[go: up one dir, main page]

WO2024053534A1 - 二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法 - Google Patents

二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法 Download PDF

Info

Publication number
WO2024053534A1
WO2024053534A1 PCT/JP2023/031680 JP2023031680W WO2024053534A1 WO 2024053534 A1 WO2024053534 A1 WO 2024053534A1 JP 2023031680 W JP2023031680 W JP 2023031680W WO 2024053534 A1 WO2024053534 A1 WO 2024053534A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
fresh concrete
calcium carbonate
sludge water
exhaust gas
Prior art date
Application number
PCT/JP2023/031680
Other languages
English (en)
French (fr)
Inventor
亮丞 田渕
貴 上河内
謙介 金井
和弘 狩野
規行 小堺
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN202380061262.6A priority Critical patent/CN119790023A/zh
Priority to AU2023337730A priority patent/AU2023337730A1/en
Publication of WO2024053534A1 publication Critical patent/WO2024053534A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor

Definitions

  • the present disclosure relates to a carbon dioxide utilization system, a calcium carbonate manufacturing device, and a manufacturing method.
  • Patent Document 1 describes a method of recovering sludge water by blowing carbon dioxide into the sludge water and reacting it with hydration products in the sludge water to generate calcium carbonate. Proposed.
  • carbon dioxide it is possible to use industrial carbon dioxide, air, or exhaust gas containing carbon dioxide generated during the firing of cement clinker, which is preferable in terms of suppressing the release of carbon dioxide into the atmosphere and effectively utilizing it. This is disclosed.
  • Patent Document 2 describes a method for manufacturing carbonates using carbon dioxide gas contained in exhaust gas as a raw material, in which an alkaline aqueous solution such as a caustic soda aqueous solution is used as a mist, and the carbon dioxide gas in the exhaust gas is absorbed into the mist to produce carbonate.
  • a method is disclosed in which a mist containing carbonate (sodium carbonate) produced by reaction with carbon dioxide gas is produced and the mist is separated from exhaust gas.
  • a method for producing calcium carbonate by reacting sodium carbonate and calcium hydroxide is also disclosed. As described above, various studies are currently underway regarding methods for recovering carbon dioxide (carbon dioxide) contained in exhaust gas, for example.
  • JP2020-163821A International Publication No. 2022-014554 pamphlet
  • the present invention was made in view of these circumstances, and uses carbon dioxide contained in exhaust gas to reduce the amount of ready-mixed concrete sludge that is normally disposed of as waste, and to reduce the amount of calcium carbonate.
  • the purpose of the present invention is to provide a carbon dioxide utilization system that enables efficient reuse, as well as an apparatus and method for producing calcium carbonate.
  • the present invention provides the following carbon dioxide utilization system. 1. a flue through which exhaust gases containing carbon dioxide pass; a spray nozzle that supplies fresh concrete sludge water to the flue; and a dust collector that collects a reactant containing calcium carbonate produced by the reaction between the carbon dioxide and the fresh concrete sludge water contained in the exhaust gas. , A carbon dioxide utilization system equipped with
  • the present invention provides the following carbon dioxide utilization system as a preferred embodiment. 2. The carbon dioxide utilization system according to 1 above, wherein the temperature of the exhaust gas is 50°C or more and 250°C or less. 3. 3. The carbon dioxide utilization system according to 1 or 2 above, wherein the dust collector is a bag filter. 4. 4. The carbon dioxide utilization system according to any one of 1 to 3 above, wherein the supply amount of the fresh concrete sludge water per m 3 /h of exhaust gas is 5 kg/h or more and 600 kg/h or less. 5. 5. The carbon dioxide utilization system according to any one of 1 to 4 above, wherein the fresh concrete sludge water is obtained by removing solid content from fresh concrete sludge. 6. 5. The carbon dioxide utilization system according to 5 above, wherein a mixture of the solid content and water from which the solid content has been removed is used as fresh concrete sludge water.
  • the present invention provides the following calcium carbonate production apparatus. 7. a flue through which exhaust gases containing carbon dioxide pass; a spray nozzle that supplies fresh concrete sludge water to the flue; and a dust collector that collects a reactant containing calcium carbonate produced by the reaction between the carbon dioxide contained in the exhaust gas and the fresh concrete sludge water.
  • a calcium carbonate production device comprising:
  • the present invention provides the following method for producing calcium carbonate. 8. exhaust gas containing carbon dioxide passing through the flue; contacting the flue with fresh concrete sludge water supplied by a spray nozzle, collecting a reactant containing calcium carbonate produced by the reaction between the carbon dioxide contained in the exhaust gas and the fresh concrete sludge water using a dust collector; Method for producing calcium carbonate.
  • this embodiment an embodiment of the present invention (hereinafter sometimes referred to as “this embodiment”) will be described.
  • the present invention is not limited to the following embodiments, and can be implemented with arbitrary changes within a range that does not impede the effects of the invention.
  • the numerical range notation "AA to BB” in this specification means “more than or equal to AA and less than or equal to BB.”
  • numerical values related to "more than”, “less than”, and “ ⁇ ” in the description of numerical ranges are numerical values that can be combined arbitrarily. For example, when a certain numerical range is described as “CC to DD” and “EE to FF", the numerical ranges such as “CC to FF" and “EE to DD" are also included.
  • the carbon dioxide utilization system of this embodiment is a flue through which exhaust gases containing carbon dioxide pass; a spray nozzle that supplies fresh concrete sludge water to the flue; and a dust collector that collects a reactant containing calcium carbonate produced by the reaction between the carbon dioxide contained in the exhaust gas and the fresh concrete sludge water.
  • the idea is to have the following.
  • Patent Document 1 focuses on removing hydration products from sludge water and reusing the sludge water as concrete mixing water, and focuses on producing calcium carbonate. It's not a thing. Therefore, in order to reuse calcium carbonate, it is necessary to dry it separately, and when focusing on using calcium carbonate, it cannot be said that it is an efficient method.
  • Patent Documents 1 and 2 describe the use of carbon dioxide (carbon dioxide) contained in exhaust gas, the methods described in these patent documents do not utilize carbon dioxide (carbon dioxide). ), it is difficult to reduce the amount of ready-mixed concrete sludge that is normally disposed of as waste, and to efficiently reuse calcium carbonate.
  • a reaction between carbon dioxide and fresh concrete sludge water occurs by supplying fresh concrete sludge water into exhaust gas containing carbon dioxide and bringing it into contact. This makes it possible to utilize carbon dioxide contained in exhaust gas while reducing the amount of ready-mixed concrete sludge that is normally disposed of as waste.
  • fresh concrete sludge water is sprayed and supplied into the exhaust gas through a spray nozzle.
  • This makes it easier for the fresh concrete sludge water to come into contact with carbon dioxide in the exhaust gas, making it possible to efficiently incorporate carbon dioxide into the fresh concrete sludge water.
  • This facilitates the reaction between carbon dioxide and carbon dioxide, promoting the production of reactants including calcium carbonate.
  • the water contained in the fresh concrete sludge water becomes water vapor due to the heat of the exhaust gas, and is released into the atmosphere as it is. Calcium carbonate is recovered in a dust collector in a dry state due to the heat of the exhaust gas, so the carbon dioxide It becomes possible to efficiently produce calcium and efficiently reuse it.
  • the carbon dioxide utilization system of this embodiment utilizes carbon dioxide contained in exhaust gas, reduces the amount of raw concrete sludge that is normally disposed of as waste, and efficiently reuses calcium carbonate. This will make it possible.
  • FIG. 1 shows a preferred example of the carbon dioxide utilization system of this embodiment.
  • the carbon dioxide utilization system of this embodiment includes a flue through which exhaust gas passes, a spray nozzle that supplies fresh concrete sludge water to the flue, and a dust collector that collects reactants including calcium carbonate. It has been shown to be prepared.
  • the system shown in FIG. 1 is also shown to include a sludge water storage tank for storing fresh concrete sludge water, and an induced blower and a chimney for exhausting the exhaust gas from which the reactants have been collected by the dust collector to the atmosphere. There is.
  • the carbon dioxide utilization system of this embodiment includes a flue through which exhaust gas containing carbon dioxide passes.
  • Flues usually carry exhaust gases emitted from power plants, cement factories, precast concrete (PCa) product factories, asphalt factories, steel plants, incinerators, other factory equipment, and boilers installed in these various types of equipment up to chimneys. It refers to piping and ducts that lead to.
  • the flue is not particularly limited as long as it can pass exhaust gas containing carbon dioxide, and may be a newly installed flue.
  • the system of this embodiment uses fresh concrete sludge water, it is preferable to use an existing flue installed to exhaust exhaust gas at a precast concrete (PCa) product factory as the flue. Therefore, the system of this embodiment is preferably installed in a precast concrete (PCa) product factory.
  • Exhaust gas containing carbon dioxide is typically exhaust gas (also referred to as "combustion exhaust gas") discharged from various factory equipment as described above.
  • concentration of carbon dioxide contained in these exhaust gases is usually 8 to 15% by volume in the case of combustion exhaust gas from a power plant, and 8 to 15% by volume in the case of combustion exhaust gas from a precast concrete (PCa) product factory, asphalt factory, or incinerator.
  • PCa precast concrete
  • any combustion exhaust gas can be used.
  • combustion exhaust gas discharged during the firing process in a precast concrete (PCa) product factory is preferable.
  • the temperature at the point where fresh concrete sludge water is supplied should be 50°C or higher and 250°C or lower. good.
  • the temperature is more preferably 100°C or higher, still more preferably 110°C or higher, and the upper limit is preferably 250°C or lower.
  • the temperature condition of the exhaust gas mentioned above is based on the spray provided at the point where the concrete sludge water and the exhaust gas first come into contact, that is, the spray provided most upstream in the flow direction of the exhaust gas in the flue. This is the temperature at the nozzle.
  • a spray nozzle is attached to the flue as shown in FIG. 1, and carbon dioxide contained in the exhaust gas passing through the flue comes into contact with fresh concrete sludge water sprayed from the spray nozzle. As a result, a reactant containing calcium carbonate is generated. Then, the generated reaction product containing calcium carbonate passes through the flue together with the exhaust gas, and is collected in a dry state by a dust collector.
  • Fresh concrete sludge usually contains water, calcium content such as calcium hydroxide dissolved in water, and solid content of sludge (mainly including hydration products, fine aggregate particles, etc.). Then, the solid content is removed from the fresh concrete sludge, and the water is divided into supernatant water containing calcium hydroxide, etc., and sludge water containing the solid content of the sludge (mainly containing hydration products, fine aggregate particles, etc.). There is. In this case, both supernatant water and sludge water can be used as fresh concrete sludge water.
  • the fresh concrete sludge water used in the system of this embodiment is the above-mentioned supernatant water or sludge water
  • consideration is given to suppressing clogging of the spray nozzle and ensuring stable system operation over a longer period of time.
  • the solid content concentration in the fresh concrete sludge water is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, even more preferably 1% by mass or less.
  • the fresh concrete sludge water used in the system of this embodiment contains, as a solid content, calcium content such as calcium hydroxide and calcium carbonate, and as mentioned above, the solid content of the sludge (mainly hydration product). (including materials, fine aggregate particles, etc.).
  • these solids contained in the fresh concrete sludge water, as well as calcium carbonate rapidly generated by spraying the fresh concrete sludge water into the exhaust gas exist as minute particles. acts as a nucleus for crystal growth, promoting the production of calcium carbonate.
  • the solid content contained in the fresh concrete sludge water should be reduced as described above in order to suppress clogging of the spray nozzle and to operate the system stably over a long period of time.
  • the solid content concentration in the fresh concrete sludge water is preferably 0.001% by mass or more, more preferably 0.0015% by mass or more, More preferably, it is 0.002% by mass or more.
  • the particle size of the solid content in the fresh concrete sludge water is preferably 1000 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 10 ⁇ m or less, even more preferably 1 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less. It is 1 ⁇ m or less.
  • the concentration of calcium contained in the fresh concrete sludge water is usually 100 mg/L or more, preferably 250 mg/L or more, and more. Preferably it is 500 mg/L or more, more preferably 800 mg/L or more. The higher the upper limit is, the more preferable it is, and although there is no particular limit, it is usually 1500 mg/L or less. Further, when the fresh concrete sludge water is the above-mentioned sludge water, the concentration of calcium contained in the fresh concrete sludge water is usually 1000 mg/L or more, preferably 5000 mg/L or more, and more preferably 10000 mg/L or more. and more preferably 30,000 mg/L or more. The higher the upper limit is, the more preferable it is, and there is no particular limit, but it is usually 150,000 mg/L or less.
  • the fresh concrete sludge water it is also possible to use water obtained by removing the solid content from a mixture of the solid content obtained from the fresh concrete sludge and water.
  • the solid content contains calcium such as calcium hydroxide, and the hydration products mainly contained in the solid content contain calcium such as calcium hydroxide and calcium silicate hydrate. Therefore, even the mixture obtained by removing the solid content from the above-mentioned mixture contains calcium content dissolved into water from the solid content, making it possible to convert more calcium content into calcium carbonate from the fresh concrete sludge.
  • the spray nozzle is used to supply fresh concrete sludge water to the flue.
  • Fresh concrete sludge water is supplied to the flue while being sprayed by a spray nozzle, that is, it is supplied to the flue in the form of particles. Therefore, as mentioned above, the fresh concrete sludge water and carbon dioxide in the exhaust gas come into contact easily, and carbon dioxide can be efficiently incorporated into the fresh concrete sludge water, resulting in a reaction between calcium and carbon dioxide. Calcium carbonate is easily produced. Furthermore, since water is efficiently evaporated, calcium carbonate can be obtained in a dry state without a drying step.
  • the spray nozzle is not particularly limited as long as it can spray fresh concrete sludge water, and commercially available spray nozzles can be used.
  • a multi-fluid nozzle such as a one-fluid nozzle that sprays only fresh concrete sludge water or a two-fluid nozzle that sprays fresh concrete sludge water together with a gas such as air as necessary can be used.
  • a nozzle also referred to as an "ultrasonic spray nozzle” having a mechanism for making spray particles finer by generating ultrasonic waves may be used.
  • the spray pattern of the spray nozzle can be adopted without particular limitation, and representative examples include full cone, hollow cone, flat (fan-shaped), solid (straight line), and the like.
  • the spray angle of the spray nozzle can be adopted without any particular restriction, and is preferably 60° or more, more preferably 90° or more, and the upper limit is preferably 145° or less, more preferably 140° or less.
  • the spray nozzle has a spray angle that It is preferable to use a spray nozzle with a large hollow cone or flat spray pattern.
  • the diameter of the aperture for spraying fresh concrete sludge water in the spray nozzle can vary depending on the number of spray ports the spray nozzle has, the amount of fresh concrete sludge water supplied, etc., so it cannot be determined unconditionally, but it is possible to achieve a better spray condition. From the viewpoint of ensuring that is 3.0 mm or less.
  • the number of spray nozzles installed can vary depending on the size of the spray nozzle, the diameter and number of spray ports the spray nozzle has, the amount of fresh concrete sludge water supplied, etc., so it cannot be generalized. However, it may be 1 or more, and the upper limit is usually 10 or less, preferably 8 or less, and more preferably 5 or less.
  • the spray nozzle is not particularly limited in its installation location as long as it can supply fresh concrete sludge water to the flue, but as shown in FIG. 1, it is preferably installed directly in the flue.
  • the spray nozzle should be installed on the semicircumference of the upper half of the circle (within ⁇ 90° when the highest point is 0°). It is preferably within ⁇ 60°, still more preferably within ⁇ 30°, even more preferably within ⁇ 15°, and particularly preferably at the highest point.
  • the flue is a square duct, the same applies to the case where the flue is a circular pipe (or duct).
  • the plurality of spray nozzles may be provided on a circle with the same cross section, or may be provided one after another in the direction in which the exhaust gas flows, for example at the top point. .
  • the particle diameter of the sprayed particles is preferably 200 ⁇ m or less, more preferably 120 ⁇ m or less, still more preferably 80 ⁇ m or less, even more preferably 50 ⁇ m or less.
  • the amount of fresh concrete sludge water supplied to the flue cannot be determined unconditionally because it varies depending on the flow rate of the exhaust gas passing through the flue, the size of the flue, etc., but it is the amount supplied per 1 m 3 /h of exhaust gas. It is preferable that the speed is 5 kg/h or more and 600 kg/h or less. From the viewpoint of more efficiently promoting the production of a reactant containing calcium carbonate, the amount is preferably 10 kg/h or more, more preferably 20 kg/h or more, even more preferably 100 kg/h or more, and the upper limit is 500 kg/h or less. It would be good if it were. Note that, when a plurality of spray nozzles are provided, the above-mentioned supply amount is the supply amount supplied from all the spray nozzles.
  • the fresh concrete sludge water is once stored in a tank and then supplied to the flue through a spray nozzle. That is, the system of this embodiment preferably includes a sludge water storage tank that stores fresh concrete sludge water.
  • Temporarily storing fresh concrete sludge water in a sludge water storage tank not only makes it easier to respond to fluctuations in the required amount, but also makes it easier to spray a fixed amount from the spray nozzle, reducing exhaust gas in the flue.
  • the production of calcium carbonate through the reaction between carbon dioxide and calcium content becomes stable, and as a result, efficient reuse of calcium carbonate becomes possible.
  • fresh concrete sludge water can be stored until the next time the system is started, allowing the system to start operating more quickly.
  • the sludge water storage tank can be adopted without any particular restriction as long as it can store sludge water, and may be installed either above ground or underground, such as above ground storage tank or underground storage tank, fixed roof type,
  • the storage tank may be selected from various types of roof storage tanks called floating roof storage tanks, horizontal cylindrical storage tanks, vertical cylindrical storage tanks, vertical storage tanks, and the like. Further, the sludge water storage tank may be newly installed or an existing tank may be used.
  • the sludge water storage tank is equipped with an agitator.
  • the stirrer By providing the stirrer, since the fresh concrete sludge water may contain solid content, solidification of the solid content can be suppressed.
  • the sludge water storage tank may be equipped with various instruments such as a level meter and a control valve for adjusting the amount of fresh concrete sludge water supplied to the sludge water storage tank using the level meter.
  • the carbon dioxide utilization system of this embodiment preferably includes a chimney.
  • a chimney By providing a chimney, exhaust gas is discharged more quickly due to the chimney effect, and even if an induced blower is provided, it is possible to reduce the power applied to the induced blower.
  • any structure that can exhaust exhaust gas to the atmosphere can be used without any particular restrictions.
  • a single chimney, a double chimney such as an insulated double chimney, a hollow double chimney, etc. can be used. can.
  • a double chimney when installed outdoors, it is preferable to adopt a double chimney from the viewpoint of suppressing a decrease in the temperature of exhaust gas and enabling more stable exhaust gas.
  • the carbon dioxide utilization system of this embodiment includes a dust collector that collects a reactant containing calcium carbonate generated in the flue. As described above, the exhaust gas passes through the dust collector together with the calcium carbonate generated in the flue, so that the accompanying calcium carbonate is recovered, and the recovered calcium carbonate is reused. Furthermore, the exhaust gas after calcium carbonate is recovered is released into the atmosphere.
  • dust collector As the dust collector, various types of dust collectors such as dry type electrostatic precipitator, wet type electrostatic precipitator, etc., and filtration dust collector (bag filter) can be used. In the system of this embodiment, a filtration and dust collector (bag filter) is preferable in consideration of reducing electricity consumption and ease of handling.
  • Filters used in filtration and dust collectors can be used without any particular restrictions, and include polypropylene, nylon, acrylic, polyester, cotton, wool, heat-resistant nylon, glass fiber, and PTFE (polytetrafluoroethylene). Examples include filters made of materials such as, and filters with functions such as electrostatic filters can also be used.
  • the bag filter may have a blowing off means, for example, preferably means using a pulsating back pressure method or a pulse jet method, and among them, means using a pulse jet method is preferable.
  • Reactant containing calcium carbonate In the carbon dioxide utilization system of this embodiment, a reactant containing calcium carbonate is collected in a dust collector.
  • Reactants containing calcium carbonate mainly include calcium carbonate produced by the reaction between carbon dioxide contained in exhaust gas and calcium contained in fresh concrete sludge water.
  • the concentration of calcium carbonate contained in the reaction product containing calcium carbonate is usually 90% by mass or more, further 92% by mass or more, and 95% by mass or more. In this way, the reaction product containing calcium carbonate obtained by the system of this embodiment has an extremely high concentration of calcium carbonate.
  • the reactant containing calcium carbonate recovered by the system of this embodiment can be suitably used for cement compositions, fillers used in mortar, concrete, asphalt, etc., and building materials.
  • the calcium carbonate produced in the carbon dioxide utilization system of this embodiment can be used alone or mixed with other fillers such as calcium carbonate. Furthermore, when used for the above purpose, by receiving mass balance certification for calcium carbonate, it becomes possible to contribute to carbon neutrality according to the amount of calcium carbonate obtained by the carbon dioxide utilization system of this embodiment.
  • the reactant containing calcium carbonate may also contain impurities caused by these.
  • the content of impurities contained in the reaction product containing calcium carbonate is usually about 10% by mass or less, furthermore, 8% by mass or less, 5% by mass or less, 3% by mass or less, and 1% by mass or less. Since the content of impurities is thus small, there is no problem in using it in the above applications.
  • the system of this embodiment may include an induced draft fan in the line downstream of the exhaust port of the bag filter in order to forcibly exhaust the gas exhausted from the exhaust port. good.
  • an induced draft fan By exhausting the gas using an induced draft fan, etc., filtration in the bag filter progresses smoothly, and a stable fluidized bed of media particles in the fluidized dryer is obtained, so reactants including calcium carbonate can be recovered in a shorter time. can do.
  • the calcium carbonate manufacturing apparatus of this embodiment includes: a flue through which exhaust gases containing carbon dioxide pass; a spray nozzle that supplies fresh concrete sludge water to the flue; and a dust collector that collects a reactant containing calcium carbonate produced by the reaction between the carbon dioxide contained in the exhaust gas and the fresh concrete sludge water.
  • This is a calcium carbonate production device equipped with the following.
  • the ready-mixed concrete which is normally discarded as waste, can be used while utilizing the carbon dioxide contained in the exhaust gas.
  • the amount of sludge waste can be reduced.
  • by spraying and supplying concrete sludge water into the exhaust gas through a spray nozzle it becomes easier for fresh concrete sludge water to come into contact with carbon dioxide, and carbon dioxide is efficiently added to the fresh concrete sludge water. This makes it easier for calcium components such as calcium hydroxide to react with carbon dioxide.
  • the water contained in the fresh concrete sludge water is removed as water vapor by the heat of the exhaust gas, and calcium carbonate is obtained as a powder, which can be easily recovered with a dust collector. Therefore, calcium carbonate can be efficiently produced and efficiently reused.
  • the exhaust gas containing carbon dioxide, the flue, the fresh concrete sludge water, the spray nozzle, the reactant containing calcium carbonate produced by the reaction between carbon dioxide and the fresh concrete sludge water, and the dust collector are the above-mentioned carbon dioxide utilization system. This is the same as explained in .
  • the calcium carbonate obtained by the calcium carbonate production apparatus of this embodiment can be suitably used for cement compositions, fillers used in mortar, concrete, asphalt, etc., and building materials.
  • the calcium carbonate obtained by the carbon dioxide utilization system of this embodiment can be suitably used for cement compositions, fillers used in mortar, concrete, asphalt, etc., and building materials.
  • the method for producing calcium carbonate of this embodiment is as follows: exhaust gas containing carbon dioxide passing through the flue; contacting the flue with fresh concrete sludge water supplied by a spray nozzle, collecting a reactant containing calcium carbonate produced by the reaction between the carbon dioxide contained in the exhaust gas and the fresh concrete sludge water using a dust collector; This is a method for producing calcium carbonate.
  • the carbon dioxide contained in the exhaust gas can be used, and the ready-mixed concrete, which is normally discarded as waste, can be used.
  • the amount of sludge waste can be reduced.
  • by spraying and supplying concrete sludge water into the exhaust gas through a spray nozzle it becomes easier for fresh concrete sludge water to come into contact with carbon dioxide, and carbon dioxide is efficiently added to the fresh concrete sludge water. This makes it easier for calcium components such as calcium hydroxide to react with carbon dioxide.
  • the water contained in the fresh concrete sludge water is removed as water vapor by the heat of the exhaust gas, and calcium carbonate is obtained as a powder, which can be easily recovered with a dust collector. Therefore, calcium carbonate can be efficiently produced and efficiently reused.
  • the exhaust gas containing carbon dioxide, the flue, the fresh concrete sludge water, the spray nozzle, the reactant containing calcium carbonate produced by the reaction between carbon dioxide and the fresh concrete sludge water, and the dust collector are the above-mentioned carbon dioxide utilization system. This is the same as explained in . Further, various conditions such as the amount of fresh concrete sludge water supplied and the temperature of exhaust gas are also the same as those explained in the above carbon dioxide utilization system.
  • the calcium carbonate obtained by the method for producing calcium carbonate of the present embodiment can be suitably used in cement compositions, mortar, concrete, fillers used in asphalt, etc., and building materials.
  • cement compositions mortar, concrete, fillers used in asphalt, etc., and building materials.
  • mass balance certification for calcium carbonate it becomes possible to contribute to carbon neutrality depending on the amount of calcium carbonate obtained by the carbon dioxide utilization system of this embodiment.
  • a calcium carbonate manufacturing apparatus having the configuration shown in FIG. 1 was used.
  • a nozzle nozzle hole diameter : 0.5 mm ⁇
  • fresh concrete sludge water calcium concentration: 900 mg/L, solid content concentration: 0.0022 mass%, solid content particle size: 1 to 10 ⁇ m
  • spraying spray particle size: 10 to 50 ⁇ m
  • the powder collected by the dust collector bag filter
  • it was confirmed to be calcium carbonate powder purity: 96%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Gas Separation By Absorption (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Treatment Of Sludge (AREA)

Abstract

排気ガスに含まれる二酸化炭素を利用しつつ、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減し、かつ炭酸カルシウムの効率的な再利用を可能とする、二酸化炭素を含む排気ガスが通過する煙道、前記煙道に生コンクリートスラッジ水を供給する噴霧ノズル、及び前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を回収する集塵装置、を備える二酸化炭素利用システムである。

Description

二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法
 本開示は、二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法に関する。
 近年、地球温暖化への関心が高まり、大気中への二酸化炭素の放出量の削減が求められている。発電所、焼却炉、セメント工場、製鉄所、工場設備等の各種設備において、操業により発生する二酸化炭素を含む排ガスを大気の放出量を低減し、回収することが検討されている。とりわけ、セメント工場における二酸化炭素の放出量の削減は、喫緊の課題として捉えられている。
 例えば特許文献1には、スラッジ水を処理する方法として、スラッジ水に二酸化炭素を吹き込んで、スラッジ水中の水和生成物と反応処理して炭酸カルシウムを生成させて、スラッジ水を回収する方法が提案されている。そして、二酸化炭素として、工業品としての二酸化炭素、空気、セメントクリンカの焼成時に生成する二酸化炭素等を含む排ガスを用い得ること、二酸化炭素等の大気中への放出抑制と有効活用の点で好ましいことが開示されている。
 また、特許文献2には、排気ガスに含まれる炭酸ガスを原料として炭酸塩を製造する方法として、苛性ソーダ水溶液等のアルカリ水溶液をミストとし、排気ガスの炭酸ガスをミストに吸収して、苛性ソーダと炭酸ガスとの反応により生成する炭酸塩(炭酸ナトリウム)を含むミストとし、これを排気ガスから分離する方法が開示されている。さらに、炭酸ナトリウムと水酸化カルシウムとを反応させて、炭酸カルシウムとする方法も開示されている。このように、例えば排気ガスに含まれる二酸化炭素(炭酸ガス)を回収し得る方法に関する種々の研究が進められている状況にある。
特開2020-163821号公報 国際公開公報2022-014554号パンフレット
 本発明は、このような実情に鑑みてなされたものであり、排気ガスに含まれる二酸化炭素を利用しつつ、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減し、かつ炭酸カルシウムの効率的な再利用を可能とする、二酸化炭素利用システム、また炭酸カルシウムの製造装置及び製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は、以下の二酸化炭素利用システムを提供する。
1.二酸化炭素を含む排気ガスが通過する煙道、
 前記煙道に生コンクリートスラッジ水を供給する噴霧ノズル、及び
 前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を回収する集塵装置、
を備える二酸化炭素利用システム。
 さらに本発明は、以下の二酸化炭素利用システムを、好ましい実施態様として提供する。
2.前記排気ガスの温度が、50℃以上250℃以下である上記1に記載の二酸化炭素利用システム。
3.前記集塵装置が、バグフィルターである上記1又は2に記載の二酸化炭素利用システム。
4.前記生コンクリートスラッジ水の、排気ガス1m/hに対する供給量が、5kg/h以上600kg/h以下である上記1~3のいずれか1に記載の二酸化炭素利用システム。
5.前記生コンクリートスラッジ水が、生コンクリートスラッジから固形分を除去したものである上記1~4のいずれか1に記載の二酸化炭素利用システム。
6.前記固形分と、水とを混合した混合物から固形分を除去したものを、生コンクリートスラッジ水として用いる上記5に記載の二酸化炭素利用システム。
 本発明は、以下の炭酸カルシウムの製造装置を提供する。
7.二酸化炭素を含む排気ガスが通過する煙道、
 前記煙道に生コンクリートスラッジ水を供給する噴霧ノズル、及び
 前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を回収する集塵装置、
を備える炭酸カルシウムの製造装置。
 また、本発明は、以下の炭酸カルシウムの製造方法を提供する。
8.煙道を通過する二酸化炭素を含む排気ガスと、
 前記煙道に噴霧ノズルにより供給される生コンクリートスラッジ水と、を接触させて、
 前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を集塵装置で回収する、
炭酸カルシウムの製造方法。
 本発明によれば、排気ガスに含まれる二酸化炭素を利用しつつ、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減し、かつ炭酸カルシウムの効率的な再利用を可能とすることができる。
本実施形態の二酸化炭素利用システムの好ましい一例を示すフロー図である。
 以下、本発明の実施形態(以下、「本実施形態」と称することがある。)について説明する。本発明は、以下の実施形態に限定されることはなく、発明の効果を阻害しない範囲において任意に変更して実施し得るものである。なお、本明細書中の「AA~BB」との数値範囲の表記は、「AA以上BB以下」であることを意味する。また、本明細書中において、数値範囲の記載に関する「以上」、「以下」及び「~」に係る数値は任意に組み合わせできる数値である。例えば、とある数値範囲について「CC~DD」及び「EE~FF」と記載されている場合、「CC~FF」、「EE~DD」といった数値範囲も含まれる。
[二酸化炭素利用システム]
 本実施形態の二酸化炭素利用システムは、
 二酸化炭素を含む排気ガスが通過する煙道、
 前記煙道に生コンクリートスラッジ水を供給する噴霧ノズル、及び
 前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を回収する集塵装置、
を備える、というものである。
 既述のように、排気ガスに含まれる二酸化炭素(炭酸ガス)を利用し得る方法についての種々の研究が進められており、例えば上記特許文献1及び2に記載される方法等が開示されている。
 しかし、特許文献1の方法は、あくまでスラッジ水から水和生成物等を除去して、スラッジ水をコンクリートの混練水に再利用することに主眼がおかれており、炭酸カルシウムの製造に着目するものではない。そのため、炭酸カルシウムを再利用するには別途乾燥を行う必要があり、炭酸カルシウムを利用することに着目した場合、効率的な方法であるとはいえない。
 また、特許文献2の方法については、苛性ソーダ水溶液等のアルカリ水溶液を用いる必要があること、また炭酸カルシウムを得るには、水酸化カルシウムを使用する必要があること等から、廃棄物の再利用、炭酸カルシウムの効率的な再利用といった視点に欠けるものである。
 このように、特許文献1及び2には、排気ガスに含まれる二酸化炭素(炭酸ガス)を利用することについての記載はあるものの、これらの特許文献に記載される方法では、二酸化炭素(炭酸ガス)を利用することで、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減すること、さらに炭酸カルシウムの効率的な再利用を図ることは困難である。
 本実施形態の二酸化炭素利用システムは、二酸化炭素を含む排気ガス中に、生コンクリートスラッジ水を供給して接触させることで、二酸化炭素と生コンクリートスラッジ水との反応が生じる。これにより、排気ガスに含まれる二酸化炭素を利用しつつ、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減することができる。
 また、本実施形態のシステムにおいては、生コンクリートスラッジ水を、噴霧ノズルを介して、排気ガス中に噴霧して供給する。これにより、生コンクリートスラッジ水と排気ガス中の二酸化炭素とが接触しやすくなり、生コンクリートスラッジ水中に二酸化炭素を効率的に取り込むことができ、生コンクリートスラッジ水に含まれる水酸化カルシウム等のカルシウム分と二酸化炭素とが反応しやすくなるため、炭酸カルシウムを含む反応物の生成が促進する。また、排気ガスの熱により生コンクリートスラッジ水に含まれる水は水蒸気となり、そのまま大気に放出されることとなり、炭酸カルシウムは排気ガスの熱により乾燥した状態で集塵装置において回収されるため、炭酸カルシウムを効率的に製造し、かつ再利用を効率的に行うことが可能となる。
 かくして、本実施形態の二酸化炭素利用システムは、排気ガスに含まれる二酸化炭素を利用しつつ、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減し、かつ炭酸カルシウムの効率的な再利用を可能とするものとなる。
 以下、図1を用いながら、本実施形態の二酸化炭素利用システム(以下、単に「システム」と称することがある。)について説明する。図1は、本実施形態の二酸化炭素利用システムの好ましい一例を示すものである。
 図1には、本実施形態の二酸化炭素利用システムが、排気ガスが通過する煙道、生コンクリートスラッジ水を煙道に供給する噴霧ノズル、及び炭酸カルシウムを含む反応物を回収する集塵装置を備えることが示されている。また、図1に示されるシステムは、生コンクリートスラッジ水を貯蔵するスラッジ水貯蔵タンク、及び集塵装置で反応物を回収した排気ガスを大気に排気する誘引送風機及び煙突を備えることも示されている。
〔二酸化炭素を含む排気ガスが通過する煙道〕
(煙道)
 本実施形態の二酸化炭素利用システムは、二酸化炭素を含む排気ガスが通過する煙道を備える。煙道は、通常は発電所、セメント工場、プレキャストコンクリート(PCa)製品工場、アスファルト工場、製鉄所、焼却炉、その他工場設備、これら各種設備に備えられるボイラー等から排出される排気ガスを煙突までに導くための配管、ダクトのことを意味するものである。
 本実施形態のシステムにおいて、煙道は、二酸化炭素を含む排気ガスを通過させ得るものであれば特に制限はなく、新設したものであってもよいし、また設備費用の低減を考慮すると、発電所、セメント工場、プレキャストコンクリート(PCa)製品工場、アスファルト工場、製鉄所、焼却炉、その他工場設備、これら各種設備に備えられるボイラー等から排出される排気ガスを排気させるために設置される既設の煙道であってもよい。本実施形態のシステムが生コンクリートスラッジ水を用いることを考慮すると、煙道としては、プレキャストコンクリート(PCa)製品工場において排気ガスを排気させるために設置される既設の煙道を用いることが好ましい。よって、本実施形態のシステムは、プレキャストコンクリート(PCa)製品工場に組み込まれる形で存在することが好ましい。
(排気ガス)
 二酸化炭素を含む排気ガスとしては、既述のように各種工場設備から排出される排気ガス(「燃焼排ガス」とも称される。)が代表的に挙げられる。これらの排気ガスに含まれる二酸化炭素の濃度としては、例えば発電所からの燃焼排ガスであれば通常8~15体積%、プレキャストコンクリート(PCa)製品工場、アスファルト工場、焼却炉の燃焼排ガスであれば通常1~30体積%、セメント工場からの燃焼排ガスであれば通常15~30体積%、また製鉄所からの排ガスであれば通常20~30体積%である。本実施形態のシステムにおいては、いずれの燃焼排ガスを用いることが可能である。
 上記の中でも、生コンクリートスラッジ水を使用することを考慮すると、プレキャストコンクリート(PCa)製品工場における焼成工程で排出する燃焼排ガスが好ましい。
 排気ガスの温度条件については、どこの排気ガスを用いるかに応じてかわり得るため一概にはいえないが、生コンクリートスラッジ水が供給される箇所における温度として、50℃以上250℃以下であるとよい。炭酸カルシウムを含む反応物が生成した生コンクリートスラッジ水から水を除去し、炭酸カルシウムを乾燥した状態で集塵装置において回収させ、炭酸カルシウムの再利用をより効率的に行うため、好ましくは75℃以上、より好ましくは100℃以上、更に好ましくは110℃以上であり、上限としては250℃以下であるとよい。なお、噴霧ノズルが複数設けられている場合、上記排気ガスの温度条件は、コンクリートスラッジ水と排気ガスとが最初に接触する箇所、すなわち煙道の排気ガスの流れ方向で最も上流に設けられる噴霧ノズルの箇所における温度である。
 本実施形態のシステムにおいて、図1に示されるように煙道に噴霧ノズルが取り付けられ、煙道を通過する排気ガスに含まれる二酸化炭素と、噴霧ノズルから噴霧される生コンクリートスラッジ水との接触により、炭酸カルシウムを含む反応物が生成する。そして、生成した炭酸カルシウムを含む反応物は、排気ガスとともに煙道内を通過し、乾燥した状態で集塵装置にて回収される。
〔生コンクリートスラッジ水を供給する噴霧ノズル〕
(生コンクリートスラッジ水)
 生コンクリート工場では、注文量に対して多めに生産して出荷されなかった残コン、供給先で使用されずに返品される戻りコン及びこれらの溶解処理物;ミキサー車等の設備洗浄により発生する洗浄排水;等のセメントを含む生コンクリートスラッジが発生する。本実施形態のシステムでは、このように生コンクリート工場で発生する生コンクリートスラッジを、生コンクリートスラッジ水として使用することができる。
 生コンクリートスラッジには、通常水、水に溶解する水酸化カルシウム等のカルシウム分、またスラッジの固形分(主に水和生成物、骨材微粒子等を含む。)等が含まれる。そして、生コンクリートスラッジから固形分を除去し、水酸化カルシウム等を含む上澄み水と、スラッジの固形分(主に水和生成物、骨材微粒子等を含む)を含むスラッジ水とに分けられることがある。この場合は、上澄み水、スラッジ水のいずれも、生コンクリートスラッジ水として用いることができる。
 本実施形態のシステムにおいて用いられる生コンクリートスラッジ水が上記上澄み水、スラッジ水のいずれの場合であっても、噴霧ノズルの閉塞を抑制し、より長期的に安定したシステムの稼働を行うことを考慮すると、生コンクリートスラッジ水中の固形分濃度は、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、より更に好ましくは1質量%以下である。
 生コンクリートスラッジ水には、既述のようにカルシウム分として水酸化カルシウムが溶解して存在するが、水酸化カルシウムは溶解度が低いことから固形分としても存在する。また、カルシウム分としては、炭酸カルシウム等も含まれており、主に固形分として存在する。このように、本実施形態のシステムにおいて用いられる生コンクリートスラッジ水には、固形分として、水酸化カルシウム、炭酸カルシウム等のカルシウム分、また既述のようにスラッジの固形分(主に水和生成物、骨材微粒子等を含む。)等が含まれる。そして、本実施形態のシステムにおいて、生コンクリートスラッジ水に含まれるこれらの固形分、また生コンクリートスラッジ水の排気ガスへの噴霧により急速に生成された炭酸カルシウムが、微小な粒子として存在し、これらが結晶の成長核となることで、炭酸カルシウムの生成が促進する。
 よって、本実施形態のシステムにおいて、生コンクリートスラッジ水に含まれる固形分は、噴霧ノズルの閉塞の抑制、より長期的に安定したシステムの稼働を行うためには、既述のように少ない方が好ましい。他方、結晶の成長核として機能させて、炭酸カルシウムの生成を促進させる観点から、生コンクリートスラッジ水中の固形分濃度は、好ましくは0.001質量%以上、より好ましくは0.0015質量%以上、更に好ましくは0.002質量%以上である。
 また、これと同様の観点から、生コンクリートスラッジ水中の固形分の粒子径は、好ましくは1000μm以下、より好ましくは100μm以下、更に好ましくは10μm以下、より更に好ましくは1μm以下、特に好ましくは0.1μm以下である。
 本実施形態のシステムにおいて用いられる生コンクリートスラッジ水が上記の上澄み水である場合、生コンクリートスラッジ水に含まれるカルシウム分の濃度は、通常100mg/L以上であり、好ましくは250mg/L以上、より好ましくは500mg/L以上であり、更に好ましくは800mg/L以上である。上限としては高ければ高いほど好ましく、特に制限はないが、通常1500mg/L以下である。
 また、生コンクリートスラッジ水が上記のスラッジ水である場合、生コンクリートスラッジ水に含まれるカルシウム分の濃度は、通常1000mg/L以上であり、好ましくは5000mg/L以上、より好ましくは10000mg/L以上であり、更に好ましくは30000mg/L以上である。上限としては高ければ高いほど好ましく、特に制限はないが、通常150000mg/L以下である。
 また、生コンクリートスラッジ水としては、生コンクリートスラッジから得られる上記固形分と、水とを混合した混合物から、当該固形分を除去したものを用いることもできる。上記固形分には、水酸化カルシウム等のカルシウム分、また固形分に主に含まれる水和生成物には、水酸化カルシウム、カルシウムシリケート水和物等のカルシウム分が含まれている。そのため、上記混合物から固形分を除去したものにも、固形分から水に溶け出したカルシウム分が含まれており、生コンクリートスラッジからより多くのカルシウム分を炭酸カルシウムとすることが可能となる。
(噴霧ノズル)
 噴霧ノズルは、生コンクリートスラッジ水を煙道に供給するために用いられるものである。生コンクリートスラッジ水は、噴霧ノズルにより煙道に噴霧されながら供給される、すなわち粒子状で煙道に供給されることとなる。そのため、既述のように生コンクリートスラッジ水と排気ガス中の二酸化炭素とが接触しやすくなり、生コンクリートスラッジ水中に効率的に二酸化炭素を取り込むことができ、カルシウム分と二酸化炭素との反応による炭酸カルシウムが生成しやすくなる。更には、水の蒸発も効率的に行われることにより乾燥工程を含むことなく、炭酸カルシウムを乾燥した状態で得ることが可能となる。
 噴霧ノズルとしては、生コンクリートスラッジ水を噴霧できるノズルであれば特に制限なく、噴霧ノズルとして市販されるもの等を使用することが可能である。例えば、生コンクリートスラッジ水のみを噴霧する一流体ノズル、また必要に応じて空気等の気体とともに生コンクリートスラッジ水を噴霧する二流体ノズル等の多流体ノズルを用いることができる。更に必要に応じて、超音波を発生させることで噴霧粒子をより細かくさせる機構を有するノズル(「超音波噴霧ノズル」とも称される。)を用いることもできる。
 噴霧ノズルの噴霧パターンとしては、特に制限なく採用でき、例えばフルコーン、ホローコーン(空円錐)、フラット(扇形)、ソリッド(直進)等が代表的に挙げられる。また、噴霧ノズルの噴霧角度についても、特に制限なく採用でき、好ましくは60°以上、より好ましくは90°以上であり、上限として好ましくは145°以下、より好ましくは140°以下である。
 本実施形態のシステムにおいて、噴霧ノズルとしては、より良好な噴霧状態を確保し、排気ガス中の二酸化炭素と生コンクリートスラッジ水に含まれるカルシウム分との接触による反応を促進する観点から、噴霧角度が大きいホローコーン(空円錐)、フラット(扇形)の噴霧パターンを有する噴霧ノズルを用いることが好ましい。
 噴霧ノズルにおける生コンクリートスラッジ水の噴霧口の孔径は、噴霧ノズルが有する噴霧口の数、生コンクリートスラッジ水の供給量等に応じてかわり得るため一概にはいえないが、より良好な噴霧状態を確保する観点から、好ましくは0.1mm以上、より好ましくは0.3mm以上、更に好ましくは0.5mm以上であり、上限として好ましくは5.0mm以下、より好ましくは4.0mm以下、より更に好ましくは3.0mm以下である。
 本実施形態のシステムにおいて、噴霧ノズルの設置数は、噴霧ノズルの大きさ、噴霧ノズルが有する噴霧口の孔径及び数、並びに生コンクリートスラッジ水の供給量等に応じてかわり得るため一概にはいえないが、1以上であればよく、上限としては通常10以下、好ましくは8以下、より好ましくは5以下である。
 噴霧ノズルは、生コンクリートスラッジ水を煙道に供給できれば、その設置箇所には特に制限はないが、図1に示されるように、煙道に直接設けられることが好ましい。この場合、噴霧ノズルの設置箇所は、煙道の垂直方向の断面が円形である場合、当該円形の上半分の半円周上(最上点を0°とした場合の±90°以内)に設けられていることが好ましく、より好ましくは±60°以内、更に好ましくは±30°以内、より更に好ましくは±15°以内であり、特に好ましくは最上点である。また、煙道が角型ダクトの場合も、上記円形配管(又はダクト)の場合に準ずるものとする。
 噴霧ノズルを複数設ける場合、複数の噴霧ノズルは、上記同一断面の円形上に設けられていてもよいし、例えば上記最上点に排気ガスの流れる方向に向かって順々に設けられていてもよい。
 噴霧ノズルより噴霧される、生コンクリートスラッジ水の噴霧粒子は、排気ガス中の二酸化炭素と生コンクリートスラッジ水に含まれるカルシウム分との接触による反応を促進する観点から、細かければ細かいほど好ましい。噴霧粒子の粒子径としては、好ましくは200μm以下、より好ましくは120μm以下、更に好ましくは80μm以下、より更に好ましくは50μm以下である。
 生コンクリートスラッジ水の煙道への供給量は、煙道を通過する排気ガスの流量、煙道のサイズ等に応じてかわり得るため一概にはいえないが、排気ガス1m/hに対する供給量として、5kg/h以上600kg/h以下であるとよい。より効率的に炭酸カルシウムを含む反応物の生成を促進させる観点から、好ましくは10kg/h以上、より好ましくは20kg/h以上、更に好ましくは100kg/h以上であり、上限としては500kg/h以下であるとよい。なお、上記供給量は、噴霧ノズルが複数設けられている場合、全ての噴霧ノズルから供給される供給量である。
(スラッジ水貯蔵タンク)
 生コンクリートスラッジ水は、本実施形態のシステムの稼働の安定性を考慮して、一度タンクに貯留してから、噴霧ノズルを介して煙道に供給することが好ましい。すなわち、本実施形態のシステムは、生コンクリートスラッジ水を貯蔵するスラッジ水貯蔵タンクを備えることが好ましい。
 スラッジ水貯蔵タンクに、一時的に生コンクリートスラッジ水を貯蔵することで、必要量の変動に対応しやすくなるだけでなく、噴霧ノズルから一定量の噴霧がしやすくなるため、煙道における排気ガスと、生コンクリートスラッジ水との接触が安定することで、二酸化炭素とカルシウム分との反応による炭酸カルシウムの生成が安定するため、結果として効率的な炭酸カルシウムの再利用が可能となる。またシステムの稼働を停止した場合、次の稼働時まで生コンクリートスラッジ水を貯蔵しておくこともできるため、より早くシステムの稼働を行うことができる。
 スラッジ水貯蔵タンクは、スラッジ水を貯蔵できれば特に制限なく採用可能であり、例えば地上貯蔵タンク、地下貯蔵タンク等のように地上、地下のいずれに設けられるものであってもよく、固定屋根式、浮き屋根式と称される各種屋根式貯蔵タンク、また横置円筒形、縦置円筒形のような横置、縦置の貯蔵タンク等から選択して用いればよい。
 また、スラッジ水貯蔵タンクは、新設であってもよいし、既設のタンクを流用してもよい。
 スラッジ水貯蔵タンクは、撹拌機を備えるものであることが好ましい。撹拌機を備えることで、生コンクリートスラッジ水には固形分が含まれる場合があるため、固形分の凝固を抑制することができる。
 また、スラッジ水貯蔵タンクにはレベル計、当該レベル計によりスラッジ水貯蔵タンクに供給する生コンクリートスラッジ水の供給量を調節する調節弁等の各種計装品が備えられていてもよい。
(煙突)
 本実施形態の二酸化炭素利用システムは、煙突を備えることが好ましい。煙突を備えることで、煙突効果による排気ガスの排出がより速やかに行われ、また仮に誘引送風機を設けた場合であっても、誘引送風機にかかる動力を低減することが可能となる。
 煙突としては、排気ガスを大気に排気できる構造のものであれば特に制限なく採用可能であり、例えばシングル煙突、また断熱二重煙突、中空二重煙突等の二重煙突等を採用することができる。本実施形態のシステムにおいては、屋外に設けられる場合は排気ガスの温度の低下を抑制し、より安定した排気を可能とする観点から、二重煙突を採用することが好ましい。
 本実施形態のシステム用に新設してもよいし、既述の煙道のように既設の煙突であってもよい。本実施形態のシステムが生コンクリートスラッジ水を用いることを考慮すると、煙突としては、生コンクリート工場において排気ガスを大気に排気させるために設置される既設の煙突を用いることが好ましい。
〔反応物を回収する集塵装置〕
 本実施形態の二酸化炭素利用システムは、上記煙道において生成する炭酸カルシウムを含む反応物を回収する集塵装置を備える。既述のように、排気ガスは煙道において生成する炭酸カルシウムを同伴して集塵装置を通過することで、同伴した炭酸カルシウムが回収され、回収された炭酸カルシウムは再利用される。また、炭酸カルシウムが回収された後の排気ガスは、大気に放出される。
(集塵装置)
 集塵装置としては、乾式電気集塵装置、湿式電気集塵装置等の電気集塵装置、またろ過集塵装置(バグフィルター)等の各種集塵装置を用いることが可能である。本実施形態のシステムにおいては、電気消費量を低減すること、また取扱いが容易であること等を考慮すると、ろ過集塵装置(バグフィルター)が好ましい。
 ろ過集塵装置(バグフィルター)に用いられるフィルターとしては、特に制限なく用いることが可能であり、ポリプロピレン、ナイロン、アクリル、ポリエステル、木綿、羊毛、耐熱ナイロン、ガラス繊維、PTFE(ポリテトラフルオロエチレン)等の素材により構成されるフィルターが挙げられ、また静電フィルターのような機能付きフィルターを用いることもできる。
 バグフィルターは、払い落し手段を有していてもよく、例えば脈動逆圧方式、パルスジェット方式による手段が好ましく挙げられ、中でもパルスジェット方式による手段が好ましい。
(炭酸カルシウムを含む反応物)
 本実施形態の二酸化炭素利用システムにおいて、炭酸カルシウムを含む反応物が集塵装置において回収される。炭酸カルシウムを含む反応物には、排気ガスに含まれる二酸化炭素と、生コンクリートスラッジ水に含まれるカルシウム分との反応により生成する炭酸カルシウムが主に含まれる。
 炭酸カルシウムを含む反応物に含まれる炭酸カルシウムの濃度は、通常90質量%以上であり、さらには92質量%以上、95質量%以上となる。このように、本実施形態のシステムにより得られる炭酸カルシウムを含む反応物は、炭酸カルシウムの濃度が極めて高いものとなる。
 本実施形態のシステムにより回収される炭酸カルシウムを含む反応物は、セメント用組成物、モルタル、コンクリート、アスファルト等に用いられるフィラー、建材等の用途に好適に利用することができる。
 本実施形態の二酸化炭素利用システムにおいて生成する炭酸カルシウムは、単独で用いることもできるし、他の炭酸カルシウム等のフィラーと混合して用いることもできる。また、上記用途に用いる場合、炭酸カルシウムについてマスバランス認証を受けることで、本実施形態の二酸化炭素利用システムにより得られる炭酸カルシウムの使用量に応じてカーボンニュートラル化に貢献することが可能となる。
 生コンクリートスラッジ水には、ナトリウム、硫黄等も含まれるため、炭酸カルシウムを含む反応物には、これらに起因する不純物も含まれ得る。炭酸カルシウムを含む反応物に含まれる不純物の含有量は、通常10質量%以下程度であり、更には8質量%以下、5質量%以下、3質量%以下、1質量%以下である。不純物の含有量は、このように少ないため、上記用途において使用することに、何らの支障もない。
(誘引送風機)
 本実施形態のシステムは、図1に示されるように、バグフィルターの排気口の下流のラインには、当該排気口から排気される気体を強制的に排気するため、誘引通風機を設けてもよい。誘引通風機等により気体を排気することにより、バグフィルターにおけるろ過が円滑に進行し、流動乾燥機内のメディア粒子の安定した流動層が得られるため、より短時間で炭酸カルシウムを含む反応物を回収することができる。
[炭酸カルシウムの製造装置]
 本実施形態の炭酸カルシウムの製造装置は、
 二酸化炭素を含む排気ガスが通過する煙道、
 前記煙道に生コンクリートスラッジ水を供給する噴霧ノズル、及び
 前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を回収する集塵装置、
を備える炭酸カルシウムの製造装置である。
 本実施形態の炭酸カルシウムの製造装置によれば、二酸化炭素を含む排気ガスと生コンクリートスラッジ水を利用できることから、排気ガスに含まれる二酸化炭素を利用しつつ、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減することができる。また、コンクリートスラッジ水を、噴霧ノズルを介して、排気ガス中に噴霧して供給することで、生コンクリートスラッジ水と二酸化炭素とが接触しやすくなり、生コンクリートスラッジ水中に二酸化炭素を効率的に取り込むことができ、水酸化カルシウム等のカルシウム分と二酸化炭素とが反応しやすくなる。さらに、排気ガスの熱により生コンクリートスラッジ水に含まれる水が水蒸気として除去され、炭酸カルシウムは粉体として得られるため、集塵装置で容易に回収が可能となる。そのため、炭酸カルシウムを効率的に製造し、かつ効率的な再利用が可能となる。
 二酸化炭素を含む排気ガス、煙道、生コンクリートスラッジ水、噴霧ノズル、二酸化炭素と、生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物、及び集塵装置は、上記二酸化炭素利用システムにおいて説明したものと同じである。
 本実施形態の炭酸カルシウムの製造装置により得られる炭酸カルシウムは、既述のようにセメント用組成物、モルタル、コンクリート、アスファルト等に用いられるフィラー、建材等の用途に好適に利用することができる。これらの用途に用いる場合、炭酸カルシウムについてマスバランス認証を受けることで、本実施形態の二酸化炭素利用システムにより得られる炭酸カルシウムの使用量に応じてカーボンニュートラル化に貢献することが可能となる。
[炭酸カルシウムの製造方法]
 本実施形態の炭酸カルシウムの製造方法は、
 煙道を通過する二酸化炭素を含む排気ガスと、
 前記煙道に噴霧ノズルにより供給される生コンクリートスラッジ水と、を接触させて、
 前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を集塵装置で回収する、
炭酸カルシウムの製造方法である。
 本実施形態の炭酸カルシウムの製造方法によれば、二酸化炭素を含む排気ガスと生コンクリートスラッジ水を利用できることから、排気ガスに含まれる二酸化炭素を利用しつつ、通常廃棄物として廃棄される生コンクリートスラッジの廃棄量を低減することができる。また、コンクリートスラッジ水を、噴霧ノズルを介して、排気ガス中に噴霧して供給することで、生コンクリートスラッジ水と二酸化炭素とが接触しやすくなり、生コンクリートスラッジ水中に二酸化炭素を効率的に取り込むことができ、水酸化カルシウム等のカルシウム分と二酸化炭素とが反応しやすくなる。さらに、排気ガスの熱により生コンクリートスラッジ水に含まれる水が水蒸気として除去され、炭酸カルシウムは粉体として得られるため、集塵装置で容易に回収が可能となる。そのため、炭酸カルシウムを効率的に製造し、かつ効率的な再利用が可能となる。
 二酸化炭素を含む排気ガス、煙道、生コンクリートスラッジ水、噴霧ノズル、二酸化炭素と、生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物、及び集塵装置は、上記二酸化炭素利用システムにおいて説明したものと同じである。
 また、生コンクリートスラッジ水の供給量、排気ガスの温度等の各種条件も、上記二酸化炭素利用システムにおいて説明したものと同じである。
 本実施形態の炭酸カルシウムの製造方法により得られる炭酸カルシウムは、既述のようにセメント用組成物、モルタル、コンクリート、アスファルト等に用いられるフィラー、建材等の用途に好適に利用することができる。これらの用途に用いる場合、炭酸カルシウムについてマスバランス認証を受けることで、本実施形態の二酸化炭素利用システムにより得られる炭酸カルシウムの使用量に応じてカーボンニュートラル化に貢献することが可能となる。
 次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら制限されるものではない。
 図1に示される構成を有する炭酸カルシウムの製造装置を用いた。
 コンクリートPCa製品工場における排気ガス(二酸化炭素濃度:26容量%、温度:60℃)が4L/分(0.24m/h)で通過する煙道(直径:100mm)に、ノズル(ノズル孔径:0.5mmφ)から生コンクリートスラッジ水(カルシウム濃度:900mg/L、固形分濃度:0.0022質量%、固形分粒子径:1~10μm)を88g/分(5.3kg/h)の流量で噴霧しながら供給した(噴霧粒子径:10~50μm)。集塵装置(バグフィルター)で回収された粉末を分析したところ、炭酸カルシウムの粉末(純度:96%)であることが確認された。

Claims (8)

  1.  二酸化炭素を含む排気ガスが通過する煙道、
     前記煙道に生コンクリートスラッジ水を供給する噴霧ノズル、及び
     前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を回収する集塵装置、
    を備える二酸化炭素利用システム。
  2.  前記排気ガスの温度が、50℃以上250℃以下である請求項1に記載の二酸化炭素利用システム。
  3.  前記集塵装置が、バグフィルターである請求項1又は2に記載の二酸化炭素利用システム。
  4.  前記生コンクリートスラッジ水の、排気ガス1m/hに対する供給量が、5kg/h以上600kg/h以下である請求項1又は2に記載の二酸化炭素利用システム。
  5.  前記生コンクリートスラッジ水が、生コンクリートスラッジから固形分を除去したものである請求項1又は2に記載の二酸化炭素利用システム。
  6.  前記固形分と、水とを混合した混合物から固形分を除去したものを、生コンクリートスラッジ水として用いる請求項5に記載の二酸化炭素利用システム。
  7.  二酸化炭素を含む排気ガスが通過する煙道、
     前記煙道に生コンクリートスラッジ水を供給する噴霧ノズル、及び
     前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を回収する集塵装置、
    を備える炭酸カルシウムの製造装置。
  8.  煙道を通過する二酸化炭素を含む排気ガスと、
     前記煙道に噴霧ノズルにより供給される生コンクリートスラッジ水と、を接触させて、
     前記排気ガスに含まれる、前記二酸化炭素と、前記生コンクリートスラッジ水との反応により生成する炭酸カルシウムを含む反応物を集塵装置で回収する、
    炭酸カルシウムの製造方法。
PCT/JP2023/031680 2022-09-09 2023-08-31 二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法 WO2024053534A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380061262.6A CN119790023A (zh) 2022-09-09 2023-08-31 二氧化碳利用系统、碳酸钙的制造装置及制造方法
AU2023337730A AU2023337730A1 (en) 2022-09-09 2023-08-31 Carbon dioxide utilizing system, and device and method for producing calcium carbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022143446A JP7274031B1 (ja) 2022-09-09 2022-09-09 二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法
JP2022-143446 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053534A1 true WO2024053534A1 (ja) 2024-03-14

Family

ID=86321956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031680 WO2024053534A1 (ja) 2022-09-09 2023-08-31 二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法

Country Status (4)

Country Link
JP (1) JP7274031B1 (ja)
CN (1) CN119790023A (ja)
AU (1) AU2023337730A1 (ja)
WO (1) WO2024053534A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127938A (ja) * 1992-10-23 1994-05-10 Karushiide:Kk 中空球状カルサイト型炭酸カルシウム及びその製造方法
JPH078796A (ja) * 1993-02-04 1995-01-13 Kyoei Bussan Kk 生コンクリートもしくはコンクリート二次製品製造時に排出されるスラッジを用いた二酸化炭素消費材およびその製造方法並びに排ガス中の二酸化炭素消費方法
JPH0781931A (ja) * 1993-09-09 1995-03-28 Karushiide:Kk 球状カルサイト型炭酸カルシウム凝集体及びその製造方法
CN103446868A (zh) * 2013-08-28 2013-12-18 东北大学 一种捕集矿化铝电解烟气中co2制备碳酸钙并回收co的装置
CN103446867A (zh) * 2013-08-28 2013-12-18 东北大学 一种捕集矿化铝电解烟气中的co2制备碳酸钙并回收co方法
JP2020083681A (ja) * 2018-11-20 2020-06-04 アイシン精機株式会社 炭酸カルシウムの製造方法
JP2020163821A (ja) 2019-03-31 2020-10-08 太平洋セメント株式会社 スラッジ水の処理回収方法
JP2021154231A (ja) * 2020-03-27 2021-10-07 三菱パワー株式会社 燃焼排ガス浄化処理に係る装置および方法
WO2022014554A1 (ja) 2020-07-13 2022-01-20 ナノミストテクノロジーズ株式会社 炭酸塩の製造方法及び製造装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127938A (ja) * 1992-10-23 1994-05-10 Karushiide:Kk 中空球状カルサイト型炭酸カルシウム及びその製造方法
JPH078796A (ja) * 1993-02-04 1995-01-13 Kyoei Bussan Kk 生コンクリートもしくはコンクリート二次製品製造時に排出されるスラッジを用いた二酸化炭素消費材およびその製造方法並びに排ガス中の二酸化炭素消費方法
JPH0781931A (ja) * 1993-09-09 1995-03-28 Karushiide:Kk 球状カルサイト型炭酸カルシウム凝集体及びその製造方法
CN103446868A (zh) * 2013-08-28 2013-12-18 东北大学 一种捕集矿化铝电解烟气中co2制备碳酸钙并回收co的装置
CN103446867A (zh) * 2013-08-28 2013-12-18 东北大学 一种捕集矿化铝电解烟气中的co2制备碳酸钙并回收co方法
JP2020083681A (ja) * 2018-11-20 2020-06-04 アイシン精機株式会社 炭酸カルシウムの製造方法
JP2020163821A (ja) 2019-03-31 2020-10-08 太平洋セメント株式会社 スラッジ水の処理回収方法
JP2021154231A (ja) * 2020-03-27 2021-10-07 三菱パワー株式会社 燃焼排ガス浄化処理に係る装置および方法
WO2022014554A1 (ja) 2020-07-13 2022-01-20 ナノミストテクノロジーズ株式会社 炭酸塩の製造方法及び製造装置

Also Published As

Publication number Publication date
JP2024039128A (ja) 2024-03-22
CN119790023A (zh) 2025-04-08
AU2023337730A1 (en) 2025-03-06
JP7274031B1 (ja) 2023-05-15

Similar Documents

Publication Publication Date Title
KR102048058B1 (ko) 폐수를 증발시키고 산성 가스 배출물을 감소시키는 장치 및 방법
US10258901B2 (en) Efficient and energy-saving wastewater evaporation crystallizer
CN101157005B (zh) 一种燃煤烟气的处理方法
CN1962034A (zh) 锅炉烟气同时脱硫脱硝脱汞的方法及装置
WO2010139168A1 (zh) 一种消化循环流化床烟气脱硫方法及装置
CN108325317A (zh) 一种燃煤锅炉污染物超低排放的运行方式
KR20170124106A (ko) 폐수를 증발시키고 산성 가스 배출을 감소시키기 위한 장치 및 방법
CN101342459A (zh) 废气脱硫回用处理方法及装置
CN102794090A (zh) 一种喷雾干燥法组合熟石灰粉喷射的烟气净化装置
CN101306317A (zh) 一种塔顶排放式烟气脱硫方法
CN100534583C (zh) 以氨为原料回收烟气中so2的方法和装置
CN106582286B (zh) 一种烟气净化装置与方法
CN113144862A (zh) 一种生物质焚烧发电烟气超低排放系统及其排放方法
CN101757826A (zh) 旋流水雾除尘器
CN101306319A (zh) 直排式烟气处理方法
JP7274031B1 (ja) 二酸化炭素利用システム、炭酸カルシウムの製造装置及び製造方法
CN1087645C (zh) 烟气循环流化法脱硫工艺方法及装置
CN112875740B (zh) 一种半干法脱硫灰制备高纯石膏的系统及方法
CN103301735B (zh) 一种中小型锅炉用烟气脱硫除尘剂
US6444184B1 (en) Semidry removal of SO2 in circulating reactor
CN112933920A (zh) 一种烟气的脱硫脱硝除尘一体化的反应装置及脱硫脱硝除尘方法
CN210473558U (zh) 烧结机脱硫脱硝消白一体化系统
CN114028941A (zh) 一种烟气脱硫催化剂配置及脱硫系统
CN112546825A (zh) 脱硫废水减量化及零排放并减排酸性气体的装置和方法
CN201394420Y (zh) 一种烟气处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2023337730

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023337730

Country of ref document: AU

Date of ref document: 20230831

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202547020117

Country of ref document: IN