許容されている。IoTシステムを利用する場合は「管理第一種特定製品の種類に応じ、冷媒系統ごとの圧力、温度その他の漏えいを検知するために必要な状態値を計測すること。なお、計測の頻度は1日に1回以上とする。」とされている。 In order to detect refrigerant leaks early, simplified and regular inspections are required by the Fluorocarbons Emissions Reduction Act for equipment that uses fluorocarbons as a refrigerant. The use of IoT (Internet of Things) systems is permitted as a simplified inspection method. When using an IoT system, it is stipulated that "measurements must be made for each refrigerant system, such as pressure, temperature, and other status values required to detect leaks, according to the type of managed Type 1 specified product. Measurements must be made at least once a day."

 空調機10の運転が行われれば、冷媒漏洩の点検は運転中の冷媒の状態から行うことができる。また、1日に1回の冷媒漏洩の点検は、空調機10の運転が行われなくても冷媒圧力の変化から行うことができる。しかし、空調機10を3ヶ月以上、運転しなかった場合は、空調機10が設置されている現地に行って空調機10の点検を行うことが、フロン排出抑制法により求められている。 If the air conditioner 10 is operating, refrigerant leakage can be checked from the state of the refrigerant during operation. In addition, refrigerant leakage can be checked once a day from changes in refrigerant pressure even if the air conditioner 10 is not operating. However, if the air conditioner 10 has not been operated for three months or more, the Fluorocarbons Emissions Reduction Act requires that an inspection of the air conditioner 10 be carried out by visiting the site where the air conditioner 10 is installed.

 空調機10が運転停止中の冷媒圧力から行う空調機10の冷媒漏洩検知は、空調機10が運転中の冷媒の状態から行う空調機10の冷媒漏洩検知よりも精度が低い。また、空調機10が運転中の冷媒の状態から行う空調機10の冷媒漏洩検知を3ヶ月以上行っていない場合には、空調機10が設置されている現地にサービスマン等を派遣し、空調機10の点検を行う必要がある。 Refrigerant leak detection for the air conditioner 10 performed based on the refrigerant pressure while the air conditioner 10 is not operating is less accurate than refrigerant leak detection for the air conditioner 10 performed based on the state of the refrigerant while the air conditioner 10 is operating. Also, if refrigerant leak detection for the air conditioner 10 based on the state of the refrigerant while the air conditioner 10 is operating has not been performed for more than three months, a service technician or the like must be dispatched to the site where the air conditioner 10 is installed to inspect the air conditioner 10.

 そこで、本実施形態に係る空調機制御システム1は、空調機10の運転が行われなくても空調機10が運転停止中の冷媒圧力の変化から冷媒漏洩の簡易点検を行うことで第1所定期間の一例である1日に1回の冷媒漏洩の点検を確保する。また、本実施形態に係る空調機制御システム1は、空調機10が運転中の冷媒の状態から行う空調機10の冷媒漏洩検知の間隔が、第2所定期間の一例である3ヶ月を超えないように、制御を行う。 The air conditioner control system 1 according to this embodiment therefore ensures that refrigerant leakage inspections are performed once a day, which is an example of a first predetermined period, even if the air conditioner 10 is not in operation, by performing a simple inspection for refrigerant leakage based on changes in refrigerant pressure while the air conditioner 10 is stopped. In addition, the air conditioner control system 1 according to this embodiment controls so that the interval between refrigerant leakage detections of the air conditioner 10, which is performed based on the state of the refrigerant while the air conditioner 10 is in operation, does not exceed three months, which is an example of a second predetermined period.

 したがって、本実施形態に係る空調機制御システム1は、空調機10が運転中の冷媒の状態から行う空調機10の冷媒漏洩検知が3ヶ月以上行われないことがなく、空調機10が設置されている現地にサービスマン等を派遣する必要がない。 Therefore, the air conditioner control system 1 according to this embodiment ensures that refrigerant leakage detection from the air conditioner 10, which is performed based on the state of the refrigerant while the air conditioner 10 is operating, will not go undetected for more than three months, and there is no need to dispatch a serviceman or the like to the site where the air conditioner 10 is installed.

 また、本実施形態に係る空調機制御システム1は、少なくとも1日に1回の冷媒漏洩の点検を運転停止中の冷媒圧力から簡易に行うと共に、運転中の冷媒の状態から正確性を保つように精度良く行う冷媒漏洩検知の間隔が第2所定期間を超えないようにする。したがって、本実施形態に係る空調機制御システム1は、簡易な点検結果に誤検知があったとしても、第2所定期間を超える前に、運転中の冷媒の状態から精度良く冷媒漏洩を検知できるので、冷媒漏洩量を抑制できる。 In addition, the air conditioner control system 1 according to this embodiment easily checks for refrigerant leakage at least once a day based on the refrigerant pressure while the system is not in operation, and the interval between accurate refrigerant leakage detections based on the state of the refrigerant during operation is set so as not to exceed a second predetermined period. Therefore, even if there is a false detection in the results of the simple inspection, the air conditioner control system 1 according to this embodiment can accurately detect a refrigerant leakage based on the state of the refrigerant during operation before the second predetermined period is exceeded, thereby suppressing the amount of refrigerant leakage.

 エッジ装置20は、空調機10が出力するデータを、ネットワーク50を介してサーバ装置30に送信する。また、エッジ装置20は、ネットワーク50を介してサーバ装置30が出力したデータを、空調機10に送信する。 The edge device 20 transmits the data output by the air conditioner 10 to the server device 30 via the network 50. The edge device 20 also transmits the data output by the server device 30 to the air conditioner 10 via the network 50.

 サーバ装置30は、空調機10が出力したデータを、ネットワーク50を介してエッジ装置20から受信する。また、サーバ装置30は空調機10に出力するデータを、エッジ装置20に送信する。 The server device 30 receives the data output by the air conditioner 10 from the edge device 20 via the network 50. The server device 30 also transmits the data to be output to the air conditioner 10 to the edge device 20.

 管理者端末40は、空調機10を管理するユーザ(例えば、空調機10が取り付けられているビルを管理する管理者、又は空調機10を担当するサービスマンなど)が操作する情報処理端末である。管理者端末40は、空調機10、エッジ装置20、又はサーバ装置30から受信したデータを表示し、ユーザに通知する。例えば管理者端末40は冷媒の漏洩有りの通知又は空調機10の点検の提案を表示する。管理者端末40はPC、スマートフォン、タブレット端末などの情報処理端末である。 The administrator terminal 40 is an information processing terminal operated by a user who manages the air conditioner 10 (for example, an administrator who manages the building in which the air conditioner 10 is installed, or a serviceman in charge of the air conditioner 10). The administrator terminal 40 displays data received from the air conditioner 10, edge device 20, or server device 30, and notifies the user. For example, the administrator terminal 40 displays a notification that there is a refrigerant leak or a suggestion to inspect the air conditioner 10. The administrator terminal 40 is an information processing terminal such as a PC, smartphone, or tablet terminal.

 空調機制御システム1は、空調機10、エッジ装置20、及びサーバ装置30の少なくとも一つに制御プログラムがインストールされている。空調機10は制御プログラムが実行されることで、制御部16として機能できる。エッジ装置20は制御プログラムが実行されることで、制御部22として機能できる。また、サーバ装置30は制御プログラムが実行されることで、制御部32として機能できる。 In the air conditioner control system 1, a control program is installed in at least one of the air conditioners 10, the edge devices 20, and the server device 30. The air conditioner 10 can function as the control unit 16 by executing the control program. The edge device 20 can function as the control unit 22 by executing the control program. Furthermore, the server device 30 can function as the control unit 32 by executing the control program.

 なお、図1では空調機10、エッジ装置20、及びサーバ装置30が、制御部16、22、又は32を有している例を示したが、図1の構成に限定するものではない。空調機制御システム1は、制御部16、22、及び32の少なくとも一つを有している構成であればよい。 Note that while FIG. 1 shows an example in which the air conditioner 10, edge device 20, and server device 30 each have a control unit 16, 22, or 32, this is not limited to the configuration shown in FIG. 1. The air conditioner control system 1 may have a configuration that includes at least one of the control units 16, 22, and 32.

 制御部16、22、及び32は、空調機10を制御する。制御部16、22、及び32は後述するように、空調機10の第1冷媒検知制御による冷媒漏洩検知、及び空調機10の第2冷媒検知制御による冷媒漏洩検知を実行する。空調機10の第1冷媒検知制御による冷媒漏洩検知は、空調機10が運転中の冷媒の状態又は空調機10が運転停止中の冷媒圧力から空調機10の冷媒漏洩検知を第1所定期間ごとに行う。空調機10の第2冷媒検知制御による冷媒漏洩検知は、空調機10が最後に運転されてから第2所定期間が経過した場合に、空調機10の冷媒漏洩検知用の運転を行いつつ、空調機10の冷媒漏洩検知を行う。例えばサーバ装置30の制御部32はネットワーク50を介して遠隔から空調機10を制御できる。 The control units 16, 22, and 32 control the air conditioner 10. As described below, the control units 16, 22, and 32 execute refrigerant leakage detection by the first refrigerant detection control of the air conditioner 10 and refrigerant leakage detection by the second refrigerant detection control of the air conditioner 10. Refrigerant leakage detection by the first refrigerant detection control of the air conditioner 10 is performed at first predetermined intervals based on the state of the refrigerant while the air conditioner 10 is operating or the refrigerant pressure while the air conditioner 10 is not operating. Refrigerant leakage detection by the second refrigerant detection control of the air conditioner 10 is performed while operating the air conditioner 10 for refrigerant leakage detection when a second predetermined interval has elapsed since the air conditioner 10 was last operated. For example, the control unit 32 of the server device 30 can remotely control the air conditioner 10 via the network 50.

 図1の空調機制御システム1の構成は一例であって、例えばサーバ装置30は1台以上の情報処理装置により実現されてもよい。サーバ装置30はクラウドコンピューティングのサービスとして実現するようにしてもよい。図1の空調機制御システム1の構成は用途や目的に応じて様々なシステム構成例があることは言うまでもない。 The configuration of the air conditioner control system 1 in FIG. 1 is one example, and for example, the server device 30 may be realized by one or more information processing devices. The server device 30 may also be realized as a cloud computing service. It goes without saying that there are various system configuration examples for the configuration of the air conditioner control system 1 in FIG. 1 depending on the application and purpose.

 <ハードウェア構成>
 図1のエッジ装置20、サーバ装置30、及び管理者端末40は、例えば図2に示したハードウェア構成のコンピュータ500により実現する。また、空調機10は制御プログラムを実行できるコンピュータ500と同様なコントローラを有している。
<Hardware Configuration>
The edge device 20, the server device 30, and the administrator terminal 40 in Fig. 1 are realized by, for example, a computer 500 having the hardware configuration shown in Fig. 2. The air conditioner 10 also has a controller similar to the computer 500 that can execute a control program.

 図2は、本実施形態に係るコンピュータの一例のハードウェア構成図である。図2のコンピュータ500は、入力装置501、表示装置502、外部I/F503、RAM504、ROM505、CPU506、通信I/F507、及びHDD508などを備えており、それぞれがバスBで相互に接続されている。なお、入力装置501及び表示装置502は必要なときに接続して利用する形態であってもよい。 FIG. 2 is a hardware configuration diagram of an example of a computer according to this embodiment. The computer 500 in FIG. 2 includes an input device 501, a display device 502, an external I/F 503, a RAM 504, a ROM 505, a CPU 506, a communication I/F 507, and a HDD 508, all of which are interconnected by a bus B. Note that the input device 501 and the display device 502 may be connected and used when necessary.

 入力装置501は、ユーザが各種信号を入力するのに用いるタッチパネル、操作キーやボタン、キーボードやマウスなどである。表示装置502は、画面を表示する液晶や有機ELなどのディスプレイ、音声や音楽などの音データを出力するスピーカ等で構成されている。通信I/F507は、コンピュータ500がネットワークを介してデータ通信を行うためのインターフェースである。 The input device 501 is a touch panel, operation keys or buttons, keyboard, mouse, etc. that the user uses to input various signals. The display device 502 is composed of a display such as a liquid crystal or organic electroluminescence display that displays a screen, and a speaker that outputs sound data such as voice and music. The communication I/F 507 is an interface that allows the computer 500 to perform data communication over a network.

 また、HDD508は、プログラムやデータを格納している不揮発性の記憶装置の一例である。格納されるプログラムやデータには、コンピュータ500全体を制御する基本ソフトウェアであるOS、及びOS上において各種機能を提供するアプリケーションなどがある。なお、コンピュータ500はHDD508に替えて、記憶媒体としてフラッシュメモリを用いるドライブ装置(例えばソリッドステートドライブ:SSDなど)を利用するものであってもよい。 The HDD 508 is an example of a non-volatile storage device that stores programs and data. The stored programs and data include the OS, which is the basic software that controls the entire computer 500, and applications that provide various functions on the OS. Note that instead of the HDD 508, the computer 500 may use a drive device that uses flash memory as a storage medium (such as a solid-state drive: SSD).

 外部I/F503は、外部装置とのインターフェースである。外部装置には、記録媒体503aなどがある。これにより、コンピュータ500は外部I/F503を介して記録媒体503aの読み取り及び書き込みを行うことができる。記録媒体503aにはフレキシブルディスク、CD、DVD、SDメモリカード、USBメモリなどがある。 The external I/F 503 is an interface with an external device. The external device may be a recording medium 503a. This allows the computer 500 to read and write data from and to the recording medium 503a via the external I/F 503. The recording medium 503a may be a flexible disk, CD, DVD, SD memory card, USB memory, etc.

 ROM505は、電源を切ってもプログラムやデータを保持することができる不揮発性の半導体メモリ(記憶装置)の一例である。ROM505にはコンピュータ500の起動時に実行されるBIOS、OS設定、及びネットワーク設定などのプログラムやデータが格納されている。RAM504はプログラムやデータを一時保持する揮発性の半導体メモリ(記憶装置)の一例である。 ROM 505 is an example of a non-volatile semiconductor memory (storage device) that can retain programs and data even when the power is turned off. ROM 505 stores programs and data such as the BIOS, OS settings, and network settings that are executed when computer 500 starts up. RAM 504 is an example of a volatile semiconductor memory (storage device) that temporarily retains programs and data.

 CPU506は、ROM505やHDD508などの記憶装置からプログラムやデータをRAM504上に読み出し、処理を実行することで、コンピュータ500全体の制御や機能を実現する演算装置であり、制御部16、22、又は32の一例である。 The CPU 506 is an arithmetic unit that reads programs and data from storage devices such as the ROM 505 and HDD 508 onto the RAM 504 and executes processing to realize the overall control and functions of the computer 500, and is an example of the control unit 16, 22, or 32.

 <処理>
 図1の空調機制御システム1は、例えば図3に示すように空調機制御処理を行う。図3は本実施形態に係る空調機制御システムが行う空調機制御処理の一例のフローチャートである。ここではサーバ装置30の制御部32がネットワーク50を介して空調機10を遠隔制御する例を説明する。
<Processing>
The air conditioner control system 1 in Fig. 1 performs air conditioner control processing, for example, as shown in Fig. 3. Fig. 3 is a flowchart of an example of air conditioner control processing performed by the air conditioner control system according to this embodiment. Here, an example will be described in which the control unit 32 of the server device 30 remotely controls the air conditioner 10 via the network 50.

 ステップS10において、制御部32は空調機10が運転中であるか判定する。空調機10が運転中であれば、制御部32はステップS12の処理に進み、空調機10の第1冷媒検知制御による冷媒漏洩検知処理のうち、運転中の冷媒の状態から冷媒漏洩を検知する冷媒漏洩検知処理を行う。制御部32は、冷媒漏洩検知処理の結果が冷媒の漏洩有りを示していれば、通知先の一例である管理者端末40に、冷媒の漏洩有りの通知又は空調機10の点検の提案を表示する。このように、空調機10の運転が行われた場合は、空調機10が運転中の冷媒の状態から冷媒漏洩の有無を判定する。 In step S10, the control unit 32 determines whether the air conditioner 10 is operating. If the air conditioner 10 is operating, the control unit 32 proceeds to step S12 and performs refrigerant leakage detection processing to detect a refrigerant leakage from the state of the refrigerant during operation, as part of the refrigerant leakage detection processing by the first refrigerant detection control of the air conditioner 10. If the result of the refrigerant leakage detection processing indicates the presence of a refrigerant leakage, the control unit 32 displays a notification of the presence of a refrigerant leakage or a suggestion to inspect the air conditioner 10 on the administrator terminal 40, which is an example of a notification destination. In this way, when the air conditioner 10 is operating, the air conditioner 10 determines the presence or absence of a refrigerant leakage from the state of the refrigerant during operation.

 空調機10が運転中でなければ、制御部32はステップS12をスキップし、ステップS14の処理に進む。ステップS14において、制御部32は第1所定期間の一例である1日が経過したか否かを判定する。1日が経過していなければ、制御部32はステップS10の処理に戻る。 If the air conditioner 10 is not operating, the control unit 32 skips step S12 and proceeds to the processing of step S14. In step S14, the control unit 32 determines whether or not one day, which is an example of a first predetermined period, has passed. If one day has not passed, the control unit 32 returns to the processing of step S10.

 1日が経過していれば、制御部32はステップS16の処理に進む。ステップS16において、制御部32は1日の間に冷媒漏洩検知処理を行ったか否かを判定する。1日の間に冷媒漏洩検知処理を行っていれば、1日に1回の冷媒漏洩の点検が行われていると判定し、制御部32はステップS10の処理に戻る。 If one day has passed, the control unit 32 proceeds to step S16. In step S16, the control unit 32 determines whether or not refrigerant leak detection processing has been performed during the day. If refrigerant leak detection processing has been performed during the day, it is determined that a refrigerant leak inspection has been performed once a day, and the control unit 32 returns to step S10.

 1日の間に冷媒漏洩検知処理を行っていなければ、1日に1回の冷媒漏洩の点検が行われていないと判定し、制御部32はステップS18の処理に進む。ステップS18において制御部32は、空調機10の第1冷媒検知制御による冷媒漏洩検知処理のうち、空調機10が運転停止中の冷媒圧力から冷媒漏洩を検知する冷媒漏洩検知処理を行う。 If the refrigerant leak detection process has not been performed during the day, it is determined that a refrigerant leak inspection has not been performed once a day, and the control unit 32 proceeds to the process of step S18. In step S18, the control unit 32 performs the refrigerant leak detection process by the first refrigerant detection control of the air conditioner 10, which detects a refrigerant leak from the refrigerant pressure while the air conditioner 10 is not operating.

 空調機10が運転停止中の冷媒圧力から冷媒漏洩を検知する冷媒漏洩検知処理は、簡易的な(簡易性を有した)冷媒漏洩検知を行う制御例であり、空調機10の冷媒漏洩検知用の運転が不要である。空調機10が運転停止中の冷媒圧力から冷媒漏洩を検知する冷媒漏洩検知処理は冷媒圧力を圧力センサで検知することで、冷媒漏洩を判定する。制御部32は、冷媒漏洩検知処理の結果が冷媒の漏洩有りを示していれば、通知先の一例である管理者端末40に冷媒の漏洩有りの通知又は空調機10の点検の提案を表示する。 The refrigerant leak detection process that detects a refrigerant leak from the refrigerant pressure while the air conditioner 10 is stopped is an example of control that performs simple (simplified) refrigerant leak detection, and does not require the air conditioner 10 to operate for refrigerant leak detection. The refrigerant leak detection process that detects a refrigerant leak from the refrigerant pressure while the air conditioner 10 is stopped determines a refrigerant leak by detecting the refrigerant pressure with a pressure sensor. If the result of the refrigerant leak detection process indicates that there is a refrigerant leak, the control unit 32 displays a notification of the refrigerant leak or a suggestion to inspect the air conditioner 10 on the administrator terminal 40, which is an example of a notification destination.

 ステップS20において、制御部32は空調機10が最後に運転されてから第2所定期間が経過したか否かを判定する。第2所定期間は、例えば3ヶ月未満である。第2所定期間は、例えばフロン排出抑制法を考慮し、空調機10が設置されている現地にサービスマン等を派遣する必要が発生する期間より短い期間である。 In step S20, the control unit 32 determines whether a second predetermined period has elapsed since the air conditioner 10 was last operated. The second predetermined period is, for example, less than three months. The second predetermined period is, for example, a period that is shorter than the period during which it becomes necessary to dispatch a service technician or the like to the site where the air conditioner 10 is installed, taking into account the Fluorocarbons Emission Reduction Act.

 空調機10が最後に運転されてから第2所定期間が経過していなければ、制御部32はステップS10の処理に戻る。空調機10が最後に運転されてから第2所定期間が経過していれば、制御部32はステップS22の処理に進む。 If the second predetermined period has not elapsed since the air conditioner 10 was last operated, the control unit 32 returns to the process of step S10. If the second predetermined period has elapsed since the air conditioner 10 was last operated, the control unit 32 proceeds to the process of step S22.

 ステップS22において、制御部32は空調機10の第2冷媒検知制御による冷媒漏洩検知処理を行う。空調機10の第2冷媒検知制御による冷媒漏洩検知処理は、空調機10の冷媒漏洩検知用の運転を行いつつ、空調機10の冷媒漏洩を検知する冷媒漏洩検知処理を行う。第2冷媒検知制御による冷媒漏洩検知処理は、所定以上(例えば7割以上)の負荷をかける運転を行いつつ空調機10の冷媒の状態から冷媒漏洩検知を行ってもよい。例えば空調機10の第2冷媒検知制御による冷媒漏洩検知処理は、室内機12の所定以上(例えば7割以上)の台数に負荷をかける運転を所定時間以上(例えば1時間程度)行って、空調機10の冷媒が安定した後の空調機10による温度及び冷媒圧力から、空調機10の冷媒漏洩検知を行ってもよい。例えば7割以上の負荷をかける運転は、室外機14の定格能力の7割以上の負荷をかける運転(運転している室内機12の能力が室外機14の定格能力の7割以上となる運転)である。その他の例として、7割以上の負荷をかける運転は、接続されている室内機12の台数の7割以上の運転であってもよいし、同一系統に接続されている室内機12の総容量の7割以上の負荷の運転であってもよい。 In step S22, the control unit 32 performs refrigerant leakage detection processing using the second refrigerant detection control of the air conditioner 10. The refrigerant leakage detection processing using the second refrigerant detection control of the air conditioner 10 performs refrigerant leakage detection processing to detect refrigerant leakage in the air conditioner 10 while operating the air conditioner 10 for refrigerant leakage detection. The refrigerant leakage detection processing using the second refrigerant detection control may perform refrigerant leakage detection from the state of the refrigerant in the air conditioner 10 while operating with a load of a predetermined amount or more (e.g., 70% or more). For example, the refrigerant leakage detection processing using the second refrigerant detection control of the air conditioner 10 may perform an operation with a load on a predetermined amount or more of the indoor units 12 (e.g., 70% or more) for a predetermined time or more (e.g., about one hour), and perform refrigerant leakage detection in the air conditioner 10 from the temperature and refrigerant pressure by the air conditioner 10 after the refrigerant in the air conditioner 10 has stabilized. For example, an operation with a load of 70% or more is an operation with a load of 70% or more of the rated capacity of the outdoor unit 14 (an operation in which the capacity of the operating indoor units 12 is 70% or more of the rated capacity of the outdoor unit 14). As another example, an operation with a load of 70% or more may be an operation with 70% or more of the number of connected indoor units 12, or an operation with a load of 70% or more of the total capacity of the indoor units 12 connected to the same system.

 制御部32は、冷媒漏洩検知処理の結果が冷媒の漏洩有りを示していれば、通知先の一例である管理者端末40に、冷媒の漏洩有りの通知、又は空調機10の点検の提案を表示する。 If the result of the refrigerant leak detection process indicates that there is a refrigerant leak, the control unit 32 displays a notification of the refrigerant leak or a suggestion to inspect the air conditioner 10 on the administrator terminal 40, which is an example of a notification destination.

 このように、本実施形態に係る空調機制御システム1は、第1所定期間ごとに運転停止中の冷媒圧力から冷媒漏洩を検知する簡易的な冷媒漏洩検知処理を含む第1冷媒検知制御による冷媒漏洩検知処理を行うことで、1日に1回の冷媒漏洩の点検を確保できる。 In this way, the air conditioner control system 1 according to this embodiment performs refrigerant leak detection processing using the first refrigerant detection control, which includes a simple refrigerant leak detection process that detects refrigerant leaks from the refrigerant pressure while the system is not operating at a first predetermined time period, thereby ensuring that refrigerant leaks are inspected once a day.

 また、本実施形態に係る空調機制御システム1は、空調機10が最後に運転されてから3ヶ月を超える前に、運転中の冷媒の状態から正確性を有する冷媒漏洩検知を行うことができる。本実施形態に係る空調機制御システム1は、簡易性及び正確性を有した冷媒漏洩検知を行うことができる。 In addition, the air conditioner control system 1 according to this embodiment can perform accurate refrigerant leak detection based on the state of the refrigerant during operation before more than three months have passed since the air conditioner 10 was last operated. The air conditioner control system 1 according to this embodiment can perform refrigerant leak detection with simplicity and accuracy.

 図4は本実施形態に係る空調機制御システムが行う空調機制御処理の一例のシーケンス図である。ここではサーバ装置30の制御部32がネットワーク50を介して空調機10を遠隔制御する例を説明する。 FIG. 4 is a sequence diagram of an example of an air conditioner control process performed by the air conditioner control system according to this embodiment. Here, an example is described in which the control unit 32 of the server device 30 remotely controls the air conditioner 10 via the network 50.

 ステップS30において、空調機10は運転開始をエッジ装置20に通知する。エッジ装置20は運転開始をサーバ装置30の制御部32に通知する。制御部32はステップS34において、空調機10の運転中の第1冷媒検知制御による冷媒漏洩検知処理をエッジ装置20に要求する。ステップS36において、エッジ装置20は運転中の第1冷媒検知制御による冷媒漏洩検知処理を空調機10に要求する。 In step S30, the air conditioner 10 notifies the edge device 20 that it has started operating. The edge device 20 notifies the control unit 32 of the server device 30 that it has started operating. In step S34, the control unit 32 requests the edge device 20 to perform refrigerant leak detection processing using the first refrigerant detection control while the air conditioner 10 is operating. In step S36, the edge device 20 requests the air conditioner 10 to perform refrigerant leak detection processing using the first refrigerant detection control while the air conditioner 10 is operating.

 ステップS38において、空調機10はエッジ装置20から受け付けた要求に従って運転中の第1冷媒検知制御による冷媒漏洩検知処理を行う。ここでは、ステップS38の運転中の第1冷媒検知制御の結果が、冷媒の漏洩を示していなかったものとして説明を続ける。 In step S38, the air conditioner 10 performs refrigerant leakage detection processing using the first refrigerant detection control during operation in accordance with the request received from the edge device 20. Here, the explanation will continue assuming that the result of the first refrigerant detection control during operation in step S38 did not indicate a refrigerant leakage.

 ステップS40において、空調機10は結果として冷媒の漏洩が無いことをエッジ装置20に通知する。ステップS42において、エッジ装置20は結果として冷媒の漏洩が無いことをサーバ装置30の制御部32に通知する。制御部32は通知された冷媒漏洩検知処理の結果を記録する。 In step S40, the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage. In step S42, the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage. The control unit 32 records the notified result of the refrigerant leakage detection process.

 ステップS44において、制御部32は第1所定期間の一例である1日の間に冷媒漏洩検知処理が空調機10で行われたか否かを判定する。ここでは、ステップS38で運転中の第1冷媒検知制御による冷媒漏洩検知処理が行われているため、1日に1回の冷媒漏洩検知処理が行われたと判定される。制御部32は1日に1回の冷媒漏洩検知処理が行われたと判定した為、運転停止中の冷媒圧力から冷媒漏洩を検知する冷媒漏洩検知処理の要求を空調機10に行わない。 In step S44, the control unit 32 determines whether or not refrigerant leak detection processing has been performed in the air conditioner 10 during one day, which is an example of the first predetermined period. Here, since refrigerant leak detection processing is performed by the first refrigerant detection control during operation in step S38, it is determined that refrigerant leak detection processing has been performed once per day. Because the control unit 32 has determined that refrigerant leak detection processing has been performed once per day, it does not request the air conditioner 10 to perform refrigerant leak detection processing to detect refrigerant leaks from the refrigerant pressure while operation is stopped.

 ステップS46において、制御部32は1日の間に冷媒漏洩検知処理が空調機10で行われたか否かを判定する。ここでは、1日に1回の冷媒漏洩検知処理が行われていないと判定されたものとする。制御部32は1日に1回の冷媒漏洩検知処理が行われていないと判定した為、ステップS48の処理に進む。 In step S46, the control unit 32 determines whether or not refrigerant leak detection processing has been performed in the air conditioner 10 during the day. Here, it is assumed that it has been determined that refrigerant leak detection processing has not been performed once a day. Because the control unit 32 has determined that refrigerant leak detection processing has not been performed once a day, the process proceeds to step S48.

 ステップS48において、制御部32は運転停止中の第1冷媒検知制御による冷媒漏洩検知処理をエッジ装置20に要求する。ステップS50において、エッジ装置20は運転停止中の第1冷媒検知制御による冷媒漏洩検知処理を空調機10に要求する。 In step S48, the control unit 32 requests the edge device 20 to perform refrigerant leakage detection processing using the first refrigerant detection control while operation is stopped. In step S50, the edge device 20 requests the air conditioner 10 to perform refrigerant leakage detection processing using the first refrigerant detection control while operation is stopped.

 ステップS52において、空調機10はエッジ装置20から受け付けた要求に従って運転停止中の第1冷媒検知制御による冷媒漏洩検知処理を行う。ここでは、ステップS52の運転停止中の第1冷媒検知制御の結果が、冷媒の漏洩を示していなかったものとして説明を続ける。 In step S52, the air conditioner 10 performs refrigerant leakage detection processing using the first refrigerant detection control while the air conditioner 10 is not in operation, in accordance with the request received from the edge device 20. Here, the explanation will continue assuming that the result of the first refrigerant detection control while the air conditioner 10 is not in operation in step S52 indicates a refrigerant leakage.

 ステップS54において、空調機10は結果として冷媒の漏洩が無いことをエッジ装置20に通知する。ステップS56において、エッジ装置20は結果として冷媒の漏洩が無いことをサーバ装置30の制御部32に通知する。制御部32は通知された冷媒漏洩検知の結果を記録する。 In step S54, the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage. In step S56, the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage. The control unit 32 records the notified result of the refrigerant leakage detection.

 ステップS58において、制御部32は空調機10が最後に運転されてから第2所定期間が経過したか否かを判定する。ここでは、空調機10が最後に運転されてから第2所定期間が経過していたものとする。 In step S58, the control unit 32 determines whether or not a second predetermined period has elapsed since the air conditioner 10 was last operated. Here, it is assumed that the second predetermined period has elapsed since the air conditioner 10 was last operated.

 ステップS60において、制御部32は第2冷媒検知制御による冷媒漏洩検知処理をエッジ装置20に要求する。ステップS62において、エッジ装置20は第2冷媒検知制御による冷媒漏洩検知処理を空調機10に要求する。 In step S60, the control unit 32 requests the edge device 20 to perform refrigerant leakage detection processing using the second refrigerant detection control. In step S62, the edge device 20 requests the air conditioner 10 to perform refrigerant leakage detection processing using the second refrigerant detection control.

 ステップS64において、空調機10はエッジ装置20から受け付けた要求に従って第2冷媒検知制御による冷媒漏洩検知処理を行う。ここでは、ステップS64の第2冷媒検知制御の結果が、冷媒の漏洩を示していたものとして説明を続ける。 In step S64, the air conditioner 10 performs refrigerant leakage detection processing using the second refrigerant detection control in accordance with the request received from the edge device 20. Here, the explanation will continue assuming that the result of the second refrigerant detection control in step S64 indicates a refrigerant leakage.

 ステップS66において、空調機10は結果として冷媒の漏洩ありをエッジ装置20に通知する。また、ステップS68において、エッジ装置20は結果として冷媒の漏洩ありをサーバ装置30の制御部32に通知する。 In step S66, the air conditioner 10 notifies the edge device 20 that there is a refrigerant leak. In step S68, the edge device 20 notifies the control unit 32 of the server device 30 that there is a refrigerant leak.

 制御部32は、ステップS64の第2冷媒検知制御の結果が、冷媒の漏洩ありを示していた為、ステップS70において、通知先の一例である管理者端末40に冷媒の漏洩ありを通知する処理を行う。なお、ステップS70の通知は、空調機10の点検の提案を行う処理であってもよい。ステップS72において、管理者端末40は冷媒の漏洩ありの通知又は空調機10の点検の提案を表示する。また、ステップS70の通知は、空調機10で第2冷媒検知制御による冷媒漏洩検知を実行したことの通知であってもよい。 Because the result of the second refrigerant detection control in step S64 indicates that there is a refrigerant leak, in step S70 the control unit 32 performs a process of notifying the manager terminal 40, which is an example of a notification destination, of the refrigerant leak. The notification in step S70 may be a process of suggesting an inspection of the air conditioner 10. In step S72, the manager terminal 40 displays a notification of a refrigerant leak or a suggestion to inspect the air conditioner 10. The notification in step S70 may also be a notification that refrigerant leak detection has been performed by the air conditioner 10 using the second refrigerant detection control.

 なお、制御部32はステップS60において空調機10の第2冷媒検知制御による冷媒漏洩検知処理をエッジ装置20に要求する前に、空調機10の第2冷媒検知制御による冷媒漏洩検知処理の実行の可否を、管理者端末40のユーザに問い合わせてもよい。例えば制御部32は空調機10の第2冷媒検知制御による冷媒漏洩検知処理の実行の可否を問い合わせる画面を管理者端末40に表示させ、ユーザに実行の可否を選択させてもよい。 Before requesting the edge device 20 to perform refrigerant leak detection processing using the second refrigerant detection control of the air conditioner 10 in step S60, the control unit 32 may inquire of the user of the administrator terminal 40 as to whether or not to perform refrigerant leak detection processing using the second refrigerant detection control of the air conditioner 10. For example, the control unit 32 may cause the administrator terminal 40 to display a screen inquiring as to whether or not to perform refrigerant leak detection processing using the second refrigerant detection control of the air conditioner 10, and allow the user to select whether or not to perform the processing.

 図4のシーケンス図は、サーバ装置30の制御部32が空調機10の第1冷媒検知制御による冷媒漏洩検知処理及び第2冷媒検知制御による冷媒漏洩検知処理の実行の要否を判定する例である。空調機10の第1冷媒検知制御による冷媒漏洩検知処理及び第2冷媒検知制御による冷媒漏洩検知処理の実行の要否は、例えば図5のシーケンス図に示すように空調機10で判定してもよい。 The sequence diagram in FIG. 4 is an example in which the control unit 32 of the server device 30 determines whether or not it is necessary to execute the refrigerant leak detection process by the first refrigerant detection control and the refrigerant leak detection process by the second refrigerant detection control of the air conditioner 10. Whether or not it is necessary to execute the refrigerant leak detection process by the first refrigerant detection control and the refrigerant leak detection process by the second refrigerant detection control of the air conditioner 10 may be determined by the air conditioner 10, for example, as shown in the sequence diagram in FIG. 5.

 図5は本実施形態に係る空調機制御システムが行う空調機制御処理の一例のシーケンス図である。ここでは空調機10の制御部16が第1冷媒検知制御による冷媒漏洩検知処理及び第2冷媒検知制御による冷媒漏洩検知処理の実行の可否を判定する例を説明する。 FIG. 5 is a sequence diagram of an example of the air conditioner control process performed by the air conditioner control system according to this embodiment. Here, an example is described in which the control unit 16 of the air conditioner 10 determines whether or not to execute the refrigerant leak detection process using the first refrigerant detection control and the refrigerant leak detection process using the second refrigerant detection control.

 ステップS90において、空調機10の制御部16は運転を開始すると、運転中の第1冷媒検知制御による冷媒漏洩検知処理を行う。ここでは、ステップS90の運転中の第1冷媒検知制御の結果が、冷媒の漏洩を示していなかったものとして説明を続ける。 In step S90, when the control unit 16 of the air conditioner 10 starts operation, it performs refrigerant leakage detection processing by the first refrigerant detection control during operation. Here, the explanation will continue assuming that the result of the first refrigerant detection control during operation in step S90 did not indicate a refrigerant leakage.

 ステップS92において、空調機10は結果として冷媒の漏洩が無いことをエッジ装置20に通知する。ステップS94において、エッジ装置20は結果として冷媒の漏洩が無いことをサーバ装置30の制御部32に通知する。制御部32は通知された冷媒漏洩検知の結果を記録する。 In step S92, the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage. In step S94, the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage. The control unit 32 records the notified result of the refrigerant leakage detection.

 ステップS96において、制御部16は第1所定期間の一例である1日の間に冷媒漏洩検知処理を行ったか否かを判定する。ここでは、ステップS90で運転中の第1冷媒検知制御による冷媒漏洩検知処理が行われているため、1日に1回の冷媒漏洩検知処理が行われたと判定される。図5の例では、1日に1回の冷媒漏洩検知処理が行われたと判定されるため、運転停止中の冷媒圧力から冷媒漏洩を検知する冷媒漏洩検知処理を行わない。 In step S96, the control unit 16 determines whether or not refrigerant leak detection processing has been performed during one day, which is an example of a first predetermined period. Here, since refrigerant leak detection processing is performed by the first refrigerant detection control during operation in step S90, it is determined that refrigerant leak detection processing has been performed once per day. In the example of FIG. 5, since it is determined that refrigerant leak detection processing has been performed once per day, refrigerant leak detection processing that detects refrigerant leaks from refrigerant pressure while operation is stopped is not performed.

 ステップS98において、制御部16は1日の間に冷媒漏洩検知処理を行ったか否かを判定する。ここでは、1日に1回の冷媒漏洩検知処理を行っていないと判定されたものとする。制御部16は1日に1回の冷媒漏洩検知処理を行っていないと判定し、ステップS100の処理に進む。 In step S98, the control unit 16 determines whether or not refrigerant leak detection processing has been performed during the day. Here, it is assumed that it has been determined that refrigerant leak detection processing has not been performed once per day. The control unit 16 determines that refrigerant leak detection processing has not been performed once per day, and proceeds to processing in step S100.

 ステップS100において、制御部16は運転停止中の第1冷媒検知制御による冷媒漏洩検知処理を行う。ここでは、ステップS100の運転停止中の第1冷媒検知制御の結果が、冷媒の漏洩を示していなかったものとして説明を続ける。 In step S100, the control unit 16 performs refrigerant leakage detection processing using the first refrigerant detection control while operation is stopped. Here, the explanation will continue assuming that the result of the first refrigerant detection control while operation is stopped in step S100 did not indicate a refrigerant leakage.

 ステップS102において、空調機10は結果として冷媒の漏洩が無いことをエッジ装置20に通知する。ステップS104において、エッジ装置20は結果として冷媒の漏洩が無いことをサーバ装置30の制御部32に通知する。制御部32は通知された冷媒漏洩検知の結果を記録する。 In step S102, the air conditioner 10 notifies the edge device 20 that there is no refrigerant leakage. In step S104, the edge device 20 notifies the control unit 32 of the server device 30 that there is no refrigerant leakage. The control unit 32 records the notified result of the refrigerant leakage detection.

 ステップS106において、制御部16は空調機10を最後に運転してから第2所定期間が経過したか否かを判定する。ここでは、空調機10を最後に運転してから第2所定期間が経過していたものとする。 In step S106, the control unit 16 determines whether or not a second predetermined period has elapsed since the air conditioner 10 was last operated. Here, it is assumed that the second predetermined period has elapsed since the air conditioner 10 was last operated.

 ステップS108において、制御部16は第2冷媒検知制御による冷媒漏洩検知処理を行う。ここでは、ステップS108の第2冷媒検知制御の結果が、冷媒の漏洩を示していたものとして説明を続ける。 In step S108, the control unit 16 performs refrigerant leakage detection processing using the second refrigerant detection control. Here, the explanation will continue assuming that the result of the second refrigerant detection control in step S108 indicates a refrigerant leakage.

 ステップS110において、制御部16は結果として冷媒の漏洩ありをエッジ装置20に通知する。また、ステップS112において、エッジ装置20は結果として冷媒の漏洩ありをサーバ装置30の制御部32に通知する。 In step S110, the control unit 16 notifies the edge device 20 that there is a refrigerant leak. In step S112, the edge device 20 notifies the control unit 32 of the server device 30 that there is a refrigerant leak.

 制御部32は、ステップS108の第2冷媒検知制御の結果が、冷媒の漏洩ありを示していた為、ステップS114において、通知先の一例である管理者端末40に冷媒の漏洩ありを通知する処理を行う。なお、ステップS114の通知は、空調機10の点検の提案を行う処理であってもよい。ステップS116において、管理者端末40は冷媒の漏洩ありの通知又は空調機10の点検の提案を表示する。 Because the result of the second refrigerant detection control in step S108 indicates that there is a refrigerant leak, in step S114 the control unit 32 performs a process of notifying the manager terminal 40, which is an example of a notification destination, of the refrigerant leak. Note that the notification in step S114 may be a process of suggesting an inspection of the air conditioner 10. In step S116, the manager terminal 40 displays a notification of a refrigerant leak or a suggestion to inspect the air conditioner 10.

 サーバ装置30の制御部32は、第1冷媒検知制御による冷媒漏洩検知及び第1冷媒検知制御の結果を管理する。なお、空調機10からサーバ装置30への結果通知は、日々のレポートとしてサーバ装置30にまとめて送信してもよい。 The control unit 32 of the server device 30 manages the refrigerant leak detection by the first refrigerant detection control and the results of the first refrigerant detection control. Note that the result notifications from the air conditioner 10 to the server device 30 may be sent together as a daily report to the server device 30.

 空調機10の第1冷媒検知制御による冷媒漏洩検知処理及び第2冷媒検知制御による冷媒漏洩検知処理の実行の要否は、図6に示すように、空調機10の制御部16及びサーバ装置30の制御部32で分散して行ってもよい。図6は本実施形態に係る空調機制御システムが行う空調機制御処理の一例のシーケンス図である。 As shown in FIG. 6, the necessity of executing the refrigerant leak detection process by the first refrigerant detection control of the air conditioner 10 and the refrigerant leak detection process by the second refrigerant detection control may be distributed between the control unit 16 of the air conditioner 10 and the control unit 32 of the server device 30. FIG. 6 is a sequence diagram of an example of the air conditioner control process performed by the air conditioner control system according to this embodiment.

 なお、ステップS130~S144の処理は図5のステップS90~S104と同様であるため、説明を省略する。 Note that the processing in steps S130 to S144 is similar to steps S90 to S104 in FIG. 5, so a description thereof will be omitted.

 ステップS146において、制御部32は空調機10が最後に運転されてから第2所定期間が経過したか否かを判定する。ここでは、空調機10が最後に運転されてから第2所定期間が経過していたものとする。 In step S146, the control unit 32 determines whether or not a second predetermined period has elapsed since the air conditioner 10 was last operated. Here, it is assumed that the second predetermined period has elapsed since the air conditioner 10 was last operated.

 ステップS148において、制御部32は第2冷媒検知制御による冷媒漏洩検知処理をエッジ装置20に要求する。ステップS150において、エッジ装置20は第2冷媒検知制御による冷媒漏洩検知処理を空調機10に要求する。 In step S148, the control unit 32 requests the edge device 20 to perform refrigerant leakage detection processing using the second refrigerant detection control. In step S150, the edge device 20 requests the air conditioner 10 to perform refrigerant leakage detection processing using the second refrigerant detection control.

 ステップS152において、空調機10はエッジ装置20から受け付けた要求に従って第2冷媒検知制御による冷媒漏洩検知処理を行う。ここでは、ステップS152の第2冷媒検知制御の結果が、冷媒の漏洩を示していたものとして説明を続ける。 In step S152, the air conditioner 10 performs refrigerant leakage detection processing using the second refrigerant detection control in accordance with the request received from the edge device 20. Here, the explanation will continue assuming that the result of the second refrigerant detection control in step S152 indicates a refrigerant leakage.

 ステップS154において、空調機10は結果として冷媒の漏洩ありをエッジ装置20に通知する。また、ステップS156において、エッジ装置20は結果として冷媒の漏洩ありをサーバ装置30の制御部32に通知する。 In step S154, the air conditioner 10 notifies the edge device 20 that there is a refrigerant leak. In step S156, the edge device 20 notifies the control unit 32 of the server device 30 that there is a refrigerant leak.

 制御部32は、ステップS152の第2冷媒検知制御の結果が、冷媒の漏洩ありを示していた為、ステップS158において、通知先の一例である管理者端末40に冷媒の漏洩ありを通知する処理を行う。なお、ステップS158の通知は、空調機10の点検の提案を行う処理であってもよい。ステップS160において、管理者端末40は冷媒の漏洩ありの通知又は空調機10の点検の提案を表示する。 Because the result of the second refrigerant detection control in step S152 indicates that there is a refrigerant leak, in step S158 the control unit 32 performs a process of notifying the manager terminal 40, which is an example of a notification destination, of the refrigerant leak. Note that the notification in step S158 may be a process of suggesting that the air conditioner 10 be inspected. In step S160, the manager terminal 40 displays a notification of the refrigerant leak or a suggestion to inspect the air conditioner 10.

 図4~図6のシーケンス図では、サーバ装置30の制御部32、又は空調機10の制御部16が、空調機10の第1冷媒検知制御による冷媒漏洩検知処理及び第2冷媒検知制御による冷媒漏洩検知処理の実行の要否を判定する例を示したが、エッジ装置20の制御部22が行うようにしてもよい。 The sequence diagrams in Figures 4 to 6 show an example in which the control unit 32 of the server device 30 or the control unit 16 of the air conditioner 10 determines whether or not to execute the refrigerant leak detection process using the first refrigerant detection control of the air conditioner 10 and the refrigerant leak detection process using the second refrigerant detection control, but this may also be done by the control unit 22 of the edge device 20.

 本実施形態の空調機制御システム1によれば、例えば空調機10の運転が行われた日は運転中の冷媒の状態から冷媒漏洩検知を行う。また、本実施形態の空調機制御システム1によれば、例えば空調機10の運転が行われない日は運転停止中の冷媒圧力から冷媒漏洩検知を行う。 According to the air conditioner control system 1 of this embodiment, for example, on days when the air conditioner 10 is in operation, refrigerant leakage detection is performed from the state of the refrigerant during operation. Also, according to the air conditioner control system 1 of this embodiment, for example, on days when the air conditioner 10 is not in operation, refrigerant leakage detection is performed from the refrigerant pressure while the air conditioner is not in operation.

 空調機10の運転が行われない日が続いた場合は、運転停止中の冷媒圧力から冷媒漏洩検知した日が第2所定期間を超えないように、冷媒漏洩検知用の運転を行って冷媒漏洩検知を行う第2冷媒検知制御を実行できる。 If the air conditioner 10 is not operated for several days, a second refrigerant detection control can be executed to perform refrigerant leak detection operation and detect refrigerant leaks so that the number of days when a refrigerant leak is detected based on the refrigerant pressure while the air conditioner is not operating does not exceed a second predetermined period.

 以上、本実施形態について説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。本願は、日本特許庁に2022年9月30日に出願された基礎出願2022―158318号の優先権を主張するものであり、その全内容を参照によりここに援用する。 The present embodiment has been described above, but it will be understood that various modifications in form and details are possible without departing from the spirit and scope of the claims. The present invention has been described above based on the examples, but the present invention is not limited to the above examples, and various modifications are possible within the scope of the claims. This application claims priority to basic application No. 2022-158318 filed with the Japan Patent Office on September 30, 2022, the entire contents of which are incorporated herein by reference.

 1  空調機制御システム
 10  空調機
 12  室内機
 14  室外機
 16、22、32  制御部
 20  エッジ装置
 30  サーバ装置
 40  管理者端末
 50  ネットワーク
Reference Signs List 1 Air conditioner control system 10 Air conditioner 12 Indoor unit 14 Outdoor unit 16, 22, 32 Control unit 20 Edge device 30 Server device 40 Administrator terminal 50 Network

Claims (9)

 空調機を制御する制御部を有する空調機制御システムであって、
 前記制御部は、
 前記空調機が運転中の冷媒の状態又は前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を第1所定期間ごとに行う第1冷媒検知制御を実行し、
 前記空調機が最後に運転されてから第2所定期間が経過した場合に、前記空調機の冷媒漏洩検知用の運転を行いつつ前記空調機の冷媒漏洩検知を行う第2冷媒検知制御を実行する
 空調機制御システム。
An air conditioner control system having a control unit that controls an air conditioner,
The control unit is
Executing a first refrigerant detection control to detect a refrigerant leak from the air conditioner at every first predetermined period based on a state of the refrigerant while the air conditioner is operating or a refrigerant pressure while the air conditioner is not operating;
an air conditioner control system that, when a second predetermined period has elapsed since the air conditioner was last operated, executes second refrigerant detection control to detect a refrigerant leak in the air conditioner while performing an operation for detecting a refrigerant leak in the air conditioner.
 前記制御部は、
 前記第1所定期間の間、前記空調機が運転中の冷媒の状態から前記空調機の冷媒漏洩検知を行わなかった場合に、前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を行う
請求項1記載の空調機制御システム。
The control unit is
2. The air conditioner control system according to claim 1, wherein if refrigerant leakage detection of the air conditioner is not performed based on the state of refrigerant while the air conditioner is operating during the first specified period, refrigerant leakage detection of the air conditioner is performed based on the refrigerant pressure while the air conditioner is not operating.
 前記制御部は、前記第2冷媒検知制御の結果が冷媒漏洩有りであった場合、通知先に冷媒の漏洩有りの通知または前記空調機の点検の提案を行うための制御を行う
請求項1又は2記載の空調機制御システム。
3. The air conditioner control system according to claim 1 or 2, wherein, when a result of the second refrigerant detection control indicates the presence of a refrigerant leak, the control unit performs control to notify a notification destination of the presence of a refrigerant leak or to suggest inspection of the air conditioner.
 前記第2冷媒検知制御は、空調機の容量の7割以上の負荷をかける運転を行いつつ前記空調機の冷媒の状態から前記空調機の冷媒漏洩検知を行う制御である
請求項1乃至3の何れか一項に記載の空調機制御システム。
The air conditioner control system according to any one of claims 1 to 3, wherein the second refrigerant detection control is a control that detects a refrigerant leak in the air conditioner from a state of the refrigerant in the air conditioner while operating the air conditioner at a load of 70% or more of its capacity.
 前記第2冷媒検知制御は、前記負荷をかける運転を第3所定時間以上行った後の前記空調機の冷媒の状態から、前記空調機の冷媒漏洩検知を行う制御である
請求項4記載の空調機制御システム。
The air conditioner control system according to claim 4, wherein the second refrigerant detection control is a control for detecting a refrigerant leak in the air conditioner based on a state of the refrigerant in the air conditioner after the load operation has been performed for a third predetermined time or longer.
 前記第2所定期間は、3ヶ月未満である
請求項1乃至5の何れか一項に記載の空調機制御システム。
The air conditioner control system according to claim 1 , wherein the second predetermined period is less than three months.
 前記制御部は、前記第2冷媒検知制御を実行したことを示す情報を記録する
請求項1乃至6の何れか一項に記載の空調機制御システム。
The air conditioner control system according to claim 1 , wherein the control unit records information indicating that the second refrigerant detection control has been executed.
 空調機を制御する制御部を有する情報処理装置であって、
 前記制御部は、
 前記空調機が運転中の冷媒の状態又は前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を第1所定期間ごとに行う第1冷媒検知制御を実行し、
 前記空調機が最後に運転されてから第2所定期間が経過した場合に、前記空調機の冷媒漏洩検知用の運転を行いつつ前記空調機の冷媒漏洩検知を行う第2冷媒検知制御を実行する
 情報処理装置。
An information processing device having a control unit for controlling an air conditioner,
The control unit is
Executing a first refrigerant detection control to detect a refrigerant leak from the air conditioner at every first predetermined period based on a state of the refrigerant while the air conditioner is operating or a refrigerant pressure while the air conditioner is not operating;
When a second predetermined period has elapsed since the air conditioner was last operated, the information processing device executes second refrigerant detection control to detect a refrigerant leak in the air conditioner while performing an operation for detecting a refrigerant leak in the air conditioner.
 空調機を制御する制御部を有する空調機制御システムの前記制御部が実行する空調機制御方法であって、
 前記空調機が運転中の冷媒の状態又は前記空調機が運転停止中の冷媒圧力から前記空調機の冷媒漏洩検知を第1所定期間ごとに行う第1冷媒検知制御を実行し、
 前記空調機が最後に運転されてから第2所定期間が経過した場合に、前記空調機の冷媒漏洩検知用の運転を行いつつ前記空調機の冷媒漏洩検知を行う第2冷媒検知制御を実行する
 空調機制御方法。
An air conditioner control method executed by a control unit of an air conditioner control system having a control unit for controlling an air conditioner,
Executing a first refrigerant detection control to detect a refrigerant leak from the air conditioner at every first predetermined period based on a state of the refrigerant while the air conditioner is operating or a refrigerant pressure while the air conditioner is not operating;
an air conditioner control method for performing a second refrigerant detection control to detect a refrigerant leak in the air conditioner while performing an operation for detecting a refrigerant leak in the air conditioner when a second predetermined period has elapsed since the air conditioner was last operated;
PCT/JP2023/020945 2022-09-30 2023-06-06 Air conditioner control system, information processing device, and air conditioner control method WO2024070060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380066210.8A CN119895206A (en) 2022-09-30 2023-06-06 Air conditioner control system, information processing device, and air conditioner control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158318A JP7425353B1 (en) 2022-09-30 2022-09-30 Air conditioner control system, information processing device and air conditioner control method
JP2022-158318 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070060A1 true WO2024070060A1 (en) 2024-04-04

Family

ID=89718052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020945 WO2024070060A1 (en) 2022-09-30 2023-06-06 Air conditioner control system, information processing device, and air conditioner control method

Country Status (3)

Country Link
JP (1) JP7425353B1 (en)
CN (1) CN119895206A (en)
WO (1) WO2024070060A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079842A (en) 2007-09-26 2009-04-16 Mitsubishi Electric Corp Refrigerating cycle device and its control method
JP2015206509A (en) * 2014-04-18 2015-11-19 日立アプライアンス株式会社 Cooling / heating equipment
JP2016023885A (en) * 2014-07-23 2016-02-08 シャープ株式会社 Temperature adjustment device and control method of temperature adjustment device
WO2016158847A1 (en) * 2015-03-31 2016-10-06 ダイキン工業株式会社 Air conditioner
JP2017015324A (en) * 2015-07-01 2017-01-19 ダイキン工業株式会社 Air conditioner indoor unit
JP2020094763A (en) * 2018-12-13 2020-06-18 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioning device
JP2022158318A (en) 2021-04-01 2022-10-17 株式会社神戸製鋼所 Manufacturing method of turbo machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100056204A (en) * 2008-11-19 2010-05-27 삼성전자주식회사 Multi-air-conditioner and method for diagnosising refrigerants leakage thereof
KR20110001667A (en) * 2009-06-30 2011-01-06 엘지전자 주식회사 Air conditioner and its operation method
CN102252404A (en) * 2010-05-17 2011-11-23 珠海格力电器股份有限公司 Air conditioner and control method thereof
EP3021059B1 (en) * 2013-07-10 2021-03-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2018155426A (en) * 2017-03-16 2018-10-04 株式会社富士通ゼネラル Air conditioner
JP7159748B2 (en) * 2018-09-25 2022-10-25 株式会社富士通ゼネラル air conditioner
JP6866906B2 (en) * 2019-07-12 2021-04-28 ダイキン工業株式会社 Refrigeration cycle system
CN111397086B (en) * 2020-03-25 2021-06-04 珠海格力电器股份有限公司 Refrigerant detection method and device for air conditioning system, air conditioner and storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079842A (en) 2007-09-26 2009-04-16 Mitsubishi Electric Corp Refrigerating cycle device and its control method
JP2015206509A (en) * 2014-04-18 2015-11-19 日立アプライアンス株式会社 Cooling / heating equipment
JP2016023885A (en) * 2014-07-23 2016-02-08 シャープ株式会社 Temperature adjustment device and control method of temperature adjustment device
WO2016158847A1 (en) * 2015-03-31 2016-10-06 ダイキン工業株式会社 Air conditioner
JP2017015324A (en) * 2015-07-01 2017-01-19 ダイキン工業株式会社 Air conditioner indoor unit
JP2020094763A (en) * 2018-12-13 2020-06-18 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioning device
JP2022158318A (en) 2021-04-01 2022-10-17 株式会社神戸製鋼所 Manufacturing method of turbo machine

Also Published As

Publication number Publication date
JP2024051922A (en) 2024-04-11
CN119895206A (en) 2025-04-25
JP7425353B1 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
JP2012256223A (en) Information processing device and information processing method
US9570191B2 (en) Controlling swap rate based on the remaining life of a memory
CN107621040B (en) Error correction method and device for temperature sensor and air conditioner
CN110715397B (en) Refrigerant leakage detection method and system of air conditioner and air conditioner
WO2024070060A1 (en) Air conditioner control system, information processing device, and air conditioner control method
JP5936714B2 (en) System controller, facility management system, demand control method and program
CN111465150A (en) Control method and device for ultraviolet L ED lamp
JP2002013778A (en) Power control method and device of air conditioner, and computer-readable record medium
CN110186162A (en) Air conditioner control method and device
JP7711345B2 (en) Air conditioner control system, information processing device, and air conditioner control method
WO2024070059A1 (en) Air conditioner control system, information processing device, and air conditioner control method
US11422539B2 (en) Control system, control method, and program
US11719459B2 (en) HVAC control system and method
JP7370450B2 (en) Air conditioning system, management device, air conditioner, sensor data acquisition method and program
TW202314506A (en) Hard disk monitoring method, electronic device, and storage medium
JP2021033665A (en) Device identifying apparatus, device identifying method and device identifying program
JP7378286B2 (en) Air conditioning control system, air conditioning system and air conditioning control method
WO2024224601A1 (en) Refrigeration cycle system
JPWO2020090081A1 (en) Air conditioning system and air conditioning management system
TWI497283B (en) Supervisory control apparatus
JP2024146268A (en) DEVICE, PRIVATE RESPONSE METHOD, AND COMMUNICATION SYSTEM
JP2022078802A (en) Abnormality determination device and abnormality determination method
CN110906496B (en) Air conditioning system and control method, device and equipment thereof
WO2023242993A1 (en) Air conditioning system
CN117553407A (en) Multi-split cluster system control method, equipment and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023871305

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023871305

Country of ref document: EP

Effective date: 20250430