WO2024068143A1 - Deposition of material layers by evaporation and dual activation - Google Patents
Deposition of material layers by evaporation and dual activation Download PDFInfo
- Publication number
- WO2024068143A1 WO2024068143A1 PCT/EP2023/073109 EP2023073109W WO2024068143A1 WO 2024068143 A1 WO2024068143 A1 WO 2024068143A1 EP 2023073109 W EP2023073109 W EP 2023073109W WO 2024068143 A1 WO2024068143 A1 WO 2024068143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- enclosure
- region
- chamber
- substrate
- deposition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0617—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32321—Discharge generated by other radiation
- H01J37/3233—Discharge generated by other radiation using charged particles
Definitions
- the invention relates to the field of deposition of material in the form of thin layers.
- the invention has particular applications in the optoelectronics and electronics sectors.
- a conventional technique consists of carrying out vapor deposition of material under vacuum.
- the material is evaporated from a crucible towards a substrate passing through a medium which can be passive or active.
- known plasma processes do not allow the production of layers with low thermal dissociation energy, in particular of indium nitride whose dissociation temperature is approximately 500°C.
- the invention aims to remedy the drawbacks of the deposition techniques known in the prior art and, in particular, to provide a solution making it possible to deposit layers with low dissociation energy, in particular layers of indium nitride.
- the invention is however not limited to this type of material and also aims to provide a deposition technique making it possible to obtain layers of different materials, having satisfactory physicochemical, electrical, optical and/or mechanical properties. .
- the subject of the invention is a material deposition device comprising: – a surface for receiving a sample of material, – a substrate intended for depositing the material, – an enclosure defining between the receiving surface and the substrate a first region capable of receiving plasma and a second region capable of receiving electrons, – a plasma generation member for a gas such as nitrogen configured to generate the plasma in the first region of the enclosure, – an electron emitting member configured to emit electrons in the second region of the enclosure, – an evaporation member configured to evaporate the material from the sample so as to move the material thus evaporated successively in the first region and in the second region of the enclosure towards the substrate.
- the invention thus makes it possible to carry out a double activation of the evaporated material, on the one hand with the plasma and on the other hand with the electrons generated in the enclosure, making it possible to deposit nitrided layers on the substrate by evaporation.
- the invention makes it possible to obtain thin nitrided layers on a large scale, at lower cost, at a high deposition rate and of good quality.
- the invention makes it possible in particular to carry out deposition at low temperature, in particular at a temperature lower than 300°C, with a plasma generated at low power, in particular a power lower than 100 W.
- the low power of plasma allows, among other things, the deposition of layers of indium nitride to form a material presenting the required physicochemical and structural properties.
- the sample of material used may include an inorganic element from the periodic table, such as aluminum, indium or even titanium, which are likely to acquire electrical and optical properties following their nitriding.
- an inorganic element from the periodic table such as aluminum, indium or even titanium, which are likely to acquire electrical and optical properties following their nitriding.
- the device comprises a member for generating a magnetic field.
- This member is preferably configured to generate a magnetic field in said second region of the enclosure in order to modify the trajectory of the electrons emitted in this second region.
- This organ can be a magnet or an electromagnet.
- the device comprises a pumping member configured to lower the pressure of the enclosure.
- the pumping device allows the enclosure to be placed under vacuum.
- This pumping member may include a vacuum pump of the cryogenic or turbomolecular type.
- the device comprises a member configured to generate a pressure difference between a first chamber of the enclosure forming the first region and the second region and a second chamber receiving the sample.
- This organ can be a partition type diaphragm with an opening sized to produce such a pressure difference.
- differential pumping can be implemented in the enclosure, for example to promote the evaporation of the material.
- the electron emitting member comprises a filament and means for heating the filament.
- the plasma generating member comprises means for injecting said gas into the enclosure and a mechanism configured to create an electrical potential difference so as to generate the plasma in said first region of the enclosure .
- the invention also relates to a method of depositing material on a substrate using a device as described above.
- a method of the invention comprises: – generation of plasma from a gas such as nitrogen in a first region of an enclosure, – an emission of electrons in a second region of the enclosure, – an evaporation of material so as to move the material thus evaporated towards the substrate, successively in the first region in which the plasma is generated and in the second region in which the electrons are emitted.
- the method comprises generating a magnetic field, using a magnet or electromagnet, in said second region of the enclosure so as to modify the trajectory of the electrons emitted in this second region.
- the method includes lowering the pressure of the enclosure using a pumping member.
- the material comprises an inorganic element from the periodic table, such as aluminum or indium, or an alloy comprising such an inorganic element.
- He is represented at the a device 1 provided for evaporating a sample 2 of material, for activating the evaporated material then depositing it on a substrate 3 in the form of thin layers, that is to say layers typically having a thickness which can range from a few nanometers to a few microns.
- the device 1 comprises a frame 4 forming an enclosure 5 and comprising a structure 6 for supporting the substrate 3 as well as a partition 7 intended to separate the enclosure 5 into two chambers 5A and 5B.
- Device 1 further comprises a crucible 11, an evaporation member 12, a plasma generation member 13, an electron emitting member 14, a pumping member 15 and a magnet 16.
- Substrate 3 and crucible 11 are away from each other along direction D2, called “longitudinal direction”.
- the crucible 11 comprises a surface 21 for receiving the sample 2 arranged opposite a surface 22 of the substrate 3 intended for depositing the material, these surfaces 21 and 22 being spaced apart from each other according to D2 by distance X1.
- the distance X1 is in this example equal to 400 mm.
- the enclosure 5 presents, longitudinally between the surface 21 of the crucible 11 and the surface 22 of the substrate 3, a space provided to allow movement of the material of the sample 2 evaporated from the crucible 11 to the substrate 3 along a trajectory having at least one longitudinal component, that is to say oriented along the direction D2 in a direction going from the bottom to the top of the .
- the member 12 is in this example a thermal evaporation member, configured to heat the sample 2 placed on the surface 21 of the crucible 11 by the Joule effect.
- crucible 12 is made of a material having a melting temperature higher than the evaporation temperature of sample 2.
- crucible 12 is made of tungsten.
- organ 13 of the comprises on the one hand a means 31 making it possible to inject a gas into the enclosure 5, in particular into the chamber 5A.
- the gas injected by the injection means 31 comprises nitrogen.
- the member 13 also comprises a mechanism 32 configured to create an electrical potential difference in order to produce the plasma with the nitrogen injected into the enclosure 5 under the action of this potential difference.
- the reference 32 designates a polarization rod of this mechanism, the other elements of this mechanism not being shown.
- the mechanism 32 may comprise a voltage or radio frequency generator making it possible to create said potential difference between a cathode, which may be formed by a part of the polarization rod 32, and an anode.
- the potential difference can be of the order of 500 V and the plasma power less than 100 W.
- the member 14 comprises in this example a filament (not shown) configured to be crossed by an electric current so as to heat the filament and thus emit electrons.
- the device 1 is configured so that the member 13 can generate the plasma in a first region 41 of the enclosure 5 and so that the member 14 can concomitantly generate an electron beam in a second region 42 of the enclosure 5. enclosure 5, adjacent to the first region 41.
- regions 41 and 42 are both constituted by parts of the space formed by chamber 5A and extend longitudinally between crucible 11 and substrate 3.
- the pumping member 15 comprises in the present embodiment a vacuum pump.
- the organ 15 may comprise another type of pump, for example a turbomolecular pump.
- Pumping member 15 is configured to lower the pressure of chamber 5B.
- pumping member 15 also makes it possible to lower the pressure of chamber 5A during deposition (see further below).
- the pumping member 15 is in this non-limiting example designed to lower the pressure of the entire volume of enclosure 5.
- structure 6 supporting substrate 3 is in this example mounted movable relative to frame 4, in this case rotating around an axis parallel to direction D2.
- Device 1 comprises means (not shown) making it possible to move structure 6 in rotation around this axis, so as to be able to move substrate 3 relative to frame 4 during deposition (see further below).
- Partition 7 includes an opening 51 allowing evaporated material to move from chamber 5B to chamber 5A through this opening 51.
- opening 51 is dimensioned so that the pressure is substantially identical in chamber 5A and in room 5B.
- the magnet 16 is a permanent magnet mounted on the frame 4, near said second region 42.
- the device 1 is arranged so that the substrate 3 is arranged longitudinally between the magnet 16 and the second region 42 of enclosure 5.
- Magnet 16 is more specifically configured to generate a magnetic field in the second region 42 of enclosure 5.
- sample 2 includes indium.
- the pressure of enclosure 5, initially at atmospheric pressure, is lowered using pumping member 15.
- the nitrogen plasma is generated in the first region 41 of enclosure 5 using organ 13.
- An electron beam is emitted in the second region 42 of enclosure 5 using organ 14.
- the material from sample 2 is heated using member 12 so as to cause this material to pass into the vapor state.
- the evaporated material 60 is thus moved towards the substrate 3, along a trajectory comprising at least one component parallel to the direction D2. In doing so, the evaporated material 60 passes from chamber 5B receiving crucible 11 to chamber 5A via opening 51 of partition 7, then successively passes through the first region 41 and the second region 42.
- Particles of the evaporated material from sample 2 are thus ejected towards substrate 3, being subjected to double activation by the nitrogen plasma on the one hand and the electron beam on the other hand.
- the magnetic field generated in the second region 42 increases the length of the electron trajectory, which increases the rate of ionization of nitrogen and consequently the rate of nitriding of the deposited material.
- the particles of material thus activated condense so as to form thin layers adhering to substrate 3.
- structure 6 supporting substrate 3 is rotated in order to improve the homogeneity of the deposited layers.
- the invention thus makes it possible to form thin layers rich in nitrogen, with a high deposition speed, typically of the order of a few nm/s, a low deposition temperature, a low plasma generation power and a production cost. reduced.
- the evaporation member 12 comprises a means other than a Joule effect heating means, for example an induction heating means, or a means configured to carry out the evaporation of material using another technique, for example by electronic bombardment.
- the device 1 can be devoid of the permanent magnet 16 illustrated on the .
- the device may not include a magnet or may include another type of magnet, for example an electromagnet or another means of generating a magnetic field in the second region 42 and/or in other regions of the enclosure 5 .
- the device 1 is distinguished from that of the in that it does not have partition 7.
- opening 51 of partition 7 is dimensioned so as to generate a pressure differential between chambers 5A and 5B under the action of pumping, in order to promote the evaporation of an element such as aluminum, for example.
- device 1 may include a quartz balance placed near substrate 3 in order to control the thickness of the layers deposited.
- sample 2 may comprise an inorganic element from the periodic table, for example a metallic element such as aluminum or titanium, or an alloy comprising such an inorganic element.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
L’invention se rapporte au domaine du dépôt de matière sous forme de couches minces.The invention relates to the field of deposition of material in the form of thin layers.
L’invention a notamment des applications dans les secteurs de l’optoélectronique et de l’électronique.The invention has particular applications in the optoelectronics and electronics sectors.
Une technique conventionnelle consiste à réaliser un dépôt de matière en phase vapeur sous vide. La matière est évaporée à partir d’un creuset en direction d’un substrat en traversant un milieu qui peut être passif ou actif.A conventional technique consists of carrying out vapor deposition of material under vacuum. The material is evaporated from a crucible towards a substrate passing through a medium which can be passive or active.
Il est notamment connu d’utiliser comme milieu actif un plasma, permettant typiquement d’améliorer l’adhérence de la matière sur le substrat et d’obtenir des couches uniformes et non poreuses.It is particularly known to use a plasma as the active medium, typically making it possible to improve the adhesion of the material to the substrate and to obtain uniform and non-porous layers.
Entre autres inconvénients, les procédés plasma connus ne permettent pas l’obtention de couches à faible énergie thermique de dissociation, notamment de nitrure d’indium dont la température de dissociation est d’environ 500°C.Among other disadvantages, known plasma processes do not allow the production of layers with low thermal dissociation energy, in particular of indium nitride whose dissociation temperature is approximately 500°C.
Des techniques alternatives ont été proposées pour élaborer des couches de nitrure d’indium, en particulier l’épitaxie, la pulvérisation réactive, ainsi que le dépôt par laser pulsé.Alternative techniques have been proposed to develop layers of indium nitride, in particular epitaxy, reactive sputtering, as well as pulsed laser deposition.
Ces techniques ne donnent cependant pas satisfaction car elles nécessitent de hautes températures et des puissances plasma radiofréquences élevées qui dégradent la qualité des couches déposées.However, these techniques are not satisfactory because they require high temperatures and high radiofrequency plasma powers which degrade the quality of the layers deposited.
L’invention vise à remédier aux inconvénients des techniques de dépôt connues dans l'art antérieur et, notamment, à procurer une solution permettant de déposer des couches à faible énergie de dissociation, en particulier des couches de nitrure d’indium.The invention aims to remedy the drawbacks of the deposition techniques known in the prior art and, in particular, to provide a solution making it possible to deposit layers with low dissociation energy, in particular layers of indium nitride.
L’invention n’est toutefois pas limitée à ce type de matériau et a aussi pour objectif de procurer une technique de dépôt permettant d’obtenir des couches de matériaux différents, présentant des propriétés physico-chimiques, électriques, optiques et/ou mécaniques satisfaisantes.The invention is however not limited to this type of material and also aims to provide a deposition technique making it possible to obtain layers of different materials, having satisfactory physicochemical, electrical, optical and/or mechanical properties. .
A cet effet, l’invention a pour objet un dispositif de dépôt de matière comprenant :
– une surface de réception d’un échantillon de matière,
– un substrat destiné au dépôt de la matière,
– une enceinte définissant entre la surface de réception et le substrat une première région apte à recevoir du plasma et une deuxième région apte à recevoir des électrons,
– un organe de génération de plasma d’un gaz tel que l’azote configuré pour générer le plasma dans la première région de l’enceinte,
– un organe d’émission d’électrons configuré pour émettre des électrons dans la deuxième région de l’enceinte,
– un organe d’évaporation configuré pour évaporer la matière de l’échantillon de manière à déplacer la matière ainsi évaporée successivement dans la première région et dans la deuxième région de l’enceinte en direction du substrat.To this end, the subject of the invention is a material deposition device comprising:
– a surface for receiving a sample of material,
– a substrate intended for depositing the material,
– an enclosure defining between the receiving surface and the substrate a first region capable of receiving plasma and a second region capable of receiving electrons,
– a plasma generation member for a gas such as nitrogen configured to generate the plasma in the first region of the enclosure,
– an electron emitting member configured to emit electrons in the second region of the enclosure,
– an evaporation member configured to evaporate the material from the sample so as to move the material thus evaporated successively in the first region and in the second region of the enclosure towards the substrate.
L’invention permet ainsi de réaliser une double activation de la matière évaporée, d’une part avec le plasma et d’autre part avec les électrons générés dans l’enceinte, permettant de déposer sur le substrat des couches nitrurées par évaporation.The invention thus makes it possible to carry out a double activation of the evaporated material, on the one hand with the plasma and on the other hand with the electrons generated in the enclosure, making it possible to deposit nitrided layers on the substrate by evaporation.
De manière générale, l’invention permet l’obtention de couches minces nitrurées à grand échelle, à moindre coût, à vitesse de dépôt élevée et de bonne qualité.Generally speaking, the invention makes it possible to obtain thin nitrided layers on a large scale, at lower cost, at a high deposition rate and of good quality.
L’invention permet notamment de réaliser un dépôt à basse température, notamment à une température inférieure à 300°C, avec un plasma généré à faible puissance, notamment une puissance inférieure à 100 W.The invention makes it possible in particular to carry out deposition at low temperature, in particular at a temperature lower than 300°C, with a plasma generated at low power, in particular a power lower than 100 W.
Ainsi, contrairement aux techniques d’épitaxie, de pulvérisation ou de laser pulsé, la faible puissance du plasma permet, entre autres, le dépôt de couches de nitrure d’indium pour former un matériau présentant les propriétés physico-chimiques et structurelles requises.Thus, unlike epitaxy, sputtering or pulsed laser techniques, the low power of plasma allows, among other things, the deposition of layers of indium nitride to form a material presenting the required physicochemical and structural properties.
Plus généralement, l’échantillon de matière utilisé peut comprendre un élément inorganique du tableau périodique, tel que l’aluminium, l’indium ou encore le titane, qui sont susceptibles d’acquérir des propriétés électriques et optiques suite à leur nitruration.More generally, the sample of material used may include an inorganic element from the periodic table, such as aluminum, indium or even titanium, which are likely to acquire electrical and optical properties following their nitriding.
De nombreuses applications peuvent être envisagées, incluant la fabrication de composants optoélectroniques ou d’électronique de puissance, notamment sous forme de couches de nitrure d’indium ou d’aluminium, la fabrication de matériaux à conductivité thermique forte ou faible, notamment sous forme de couches de nitrure d’aluminium, ou encore la fabrication de revêtements de surface, notamment sous forme de couches de nitrure de titane.Many applications can be envisaged, including the manufacture of optoelectronic or power electronic components, particularly in the form of layers of indium or aluminum nitride, the manufacture of materials with high or low thermal conductivity, particularly in the form of layers of aluminum nitride, or even the manufacture of surface coatings, in particular in the form of layers of titanium nitride.
Dans un mode de réalisation, le dispositif comprend un organe de génération d’un champ magnétique. Cet organe est de préférence configuré pour générer un champ magnétique dans ladite deuxième région de l’enceinte afin de modifier la trajectoire des électrons émis dans cette deuxième région.In one embodiment, the device comprises a member for generating a magnetic field. This member is preferably configured to generate a magnetic field in said second region of the enclosure in order to modify the trajectory of the electrons emitted in this second region.
Cet organe peut être un aimant ou un électroaimant.This organ can be a magnet or an electromagnet.
La présence d’un tel champ magnétique permet d’allonger la trajectoire des électrons émis dans l’enceinte, entraînant une augmentation du taux d’ionisation de l’azote et, par suite, du taux de nitruration de la matière évaporée.The presence of such a magnetic field makes it possible to lengthen the trajectory of the electrons emitted in the enclosure, leading to an increase in the rate of ionization of nitrogen and, consequently, in the rate of nitriding of the evaporated material.
Il en résulte une augmentation du taux de nitruration des couches déposées.This results in an increase in the nitriding rate of the deposited layers.
Dans un mode de réalisation, le dispositif comprend un organe de pompage configuré pour abaisser la pression de l’enceinte.In one embodiment, the device comprises a pumping member configured to lower the pressure of the enclosure.
L’organe de pompage permet de mettre l’enceinte sous vide.The pumping device allows the enclosure to be placed under vacuum.
Cet organe de pompage peut comprendre une pompe à vide du type cryogénique ou turbomoléculaire.This pumping member may include a vacuum pump of the cryogenic or turbomolecular type.
Dans un mode de réalisation, le dispositif comprend un organe configuré pour générer une différence de pression entre une première chambre de l’enceinte formant la première région et la deuxième région et une deuxième chambre recevant l’échantillon.In one embodiment, the device comprises a member configured to generate a pressure difference between a first chamber of the enclosure forming the first region and the second region and a second chamber receiving the sample.
Cet organe peut être un diaphragme du type cloison dotée d’une ouverture dimensionnée pour produire une telle différence de pression.This organ can be a partition type diaphragm with an opening sized to produce such a pressure difference.
Autrement dit, un pompage différentiel peut être mis en œuvre dans l’enceinte, afin par exemple de favoriser l’évaporation de la matière.In other words, differential pumping can be implemented in the enclosure, for example to promote the evaporation of the material.
Dans un mode de réalisation, l’organe d’émission d’électrons comprend un filament et un moyen pour chauffer le filament.In one embodiment, the electron emitting member comprises a filament and means for heating the filament.
Dans un mode de réalisation, l’organe de génération de plasma comprend un moyen d’injection dudit gaz dans l’enceinte et un mécanisme configuré pour créer une différence de potentiel électrique de manière à générer le plasma dans ladite première région de l’enceinte.In one embodiment, the plasma generating member comprises means for injecting said gas into the enclosure and a mechanism configured to create an electrical potential difference so as to generate the plasma in said first region of the enclosure .
L’invention a aussi pour objet un procédé de dépôt de matière sur un substrat à l’aide d’un dispositif tel que décrit ci-dessus.The invention also relates to a method of depositing material on a substrate using a device as described above.
Plus généralement, un procédé de l’invention comprend :
– une génération de plasma d’un gaz tel que l’azote dans une première région d’une enceinte,
– une émission d’électrons dans une deuxième région de l’enceinte,
– une évaporation de matière de manière à déplacer la matière ainsi évaporée en direction du substrat, successivement dans la première région dans laquelle est générée le plasma et dans la deuxième région dans laquelle sont émis les électrons.More generally, a method of the invention comprises:
– generation of plasma from a gas such as nitrogen in a first region of an enclosure,
– an emission of electrons in a second region of the enclosure,
– an evaporation of material so as to move the material thus evaporated towards the substrate, successively in the first region in which the plasma is generated and in the second region in which the electrons are emitted.
Dans un mode de mise en œuvre, le procédé comprend une génération d’un champ magnétique, à l’aide d’un aimant ou électroaimant, dans ladite deuxième région de l’enceinte de manière à modifier la trajectoire des électrons émis dans cette deuxième région.In one mode of implementation, the method comprises generating a magnetic field, using a magnet or electromagnet, in said second region of the enclosure so as to modify the trajectory of the electrons emitted in this second region.
Dans un mode de mise en œuvre, le procédé comprend un abaissement de la pression de l’enceinte à l’aide d’un organe de pompage.In one embodiment, the method includes lowering the pressure of the enclosure using a pumping member.
Il est préféré que la matière comprenne un élément inorganique du tableau périodique, tel que l’aluminium ou l’indium, ou un alliage comportant un tel élément inorganique.It is preferred that the material comprises an inorganic element from the periodic table, such as aluminum or indium, or an alloy comprising such an inorganic element.
D’autres avantages et caractéristiques de l’invention apparaîtront à la lecture de la description détaillée, non limitative, qui suit.Other advantages and characteristics of the invention will appear on reading the detailed, non-limiting description which follows.
La description détaillée qui suit fait référence à :The following detailed description refers to:
Il est représenté à la
Le dispositif 1 comprend un bâti 4 formant une enceinte 5 et comportant une structure 6 de support du substrat 3 ainsi qu’une cloison 7 prévue pour séparer l’enceinte 5 en deux chambres 5A et 5B.The device 1 comprises a frame 4 forming an enclosure 5 and comprising a structure 6 for supporting the substrate 3 as well as a partition 7 intended to separate the enclosure 5 into two chambers 5A and 5B.
Le dispositif 1 comprend par ailleurs un creuset 11, un organe 12 d’évaporation, un organe 13 de génération de plasma, un organe 14 d’émission d’électrons, un organe 15 de pompage ainsi qu’un aimant 16.Device 1 further comprises a crucible 11, an evaporation member 12, a plasma generation member 13, an electron emitting member 14, a pumping member 15 and a magnet 16.
La
Le substrat 3 et le creuset 11 sont éloignés l’un de l’autre le long de la direction D2, appelée « direction longitudinale ».Substrate 3 and crucible 11 are away from each other along direction D2, called “longitudinal direction”.
Plus précisément, le creuset 11 comprend une surface 21 de réception de l’échantillon 2 disposée en regard d’une surface 22 du substrat 3 destinée au dépôt de la matière, ces surfaces 21 et 22 étant éloignées l’une de l’autre selon D2 d’une distance X1.More precisely, the crucible 11 comprises a surface 21 for receiving the sample 2 arranged opposite a surface 22 of the substrate 3 intended for depositing the material, these surfaces 21 and 22 being spaced apart from each other according to D2 by distance X1.
A titre indicatif, la distance X1 est dans cet exemple égale à 400 mm.As an indication, the distance X1 is in this example equal to 400 mm.
L’enceinte 5 présente, longitudinalement entre la surface 21 du creuset 11 et la surface 22 du substrat 3, un espace prévu pour autoriser un déplacement de la matière de l’échantillon 2 évaporée depuis le creuset 11 jusqu’au substrat 3 selon une trajectoire ayant au moins une composante longitudinale, c’est-à-dire orientée le long de la direction D2 dans un sens allant du bas vers le haut de la
L’organe 12 est dans cet exemple un organe d’évaporation thermique, configuré pour chauffer l’échantillon 2 disposé sur la surface 21 du creuset 11 par effet Joule.The member 12 is in this example a thermal evaporation member, configured to heat the sample 2 placed on the surface 21 of the crucible 11 by the Joule effect.
Bien entendu, le creuset 12 est réalisé dans un matériau ayant une température de fusion supérieure à la température d’évaporation de l’échantillon 2. Dans cet exemple, le creuset 12 est en tungstène.Of course, crucible 12 is made of a material having a melting temperature higher than the evaporation temperature of sample 2. In this example, crucible 12 is made of tungsten.
Concernant la génération de plasma, l’organe 13 de la
L’organe 13 comprend d’autre part un mécanisme 32 configuré pour créer une différence de potentiel électrique afin de produire le plasma avec l’azote injecté dans l’enceinte 5 sous l’action de cette différence de potentiel. A la
De manière connue en soi, le mécanisme 32 peut comprendre un générateur de tension ou de radiofréquences permettant de créer ladite différence de potentiel entre une cathode, qui peut être formée par une partie de la tige de polarisation 32, et une anode.In a manner known per se, the mechanism 32 may comprise a voltage or radio frequency generator making it possible to create said potential difference between a cathode, which may be formed by a part of the polarization rod 32, and an anode.
A titre indicatif, la différence de potentiel peut être de l’ordre de 500 V et la puissance du plasma inférieure à 100 W.As an indication, the potential difference can be of the order of 500 V and the plasma power less than 100 W.
Concernant l’émission d’électrons, l’organe 14 comprend dans cet exemple un filament (non représenté) configuré pour être traversé par un courant électrique de sorte à chauffer le filament et émettre ainsi des électrons.Concerning the emission of electrons, the member 14 comprises in this example a filament (not shown) configured to be crossed by an electric current so as to heat the filament and thus emit electrons.
Dans l’exemple de la
Dans cet exemple, les régions 41 et 42 sont toutes deux constituées par des parties de l’espace formé par la chambre 5A et s’étendent longitudinalement entre le creuset 11 et le substrat 3.In this example, regions 41 and 42 are both constituted by parts of the space formed by chamber 5A and extend longitudinally between crucible 11 and substrate 3.
Concernant par ailleurs l’organe de pompage 15, celui-ci comprend dans le présent mode de réalisation une pompe à vide. Dans d’autres modes de réalisation, l’organe 15 peut comprendre un autre type de pompe, par exemple une pompe turbomoléculaire.Concerning also the pumping member 15, this comprises in the present embodiment a vacuum pump. In other embodiments, the organ 15 may comprise another type of pump, for example a turbomolecular pump.
L’organe de pompage 15 est configuré pour abaisser la pression de la chambre 5B.Pumping member 15 is configured to lower the pressure of chamber 5B.
Compte tenu de la géométrie de la cloison 7, l’organe de pompage 15 permet aussi d’abaisser la pression de la chambre 5A lors du dépôt (voir plus loin ci-dessous).Taking into account the geometry of partition 7, pumping member 15 also makes it possible to lower the pressure of chamber 5A during deposition (see further below).
Autrement dit, l’organe de pompage 15 est dans cet exemple non limitatif prévu pour abaisser la pression de l’ensemble du volume de l’enceinte 5.In other words, the pumping member 15 is in this non-limiting example designed to lower the pressure of the entire volume of enclosure 5.
Par ailleurs, la structure 6 supportant le substrat 3 est dans cet exemple montée mobile par rapport au bâti 4, en l’occurrence en rotation autour d’un axe parallèle à la direction D2. Le dispositif 1 comprend des moyens (non représentés) permettant de déplacer la structure 6 en rotation autour de cet axe, de manière à pouvoir déplacer le substrat 3 par rapport au bâti 4 lors du dépôt (voir plus loin ci-dessous).Furthermore, structure 6 supporting substrate 3 is in this example mounted movable relative to frame 4, in this case rotating around an axis parallel to direction D2. Device 1 comprises means (not shown) making it possible to move structure 6 in rotation around this axis, so as to be able to move substrate 3 relative to frame 4 during deposition (see further below).
La cloison 7 comprend une ouverture 51 autorisant un déplacement de matière évaporée de la chambre 5B vers la chambre 5A à travers cette ouverture 51. Dans cet exemple, l’ouverture 51 est dimensionnée de sorte que la pression soit sensiblement identique dans la chambre 5A et dans la chambre 5B.Partition 7 includes an opening 51 allowing evaporated material to move from chamber 5B to chamber 5A through this opening 51. In this example, opening 51 is dimensioned so that the pressure is substantially identical in chamber 5A and in room 5B.
Dans cet exemple, l’aimant 16 est un aimant permanent monté sur le bâti 4, à proximité de ladite deuxième région 42. En particulier, le dispositif 1 est agencé de sorte que le substrat 3 soit disposé longitudinalement entre l’aimant 16 et la deuxième région 42 de l’enceinte 5.In this example, the magnet 16 is a permanent magnet mounted on the frame 4, near said second region 42. In particular, the device 1 is arranged so that the substrate 3 is arranged longitudinally between the magnet 16 and the second region 42 of enclosure 5.
L’aimant 16 est plus spécifiquement configuré pour générer un champ magnétique dans la deuxième région 42 de l’enceinte 5.Magnet 16 is more specifically configured to generate a magnetic field in the second region 42 of enclosure 5.
Il va maintenant être décrit un exemple non limitatif de mise en œuvre de ce dispositif 1.A non-limiting example of the implementation of this device 1 will now be described.
Dans l’exemple ici décrit, l’échantillon 2 comprend de l’indium.In the example described here, sample 2 includes indium.
La pression de l’enceinte 5, initialement à pression atmosphérique, est abaissée à l’aide de l’organe de pompage 15.The pressure of enclosure 5, initially at atmospheric pressure, is lowered using pumping member 15.
Le plasma d’azote est généré dans la première région 41 de l’enceinte 5 à l’aide de l’organe 13.The nitrogen plasma is generated in the first region 41 of enclosure 5 using organ 13.
Un faisceau d’électrons est émis dans la deuxième région 42 de l’enceinte 5 à l’aide de l’organe 14.An electron beam is emitted in the second region 42 of enclosure 5 using organ 14.
La matière de l’échantillon 2 est chauffée à l’aide de l’organe 12 de manière à faire passer cette matière à l’état de vapeur.The material from sample 2 is heated using member 12 so as to cause this material to pass into the vapor state.
La matière évaporée 60 est ainsi déplacée en direction du substrat 3, selon une trajectoire comportant au moins une composante parallèle à la direction D2. Ce faisant, la matière évaporée 60 passe de la chambre 5B recevant le creuset 11 à la chambre 5A via l’ouverture 51 de la cloison 7, puis traverse successivement la première région 41 et la deuxième région 42.The evaporated material 60 is thus moved towards the substrate 3, along a trajectory comprising at least one component parallel to the direction D2. In doing so, the evaporated material 60 passes from chamber 5B receiving crucible 11 to chamber 5A via opening 51 of partition 7, then successively passes through the first region 41 and the second region 42.
Des particules de la matière évaporée de l’échantillon 2 sont ainsi éjectées en direction du substrat 3, en étant soumis à une double activation par le plasma d’azote d’une part et le faisceau d’électrons d’autre part.Particles of the evaporated material from sample 2 are thus ejected towards substrate 3, being subjected to double activation by the nitrogen plasma on the one hand and the electron beam on the other hand.
Cette double activation entraîne une augmentation du taux de nitruration de la matière avant dépôt sur le substrat 3.This double activation leads to an increase in the nitriding rate of the material before deposition on substrate 3.
Le champ magnétique généré dans la deuxième région 42 augmente la longueur de la trajectoire des électrons, ce qui augmente le taux d’ionisation de l’azote et par suite le taux de nitruration de la matière déposée.The magnetic field generated in the second region 42 increases the length of the electron trajectory, which increases the rate of ionization of nitrogen and consequently the rate of nitriding of the deposited material.
En arrivant au niveau du substrat 3, les particules de matière ainsi activées se condensent de manière à former des couches minces adhérant au substrat 3.Upon arriving at substrate 3, the particles of material thus activated condense so as to form thin layers adhering to substrate 3.
Lors du dépôt, la structure 6 supportant le substrat 3 est entraînée en rotation afin d’améliorer l’homogénéité des couches déposées.During deposition, structure 6 supporting substrate 3 is rotated in order to improve the homogeneity of the deposited layers.
L’invention permet ainsi de former des couches minces riches en azote, avec une vitesse de dépôt élevée, typiquement de l’ordre de quelques nm/s, une faible température de dépôt, une faible puissance de génération de plasma et un coût de production réduit.The invention thus makes it possible to form thin layers rich in nitrogen, with a high deposition speed, typically of the order of a few nm/s, a low deposition temperature, a low plasma generation power and a production cost. reduced.
Bien entendu, de nombreuses variantes peuvent être apportées au dispositif 1 et au procédé de dépôt qui viennent d’être décrits, notamment en modifiant les moyens permettant de remplir les fonctions décrites ci-dessus et/ou l’agencement de ces différents moyens, pourvu qu’ils permettent de réaliser une double activation de matière évaporée avant dépôt sur un substrat.Of course, numerous variations can be made to device 1 and to the deposition process which have just been described, in particular by modifying the means making it possible to fulfill the functions described above and/or the arrangement of these different means, provided that they make it possible to carry out a double activation of evaporated material before deposition on a substrate.
Ainsi, dans un mode de réalisation alternatif, l’organe d’évaporation 12 comprend un moyen différent d’un moyen de chauffage par effet Joule, par exemple un moyen de chauffage par induction, ou un moyen configuré pour réaliser l’évaporation de matière à l’aide d’une autre technique, par exemple par bombardement électronique.Thus, in an alternative embodiment, the evaporation member 12 comprises a means other than a Joule effect heating means, for example an induction heating means, or a means configured to carry out the evaporation of material using another technique, for example by electronic bombardment.
Pour autre exemple, le dispositif 1 peut être dépourvu de l’aimant permanent 16 illustré sur la
Dans un mode de réalisation, non représenté, le dispositif 1 se distingue de celui de la
Dans un autre mode de réalisation, l’ouverture 51 de la cloison 7 est dimensionnée de sorte à générer un différentiel de pression entre les chambres 5A et 5B sous l’action du pompage, afin de favoriser l’évaporation d’un élément tel que l’aluminium, par exemple.In another embodiment, opening 51 of partition 7 is dimensioned so as to generate a pressure differential between chambers 5A and 5B under the action of pumping, in order to promote the evaporation of an element such as aluminum, for example.
L’invention peut aussi mettre en œuvre des moyens supplémentaires, non décrits ci-dessus. Par exemple, le dispositif 1 peut comprendre une balance à quartz disposée à proximité du substrat 3 afin de contrôler l’épaisseur des couches déposées.The invention can also implement additional means, not described above. For example, device 1 may include a quartz balance placed near substrate 3 in order to control the thickness of the layers deposited.
Par ailleurs, l’invention peut être mise en œuvre pour réaliser des couches à partir d’une matière comprenant des éléments autres que l’indium. En particulier, l’échantillon 2 peut comprendre un élément inorganique du tableau périodique, par exemple un élément métallique tel que l’aluminium ou le titane, ou encore un alliage comportant un tel élément inorganique.Furthermore, the invention can be implemented to produce layers from a material comprising elements other than indium. In particular, sample 2 may comprise an inorganic element from the periodic table, for example a metallic element such as aluminum or titanium, or an alloy comprising such an inorganic element.
Claims (5)
– une génération de plasma d’un gaz tel que l’azote dans une première région (41) d’une enceinte (5),
– une émission d’électrons dans une deuxième région (42) de l’enceinte (5),
– une évaporation de matière de manière à déplacer la matière ainsi évaporée en direction du substrat (3), successivement dans la première région (41) dans laquelle est générée le plasma et dans la deuxième région (42) dans laquelle sont émis les électrons de manière à augmenter le taux de nitruration de la matière avant dépôt sur le substrat (3). Process for depositing material on a substrate (3) comprising:
– generation of plasma from a gas such as nitrogen in a first region (41) of an enclosure (5),
– an emission of electrons in a second region (42) of the enclosure (5),
– an evaporation of material so as to move the material thus evaporated towards the substrate (3), successively in the first region (41) in which the plasma is generated and in the second region (42) in which the electrons of so as to increase the nitriding rate of the material before deposition on the substrate (3).
A method according to any one of claims 1 to 4, wherein the material comprises an inorganic element of the periodic table, such as aluminum or indium, or an alloy comprising such an inorganic element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2209783 | 2022-09-27 | ||
FR2209783A FR3140097A1 (en) | 2022-09-27 | 2022-09-27 | Deposition of layers of material by evaporation and double activation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024068143A1 true WO2024068143A1 (en) | 2024-04-04 |
Family
ID=85018301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/073109 WO2024068143A1 (en) | 2022-09-27 | 2023-08-23 | Deposition of material layers by evaporation and dual activation |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3140097A1 (en) |
WO (1) | WO2024068143A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59142840A (en) * | 1983-02-04 | 1984-08-16 | Konishiroku Photo Ind Co Ltd | Vapor deposition device |
US4480010A (en) * | 1982-06-18 | 1984-10-30 | Citizen Watch Co., Ltd. | Method and coating materials by ion plating |
JPS6179767A (en) * | 1984-09-28 | 1986-04-23 | Asahi Glass Co Ltd | How to form a film |
US4714625A (en) * | 1985-08-12 | 1987-12-22 | Chopra Kasturi L | Deposition of films of cubic boron nitride and nitrides of other group III elements |
US4854265A (en) * | 1986-06-18 | 1989-08-08 | Ricoh Company, Ltd. | Thin film forming apparatus |
DE19841012C1 (en) * | 1998-09-08 | 2000-01-13 | Fraunhofer Ges Forschung | Apparatus for plasma-activated vapor coating of substrates in vacuum |
US20160181066A1 (en) * | 2011-09-29 | 2016-06-23 | Nitride Solutions, Inc. | Laminated materials, methods and apparatus for making same, and uses thereof |
-
2022
- 2022-09-27 FR FR2209783A patent/FR3140097A1/en active Pending
-
2023
- 2023-08-23 WO PCT/EP2023/073109 patent/WO2024068143A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480010A (en) * | 1982-06-18 | 1984-10-30 | Citizen Watch Co., Ltd. | Method and coating materials by ion plating |
JPS59142840A (en) * | 1983-02-04 | 1984-08-16 | Konishiroku Photo Ind Co Ltd | Vapor deposition device |
JPS6179767A (en) * | 1984-09-28 | 1986-04-23 | Asahi Glass Co Ltd | How to form a film |
US4714625A (en) * | 1985-08-12 | 1987-12-22 | Chopra Kasturi L | Deposition of films of cubic boron nitride and nitrides of other group III elements |
US4854265A (en) * | 1986-06-18 | 1989-08-08 | Ricoh Company, Ltd. | Thin film forming apparatus |
DE19841012C1 (en) * | 1998-09-08 | 2000-01-13 | Fraunhofer Ges Forschung | Apparatus for plasma-activated vapor coating of substrates in vacuum |
US20160181066A1 (en) * | 2011-09-29 | 2016-06-23 | Nitride Solutions, Inc. | Laminated materials, methods and apparatus for making same, and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
FR3140097A1 (en) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0038294B1 (en) | Method of depositing a hard coating of a metal, deposition target for such a method and piece of jewellery comprising such a coating | |
EP0239432B1 (en) | Method and device for the thermo-ionic treatment of a material in order to change its physiochemical properties | |
EP3323023B1 (en) | Gas cell for an atomic sensor and method for filling a gas cell | |
FR2500852A1 (en) | ||
EP0200651A1 (en) | Triode-type ion source with a single high frequency ionization chamber and with multiple magnetic confinement | |
FR2501725A1 (en) | PROCESS AND DEVICE FOR EVAPORATING A VACUUM MATERIAL | |
FR2872826A1 (en) | LOW-TEMPERATURE GROWTH OF CARBON NANOTUBES ORIENTED | |
FR2578270A1 (en) | PROCESS FOR REACTIVE VAPORIZATION OF OXIDE, NITRIDE, OXYNITRIDE AND CARBIDE LAYERS. | |
FR2691834A1 (en) | Method for producing and initiating a low voltage discharge, vacuum treatment plant and cathode chamber therefor, and uses of the method. | |
FR2533944A1 (en) | METHOD FOR MANUFACTURING ARTICLES BY VAPOR DEPOSITION OF A MATERIAL WITH MULTIPLE CONSTITUENTS | |
FR2701797A1 (en) | Microwave power transfer coupler to plasma ply and linear microwave source for plasma surface treatment. | |
WO2024068143A1 (en) | Deposition of material layers by evaporation and dual activation | |
EP0780486B1 (en) | Process and apparatus for coating a substrate | |
EP4508949A1 (en) | Method and system for accelerating electrons using laser-plasma interaction | |
WO2017089699A1 (en) | Method for ionising argon | |
FR3105036A1 (en) | IN SITU treatment of powders for additive manufacturing | |
BE1026449B1 (en) | Method and device for diamond synthesis by CVD | |
FR2777113A1 (en) | "ELECTRON TORCH" TYPE ELECTRON CANON | |
CH627791A5 (en) | Process for covering the surface of an electrically conductive article, plant for making use of the process and application of the process | |
WO2023232640A1 (en) | Electron beam device for surface treatment | |
EP1186683B1 (en) | Process of surface hardening of a substrate | |
FR2607830A1 (en) | Process and device for deposition using vaporisation inside a tube | |
EP3574719A1 (en) | System for generating a plasma jet of metal ions | |
EP0788139A1 (en) | Cathodic spulter coating method and device using a target heated at high temperature | |
WO2023062227A1 (en) | Method of manufacturing a pump element comprising the production of a getter material deposit by ion beam sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23757959 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |