WO2024038776A1 - ガスケット成形方法、ガスケット成形型及びガスケット成形装置 - Google Patents
ガスケット成形方法、ガスケット成形型及びガスケット成形装置 Download PDFInfo
- Publication number
- WO2024038776A1 WO2024038776A1 PCT/JP2023/028561 JP2023028561W WO2024038776A1 WO 2024038776 A1 WO2024038776 A1 WO 2024038776A1 JP 2023028561 W JP2023028561 W JP 2023028561W WO 2024038776 A1 WO2024038776 A1 WO 2024038776A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavity
- mold
- active energy
- energy ray
- gasket
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0888—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/10—Moulds or cores; Details thereof or accessories therefor with incorporated venting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/56—Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
- B29C33/58—Applying the releasing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C37/00—Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
- B29C37/006—Degassing moulding material or draining off gas during moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0053—Producing sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/108—Special methods for making a non-metallic packing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/14—Sealings between relatively-stationary surfaces by means of granular or plastic material, or fluid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0276—Sealing means characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/028—Sealing means characterised by their material
- H01M8/0284—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0286—Processes for forming seals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0827—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C37/00—Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
- B29C37/0067—Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/22—Component parts, details or accessories; Auxiliary operations
- B29C39/24—Feeding the material into the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/22—Component parts, details or accessories; Auxiliary operations
- B29C39/26—Moulds or cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/22—Component parts, details or accessories; Auxiliary operations
- B29C39/36—Removing moulded articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/26—Sealing devices, e.g. packaging for pistons or pipe joints
- B29L2031/265—Packings, Gaskets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a gasket molding method, a gasket mold, and a gasket molding device.
- a gasket is known as something that seals between two parts.
- Such gaskets are generally molded by injection molding, in which a mold in which a cavity having a desired shape is formed is filled with a molding resin such as a thermoplastic resin.
- Patent Document 1 discloses that a molding resin is applied to a workpiece in advance, the molding resin is pressed from above with a mold having a cavity of a desired shape, the molding resin is hardened, and the gasket is attached to the workpiece. It is described that it can be molded.
- One aspect of the present invention is a gasket forming method for forming a gasket on a workpiece, which includes a coating step of applying an active energy ray-curable liquid to an annular cavity of a transparent mold. , a bonding step of bonding the mold coated with the active energy ray-curable liquid and the workpiece, and a curing step of curing the applied active energy ray-curable liquid by irradiation with active energy rays. , a mold release step of peeling off the cured active energy ray-curable liquid from the mold together with the workpiece, and in the bonding step, the workpiece and the mold are cured with active energy rays.
- the mold When bonding is performed via a mold liquid, a portion of the active energy ray-curable liquid or gas is discharged to the atmosphere from a communication path communicating with the cavity.
- the mold includes an escape groove that is closed together with the cavity when the workpiece and the mold are bonded together via the active energy ray-curable liquid;
- the escape groove may have a width wider than the width of the cavity, a depth shallower than the depth of the cavity, and communicate with the open end side of the cavity.
- Another aspect of the present invention is a gasket molding method for molding a gasket on a workpiece, in which an active energy ray-curable liquid is applied to an annular cavity of a transparent mold.
- a relief groove is provided that is closed together with the cavity when bonded together via a hardening liquid, and the relief groove has a width wider than the width of the cavity and a depth shallower than the depth of the cavity.
- the cavity has a protruding portion that protrudes in the normal direction of the molding surface of the mold than the annular inner region and outer region. may be provided.
- the coating step may be performed using a dispenser.
- the cavity may be coated with a release coating.
- Another aspect of the present invention is a gasket mold for forming a gasket on a workpiece by applying, curing, and transferring an active energy ray-curable liquid, the gasket forming mold forming a gasket in the shape of the gasket.
- the relief groove is provided with a relief groove having a width wider than the width of the cavity and a depth shallower than the depth of the cavity, and the relief groove is provided on the open end side of the cavity.
- the escape groove may be closed together with the cavity when the workpiece and the molding surface are bonded together via the active energy ray-curable liquid.
- Another aspect of the present invention is a gasket mold for forming a gasket on a workpiece by applying, curing, and transferring an active energy ray-curable liquid, the gasket forming mold forming a gasket in the shape of the gasket.
- an escape groove closed together with the cavity, the escape groove having a width wider than the width of the cavity and a depth shallower than the depth of the cavity, and an open end of the cavity. It is connected to the side.
- the cavity may be provided in a protrusion that protrudes in the normal direction of the molding surface beyond the annular inner region and outer region. good.
- the cavity may be coated with a release coating.
- a gasket molding device which includes a coating device that discharges an active energy ray-curable liquid with a dispenser, and a transparent mold, and the gasket molding device includes: comprising a bonding device for bonding to a mold, a drive device for relatively moving the mold and the dispenser, and an active energy ray irradiation device for irradiating the active energy ray curable liquid with active energy rays,
- the mold has a cavity which is closed in an annular shape according to the shape of the gasket and is provided on the mold bonding surface, and which can be filled with an active energy ray-curable liquid, and a communication path which communicates with the cavity and communicates with the atmosphere.
- Another aspect of the present invention is a gasket molding device, which includes a coating device that discharges an active energy ray-curable liquid with a dispenser, and a transparent mold, and the workpiece is placed in the mold.
- the mold has a cavity that is closed in an annular shape according to the shape of the gasket and is provided on the molding bonding surface, and that can be filled with an active energy ray-curable liquid, and a cavity that can be filled with an active energy ray-curable liquid, and a cavity that can be filled with the active energy ray-curable liquid between the workpiece and the mold.
- an escape groove that is closed together with the cavity when bonded together, the escape groove having a width wider than the width of the cavity and a depth shallower than the depth of the cavity, Moreover, it communicates with the open end side of the cavity.
- a gasket molding method it is possible to provide a gasket molding method, a gasket mold, and a gasket molding apparatus that can reduce the peeling force for peeling off the gasket from the mold. Further, it is possible to provide a gasket molding method, a gasket mold, and a gasket molding device that can make the dimensional accuracy of the gasket uniform.
- FIG. 2 is a schematic plan view showing a workpiece in which a gasket is molded.
- FIG. 2 is a flow diagram showing a gasket forming method according to an embodiment of the present invention.
- FIG. 2 is an operational diagram showing a gasket forming method according to an embodiment of the present invention.
- FIG. 1 is a schematic perspective view showing a mold according to an embodiment of the present invention.
- FIG. 3B is a cross-sectional perspective view showing an enlarged area A in FIG. 3A.
- FIG. 2 is a schematic cross-sectional view showing a fuel cell.
- FIG. 3 is a flow diagram showing a sealing method for sealing between two parts.
- FIG. 3 is a cross-sectional perspective view showing a modified mold according to the present invention.
- FIG. 2 is a schematic cross-sectional view showing a gasket molded with a conventional mold.
- FIG. 1 is a schematic plan view showing a workpiece 10 in which a gasket 30 is formed.
- the workpiece 10 is one or the other part when two parts are assembled via the gasket 30, and has a desired size and shape, and is made of, for example, iron, aluminum, stainless steel, magnesium, titanium, etc. It is made of metal, carbon, or resin such as polyvinyl chloride, polyethylene naphthalate, polyethylene terephthalate, polyethylene, polypropylene, or polycarbonate. Note that the work 10 of this embodiment has a rectangular plate shape.
- the workpiece 10 is formed with one or more openings 10a or one or more recesses 10b.
- a gasket 30 is formed around these openings 10a and recesses 10b.
- the work 10 preferably has a flat surface on which the gasket 30 is formed, but may have a gently sloped surface.
- the workpiece 10 may not have the opening 10a and the recess 10b, and the other component may have the opening 10a and the recess 10b.
- the gasket molding device mainly includes a coating device, a bonding device, an XYZ-axis drive device, an active energy ray irradiation device 60, a mold release device, and a control device.
- the coating device can apply the liquid to the coating target, and may be any device used in coating methods such as a dispenser, spray, inkjet, screen printing, and gravure printing. Among them, a dispenser is preferable, and the present embodiment
- the coating device includes a dispenser 50 that discharges liquid from a nozzle toward a coating target, a tank or syringe that stores the liquid, and a pump that supplies the liquid. Note that a rotation mechanism for rotating the nozzle around the Z axis may be provided.
- the bonding device includes a fixed base that holds one of the objects to be bonded (the mold 40), a movable table that holds the other object to be bonded (the workpiece 10), and a movable table that faces the fixed table.
- the movable table is of a crumb type, which includes a reversing drive means for reversing and moving the movable table so as to separate it from the fixed table.
- the structure of the bonding device is not limited to the crumb type.
- the bonding device also includes an imaging device such as a CCD camera that images the object to be bonded, so that the position, inclination, etc. of the object to be bonded can be checked during bonding. Furthermore, this bonding device will also be used as a mold release device for separating bonded objects. However, the mold release device and the bonding device may be provided independently.
- the XYZ-axis drive device includes an X-axis moving device that moves the dispenser 50 in the left-right direction, a Y-axis moving device that moves the dispenser 50 in the front-back direction, and a Z-axis moving device that moves the dispenser 50 in the up-down direction.
- the XYZ-axis drive device may be used in any combination as long as it can move the dispenser 50 along the three-dimensional XYZ axes relative to the object to be coated.
- the XYZ-axis drive device may be combined with an , and a Z table that holds the coating target.
- the active energy ray irradiation device 60 irradiates light such as ultraviolet rays or electron beams with a wavelength of about 320 nm or more and 450 nm or less, and is configured as a linear light source or a planar light source using a UV lamp or UV-LED. There is.
- the active energy ray irradiation device 60 is capable of irradiating active energy rays with a peak illuminance of 500 mW/cm 2 or more and 5000 mW/cm 2 or less, preferably 1500 mW/cm 2 or more and 5000 mW/cm 2 or less. It is preferable because curing shrinkage of the line-curable liquid 20 can be suppressed and dimensional stability can be improved, and furthermore, it is preferable that the integrated light amount can be adjusted by setting the irradiation time.
- This active energy ray irradiation device 60 is movably or fixedly provided with respect to the coating target. However, the active energy ray irradiation device 60 may be provided at the rear in the moving direction of the dispenser 50 to cure the liquid while applying the liquid.
- the control device integrally controls the coating device, the laminating device (mold release device), the XYZ axis drive device, and the active energy ray irradiation device 60, and for example, controls the rotation speed (rotation speed, rotation angle) of the pump.
- the discharge amount of the dispenser 50 can be adjusted, and by controlling the rotation speed (rotation angle) of the reversing drive means, the laminating load and pushing amount can be adjusted, and the load control or position control using the movable table can be performed.
- the position and speed of the dispenser 50 are controlled, the power supplied to the active energy ray irradiation device 60 is controlled, and the irradiation output of the light source is adjusted. or
- FIG. 2 shows a gasket forming method according to an embodiment of the present invention, with FIG. 2A being a flow diagram and FIG. 2B being an operation diagram.
- the active energy ray-curable liquid 20 is an ultraviolet curable resin that reacts and cures by irradiation with active energy rays (for example, ultraviolet light), and is, for example, a (meth)acrylate composition that undergoes radical polymerization or a cationic polymerization composition. Any epoxy composition that performs the following may be used.
- liquid means liquid at 25°C.
- the viscosity of the active energy ray-curable liquid 20 at 25° C. is not particularly limited, but is, for example, 500 Pa ⁇ s or less, preferably 0.01 Pa ⁇ s or more and 400 Pa ⁇ s or less, and more preferably 0.01 Pa ⁇ s or less and 400 Pa ⁇ s or less. It is 1 Pa.s or more and 350 Pa.s or less, particularly preferably 1 Pa.s or more and 300 Pa.s or less.
- the structural viscosity ratio at 25° C. of the active energy ray-curable liquid 20 is not particularly limited, but is, for example, 1.0 or more and 10 or less, preferably 1.1 or more and 8 or less, and more preferably 1.0 or more and 10 or less.
- the viscosity and structural viscosity ratio can be determined using a rheometer.
- the curing shrinkage rate of the active energy ray-curable liquid 20 is not particularly limited, but is preferably, for example, 10% or less, more preferably 2% to 10%.
- Examples of the (meth)acrylate composition that undergoes the radical polymerization include compositions containing (meth)acryloyl group-containing oligomers, (meth)acryloyl group-containing reactive diluents, and photoradical initiators.
- the above (meth)acryloyl group-containing oligomers are not particularly limited, but include, for example, urethane (meth)acrylate with a polycarbonate skeleton, urethane (meth)acrylate with a polyether skeleton, urethane (meth)acrylate with a polyester skeleton, and urethane with a castor oil skeleton.
- (meth)acrylate polybutadiene-based urethane (meth)acrylate, hydrogenated polybutadiene-based urethane (meth)acrylate, polyisobutylene-based (meth)acrylate, silicone-based (meth)acrylate, isoprene-based (meth)acrylate, hydrogenated isoprene Examples include (meth)acrylates, (meth)acrylic group-containing acrylic polymers, and polyisobutylene (meth)acrylates are particularly preferred.
- the (meth)acryloyl group-containing reactive diluent is not particularly limited, but includes, for example, ethyl (meth)acrylate, n-butyl (meth)acrylate, ter-butyl (meth)acrylate, isobutyl methacrylate, 2- Ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, glycidyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate ) acrylate, trimethylcyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxy (meth)acrylate, isoborny
- the above-mentioned photoradical initiator is not particularly limited, but includes, for example, an acetophenone-based radical photopolymerization initiator, a benzoin-based radical photopolymerization initiator, a benzophenone-based radical photopolymerization initiator, a thioxanthone-based radical photopolymerization initiator, and an acyl radical photopolymerization initiator.
- an acetophenone-based radical photopolymerization initiator a benzoin-based radical photopolymerization initiator, a benzophenone-based radical photopolymerization initiator, a thioxanthone-based radical photopolymerization initiator, and an acyl radical photopolymerization initiator.
- examples include phosphine oxide-based radical photopolymerization initiators and titanocene-based radical photopolymerization initiators.
- Examples of the epoxy composition that performs the cationic polymerization include compositions containing a cationically polymerizable compound and a photocationic initiator.
- the above-mentioned cationically polymerizable compound is not particularly limited, and examples thereof include epoxy resins, alicyclic epoxy resins, oxetane compounds, vinyl ether compounds, and the like.
- the photocationic initiator is not particularly limited, and examples thereof include onium salts such as aromatic iodonium salts and aromatic sulfonium salts.
- the active energy ray-curable liquid 20 may contain a thixotropic agent for the purpose of imparting thixotropic properties.
- the thixotropic agent is not particularly limited and includes, for example, silica, amide wax, hydrogenated castor oil, etc. Among them, silica is preferred.
- silica examples include hydrophilic silica and hydrophobic silica.
- hydrophobic silica silica treated to be hydrophobic with organochlorosilanes, polyorganosiloxane, hexamethyldisilazane, etc. can be used.
- the gasket molding method according to the embodiment of the present invention includes a coating step S1, a bonding step S2, a curing step S3, and a mold release step S4 in this order.
- the dispenser 50 applies the active energy ray-curable liquid 20 into the cavity 41 of the mold 40, which will be described later, in a desired gasket shape while moving, for example, in a single stroke.
- FIG. 3A is a schematic perspective view showing a mold 40 according to an embodiment of the present invention.
- FIG. 3B is an enlarged cross-sectional perspective view of region A in FIG. 3A.
- the mold 40 is held on a fixed base of the bonding device, and has a cavity 41 having a shape corresponding to the gasket 30 to be molded.
- This cavity 41 is, for example, circular, elliptical, or rectangular, but it can also be a closed shape that does not overlap other trajectories, such as a single stroke trajectory, or a closed shape that does not overlap other trajectories, such as a single stroke trajectory. Any shape may be used, and any shape can be adopted.
- the mold 40 is made of a transparent material that allows light to pass through, such as one or more materials selected from the group consisting of polymethyl methacrylate, cycloolefin polymer, polycarbonate, and glass.
- the dispenser 50 discharges an amount equal to or more than 100% of the volume of the cavity 41, that is, an amount per unit length, so that the active energy ray-curable liquid 20 slightly overflows from the cavity 41. It is preferable to discharge 100% or more of the per volume. Note that the upper limit of the discharge amount is preferably about 110%.
- the fixed table of the bonding device that holds the mold 40 coated with the active energy ray-curable liquid 20 and the movable table that holds the workpiece 10 are reversed so that they face each other. , the mold 40 and the workpiece 10 are bonded together via an uncured active energy ray-curable liquid 20.
- the lamination load may be applied by measuring the lamination pressure (tightening force) and controlling the pressure, or by measuring the lamination amount (indentation amount) and controlling the position. In this way, since the gasket 30 can be formed by bonding together with a low load, the load on the workpiece 10 can be reduced.
- the active energy ray curable liquid 20 interposed between the mold 40 and the workpiece 10 is cured by irradiating active energy rays with the active energy ray irradiation device 60.
- the active energy ray irradiation device 60 is provided on the side opposite to the molding bonding surface of the mold 40 in which the cavity 41 is formed, and the irradiated active energy rays are applied to the transparent mold 40. It passes through the mold 40 and reaches the active energy ray-curable liquid 20 .
- active energy rays may be directed from the workpiece 10 side toward the mold 40.
- the movable table is inverted from the fixed table in the bonding device as a mold release device, and the cured active energy ray-curable liquid 20 is molded together with the workpiece 10 (as a gasket 30). Peel it off from the mold 40 (cavity 41).
- the workpiece 10 is removed from the movable stage, the molding process S10 is completed, and the workpiece 10 with the gasket 30 directly provided on the surface can be obtained.
- FIG. 4 is a schematic cross-sectional view showing the fuel cell 100.
- Examples of fuel cell components 101 include a separator 101a, an electrolyte membrane 101d, a frame 101f, and an electrolyte membrane/electrode assembly 101e, which constitute (a cell of) the fuel cell 100 (see FIG. 4). Gasket 30 is molded.
- the gasket 30 on the separator 101a made of aluminum, stainless steel, titanium, graphite, carbon, or the like.
- 101b is a fuel electrode
- 101c is an air electrode
- 101g is a cooling water passage.
- the method for manufacturing the fuel cell 100 includes a coating step S1 of applying the active energy ray curable liquid 20 into the cavity 41 of the mold 40, and the mold 40 coated with the active energy ray curable liquid 20 and the fuel.
- a bonding step S2 in which the battery parts 101 are bonded together; a curing step S3 in which the applied active energy ray-curable liquid 20 is cured by irradiation with active energy rays; and a curing step S3 in which the applied active energy ray-curable liquid 20 is used as a fuel.
- FIG. 5 is a flow diagram showing a sealing method for sealing between two parts.
- the sealing method for sealing between two components includes a molding step S10 in which a gasket 30 is molded on one component (for example, the work 10 described above), and a crimping step S20 in which one component and the other component are crimped. , will be included.
- the molding step S10 is the same as the gasket molding method described above, so the explanation will be omitted.
- the other component is placed on the gasket 30 formed on one component, and the one component and the other component are crimped.
- a crimping device such as the bonding device used in the bonding step S2 may be used, and position control and pressure control may be performed, but the two components may be fastened together with screws (bolts). As long as it can be fixed, it may be tightened with screws, or the two parts may be crimped together by caulking.
- this sealing method can be applied not only to the above-described fuel cell 100 but also to relatively small parts such as the main seal of a liquid crystal display panel.
- the cavity 41 formed on the surface of the mold 40 has a cross section of the desired gasket 30, such as a substantially rectangular, substantially trapezoidal, substantially triangular (mountain), or substantially semicircular shape. It is formed to have the same shape as the shape. Note that the cross section of the cavity 41 may have a depth H greater than its width, or conversely, a width greater than its depth.
- the cavity 41 is closed in an annular shape so as to separate an inner region and an outer region.
- the cavity 41 is not limited to a single cavity, and may be composed of, for example, a combination of a plurality of B-shaped annular shapes.
- the cavity 41 is provided in a protrusion 42 that protrudes in the normal direction of the molded bonding surface beyond the partitioned inner and outer regions.
- the protrusion 42 preferably has a projected area such that a proportion of the projected area of the cavity 41 projected from above is in the range of 30% to 99%. Note that the surfaces of the protrusions 42 (molded bonding surfaces) are located on the same plane except for the cavity 41.
- an air hole 45 that can communicate with the atmosphere is provided in the inner region partitioned by the cavity 41.
- the mold 40 includes one or more communication passages 44 that communicate with the cavity 41 and the atmosphere.
- This communication path 44 is formed when the workpiece 10 and the bonding surface of the mold 40 (the surface of the protrusion 42 ) are bonded together via the active energy ray curable liquid 20 . It is formed so that a part or gas (air trapped between the workpiece 10 and the mold 40, outgas generated during curing, etc.) can be exhausted.
- the communication path 44 is a groove-shaped groove with a depth h that is recessed from the molded bonding surface of the protrusion 42 , and is, for example, a through hole that penetrates the wall of the protrusion 41 and communicates with the cavity 41 . It may be provided as a.
- the depth (height) h of the communication path 44 is preferably shallower than the depth H of the cavity 41, for example, 5% or more and 20% or less of the depth H of the cavity 41.
- the communication path 44 is preferably provided in a straight part of the cavity 41, rather than in a curved part. Further, the communication path 44 is preferably provided in a portion where the protrusion 42 is linear.
- the surfaces of the protruding portion 42 (molding bonding surface), the cavity 41, and the communication path 44 are designed so that the cured active energy ray-curable liquid 20 (gasket 30) can be easily peeled off in the mold release step S4. It is preferable that a surface treatment that improves mold releasability, such as fluorine coating, be applied.
- FIG. 6 is a cross-sectional perspective view showing a modified mold 40 according to the present invention.
- the mold 40 of the above embodiment only has the communication path 44, but the mold 40 of the modified form has a case in which the active energy ray-curable liquid 20 is applied in an amount of about 110% of the volume of the cavity 41.
- an escape groove 43 is additionally provided so that the height of the gasket 30 can be molded to the designed value.
- This escape groove 43 communicates with the open end side of the cavity 41 and has a width wider than the width of the cavity 41 and a depth h2 shallower than the depth H of the cavity 41.
- the depth h2 of the relief groove 43 may be, for example, 5% or more and 20% or less of the depth H of the cavity 41. Further, the depth h2 of the escape groove 43 is preferably equal to or deeper than the depth h of the communication path 44, but may be shallower.
- the escape groove 43 may be provided all around the cavity 41, or may be provided intermittently or locally. In addition, when providing the relief groove 43 locally, it is preferable to avoid the curved part of the annular cavity 41 and provide it in a straight part.
- the relief groove 43 will be sealed together with the cavity 41 when the workpiece 10 is bonded to the mold 40. Therefore, after the gasket 30 is formed, the active energy ray-curable liquid 20 overflowing into the relief groove 43 is also cured and becomes a burr shape, which is integrally formed with the gasket 30.
- the height of the gasket 30 is H (mm). ), the sealing performance of the gasket 30 is not affected, and the burr-like portion may or may not be removed.
- the cavity 41 is provided in the protrusion 42 that protrudes beyond the annular inner and outer regions in the normal direction of the molded bonding surface, so the relief groove 43 is also provided in the protrusion 42.
- the protrusion 42 preferably has a projected area such that the proportion of the projected area of the cavity 41 and the relief groove 43 projected from above is in the range of 30% to 99%.
- the surfaces of the protrusion 42 (molding bonding surface), cavity 41, relief groove 43, and communication path 44 may be subjected to surface treatment that improves mold releasability, for example, fluorine coating.
- the communication path 44 may not communicate directly with the cavity 41 but may communicate with the relief groove 43 and indirectly communicate with the cavity 41.
- the gasket molding method according to the embodiment of the present invention is a gasket molding method for molding the gasket 30 on the workpiece 10, and the active energy ray curable liquid 20 is transferred to the transparent mold 40.
- a curing process S3 for curing the curable liquid 20, and a mold release process S4 for peeling off the cured active energy ray-curable liquid 20 from the mold 40 together with the workpiece 10 are included in this order.
- the gasket mold 40 of the embodiment according to the present invention is a gasket mold 40 that molds the gasket 30 on the workpiece 10 by applying, curing, and transferring the active energy ray-curable liquid 20, A cavity 41 that closes in an annular shape according to the shape of the gasket 30 and is provided on the molding bonding surface of the mold 40 and can be filled with the active energy ray-curable liquid 20; A path 44 is provided, and when the work 10 and the molded bonding surface are bonded together via the active energy ray curable liquid 20, a part of the active energy ray curable liquid 20 or gas is discharged from the communication path 44. It is something.
- the active energy ray-curable liquid 20 can be discharged to the outside of the mold 40 without protruding between the workpiece 10 and the molding bonding surface of the mold 40.
- the workpiece 10 comes into direct contact with the molding bonding surface of the molding die 40 to close (seal) the cavity 41, and the height of the gasket 30 is molded to match the depth H of the cavity 41. , the dimensions of the gasket 30 can be stabilized.
- a discontinuous protruding portion due to the communication path 44 is formed on the outer or inner periphery of the gasket 30, and air is trapped between the gasket 30 and the mold 40.
- the peeling force can be reduced, and the peeling can be easily performed.
- the active energy ray curing liquid 20 is cured with the mold 40 and the workpiece 10 bonded together, the active energy ray curing liquid 20 is pulled by the surface of the cavity 41 and the surface of the work 10. Since the gasket 30 is cured while being cured, the gasket 30 after being cured is affected by curing shrinkage. This curing shrinkage is particularly noticeable in curved parts such as corners and bent parts, rather than in straight parts of the gasket 30.
- the workpiece 10 and the cavity 41 are not completely sealed, so that curing shrinkage of the active energy ray-curable liquid 20 can be suppressed, and the gasket 30 can be prevented from curing and shrinking. Dimensional accuracy can be made uniform and variations can be suppressed.
- a modified gasket molding method is a gasket molding method for molding a gasket 30 on a workpiece 10, in which an active energy ray-curable liquid 20 is applied to a cavity 41 of a transparent mold 40.
- the molding die 40 includes, in this order, a curing step S3 in which the active energy ray-curable liquid 20 is cured, and a mold release step S4 in which the cured active energy ray-curable liquid 20 is peeled off from the mold 40 together with the workpiece 10.
- the escape groove 43 that is closed together with the cavity 41 when they are bonded together via the active energy ray-curable liquid 20, and the escape groove 43 has a width wider than the width of the cavity 41 and a depth of the cavity 41. It has a depth h2 shallower than H and communicates with the open end side of the cavity 41.
- a modified gasket mold 40 is a gasket mold 40 that molds a gasket 30 on a workpiece 10 by applying, curing, and transferring an active energy ray-curable liquid 20, and includes: A cavity 41 that closes in an annular shape according to the shape of the gasket 30 and is provided on the bonding surface of the mold 40 and can be filled with the active energy ray curable liquid 20, and the workpiece 10 and the mold 40 are cured with active energy rays.
- An escape groove 43 is closed together with the cavity 41 when bonded together via the mold liquid 20, and the escape groove 43 has a width wider than the width of the cavity 41 and a depth H of the cavity 41. It has a shallow depth h2 and communicates with the open end side of the cavity 41.
- the active energy ray-curable liquid 20 overflowing from the cavity 41 does not protrude between the work 10 and the bonding surface of the mold 40, and the work 10 comes into direct contact with the bonding surface of the mold 40.
- the cavity 41 and the escape groove 43 are closed (sealed), and the height of the gasket 30 is molded to match the depth H of the cavity 41, so the dimensions of the gasket 30 can be stabilized. .
- a cavity 41 is provided in a protrusion 42 that protrudes beyond the annular inner and outer regions in the normal direction of the molding bonding surface of the mold 40.
- the pressing force acts only on the periphery of the cavity 41, so that the pressing force per unit area can be increased and the pressing can be applied uniformly.
- the overall pressing force can be made smaller, and the adjustment of the pressing force becomes easier. Furthermore, damage to the workpiece 10 due to the pressing force can also be reduced.
- the coating step S1 of the embodiment is performed using the dispenser 50.
- the amount of liquid discharged can be easily controlled.
- the dispenser 50 is applied in one stroke, for example, there will be no overlapping portions where the application trajectories intersect, so that the position and speed control of the dispenser 50 can be simplified.
- the gasket 30 can be molded under low pressure using the active energy ray-curable liquid 20.
- the cavity 41 is coated with a release coating. Thereby, the molded gasket 30 can be easily peeled off from the cavity 41 of the mold 40.
- the fuel cell 100 of the embodiment includes a gasket 30 obtained by the above-described gasket forming method, and the work 10 is a fuel cell component 101. Further, the fuel cell component 101 is selected from the group consisting of a separator 101a, an electrolyte membrane 101d, a frame 101f, and an electrolyte membrane/electrode assembly 101e.
- the method for manufacturing the fuel cell 100 of the embodiment includes a coating step S1 of applying the active energy ray-curable liquid 20 into the cavity 41 of the mold 40, and a mold 40 coated with the active energy ray-curable liquid 20.
- the gasket molding method can also be applied to the manufacturing method of the fuel cell 100.
- the gasket molding method of the present invention allows molding under low pressure, and the gasket 30 can be formed by bonding together with a low load, so that the load on the fuel cell component 101 can be reduced.
- the sealing method of the embodiment is a sealing method for sealing between two parts, and includes a molding step S10 in which a gasket 30 is molded into one part by the above-described gasket molding method;
- the method includes a crimping step S20 of arranging the other component on the gasket 30 and crimping the one component and the other component. In this way, the gasket forming method can also be applied to the sealing method.
- the curing step S3 in the above embodiment is a single step in which the active energy ray curable liquid 20 is cured until it is completely cured using the active energy ray irradiation device 60.
- the applied active energy ray-curable liquid 20 is activated with a wavelength of 320 nm or more and 450 nm or less and a peak illuminance of 500 mW/cm 2 or more and 5000 mW/cm 2 or less, for example.
- Energy rays are irradiated with an integrated light amount (for example, 100 mJ/cm 2 or more and 500 mJ/cm 2 or less) such that the reaction rate calculated from the IR spectrum is 20% or more and 85% or less. It is preferable to irradiate active energy rays with an integrated light amount (for example, 1000 mJ/cm 2 or more and 10000 mJ/cm 2 or less) such that the calculated reaction rate is more than 85% and less than 100%.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
また、ガスケットの寸法精度を均一にできるガスケット成形方法、ガスケット成形型及びガスケット成形装置を提供することを目的とする。
(2)上記(1)の態様において、前記成形型は、前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝を備え、前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通してもよい。
(3)本発明に係る別の1つの態様は、ワーク上にガスケットを成形するガスケット成形方法であって、活性エネルギー線硬化型液体を、透明性を有する成形型の環状のキャビティに塗布する塗布工程と、前記活性エネルギー線硬化型液体が塗布された前記成形型と前記ワークとを貼り合わせる貼合工程と、活性エネルギー線の照射によって、前記塗布された活性エネルギー線硬化型液体を硬化させる硬化工程と、前記硬化した活性エネルギー線硬化型液体を前記ワークとともに、前記成形型から引き剥がす離型工程と、をこの順に含み、前記成形型は、前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝を備え、前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通するものである。
(4)上記(1)から(3)までのいずれか1つの態様において、前記キャビティは、環状の内側領域及び外側領域よりも前記成形型の成形貼合面の法線方向に突出した突出部に設けられてもよい。
(5)上記(1)から(4)までのいずれか1つの態様において、前記塗布工程は、ディスペンサを用いて行ってもよい。
(6)上記(1)から(5)までのいずれか1つの態様において、前記キャビティは、離型コーティングされてもよい。
(7)本発明に係る別の1つの態様は、活性エネルギー線硬化型液体を塗布し、硬化させ、転写することによってワーク上にガスケットを成形するガスケット成形型であって、前記ガスケットの形状に応じて環状に閉じて成形面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、前記キャビティに連通するとともに、大気に連通する連通路と、を備え、前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記連通路から前記活性エネルギー線硬化型液体の一部又は気体を排出するものである。
(8)上記(7)の態様において、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有する逃げ溝を備え、前記逃げ溝は、前記キャビティの開放端側に連通し、前記ワークと前記成形面とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記逃げ溝は、前記キャビティとともに閉止されてもよい。
(9)本発明に係る別の1つの態様は、活性エネルギー線硬化型液体を塗布し、硬化させ、転写することによってワーク上にガスケットを成形するガスケット成形型であって、前記ガスケットの形状に応じて環状に閉じて成形貼合面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝と、を備え、前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通するものである。
(10)上記(7)から(9)までのいずれか1つの態様において、前記キャビティは、環状の内側領域及び外側領域よりも前記成形面の法線方向に突出した突出部に設けられてもよい。
(11)上記(7)から(10)までのいずれか1つの態様において、前記キャビティは、離型コーティングされてもよい。
(12)本発明に係る別の1つの態様は、ガスケット成形装置であって、活性エネルギー線硬化型液体をディスペンサで吐出する塗布装置と、透明性を有する成形型を含み、前記ワークを前記成形型に貼り合わせる貼合装置と、前記成形型と前記ディスペンサとを相対的に移動させる駆動装置と、前記活性エネルギー線硬化型液体に活性エネルギー線を照射する活性エネルギー線照射装置と、を備え、前記成形型は、ガスケットの形状に応じて環状に閉じて成形貼合面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、前記キャビティに連通するとともに、大気に連通する連通路と、を有し、前記ワークと前記成形貼合面とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記連通路から前記活性エネルギー線硬化型液体の一部又は気体を排出するものである。
(13)本発明に係る別の1つの態様は、ガスケット成形装置であって、活性エネルギー線硬化型液体をディスペンサで吐出する塗布装置と、透明性を有する成形型を含み、ワークを前記成形型に貼り合わせる貼合装置と、前記成形型と前記ディスペンサとを相対的に移動させる駆動装置と、前記活性エネルギー線硬化型液体に活性エネルギー線を照射する活性エネルギー線照射装置と、を備え、前記成形型は、ガスケットの形状に応じて環状に閉じて成形貼合面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝と、を備え、前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通するものである。
また、ガスケットの寸法精度を均一にできるガスケット成形方法、ガスケット成形型及びガスケット成形装置を提供することができる。
図2は、本発明に係る実施形態のガスケット成形方法を示すもので、図2Aはフロー図であり、図2Bは動作図である。
図3Aは、本発明に係る実施形態の成形型40を示す概略斜視図である。図3Bは、図3Aにおける領域Aを拡大して示す断面斜視図である。
塗布工程S1において、ディスペンサ50は、活性エネルギー線硬化型液体20がキャビティ41から若干溢れるように、キャビティ41の容積の100%以上の量、つまり、単位長さ当たりの吐出量を、単位長さ当たりの容積の100%以上で吐出するとよい。なお、吐出量の上限は、110%程度であるとよい。
図6は、本発明に係る変形形態の成形型40を示す断面斜視図である。
また、本発明に係る実施形態のガスケット成形型40は、活性エネルギー線硬化型液体20を塗布し、硬化させ、転写することによってワーク10上にガスケット30を成形するガスケット成形型40であって、ガスケット30の形状に応じて環状に閉じて成形型40の成形貼合面に設けられ、活性エネルギー線硬化型液体20を充填可能なキャビティ41と、キャビティ41に連通するとともに、大気に連通する連通路44と、を備え、ワーク10と成形貼合面とを活性エネルギー線硬化型液体20を介して貼り合わせた際、連通路44から活性エネルギー線硬化型液体20の一部又は気体を排出するものである。
また、ガスケット30を成形型40から引き剥がす際、ガスケット30の外周又は内周の周縁に、連通路44による不連続にはみ出した部分が形成され、ガスケット30と成形型40との間に空気が入り易くなり、引き剥がし力を小さくすることができるとともに、引き剥がしを容易に行うことができる。
さらに、通常、成形型40とワーク10とを貼り合わせた状態で、活性エネルギー線硬化型液20を硬化させると、活性エネルギー線硬化型液20はキャビティ41の表面とワーク10の表面に引っ張られながら硬化するため、硬化後のガスケット30は硬化収縮の影響を受けることになる。この硬化収縮は、特に、ガスケット30の直線部よりも、コーナ部などの曲線部や屈曲部において顕著に現れます。しかしながら、実施形態のように、連通路44を備えることで、ワーク10とキャビティ41とが完全には密閉されないため、活性エネルギー線硬化型液20の硬化収縮を抑制することができ、ガスケット30の寸法精度を均一にすることができ、バラツキを抑制することができる。
また、本発明に係る変形形態のガスケット成形型40は、活性エネルギー線硬化型液体20を塗布し、硬化させ、転写することによってワーク10上にガスケット30を成形するガスケット成形型40であって、ガスケット30の形状に応じて環状に閉じて成形型40の成形貼合面に設けられ、活性エネルギー線硬化型液体20を充填可能なキャビティ41と、ワーク10と成形型40とを活性エネルギー線硬化型液体20を介して貼り合わせた際、キャビティ41とともに閉止される逃げ溝43と、を備え、逃げ溝43は、キャビティ41の幅よりも広い幅を有するとともに、キャビティ41の深さHよりも浅い深さh2を有し、かつ、キャビティ41の開放端側に連通するものである。
上記実施形態の硬化工程S3は、活性エネルギー線照射装置60で活性エネルギー線硬化型液体20を完全硬化するまで硬化させる単一工程であったが、例えば、活性エネルギー線硬化型液体20の一部が硬化し、形態安定性が維持できる程度に仮硬化させる仮硬化工程と、その後、成形型40からワーク10とともに引き剥がす離型工程S4を挟んで、活性エネルギー線を再度照射して完全硬化させる本硬化工程を行う2段階工程としてもよい。
20 活性エネルギー線硬化型液体
30 ガスケット
40 成形型、41 キャビティ、42 陸部(突出部)、43 逃げ溝、44 連通路、45 空気孔
50 ディスペンサ
60 活性エネルギー線照射装置
100 燃料電池
101 燃料電池用部品、101a セパレータ、101b 燃料極、101c 空気極、101d 電解質膜、101e 電解質膜/電極接合体、101f フレーム、101g 冷却水通路
Claims (13)
- ワーク上にガスケットを成形するガスケット成形方法であって、
活性エネルギー線硬化型液体を、透明性を有する成形型の環状のキャビティに塗布する塗布工程と、
前記活性エネルギー線硬化型液体が塗布された前記成形型と前記ワークとを貼り合わせる貼合工程と、
活性エネルギー線の照射によって、前記塗布された活性エネルギー線硬化型液体を硬化させる硬化工程と、
前記硬化した活性エネルギー線硬化型液体を前記ワークとともに、前記成形型から引き剥がす離型工程と、
をこの順に含み、
前記貼合工程において、前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティに連通する連通路から前記活性エネルギー線硬化型液体の一部又は気体を大気に排出する、ガスケット成形方法。 - 前記成形型は、前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝を備え、
前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通する、請求項1に記載のガスケット成形方法。 - ワーク上にガスケットを成形するガスケット成形方法であって、
活性エネルギー線硬化型液体を、透明性を有する成形型の環状のキャビティに塗布する塗布工程と、
前記活性エネルギー線硬化型液体が塗布された前記成形型と前記ワークとを貼り合わせる貼合工程と、
活性エネルギー線の照射によって、前記塗布された活性エネルギー線硬化型液体を硬化させる硬化工程と、
前記硬化した活性エネルギー線硬化型液体を前記ワークとともに、前記成形型から引き剥がす離型工程と、
をこの順に含み、
前記成形型は、前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝を備え、
前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通する、ガスケット成形方法。 - 前記キャビティは、環状の内側領域及び外側領域よりも前記成形型の成形貼合面の法線方向に突出した突出部に設けられている、請求項1から3までのいずれか1項に記載のガスケット成形方法。
- 前記塗布工程は、ディスペンサを用いて行う、請求項1又は3に記載のガスケット成形方法。
- 前記キャビティは、離型コーティングされている、請求項1又は3に記載のガスケット成形方法。
- 活性エネルギー線硬化型液体を塗布し、硬化させ、転写することによってワーク上にガスケットを成形するガスケット成形型であって、
前記ガスケットの形状に応じて環状に閉じて成形貼合面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、
前記キャビティに連通するとともに、大気に連通する連通路と、を備え、
前記ワークと前記成形貼合面とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記連通路から前記活性エネルギー線硬化型液体の一部又は気体を排出する、ガスケット成形型。 - 前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有する逃げ溝を備え、
前記逃げ溝は、前記キャビティの開放端側に連通し、
前記ワークと前記成形貼合面とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記逃げ溝は、前記キャビティとともに閉止される、請求項7に記載のガスケット成形型。 - 活性エネルギー線硬化型液体を塗布し、硬化させ、転写することによってワーク上にガスケットを成形するガスケット成形型であって、
前記ガスケットの形状に応じて環状に閉じて成形貼合面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、
前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝と、を備え、
前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通する、ガスケット成形型。 - 前記キャビティは、環状の内側領域及び外側領域よりも前記成形貼合面の法線方向に突出した突出部に設けられている、請求項7から9までのいずれか1項に記載のガスケット成形型。
- 前記キャビティは、離型コーティングされている、請求項7又は9に記載のガスケット成形型。
- 活性エネルギー線硬化型液体をディスペンサで吐出する塗布装置と、
透明性を有する成形型を含み、ワークを前記成形型に貼り合わせる貼合装置と、
前記成形型と前記ディスペンサとを相対的に移動させる駆動装置と、
前記活性エネルギー線硬化型液体に活性エネルギー線を照射する活性エネルギー線照射装置と、を備え、
前記成形型は、ガスケットの形状に応じて環状に閉じて成形貼合面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、
前記キャビティに連通するとともに、大気に連通する連通路と、を有し、
前記ワークと前記成形貼合面とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記連通路から前記活性エネルギー線硬化型液体の一部又は気体を排出する、ガスケット成形装置。 - 活性エネルギー線硬化型液体をディスペンサで吐出する塗布装置と、
透明性を有する成形型を含み、ワークを前記成形型に貼り合わせる貼合装置と、
前記成形型と前記ディスペンサとを相対的に移動させる駆動装置と、
前記活性エネルギー線硬化型液体に活性エネルギー線を照射する活性エネルギー線照射装置と、を備え、
前記成形型は、ガスケットの形状に応じて環状に閉じて成形貼合面に設けられ、活性エネルギー線硬化型液体を充填可能なキャビティと、
前記ワークと前記成形型とを前記活性エネルギー線硬化型液体を介して貼り合わせた際、前記キャビティとともに閉止される逃げ溝と、を備え、
前記逃げ溝は、前記キャビティの幅よりも広い幅を有するとともに、前記キャビティの深さよりも浅い深さを有し、かつ、前記キャビティの開放端側に連通する、ガスケット成形装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024541498A JPWO2024038776A1 (ja) | 2022-08-19 | 2023-08-04 | |
EP23854811.9A EP4574383A1 (en) | 2022-08-19 | 2023-08-04 | Gasket forming method, gasket forming mold, and gasket forming device |
CN202380060448.XA CN119731006A (zh) | 2022-08-19 | 2023-08-04 | 密封垫成型方法、密封垫成型模具及密封垫成型装置 |
KR1020257003344A KR20250053843A (ko) | 2022-08-19 | 2023-08-04 | 개스킷 성형 방법, 개스킷 성형 몰드 및 개스킷 성형 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-131383 | 2022-08-19 | ||
JP2022131383 | 2022-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024038776A1 true WO2024038776A1 (ja) | 2024-02-22 |
Family
ID=89941648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/028561 WO2024038776A1 (ja) | 2022-08-19 | 2023-08-04 | ガスケット成形方法、ガスケット成形型及びガスケット成形装置 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4574383A1 (ja) |
JP (1) | JPWO2024038776A1 (ja) |
KR (1) | KR20250053843A (ja) |
CN (1) | CN119731006A (ja) |
WO (1) | WO2024038776A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0973812A (ja) * | 1995-09-06 | 1997-03-18 | Koito Mfg Co Ltd | 自動車用灯具 |
JP2004291606A (ja) * | 2002-04-15 | 2004-10-21 | Hoya Corp | プラスチックレンズの製造方法、プラスチックレンズ成形用ガスケットおよびモノマー注入治具 |
JP2009023276A (ja) * | 2007-07-23 | 2009-02-05 | Bridgestone Corp | シール材成形用金型及びそれを用いたシール材の製造方法 |
JP2009524196A (ja) * | 2006-01-17 | 2009-06-25 | ヘンケル コーポレイション | 接着燃料電池アセンブリ、接着燃料電池アセンブリを製造するための方法、システムおよびシーラント組成物 |
JP2017015240A (ja) | 2015-06-29 | 2017-01-19 | Nok株式会社 | ガスケットの製造方法 |
JP2017160993A (ja) * | 2016-03-09 | 2017-09-14 | 新電元工業株式会社 | ガスケットの製造方法、フレキシブル成形型、およびガスケット |
-
2023
- 2023-08-04 CN CN202380060448.XA patent/CN119731006A/zh active Pending
- 2023-08-04 WO PCT/JP2023/028561 patent/WO2024038776A1/ja active Application Filing
- 2023-08-04 KR KR1020257003344A patent/KR20250053843A/ko active Pending
- 2023-08-04 EP EP23854811.9A patent/EP4574383A1/en active Pending
- 2023-08-04 JP JP2024541498A patent/JPWO2024038776A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0973812A (ja) * | 1995-09-06 | 1997-03-18 | Koito Mfg Co Ltd | 自動車用灯具 |
JP2004291606A (ja) * | 2002-04-15 | 2004-10-21 | Hoya Corp | プラスチックレンズの製造方法、プラスチックレンズ成形用ガスケットおよびモノマー注入治具 |
JP2009524196A (ja) * | 2006-01-17 | 2009-06-25 | ヘンケル コーポレイション | 接着燃料電池アセンブリ、接着燃料電池アセンブリを製造するための方法、システムおよびシーラント組成物 |
JP2009023276A (ja) * | 2007-07-23 | 2009-02-05 | Bridgestone Corp | シール材成形用金型及びそれを用いたシール材の製造方法 |
JP2017015240A (ja) | 2015-06-29 | 2017-01-19 | Nok株式会社 | ガスケットの製造方法 |
JP2017160993A (ja) * | 2016-03-09 | 2017-09-14 | 新電元工業株式会社 | ガスケットの製造方法、フレキシブル成形型、およびガスケット |
Also Published As
Publication number | Publication date |
---|---|
CN119731006A (zh) | 2025-03-28 |
KR20250053843A (ko) | 2025-04-22 |
JPWO2024038776A1 (ja) | 2024-02-22 |
EP4574383A1 (en) | 2025-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10123537A (ja) | 液晶表示素子とその製造方法 | |
JP3591910B2 (ja) | プラズマディスプレイパネルのセル障壁製造方法 | |
KR20060126546A (ko) | 전이 금형, 그의 제조 방법 및 미세 구조의 제조 방법 | |
KR102345432B1 (ko) | 화상 표시 장치의 제조 방법 | |
JP6479589B2 (ja) | 画像表示装置の製造方法 | |
JP2005288933A (ja) | 可とう性成形型及びその製造方法 | |
JP3589500B2 (ja) | プラズマディスプレイパネルパネルのセル障壁製造方法 | |
WO2022244637A1 (ja) | ガスケット成形方法、燃料電池、燃料電池の製造方法、シール方法及びガスケット成形装置 | |
WO2024038776A1 (ja) | ガスケット成形方法、ガスケット成形型及びガスケット成形装置 | |
JP7641351B2 (ja) | 光学装置の製造方法 | |
EP4559587A1 (en) | Gasket molding method, gasket, fuel cell component, fuel cell, fuel cell production method, sealing method, and gasket molding device | |
WO2024106157A1 (ja) | ガスケット成形方法、シール方法、ガスケット、複合体、燃料電池 | |
KR20250111096A (ko) | 개스킷 성형 방법, 실링 방법, 개스킷, 복합체, 연료 전지 | |
JPWO2022244637A5 (ja) | ||
JP4593100B2 (ja) | 接合構造を有する物品、その接合方法 | |
JP5227897B2 (ja) | 光電変換デバイス、その製造方法および製造装置 | |
TWI859331B (zh) | 光學裝置之製造方法 | |
JP2800697B2 (ja) | レンズシートの製造方法および製造装置 | |
JP2008279710A (ja) | シートおよびその製造方法 | |
CN114126849B (zh) | 光学装置的制造方法 | |
WO2023286287A1 (ja) | 成型方法 | |
JP2010036477A (ja) | 接合構造の構築方法および接合構造 | |
JP2003266909A (ja) | パターン形成方法 | |
WO2018179874A1 (ja) | 光学装置の製造方法及び光学装置 | |
JP2008233478A (ja) | 可撓性基材への微小突起物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23854811 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024541498 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2501000910 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023854811 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023854811 Country of ref document: EP Effective date: 20250319 |
|
WWP | Wipo information: published in national office |
Ref document number: 1020257003344 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2023854811 Country of ref document: EP |