[go: up one dir, main page]

WO2024048644A1 - Carrier, complex, pharmaceutical composition, and diagnostic drug - Google Patents

Carrier, complex, pharmaceutical composition, and diagnostic drug Download PDF

Info

Publication number
WO2024048644A1
WO2024048644A1 PCT/JP2023/031486 JP2023031486W WO2024048644A1 WO 2024048644 A1 WO2024048644 A1 WO 2024048644A1 JP 2023031486 W JP2023031486 W JP 2023031486W WO 2024048644 A1 WO2024048644 A1 WO 2024048644A1
Authority
WO
WIPO (PCT)
Prior art keywords
muc6
cancer
mice
gastric cancer
muc6ko
Prior art date
Application number
PCT/JP2023/031486
Other languages
French (fr)
Japanese (ja)
Inventor
翼 早河
絢也 新井
浩章 舘野
Original Assignee
国立大学法人東京大学
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 国立研究開発法人産業技術総合研究所 filed Critical 国立大学法人東京大学
Publication of WO2024048644A1 publication Critical patent/WO2024048644A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to carriers, complexes, pharmaceutical compositions, and diagnostic agents.
  • the present invention has been made in view of the above circumstances, and provides a carrier, a complex, a pharmaceutical composition, and a diagnostic agent that can be utilized for new drug therapy against cancer.
  • a carrier for delivering a target substance to a cancer tissue negative for MUC6 expression the carrier containing a molecule having binding activity to mannose.
  • the carrier according to [2], wherein the gastric cancer tissue is a gastric cancer in which the expression of MUC5AC, MUC6, MUC2, and CD10 is negative.
  • [6] The carrier according to any one of [1] to [5], wherein the molecule is a sugar-binding protein.
  • the complex according to [10], wherein the target substance is an anticancer drug.
  • a pharmaceutical composition comprising the complex according to [10] or [11].
  • a treatment for cancer comprising administering to a patient in need of treatment a pharmaceutical composition containing a complex of the carrier according to any one of [1] to [9] and a target substance. Method of treatment.
  • the present invention can be utilized for new drug therapy for cancer.
  • FIG. 2 is a schematic diagram showing a state in which a FlpER sequence is inserted into the start codon within exon 1 of the mouse Muc6 gene.
  • RNA ISH in stomach tissue sections prepared from Muc6KO mice.
  • It is a graph showing the expression level of the Muc6 gene in the gastric mucosa of WT mice and Muc6KO mice as measured by qPCR.
  • These are a bright field image of the stomach of a Muc6KO mouse and a stained image of a tissue section of the stomach.
  • FIG. 2 is a fluorescent immunostaining image visualizing MUC5AC in stomach tissue sections of WT mice and Muc6KO mice.
  • FIG. 2 is a fluorescent immunostaining image visualizing MUC2 and MUC4 in stomach tissue sections of WT mice and Muc6KO mice. This is the analysis result of O-type sugar chain by LC-MS analysis. This is the analysis result of N-type sugar chain by LC-MS analysis.
  • FIG. 2 is a schematic diagram of lectin microarray analysis of a sugar chain component extract of gastric mucosal epithelial cells. It is a graph showing the binding property of rBanana lectin to sugar chain component extracts of gastric mucosal epithelial cells of WT mice and Muc6KO mice.
  • FIG. 2 is a schematic diagram showing banana lectin blotting. These are the results of SDS-PAGE of proteins pulled down with banana lectin. These are the results of Western blotting of proteins in cell lysate and pulled-down lysate. This is a fluorescent immunostained image of a gastric mucosal tissue section of a WT mouse.
  • FIG. 15 is a partially enlarged view of the fluorescent immunostaining image shown in FIG. 15A. This is a fluorescent immunostaining image of a gastric mucosal tissue section of an 8-month-old Muc6KO mouse.
  • FIG. 15C is a partially enlarged view of the fluorescent immunostaining image shown in FIG. 15C. This is a fluorescent immunostaining image of a gastric mucosal tissue section of a 12-month-old Muc6KO mouse.
  • FIG. 15 is a partially enlarged view of the fluorescent immunostaining image shown in FIG. 15E. 1 is an immunostaining image showing the expression of clusterin in a human tissue array.
  • FIG. 1 is an immunostaining image showing the presence of clusterin and mannose in a human gastric cancer tissue array.
  • FIG. 2 is a graph showing the percentage of mannose-bound clusterin in a human gastric cancer tissue array.
  • FIG. 3 is a diagram showing the administration schedule of banana lectin drug complex to Muc6KO mice. These are the results of immunohistochemical staining of stomach tissue sections of Muc6KO mice administered with banana lectin drug complex.
  • 24 is a drawing showing the quantitative results of the signal intensity in FIG. 23, the tumor diameter, and the glandular duct height.
  • FIG. 2 is a drawing showing the influence of banana lectin having the H84T mutation and banana lectin drug complex on a Xenograft prepared by transplanting MKN45 into both buttocks of a nude mouse.
  • the present embodiment provides a carrier for delivering a target substance to a cancer tissue negative for MUC6 expression, which includes a molecule having binding activity to mannose.
  • MUC6 is a secreted mucin that is expressed in the central part of the gastric corpus glandular duct and the gastric antrum. Furthermore, MUC6 has a tandem repeat region rich in serine and threonine residues, and has a characteristic sugar chain structure in this region. As described later in the Examples, the inventors discovered that Muc6-/- mice deficient in both alleles of the mouse Muc6 gene (hereinafter referred to as "Muc6KO mice”) spontaneously develop gastric cancer in the antrum. . Furthermore, an increase in high-mannose type N-glycans was observed in the cancerous areas of Muc6KO mice. The carrier of this embodiment containing a molecule having binding activity to mannose exhibits migration into cancer tissues via mannose.
  • Examples of molecules having binding activity to mannose include sugar-binding proteins and antibodies.
  • sugar-binding proteins having mannose-binding activity include rPALa (recombinant Phlebodium aureum agglutinin a), rHeltuba (recombinant Helianthus tuberosus lectin), and rGRFT (recombinant Helianthus tuberosus lectin). combinant Griffithia sp.
  • rBanana recombinant Musa acuminata lectin
  • NPA Narcissus pseudonarcissus agglutinin
  • ConA Canavalia ensiformis agglutinin A
  • GNA Galanthus nivalis agglutinin
  • HHL Hippeastrum hybr id lectin
  • DBAI Dioscorea batatas agglutinin I
  • CCA Castanea crenata agglutinin
  • rOrysata recombinant Oryza sativa lectin
  • rCalsepa recombinant Calystegia sepium lectin
  • rBC2LA recombinant Burkholderia cenocepacia lectin
  • Banana lectin functions as a 15 kDa protein dimer.
  • Banana lectin includes, for example, a protein containing the amino acid sequence represented by SEQ ID NO: 1, but is not limited to proteins containing the amino acid sequence. Further, the above-mentioned protein having mannose-binding activity does not necessarily need to be r (recombinant), and may be a natural protein.
  • the sugar-binding protein has a defective or reduced hemagglutinating ability.
  • the hemagglutination reaction specific to lectin can be suppressed compared to wild-type banana lectin that does not have the mutation.
  • the target cancer to which the target substance is delivered is not particularly limited as long as the expression of MUC6 is negative and mannose is bound, and breast cancer (e.g., invasive ductal carcinoma, ductal carcinoma in situ) , inflammatory breast cancer, etc.), prostate cancer (e.g., hormone-dependent prostate cancer, hormone-independent prostate cancer, etc.), pancreatic cancer (e.g., pancreatic ductal cancer, etc.), gastric cancer (e.g., papillary adenocarcinoma, mucinous adenocarcinoma, glandular squamous adenocarcinoma, etc.) epithelial cancer, etc.), lung cancer (e.g., non-small cell lung cancer, small cell lung cancer, malignant mesothelioma, etc.), colon cancer (e.g., gastrointestinal stromal tumor, etc.), rectal cancer (e.g., gastrointestinal stromal tumor, etc.) , colorectal cancer (e.g.
  • Kaposi's sarcoma Kaposi's sarcoma caused by AIDS, maxillary sinus tumor, fibrous histiocytes cancer, leiomyosarcoma, rhabdomyosarcoma, chronic myeloproliferative disease, or leukemia (eg, acute myeloid leukemia, acute lymphoblastic leukemia, etc.).
  • gastric cancer tissue is particularly preferable because it has negative expression of MUC6 and binds more mannose than normal gastric tissue.
  • Examples of methods for determining whether mannose is bound to cancer tissue include, but are not limited to, immunostaining and flow cytometry.
  • immunostaining for example, GNL, banana lectin, antibodies, etc. that bind mannose are labeled with a labeling agent such as FITC and added to the cancer tissue to be determined. , the presence or absence of mannose can be visually determined.
  • mannose binding by flow cytometry for example, GNL, banana lectin, etc. that bind to mannose are labeled with a labeling agent such as FITC and added to cancer cells. Thereafter, the presence or absence of mannose can be visually determined by subjecting it to flow cytometry.
  • a labeling agent such as FITC
  • gastric cancer is generally classified into four types: gastric-type gastric cancer, intestinal-type gastric cancer, mixed-type gastric cancer, and non-expressing type gastric cancer.
  • gastric cancers there are two types of MUC6 expression-negative gastric cancer: intestinal type gastric cancer and non-expressing type gastric cancer.
  • Intestinal-type gastric cancer is gastric cancer that is positive for at least one of MUC2 and CD10 and negative for MUC5AC and MUC6.
  • Non-expressing gastric cancer is gastric cancer in which the expression of MUC5AC, MUC6, MUC2, and CD10 is negative.
  • negative refers to the results of immunostaining of proteins (MUC5AC, MUC6, MUC2, CD10, etc.) expressed from genes in the advanced tumor region (site at the tumor margin that does not contain necrotic tissue).
  • Positive refers to a state in which the proportion of tumor cells stained is less than 5%
  • positive refers to a state in which the proportion of tumor cells stained is 5% or more.
  • the target gastric cancer tissue to which the target substance is delivered by the carrier of this embodiment may be intestinal type gastric cancer or non-expressing type gastric cancer.
  • the causes of negative MUC6 expression in gastric tissues include mutations in the MUC6 gene and disappearance of MUC6-expressing cells; however, the gastric cancer tissue to which the target substance is delivered is due to MUC6 gene mutations. It may be a gastric cancer tissue that is negative for MUC6 expression, or it may be a gastric cancer tissue that is negative for MUC6 expression due to disappearance of MUC6-expressing cells.
  • the target gastric cancer tissue to which the target substance is delivered may be a gastric cancer tissue that has a mutation in the MUC6 gene or has decreased expression of the MUC6 gene.
  • Having a mutation in the MUC6 gene means that the original function of the MUC6 protein is at least partially lost due to a genetic mutation in the MUC6 gene.
  • the expression of the MUC6 gene is reduced means that the amount of the MUC6 gene product is reduced compared to a control wild type (hereinafter also referred to as "WT”) individual. .
  • the target gastric cancer tissue to which the target substance is delivered may be a gastric cancer tissue in which clusterin is increased compared to normal gastric tissue.
  • gastric cancer tissues negative for MUC6 expression have a high proportion of cells expressing clusterin.
  • This embodiment provides a complex of a carrier and a target substance.
  • the target substance is not particularly limited as long as it is to be delivered to cancer tissue, and examples thereof include anticancer agents, contrast agents, light absorption agents, and the like, with anticancer agents being preferred.
  • anticancer drugs include low molecular drugs, nucleic acids, proteins, peptides, and the like.
  • low-molecular drugs include antimetabolites such as 5-FU or methotrexate, alkylating drugs such as cyclofosmid, taxane compounds such as paclitaxel or docetaxel, and VcMMAE, which is one of the MMAE derivatives. It will be done.
  • Nucleic acids include cDNA, mRNA, siRNA, shRNA, miRNA, antisense RNA, and the like.
  • proteins include toxins, enzymes, and antibodies.
  • Toxic proteins are proteins that have cytotoxic properties. Toxin proteins include diphtheria toxin, ricin, saporin, cholera toxin, enterotoxin, elorizin, abrin, or pertussis toxin.
  • ETA cell killing domain
  • the above carrier such as banana lectin and a protein as an anticancer agent (for example, a toxin protein) may be connected, for example, with a linker consisting of the amino acid sequence Leu-Glu-Leu-Glu (see SEQ ID NO: 3); -Ser-Gly-Gly-Gly may be connected by a linker consisting of a twice-repeated sequence (see SEQ ID NO: 4).
  • the sequence of the linker that connects the carrier and the protein is not limited to these, and other sequences may be used. Examples of peptides include ligands, vaccines, and the like.
  • Anticancer agents also include genome editing-related factors.
  • a complex is formed between a Cas9 expression vector, an expression vector encoding a guide RNA that induces Cas9 to a target cancer gene, and a carrier, and this complex is used for gene therapy. Can be done.
  • the composite of this embodiment is made of barium sulfate, bismuth subcarbonate, bismuth oxide, zirconium oxide, ytterbium fluoride, iodoform, barium apatite, barium titanate, lanthanum glass, barium glass, or X-ray contrast agents such as strontium glass; contrast agents for computed tomography (CT) such as iodine contrast agents; contrast agents for MRI such as gadolinium agents or superparamagnetic iron oxide (SPIO); or technetium It is preferable to include radioisotopes for single photon emission computed tomography (SPECT) such as 99m (99mTc) and molybdenum 99 (99Mo).
  • CT computed tomography
  • SPIO superparamagnetic iron oxide
  • SPECT single photon emission computed tomography
  • the light absorber examples include near-infrared absorbers such as IR700.
  • IR700 near-infrared absorbers
  • the light-absorbing agent can be bound to the target cancer tissue, and cancer cells can be stimulated by light irradiation. can be destroyed (photoimmunotherapy).
  • the method of bonding the carrier and the target substance is not particularly limited, and examples thereof include covalent bonding, hydrogen bonding, bonding methods using a divalent crosslinking agent, biotin-streptavidin bonding, and the like.
  • a fusion protein of a lectin such as banana lectin and streptavidin or Halotag (registered trademark) can be produced, and a biotinylated drug or a Halotag ligand drug can be bound to the fusion protein as a target substance.
  • a low molecular drug such as VcMMAE can be bonded to the amino group or cysteine of a lectin such as banana lectin via a linker.
  • the complex may be configured as a fusion protein in which a lectin as a carrier and a protein as an anticancer agent are fused.
  • This embodiment provides a pharmaceutical composition comprising a complex of a carrier and a target substance.
  • a pharmaceutical composition comprising a complex of a carrier and a target substance.
  • the carrier and the target substance those similar to those described above can be used.
  • the pharmaceutical composition of the present embodiment can be administered orally in the form of a tablet, coated tablet, pill, powder, granule, capsule, solution, suspension, or emulsion, or as an injection or suppository. Alternatively, it can also be administered parenterally in the form of a skin external preparation.
  • the pharmaceutical composition of this embodiment may include a pharmaceutically acceptable delivery vehicle.
  • a pharmaceutically acceptable delivery vehicle those used in conventional formulations can be used without particular limitation. More specifically, for example, binders such as gelatin, corn starch, gum tragacanth, or gum arabic; excipients such as starch or crystalline cellulose; leavening agents such as alginic acid; injections such as water, ethanol, or glycerin. and adhesives such as rubber-based adhesives and silicone-based adhesives.
  • Pharmaceutically acceptable delivery vehicles can be used alone or in combination of two or more.
  • the pharmaceutical composition of this embodiment may further contain additives.
  • Additives include lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin, and maltitol; flavoring agents such as peppermint and red oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid.
  • lubricants such as calcium stearate and magnesium stearate
  • sweeteners such as sucrose, lactose, saccharin, and maltitol
  • flavoring agents such as peppermint and red oil
  • stabilizers such as benzyl alcohol and phenol
  • phosphoric acid examples include buffering agents such as salts and sodium acetate; solubilizing agents such as benzyl benzoate and benzyl alcohol; antioxidants; and preservatives.
  • the additives can be used alone or in combination of two or more.
  • the method of administering the pharmaceutical composition of this embodiment is not particularly limited, and may be determined as appropriate depending on the patient's symptoms, weight, age, sex, etc. For example, tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions, or emulsions are administered orally. Injections are administered intravenously alone or mixed with normal replacement fluids such as glucose and amino acids, and further intraarterially, intramuscularly, intradermally, subcutaneously, or intraperitoneally as necessary.
  • the dosage of the pharmaceutical composition of the present embodiment varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally, but in the case of oral administration, for example, 1 ⁇ g to 10 g per day, for example, 1 ⁇ g to 10 g per day. 0.01 to 2000 mg of the active ingredient may be administered per dose.
  • the active ingredient may be administered in an amount of, for example, 0.1 ⁇ g to 1 g per day, for example 0.001 to 200 mg per day.
  • the active ingredient may be administered in an amount of, for example, 1 ⁇ g to 10 g per day, for example 0.01 to 2000 mg per day.
  • This embodiment provides a method for treating cancer, which includes administering the above-described pharmaceutical composition to a patient in need of treatment.
  • the dosage of the pharmaceutical composition includes, for example, the dosage described above, but the dosage is not particularly limited as long as it is an effective amount of the pharmaceutical composition.
  • This embodiment involves introducing a chimeric antigen receptor gene (CAR gene) that recognizes mannose as a target molecule into T cells taken from a patient in need of treatment, and T cells into which the chimeric antigen receptor gene has been introduced.
  • a method of treating cancer is provided, the method comprising administering cells (CAR-T cells) to a patient.
  • This embodiment provides the use of a pharmaceutical composition for manufacturing a therapeutic agent for cancer.
  • a pharmaceutical composition for the treatment of cancer, particularly for the treatment of MUC6 expression-negative gastric cancer, which comprises a complex of a carrier and a target substance.
  • the carrier, target substance, and pharmaceutical composition those similar to those described above can be used.
  • This embodiment is a companion diagnostic agent used for cancer patients using the above pharmaceutical composition, which includes an anti-clusterin antibody, a primer set for amplifying the clusterin gene, and/or binds to the clusterin gene or its amplification product.
  • the present invention provides a diagnostic agent containing a probe for
  • Clusterin is a glycoprotein with a molecular weight of 75-80 kDa and is found in biological fluid samples. As described later in Examples, it has been confirmed that in MUC6-negative human gastric cancer tissue, the proportion of cells expressing clusterin is high, and the proportion of mannose-binding clusterin is high. Therefore, in identifying a patient who will use the pharmaceutical composition of this embodiment, it is preferable to use the expression level of the clusterin gene or clusterin protein as an index. In addition, mannose may be bound to clusterin or other glycoproteins in cancer tissues other than gastric cancer.
  • an ELISA kit for detecting clusterin protein a kit for extracting nucleic acids (e.g., total RNA) from body fluids, cells, tissues, etc. , a fluorescent substance for labeling, a reagent for nucleic acid amplification, or the like.
  • nucleic acids e.g., total RNA
  • specimens include blood, urine, saliva, sweat, or tissue exudates, with blood or urine being preferred.
  • the expression level of clusterin protein may be analyzed using ELISA, etc., or clusterin DNA fragments are amplified by PCR using primers, and the amplified products are analyzed.
  • the analysis may be performed by a method using hybridization using a probe complementary to a specific clusterin DNA or clusterin mRNA.
  • Muc6KO mice were produced under contract to the University of Tsukuba Life Science Animal Resource Center. Specifically, as shown in FIG. 1, a sequence encoding DsRED, a 2A sequence, a FlpER sequence, and a STOP sequence are knocked into the start codon present in exon 2 of the 33 exons of the mouse Muc6 gene. The design was such that the endogenous Muc6 gene would be deleted if the individual had the FlpER sequence and STOP sequence knocked into both alleles.
  • mouse Muc6-expressing cells can be made to glow.
  • the 2A sequence is a base sequence that encodes the 2A peptide that separates proteins during translation.
  • the FlpER sequence is a sequence in which the Flpo sequence and the ERT2 sequence are connected with a linker (see SEQ ID NO: 5).
  • WT mice were purchased from CLEA Japan. The background of each mouse described in this example is C57BL/6N.
  • ISH RNA in situ hybridization
  • mice stomach tissue was fixed with 10% formalin and embedded in paraffin, and then sections were prepared. In situ hybridization was performed on this section using RNAscope(R) 2.5 HD Duplex Detection Reagents Kit (ACD) and a probe that specifically recognizes mouse Muc6 and Gif.
  • ACD RNAscope 2.5 HD Duplex Detection Reagents Kit
  • a probe that specifically recognizes mouse Muc6 and Gif As a probe for mouse Muc6, ACD's RNAscope Probe-Mm-Muc6 (blue) was used.
  • Gif probe ACD's RNAscope Probe-Mm-Gif (red) was used.
  • FIG. 2 is a stained image visualizing Muc6 and Gif mRNA in the stomachs of Muc6KO mice and WT mice by in situ hybridization.
  • the scale bar in FIG. 2 is 100 ⁇ m.
  • region R1 where gastric accessory cells are located is stained blue
  • region R2 where principal cells are located is stained red.
  • Expression of mouse Muc6 was confirmed in accessory cells.
  • the Muc6KO mouse a red-stained region R3 was observed in the gastric corpus and gastric antrum, but no blue region was observed. From this, it was confirmed that the expression of mouse Muc6 disappeared in the gastric corpus and gastric antrum of Muc6KO mice, and the generated Muc6KO mice lacked the mouse Muc6 gene. Note that no expression of murine Muc6 or Gif was confirmed in the duodenum.
  • FIG. 3 is a graph showing the expression level of the Muc6 gene in the gastric mucosa of WT mice and Muc6KO mice, as measured by qPCR.
  • qPCR was performed on cDNA obtained by reverse transcription of RNA extracted from the gastric mucosa of WT mice and Muc6KO mice.
  • the forward primer shown in SEQ ID NO: 6 and the reverse primer shown in SEQ ID NO: 7 were used.
  • FIG. 4 shows a bright field image of the stomach of a Muc6KO mouse and a stained image of a tissue section of the stomach. HE staining was used for staining. In the explanation at the top of the figure, the embryonic week (w) or month (m) of the Muc6KO mouse is indicated.
  • Dysplasia was confirmed in 6 out of 6 MucKO mice at 3 months of age, as indicated by the marks in the figure. Furthermore, Adenocarcinoma was confirmed in 4 out of 4 mice at 8 months old and in 3 out of 3 mice at 12 months old. Thus, it was confirmed that Muc6KO mice spontaneously develop cancer in the gastric antrum.
  • FIG. 5 is an electron microscope image of stomach tissue sections of WT mice and Muc6KO mice.
  • tissue sections of the stomachs of WT mice and Muc6KO mice were observed using an electron microscope, the formation of a mucin layer (a linear structure in a 300,000x magnification) was confirmed in both, as shown in FIG. 5.
  • both the WT mouse and the Muc6KO mouse were 3 months old, and the sectioned stomach tissue of the Muc6KO mouse was Dysplasia.
  • FIG. 6 is a fluorescent immunostaining image visualizing MUC5AC in stomach tissue sections of WT mice and Muc6KO mice.
  • the scale bar in FIG. 6 is 100 ⁇ m.
  • fluorescent immunostaining first, mouse stomach tissue was fixed with 10% formalin and embedded in paraffin, and sections were prepared. Note that both the WT mouse and the Muc6KO mouse were 3 months old, and the sectioned stomach tissue of the Muc6KO mouse was Dysplasia. Next, the tissue section was subjected to deparaffinization treatment and antigen retrieval treatment, washed with PBS (Phosphate-buffered saline), and then blocked for 1 hour with PBS mixed with 10% goat serum.
  • PBS Phosphate-buffered saline
  • anti-Muc5AC antibody manufactured by Abcam
  • a secondary antibody Alexa Fluor 488, manufactured by Invitrogen
  • the cells were washed again with PBS, and the nuclei were stained using Hoechst (registered trademark) 33342 (Dojindo Laboratories), sealed, and observed under a microscope.
  • FIG. 7 is a fluorescent immunostaining image visualizing MUC2 and MUC4 in stomach tissue sections of WT mice and Muc6KO mice.
  • the scale bar in FIG. 7 is 100 ⁇ m.
  • Mouse monoclonal anti-MUC4 Santa Curuz Sc-33654 from Santa Cruz Biotechnology, Inc. and Rabbit monoclonal anti-MUC2 Abcam Ab9007 from Abcam were used as primary antibodies.
  • GOAT-Rabbit 488 and GOAT-Mouse 555 were used as secondary antibodies, and Alexa Fluor 488 and Alexa Fluor 555 (both manufactured by Invitrogen) were used as fluorescent groups.
  • Other conditions were the same as those for staining shown in FIG. 6.
  • FIG. 6 In FIG.
  • the red stained area representing the mouse MUC6 protein is shown as R4, and the green stained area representing the MUC2 protein is shown as R5.
  • the expression of Muc2 and Muc4 was increased in Muc6KO mice compared to WT mice.
  • gastric parietal cells and principal cells decreased, and tuft cells increased.
  • the stomach tissue of the 3-month-old Muc6KO mouse that was sectioned was Dysplasia, and the stomach tissue of the 8-month-old Muc6KO mouse was cancerous tissue.
  • the mucin composition of Muc6KO mice was different from that of WT mice, and the formation of Metaplasia was confirmed.
  • LC-MS analysis was performed on sugar chains bound to the vestibular normal tissue of WT mice and the vestibular cancer tissue of Muc6KO mice.
  • Whole lysates extracted from WT mice and Muc6KO mice using Lipa buffer were adjusted to approximately 3 mg/mL, desalted, and LC-MS analysis of O-glycans and N-glycans was entrusted to Sumitomo Bakelite. did.
  • the sugar chains in the sample were released using EZGlyco (registered trademark) O-Glycan Prep Kit, and purified and labeled.
  • EZGlyco registered trademark
  • O-Glycan Prep Kit 50 ⁇ L of the obtained sugar chain solution was dried, redissolved in 10 ⁇ L of ultrapure water, and 1 ⁇ L of it was subjected to LC-MS analysis.
  • N-type sugar chains first, the sample was concentrated to dryness using a centrifugal concentrator, and the sugar chains were released by reductive alkylation treatment, trypsin digestion, and PNGase F. Thereafter, free sugar chains were purified and labeled using BlotGlyco (registered trademark). Next, 50 ⁇ L of the obtained sugar chain solution was concentrated and redissolved in 10 ⁇ L of pure water, of which 1 ⁇ L was subjected to LC-MS analysis.
  • FIG. 8 shows the analysis results of O-type sugar chains by LC-MS analysis
  • FIG. 9 shows the analysis results of N-type sugar chains by LC-MS analysis.
  • the amount of O-glycan binding in Muc6KO mice was decreased overall compared to WT.
  • N-glycans in Muc6KO mice are found to have a core fucose structure, a mannose-rich sugar chain, and a sialic acid bond, compared to WT. It was revealed that there is an increase in
  • FIG. 10A is a schematic diagram of lectin microarray analysis of a sugar chain component extract of gastric mucosal epithelial cells.
  • FIG. 10B is a graph showing the binding of rBanana lectin to the sugar chain component extract of each gastric mucosal epithelial cell of WT mouse and Muc6KO mouse
  • FIG. 10C is a graph showing the binding property of rBanana lectin to each gastric mucosal epithelial cell of WT mouse and Muc6KO mouse
  • FIG. 10D is a graph showing the binding property of rGRFT lectin to the sugar chain component extract of each gastric mucosal epithelial cell of WT mice and Muc6KO mice. .
  • the WT mice and Muc6KO mice are 8 months old, and the sugar chain component extract of Muc6KO mice was extracted from cancer tissue.
  • FIGS. 10B, 10C, and 10D lectin microarray analysis revealed that in Muc6KO mice, lectins that bind to mannose (Heltuba, rGRFT, and rBanana) were more abundant in gastric mucosal epithelial cells than in WT mice. It was revealed that it easily binds to sugar chain components. Additionally, data indicating that rBC2LA easily binds was obtained.
  • Banana lectin was selected from among the above lectins that have high binding properties to mannose and used for subsequent analysis.
  • FIG. 11A is a fluorescent staining image showing the results of binding FITC-labeled banana lectin to a tissue section of the stomach of a WT mouse
  • FIG. 11B is a fluorescent staining image showing the binding of FITC-labeled GNL to a tissue section of the stomach of a WT mouse. This is a fluorescent staining image showing the results.
  • FIG. 11C is a fluorescent staining image showing the result of binding FITC-labeled banana lectin to a tissue section of the stomach of a Muc6KO mouse
  • FIG. 11D is a fluorescent staining image showing the result of binding FITC-labeled GNL to a tissue section of the stomach of a Muc6KO mouse.
  • FIGS. 11A-11D This is a fluorescent staining image showing the result of combining .
  • the scale bar is 100 ⁇ m.
  • the mice in FIGS. 11A to 11D were 8 months old, and the sectioned stomach tissue of the Muc6KO mouse was cancerous tissue.
  • FITC-labeled banana lectin or FITC-labeled GNL was incubated with tissue sections.
  • GNL like banana lectin, is a lectin that binds to mannose.
  • FIG. 12 is a schematic diagram showing banana lectin blotting.
  • banana lectin As described above, the protein to which banana lectin, which increases binding properties in Muc6KO mice, binds was confirmed by banana lectin blotting described in detail below. Specifically, first, proteins were extracted from gastric mucosal cells of 8-month-old WT mice and Muc6KO mice using IP lysis buffer. Thereafter, the following experiments were carried out outsourced to Nippon Proteomics. Cancer tissue was formed in the gastric mucosa of Muc6KO mice, and the gastric mucosal cells were collected from the cancer tissue.
  • the gastric mucosal lysate was centrifuged at 18,000 G for 10 minutes to collect the supernatant, 50 ⁇ L of streptavidinated beads and 10 ⁇ g of biotinylated banana lectin were added, and the mixture was incubated at 4° C. for 4 hours.
  • Streptavidinated beads are magnetic beads.
  • washing buffer 0.1M HEPES pH 7.5, 0.15M NaCl, 0.2% NP-40
  • FIG. 13 shows the results of SDS-PAGE of proteins pulled down with banana lectin. Focusing on the differences in bands between WT mice and Muc6KO mice, which are shown in boxes in Figure 13, seven types of bands whose expression was increased in Muc6KO mice were cut out from the gel, treated with trypsin, and then analyzed by LC-MS analysis. We attempted to identify the internal proteins. As a result, the 65 kDa protein was identified as secreted clusterin protein precursor (psClu). Furthermore, psClu was also detected in Western blotting, which will be explained below.
  • Figure 14 shows the results of Western blotting of proteins in the cell lysate and the pulled-down lysate.
  • WT-derived protein, KO-derived protein, and the protein pulled down with the banana lectin described above were subjected to SDS-PAGE using a 7.5% to 16% lysate gel, and then transferred to a PVDF membrane (manufactured by Pall Corporation). Transcribed.
  • WT pull down protein the pulled down protein derived from WT mouse
  • Muc6KO mouse the pulled down protein derived from Muc6KO mouse
  • This membrane was blocked with 5% skim milk for 1 hour, washed with Tris Buffered Saline with Tween 20 (TBS-T), and then incubated overnight at 4°C with anti-clusterin antibody (RD bioscience) as a primary antibody. 2000 times diluted).
  • the membrane was washed three times with TBS-T and reacted with a secondary antibody (manufactured by GE Healthcare) labeled with horseradish peroxidase (HRP) for 1 hour.
  • HRP horseradish peroxidase
  • FIG. 15 is a fluorescent immunostaining image visualizing nuclei, clusterin, and mannose in stomach tissue sections of WT mice and Muc6KO mice.
  • the scale bar in FIG. 15 is 100 ⁇ m.
  • FIG. 15A is a fluorescent immunostained image of a gastric mucosal tissue section of a WT mouse
  • FIG. 15B is a partially enlarged view of the fluorescent immunostained image shown in FIG. 15A
  • FIG. 15C is a fluorescent immunostained image of a gastric mucosal tissue section of an 8-month-old Muc6KO mouse
  • FIG. 15D is a partially enlarged view of the fluorescent immunostained image shown in FIG. 15C.
  • FIG. 15C is a fluorescent immunostaining image visualizing nuclei, clusterin, and mannose in stomach tissue sections of WT mice and Muc6KO mice.
  • the scale bar in FIG. 15 is 100 ⁇ m.
  • FIG. 15A is a fluorescent immunostained image of a gastric mucos
  • FIG. 15E is a fluorescent immunostained image of a gastric mucosal tissue section of a 12-month-old Muc6KO mouse
  • FIG. 15F is a partially enlarged view of the fluorescent immunostained image shown in FIG. 15E.
  • the stomach tissues of 8-month-old and 12-month-old Muc6KO mice that were sectioned were cancerous tissues.
  • the staining shown in FIGS. 15A to 15F was performed in the same manner as the staining shown in FIG. 7, except that anti-clusterin antibody (RD bioscience, 2000-fold dilution), FITC-labeled GNL, and DAPI were used to stain the nucleus. went.
  • the blue region indicating the nucleus is indicated as R6, the red region indicating clusterin is indicated as R7, and the green region indicating GNL (and thus mannose) is indicated as R8.
  • FIG. 16A is an immunostaining image showing the expression of clusterin in a human gastric cancer tissue array
  • FIG. 16B is a graph showing the results of classifying samples according to the proportion of cells expressing clusterin in the human gastric cancer tissue array
  • FIG. 17A is an immunostaining image showing the presence of clusterin and mannose in the human gastric cancer tissue array
  • FIG. 17B is a graph showing the proportion of mannose-binding clusterin in the human gastric cancer tissue array.
  • the scale bar in FIGS. 16A and 17A is 100 ⁇ m.
  • FIGS. 16A and 17A show the above-mentioned human gastric cancer tissue array with the above-mentioned anti-clusterin antibody (GOAT antibody) as a primary antibody, 555 donkey-GOAT (manufactured by Invitrogen) as a secondary antibody, and a dye as a dye.
  • GOAT antibody anti-clusterin antibody
  • 555 donkey-GOAT manufactured by Invitrogen
  • a dye as a dye.
  • a stained image is shown in which staining was performed using the above-mentioned Alexa Fluor 555, FITC-labeled GNL, and Hoechst (registered trademark) 33342.
  • the red region representing clusterin is shown as R9
  • the blue region representing the cell nucleus is shown as R10
  • R11 the green region representing GNL (and mannose) is shown as R11. has been done.
  • specimens in which the percentage of stained clusterin-expressing cells was less than 5% were classified as grade 1
  • specimens in which the ratio was 5% to 50% were classified as grade 2
  • specimens in which the ratio exceeded 50% were classified as grade 3.
  • FIG. 16A it was revealed that the proportion of grades 2 and 3 was higher in MUC6-negative specimens than in MUC6-positive specimens. Note that whether the test sample was MUC6 negative or MUC6 positive was determined based on the results of immunostaining.
  • FIG. 18 shows the staining images and flow cytometry results obtained when FITC-labeled banana lectin was administered to MKN45, a MUC6-negative human gastric cancer cell line, and HUG1-P1, a MUC6-positive human gastric cancer cell line.
  • Banana lectin binding in each gastric cancer cell line was quantitatively evaluated using flow cytometry as follows.
  • MKN45 and HUG1-P1 cells purchased from Sumitomo Pharma International Co., Ltd. and RIKEN CELL BANK were used.
  • FITC-labeled banana lectin final concentration 0.4 ⁇ g/mL
  • unlabeled banana lectin as a control was added to 0.4 ⁇ 10 6 cells of each gastric cancer cell line, and cultured for 24 hours.
  • trypsin treatment was performed, and the cells were collected, washed, and centrifuged, suspended in 10% FBS (Fetal Bovine Serum), and passed through a 20 ⁇ L cell strainer to prepare a sample. Thereafter, flow cytometry was performed using Guava EasyCyte Plus (manufactured by Merck & Co.). After one sample was run and fluorescence correction was performed, all samples were run under the same conditions.
  • the horizontal axis was plotted with the fluorescence intensity at a wavelength of 488 nm and the vertical axis was plotted with the number of cells for the control specimen and the sample administered with FITC-labeled banana lectin, as shown in the lower part of Figure 18. It is a graph.
  • the MUC6-negative human gastric cancer cell line emits strong green fluorescence as a whole, and the MUC6-negative human gastric cancer cell line is more sensitive than the MUC6-positive human gastric cancer cell line.
  • the green fluorescence was strong. This revealed that the expression level of mannose-binding clusterin was high in the MUC6-negative human gastric cancer cell line.
  • the distance between the two waveforms is larger in the MUC6-negative gastric cancer cell line, indicating that more banana lectin is bound in the MUC6-negative gastric cancer cell line. I can see it.
  • banana lectin binding was high even in the MUC6-negative human gastric cancer cell line, so a hemagglutination reaction using banana lectin was performed as follows.
  • FIG. 19 shows the results of a hemagglutination test using banana lectin.
  • a hemagglutination reaction was performed using WT banana lectin whose amino acid sequence is shown in SEQ ID NO: 1 and H84T banana lectin (see SEQ ID NO: 8), which is obtained by adding the H84T mutation to the banana lectin in order to suppress the hemagglutination reaction specific to lectin. An inspection was conducted.
  • a banana lectin drug complex (H84T banana lectin-PE38, amino acid (See SEQ ID NO: 9) was prepared and a hemagglutination test was performed.
  • a banana lectin drug complex first, a nucleic acid sequence encoding a linker shown in SEQ ID NO: 3 is attached to the 3' end of a nucleic acid sequence encoding banana lectin having the H84T mutation (see SEQ ID NO: 8).
  • a nucleic acid sequence (see SEQ ID NO: 10) fused with a nucleic acid sequence encoding a 38 kDa partial region of the cell killing domain (ETA) region of Pseudomonas aeruginosa toxin PE38 (see SEQ ID NO: 2 above) was inserted into the pET27b vector, and the E. coli transformed into.
  • E. coli was cultured at 37°C, and protein expression was induced with IPTG. Thereafter, Escherichia coli was collected by centrifugation, and the protein was extracted, followed by affinity purification with Sepharose CL-6B (Cytiva) on which D-mannose was immobilized, to obtain a banana lectin drug complex.
  • hemagglutination test first, blood from a mouse was collected, 4 to 5 times the volume of PBS was added, centrifugation was repeated 3 to 4 times, and the supernatant was discarded to obtain a red blood cell fraction. PBS was then added to prepare a 2% v/v red blood cell suspension for 25 ⁇ L of lectin (0.12-30 ⁇ g/mL) with a concentration gradient on a 96-well U-shaped titer plate. 50 ⁇ L of red blood cell suspension was added and allowed to stand for about 1 hour, and the hemagglutination reaction was confirmed.
  • Figure 20 shows the results of evaluating the cytotoxic activity of the banana lectin drug complex against HUG1-P1 and MKN45 at different doses. These are the results of evaluating the damage activity over time.
  • FIG. 22 is a diagram showing the administration schedule of banana lectin drug complex to Muc6KO mice. Furthermore, FIG. 23 shows the results of immunohistochemical staining of gastric tissue sections of Muc6KO mice administered with the banana lectin drug complex, and FIG. 24 shows the results of quantifying the signal intensity in FIG. FIG. The scale bar in FIG. 23 is 100 ⁇ m.
  • the number of Ki-67 positive cells which indicates the proliferative ability of cancer cells, decreased, indicating that cell proliferation was suppressed.
  • the number of cleaved caspase-3-positive cells which is a marker for apoptosis, increased, confirming induction of apoptosis in tumor ducts.
  • FIG. 25 is a diagram showing the influence of banana lectin having the H84T mutation or banana lectin drug complex on a Xenograft prepared by transplanting MKN45 into both buttocks of a nude mouse.
  • a Xenograft was created by transplanting the human gastric cancer cell line MKN45 into a nude mouse. As a result of histopathological examination, it has been revealed that the Xenograft is a cancer cell.
  • the extracted Xenografts in the group administered with the banana lectin drug complex were smaller and lighter in weight than in the control group administered with banana lectin having the H84T mutation. From the above results, it was revealed that the banana lectin drug complex has the effect of suppressing the proliferation of human gastric cancer cells and shrinking tumors.
  • This embodiment can be utilized for new drug therapy for cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

This carrier for delivering a target substance to MUC6 expression-negative cancer tissues contains a molecule having the activity of binding to mannose. The cancer tissues may be MUC6 expression-negative gastric cancer tissues arising from MUC6 gene mutations, intestinal-type gastric cancer, or gastric cancer that is negative for the expression of MUC5AC, MUC6, MUC2, and CD10. The molecule having the activity of binding to mannose may be a saccharide-binding protein.

Description

担体、複合体、医薬組成物、及び診断薬Carriers, complexes, pharmaceutical compositions, and diagnostic agents

 本発明は、担体、複合体、医薬組成物、及び診断薬に関する。
 本願は、2022年8月30日に、米国に出願された米国仮出願63/402,071号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to carriers, complexes, pharmaceutical compositions, and diagnostic agents.
This application claims priority from U.S. Provisional Application No. 63/402,071, filed in the United States on August 30, 2022, the contents of which are hereby incorporated by reference.

 従来の進行胃癌に対する化学療法で使用される薬物は種々あるが、効果は不十分で、未だ生存期間の大幅な延長をなし得ていない。一部の胃がん症例では、HER2やPD-L1など癌細胞・癌組織に高発現する受容体や表面マーカーを標的にした治療薬の開発が行われ、有望な治療効果も見られている(例えば、特許文献1参照。)。
 しかしながら、大多数の胃癌においてはそのような癌特異的マーカーの同定はなされていない。
Although there are various drugs conventionally used in chemotherapy for advanced gastric cancer, their effectiveness is insufficient and survival times have not yet been significantly extended. For some gastric cancer cases, therapeutic drugs have been developed that target receptors and surface markers that are highly expressed in cancer cells and cancer tissues, such as HER2 and PD-L1, and promising therapeutic effects have been observed (e.g. , see Patent Document 1).
However, such cancer-specific markers have not been identified in the majority of gastric cancers.

 胃発癌過程においては、慢性炎症性変化である胃粘膜の萎縮、腸上皮化生が引き起こされる。結果として胃粘膜中ムチン及び糖鎖組成の変化が生じており、主要な胃のムチンであるMUC6は、胃癌の40%程度で発現低下が確認されている。
 胃癌では、MUC6遺伝子の変異が認められ、予後不良・化学療法抵抗性と関連することが知られている。
During the gastric carcinogenesis process, chronic inflammatory changes such as atrophy of the gastric mucosa and intestinal metaplasia are caused. As a result, changes occur in mucin and sugar chain composition in the gastric mucosa, and decreased expression of MUC6, a major gastric mucin, has been confirmed in about 40% of gastric cancers.
MUC6 gene mutations are observed in gastric cancer, and are known to be associated with poor prognosis and resistance to chemotherapy.

特許第5885764号公報Patent No. 5885764

 しかし、MUC6遺伝子の胃癌発生・進展における役割は不明であり、予後不良として知られるMUC6発現陰性の進行胃癌に対する新規薬物療法が求められている。 However, the role of the MUC6 gene in the development and progression of gastric cancer is unknown, and there is a need for new drug therapy for advanced gastric cancer that is negative for MUC6 expression and is known to have a poor prognosis.

 本発明は、上記事情に鑑みてなされたものであって、癌に対する新規薬物療法に活用できる、担体、複合体、医薬組成物、及び診断薬を提供する。 The present invention has been made in view of the above circumstances, and provides a carrier, a complex, a pharmaceutical composition, and a diagnostic agent that can be utilized for new drug therapy against cancer.

 本発明は、以下の態様を含む。
[1]MUC6発現陰性のがん組織へ対象物質を送達するための担体であって、マンノースへの結合活性を有する分子を含む、担体。
[2]前記がん組織は、胃がん組織である、[1]に記載の担体。
[3]前記胃がん組織が、MUC6遺伝子変異によるMUC6発現陰性の胃がん組織である、[2]に記載の担体。
[4]前記胃がん組織が、腸型胃癌である、[2]に記載の担体。
[5]前記胃がん組織が、MUC5AC、MUC6、MUC2及びCD10の発現がいずれも陰性の胃癌である、[2]に記載の担体。
[6]前記分子は、糖結合タンパク質である、[1]~[5]のいずれか1つに記載の担体。
[7]前記糖結合タンパク質は、血球凝集能が欠損又は低下している、[6]に記載の担体。
[8]前記糖結合タンパク質は、バナナレクチンである、[6]又は[7]に記載の担体。
[9]前記バナナレクチンは、H84Tのアミノ酸変異を有する、[8]に記載の担体。
[10][1]~[9]のいずれか1つに記載の担体と対象物質との複合体。
[11]前記対象物質は、抗がん剤である、[10]に記載の複合体。
[12][10]又は[11]に記載の複合体を含む、医薬組成物。
[13][12]に記載の医薬組成物を使用するがん患者に用いられるコンパニオン診断薬であって、抗クラステリン抗体、クラステリン遺伝子を増幅するためのプライマーセット、又はクラステリン遺伝子若しくはその増幅産物に結合するプローブを含む、診断薬。
[14][1]から[9]のいずれか1つに記載の担体と、対象物質との複合体を含む医薬組成物を、治療を必要とする患者に投与することを含む、がんの治療方法。
[15]前記対象物質が抗がん剤である、[14]に記載のがんの治療方法。
The present invention includes the following aspects.
[1] A carrier for delivering a target substance to a cancer tissue negative for MUC6 expression, the carrier containing a molecule having binding activity to mannose.
[2] The carrier according to [1], wherein the cancer tissue is a stomach cancer tissue.
[3] The carrier according to [2], wherein the gastric cancer tissue is a gastric cancer tissue that is negative for MUC6 expression due to a MUC6 gene mutation.
[4] The carrier according to [2], wherein the gastric cancer tissue is intestinal type gastric cancer.
[5] The carrier according to [2], wherein the gastric cancer tissue is a gastric cancer in which the expression of MUC5AC, MUC6, MUC2, and CD10 is negative.
[6] The carrier according to any one of [1] to [5], wherein the molecule is a sugar-binding protein.
[7] The carrier according to [6], wherein the sugar-binding protein has a defective or reduced hemagglutinating ability.
[8] The carrier according to [6] or [7], wherein the sugar-binding protein is banana lectin.
[9] The carrier according to [8], wherein the banana lectin has an amino acid mutation of H84T.
[10] A complex of the carrier according to any one of [1] to [9] and a target substance.
[11] The complex according to [10], wherein the target substance is an anticancer drug.
[12] A pharmaceutical composition comprising the complex according to [10] or [11].
[13] A companion diagnostic agent used for cancer patients who use the pharmaceutical composition described in [12], which comprises an anti-clusterin antibody, a primer set for amplifying the clusterin gene, or the clusterin gene or its amplification product. A diagnostic agent that includes a probe that binds.
[14] A treatment for cancer comprising administering to a patient in need of treatment a pharmaceutical composition containing a complex of the carrier according to any one of [1] to [9] and a target substance. Method of treatment.
[15] The method for treating cancer according to [14], wherein the target substance is an anticancer drug.

 本発明は、癌に対する新規薬物療法に活用することができる。 The present invention can be utilized for new drug therapy for cancer.

マウスMuc6遺伝子のエクソン1内の開始コドンにFlpER配列を挿入した状態を示す概略図である。FIG. 2 is a schematic diagram showing a state in which a FlpER sequence is inserted into the start codon within exon 1 of the mouse Muc6 gene. Muc6KOマウスから作製した胃の組織切片におけるRNA ISHの結果である。These are the results of RNA ISH in stomach tissue sections prepared from Muc6KO mice. qPCRにより測定された、WTマウスとMuc6KOマウスの胃粘膜におけるMuc6遺伝子の発現量を示すグラフである。It is a graph showing the expression level of the Muc6 gene in the gastric mucosa of WT mice and Muc6KO mice as measured by qPCR. Muc6KOマウスの胃の明視野像と胃の組織切片の染色像である。These are a bright field image of the stomach of a Muc6KO mouse and a stained image of a tissue section of the stomach. WTマウス及びMuc6KOマウスの胃の組織切片の電子顕微鏡像である。These are electron microscopic images of stomach tissue sections of WT mice and Muc6KO mice. WTマウス及びMuc6KOマウスの胃の組織切片においてMUC5ACを可視化した蛍光免疫染色像である。FIG. 2 is a fluorescent immunostaining image visualizing MUC5AC in stomach tissue sections of WT mice and Muc6KO mice. WTマウス及びMuc6KOマウスの胃の組織切片においてMUC2及びMUC4を可視化した蛍光免疫染色像である。FIG. 2 is a fluorescent immunostaining image visualizing MUC2 and MUC4 in stomach tissue sections of WT mice and Muc6KO mice. LC-MS解析によるO型糖鎖の解析結果である。This is the analysis result of O-type sugar chain by LC-MS analysis. LC-MS解析によるN型糖鎖の解析結果である。This is the analysis result of N-type sugar chain by LC-MS analysis. 胃粘膜上皮細胞の糖鎖成分抽出液に対するレクチンマイクロアレイ解析の概略図である。FIG. 2 is a schematic diagram of lectin microarray analysis of a sugar chain component extract of gastric mucosal epithelial cells. WTマウス及びMuc6KOマウスの各胃粘膜上皮細胞の糖鎖成分抽出液に対するrBananaレクチンの結合性を示すグラフである。It is a graph showing the binding property of rBanana lectin to sugar chain component extracts of gastric mucosal epithelial cells of WT mice and Muc6KO mice. WTマウス及びMuc6KOマウスの各胃粘膜上皮細胞の糖鎖成分抽出液に対するrGRFTレクチンの結合性を示すグラフである。It is a graph showing the binding property of rGRFT lectin to sugar chain component extracts of gastric mucosal epithelial cells of WT mice and Muc6KO mice. WTマウス及びMuc6KOマウスの各胃粘膜上皮細胞の糖鎖成分抽出液に対するHeltubaレクチンの結合性を示すグラフである。It is a graph showing the binding property of Heltuba lectin to sugar chain component extracts of gastric mucosal epithelial cells of WT mice and Muc6KO mice. WTマウスの胃の組織切片に、FITC標識したバナナレクチンを結合させた結果を示す蛍光染色像である。This is a fluorescent staining image showing the results of binding FITC-labeled banana lectin to a stomach tissue section of a WT mouse. WTマウスの胃の組織切片に、FITC標識したGNLを結合させた結果を示す蛍光染色像である。This is a fluorescent staining image showing the results of binding FITC-labeled GNL to a tissue section of the stomach of a WT mouse. Muc6KOマウスの胃の組織切片に、FITC標識したバナナレクチンを結合させた結果を示す蛍光染色像である。This is a fluorescent staining image showing the results of binding FITC-labeled banana lectin to a tissue section of the stomach of a Muc6KO mouse. Muc6KOマウスの胃の組織切片に、FITC標識したGNLを結合させた結果を示す蛍光染色像である。This is a fluorescent staining image showing the results of binding FITC-labeled GNL to a tissue section of the stomach of a Muc6KO mouse. バナナレクチンブロッティングを示すスキーム図である。FIG. 2 is a schematic diagram showing banana lectin blotting. バナナレクチンでプルダウンしたタンパク質のSDS-PAGEの結果である。These are the results of SDS-PAGE of proteins pulled down with banana lectin. 細胞ライセートとプルダウンされたライセート中のタンパク質のウエスタンブロッティングの結果である。These are the results of Western blotting of proteins in cell lysate and pulled-down lysate. WTマウスの胃粘膜組織切片の蛍光免疫染色像である。This is a fluorescent immunostained image of a gastric mucosal tissue section of a WT mouse. 図15Aに示された蛍光免疫染色像の部分拡大図である。FIG. 15 is a partially enlarged view of the fluorescent immunostaining image shown in FIG. 15A. 8カ月齢のMuc6KOマウスの胃粘膜組織切片の蛍光免疫染色像である。This is a fluorescent immunostaining image of a gastric mucosal tissue section of an 8-month-old Muc6KO mouse. 図15Cに示された蛍光免疫染色像の部分拡大図である。FIG. 15C is a partially enlarged view of the fluorescent immunostaining image shown in FIG. 15C. 12カ月齢のMuc6KOマウスの胃粘膜組織切片の蛍光免疫染色像である。This is a fluorescent immunostaining image of a gastric mucosal tissue section of a 12-month-old Muc6KO mouse. 図15Eに示された蛍光免疫染色像の部分拡大図である。FIG. 15 is a partially enlarged view of the fluorescent immunostaining image shown in FIG. 15E. ヒト組織アレイでのクラステリンの発現を示す免疫染色像である。1 is an immunostaining image showing the expression of clusterin in a human tissue array. ヒト胃癌組織アレイにおいてクラステリンを発現する細胞の割合で検体を分類した結果を示すグラフである。It is a graph showing the results of classifying samples according to the proportion of cells expressing clusterin in a human gastric cancer tissue array. ヒト胃癌組織アレイでのクラステリン及びマンノースの存在を示す免疫染色像である。1 is an immunostaining image showing the presence of clusterin and mannose in a human gastric cancer tissue array. ヒト胃癌組織アレイでのマンノース結合クラステリンの割合を示すグラフである。FIG. 2 is a graph showing the percentage of mannose-bound clusterin in a human gastric cancer tissue array. MUC6陰性ヒト胃癌細胞株であるMKN45及びMUC6陽性ヒト胃癌細胞株であるHUG1-P1に対し、FITC標識バナナレクチンを投与した染色像とフローサイトメトリーの結果である。These are staining images and flow cytometry results obtained when FITC-labeled banana lectin was administered to MKN45, a MUC6-negative human gastric cancer cell line, and HUG1-P1, a MUC6-positive human gastric cancer cell line. バナナレクチンを用いて血球凝集反応検査を行った結果である。These are the results of a hemagglutination test using banana lectin. HUG1-P1及びMKN45に対する、バナナレクチン薬物複合体の投与量ごとの細胞障害活性を評価した結果である。These are the results of evaluating the cytotoxic activity of each dose of the banana lectin drug complex against HUG1-P1 and MKN45. MKN45を、バナナレクチン薬物複合体に晒した期間ごとの細胞障害活性を経時的に評価した結果である。These are the results of evaluating the cytotoxic activity of MKN45 over time during each period of exposure to the banana lectin drug complex. Muc6KOマウスに対するバナナレクチン薬物複合体の投与スケジュールを示す図である。FIG. 3 is a diagram showing the administration schedule of banana lectin drug complex to Muc6KO mice. バナナレクチン薬物複合体を投与したMuc6KOマウスの胃の組織切片の免疫組織染色の結果である。These are the results of immunohistochemical staining of stomach tissue sections of Muc6KO mice administered with banana lectin drug complex. 図23のシグナル強度の定量結果と、腫瘍径及び腺管高を示す図面である。24 is a drawing showing the quantitative results of the signal intensity in FIG. 23, the tumor diameter, and the glandular duct height. MKN45をヌードマウスの両臀部に移植して作製されたXenograftに対する、H84T変異を有するバナナレクチンとバナナレクチン薬物複合体の影響を示す図面である。FIG. 2 is a drawing showing the influence of banana lectin having the H84T mutation and banana lectin drug complex on a Xenograft prepared by transplanting MKN45 into both buttocks of a nude mouse.

≪担体≫
 本実施形態は、MUC6発現陰性のがん組織へ対象物質を送達するための担体であって、マンノースへの結合活性を有する分子を含む、担体を提供する。
≪Carrier≫
The present embodiment provides a carrier for delivering a target substance to a cancer tissue negative for MUC6 expression, which includes a molecule having binding activity to mannose.

 MUC6は、胃体部腺管の中央部分や胃前庭部で発現が見られる分泌型ムチンである。また、MUC6はセリン残基・スレオニン残基が豊富なタンデムリピート領域を有し、この領域に特徴的な糖鎖構造を有している。
 実施例において後述するように、発明者は、両アリルのマウスMuc6遺伝子を欠損したMuc6-/-マウス(以下、「Muc6KOマウス」という。)が、前庭部に胃癌を自然発症することを見出した。更に、Muc6KOマウスの癌部において、高マンノース型N型糖鎖の増加が認められた。マンノースへの結合活性を有する分子を含む本実施形態の担体は、マンノースを介してがん組織への移行性を示す。
MUC6 is a secreted mucin that is expressed in the central part of the gastric corpus glandular duct and the gastric antrum. Furthermore, MUC6 has a tandem repeat region rich in serine and threonine residues, and has a characteristic sugar chain structure in this region.
As described later in the Examples, the inventors discovered that Muc6-/- mice deficient in both alleles of the mouse Muc6 gene (hereinafter referred to as "Muc6KO mice") spontaneously develop gastric cancer in the antrum. . Furthermore, an increase in high-mannose type N-glycans was observed in the cancerous areas of Muc6KO mice. The carrier of this embodiment containing a molecule having binding activity to mannose exhibits migration into cancer tissues via mannose.

 マンノースへの結合活性を有する分子としては、たとえば糖結合タンパク質や抗体等が挙げられる。
 マンノースへの結合活性を有する糖結合タンパク質としては、rPALa(recombinant Phlebodium aureum aggulutinin a)、rHeltuba(recombinant Helianthus tuberosus lectin)、rGRFT(recombinant Griffithia sp. lectin)、rBanana(recombinant Musa acuminata lectin)、NPA(Narcissus pseudonarcissus aggulutinin)、ConA(Canavalia ensiformis agglutinin A)、GNA(Galanthus nivalis agglutinin)、HHL(Hippeastrum hybrid lectin)、DBAI(Dioscorea batatas agglutinin I)、CCA(Castanea crenata agglutinin)、rOrysata(recombinant Oryza sativa lectin)、rCalsepa(recombinant Calystegia sepium lectin)及びrBC2LA(recombinant Burkholderia cenocepacia lectin)が挙げられ、rBanana(バナナレクチン)が好ましい。バナナレクチンは、15kDaのタンパク質の二量体として機能する。バナナレクチンとしては、たとえば配列番号1で表されるアミノ酸配列を含むタンパク質が挙げられるが、当該アミノ酸配列を含むタンパク質に限定されるものではない。また、マンノースへの結合活性を有する上記のタンパク質がr(リコンビナント)なものであることは必ずしも必要でなく、天然のものであってもよい。
Examples of molecules having binding activity to mannose include sugar-binding proteins and antibodies.
Examples of sugar-binding proteins having mannose-binding activity include rPALa (recombinant Phlebodium aureum agglutinin a), rHeltuba (recombinant Helianthus tuberosus lectin), and rGRFT (recombinant Helianthus tuberosus lectin). combinant Griffithia sp. lectin), rBanana (recombinant Musa acuminata lectin), NPA (Narcissus pseudonarcissus agglutinin), ConA (Canavalia ensiformis agglutinin A), GNA (Galanthus nivalis agglutinin), HHL (Hippeastrum hybr id lectin), DBAI (Dioscorea batatas agglutinin I), CCA (Castanea crenata agglutinin), rOrysata (recombinant Oryza sativa lectin), rCalsepa (recombinant Calystegia sepium lectin) and rBC2LA (recombinant Burkholderia cenocepacia lectin), with rBanana (banana lectin) being preferred. Banana lectin functions as a 15 kDa protein dimer. Banana lectin includes, for example, a protein containing the amino acid sequence represented by SEQ ID NO: 1, but is not limited to proteins containing the amino acid sequence. Further, the above-mentioned protein having mannose-binding activity does not necessarily need to be r (recombinant), and may be a natural protein.

 また、副作用低減の観点から、糖結合タンパク質は、血球凝集能が欠損又は低下していることが好ましい。バナナレクチンにおいては、H84Tのアミノ酸変異を加えることにより、変異を有していない野生型のバナナレクチンに比して、レクチン特有の血球凝集反応を抑えることができる。 Furthermore, from the viewpoint of reducing side effects, it is preferable that the sugar-binding protein has a defective or reduced hemagglutinating ability. By adding the H84T amino acid mutation to banana lectin, the hemagglutination reaction specific to lectin can be suppressed compared to wild-type banana lectin that does not have the mutation.

 対象物質が送達される対象の癌としては、MUC6の発現が陰性で且つマンノースが結合している癌であれば特に限定されず、乳癌(例えば、浸潤性乳管癌、非浸潤性乳管癌、炎症性乳癌等)、前立腺癌(例えば、ホルモン依存性前立腺癌、ホルモン非依存性前立腺癌等)、膵癌(例えば、膵管癌等)、胃癌(例えば、乳頭腺癌、粘液性腺癌、腺扁平上皮癌等)、肺癌(例えば、非小細胞肺癌、小細胞肺癌、悪性中皮腫等)、結腸癌(例えば、消化管間質腫瘍等)、直腸癌(例えば、消化管間質腫瘍等)、大腸癌(例えば、家族性大腸癌、遺伝性非ポリポーシス大腸癌、消化管間質腫瘍等)、小腸癌(例えば、非ホジキンリンパ腫、消化管間質腫瘍等)、食道癌、十二指腸癌、舌癌、咽頭癌(例えば、上咽頭癌、中咽頭癌、下咽頭癌等)、頭頚部癌、唾液腺癌、脳腫瘍(例えば、松果体星細胞腫瘍、毛様細胞性星細胞腫、びまん性星細胞腫、退形成性星細胞腫等)、神経鞘腫、肝臓癌(例えば、原発性肝癌、肝外胆管癌等)、腎臓癌(例えば、腎細胞癌、腎盂と尿管の移行上皮癌等)、胆嚢癌、膵臓癌、子宮内膜癌、子宮頸癌、卵巣癌(例、上皮性卵巣癌、性腺外胚細胞腫瘍、卵巣性胚細胞腫瘍、卵巣低悪性度腫瘍等)、膀胱癌、尿道癌、皮膚癌(例えば、眼内(眼)黒色腫、メルケル細胞癌等)、血管腫、悪性リンパ腫(例えば、細網肉腫、リンパ肉腫、ホジキン病等)、メラノーマ(悪性黒色腫)、甲状腺癌(例えば、甲状腺髄様癌等)、副甲状腺癌、鼻腔癌、副鼻腔癌、骨腫瘍(例えば、骨肉腫、ユーイング腫瘍、子宮肉腫、軟部組織肉腫等)、転移性髄芽腫、血管線維腫、隆起性皮膚線維肉腫、網膜肉腫、陰茎癌、精巣腫瘍、小児固形癌(例えば、ウィルムス腫瘍、小児腎腫瘍等)、カポジ肉腫、AIDSに起因するカポジ肉腫、上顎洞腫瘍、線維性組織球腫、平滑筋肉腫、横紋筋肉腫、慢性骨髄増殖性疾患、又は白血病(例えば、急性骨髄性白血病、急性リンパ芽球性白血病等)等が挙げられる。中でも、対象物質を送達するがん組織としては、MUC6の発現が陰性であることで、正常胃組織に比してマンノースが多く結合する胃がん組織が特に好ましい。 The target cancer to which the target substance is delivered is not particularly limited as long as the expression of MUC6 is negative and mannose is bound, and breast cancer (e.g., invasive ductal carcinoma, ductal carcinoma in situ) , inflammatory breast cancer, etc.), prostate cancer (e.g., hormone-dependent prostate cancer, hormone-independent prostate cancer, etc.), pancreatic cancer (e.g., pancreatic ductal cancer, etc.), gastric cancer (e.g., papillary adenocarcinoma, mucinous adenocarcinoma, glandular squamous adenocarcinoma, etc.) epithelial cancer, etc.), lung cancer (e.g., non-small cell lung cancer, small cell lung cancer, malignant mesothelioma, etc.), colon cancer (e.g., gastrointestinal stromal tumor, etc.), rectal cancer (e.g., gastrointestinal stromal tumor, etc.) , colorectal cancer (e.g., familial colorectal cancer, hereditary non-polyposis colorectal cancer, gastrointestinal stromal tumor, etc.), small intestine cancer (e.g., non-Hodgkin's lymphoma, gastrointestinal stromal tumor, etc.), esophageal cancer, duodenal cancer, tongue cancer, pharyngeal cancer (e.g., nasopharyngeal cancer, oropharyngeal cancer, hypopharyngeal cancer, etc.), head and neck cancer, salivary gland cancer, brain tumor (e.g., pineal astrocytic tumor, pilocytic astrocytoma, diffuse astrocytoma) Cytoma, anaplastic astrocytoma, etc.), schwannoma, liver cancer (e.g., primary liver cancer, extrahepatic cholangiocarcinoma, etc.), kidney cancer (e.g., renal cell carcinoma, transitional cell carcinoma of the renal pelvis and ureter, etc.) ), gallbladder cancer, pancreatic cancer, endometrial cancer, cervical cancer, ovarian cancer (e.g., epithelial ovarian cancer, extragonadal germ cell tumor, ovarian germ cell tumor, ovarian low-grade tumor, etc.), bladder cancer, Urethral cancer, skin cancer (e.g. intraocular (ocular) melanoma, Merkel cell carcinoma, etc.), hemangioma, malignant lymphoma (e.g. reticular sarcoma, lymphosarcoma, Hodgkin's disease, etc.), melanoma (malignant melanoma), thyroid Cancer (e.g., medullary thyroid cancer, etc.), parathyroid cancer, nasal cavity cancer, sinus cancer, bone tumors (e.g., osteosarcoma, Ewing tumor, uterine sarcoma, soft tissue sarcoma, etc.), metastatic medulloblastoma, vascular fibrosis tumor, dermatofibrosarcoma protuberans, retinal sarcoma, penile cancer, testicular tumor, pediatric solid cancer (e.g. Wilms tumor, pediatric renal tumor, etc.), Kaposi's sarcoma, Kaposi's sarcoma caused by AIDS, maxillary sinus tumor, fibrous histiocytes cancer, leiomyosarcoma, rhabdomyosarcoma, chronic myeloproliferative disease, or leukemia (eg, acute myeloid leukemia, acute lymphoblastic leukemia, etc.). Among these, as the cancer tissue to which the target substance is to be delivered, gastric cancer tissue is particularly preferable because it has negative expression of MUC6 and binds more mannose than normal gastric tissue.

 がん組織にマンノースが結合しているか否かの判定には、たとえば免疫染色やフローサイトメトリーが挙げられるが、これらに限定されるものではない。
 免疫染色によりマンノースの結合を判定する場合には、たとえばマンノースに結合するGNLやバナナレクチン、抗体等を、FITC等の標識薬で標識した状態で、判定対象であるがん組織に添加することで、マンノースの有無を視覚的に判定することができる。
Examples of methods for determining whether mannose is bound to cancer tissue include, but are not limited to, immunostaining and flow cytometry.
When determining mannose binding by immunostaining, for example, GNL, banana lectin, antibodies, etc. that bind mannose are labeled with a labeling agent such as FITC and added to the cancer tissue to be determined. , the presence or absence of mannose can be visually determined.

 フローサイトメトリーによりマンノースの結合を判定する場合には、たとえばマンノースに結合するGNLやバナナレクチン等をFITC等の標識薬で標識した状態でがん細胞に添加する。その後、フローサイトメトリーに供することで、マンノースの有無を視覚的に判定することができる。 When determining mannose binding by flow cytometry, for example, GNL, banana lectin, etc. that bind to mannose are labeled with a labeling agent such as FITC and added to cancer cells. Thereafter, the presence or absence of mannose can be visually determined by subjecting it to flow cytometry.

 一方、「大塚吉郎:進行胃癌における胃型・腸型形質は予後に影響するか.Dokkyo Journal of Medical Sciences 35(1):T59~T64, 2008.」及び「Tajima Y., et al., Gastric and intestinal phenotypic marker expression in gastric carcinomas and recurrence pattern after surgery-immunohistochemical analysis of 213 lesions. British Journal of Cancer, 91, 1342-1348, 2004.」の文献に記載されているように、胃癌を、ムチン形質に寄与する遺伝子の発現に基づき、胃型胃癌、腸型胃癌、混合型胃癌、非発現型胃癌の4つに分類することが広く一般に行われている。これらの胃癌のうち、MUC6発現陰性の胃癌は、腸型胃癌と非発現型胃癌の2つである。 On the other hand, “Yoshiro Otsuka: Do gastric-type and intestinal-type traits affect the prognosis in advanced gastric cancer? Dokkyo Journal of Medical Sciences 35(1):T59~T64, 2008.” and “Tajima Y., et al., Gastric and intestinal phenotypic marker expression in gastric carcinomas and recurrence pattern after surgery-immunohistochemical analysis of 213 lesions. British Journal of Cancer, 91, 1342-1348, 2004. Based on the expression of contributing genes, gastric cancer is generally classified into four types: gastric-type gastric cancer, intestinal-type gastric cancer, mixed-type gastric cancer, and non-expressing type gastric cancer. Among these gastric cancers, there are two types of MUC6 expression-negative gastric cancer: intestinal type gastric cancer and non-expressing type gastric cancer.

 腸型胃癌は、MUC2とCD10のうちの少なくとも一方が陽性で、且つMUC5AC及びMUC6が陰性の胃癌である。 Intestinal-type gastric cancer is gastric cancer that is positive for at least one of MUC2 and CD10 and negative for MUC5AC and MUC6.

 非発現型胃癌は、MUC5AC、MUC6、MUC2及びCD10の発現がいずれも陰性の胃癌である。 Non-expressing gastric cancer is gastric cancer in which the expression of MUC5AC, MUC6, MUC2, and CD10 is negative.

 なお、本明細書にて「陰性」とは、腫瘍先進部(腫瘍辺縁で壊死組織を含まない部位)において遺伝子から発現するタンパク質(MUC5AC、MUC6、MUC2、CD10等)を免疫染色した結果、染色される腫瘍細胞の割合が5%未満の状態を指し、「陽性」とは、染色される腫瘍細胞の割合が5%以上の状態を指す。 In this specification, "negative" refers to the results of immunostaining of proteins (MUC5AC, MUC6, MUC2, CD10, etc.) expressed from genes in the advanced tumor region (site at the tumor margin that does not contain necrotic tissue). "Positive" refers to a state in which the proportion of tumor cells stained is less than 5%, and "positive" refers to a state in which the proportion of tumor cells stained is 5% or more.

 本実施形態の担体により対象物質が送達される対象の胃がん組織は、腸型胃癌であってもよく、非発現型胃癌であってもよい。また、胃の組織においてMUC6発現が陰性となる原因としては、MUC6遺伝子の変異と、MUC6を発現する細胞の消失が挙げられるが、対象物質が送達される対象の胃がん組織は、MUC6遺伝子変異によるMUC6発現陰性の胃がん組織であってもよく、MUC6を発現する細胞が消失したことによるMUC6発現陰性の胃がん組織であってもよい。 The target gastric cancer tissue to which the target substance is delivered by the carrier of this embodiment may be intestinal type gastric cancer or non-expressing type gastric cancer. In addition, the causes of negative MUC6 expression in gastric tissues include mutations in the MUC6 gene and disappearance of MUC6-expressing cells; however, the gastric cancer tissue to which the target substance is delivered is due to MUC6 gene mutations. It may be a gastric cancer tissue that is negative for MUC6 expression, or it may be a gastric cancer tissue that is negative for MUC6 expression due to disappearance of MUC6-expressing cells.

 また、対象物質が送達される対象の胃がん組織は、MUC6遺伝子に変異を有する又はMUC6遺伝子の発現が低下している胃がん組織であってもよい。 Furthermore, the target gastric cancer tissue to which the target substance is delivered may be a gastric cancer tissue that has a mutation in the MUC6 gene or has decreased expression of the MUC6 gene.

 「MUC6遺伝子に変異を有する」とは、MUC6遺伝子における遺伝子変異によって、MUC6タンパク質が本来有する機能が少なくとも部分的に失われていることを意味する。「MUC6遺伝子の発現が低下している」とは、コントロールとなる野生型(以下、「WT」ともいう。)の個体と比較して、MUC6遺伝子産物の量が低下していることを意味する。 "Having a mutation in the MUC6 gene" means that the original function of the MUC6 protein is at least partially lost due to a genetic mutation in the MUC6 gene. "The expression of the MUC6 gene is reduced" means that the amount of the MUC6 gene product is reduced compared to a control wild type (hereinafter also referred to as "WT") individual. .

 また、対象物質が送達される対象の胃がん組織は、正常な胃組織に比してクラステリンが増加している胃がん組織であってもよい。後述する実施例で示すように、MUC6発現陰性の胃がん組織ではクラステリンを発現する細胞の割合が高いことが確認されている。 Furthermore, the target gastric cancer tissue to which the target substance is delivered may be a gastric cancer tissue in which clusterin is increased compared to normal gastric tissue. As shown in the Examples below, it has been confirmed that gastric cancer tissues negative for MUC6 expression have a high proportion of cells expressing clusterin.

≪複合体≫
 本実施形態は、担体と対象物質との複合体を提供する。対象物質としては、がん組織へ送達すべきものであれば特に限定されず、抗がん剤、造影剤、光吸収剤等が挙げられ、抗がん剤が好ましい。
 抗がん剤としては、低分子薬剤、核酸、タンパク質、又はペプチド等が挙げられる。低分子薬剤としては、5-FU、若しくはメトトレキサート等の代謝拮抗薬、シクロフォスミド等のアルキル化薬、又は、パクリタキセル、若しくはドセタキセル等のタキサン系化合物、MMAE誘導体の一つであるVcMMAE等が挙げられる。
 核酸としては、cDNA、mRNA、siRNA、shRNA、miRNA、アンチセンスRNA等が挙げられる。
 タンパク質としては、毒素、酵素、又は抗体等が挙げられる。毒素タンパク質は、細胞毒性を有するタンパク質である。毒素タンパク質としては、ジフテリアトキシン、リシン、サポリン、コレラトキシン、エンテロトキシン、エロリジン、アブリン、又は百日咳毒素等が挙げられる。また、緑膿菌の外毒素A(exotoxin A)由来の細胞殺傷ドメイン(ETA)領域の部分領域38kDa(配列番号2参照)を毒素タンパク質として好適に用いることができる。上記バナナレクチン等の担体と、抗癌剤としてのタンパク質(たとえば毒素タンパク質)とは、例えば、Leu-Glu-Leu-Gluというアミノ酸配列からなるリンカー(配列番号3参照)で繋がれていてもよく、Gly-Ser-Gly-Gly-Glyの2回繰り返し配列からなるリンカーで繋がれていてもよい(配列番号4参照)。しかしながら、担体とタンパク質とを繋ぐリンカーの配列はこれらに限定されるものではなく、他の配列であってもよい。
 ペプチドとしては、リガンド、ワクチン等が挙げられる。
 また、抗がん剤として、ゲノム編集関連因子も挙げられる。例えば、CRISPR-Cas9システムにおいて、Cas9発現ベクターと、標的がん遺伝子にCas9を誘導するガイドRNAをコードする発現ベクターと、担体との複合体を形成させて、この複合体を遺伝子治療に用いることができる。
≪Complex≫
This embodiment provides a complex of a carrier and a target substance. The target substance is not particularly limited as long as it is to be delivered to cancer tissue, and examples thereof include anticancer agents, contrast agents, light absorption agents, and the like, with anticancer agents being preferred.
Examples of anticancer drugs include low molecular drugs, nucleic acids, proteins, peptides, and the like. Examples of low-molecular drugs include antimetabolites such as 5-FU or methotrexate, alkylating drugs such as cyclofosmid, taxane compounds such as paclitaxel or docetaxel, and VcMMAE, which is one of the MMAE derivatives. It will be done.
Nucleic acids include cDNA, mRNA, siRNA, shRNA, miRNA, antisense RNA, and the like.
Examples of proteins include toxins, enzymes, and antibodies. Toxic proteins are proteins that have cytotoxic properties. Toxin proteins include diphtheria toxin, ricin, saporin, cholera toxin, enterotoxin, elorizin, abrin, or pertussis toxin. Furthermore, a 38 kDa partial region of the cell killing domain (ETA) region derived from Pseudomonas aeruginosa exotoxin A (see SEQ ID NO: 2) can be suitably used as the toxin protein. The above carrier such as banana lectin and a protein as an anticancer agent (for example, a toxin protein) may be connected, for example, with a linker consisting of the amino acid sequence Leu-Glu-Leu-Glu (see SEQ ID NO: 3); -Ser-Gly-Gly-Gly may be connected by a linker consisting of a twice-repeated sequence (see SEQ ID NO: 4). However, the sequence of the linker that connects the carrier and the protein is not limited to these, and other sequences may be used.
Examples of peptides include ligands, vaccines, and the like.
Anticancer agents also include genome editing-related factors. For example, in the CRISPR-Cas9 system, a complex is formed between a Cas9 expression vector, an expression vector encoding a guide RNA that induces Cas9 to a target cancer gene, and a carrier, and this complex is used for gene therapy. Can be done.

 対象物質として造影剤を用いる場合、本実施形態の複合体は、硫酸バリウム、次炭酸ビスマス、酸化ビスマス、酸化ジルコニウム、フッ化イッテルビウム、ヨードホルム、バリウムアパタイト、チタン酸バリウム、ランタンガラス、バリウムガラス、若しくはストロンチウムガラス等のX線造影剤;ヨード造影剤等のComputed Tomography(CT)用造影剤;ガドリニウム製剤、若しくは超常磁性酸化鉄製剤(Super Paramagnetic Iron Oxide、SPIO)等のMRI用造影剤;又は、テクネチウム99m(99mTc)、モリブデン99(99Mo)等のSingle photon emission computed tomography(SPECT)用放射性同位体等を含むことが好ましい。 When a contrast agent is used as the target substance, the composite of this embodiment is made of barium sulfate, bismuth subcarbonate, bismuth oxide, zirconium oxide, ytterbium fluoride, iodoform, barium apatite, barium titanate, lanthanum glass, barium glass, or X-ray contrast agents such as strontium glass; contrast agents for computed tomography (CT) such as iodine contrast agents; contrast agents for MRI such as gadolinium agents or superparamagnetic iron oxide (SPIO); or technetium It is preferable to include radioisotopes for single photon emission computed tomography (SPECT) such as 99m (99mTc) and molybdenum 99 (99Mo).

 光吸収剤としては、たとえばIR700等の近赤外線吸収剤が挙げられる。このような光吸収剤を、上記のバナナレクチン等の担体に結合させた複合体として投与することで、標的となるがん組織に光吸収剤を結合させることができ、光照射によりがん細胞を破壊することができる(光免疫療法)。 Examples of the light absorber include near-infrared absorbers such as IR700. By administering such a light-absorbing agent as a complex bound to a carrier such as banana lectin, the light-absorbing agent can be bound to the target cancer tissue, and cancer cells can be stimulated by light irradiation. can be destroyed (photoimmunotherapy).

 担体と対象物質との結合方法は特に限定されず、共有結合、水素結合、二価性架橋剤を用いた結合方法、又は、ビオチン-ストレプトアビジン結合等が挙げられる。 The method of bonding the carrier and the target substance is not particularly limited, and examples thereof include covalent bonding, hydrogen bonding, bonding methods using a divalent crosslinking agent, biotin-streptavidin bonding, and the like.

 たとえば、バナナレクチン等のレクチンと、ストレプトアビジン若しくはHalotag(登録商標)との融合タンパク質を作製し、ビオチン化薬剤やHalotagリガンド薬剤を対象物質として融合タンパク質に結合させることができる。
 また、バナナレクチン等のレクチンのアミノ基やシステインに、リンカーを介してVcMMAE等の低分子薬剤を結合させることができる。
 また、後述する実施例のように、複合体を、担体としてのレクチンと抗がん剤としてのタンパク質とを融合させた融合タンパク質として構成してもよい。
 以上、複合体について詳述したが、これらの複合体は当業者に公知の方法により製造することができる。以下に説明を加える医薬組成物についても同様である。
For example, a fusion protein of a lectin such as banana lectin and streptavidin or Halotag (registered trademark) can be produced, and a biotinylated drug or a Halotag ligand drug can be bound to the fusion protein as a target substance.
Furthermore, a low molecular drug such as VcMMAE can be bonded to the amino group or cysteine of a lectin such as banana lectin via a linker.
Further, as in the examples described later, the complex may be configured as a fusion protein in which a lectin as a carrier and a protein as an anticancer agent are fused.
Although the composites have been described in detail above, these composites can be manufactured by methods known to those skilled in the art. The same applies to the pharmaceutical compositions described below.

≪医薬組成物≫
 本実施形態は、担体と対象物質との複合体を含む、医薬組成物を提供する。担体と対象物質には、上述したものと同様のものを用いることができる。本実施形態の医薬組成物は、例えば、錠剤、被覆錠剤、丸剤、散剤、顆粒剤、カプセル剤、液剤、懸濁剤、若しくは乳剤等の形態で経口的に、又は、注射剤、坐剤、若しくは皮膚外用剤等の形態で非経口的に投与することもできる。
<<Pharmaceutical composition>>
This embodiment provides a pharmaceutical composition comprising a complex of a carrier and a target substance. As the carrier and the target substance, those similar to those described above can be used. The pharmaceutical composition of the present embodiment can be administered orally in the form of a tablet, coated tablet, pill, powder, granule, capsule, solution, suspension, or emulsion, or as an injection or suppository. Alternatively, it can also be administered parenterally in the form of a skin external preparation.

 本実施形態の医薬組成物は、薬学的に許容される送達媒体を含んでいてもよい。薬学的に許容される送達媒体としては、通常の製剤に用いられるものを特に制限なく用いることができる。より具体的には、例えば、ゼラチン、コーンスターチ、トラガントガム、若しくはアラビアゴム等の結合剤;デンプン、若しくは結晶性セルロース等の賦形剤;アルギン酸等の膨化剤;水、エタノール、若しくはグリセリン等の注射剤用溶剤;又はゴム系粘着剤、若しくはシリコーン系粘着剤等の粘着剤等が挙げられる。薬学的に許容される送達媒体は、1種を単独で又は2種以上を混合して用いることができる。 The pharmaceutical composition of this embodiment may include a pharmaceutically acceptable delivery vehicle. As the pharmaceutically acceptable delivery vehicle, those used in conventional formulations can be used without particular limitation. More specifically, for example, binders such as gelatin, corn starch, gum tragacanth, or gum arabic; excipients such as starch or crystalline cellulose; leavening agents such as alginic acid; injections such as water, ethanol, or glycerin. and adhesives such as rubber-based adhesives and silicone-based adhesives. Pharmaceutically acceptable delivery vehicles can be used alone or in combination of two or more.

 本実施形態の医薬組成物は、更に添加剤を含んでいてもよい。添加剤としては、ステアリン酸カルシウム、ステアリン酸マグネシウム等の潤滑剤;ショ糖、乳糖、サッカリン、マルチトール等の甘味剤;ペパーミント、アカモノ油等の香味剤;ベンジルアルコール、フェノール等の安定剤;リン酸塩、酢酸ナトリウム等の緩衝剤;安息香酸ベンジル、ベンジルアルコール等の溶解補助剤;酸化防止剤;又は、防腐剤等が挙げられる。
 添加剤は、1種を単独で又は2種以上を混合して用いることができる。
The pharmaceutical composition of this embodiment may further contain additives. Additives include lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin, and maltitol; flavoring agents such as peppermint and red oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid. Examples include buffering agents such as salts and sodium acetate; solubilizing agents such as benzyl benzoate and benzyl alcohol; antioxidants; and preservatives.
The additives can be used alone or in combination of two or more.

(投与方法)
 本実施形態の医薬組成物の投与方法は特に限定されず、患者の症状、体重、年齢、性別等に応じて適宜決定すればよい。例えば、錠剤、被覆錠剤、丸剤、散剤、顆粒剤、カプセル剤、液剤、懸濁剤、又は乳剤等は経口投与される。また、注射剤は、単独で、又はブドウ糖、アミノ酸等の通常の補液と混合して静脈内投与され、更に必要に応じて、動脈内、筋肉内、皮内、皮下又は腹腔内投与される。
(Administration method)
The method of administering the pharmaceutical composition of this embodiment is not particularly limited, and may be determined as appropriate depending on the patient's symptoms, weight, age, sex, etc. For example, tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions, or emulsions are administered orally. Injections are administered intravenously alone or mixed with normal replacement fluids such as glucose and amino acids, and further intraarterially, intramuscularly, intradermally, subcutaneously, or intraperitoneally as necessary.

(投与量)
 本実施形態の医薬組成物の投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、経口投与の場合には、例えば1日あたり1μg~10g、例えば1日あたり0.01~2000mgの有効成分を投与すればよい。また、注射剤の場合には、例えば1日あたり0.1μg~1g、例えば1日あたり0.001~200mgの有効成分を投与すればよい。また、坐剤の場合には、例えば1日あたり1μg~10g、例えば1日あたり0.01~2000mgの有効成分を投与すればよい。
(Dose)
The dosage of the pharmaceutical composition of the present embodiment varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally, but in the case of oral administration, for example, 1 μg to 10 g per day, for example, 1 μg to 10 g per day. 0.01 to 2000 mg of the active ingredient may be administered per dose. In the case of an injection, the active ingredient may be administered in an amount of, for example, 0.1 μg to 1 g per day, for example 0.001 to 200 mg per day. In the case of suppositories, the active ingredient may be administered in an amount of, for example, 1 μg to 10 g per day, for example 0.01 to 2000 mg per day.

[治療方法]
 本実施形態は、上述した医薬組成物を、治療を必要とする患者に投与することを含む、がんの治療方法を提供する。医薬組成物の投与量としては、たとえば上述の投与量が挙げられるが、医薬組成物の有効量であればよく、投与量はとくに限定されるものではない。
 本実施形態は、標的分子としてマンノースを認識するキメラ抗原受容体遺伝子(CAR遺伝子)を、治療を必要とする患者から取り出したT細胞に導入することと、キメラ抗原受容体遺伝子が導入されたT細胞(CAR-T細胞)を患者に投与することを含む、がんの治療方法を提供する。
[Method of treatment]
This embodiment provides a method for treating cancer, which includes administering the above-described pharmaceutical composition to a patient in need of treatment. The dosage of the pharmaceutical composition includes, for example, the dosage described above, but the dosage is not particularly limited as long as it is an effective amount of the pharmaceutical composition.
This embodiment involves introducing a chimeric antigen receptor gene (CAR gene) that recognizes mannose as a target molecule into T cells taken from a patient in need of treatment, and T cells into which the chimeric antigen receptor gene has been introduced. A method of treating cancer is provided, the method comprising administering cells (CAR-T cells) to a patient.

[その他の実施形態]
 本実施形態は、がんの治療薬を製造するための医薬組成物の使用を提供する。医薬組成物としては、上述したものと同様のものを使用することができる。
 本実施形態は、がんの治療、特にMUC6発現陰性の胃癌の治療のための医薬組成物であって、担体と対象物質との複合体を含む医薬組成物を提供する。担体、対象物質、及び医薬組成物としては、上述したものと同様のものを使用することができる。
[Other embodiments]
This embodiment provides the use of a pharmaceutical composition for manufacturing a therapeutic agent for cancer. As the pharmaceutical composition, those similar to those mentioned above can be used.
This embodiment provides a pharmaceutical composition for the treatment of cancer, particularly for the treatment of MUC6 expression-negative gastric cancer, which comprises a complex of a carrier and a target substance. As the carrier, target substance, and pharmaceutical composition, those similar to those described above can be used.

≪コンパニオン診断薬≫
 本実施形態は、上記医薬組成物を使用するがん患者に用いられるコンパニオン診断薬であって、抗クラステリン抗体、クラステリン遺伝子を増幅するためのプライマーセット、及び/又はクラステリン遺伝子若しくはその増幅産物に結合するプローブを含む、診断薬を提供する。
≪Companion diagnostic agent≫
This embodiment is a companion diagnostic agent used for cancer patients using the above pharmaceutical composition, which includes an anti-clusterin antibody, a primer set for amplifying the clusterin gene, and/or binds to the clusterin gene or its amplification product. The present invention provides a diagnostic agent containing a probe for

 クラステリンは、分子量75~80kDaの糖タンパク質であり、生物学的液体サンプル中に見出される。実施例にて後述するように、MUC6陰性のヒト胃癌組織では、クラステリンを発現している細胞の割合が高く、且つマンノース結合クラステリンの割合が高いことが確認されている。そのため、本実施形態の医薬組成物を使用する患者を特定するに当たり、クラステリン遺伝子又はクラステリンタンパク質の発現量を指標とすることが好ましい。なお、胃癌以外の他の癌組織においても、マンノースがクラステリン又は他の糖タンパク質に結合している可能性がある。 Clusterin is a glycoprotein with a molecular weight of 75-80 kDa and is found in biological fluid samples. As described later in Examples, it has been confirmed that in MUC6-negative human gastric cancer tissue, the proportion of cells expressing clusterin is high, and the proportion of mannose-binding clusterin is high. Therefore, in identifying a patient who will use the pharmaceutical composition of this embodiment, it is preferable to use the expression level of the clusterin gene or clusterin protein as an index. In addition, mannose may be bound to clusterin or other glycoproteins in cancer tissues other than gastric cancer.

 更に、上記抗体、或いは、プライマーセット、及び/又はプローブに加えて、クラステリンタンパク質を検出するためのELISAキット、体液、細胞、若しくは組織等から核酸(例えば、total RNA)を抽出するためのキット、標識用蛍光物質、又は核酸増幅用試薬等を含んでいてもよい。
 クラステリンは生物学的液体サンプル中に見出されることから、検体としては、血液、尿、唾液、汗、又は組織浸出液等が挙げられ、血液又は尿が好ましい。患者由来の検体中のクラステリンの検出方法としては、ELISA等を用いてクラステリンタンパク質の発現量を解析してもよく、プライマーを用いたPCRにより、クラステリンDNA断片を増幅し、その増幅産物を解析してもよく、特定のクラステリンDNA又はクラステリンmRNAに相補的なプローブを用いて、ハイブリダイゼーションを用いた方法により、解析してもよい。
 以上、コンパニオン診断薬について説明を加えたが、これらのコンパニオン診断薬は当業者に公知の方法により製造することができる。
Furthermore, in addition to the above antibodies, primer sets, and/or probes, an ELISA kit for detecting clusterin protein, a kit for extracting nucleic acids (e.g., total RNA) from body fluids, cells, tissues, etc. , a fluorescent substance for labeling, a reagent for nucleic acid amplification, or the like.
Since clusterin is found in biological fluid samples, specimens include blood, urine, saliva, sweat, or tissue exudates, with blood or urine being preferred. As a method for detecting clusterin in patient-derived specimens, the expression level of clusterin protein may be analyzed using ELISA, etc., or clusterin DNA fragments are amplified by PCR using primers, and the amplified products are analyzed. Alternatively, the analysis may be performed by a method using hybridization using a probe complementary to a specific clusterin DNA or clusterin mRNA.
Although the companion diagnostics have been explained above, these companion diagnostics can be manufactured by methods known to those skilled in the art.

 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained with reference to examples, but the present invention is not limited to the following examples.

[Muc6KOマウスの作製]
 Muc6KOマウスは、筑波大学生命科学動物資源センターに受託作製を依頼した。
 詳細には、図1に示すように、マウスMuc6遺伝子の33個のエクソンの内のエクソン2に存在する開始コドンに、DsREDをコードする配列、2A配列、FlpER配列、及びSTOP配列をノックインすることで、両アリルにFlpER配列、STOP配列がノックインされた個体であれば内因性Muc6遺伝子が欠損する設計とした。
[Preparation of Muc6KO mouse]
Muc6KO mice were produced under contract to the University of Tsukuba Life Science Animal Resource Center.
Specifically, as shown in FIG. 1, a sequence encoding DsRED, a 2A sequence, a FlpER sequence, and a STOP sequence are knocked into the start codon present in exon 2 of the 33 exons of the mouse Muc6 gene. The design was such that the endogenous Muc6 gene would be deleted if the individual had the FlpER sequence and STOP sequence knocked into both alleles.

 DsREDをコードする配列を組み込むことで、マウスMuc6発現細胞を光らせることができる。2A配列は、翻訳時にタンパク質を分ける2Aペプチドをコードする塩基配列である。FlpER配列は、Flpo配列とERT2配列とをリンカーで繋げた配列である(配列番号5参照)。
 一方、WTマウスは、日本クレア社から購入した。なお、本実施例に記載された各マウスのバックグラウンドはいずれもC57BL/6Nである。
By incorporating the sequence encoding DsRED, mouse Muc6-expressing cells can be made to glow. The 2A sequence is a base sequence that encodes the 2A peptide that separates proteins during translation. The FlpER sequence is a sequence in which the Flpo sequence and the ERT2 sequence are connected with a linker (see SEQ ID NO: 5).
On the other hand, WT mice were purchased from CLEA Japan. The background of each mouse described in this example is C57BL/6N.

[Muc6KOマウスの解析]
 上述のようにして作製した3カ月齢のMucKOマウスからDysplasiaを含む胃の組織切片を作製し、RNA in situ hybridization(ISH)法により、MUC6の発現を確認した。
[Analysis of Muc6KO mouse]
A tissue section of the stomach containing Dysplasia was prepared from the 3-month-old MucKO mouse prepared as described above, and the expression of MUC6 was confirmed by RNA in situ hybridization (ISH).

 詳細には、まず、マウス胃組織を10%ホルマリンで固定し、パラフィン包埋したものから切片を作製した。この切片に対し、RNAscope(R) 2.5 HD Duplex Detection Reagents Kit(ACD)、及びマウスMuc6とGifを特異的に認識するプローブを用いてin situ hybridization を行った。マウスMuc6のプローブには、ACD社のRNAscope Probe-Mm-Muc6(青色)を用いた。Gifのプローブには、ACD社のRNAscope Probe-Mm-Gif(赤色)を用いた。 Specifically, first, mouse stomach tissue was fixed with 10% formalin and embedded in paraffin, and then sections were prepared. In situ hybridization was performed on this section using RNAscope(R) 2.5 HD Duplex Detection Reagents Kit (ACD) and a probe that specifically recognizes mouse Muc6 and Gif. As a probe for mouse Muc6, ACD's RNAscope Probe-Mm-Muc6 (blue) was used. As the Gif probe, ACD's RNAscope Probe-Mm-Gif (red) was used.

 図2は、in situ hybridizationによりMuc6KOマウスとWTマウスの胃のMuc6及びGifのmRNAを可視化した染色像である。図2中のスケールバーは100μmである。 FIG. 2 is a stained image visualizing Muc6 and Gif mRNA in the stomachs of Muc6KO mice and WT mice by in situ hybridization. The scale bar in FIG. 2 is 100 μm.

 図2に示すように、WTマウスの胃体部及び胃前庭部では、胃の副細胞が位置する領域R1が青色に染まっており、主細胞が位置する領域R2が赤色に染まったことから、副細胞でマウスMuc6の発現が確認できた。
 これに対して、Muc6KOマウスでは胃体部及び胃前庭部で赤色に染まった領域R3が確認されたものの、青色の領域が確認できなかった。
 このことから、Muc6KOマウスの胃体部及び胃前庭部において、マウスMuc6の発現が消失しており、作製されたMuc6KOマウスがマウスMuc6遺伝子を欠損していることが確認できた。なお、十二指腸においてはマウスMuc6、Gifのいずれの発現も確認されなかった。
As shown in FIG. 2, in the stomach corpus and antrum of WT mice, region R1 where gastric accessory cells are located is stained blue, and region R2 where principal cells are located is stained red. Expression of mouse Muc6 was confirmed in accessory cells.
On the other hand, in the Muc6KO mouse, a red-stained region R3 was observed in the gastric corpus and gastric antrum, but no blue region was observed.
From this, it was confirmed that the expression of mouse Muc6 disappeared in the gastric corpus and gastric antrum of Muc6KO mice, and the generated Muc6KO mice lacked the mouse Muc6 gene. Note that no expression of murine Muc6 or Gif was confirmed in the duodenum.

 図3は、qPCRにより測定された、WTマウスとMuc6KOマウスの胃粘膜におけるMuc6遺伝子の発現量を示すグラフである。 FIG. 3 is a graph showing the expression level of the Muc6 gene in the gastric mucosa of WT mice and Muc6KO mice, as measured by qPCR.

 in situ hybridizationに加え、Muc6遺伝子の欠損をqPCRによる発現量でも確認した。
 詳細には、WTマウスとMuc6KOマウスのそれぞれの胃粘膜から抽出したRNAを逆転写して得られたcDNAのqPCRを行った。逆転写には、配列番号6に示すフォワードプライマー及び配列番号7に示すリバースプライマーを用いた。
In addition to in situ hybridization, deletion of Muc6 gene was also confirmed by qPCR expression level.
Specifically, qPCR was performed on cDNA obtained by reverse transcription of RNA extracted from the gastric mucosa of WT mice and Muc6KO mice. For reverse transcription, the forward primer shown in SEQ ID NO: 6 and the reverse primer shown in SEQ ID NO: 7 were used.

 図3に示すように、WTマウスでは、胃粘膜でのマウスMuc6の発現が確認されたのに対し、Muc6KOマウスにおいては、マウスMuc6の発現が見られなかった。なお、WTマウスのN数は4,Muc6KOマウスのN数は8であった。
 以上のことから、Muc6KOマウスにおいて、マウスMuc6遺伝子が確実に欠損していることが明らかになった。
As shown in FIG. 3, in WT mice, expression of mouse Muc6 was confirmed in the gastric mucosa, whereas in Muc6KO mice, no expression of mouse Muc6 was observed. Note that the N number of WT mice was 4, and the N number of Muc6KO mice was 8.
From the above, it was revealed that the mouse Muc6 gene is definitely deleted in Muc6KO mice.

 MucKOマウスの作製後、胃癌を発症するかを経時的に観察した(胎生4週~12月)。図4は、Muc6KOマウスの胃の明視野像と胃の組織切片の染色像である。染色にはHE染色を用いた。図中上部の説明において、Muc6KOマウスの胎生週(w)又は月(m)を示した。 After producing MucKO mice, they were observed over time to see if they developed gastric cancer (from 4 weeks of gestation to December months). FIG. 4 shows a bright field image of the stomach of a Muc6KO mouse and a stained image of a tissue section of the stomach. HE staining was used for staining. In the explanation at the top of the figure, the embryonic week (w) or month (m) of the Muc6KO mouse is indicated.

 MucKOマウスにおいて、図中マークで示すように3カ月齢で6匹のうちの6匹にDysplasia(異形成)が確認された。また、8カ月齢で4匹のうちの4匹に、12カ月齢で3匹中の3匹にそれぞれ、Adenocarcinoma(腺癌)が確認された。
 このように、Muc6KOマウスでは、胃前庭部において、自然に発癌することが確認された。
Dysplasia was confirmed in 6 out of 6 MucKO mice at 3 months of age, as indicated by the marks in the figure. Furthermore, Adenocarcinoma was confirmed in 4 out of 4 mice at 8 months old and in 3 out of 3 mice at 12 months old.
Thus, it was confirmed that Muc6KO mice spontaneously develop cancer in the gastric antrum.

[ムチン解析]
 一方、図5は、WTマウス及びMuc6KOマウスの胃の組織切片の電子顕微鏡である。
 WTマウス及びMuc6KOマウスの胃の組織切片を電子顕微鏡で観察したところ、図5に示すように、いずれにおいてもムチン層(300000倍の図における線状構造)の形成が確認された。なお、WTマウス及びMuc6KOマウスはいずれも3カ月齢であり、切片化されたMuc6KOマウスの胃組織はDysplasiaであった。
[Mucin analysis]
On the other hand, FIG. 5 is an electron microscope image of stomach tissue sections of WT mice and Muc6KO mice.
When tissue sections of the stomachs of WT mice and Muc6KO mice were observed using an electron microscope, the formation of a mucin layer (a linear structure in a 300,000x magnification) was confirmed in both, as shown in FIG. 5. Note that both the WT mouse and the Muc6KO mouse were 3 months old, and the sectioned stomach tissue of the Muc6KO mouse was Dysplasia.

 図6は、WTマウス及びMuc6KOマウスの胃の組織切片においてMUC5ACを可視化した蛍光免疫染色像である。図6中のスケールバーは100μmである。
 蛍光免疫染色においては、まず、マウスの胃組織を10%ホルマリンで固定し、パラフィン包埋したものから切片を作製した。なお、WTマウス及びMuc6KOマウスはいずれも3カ月齢であり、切片化されたMuc6KOマウスの胃組織はDysplasiaであった。
 次いで、組織切片を脱パラフィン処理、及び抗原賦活化処理し、PBS(Phosphate-buffered Saline)で洗浄した後、10%ヤギ血清を混和したPBSで1時間にわたりblockingを行った。
 その後、再度PBSで洗浄後、2.5%PBSに1次抗体として抗Muc5AC抗体(Abcam社製)を2000倍希釈し、4℃の条件下で一晩反応させた。
 次いで、PBSで洗浄後、2.5%PBSに2次抗体(Alexa Fluor 488、Invitrogen社製)を200倍希釈し、室温で1時間反応させた。
 その後、再びPBSで洗浄し、hoechst(登録商標)33342(同仁化学研究所)を用いて核の染色を行い、封入して顕微鏡下で観察を行った。
FIG. 6 is a fluorescent immunostaining image visualizing MUC5AC in stomach tissue sections of WT mice and Muc6KO mice. The scale bar in FIG. 6 is 100 μm.
For fluorescent immunostaining, first, mouse stomach tissue was fixed with 10% formalin and embedded in paraffin, and sections were prepared. Note that both the WT mouse and the Muc6KO mouse were 3 months old, and the sectioned stomach tissue of the Muc6KO mouse was Dysplasia.
Next, the tissue section was subjected to deparaffinization treatment and antigen retrieval treatment, washed with PBS (Phosphate-buffered saline), and then blocked for 1 hour with PBS mixed with 10% goat serum.
Thereafter, after washing with PBS again, anti-Muc5AC antibody (manufactured by Abcam) was diluted 2000 times as a primary antibody in 2.5% PBS and reacted overnight at 4°C.
Next, after washing with PBS, a secondary antibody (Alexa Fluor 488, manufactured by Invitrogen) was diluted 200 times in 2.5% PBS and reacted for 1 hour at room temperature.
Thereafter, the cells were washed again with PBS, and the nuclei were stained using Hoechst (registered trademark) 33342 (Dojindo Laboratories), sealed, and observed under a microscope.

 図6に示すように、Muc6KOマウスでは、WTマウスに比して、MUC5ACタンパク質の発現(図中、明色で示す染色)が減少していた。 As shown in FIG. 6, the expression of MUC5AC protein (staining shown in bright color in the figure) was decreased in Muc6KO mice compared to WT mice.

 図7は、WTマウス及びMuc6KOマウスの胃の組織切片においてMUC2及びMUC4を可視化した蛍光免疫染色像である。図7中のスケールバーは100μmである。
 図7に示す染色においては、1次抗体としてサンタクルーズバイオテクノロジー社のMouse monoclonal anti-MUC4 Santa curuz Sc-33654と、Abcam社のRabbit monoclonal anti-MUC2 Abcam Ab9007を用いた。また、2次抗体として、GOAT-Rabbit 488とGOAT-Mouse 555を用い、蛍光基としてAlexa Fluor 488及びAlexa Fluor 555(いずれもInvitrogen社製)を用いた。その他条件は、図6に示した染色と同様とした。
 図7においては、マウスMUC6タンパク質を示す赤色の染色領域がR4として示されており、MUC2タンパク質を示す緑色の染色領域がR5として示されている。
 図7に示すように、Muc6KOマウスでは、WTマウスに比して、Muc2及びMuc4の発現が増加していた。また、Muc6KOマウスでは、胃の壁細胞・主細胞が減少し、タフトセルが増加していた。なお、切片化された3カ月齢のMuc6KOマウスの胃組織はDysplasiaであり、8カ月齢のMuc6KOマウスの胃組織はがん組織であった。
FIG. 7 is a fluorescent immunostaining image visualizing MUC2 and MUC4 in stomach tissue sections of WT mice and Muc6KO mice. The scale bar in FIG. 7 is 100 μm.
In the staining shown in FIG. 7, Mouse monoclonal anti-MUC4 Santa Curuz Sc-33654 from Santa Cruz Biotechnology, Inc. and Rabbit monoclonal anti-MUC2 Abcam Ab9007 from Abcam were used as primary antibodies. Furthermore, GOAT-Rabbit 488 and GOAT-Mouse 555 were used as secondary antibodies, and Alexa Fluor 488 and Alexa Fluor 555 (both manufactured by Invitrogen) were used as fluorescent groups. Other conditions were the same as those for staining shown in FIG. 6.
In FIG. 7, the red stained area representing the mouse MUC6 protein is shown as R4, and the green stained area representing the MUC2 protein is shown as R5.
As shown in FIG. 7, the expression of Muc2 and Muc4 was increased in Muc6KO mice compared to WT mice. Furthermore, in Muc6KO mice, gastric parietal cells and principal cells decreased, and tuft cells increased. Note that the stomach tissue of the 3-month-old Muc6KO mouse that was sectioned was Dysplasia, and the stomach tissue of the 8-month-old Muc6KO mouse was cancerous tissue.

 以上のように、Muc6KOマウスではWTマウスとムチン組成が変化しており、Metaplasiaの形成が確認された。 As described above, the mucin composition of Muc6KO mice was different from that of WT mice, and the formation of Metaplasia was confirmed.

[Muc6KOマウス胃癌における新規薬物療法の解析]
 マウスMUC6タンパク質は、特徴的な糖鎖構造を有し、Muc6KOマウスでは、ムチン組成が変化していた。このことから、Muc6KOマウスで誘発された胃癌において、癌部特異的な糖鎖構造を特定できれば、ドラッグデリバリーシステム(DDS)の対象となり得ることが考えられた。そこで、LC-MS解析及びレクチンマイクロアレイ解析を行った。
[Analysis of new drug therapy in Muc6KO mouse gastric cancer]
Mouse MUC6 protein has a characteristic sugar chain structure, and mucin composition was changed in Muc6KO mice. From this, it was thought that if the cancer region-specific sugar chain structure could be identified in gastric cancer induced in Muc6KO mice, it could become a target for drug delivery systems (DDS). Therefore, LC-MS analysis and lectin microarray analysis were performed.

 まず、WTマウスの前庭部正常組織及びMuc6KOマウスの前庭部の癌組織に結合している糖鎖に対してLC-MS解析を行った。
 WTマウスとMuc6KOマウスにLipaバッファーを用いて抽出した各Whole lysateを約3mg/mLに調整後、脱塩を行い、O型糖鎖及びN型糖鎖のLC-MS解析を住友ベークライト社に委託した。
First, LC-MS analysis was performed on sugar chains bound to the vestibular normal tissue of WT mice and the vestibular cancer tissue of Muc6KO mice.
Whole lysates extracted from WT mice and Muc6KO mice using Lipa buffer were adjusted to approximately 3 mg/mL, desalted, and LC-MS analysis of O-glycans and N-glycans was entrusted to Sumitomo Bakelite. did.

 詳細には、O型糖鎖に関して、まず、EZGlyco(登録商標)O-Glycan Prep Kitを用いてサンプル中の糖鎖を遊離させ、精製及び標識した。
 次いで、得られた糖鎖溶液50μLを乾燥させ、超純水10μLに再溶解し、そのうちの1μLをLC-MS解析に供した。
Specifically, regarding O-glycans, first, the sugar chains in the sample were released using EZGlyco (registered trademark) O-Glycan Prep Kit, and purified and labeled.
Next, 50 μL of the obtained sugar chain solution was dried, redissolved in 10 μL of ultrapure water, and 1 μL of it was subjected to LC-MS analysis.

 N型糖鎖に関しては、まず、サンプルを遠心濃縮機により濃縮乾固し、還元アルキル化処理、トリプシン消化、及びPNGase Fにより糖鎖を遊離させた。
 その後、BlotGlyco(登録商標)を用いて遊離糖鎖を精製及び標識した。次いで、得られた糖鎖溶液50μLを濃縮後、10μLの純水に再溶解し、そのうちの1μLをLC-MS解析に供した。
Regarding N-type sugar chains, first, the sample was concentrated to dryness using a centrifugal concentrator, and the sugar chains were released by reductive alkylation treatment, trypsin digestion, and PNGase F.
Thereafter, free sugar chains were purified and labeled using BlotGlyco (registered trademark). Next, 50 μL of the obtained sugar chain solution was concentrated and redissolved in 10 μL of pure water, of which 1 μL was subjected to LC-MS analysis.

 図8は、LC-MS解析によるO型糖鎖の解析結果であり、図9は、LC-MS解析によるN型糖鎖の解析結果である。
 図8に示すように、Muc6KOマウスにおけるO型糖鎖の結合量は、WTと比較して、全体的に低下していた。
 これに対して、図9に示すように、Muc6KOマウスのN型糖鎖では、WTと比較して、コアフコース構造を有する糖鎖、マンノースを豊富に含む糖鎖、及びシアル酸結合を有する糖鎖が増加していることが明らかになった。
FIG. 8 shows the analysis results of O-type sugar chains by LC-MS analysis, and FIG. 9 shows the analysis results of N-type sugar chains by LC-MS analysis.
As shown in FIG. 8, the amount of O-glycan binding in Muc6KO mice was decreased overall compared to WT.
On the other hand, as shown in Figure 9, N-glycans in Muc6KO mice are found to have a core fucose structure, a mannose-rich sugar chain, and a sialic acid bond, compared to WT. It was revealed that there is an increase in

 次いで、WTマウスの前庭部正常組織及びMuc6KOマウスの前庭部がん組織の糖鎖に結合するレクチンの変化を、レクチンマイクロアレイを用いて解析した。
 詳細には、まず、WTマウスの正常組織の胃粘膜細胞とMuc6KOマウスのがん組織の胃粘膜細胞をそれぞれ、コラゲナーゼ及びディスパーゼで剥離し、Epicam抗体を用いたFACS(Fluorescence-Activated Cell Sorting)に供して胃粘膜上皮細胞を選別した。
 次いで、胃粘膜上皮細胞から抽出した糖鎖成分の抽出液をCy3でラベリングし、96種のレクチンをスライドグラスに固定化したレクチンマイクロアレイ(産業技術総合研究所製、J Biol Chem. 2011 Jun 10;286(23):20345-53. doi: 10.1074/jbc.M111.231274.)に反応させた。そして、WTマウスとMuc6KOマウスの各粘膜上皮細胞に対する種々のレクチンの結合性を定量評価した。
Next, changes in lectin binding to sugar chains in vestibular normal tissues of WT mice and vestibular cancer tissues of Muc6KO mice were analyzed using a lectin microarray.
Specifically, gastric mucosal cells from normal tissues of WT mice and gastric mucosal cells from cancerous tissues from Muc6KO mice were detached using collagenase and dispase, respectively, and then subjected to FACS (Fluorescence-Activated Cell Sorting) using Epicam antibody. gastric mucosal epithelial cells were sorted.
Next, an extract of sugar chain components extracted from gastric mucosal epithelial cells was labeled with Cy3, and a lectin microarray (manufactured by National Institute of Advanced Industrial Science and Technology, J Biol Chem. 2011 Jun 10; 96 types of lectins immobilized on a slide glass) was prepared. 286(23):20345-53. doi: 10.1074/jbc.M111.231274.). Then, the binding properties of various lectins to each mucosal epithelial cell of WT mice and Muc6KO mice were quantitatively evaluated.

 図10Aは、胃粘膜上皮細胞の糖鎖成分抽出液に対するレクチンマイクロアレイ解析の概略図である。
 また、図10Bは、WTマウス及びMuc6KOマウスの各胃粘膜上皮細胞の糖鎖成分抽出液に対するrBananaレクチンの結合性を示すグラフであり、図10Cは、WTマウス及びMuc6KOマウスの各胃粘膜上皮細胞の糖鎖成分抽出液に対するrGRFTレクチンの結合性を示すグラフであり、図10Dは、WTマウス及びMuc6KOマウスの各胃粘膜上皮細胞の糖鎖成分抽出液に対するHeltubaレクチンの結合性を示すグラフである。
 WTマウス及びMuc6KOマウスは8カ月齢であり、Muc6KOマウスの糖鎖成分抽出液はがん組織から抽出したものである。
 図10B、図10C及び図10Dに示すように、レクチンマイクロアレイ解析の結果、Muc6KOマウスでは、WTマウスに比して、マンノースに結合するレクチン(Heltuba、rGRFT、及びrBanana)が、胃粘膜上皮細胞の糖鎖成分に結合しやすいことが明らかになった。また、他にrBC2LAが結合し易いことを示すデータが得られた。
FIG. 10A is a schematic diagram of lectin microarray analysis of a sugar chain component extract of gastric mucosal epithelial cells.
Moreover, FIG. 10B is a graph showing the binding of rBanana lectin to the sugar chain component extract of each gastric mucosal epithelial cell of WT mouse and Muc6KO mouse, and FIG. 10C is a graph showing the binding property of rBanana lectin to each gastric mucosal epithelial cell of WT mouse and Muc6KO mouse. FIG. 10D is a graph showing the binding property of rGRFT lectin to the sugar chain component extract of each gastric mucosal epithelial cell of WT mice and Muc6KO mice. .
The WT mice and Muc6KO mice are 8 months old, and the sugar chain component extract of Muc6KO mice was extracted from cancer tissue.
As shown in FIGS. 10B, 10C, and 10D, lectin microarray analysis revealed that in Muc6KO mice, lectins that bind to mannose (Heltuba, rGRFT, and rBanana) were more abundant in gastric mucosal epithelial cells than in WT mice. It was revealed that it easily binds to sugar chain components. Additionally, data indicating that rBC2LA easily binds was obtained.

 マンノースへの高い結合性を有する上記のレクチンの中からバナナレクチンを選択し、以降の解析に用いた。 Banana lectin was selected from among the above lectins that have high binding properties to mannose and used for subsequent analysis.

 図11Aは、WTマウスの胃の組織切片に、FITC標識したバナナレクチンを結合させた結果を示す蛍光染色像であり、図11Bは、WTマウスの胃の組織切片に、FITC標識したGNLを結合させた結果を示す蛍光染色像である。
 また、図11Cは、Muc6KOマウスの胃の組織切片に、FITC標識したバナナレクチンを結合させた結果を示す蛍光染色像であり、図11Dは、Muc6KOマウスの胃の組織切片に、FITC標識したGNLを結合させた結果を示す蛍光染色像である。図11A~図11Dにおいて、スケールバーは100μmである。
 図11A~図11Dのマウスは8カ月齢であり、切片化されたMuc6KOマウスの胃組織はがん組織であった。
FIG. 11A is a fluorescent staining image showing the results of binding FITC-labeled banana lectin to a tissue section of the stomach of a WT mouse, and FIG. 11B is a fluorescent staining image showing the binding of FITC-labeled GNL to a tissue section of the stomach of a WT mouse. This is a fluorescent staining image showing the results.
Moreover, FIG. 11C is a fluorescent staining image showing the result of binding FITC-labeled banana lectin to a tissue section of the stomach of a Muc6KO mouse, and FIG. 11D is a fluorescent staining image showing the result of binding FITC-labeled GNL to a tissue section of the stomach of a Muc6KO mouse. This is a fluorescent staining image showing the result of combining . In FIGS. 11A-11D, the scale bar is 100 μm.
The mice in FIGS. 11A to 11D were 8 months old, and the sectioned stomach tissue of the Muc6KO mouse was cancerous tissue.

 図11A~図11Dに示す染色においては、FITC標識したバナナレクチン又はFITC標識したGNL(Galanthus nivalis Lectin)を組織切片とインキュベートした。GNLは、バナナレクチンと同様、マンノースに結合するレクチンである。 In the staining shown in FIGS. 11A to 11D, FITC-labeled banana lectin or FITC-labeled GNL (Galanthus nivalis lectin) was incubated with tissue sections. GNL, like banana lectin, is a lectin that binds to mannose.

 図11C及び図11Dに示すMuc6KOマウスでは、図11A及び図11Bに示すWTマウスに比して、緑色に光る部分(図中、明色で示されている)が多く、したがってマンノース結合レクチンであるバナナレクチンの結合性が増している(換言すれば、マンノースの量が増えている)ことが明らかになった。 In the Muc6KO mouse shown in FIGS. 11C and 11D, there are more areas that glow green (shown in bright colors in the figure) than in the WT mouse shown in FIGS. 11A and 11B, and therefore it is a mannose-binding lectin. It became clear that the binding of banana lectin was increasing (in other words, the amount of mannose was increasing).

 図12は、バナナレクチンブロッティングを示すスキーム図である。
 以上のように、Muc6KOマウスにおいて結合性を増すバナナレクチンが結合するタンパク質が何であるかを、以下に詳述するバナナレクチンブロッティングにより確認した。
 詳細には、まず、8カ月齢のWTマウスとMuc6KOマウスの胃粘膜細胞から、IP lysis bufferを用いてタンパク質を抽出した。その後、日本プロテオミクス社に委託し、以下の実験を行った。Muc6KOマウスの胃粘膜にはがん組織が形成されており、胃粘膜細胞はがん組織から採取されたものである。
FIG. 12 is a schematic diagram showing banana lectin blotting.
As described above, the protein to which banana lectin, which increases binding properties in Muc6KO mice, binds was confirmed by banana lectin blotting described in detail below.
Specifically, first, proteins were extracted from gastric mucosal cells of 8-month-old WT mice and Muc6KO mice using IP lysis buffer. Thereafter, the following experiments were carried out outsourced to Nippon Proteomics. Cancer tissue was formed in the gastric mucosa of Muc6KO mice, and the gastric mucosal cells were collected from the cancer tissue.

 まず、胃粘膜ライセートを18000Gで10分間遠心操作して上清を回収し、50μLのストレプトアビジン化ビーズと、10μgのビオチン化バナナレクチンとを加え、4℃で4時間にわたりインキュベーションした。ストレプトアビジン化ビーズは磁気ビーズである。
 次いで、マグネットを用いてwashing baffer(0.1M HEPES pH7.5,0.15M NaCl,0.2%NP-40)で2回洗浄し、さらにPBSで1回洗浄した。
 その後、一度遠心操作して残ったバッファーを取り除いた後、40μL の0.1M pH2.0 glycin bufferを加えてタッピングしてビーズを充分に攪拌し、2分間氷上に静置して遠心操作し、上清を回収した。
 次いで、回収した上清に4uLの1M pH9.5 Tris-HCl bufferを加えて中和した後、SDS-PAGE用Sample bufferを加え、98℃で4分間ボイルし、タンパク質をSDS-PAGEで分離した。
First, the gastric mucosal lysate was centrifuged at 18,000 G for 10 minutes to collect the supernatant, 50 μL of streptavidinated beads and 10 μg of biotinylated banana lectin were added, and the mixture was incubated at 4° C. for 4 hours. Streptavidinated beads are magnetic beads.
Next, it was washed twice with washing buffer (0.1M HEPES pH 7.5, 0.15M NaCl, 0.2% NP-40) using a magnet, and further washed once with PBS.
Then, after centrifuging once to remove the remaining buffer, add 40 μL of 0.1M pH 2.0 glycin buffer, stir the beads thoroughly by tapping, leave on ice for 2 minutes, and centrifuge. The supernatant was collected.
Next, 4uL of 1M pH 9.5 Tris-HCl buffer was added to the collected supernatant to neutralize it, and then Sample buffer for SDS-PAGE was added, boiled at 98°C for 4 minutes, and proteins were separated by SDS-PAGE. .

 図13は、バナナレクチンでプルダウンしたタンパク質のSDS-PAGEの結果である。
 図13に枠で示した、WTマウスとMuc6KOマウスにおけるバンドの違いに着目して、Muc6KOマウスで発現上昇している7種類のバンドをゲルから切り出し、トリプシン処理した後、LC-MS解析によりバンド内タンパク質の同定を試みた。
 その結果、65kDaのタンパク質については分泌型クラステリン蛋白前駆体(psClu)と同定された。また、以下に説明を加えるWestern blottingにおいてもpsCluが検出された。
FIG. 13 shows the results of SDS-PAGE of proteins pulled down with banana lectin.
Focusing on the differences in bands between WT mice and Muc6KO mice, which are shown in boxes in Figure 13, seven types of bands whose expression was increased in Muc6KO mice were cut out from the gel, treated with trypsin, and then analyzed by LC-MS analysis. We attempted to identify the internal proteins.
As a result, the 65 kDa protein was identified as secreted clusterin protein precursor (psClu). Furthermore, psClu was also detected in Western blotting, which will be explained below.

 図14は、細胞ライセートとプルダウンされたライセート中のタンパク質のWestern blottingの結果である。 Figure 14 shows the results of Western blotting of proteins in the cell lysate and the pulled-down lysate.

 Western blottingにおいては、まず、8カ月齢のWTマウスとMuc6KOマウスの各胃粘膜細胞を、cell lysate buffer(50mM Tris HCl、1%Triton-X、5mM EDTA、1mM Na3VO4、1.25mM NaF、protease inhibitor cocktail(cOmplete Mini、メルク社製))にて溶解し、WTマウス由来のタンパク質(以下、「WT由来タンパク質」という。)及びMuc6KOマウス由来のタンパク質(以下、「KO由来タンパク質」という。)を回収した。Muc6KOマウスの胃粘膜にはがん組織が形成されており、Muc6KOマウスの胃粘膜細胞はがん組織から採取されたものである。 For Western blotting, first, gastric mucosal cells from 8-month-old WT mice and Muc6KO mice were incubated with cell lysate buffer (50mM Tris HCl, 1% Triton-X, 5mM EDTA, 1mM Na3VO4, 1mM Na3VO4, .25mM NaF, protease inhibitor WT mouse-derived protein (hereinafter referred to as "WT-derived protein") and Muc6 KO mouse-derived protein (hereinafter referred to as "KO-derived protein") were recovered. did. Cancer tissue is formed in the gastric mucosa of Muc6KO mice, and the gastric mucosal cells of Muc6KO mice were collected from the cancer tissue.

 当該WT由来タンパク質及びKO由来タンパク質と、上述のバナナレクチンでプルダウンしたタンパク質について、溶解液7.5%~16%のゲルでSDS-PAGEを行い、その後にPVDF membrane(Pall Corporation社製)へと転写した。以下において、WTマウス由来のプルダウンしたタンパク質を「WTプルダウンタンパク質」といい、Muc6KOマウス由来のプルダウンしたタンパク質を「KOプルダウンタンパク質」という。 The WT-derived protein, KO-derived protein, and the protein pulled down with the banana lectin described above were subjected to SDS-PAGE using a 7.5% to 16% lysate gel, and then transferred to a PVDF membrane (manufactured by Pall Corporation). Transcribed. In the following, the pulled down protein derived from WT mouse is referred to as "WT pull down protein", and the pulled down protein derived from Muc6KO mouse is referred to as "KO pull down protein".

 このmembraneを5%スキムミルクで1時間blockingし、Tris Buffered Saline with Tween 20(TBS-T)で洗浄後、4℃の条件下で一晩、1次抗体としての抗clusterin抗体(RD bioscience、2000倍希釈)と反応させた。 This membrane was blocked with 5% skim milk for 1 hour, washed with Tris Buffered Saline with Tween 20 (TBS-T), and then incubated overnight at 4°C with anti-clusterin antibody (RD bioscience) as a primary antibody. 2000 times diluted).

 その後、membraneをTBS-Tで3回洗浄し、horseradish peroxidase(HRP)で標識された2次抗体(GE Healthcare社製)と1時間反応させ、同様に洗浄後、発光試薬ImmunoStar LD(富士フイルム和光純薬社製)を用いてHRPシグナルを検出した。 Thereafter, the membrane was washed three times with TBS-T and reacted with a secondary antibody (manufactured by GE Healthcare) labeled with horseradish peroxidase (HRP) for 1 hour. The HRP signal was detected using Hikari Junyaku Co., Ltd.).

 図14に示すように、Western blottingの結果、KO由来タンパク質では、WT由来タンパク質に比して、psCluが多いことが確認された。同様に、KOプルダウンタンパク質では、WTプルダウンタンパク質に比して、psCluが多いことが確認された。
 このことから、Muc6KOマウスでは、psCluの発現が亢進していることが明らかになった。
 加えて、図13及び図14に示す結果から、バナナレクチンはクラステリンに対し、マンノースを介して結合していることが明らかになった。
As shown in FIG. 14, as a result of Western blotting, it was confirmed that the KO-derived protein contained more psClu than the WT-derived protein. Similarly, it was confirmed that the KO pulldown protein contained more psClu than the WT pulldown protein.
This revealed that psClu expression was enhanced in Muc6KO mice.
In addition, the results shown in FIGS. 13 and 14 revealed that banana lectin binds to clusterin via mannose.

 図15は、WTマウス及びMuc6KOマウスの胃の組織切片において、核、クラステリン、及びマンノースを可視化した蛍光免疫染色像である。図15中のスケールバーは100μmである。
 詳細には、図15Aは、WTマウスの胃粘膜組織切片の蛍光免疫染色像であり、図15Bは、図15Aに示された蛍光免疫染色像の部分拡大図である。また、図15Cは、8カ月齢のMuc6KOマウスの胃粘膜組織切片の蛍光免疫染色像であり、図15Dは、図15Cに示された蛍光免疫染色像の部分拡大図である。また、図15Eは、12カ月齢のMuc6KOマウスの胃粘膜組織切片の蛍光免疫染色像であり、図15Fは、図15Eに示された蛍光免疫染色像の部分拡大図である。なお、切片とした8カ月齢及び12カ月齢のMuc6KOマウスの胃組織は、がん組織である。
 図15A~図15Fに示す染色においては、抗clusterin抗体(RD bioscience、2000倍希釈)、FITC標識したGNL、及び核の染色用にDAPIを用いた以外は、図7に示した染色と同様に行った。図15A~図15Fでは、核を示す青色の領域がR6、クラステリンを示す赤色の領域がR7、GNL(ひいてはマンノース)を示す緑色の領域がR8としてそれぞれ示されている。
FIG. 15 is a fluorescent immunostaining image visualizing nuclei, clusterin, and mannose in stomach tissue sections of WT mice and Muc6KO mice. The scale bar in FIG. 15 is 100 μm.
In detail, FIG. 15A is a fluorescent immunostained image of a gastric mucosal tissue section of a WT mouse, and FIG. 15B is a partially enlarged view of the fluorescent immunostained image shown in FIG. 15A. Further, FIG. 15C is a fluorescent immunostained image of a gastric mucosal tissue section of an 8-month-old Muc6KO mouse, and FIG. 15D is a partially enlarged view of the fluorescent immunostained image shown in FIG. 15C. Moreover, FIG. 15E is a fluorescent immunostained image of a gastric mucosal tissue section of a 12-month-old Muc6KO mouse, and FIG. 15F is a partially enlarged view of the fluorescent immunostained image shown in FIG. 15E. Note that the stomach tissues of 8-month-old and 12-month-old Muc6KO mice that were sectioned were cancerous tissues.
The staining shown in FIGS. 15A to 15F was performed in the same manner as the staining shown in FIG. 7, except that anti-clusterin antibody (RD bioscience, 2000-fold dilution), FITC-labeled GNL, and DAPI were used to stain the nucleus. went. In FIGS. 15A to 15F, the blue region indicating the nucleus is indicated as R6, the red region indicating clusterin is indicated as R7, and the green region indicating GNL (and thus mannose) is indicated as R8.

 特に図15D及び図15Fの拡大図に示すように、クラステリンMuc6KOマウスでは、WTマウスに比して、マンノース結合クラステリンの増加が確認された。 In particular, as shown in the enlarged views of FIGS. 15D and 15F, an increase in mannose-binding clusterin was confirmed in clusterin Muc6KO mice compared to WT mice.

 図16Aは、ヒト胃癌組織アレイにおけるクラステリンの発現を示す免疫染色像であり、図16Bは、ヒト胃癌組織アレイにおいてクラステリンを発現する細胞の割合で検体を分類した結果を示すグラフである。
 また、図17Aは、ヒト胃癌組織アレイでのクラステリン及びマンノースの存在を示す免疫染色像であり、図17Bは、ヒト胃癌組織アレイでのマンノース結合クラステリンの割合を示すグラフである。図16A及び図17Aのスケールバーは100μmである。
FIG. 16A is an immunostaining image showing the expression of clusterin in a human gastric cancer tissue array, and FIG. 16B is a graph showing the results of classifying samples according to the proportion of cells expressing clusterin in the human gastric cancer tissue array.
Further, FIG. 17A is an immunostaining image showing the presence of clusterin and mannose in the human gastric cancer tissue array, and FIG. 17B is a graph showing the proportion of mannose-binding clusterin in the human gastric cancer tissue array. The scale bar in FIGS. 16A and 17A is 100 μm.

 ヒト胃癌組織アレイは、研究使用についての同意書取得済のヒト胃癌組織が72検体プロットされたもので、US Biomax社より購入した。
 図16A及び図17Aには、上記のヒト胃癌組織アレイについて、1次抗体としての上述の抗clusterin抗体(GOAT抗体)と、2次抗体としての555 donkey-GOAT(invitrogen社製)と、色素としての上述のAlexa Fluor 555と、FITC標識したGNL及びhoechst(登録商標)33342を用いて染色を行った染色像が示されている。図16A及び図17Aにおいては、クラステリンを示す赤色の領域がR9、細胞核を示す青色の領域がR10として示されており、図17AではさらにGNL(ひいてはマンノース)を示す緑色の領域がR11としてそれぞれ示されている。
The human gastric cancer tissue array was obtained by plotting 72 human gastric cancer tissues for which written consent for research use had been obtained, and was purchased from US Biomax.
FIGS. 16A and 17A show the above-mentioned human gastric cancer tissue array with the above-mentioned anti-clusterin antibody (GOAT antibody) as a primary antibody, 555 donkey-GOAT (manufactured by Invitrogen) as a secondary antibody, and a dye as a dye. A stained image is shown in which staining was performed using the above-mentioned Alexa Fluor 555, FITC-labeled GNL, and Hoechst (registered trademark) 33342. In FIGS. 16A and 17A, the red region representing clusterin is shown as R9, the blue region representing the cell nucleus is shown as R10, and in FIG. 17A, the green region representing GNL (and mannose) is shown as R11. has been done.

 また、染色されたクラステリン発現細胞の割合が5%未満の検体をグレード1、5%以上50%以下の検体をグレード2、50%超過の検体をグレード3にそれぞれ分類した。
 その結果、図16Aに示すように、MUC6陰性検体では、MUC6陽性検体に比して、グレード2及び3の割合が高いことが明らかになった。なお、MUC6陰性かMUC6陽性かの判断は、免疫染色の結果に基づき判断した。
In addition, specimens in which the percentage of stained clusterin-expressing cells was less than 5% were classified as grade 1, specimens in which the ratio was 5% to 50% were classified as grade 2, and specimens in which the ratio exceeded 50% were classified as grade 3.
As a result, as shown in FIG. 16A, it was revealed that the proportion of grades 2 and 3 was higher in MUC6-negative specimens than in MUC6-positive specimens. Note that whether the test sample was MUC6 negative or MUC6 positive was determined based on the results of immunostaining.

 さらに、図17Bに示すように、ヒト胃癌組織アレイのMUC6陰性では、MUC6陽性の場合に比して、マンノース結合クラステリンの増加が見られた。 Furthermore, as shown in FIG. 17B, an increase in mannose-binding clusterin was observed in the MUC6-negative human gastric cancer tissue array compared to the MUC6-positive case.

 図18は、MUC6陰性ヒト胃癌細胞株であるMKN45及びMUC6陽性ヒト胃癌細胞株であるHUG1-P1に対し、FITC標識バナナレクチンを投与した染色像とフローサイトメトリーの結果である。各胃癌細胞株におけるバナナレクチン結合性を、以下のようにしてフローサイトメトリーを用いて定量的に評価を行った。なお、MKN45及びHUG1-P1は、住友ファーマインターナショナル社及びRIKEN CELL BANKから購入した細胞を用いた。 FIG. 18 shows the staining images and flow cytometry results obtained when FITC-labeled banana lectin was administered to MKN45, a MUC6-negative human gastric cancer cell line, and HUG1-P1, a MUC6-positive human gastric cancer cell line. Banana lectin binding in each gastric cancer cell line was quantitatively evaluated using flow cytometry as follows. For MKN45 and HUG1-P1, cells purchased from Sumitomo Pharma International Co., Ltd. and RIKEN CELL BANK were used.

 まず、各胃癌細胞株0.4×10個に対し、FITC標識バナナレクチン(最終濃度0.4μg/mL)又はコントロールとして標識していないバナナレクチンを添加し、24時間培養した。
 次いで、トリプシン処理を行い、細胞を回収して洗浄・遠心分離したものを、10%FBS(Fetal Bovine Serum)に懸濁し、20μLのcell strainer に通してサンプル調整した。
 その後、Guava EasyCyte Plus(メルク社製)でフローサイトメトリーを行った。1sampleを流して蛍光補正を行った後、同条件ですべての検体を流した。
 次いで、死細胞等を除くようにgatingを行った後、コントロール検体とFITC標識バナナレクチン投与サンプルについて、横軸を488nm波長での蛍光強度、縦軸を細胞数でプロットしたものが図18下部のグラフである。
First, FITC-labeled banana lectin (final concentration 0.4 μg/mL) or unlabeled banana lectin as a control was added to 0.4×10 6 cells of each gastric cancer cell line, and cultured for 24 hours.
Next, trypsin treatment was performed, and the cells were collected, washed, and centrifuged, suspended in 10% FBS (Fetal Bovine Serum), and passed through a 20 μL cell strainer to prepare a sample.
Thereafter, flow cytometry was performed using Guava EasyCyte Plus (manufactured by Merck & Co.). After one sample was run and fluorescence correction was performed, all samples were run under the same conditions.
Next, after gating was performed to remove dead cells, etc., the horizontal axis was plotted with the fluorescence intensity at a wavelength of 488 nm and the vertical axis was plotted with the number of cells for the control specimen and the sample administered with FITC-labeled banana lectin, as shown in the lower part of Figure 18. It is a graph.

 図18に示す染色像では、MUC6陰性のヒト胃癌細胞株は全体的に強い緑色蛍光を発しており、MUC6陰性のヒト胃癌細胞株の方が、MUC6陽性のヒト胃癌細胞株に比して、緑色蛍光が強かった。このことから、MUC6陰性のヒト胃癌細胞株においてマンノース結合クラステリンの発現量が高いことが明らかになった。
 また、図18下部に示すように、MUC6陰性の胃癌細胞株の方が、2つの波形同士の距離が大きいことからも、MUC6陰性の胃癌細胞株で多くのバナナレクチンが結合していることが見て取れる。
In the stained image shown in FIG. 18, the MUC6-negative human gastric cancer cell line emits strong green fluorescence as a whole, and the MUC6-negative human gastric cancer cell line is more sensitive than the MUC6-positive human gastric cancer cell line. The green fluorescence was strong. This revealed that the expression level of mannose-binding clusterin was high in the MUC6-negative human gastric cancer cell line.
Furthermore, as shown in the lower part of Figure 18, the distance between the two waveforms is larger in the MUC6-negative gastric cancer cell line, indicating that more banana lectin is bound in the MUC6-negative gastric cancer cell line. I can see it.

 以上のように、MUC6陰性のヒト胃癌細胞株においてもバナナレクチンの結合性が高かったことから、以下のように、バナナレクチンを用いた血球凝集反応を行った。 As described above, banana lectin binding was high even in the MUC6-negative human gastric cancer cell line, so a hemagglutination reaction using banana lectin was performed as follows.

 図19は、バナナレクチンを用いて血球凝集反応検査を行った結果である。
 配列番号1にアミノ酸配列が示されたWTバナナレクチンと、レクチン特有の血球凝集反応を抑制するため当該バナナレクチンにH84T変異を加えたH84Tバナナレクチン(配列番号8参照)を用いて、血球凝集反応検査を行った。
FIG. 19 shows the results of a hemagglutination test using banana lectin.
A hemagglutination reaction was performed using WT banana lectin whose amino acid sequence is shown in SEQ ID NO: 1 and H84T banana lectin (see SEQ ID NO: 8), which is obtained by adding the H84T mutation to the banana lectin in order to suppress the hemagglutination reaction specific to lectin. An inspection was conducted.

 さらに、上記H84Tバナナレクチンに、配列番号3に示すアミノ酸配列からなるリンカーを介して緑膿菌外毒素(PE38、配列番号2参照)が結合したバナナレクチン薬物複合体(H84Tバナナレクチン-PE38、アミノ酸配列として配列番号9参照)を作製し、血球凝集反応検査を行った。
 バナナレクチン薬物複合体の作製においては、まず、H84T変異を有するバナナレクチン(配列番号8参照)をコードする核酸配列の3’末端側に、配列番号3に示すリンカーをコードする核酸配列を介して、緑膿菌毒素PE38の細胞殺傷ドメイン(ETA)領域の部分領域38kDa(上記配列番号2参照)をコードする核酸配列を融合させた核酸配列(配列番号10参照)をpET27bベクターに挿入し、大腸菌に形質転換した。次いで、大腸菌を37℃で培養し、IPTGでタンパク質発現を誘導した。その後、遠心操作により大腸菌を回収し、タンパク質を抽出後、D-マンノースを固定化したセファロースCL-6B(Cytiva社)でアフィニティー精製することで、バナナレクチン薬物複合体を取得した。
Furthermore, a banana lectin drug complex (H84T banana lectin-PE38, amino acid (See SEQ ID NO: 9) was prepared and a hemagglutination test was performed.
In the production of a banana lectin drug complex, first, a nucleic acid sequence encoding a linker shown in SEQ ID NO: 3 is attached to the 3' end of a nucleic acid sequence encoding banana lectin having the H84T mutation (see SEQ ID NO: 8). , a nucleic acid sequence (see SEQ ID NO: 10) fused with a nucleic acid sequence encoding a 38 kDa partial region of the cell killing domain (ETA) region of Pseudomonas aeruginosa toxin PE38 (see SEQ ID NO: 2 above) was inserted into the pET27b vector, and the E. coli transformed into. Next, E. coli was cultured at 37°C, and protein expression was induced with IPTG. Thereafter, Escherichia coli was collected by centrifugation, and the protein was extracted, followed by affinity purification with Sepharose CL-6B (Cytiva) on which D-mannose was immobilized, to obtain a banana lectin drug complex.

 血球凝集反応検査に関しては、まず、マウスの血液を採取して、4ないし5倍量のPBSを加えて遠心と上清の廃棄とを3ないし4回繰り返し、赤血球画分を得た。
 次いで、PBSを加えて、2%v/v赤血球浮遊液として、96wellのU字タイタープレート上の濃度勾配を付けたレクチン(0.12~30μg/mL)25μLに対して、2%v/v赤血球浮遊液を50μLずつ添加して1時間ほど静置し、血球凝集反応を確認した。
Regarding the hemagglutination test, first, blood from a mouse was collected, 4 to 5 times the volume of PBS was added, centrifugation was repeated 3 to 4 times, and the supernatant was discarded to obtain a red blood cell fraction.
PBS was then added to prepare a 2% v/v red blood cell suspension for 25 μL of lectin (0.12-30 μg/mL) with a concentration gradient on a 96-well U-shaped titer plate. 50 μL of red blood cell suspension was added and allowed to stand for about 1 hour, and the hemagglutination reaction was confirmed.

 図19に凝集反応の有無を破線で示すように、H84T変異バナナレクチン及びH84T変異を有するバナナレクチン薬物複合体においては、H84T変異を加えていないWTバナナレクチンに比して、血球凝集反応が抑えられていた。 As shown by the broken line in Figure 19, the hemagglutination reaction was suppressed in the H84T mutant banana lectin and the banana lectin drug complex with the H84T mutation compared to WT banana lectin without the H84T mutation. It was getting worse.

 図20は、HUG1-P1及びMKN45に対する、バナナレクチン薬物複合体の投与量ごとの細胞障害活性を評価した結果であり、図21は、MKN45を、バナナレクチン薬物複合体に晒した期間ごとの細胞障害活性を経時的に評価した結果である。 Figure 20 shows the results of evaluating the cytotoxic activity of the banana lectin drug complex against HUG1-P1 and MKN45 at different doses. These are the results of evaluating the damage activity over time.

 図20に示された実験では、各胃癌細胞株に、1~1000ngの上記バナナレクチン薬物複合体を投与したときの、投与量ごとの生細胞数を評価した。また、コントロールとして、バナナレクチン薬物複合体に代えて、PBSを投与した群も用意した。
 図21に示された実験では、各胃癌細胞株を、1~3日間にわたって上記バナナレクチン薬物複合体に晒したときの、晒した期間ごとの生細胞数を評価した。
 生細胞数の評価には、cell counting kit-8(同仁化学研究所社製)を用い、RPMI1640にFBS10%及びPC/SM1%を混合した培養液中に、上記の試薬を1:10の割合で添加し、4時間後に450nmの吸光度測定を行った。
In the experiment shown in FIG. 20, when 1 to 1000 ng of the banana lectin drug complex was administered to each gastric cancer cell line, the number of viable cells for each dose was evaluated. As a control, a group in which PBS was administered instead of the banana lectin drug complex was also prepared.
In the experiment shown in FIG. 21, each gastric cancer cell line was exposed to the banana lectin drug complex for 1 to 3 days, and the number of viable cells was evaluated for each exposure period.
To evaluate the number of living cells, use cell counting kit-8 (manufactured by Dojindo Laboratories) and add the above reagents at a ratio of 1:10 to a culture solution containing RPMI1640 mixed with 10% FBS and 1% PC/SM. The absorbance was measured at 450 nm after 4 hours.

 図20及び図21に示すように、MUC6陰性胃癌細胞株であるMKN45に対し、バナナレクチン薬物複合体を投与すると、投与量依存的且つ期間依存的に細胞数が顕著に減少することが明らかになった。 As shown in Figures 20 and 21, it is clear that when the banana lectin drug complex was administered to the MUC6-negative gastric cancer cell line MKN45, the cell number significantly decreased in a dose- and period-dependent manner. became.

 図22は、Muc6KOマウスに対するバナナレクチン薬物複合体の投与スケジュールを示す図である。
 また、図23は、バナナレクチン薬物複合体を投与したMuc6KOマウスの胃の組織切片の免疫組織染色の結果であり、図24は、図23のシグナル強度の定量結果と、腫瘍径及び腺管高を示す図面である。図23中のスケールバーは100μmである。
FIG. 22 is a diagram showing the administration schedule of banana lectin drug complex to Muc6KO mice.
Furthermore, FIG. 23 shows the results of immunohistochemical staining of gastric tissue sections of Muc6KO mice administered with the banana lectin drug complex, and FIG. 24 shows the results of quantifying the signal intensity in FIG. FIG. The scale bar in FIG. 23 is 100 μm.

 図22に示す投与スケジュールにて、胃の腺管に腫瘍が発生したMuc6KOマウスに週に1回1μg/bodyの上記バナナレクチン薬物複合体を腹腔内投与して、腫瘍増殖を抑制できるか否かを確認した。
 図23に示す染色においては、ヘマトキシリンとエオジン、抗Ki67抗体(Cell signaling technology社製、2000倍希釈)、抗cleaved caspase-3抗体(Cell signaling technology社製、2000倍希釈)を用いた以外は、基本的に図6に示した染色と同様である。
 バナナレクチン薬物複合体を投与した群では、非投与群と比較して、腫瘍の縮小が認められた。また、バナナレクチン薬物複合体の投与群においては、がん細胞の増殖力を示すKi-67の陽性細胞数が減少したことから、細胞増殖の抑制が認められた。さらに、アポトーシスのマーカーであるcleaved caspase-3陽性細胞が増加したことから、腫瘍腺管のアポトーシス誘導が確認された。
Is it possible to suppress tumor growth by intraperitoneally administering 1 μg/body of the banana lectin drug complex once a week to Muc6KO mice in which tumors have developed in the gastric ducts according to the administration schedule shown in Figure 22? It was confirmed.
In the staining shown in FIG. 23, hematoxylin and eosin, anti-Ki67 antibody (manufactured by Cell Signaling Technology, diluted 1:2000), and anti-cleaved caspase-3 antibody (manufactured by Cell Signaling Technology, diluted 1:2000) were used. This is basically the same as the staining shown in FIG.
Tumor shrinkage was observed in the banana lectin drug complex administered group compared to the non-administered group. Furthermore, in the banana lectin drug complex administration group, the number of Ki-67 positive cells, which indicates the proliferative ability of cancer cells, decreased, indicating that cell proliferation was suppressed. Furthermore, the number of cleaved caspase-3-positive cells, which is a marker for apoptosis, increased, confirming induction of apoptosis in tumor ducts.

 図25は、MKN45をヌードマウスの両臀部に移植して作製されたXenograftに対する、H84T変異を有するバナナレクチン又はバナナレクチン薬物複合体の影響を示す図面である。 FIG. 25 is a diagram showing the influence of banana lectin having the H84T mutation or banana lectin drug complex on a Xenograft prepared by transplanting MKN45 into both buttocks of a nude mouse.

 本実験では、ヒト胃癌細胞株MKN45をヌードマウスに移植してXenograftを作製した。当該Xenograftは、病理組織検査の結果、癌細胞であることが明らかになっている。 In this experiment, a Xenograft was created by transplanting the human gastric cancer cell line MKN45 into a nude mouse. As a result of histopathological examination, it has been revealed that the Xenograft is a cancer cell.

 MKN45の移植後1週間後から、H84T変異を有するバナナレクチン又は上記バナナレクチン薬物複合体2μgを、週に2回、4週間にわたって腹腔内投与した。そして、最後の投与から1週間後にXenograftを摘出し、H84T変異を有するバナナレクチンに対するバナナレクチン薬物複合体の腫瘍抑制効果を確認した。 Starting one week after the transplantation of MKN45, 2 μg of banana lectin having the H84T mutation or the banana lectin drug complex was intraperitoneally administered twice a week for 4 weeks. Then, one week after the last administration, the Xenograft was removed, and the tumor suppressing effect of the banana lectin drug complex on banana lectin having the H84T mutation was confirmed.

 図25に示すように、摘出されたXenograftについて、H84T変異を有するバナナレクチンを投与したコントロール群よりも、バナナレクチン薬物複合体を投与した群の方が小さく、重量も軽かった。以上の結果から、バナナレクチン薬物複合体は、ヒトの胃癌細胞の増殖を抑制し、腫瘍を縮小させる効果を有することが明らかになった。 As shown in FIG. 25, the extracted Xenografts in the group administered with the banana lectin drug complex were smaller and lighter in weight than in the control group administered with banana lectin having the H84T mutation. From the above results, it was revealed that the banana lectin drug complex has the effect of suppressing the proliferation of human gastric cancer cells and shrinking tumors.

 本実施形態は、癌に対する新規薬物療法に活用することができる。 This embodiment can be utilized for new drug therapy for cancer.

 R1~R11…領域 R1 to R11...area

Claims (13)

 MUC6発現陰性のがん組織へ対象物質を送達するための担体であって、マンノースへの結合活性を有する分子を含む、担体。 A carrier for delivering a target substance to cancer tissues negative for MUC6 expression, the carrier containing a molecule having binding activity to mannose.  前記がん組織は、胃がん組織である、請求項1に記載の担体。 The carrier according to claim 1, wherein the cancer tissue is a gastric cancer tissue.  前記胃がん組織が、MUC6遺伝子変異によるMUC6発現陰性の胃がん組織である、請求項2に記載の担体。 The carrier according to claim 2, wherein the gastric cancer tissue is a gastric cancer tissue that is negative for MUC6 expression due to a mutation in the MUC6 gene.  前記胃がん組織が、腸型胃癌である、請求項2に記載の担体。 The carrier according to claim 2, wherein the gastric cancer tissue is intestinal type gastric cancer.  前記胃がん組織が、MUC5AC、MUC6、MUC2及びCD10の発現がいずれも陰性の胃癌である、請求項2に記載の担体。 The carrier according to claim 2, wherein the gastric cancer tissue is a gastric cancer in which the expression of MUC5AC, MUC6, MUC2, and CD10 is negative.  前記分子は、糖結合タンパク質である、請求項1に記載の担体。 The carrier according to claim 1, wherein the molecule is a sugar-binding protein.  前記糖結合タンパク質は、血球凝集能が欠損又は低下している、請求項6に記載の担体。 The carrier according to claim 6, wherein the sugar-binding protein has a defective or reduced hemagglutinating ability.  前記糖結合タンパク質は、バナナレクチンである、請求項6に記載の担体。 The carrier according to claim 6, wherein the sugar-binding protein is banana lectin.  前記バナナレクチンは、H84Tのアミノ酸変異を有する、請求項8に記載の担体。 The carrier according to claim 8, wherein the banana lectin has an amino acid mutation of H84T.  請求項1に記載の担体と対象物質との複合体。 A complex of the carrier according to claim 1 and a target substance.  前記対象物質は、抗がん剤である、請求項10に記載の複合体。 The complex according to claim 10, wherein the target substance is an anticancer drug.  請求項10又は11に記載の複合体を含む、医薬組成物。 A pharmaceutical composition comprising the complex according to claim 10 or 11.  請求項12に記載の医薬組成物を使用するがん患者に用いられるコンパニオン診断薬であって、
 抗クラステリン抗体、クラステリン遺伝子を増幅するためのプライマーセット、又はクラステリン遺伝子若しくはその増幅産物に結合するプローブを含む、診断薬。
A companion diagnostic agent for use in cancer patients using the pharmaceutical composition according to claim 12,
A diagnostic agent comprising an anti-clusterin antibody, a primer set for amplifying the clusterin gene, or a probe that binds to the clusterin gene or its amplification product.
PCT/JP2023/031486 2022-08-30 2023-08-30 Carrier, complex, pharmaceutical composition, and diagnostic drug WO2024048644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263402071P 2022-08-30 2022-08-30
US63/402,071 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024048644A1 true WO2024048644A1 (en) 2024-03-07

Family

ID=90099661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031486 WO2024048644A1 (en) 2022-08-30 2023-08-30 Carrier, complex, pharmaceutical composition, and diagnostic drug

Country Status (1)

Country Link
WO (1) WO2024048644A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150187A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Antifungal
WO2021193199A1 (en) * 2020-03-24 2021-09-30 国立研究開発法人産業技術総合研究所 Method for analyzing sugar chain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150187A (en) * 2008-12-25 2010-07-08 National Institute Of Advanced Industrial Science & Technology Antifungal
WO2021193199A1 (en) * 2020-03-24 2021-09-30 国立研究開発法人産業技術総合研究所 Method for analyzing sugar chain

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARAI, JUNYA ET AL. : "J14-4-4 Lectin Drug Conjugate Therapy for Gastric Cancer with MUC6 Mutation", THE 80TH ANNUAL MEETING OF THE JAPANESE CANCER ASSOCIATION; YOKOHAMA, JAPAN; 2021 SEP 30 ‐ OCT 2, vol. 80, 1 January 2021 (2021-01-01), pages 229, XP009553549 *
ARAI, JUNYA; HAYAKAWA, YOKU; SUZUKI, NOBUMI; HATA, MASAHIRO; TSUBOI, MAYO; FUJISHIRO, MITSUHIRO: "Loss of MUC6 drives gastric carcinogenesis via disruption of proteostasis and activation of oncogenic pathways", GASTROENTEROLOGY, vol. 162, no. 7, Suppl., 1 May 2022 (2022-05-01), US , pages S - 231, XP009553542, ISSN: 0016-5085, DOI: 10.1016/S0016-5085(22)60554-7 *
LLOYD M. G., LIU D., LEGENDRE M., MARKOVITZ D. M., MOFFAT J. F.: "H84T BanLec has broad spectrum antiviral activity against human herpesviruses in cells, skin, and mice", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 12, no. 1, 31 January 2022 (2022-01-31), US , pages 1641, XP093145602, ISSN: 2045-2322, DOI: 10.1038/s41598-022-05580-6 *
MCKENNA, MARY KATHRYN; BRENNER, DANIEL; BRENNER, BENJAMIN; WATANABE, NORIHIRO; BONIFANT, CHALLICE; MARKOVITZ, DAVID; BRENNER, MALC: "Targeting tumors and the tumor microenvironment with banana lectin expressing T cells", MOLECULAR THERAPY, vol. 30, no. 4, Suppl. 1, 2 April 2022 (2022-04-02), US , pages 579, XP009553545, ISSN: 1525-0016 *

Similar Documents

Publication Publication Date Title
Shang et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression
Jang et al. Breast cancer cell–derived soluble CD44 promotes tumor progression by triggering macrophage IL1β production
Jagadish et al. Heat shock protein 70–2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth
US20210322513A1 (en) Method for detecting cancer cells, reagent for introducing substance into cancer cells, and composition for treating cancer
Meng et al. Bone mesenchymal stem cells are recruited via CXCL8‐CXCR2 and promote EMT through TGF‐β signal pathways in oral squamous carcinoma
CN103764668B (en) Leukemic stem cells targeting ligand and application process
Rashid et al. Generation of novel diagnostic and therapeutic exosomes to detect and deplete protumorigenic M2 macrophages
Pucci et al. Interleukin-6 affects cell death escaping mechanisms acting on Bax-Ku70-Clusterin interactions in human colon cancer progression
JPWO2016136372A1 (en) Anti-tumor agent with CCAP4 as target molecule
WO2015165290A1 (en) Uses of blood evs and associated molecules in tumor drug resistance detection
Han et al. Cell adhesion molecule BVES functions as a suppressor of tumor cells extrusion in hepatocellular carcinoma metastasis
Israeli Dangoor et al. CCL2 blockade combined with PD-1/P-selectin immunomodulators impedes breast cancer brain metastasis
WO2024048644A1 (en) Carrier, complex, pharmaceutical composition, and diagnostic drug
WO2024149232A1 (en) Nanoantibody b12 targeting ceacam5 and use of nanoantibody b12
Zorzos et al. Multidrug resistance proteins and topoisomerase IIα expression in colon cancer: association with metastatic potential
JP6341859B2 (en) Cancer markers and their uses
US9701985B2 (en) mda-9/syntenin promoter to image and treat metastatic cancer cells
US20220125770A1 (en) Combination therapy of alk-positive neoplasia
Shang et al. Exosomal KRAS mutation promotes promotion of colorectal cancer by the formation of tumor-associated neutrophil extracellular traps
WO2018025869A1 (en) Biomarker for predicting therapeutic effect of fstl1 inhibitor in cancer patient
CN114908158B (en) Application of CDK1 in the diagnosis and treatment of advanced gastrointestinal stromal tumors
US20250073344A1 (en) Methods of treating malignant gliomas
JP4621923B2 (en) Anticancer drug resistance test marker for pancreatic cancer, adjuvant treatment for anticancer drug for pancreatic cancer
Bulnes Targeting Mutated KRAS and Galectin-1 in Pancreatic Cancer
Martinez Bulnes Targeting Mutated KRAS and Galectin-1 in Pancreatic Cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024544324

Country of ref document: JP