[go: up one dir, main page]

WO2024029603A1 - Electrolytic capacitor and manufacturing method - Google Patents

Electrolytic capacitor and manufacturing method Download PDF

Info

Publication number
WO2024029603A1
WO2024029603A1 PCT/JP2023/028472 JP2023028472W WO2024029603A1 WO 2024029603 A1 WO2024029603 A1 WO 2024029603A1 JP 2023028472 W JP2023028472 W JP 2023028472W WO 2024029603 A1 WO2024029603 A1 WO 2024029603A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
flexible
anion
electrolytic capacitor
flexible crystal
Prior art date
Application number
PCT/JP2023/028472
Other languages
French (fr)
Japanese (ja)
Inventor
広忠 杉山
晏義 白石
修一 石本
賢次 玉光
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to CN202380056336.7A priority Critical patent/CN119604957A/en
Priority to JP2024539207A priority patent/JPWO2024029603A1/ja
Publication of WO2024029603A1 publication Critical patent/WO2024029603A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Definitions

  • the present invention relates to an electrolytic capacitor and a manufacturing method.
  • Electrolytic capacitors include valve metals such as tantalum or aluminum as anode foils and cathode foils.
  • the anode foil is enlarged by forming the valve metal into a sintered body or etched foil, and has a dielectric oxide film layer on the enlarged surface.
  • An electrolytic solution is interposed between the anode foil and the cathode foil. The electrolyte comes into close contact with the uneven surface of the anode foil and functions as a true cathode.
  • solid electrolytic capacitors using solid electrolytes containing conductive polymers such as polypyrrole, polyaniline, and polythiophene have come into use. Since conductive polymers have high electrical conductivity, they contribute to lower ESR of electrolytic capacitors.
  • the electrolytic solution can be brought into close contact with the dielectric oxide film layer of the anode foil, making it easier to increase the capacity of the electrolytic capacitor. Therefore, an electrolytic capacitor using a conductive polymer is also required to have good ESR and good capacitance.
  • the present invention was proposed in order to solve the above problems, and its purpose is to provide an electrolytic capacitor that uses a conductive polymer and has even better capacity, and a manufacturing method.
  • the electrolytic capacitor of this embodiment includes an electrolyte layer containing a conductive polymer and a flexible crystal. It may also include an anode body and a cathode body.
  • the conductive polymer may include poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid.
  • the flexible crystal may further contain a cation and anion in a different combination from the cation component and anion component of the flexible crystal.
  • the amount of the flexible crystals may be 2 times or more and 12 times or less in weight ratio when the amount of the conductive polymer is 1.
  • the method for manufacturing an electrolytic capacitor of the present embodiment includes an electrolyte layer forming step of forming an electrolyte layer between a pair of electrodes, and the electrolyte forming step includes one or more of the pair of electrodes.
  • the method includes a polymer attachment step of attaching a conductive polymer to both electrodes, and a flexible crystal attachment step of attaching a flexible crystal to one or both of the pair of electrodes.
  • the polymer adhesion step may include an impregnation step of impregnating a liquid containing the conductive polymer between the pair of electrodes.
  • the flexible crystal containing a cation and anion in a different combination from the cation and anion components of the flexible crystal may be attached.
  • the amount of the flexible crystals may be deposited at a weight ratio of 2 times or more and 12 times or less when the amount of the conductive polymer is 1.
  • An electrolytic capacitor is a passive element that obtains capacitance through the dielectric polarization effect of a dielectric oxide film and stores and discharges charge.
  • An electrolytic capacitor includes a pair of electrodes and an electrolyte layer sandwiched between the electrodes.
  • One electrode is an anode body, and a dielectric oxide film is formed on the surface.
  • the other electrode is the cathode body.
  • the electrolyte layer contains a conductive polymer and flexible crystals.
  • the conductive polymer is a self-doped conjugated polymer doped with an intramolecular dopant molecule, or a conjugated polymer doped with an external dopant molecule.
  • Conjugated polymers are obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of monomers having ⁇ -conjugated double bonds or derivatives thereof.
  • the dopant or external dopant molecule is an acceptor that easily accepts electrons or a donor that easily donates electrons to the conjugated polymer, and thereby the conductive polymer exhibits high electrical conductivity.
  • a plastic crystal is also called a plastic crystal, and has an ordered arrangement and a disordered orientation. That is, while a flexible crystal has a three-dimensional crystal lattice structure in which anions and cations are regularly arranged, these anions and cations have rotational irregularity.
  • An electrolyte layer containing these conductive polymers and flexible crystals is interposed between the anode body and the cathode body.
  • the anode body and the cathode body are arranged to face each other with the electrolyte layer in between.
  • the electrolyte layer is placed in close contact with the dielectric oxide film of the anode body, so as to be continuous between the dielectric oxide film and the cathode body, thereby creating a conductive path and functioning as a true cathode.
  • the anode body and the cathode body are arranged in a laminated type in which they are alternately laminated with an electrolyte layer in between, or in a wound type in which they are alternately laminated and wound with an electrolyte layer in between.
  • the capacitor element is not only a flat plate type without an exterior packaging, but also is sealed by covering the capacitor element with a laminate film, or by molding, dip coating, or printing a resin such as a heat-resistant resin or an insulating resin.
  • the anode body and the cathode body are arranged in a winding manner in which they are alternately laminated and wound with an electrolyte layer in between.
  • the capacitor element is inserted into a bottomed cylindrical outer case, and the open end of the outer case is sealed with a sealing body by crimping.
  • the sealing body is made of, for example, rubber or a laminate of rubber and a hard substrate. Examples of the rubber include ethylene propylene rubber and butyl rubber.
  • a separator is provided between the anode body and the cathode body to separate the anode body and the cathode body and to hold an electrolyte layer between the anode body and the cathode body in order to prevent short circuit between the anode body and the cathode body. It will be done. If the shape of the electrolyte layer is maintained by itself and the electrolyte layer can separate the cathode and anode bodies, the separator can be eliminated from the electrolytic capacitor.
  • the anode body is a foil body made of a valve metal.
  • a wound type electrolytic capacitor has a long band shape made of stretched valve metal, and a laminated type electrolytic capacitor has a flat plate or a sintered body made of powder molded into a flat plate shape and sintered.
  • Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • the purity of the anode body is preferably 99.9% or more, but it may contain impurities such as silicon, iron, copper, magnesium, and zinc.
  • a surface expanding layer is formed on one or both sides of the anode body.
  • the surface expanding layer is an etched layer obtained by etching a foil, a sintered layer obtained by sintering valve metal powder, or a vapor deposition layer obtained by vapor depositing valve metal particles onto a foil. That is, the surface-expanding layer has a porous structure, consisting of tunnel-like pits, cavernous pits, or dense powder or voids between particles.
  • a tunnel-shaped etching pit is a hole dug in the thickness direction of the foil.
  • This tunnel-shaped etching pit is typically formed by passing a direct current in an acidic aqueous solution containing halogen ions, such as hydrochloric acid.
  • the diameter of the tunnel-shaped etching pit is further expanded by passing a direct current in an acidic aqueous solution such as nitric acid. Due to the spongy etching pits, the surface-expanding layer becomes a spongy layer in which fine voids are arranged in a series of spaces.
  • These cavernous etching pits are formed by passing an alternating current in an acidic aqueous solution containing halogen ions, such as hydrochloric acid.
  • the sintered layer is obtained by pulverizing, atomizing, melt spinning, rotating disk method, rotating electrode method, etc. powder of valve metal of the same type or different type as the foil body, making it into a paste with a binder or solvent, and applying it to the foil body. It is produced by coating, drying, and heating and sintering in a vacuum or reducing atmosphere.
  • the atomization method may be a water atomization method, a gas atomization method, or a water gas atomization method.
  • the vapor deposition layer is produced, for example, by a resistance heating vapor deposition method or an electron beam heating vapor deposition method. This vapor deposition layer is formed by heating and vaporizing a valve metal of the same type or different type as the foil body using resistance heat or electron beam energy, and depositing vapor of valve metal particles on the surface of the foil body.
  • the dielectric oxide film is formed on one or both sides of the anode body on which the surface-expanding layer is formed.
  • the dielectric oxide film is typically an oxide film formed on the surface layer of the anode body, and if the anode body is made of aluminum, it is an aluminum oxide layer obtained by oxidizing the surface of the surface expanding layer.
  • a voltage is applied to the anode body in a chemical solution to achieve a desired withstand voltage.
  • the chemical solution is a solution that does not have halogen ions, and includes, for example, a phosphoric acid-based chemical solution such as ammonium dihydrogen phosphate, a boric acid-based chemical solution such as ammonium borate, and an adipic acid-based chemical solution such as ammonium adipate. It is a liquid.
  • An anode lead is connected to this anode body and drawn out of the capacitor element.
  • a capacitor element is an assembly of an anode body, a cathode body, an electrolyte layer and a separator.
  • the anode lead is connected to the anode body by stitching, cold welding, ultrasonic welding, laser welding, or the like.
  • the cathode body is preferably a stretched foil made of valve metal.
  • the purity of the cathode body is preferably 99% or more.
  • a surface expanding layer is formed on the cathode body as well as on the anode body.
  • a plain foil without a surface expanding layer may be used as the cathode body.
  • the cathode body may have a natural oxide film or a thin oxide film (approximately 1 to 10 V) formed by chemical conversion treatment. A natural oxide film is formed when the cathode reacts with oxygen in the air.
  • a layer made of metal nitride, metal carbide, or metal carbonitride may be formed on the cathode body by a vapor deposition method, or a layer containing carbon may be formed on the surface.
  • the cathode body is preferably a laminate of a metal layer and a carbon layer.
  • the carbon layer of the cathode body is arranged toward the anode body.
  • the carbon layer is formed by forming the paste into a paste, forming an electrolyte layer on the anode body, then coating the paste on the electrolyte layer, and curing by heating.
  • the metal layer is, for example, a silver layer, and the metal layer is formed by making it into a paste, coating it on top of the carbon layer, and curing it by heating.
  • a cathode lead is connected to this cathode body and drawn out to the outside of the capacitor element.
  • the cathode lead is connected to the cathode body by stitching, cold welding, ultrasonic welding, laser welding, or the like.
  • conjugated polymer As the conjugated polymer, known ones can be used without particular limitation. Examples include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polythiophene vinylene, and the like. These conjugated polymers may be used alone, two or more types may be used in combination, or a copolymer of two or more types of monomers may be used.
  • conjugated polymers formed by polymerizing thiophene or its derivatives are preferred, and 3,4-ethylenedioxythiophene (i.e., 2,3-dihydrothieno[3,4-b][1 , 4] dioxine), 3-alkylthiophene, 3-alkoxythiophene, 3-alkyl-4-alkoxythiophene, 3,4-alkylthiophene, 3,4-alkoxythiophene, or a conjugated polymer in which a derivative thereof is polymerized. is preferred.
  • 3,4-ethylenedioxythiophene i.e., 2,3-dihydrothieno[3,4-b][1 , 4] dioxine
  • 3-alkylthiophene 3-alkoxythiophene
  • 3-alkyl-4-alkoxythiophene 3-alkyl-4-alkoxythiophene
  • 3,4-alkylthiophene 3,4-alkoxythiophene
  • the thiophene derivative is preferably a compound selected from thiophenes having substituents at the 3- and 4-positions, and the substituents at the 3- and 4-positions of the thiophene ring form a ring together with the carbon atoms at the 3- and 4-positions. It's okay.
  • the alkyl group or alkoxy group has 1 to 16 carbon atoms.
  • a polymer of 3,4-ethylenedioxythiophene called EDOT, ie, poly(3,4-ethylenedioxythiophene) called PEDOT.
  • a substituent may be added to 3,4-ethylenedioxythiophene.
  • alkylated ethylenedioxythiophene to which an alkyl group having 1 to 5 carbon atoms is added as a substituent may be used.
  • alkylated ethylenedioxythiophene examples include methylated ethylenedioxythiophene (i.e., 2-methyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin), ethylated ethylenedioxythiophene, oxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin), butylated ethylenedioxythiophene (i.e., 2-butyl-2,3-dihydro- Examples include thieno[3,4-b][1,4]dioxin), 2-alkyl-3,4-ethylenedioxythiophene, and the like.
  • methylated ethylenedioxythiophene i.e., 2-methyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin
  • dopants any known dopant can be used without particular limitation. Dopants may be used alone or in combination of two or more. Further, polymers or monomers may be used.
  • dopants include polyanions, inorganic acids such as boric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2 -dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalate borate acid, sulfonylimidic acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, etc.
  • examples include organic acids.
  • the polyanion is, for example, a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and has an anion group.
  • examples include polymers consisting only of units, and polymers consisting of constitutional units having an anionic group and constitutional units not having anionic groups.
  • polyanions include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), and polyisoprenesulfonic acid. , polyacrylic acid, polymethacrylic acid, polymaleic acid, and the like.
  • This conductive polymer is produced by chemical oxidative polymerization or electrolytic oxidative polymerization.
  • chemical oxidative polymerization a solution containing a monomer that becomes a monomer unit of a conductive polymer is mixed with an oxidizing agent and subjected to a polymerization reaction.
  • the oxidizing agent may be any known compound that releases a dopant, including trivalent iron such as iron(III) p-toluenesulfonate, iron(III) naphthalenesulfonate, and iron(III) anthraquinonesulfonate.
  • Salts or peroxodisulfates such as peroxodisulfate, ammonium peroxodisulfate, sodium peroxodisulfate, etc. can be used, and a single compound may be used, or two or more types of compounds may be used. Good too.
  • Polymerization time generally ranges from 10 minutes to 30 hours.
  • a monomer that becomes a monomer unit of a conductive polymer and a supporting electrolyte are mixed and subjected to a polymerization reaction using a constant potential method, a constant current method, or a potential sweep method.
  • the supporting electrolyte includes at least one compound selected from the group consisting of borodisalicylic acid and borodisalicylate.
  • salts include alkali metal salts such as lithium salts, sodium salts, and potassium salts; alkylammonium salts such as ammonium salts, ethylammonium salts, and butylammonium salts; dialkylammonium salts such as diethylammonium salts and dibutylammonium salts; and triethylammonium salts. , trialkylammonium salts such as tributylammonium salts, and tetraalkylammonium salts such as tetraethylammonium salts and tetrabutylammonium salts.
  • a potential of 1.0 to 1.5 V with respect to the reference electrode is suitable; when using the constant current method, a current value of 1 to 10,000 ⁇ A/cm 2 is suitable;
  • the sweep method it is preferable to sweep the range of 0 to 1.5 V with respect to the reference electrode at a rate of 5 to 200 mV/sec.
  • the polymerization temperature is generally in the range of 10 to 60°C.
  • Polymerization time generally ranges from 10 minutes to 30 hours.
  • the solvent to which the monomer and oxidizing agent or supporting electrolyte are added may be any solvent that can dissolve the desired amount of monomer and supporting electrolyte and does not have a negative effect on the electrolytic oxidative polymerization. can do.
  • the solvent includes water, methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, butyronitrile, acetone, methyl ethyl ketone, tetrahydrofuran, 1,4-dioxane, ⁇ -butyrolactone, methyl acetate, ethyl acetate, methyl benzoate, benzoate.
  • Examples include ethyl acid, ethylene carbonate, propylene carbonate, nitromethane, nitrobenzene, sulfolane, and dimethylsulfolane.
  • Conductive polymers are produced by immersing the object to which the conductive polymer is attached into a solution of a monomer that becomes the monomer unit of the conductive polymer and an oxidizing agent or a supporting electrolyte, and then producing it through a polymerization reaction. , formed within an electrolytic capacitor.
  • the object to be adhered includes at least the anode body.
  • one or both of the cathode body and the separator may be objects to which conductive polymers are attached.
  • a capacitor element which is an assembly including an anode body, a cathode body, and a separator, is immersed in a solution of a monomer that becomes a monomer unit of a conductive polymer and an oxidizing agent or a supporting electrolyte, and then polymerized. You may react.
  • the conductive polymer may be formed in the electrolytic capacitor by using an impregnation method in which the object to be attached is impregnated with a conductive polymer liquid in which conductive polymer particles or powder are dispersed or dissolved.
  • Conductive polymer liquid is obtained by purifying the solution after chemical oxidation polymerization or electrolytic oxidation polymerization by ultrafiltration, cation exchange, anion exchange, etc. to remove residual monomers and impurities, and then dispersing it in the solution. It is prepared in
  • the solvent for the conductive polymer liquid only needs to disperse or dissolve the conductive polymer, and is preferably water or a mixture of water and an organic solvent.
  • the organic solvent include polar solvents, alcohols, esters, hydrocarbons, carbonate compounds, ether compounds, chain ethers, heterocyclic compounds, and nitrile compounds.
  • Examples of the polar solvent include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and the like.
  • Examples of alcohols include methanol, ethanol, propanol, butanol, and the like.
  • Examples of esters include ethyl acetate, propyl acetate, butyl acetate, and the like.
  • Examples of hydrocarbons include hexane, heptane, benzene, toluene, xylene, and the like.
  • Examples of carbonate compounds include ethylene carbonate and propylene carbonate.
  • Examples of the ether compound include dioxane and diethyl ether.
  • chain ethers include ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether.
  • heterocyclic compound include 3-methyl-2-oxazolidinone and the like.
  • nitrile compound include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, and the like.
  • the pH of the conductive polymer liquid may be adjusted, and polyhydric alcohol and various additives may be added as necessary.
  • the pH adjuster include aqueous ammonia.
  • polyhydric alcohols include sorbitol, ethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene glycol, glycerin, polyoxyethylene glycerin, xylitol, erythritol, mannitol, dipentaerythritol, pentaerythritol, or a combination of two or more of these. can be mentioned.
  • polyhydric alcohol Since polyhydric alcohol has a high boiling point, it remains in the electrolyte layer even after the object to be adhered is impregnated with the conductive polymer liquid and dried, thereby reducing the ESR and improving the withstand voltage of the electrolytic capacitor.
  • additives include organic binders, surfactants, dispersants, antifoaming agents, coupling agents, antioxidants, and ultraviolet absorbers.
  • the solvent is removed through a drying process.
  • the temperature environment in the drying step is, for example, 40° C. or more and 200° C. or less, and the drying time is, for example, in the range of 3 minutes or more and 180 minutes or less.
  • the drying step may be repeated multiple times. It may be dried in a reduced pressure environment, for example, the pressure is reduced from 5 kPa to 100 kPa.
  • the drying process may be divided into a preliminary drying process and a main drying process.
  • a conductive polymer solution may be applied by dropping or spraying.
  • the types of anion component and cation component constituting the flexible crystal are not particularly limited as long as they are in a solid state rather than an ionic liquid within the target temperature range in which the electrolytic capacitor is used.
  • the anion components constituting the flexible crystal include various amide anions, tris (trifluoromethanesulfonyl) methanide anions, various phosphate anions, various borate anions, various sulfone anions, tetrafluoroaluminate anions, mandelate anions, and benzoates. Examples include anions.
  • amide anions two hydrogen atoms of the NH 2 anion are substituted with a perfluoroalkylsulfonyl group, a fluorosulfonyl group, or both.
  • Various amide anions include, for example, linear ones, such as various bis(perfluoroalkylsulfonyl)amide anions, bis(fluorosulfonyl)amide anions, and various N-(fluorosulfonyl) represented by the following chemical formula (1).
  • -N-(perfluoroalkylsulfonyl)amide anion is included.
  • n and m are integers of 0 or more, and the number of carbon atoms may be any number.
  • the bis(perfluoroalkylsulfonyl)amide anion includes bis(trifluoromethanesulfonyl)amide anion (TFSA anion) represented by the following chemical formula (2), and bis(pentafluorocarbonyl)amide anion represented by the following chemical formula (3).
  • TFSA anion bis(trifluoromethanesulfonyl)amide anion
  • BETA anion bis(pentafluorocarbonyl)amide anion
  • the bis(perfluoroalkylsulfonyl)amide anion is specifically, in the chemical formula (1), n is 1 and m is 2, and is represented by the following chemical formula (4) (pentafluoroethyl sulfonyl) trifluoromethanesulfonylamide anion.
  • a group having 0 carbon atoms is a fluorosulfonyl group, and if n and m are 0, a bis(fluorosulfonyl)amide anion (FSA anion) represented by the following chemical formula (5) is used. ).
  • n 0 and m is 1 or more, it is an N-(fluorosulfonyl)-N-(perfluoroalkylsulfonyl)amide anion represented by the following chemical formula (6). .
  • the N-(fluorosulfonyl)-N-(perfluoroalkylsulfonyl)amide anion is represented by the following chemical formula (7), where m is 1, and N-(fluorosulfonyl)-N-(trifluoromethane).
  • N-(fluorosulfonyl)-N-(pentafluoroethylsulfonyl)amide anion where m is 2 and is represented by the following chemical formula (8).
  • various amide anions include (perfluoroalkylsulfonyl) fluoroacetamide anions, which are represented by the following chemical formula (9) and have two hydrogen atoms of the NH 2 anion substituted with a perfluoroalkylsulfonyl group and a fluoroacetyl group. It will be done.
  • C9 In the chemical formula (9), n is an integer of 0 or more, and the number of carbon atoms may be any number.
  • amide anions include, for example, five-membered and six-membered heterocyclic rings, and are represented by the following chemical formula (10): N,N-hexafluoro-1,3-disulfonyl amide anion (CFSA). anion), and N,N-pentafluoro-1,3-disulfonylamide anion represented by the following chemical formula (11).
  • Tris(trifluoromethanesulfonyl) methanide anion is represented by the following chemical formula (12). (Chem.12)
  • phosphate anions are hexafluorophosphate anions (PF 6 anions) represented by the following chemical formula (13), or represented by the following chemical formula (14), in which some fluorine atoms of PF 6 are substituted with fluoroalkyl groups.
  • PF 6 anions hexafluorophosphate anions
  • 14 Various perfluoroalkyl phosphate anions.
  • q is an integer of 1 or more, and the number of carbon atoms may be any number.
  • FAP anion tris(pentafluoroethyl)trifluorophosphate anion represented by the following chemical formula (15) can be mentioned.
  • Various borate anions include a tetrafluoroborate anion (BF 4 anion) represented by the following chemical formula (16), and a tetrafluoroborate anion (BF 4 anion) represented by the following chemical formula (17), in which some fluorine atoms of the BF 4 anion are substituted with fluoroalkyl groups.
  • Various perfluoroalkyl borate anions can be mentioned.
  • Specific examples of the various perfluoroalkylborate anions include mono(fluoroalkyl)trifluoroborate anions and bis(fluoroalkyl)fluoroborate anions.
  • s is an integer of 0 or more
  • t is an integer of 1 or more
  • the number of carbon atoms may be any number.
  • borate anions include borate anions represented by the following chemical formula (18).
  • R1 and R2 are each independently a ketone group or a benzyl group from which one hydrogen at the benzyl position has been removed, or R1 and R2 are carbon atoms of a common six-membered aromatic ring.
  • R3 and R4 are each independently a ketone group or a benzyl group from which one hydrogen at the benzyl position has been removed, or R3 and R4 are carbon atoms constituting a common six-membered aromatic ring.
  • borate anions include borate anions represented by the following chemical formula (19).
  • R1 to R6 are each independently a ketone group or a methylene group.
  • R1 or R3 is a ketone group or a methylene group, and the other combinations of R1 and R2 or the combinations of R2 and R3 are carbon atoms of a common six-membered aromatic ring.
  • R4 or R6 is a ketone group or a methylene group, and the other combinations of R4 and R5 or the combinations of R5 and R6 are carbon atoms of a common six-membered aromatic ring.
  • a six-membered aromatic ring may have one or four methyl groups, and a six-membered aromatic ring can also be a polycyclic aromatic ring having two or more aromatic rings, such as a naphthalene ring. is part of.
  • R1 and R6 are ketone groups
  • R2 and R3 are carbon atoms that constitute a common six-membered aromatic ring
  • R4 and R5 constitute a common six-membered aromatic ring. If it is a carbon atom, it is a bis(salicylate)borate anion (BScB anion) represented by the following chemical formula (19A). (Chem.19A)
  • R1 and R6 are ketone groups
  • R2 and R3 are carbon atoms that constitute a common six-membered aromatic ring
  • R4 and R5 constitute a common six-membered aromatic ring.
  • it is a carbon atom and both aromatic six-membered rings each have four methyl groups, it is a bis(tetramethylsalicylate)borate anion represented by the following chemical formula (19B). (Chem.19B)
  • R1 and R6 are ketone groups
  • R2 and R3 are carbon atoms that constitute a common six-membered aromatic ring
  • R4 and R5 constitute a common six-membered aromatic ring.
  • BmScB anion bis(methylsalicylate)borate anion
  • Examples of various sulfonic anions include alkylsulfonic acid anions represented by the following chemical formula (21) and various perfluoroalkylsulfonic acid anions represented by the following chemical formula (22).
  • x is an integer of 1 or more and 4 or less.
  • y is an integer of 1 or more and 4 or less.
  • various perfluoroalkylsulfonic acid anions include trifluoromethanesulfonic acid anions in which y is 1 in the above chemical formula (22), pentafluoroethyl sulfonic acid anions in which y is 2 in the above chemical formula (22), and the above.
  • Examples include a heptafluoropropanesulfonic acid anion in which y is 3 in the chemical formula (22), and a nonafluorobutanesulfonic acid anion in which y is 4 in the chemical formula (22).
  • the tetrafluoroaluminate anion is represented by the following formula (23). (Case 23)
  • the benzoate anion is represented by the following formula (25). (Chem.25)
  • Examples of the cation component constituting the flexible crystal include various quaternary ammonium cations, various pyrrolidinium cations, various piperidinium cations, various imidazolium cations, and various phosphonium cations.
  • Examples of the quaternary ammonium cation include a tetraalkylammonium cation represented by the following chemical formula (26) and substituted with a linear alkyl group having any number of carbon atoms. (Case 26) In the formula, a, b, c and d are integers of 1 or more, and the number of carbon atoms may be any.
  • examples of the quaternary ammonium cation include a five-membered ring pyrrolidinium cation represented by the following chemical formula (29) to which a methyl group, ethyl group, or isopropyl group is bonded.
  • R1 and R2 are a methyl group, an ethyl group or an isopropyl group.
  • Specific examples of the generalized five-membered pyrrolidinium cation represented by the above chemical formula (29) include, for example, N-ethyl-N-methylpyrrolidinium cation (P12 cation) represented by the following chemical formula (30). , N-isopropyl-N-methylpyrrolidinium cation (P13iso cation) represented by the following chemical formula (31), and N,N-diethylpyrrolidinium cation (P22 cation) represented by the following chemical formula (32). It will be done.
  • quaternary ammonium examples include spiro-type pyrrolidinium cations (SBP cations) represented by the following chemical formula (33). (Chem.33)
  • piperidinium cations are represented by the following chemical formula (34), and include piperidinium cations in which the methyl group, ethyl group, or isopropyl group is a six-membered ring.
  • R3 and R4 are a methyl group, an ethyl group, or an isopropyl group.
  • imidazolium cations are 1,3-dialkylimidazolium or 1,2,3-trialkylimidazolium cations represented by the following chemical formula (36).
  • C36 In the formula, h and i are integers from 1 to 3, and j is 0 or 1.
  • Various phosphonium cations are represented by the following chemical formula (40), and include tetraalkylphosphonium cations substituted with a linear alkyl group having any number of carbon atoms.
  • Examples of the tetraalkylphosphonium cation include tetraethylphosphonium cation (TEP cation).
  • TEP cation tetraethylphosphonium cation
  • e, f, g and h are integers of 1 or more, and the number of carbon atoms may be any.
  • Two or more types of such flexible crystals may be included in the electrolyte layer.
  • the ionic conductivity of the electrolyte layer is improved compared to a case where a single type of anion component is used.
  • the ionic conductivity of the electrolyte layer is improved compared to a case where a single type of cationic component is used.
  • flexible crystals of the same type of anion may be included in the electrolyte layer
  • flexible crystals of the same type of cation may be included in the electrolyte layer
  • flexible crystals of the same type of anion may be included in the electrolyte layer.
  • Flexible crystals having different components and cationic components may be included in the electrolyte layer.
  • the blending ratios of different flexible crystals in the electrolyte layer may be equal molar amounts or may be different amounts.
  • the flexible crystal may contain a combination of cations and anions that is different from the cation component and anion component of the flexible crystal.
  • the cations and anions contained in the flexible crystals only need to be ionically dissociated within the operating temperature range of the electrolytic capacitor.
  • Such cations and anions may be contained in the flexible crystal, for example, as an ionic liquid.
  • An ionic liquid is a salt that exists in a liquid state in a temperature range including room temperature, and is a liquid consisting only of ions.
  • the cation contained in the flexible crystal may be of the same type as the cation component constituting the flexible crystal, as long as the anion contained in the flexible crystal is different.
  • the anion contained in the flexible crystal may be of the same type as the anion component constituting the flexible crystal, as long as the cation contained in the flexible crystal is different.
  • the cation contained in the flexible crystal and the cation component constituting the flexible crystal are different types, and furthermore, the anion contained in the flexible crystal and the anion component forming the flexible crystal may be different types. .
  • Such anions include various amide anions of the above chemical formulas (1) to (25), tris(trifluoromethanesulfonyl)methanide anions, various phosphate anions, various borate anions, various sulfonic anions, tetrafluoroaluminate anions, Mendelate anions and benzoate anions are mentioned.
  • Examples of the cation include various quaternary ammonium cations, various pyrrolidinium cations, various piperidinium cations, various imidazolium cations, and various phosphonium cations of the above chemical formulas (26) to (40).
  • the ionic conductivity of the electrolyte layer is further improved by containing a combination of cations and anions different from those of the cationic and anionic components of the flexible crystal.
  • the blending ratio of cations and anions in combinations different from those of the cation component and anion component of the flexible crystals may be equimolar amounts or may be different amounts.
  • the mixing ratio of the ionic liquid is 60 wt % or less, the flexible crystal easily maintains its solid shape.
  • a flexible crystal may be produced by further adding a polymer.
  • the polymer include polyethylene oxide (PEO), polypropylene oxide, polyester, and carbonate polymers.
  • carbonate-based polymers include polyethylene carbonate (PEC), PEC derivatives, polypropylene carbonate, polytrimethylene carbonate, and copolymers of polytrimethylene carbonate and polycarbonate.
  • PEC polyethylene carbonate
  • PEC derivatives polypropylene carbonate
  • polytrimethylene carbonate polytrimethylene carbonate
  • copolymers of polytrimethylene carbonate and polycarbonate One type of these polymers may be used alone, or two or more types may be used in combination.
  • the carbonate-based polymer is just an example, and any aliphatic polycarbonate can be used.
  • the various polymers may be in the form of a monopolymer, or may exist as a copolymer of two or more types of monomers.
  • the molecular weight of the polymer is preferably 1000k or more, and the molecular weight of polyethylene oxide (PEO) is preferably 1000k or more.
  • This flexible crystal can be produced, for example, by the following manufacturing method, but is not limited to the following, and various methods can be used. That is, the alkali metal salt of the anion component and the halogenated cation component constituting the flexible crystal are each dissolved in a solvent.
  • alkali metals include Na, K, Li, and Cs.
  • halogen include F, Cl, Br, and I. Water is preferred as the solvent.
  • An ion exchange reaction is carried out by dropping a solution of an anion metal salt little by little into a solution of halogenated cations. An equimolar amount of the anion metal salt solution is added to the halogenated cation solution and stirred.
  • This flexible crystal is dissolved in a solvent in which the flexible crystal is soluble.
  • the solvent is preferably a polar solvent.
  • Polar solvents include acetonitrile, propylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, ethyl methyl carbonate, ethylene carbonate, sulfolane, acetone, methanol, ethanol, isopropyl alcohol, or mixtures thereof. Since flexible crystals are efficiently dissolved in these polar solvents, the productivity of the electrolyte layer is excellent.
  • the object to which the electrolyte layer is to be attached is impregnated with a solution of flexible crystals.
  • a solution of flexible crystals After being impregnated with a solution of flexible crystals, it is left in a temperature environment such as 100° C. where the solvent evaporates, and the solvent is evaporated by drying, and the remaining water etc. is further evaporated under a temperature environment such as 150° C.
  • a temperature environment such as 150° C.
  • the flexible crystal may be doped with an ionic salt that becomes an electrolyte.
  • Ionic salts include salts of organic acids, salts of inorganic acids, or salts of complex compounds of organic acids and inorganic acids, and may be used alone or in combination of two or more.
  • organic acids include oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid,
  • carboxylic acids such as 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, and tridecanedioic acid, phenols, and sulfonic acids.
  • inorganic acids examples include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid, etc., including tetrafluoroborate.
  • examples of the composite compound of an organic acid and an inorganic acid include borodisalicylic acid, borodioxalic acid, borodiglycolic acid, and the like.
  • These salts of organic acids, salts of inorganic acids, and at least one salt of a composite compound of organic acids and inorganic acids include ammonium salts, quaternary ammonium salts, quaternized amidinium salts, amine salts, sodium salts, and potassium salts.
  • Examples include salt.
  • Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, and tetraethylammonium.
  • Examples of the quaternized amidinium include ethyldimethylimidazolinium and tetramethylimidazolinium.
  • Examples of the amine in the amine salt include primary amines, secondary amines, and tertiary amines.
  • Primary amines include methylamine, ethylamine, propylamine, etc.
  • Secondary amines include dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc.
  • Tertiary amines include trimethylamine, triethylamine, tripropylamine, tributylamine, Examples include ethyldimethylamine and ethyldiisopropylamine.
  • an electrolytic capacitor containing a conductive polymer and a flexible crystal in the electrolyte layer has improved capacity compared to a solid electrolytic capacitor containing only a conductive polymer and no flexible crystal.
  • the content of the flexible crystals is preferably 2 times or more and 12 times or less by weight relative to the content of the conductive polymer. If the content of flexible crystals is more than twice the content of conductive polymer in terms of weight ratio, the electrolytic capacitor will be more durable than a solid electrolytic capacitor that does not contain flexible crystals and only has conductive polymer. Capacitance is improved and ESR is also reduced.
  • the content of flexible crystals may be more than 12 times the weight ratio of the conductive polymer.
  • a solution of flexible crystals is used, but if the content of flexible crystals exceeds 12 times the weight ratio of the conductive polymer, the solubility of the flexible crystals decreases. However, simple drip impregnation becomes relatively difficult.
  • the solubility of the flexible crystal increases. Therefore, by setting the content of the flexible crystal to 12 times or less by weight of the conductive polymer, the process of impregnating the object to which the electrolyte layer is attached with a solution of the flexible crystal becomes simple.
  • Separators can be made of cellulose such as kraft, Manila hemp, esparto, hemp, rayon, and mixed papers thereof, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and their derivatives, polytetrafluoroethylene resins, and polyfluoride.
  • Polyamide resins such as vinylidene resin, vinylon resin, aliphatic polyamide, semi-aromatic polyamide, and fully aromatic polyamide, polyimide resin, polyethylene resin, polypropylene resin, trimethylpentene resin, polyphenylene sulfide resin, acrylic resin, polyvinyl alcohol These resins can be used alone or in combination.
  • a surface-expanding layer is formed on one or both surfaces of the valve metal foil on the anode side, and a dielectric oxide film is formed on the surface-expanding layer by chemical conversion treatment. If necessary, a surface expanding layer is formed on one or both surfaces of the valve metal foil on the cathode side, and an oxide film is formed on the surface.
  • the anode lead and the cathode lead are connected to the anode body and the cathode body by stitching, cold welding, ultrasonic welding, laser welding, or the like.
  • a long anode body and a cathode body are wound with a separator interposed therebetween to produce a cylindrical wound body.
  • the separators are stacked so that one end thereof protrudes beyond one end of the anode body and the cathode body.
  • the protruding separator is first wound to form a winding core so that the core of the winding body runs along the short sides of the anode body and the cathode body. Then, the core is used as a winding axis, and the long sides of the anode and cathode bodies are rolled up.
  • Chemical liquids include phosphoric acid-based chemical liquids such as ammonium dihydrogen phosphate, boric acid-based chemical liquids such as ammonium borate, adipic acid-based chemical liquids such as ammonium adipate, and boric acid-based chemical liquids such as boric acid and citric acid.
  • a chemical liquid mixed with dicarboxylic acid is used.
  • the voltage is preferably set to a value that is, for example, 0.1 to 1.2 times the chemical formation voltage. Further, as a voltage application method during repair chemical formation, a method of applying a constant voltage from the start of repair chemical formation, a method of increasing the applied voltage stepwise at regular intervals, etc. are appropriately selected.
  • the process moves to an electrolyte formation step, and an electrolyte layer is formed between the anode body and the cathode body.
  • the electrolyte formation process is roughly divided into a polymer adhesion process and a flexible crystal adhesion process.
  • a conductive polymer is attached between the anode body and the cathode body
  • a flexible crystal is attached between the anode body and the cathode body.
  • the wound body is immersed in the conductive polymer liquid to impregnate the inside of the wound body with the conductive polymer liquid.
  • a vacuum treatment or a pressure treatment may be performed as necessary.
  • the impregnation step may be repeated multiple times.
  • the solvent of the conductive polymer liquid is removed by a drying process.
  • the rolled body When attaching a conductive polymer while generating a conductive polymer, the rolled body is immersed in a solution of a monomer that becomes the monomer unit of the conductive polymer and an oxidizing agent or a supporting electrolyte to initiate a polymerization reaction. bring about After the conductive polymer is attached, the solvent is removed by a drying process.
  • the wound body is immersed in a solution of flexible crystals to impregnate the wound body with the solution of flexible crystals.
  • a vacuum treatment or a pressure treatment may be performed as necessary.
  • the impregnation step may be repeated multiple times.
  • the solvent is removed by a drying process.
  • the conductive polymer was attached first to the wound body, and then the flexible crystal was attached later. You can also do this. However, from the viewpoint of forming a conductive path between the anode body and the cathode body, it is preferable to attach the conductive polymer first. By attaching the conductive polymer first, it is possible to uniformly form an electrolyte layer including a flexible crystal and a conductive polymer layer, and it is possible to exhibit good capacity characteristics and good ESR characteristics.
  • the anode body and the cathode body may be wound so as to face each other with a separator in between.
  • a conductive polymer and a flexible crystal may be attached to the cathode body, the separator, or both, and then the anode body and the cathode body may be wound so as to face each other with the separator in between.
  • the capacitor element is housed in an exterior case with a bottom at one end and an open end at the other end, and the capacitor element is sealed in the exterior case with a sealing body.
  • the electrolytic capacitor undergoes an aging process to complete its manufacture. In the aging process, a direct current voltage is applied to the electrolytic capacitor to repair defects such as the dielectric oxide film layer.
  • a surface expanding layer is formed on the surface of the valve metal foil that is the anode body.
  • the foil on which the surface-expanding layer has been formed is subjected to a chemical conversion treatment in a chemical solution to form a dielectric oxide film on the surface of the valve metal foil.
  • An insulating resist layer is printed and dried, including the area that will later become the anode terminal, but excluding the area that will become the anode. That is, an insulating resist layer is printed so that an electrolyte layer is not formed in a region that will become a terminal on the anode side.
  • the conductive polymer adhesion step After printing the insulating resist layer, proceed to the conductive polymer adhesion step, where the foil is immersed in a conductive polymer liquid and the conductive polymer is adhered to cover the dielectric oxide film. After removing the solvent of the conductive polymer liquid by drying, the conductive polymer liquid is further moved to a flexible crystal attachment step, in which it is immersed in a solution of flexible crystals to further adhere flexible crystals. Then, the solvent of the flexible crystals is removed by drying. An electrolyte layer was formed by such adhesion of the conductive polymer and the adhesion of the flexible crystal.
  • carbon paste is printed on the electrolyte layer using a screen printer or the like and dried. This drying process forms a carbon layer on the electrolyte layer. Furthermore, a metal paste such as silver paste is printed on the carbon layer and dried. Through this drying process, a silver layer is formed on the carbon layer. These carbon layers and silver layers correspond to the cathode body of an electrolytic capacitor.
  • the insulating resist layer is peeled off.
  • the insulating resist layer may be peeled off using a mechanical peeling method using laser irradiation or pressing with a jig. The parts exposed by peeling are plated to complete the anode terminal.
  • the capacitor element thus produced is covered with, for example, a laminate film.
  • the capacitor element is sealed by molding, dip coating, or printing a resin such as a heat-resistant resin or an insulating resin.
  • Electrolytic capacitors of Examples 1 to 4 and Comparative Example 1 were manufactured in the following manner. First, a pair of electrodes was made using aluminum foil. Both electrode foils were enlarged by etching. One electrode was used as an anode body, and the area was enlarged by direct current etching. In the process of enlarging the surface of the anode body, a direct current was passed through the aluminum foil in an aqueous solution containing hydrochloric acid to form pits, and then a direct current was passed through the aluminum foil in an aqueous solution containing nitric acid to enlarge the diameter of the pits. . The other electrode was used as a cathode body, and the area was enlarged by AC etching. In forming the surface-expanding layer of the cathode body, spongy etched pits were formed by passing an alternating current through the aluminum foil in an aqueous solution containing hydrochloric acid.
  • a dielectric oxide film was formed on the surface of the foil of the anode body by chemical conversion treatment.
  • a current with a current density of 10 mA/cm 2 was passed in an aqueous ammonium dihydrogen phosphate solution with a concentration of 1.4 g/L and a liquid temperature of 90°C to reach a chemical conversion voltage of 56.5 V. After that, it was held for 10 minutes.
  • a lead wire was connected to each of the anode body and cathode body, and the anode foil and the cathode foil were wound so as to face each other with a manila paper separator in between.
  • the roll has a diameter of 10 mm and a height of 10 mm. Restorative chemical formation was performed on the wound body by energizing it for 10 minutes at an applied voltage of 56.5 V and a current density of 10 mA in an aqueous ammonium dihydrogen phosphate solution with a liquid temperature of 90°C.
  • the rolled body was first impregnated with a conductive polymer liquid.
  • the conductive polymer liquid has poly(3,4-ethylenedioxythiophene) (PEDOT/PSS) doped with polystyrene sulfonic acid (PSS) dispersed therein.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • PEDOT/PSS is added at a rate of 1.2 wt% to the entire conductive polymer liquid.
  • ethylene glycol is added to the conductive polymer liquid at a rate of 10 wt% with respect to the conductive polymer dispersion.
  • the wound body was impregnated with this conductive polymer liquid for 10 minutes at room temperature and in a pressurized environment of ⁇ 0.3 MPa. The impregnation process was performed twice in total.
  • Examples 1 to 4 in addition to the conductive polymer, a flexible crystal was attached between the anode body and the cathode body.
  • the flexible crystals of Examples 1 to 4 are shown in Table 1 below. (Table 1)
  • Example 1 P12BF 4 was attached as a flexible crystal. That is, a flexible crystal containing P12 cation and BF4 anion in a molar ratio of 1:1 was attached.
  • the P12 cation is an N-ethyl-N-methylpyrrolidinium cation represented by the chemical formula (30).
  • Example 2 P12FSA was attached as a flexible crystal. That is, a flexible crystal containing P12 cation and FSA anion in a molar ratio of 1:1 was attached.
  • the FSA anion is a bis(fluorosulfonyl)amide anion represented by the chemical formula (5).
  • Example 3 P12BoB was attached as a flexible crystal. That is, a flexible crystal containing P12 cation and BoB anion in a molar ratio of 1:1 was attached.
  • the BoB anion is a bis(oxalato)borate anion represented by the chemical formula (18A).
  • Example 4 P12BScB was attached as a flexible crystal. That is, a flexible crystal containing P12 cations and BScB anions in a molar ratio of 1:1 was attached.
  • the BScB anion is a bis(salicylate)borate anion represented by the chemical formula (19A).
  • the flexible crystals were added to acetonitrile at a ratio of 40 wt% to the total solution.
  • This acetonitrile solution was dropped onto the wound body to impregnate the inside of the wound body with the acetonitrile solution.
  • the amount of impregnation was 570 mg for one rolled body.
  • Example 1 After impregnation, the wound body was left standing under an argon atmosphere at 45°C for 2 hours, left standing under an argon atmosphere at 60°C for 2 hours, left standing under an argon atmosphere at 80°C for 2 hours, and finally impregnated with 100°C.
  • the acetonitrile solution was dried by standing for 12 hours under an argon atmosphere at .degree.
  • electrolyte layers containing conductive polymers and flexible crystals were formed.
  • Comparative Example 1 an electrolyte layer containing a conductive polymer but not containing a flexible crystal was formed.
  • the capacitor elements of Examples 1 to 4 and Comparative Example 1 were housed in an exterior case, and the opening of the exterior case was sealed with a sealant.
  • the sealing body and the outer case were made to fit tightly together by crimping.
  • the electrolytic capacitors of Examples 1 to 6 and Comparative Example 1 were subjected to aging treatment by applying a voltage of 40.25 V for 1 hour in a temperature environment of 105°C.
  • electrolytic capacitors with a diameter of 10 mm, a height of 10 mm, a rated voltage of 36 WV, and 270 ⁇ F were manufactured.
  • Cap The capacitance (Cap), equivalent series resistance (ESR), and dielectric loss tangent (tan ⁇ ) of the electrolytic capacitors of Examples 1 to 4 and Comparative Example 1 were measured.
  • Cap, tan ⁇ , and ESR were measured at room temperature using an LCR meter (manufactured by NF Circuit Design Block Co., Ltd., model number ZM2376).
  • the measurement frequency of Cap, ESR, and tan ⁇ is 120 Hz, and the alternating current level is a 1.0 Vms sine wave.
  • the electrolytic capacitors of Examples 1 to 4 containing conductive polymers and flexible crystals in the electrolyte layer are conductive polymer solid electrolytic capacitors that do not contain flexible crystals and only have conductive polymers. It was confirmed that the capacity was improved compared to Note that the ESR and tan ⁇ of the electrolytic capacitors of Examples 1 to 4 are also within a satisfactory range, and some of the Examples are better than Comparative Example 1.
  • Example 5-6 Electrolytic capacitors of Examples 5 and 6 were manufactured.
  • the flexible crystal contained an ionic liquid. Except for the inclusion of the ionic liquid in the flexible crystal, the structure, composition, manufacturing method, and manufacturing conditions of the electrolytic capacitors of Examples 5 and 6 are the same as those of the electrolytic capacitors of Examples 1 to 4.
  • the flexible crystal is P12BF4 containing P12 cations and BF4 anions in a 1:1 molar ratio.
  • the ionic liquid is EMIBF4 , which contains EMI cations and BF4 anions in a 1:1 molar ratio.
  • the EMI cation is 1-ethyl-3-methylimidazolium shown by chemical formula (38). P12BF 4 and EMIBF 4 were prepared in equimolar amounts.
  • the flexible crystal is P12FSA containing P12 cations and FSA anions in a 1:1 molar ratio.
  • the ionic liquid is EMIBF 4 containing EMI cations and FSA anions in a 1:1 molar ratio.
  • P12FSA and EMIFSA were prepared in equimolar amounts.
  • Cap capacitance
  • ESR equivalent series resistance
  • tan ⁇ dielectric loss tangent
  • Electrolytic capacitors of Examples 7 to 9 and Comparative Example 2 were manufactured.
  • the electrolytic capacitors of Examples 7 to 9 differ from those of Examples 1 to 4 in the type of flexible crystal.
  • the electrolytic capacitor of Comparative Example 2 was manufactured by the same manufacturing method as Comparative Example 1, except for the size of the wound body, and had the same configuration.
  • the rolled bodies of Examples 7 to 9 and Comparative Example 2 differ from Examples 1 to 4 in that they have a diameter of 6.8 mm and a height of 5.8 mm.
  • Example 7 P12BScB was attached as a flexible crystal. That is, a flexible crystal containing P12 cations and BScB anions in a molar ratio of 1:1 was attached.
  • the BScB anion is a bis(salicylate)borate anion represented by the chemical formula (19A).
  • Example 8 P12BmScB was attached as a flexible crystal. That is, a flexible crystal containing P12 cations and BmScB anions in a molar ratio of 1:1 was attached.
  • the BmScB anion is a bis(methylsalicylate)borate anion represented by the chemical formula (19C).
  • TEABhNB was attached as a flexible crystal. That is, a flexible crystal containing TEA cations and BhNB anions in a molar ratio of 1:1 was attached.
  • the TEA cation is a tetraethylammonium cation (TEA cation) represented by the chemical formula (27).
  • the BhNB anion is a bis(2-hydroxy-1-naphthorato)borate anion represented by the chemical formula (20B).
  • the flexible crystals of Examples 7 and 8 were added to ⁇ -butyrolactone in a proportion of 50 wt% based on the total solution.
  • the flexible crystals of Example 9 were added to ⁇ -butyrolactone in a proportion of 25 wt% based on the total solution.
  • This ⁇ -butyrolactone solution was dropped onto the rolled body to impregnate the inside of the rolled body with the ⁇ -butyrolactone solution.
  • the ⁇ -butyrolactone solution was impregnated for 30 minutes at room temperature and in a reduced pressure environment of ⁇ 80 kPa. At this time, -80 kPa is a gauge pressure based on atmospheric pressure, and the pressure expressed as negative pressure is a gauge pressure based on atmospheric pressure.
  • the rolled body was left standing at room temperature and a reduced pressure environment of -100 kPa or less overnight, left standing at 45 °C and a reduced pressure environment of -100 kPa or less for 2 hours, and then left at 60 °C and a reduced pressure environment of -100 kPa or less for 2 hours.
  • the ⁇ -butyrolactone solution was left to stand for 2 hours at 80°C and a reduced pressure of -100 kPa or less, and finally left to stand at 90°C and a reduced pressure of -100 kPa or less overnight to thoroughly dry the ⁇ -butyrolactone solution. , ⁇ -butyrolactone was removed.
  • electrolyte layers containing conductive polymers and flexible crystals were formed.
  • Comparative Example 2 an electrolyte layer containing a conductive polymer but not containing a flexible crystal was formed.
  • Cap capacitance
  • ESR equivalent series resistance
  • tan ⁇ dielectric loss tangent
  • the electrolytic capacitors of Examples 7 to 9 containing conductive polymers and flexible crystals in the electrolyte layer are conductive polymer solid electrolytic capacitors that do not contain flexible crystals and only have conductive polymers. It was confirmed that the capacity was improved compared to The ESR and tan ⁇ of the electrolytic capacitors of Examples 7 to 9 are also within a satisfactory range, and Example 7 is better than Comparative Example 2.
  • Example 10-14 Electrolytic capacitors of Examples 10 to 14 and Comparative Example 3 were manufactured.
  • P12BScB is attached as a flexible crystal, and they are manufactured by the same manufacturing method as Example 7 and have the same configuration.
  • Comparative Example 3 was produced using the same manufacturing method as Comparative Example 1, and has the same configuration.
  • the content of the conductive polymer and the content of the flexible crystal can be determined by measuring the weight before and after each attachment step. The weight was 3 mg.
  • Example 10 contains flexible crystals in a weight ratio of 0.2 times that of the conductive polymer.
  • Example 11 contains flexible crystals in a weight ratio of 1 times that of the conductive polymer.
  • Example 12 contains twice as much flexible crystal by weight as the conductive polymer.
  • Example 13 contains 5 times as much flexible crystal by weight as the conductive polymer.
  • Example 14 contains 12 times as much flexible crystal by weight as the conductive polymer.
  • Cap capacitance
  • ESR equivalent series resistance
  • the electrolytic capacitors of Examples 10 to 14 have higher capacitance than Comparative Example 3. Furthermore, the electrolytic capacitors of Examples 10 to 14 have better ESR than Comparative Example 3. In this way, it was confirmed that when the content of flexible crystals is 2 times or more and 12 times or less by weight of the conductive polymer, the capacitance of the electrolytic capacitor is high and the ESR is good. It was done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention provides an electrolytic capacitor using an electrically conductive polymer and having even better capacity, and a manufacturing method. The electrolytic capacitor comprises an electrolyte layer containing the electrically conductive polymer and a plastic crystal. The manufacturing method for this electrolytic capacitor includes an electrolyte layer forming step for forming the electrolyte layer between a pair of electrodes. An electrolyte forming step includes a polymer attachment step for attaching the electrically conductive polymer to one or both of the pair of electrodes, and a plastic crystal attachment step for attaching the plastic crystal to one or both of the pair of electrodes.

Description

電解コンデンサ及び製造方法Electrolytic capacitor and manufacturing method

 本発明は、電解コンデンサ及び製造方法に関する。 The present invention relates to an electrolytic capacitor and a manufacturing method.

 電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極箔及び陰極箔として備えている。陽極箔は、弁作用金属を焼結体あるいはエッチング箔等の形状にすることで拡面化され、拡面化された表面に誘電体酸化皮膜層を有する。陽極箔と陰極箔の間には電解液が介在する。電解液は、陽極箔の凹凸面に密接し、真の陰極として機能する。 Electrolytic capacitors include valve metals such as tantalum or aluminum as anode foils and cathode foils. The anode foil is enlarged by forming the valve metal into a sintered body or etched foil, and has a dielectric oxide film layer on the enlarged surface. An electrolytic solution is interposed between the anode foil and the cathode foil. The electrolyte comes into close contact with the uneven surface of the anode foil and functions as a true cathode.

 近年では、ポリピロール、ポリアニリン、ポリチオフェンなどの導電性高分子を含む固体電解質を用いた固体電解コンデンサが適用されるようになってきている。導電性高分子は高い電気伝導度を有するため、電解コンデンサの低ESR化に貢献している。 In recent years, solid electrolytic capacitors using solid electrolytes containing conductive polymers such as polypyrrole, polyaniline, and polythiophene have come into use. Since conductive polymers have high electrical conductivity, they contribute to lower ESR of electrolytic capacitors.

国際公開第2007/091656号International Publication No. 2007/091656

 電解液は、導電性高分子を用いた固体電解質と比べると、陽極箔の誘電体酸化皮膜層と密接できるため、電解コンデンサの高容量化が容易である。従って、導電性高分子を用いた電解コンデンサにおいても、良好なESRと共に、良好な静電容量が求められる。 Compared to a solid electrolyte using a conductive polymer, the electrolytic solution can be brought into close contact with the dielectric oxide film layer of the anode foil, making it easier to increase the capacity of the electrolytic capacitor. Therefore, an electrolytic capacitor using a conductive polymer is also required to have good ESR and good capacitance.

 本発明は、上記課題を解決するために提案されたものであり、その目的は、導電性高分子を用いつつ、更なる良好な容量を有する電解コンデンサ及び製造方法を提供することにある。 The present invention was proposed in order to solve the above problems, and its purpose is to provide an electrolytic capacitor that uses a conductive polymer and has even better capacity, and a manufacturing method.

 上記課題を解決すべく、本実施形態の電解コンデンサは、導電性高分子と柔粘性結晶を含む電解質層を備える。陽極体及び陰極体を備えるようにしてもよい。 In order to solve the above problems, the electrolytic capacitor of this embodiment includes an electrolyte layer containing a conductive polymer and a flexible crystal. It may also include an anode body and a cathode body.

 前記導電性高分子は、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸とを含むようにしてもよい。 The conductive polymer may include poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid.

 前記柔粘性結晶には、当該柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンが更に含まれるようにしてもよい。 The flexible crystal may further contain a cation and anion in a different combination from the cation component and anion component of the flexible crystal.

 前記柔粘性結晶の量は、前記導電性高分子の量を1としたときに、重量比で2倍以上12倍以下であるようにしてもよい。 The amount of the flexible crystals may be 2 times or more and 12 times or less in weight ratio when the amount of the conductive polymer is 1.

 また、上記課題を解決すべく、本実施形態の電解コンデンサの製造方法は、一対の電極間に電解質層を形成する電解質層形成工程を含み、前記電解質形成工程は、前記一対の電極の一方又は両方に導電性高分子を付着させる高分子付着工程と、前記一対の電極の一方又は両方に柔粘性結晶を付着させる柔粘性結晶付着工程と、を有する。 Further, in order to solve the above problems, the method for manufacturing an electrolytic capacitor of the present embodiment includes an electrolyte layer forming step of forming an electrolyte layer between a pair of electrodes, and the electrolyte forming step includes one or more of the pair of electrodes. The method includes a polymer attachment step of attaching a conductive polymer to both electrodes, and a flexible crystal attachment step of attaching a flexible crystal to one or both of the pair of electrodes.

 前記高分子付着工程は、前記導電性高分子を含む液体を前記一対の電極間に含浸させる含浸工程を有するようにしてもよい。 The polymer adhesion step may include an impregnation step of impregnating a liquid containing the conductive polymer between the pair of electrodes.

 前記柔粘性結晶付着工程では、前記柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンを含む前記柔粘性結晶を付着させるようにしてもよい。 In the flexible crystal attachment step, the flexible crystal containing a cation and anion in a different combination from the cation and anion components of the flexible crystal may be attached.

 前記柔粘性結晶付着工程では、前記柔粘性結晶の量を、前記導電性高分子の量を1としたときに、重量比で2倍以上12倍以下の割合で付着させるようにしてもよい。 In the flexible crystal attachment step, the amount of the flexible crystals may be deposited at a weight ratio of 2 times or more and 12 times or less when the amount of the conductive polymer is 1.

 本発明によれば、導電性高分子を用いた場合と比べても良好な容量が得られる。 According to the present invention, better capacity can be obtained compared to the case where a conductive polymer is used.

 以下、本発明を実施する形態について説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described. Note that the present invention is not limited to the embodiments described below.

 (全体構成)
 電解コンデンサは、誘電体酸化皮膜の誘電分極作用により静電容量を得て、電荷の蓄電及び放電を行う受動素子である。電解コンデンサは、一対の電極及び当該電極に挟まれた電解質層を備えている。一方の電極は陽極体であり、表面に誘電体酸化皮膜が形成されている。他方の電極は陰極体である。電解質層には、導電性高分子と柔粘性結晶が含まれている。
(overall structure)
An electrolytic capacitor is a passive element that obtains capacitance through the dielectric polarization effect of a dielectric oxide film and stores and discharges charge. An electrolytic capacitor includes a pair of electrodes and an electrolyte layer sandwiched between the electrodes. One electrode is an anode body, and a dielectric oxide film is formed on the surface. The other electrode is the cathode body. The electrolyte layer contains a conductive polymer and flexible crystals.

 導電性高分子は、分子内ドーパント分子によりドーピングされた自己ドープ型の共役系高分子、又は外部ドーパント分子によりドーピングされた共役系高分子である。共役系高分子は、π共役二重結合を有するモノマー又はその誘導体を化学酸化重合または電解酸化重合することによって得られる。ドーパント又は外部ドーパント分子は、共役系高分子に電子を受け入れやすいアクセプター、もしくは電子を与えやすいドナーであり、これにより導電性高分子は高い導電性を発現する。 The conductive polymer is a self-doped conjugated polymer doped with an intramolecular dopant molecule, or a conjugated polymer doped with an external dopant molecule. Conjugated polymers are obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of monomers having π-conjugated double bonds or derivatives thereof. The dopant or external dopant molecule is an acceptor that easily accepts electrons or a donor that easily donates electrons to the conjugated polymer, and thereby the conductive polymer exhibits high electrical conductivity.

 柔粘性結晶は、プラスチッククリスタルとも称され、秩序配列と無秩序配向を有する。即ち、柔粘性結晶は、アニオン及びカチオンが規則的に配列した三次元結晶格子構造を有する一方、これらアニオン及びカチオンが回転不規則性を有する。 A plastic crystal is also called a plastic crystal, and has an ordered arrangement and a disordered orientation. That is, while a flexible crystal has a three-dimensional crystal lattice structure in which anions and cations are regularly arranged, these anions and cations have rotational irregularity.

 これら導電性高分子と柔粘性結晶を含む電解質層は、陽極体と陰極体の間に介在する。換言すれば、陽極体と陰極体とは電解質層を挟んで対向配置される。電解質層は、陽極体の誘電体酸化皮膜と密着して、誘電体酸化皮膜と陰極体の間に連なるように配置されることで、導電パスを作出し、真の陰極として機能している。 An electrolyte layer containing these conductive polymers and flexible crystals is interposed between the anode body and the cathode body. In other words, the anode body and the cathode body are arranged to face each other with the electrolyte layer in between. The electrolyte layer is placed in close contact with the dielectric oxide film of the anode body, so as to be continuous between the dielectric oxide film and the cathode body, thereby creating a conductive path and functioning as a true cathode.

 陽極体と陰極体とは、電解質層を挟んで交互に積層される積層型により配置され、又は電解質層を挟んで交互に積層されて巻回される巻回型により配置される。積層型では、外装を省略した平板型とするほか、例えば、コンデンサ素子をラミネートフィルムによって被覆し、又は耐熱性樹脂や絶縁樹脂などの樹脂をモールド、ディップコート若しくは印刷することで封止する。 The anode body and the cathode body are arranged in a laminated type in which they are alternately laminated with an electrolyte layer in between, or in a wound type in which they are alternately laminated and wound with an electrolyte layer in between. In the laminated type, the capacitor element is not only a flat plate type without an exterior packaging, but also is sealed by covering the capacitor element with a laminate film, or by molding, dip coating, or printing a resin such as a heat-resistant resin or an insulating resin.

 または、陽極体と陰極体とは、電解質層を挟んで交互に積層されて巻回される巻回型により配置される。巻回型では、例えば、コンデンサ素子を有底筒状の外装ケースに挿入し、外装ケースの開口端部を加締め加工により封口体で封止する。封口体は、例えば、ゴムから構成され、又はゴムと硬質基板の積層体から構成される。ゴムとしてはエチレンプロピレンゴムやブチルゴム等が挙げられる。 Alternatively, the anode body and the cathode body are arranged in a winding manner in which they are alternately laminated and wound with an electrolyte layer in between. In the winding type, for example, the capacitor element is inserted into a bottomed cylindrical outer case, and the open end of the outer case is sealed with a sealing body by crimping. The sealing body is made of, for example, rubber or a laminate of rubber and a hard substrate. Examples of the rubber include ethylene propylene rubber and butyl rubber.

 尚、陽極体と陰極体との間には、陽極体と陰極体のショート防止のために、陽極体と陰極体を隔て、また陽極体及び陰極体の間の電解質層を保持するセパレータが備えられる。電解質層の形状が自力で保持され、電解質層によって陰極体と陽極体を隔離できる場合、セパレータを電解コンデンサから排除できる。 In addition, a separator is provided between the anode body and the cathode body to separate the anode body and the cathode body and to hold an electrolyte layer between the anode body and the cathode body in order to prevent short circuit between the anode body and the cathode body. It will be done. If the shape of the electrolyte layer is maintained by itself and the electrolyte layer can separate the cathode and anode bodies, the separator can be eliminated from the electrolytic capacitor.

 (陽極体)
 このような電解コンデンサにおいて、陽極体は、弁作用金属を材料とした箔体である。巻回型の電解コンデンサでは弁作用金属を延伸した長尺の帯形状であり、積層型の電解コンデンサでは平板又は粉末を平板形に成型及び焼結した焼結体である。弁作用金属は、アルミニウム、タンタル、ニオブ、酸化ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度は、陽極体に関して99.9%以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていてもよい。
(Anode body)
In such an electrolytic capacitor, the anode body is a foil body made of a valve metal. A wound type electrolytic capacitor has a long band shape made of stretched valve metal, and a laminated type electrolytic capacitor has a flat plate or a sintered body made of powder molded into a flat plate shape and sintered. Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. The purity of the anode body is preferably 99.9% or more, but it may contain impurities such as silicon, iron, copper, magnesium, and zinc.

 陽極体の片面又は両面には、拡面層が形成されている。拡面層は、箔にエッチング処理を施したエッチング層、弁作用金属の粉体を焼結した焼結層、又は箔に弁作用金属粒子を蒸着した蒸着層である。即ち、拡面層は、多孔質構造を有し、トンネル状のピット、海綿状のピット、又は密集した粉体若しくは粒子間の空隙により成る。 A surface expanding layer is formed on one or both sides of the anode body. The surface expanding layer is an etched layer obtained by etching a foil, a sintered layer obtained by sintering valve metal powder, or a vapor deposition layer obtained by vapor depositing valve metal particles onto a foil. That is, the surface-expanding layer has a porous structure, consisting of tunnel-like pits, cavernous pits, or dense powder or voids between particles.

 トンネル状のエッチングピットは、箔厚み方向に掘り込まれた孔である。このトンネル状のエッチングピットは、典型的には、塩酸等のハロゲンイオンが存在する酸性水溶液中で直流電流を流すことで形成される。トンネル状のエッチングピットは、更に、硝酸等の酸性水溶液中で直流電流を流すことで拡径される。海綿状のエッチングピットによって、拡面層は、空間状に細かい空隙が連なり拡がったスポンジ状の層になる。この海綿状のエッチングピットは、塩酸等のハロゲンイオンが存在する酸性水溶液中で交流電流を流すことで形成される。 A tunnel-shaped etching pit is a hole dug in the thickness direction of the foil. This tunnel-shaped etching pit is typically formed by passing a direct current in an acidic aqueous solution containing halogen ions, such as hydrochloric acid. The diameter of the tunnel-shaped etching pit is further expanded by passing a direct current in an acidic aqueous solution such as nitric acid. Due to the spongy etching pits, the surface-expanding layer becomes a spongy layer in which fine voids are arranged in a series of spaces. These cavernous etching pits are formed by passing an alternating current in an acidic aqueous solution containing halogen ions, such as hydrochloric acid.

 焼結層は、箔体と同種又は異種の弁作用金属の粉末を粉砕法、アトマイズ法、メルトスピニング法、回転円盤法、回転電極法等によって得て、バインダや溶剤によってペースト化し、箔体に塗布及び乾燥させ、真空又は還元雰囲気等で加熱焼結させことにより作製される。アトマイズ法は、水アトマイズ法、ガスアトマイズ法、水ガスアトマイズ法のいずれでも良い。蒸着層は、例えば抵抗加熱式蒸着法又は電子線加熱式蒸着法により作製される。この蒸着層は、箔体と同種又は異種の弁作用金属を抵抗熱や電子線エネルギーによって加熱して蒸発させ、弁作用金属粒子の蒸気を箔体の表面に堆積させることで成膜する。 The sintered layer is obtained by pulverizing, atomizing, melt spinning, rotating disk method, rotating electrode method, etc. powder of valve metal of the same type or different type as the foil body, making it into a paste with a binder or solvent, and applying it to the foil body. It is produced by coating, drying, and heating and sintering in a vacuum or reducing atmosphere. The atomization method may be a water atomization method, a gas atomization method, or a water gas atomization method. The vapor deposition layer is produced, for example, by a resistance heating vapor deposition method or an electron beam heating vapor deposition method. This vapor deposition layer is formed by heating and vaporizing a valve metal of the same type or different type as the foil body using resistance heat or electron beam energy, and depositing vapor of valve metal particles on the surface of the foil body.

 誘電体酸化皮膜は、拡面層が形成された陽極体の片面又は両面に形成されている。誘電体酸化皮膜は、典型的には、陽極体の表層に形成される酸化皮膜であり、陽極体がアルミニウム製であれば、拡面層の表面を酸化させた酸化アルミニウム層である。誘電体酸化皮膜を形成する化成処理では、化成液中で陽極体に対して、所望の耐電圧を目指して電圧印加する。化成液は、ハロゲンイオン不在の溶液であり、例えば、リン酸二水素アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液である。 The dielectric oxide film is formed on one or both sides of the anode body on which the surface-expanding layer is formed. The dielectric oxide film is typically an oxide film formed on the surface layer of the anode body, and if the anode body is made of aluminum, it is an aluminum oxide layer obtained by oxidizing the surface of the surface expanding layer. In chemical conversion treatment to form a dielectric oxide film, a voltage is applied to the anode body in a chemical solution to achieve a desired withstand voltage. The chemical solution is a solution that does not have halogen ions, and includes, for example, a phosphoric acid-based chemical solution such as ammonium dihydrogen phosphate, a boric acid-based chemical solution such as ammonium borate, and an adipic acid-based chemical solution such as ammonium adipate. It is a liquid.

 この陽極体には陽極リードが接続され、コンデンサ素子外に引き出されている。コンデンサ素子は、陽極体、陰極体、電解質層及びセパレータのアッセンブリである。陽極リードは、陽極体に対してステッチ、コールドウェルド、超音波溶接、又はレーザー溶接などにより接続されている。 An anode lead is connected to this anode body and drawn out of the capacitor element. A capacitor element is an assembly of an anode body, a cathode body, an electrolyte layer and a separator. The anode lead is connected to the anode body by stitching, cold welding, ultrasonic welding, laser welding, or the like.

 (陰極体)
 陰極体は、巻回型の電解コンデンサの場合、弁作用金属を材料として延伸された箔体が好ましい。純度は、陰極体に関して99%以上が望ましい。陰極体には、陽極体と同じく拡面層が形成される。拡面層のないプレーン箔を陰極体として用いてもよい。陰極体は、自然酸化皮膜、又は化成処理により形成された薄い酸化皮膜(1~10V程度)を有していてもよい。自然酸化皮膜は、陰極体が空気中の酸素と反応することにより形成される。さらに、陰極体には、金属窒化物、金属炭化物、金属炭窒化物からなる層が蒸着法により形成されてもよいし、あるいは表面に炭素を含有した層が形成されてもよい。
(Cathode body)
In the case of a wound type electrolytic capacitor, the cathode body is preferably a stretched foil made of valve metal. The purity of the cathode body is preferably 99% or more. A surface expanding layer is formed on the cathode body as well as on the anode body. A plain foil without a surface expanding layer may be used as the cathode body. The cathode body may have a natural oxide film or a thin oxide film (approximately 1 to 10 V) formed by chemical conversion treatment. A natural oxide film is formed when the cathode reacts with oxygen in the air. Further, a layer made of metal nitride, metal carbide, or metal carbonitride may be formed on the cathode body by a vapor deposition method, or a layer containing carbon may be formed on the surface.

 または、陰極体は、積層型の電解コンデンサの場合、金属層とカーボン層の積層体が好ましい。陰極体のカーボン層は陽極体に向けて配置される。カーボン層は、ペースト状にして、陽極体上に電解質層を形成された後に電解質層上に塗工し、加熱より硬化させることで形成される。金属層は例えば銀層であり、金属層は、ペースト状にして、カーボン層の上から塗工し、加熱により硬化させることで形成される。 Alternatively, in the case of a multilayer electrolytic capacitor, the cathode body is preferably a laminate of a metal layer and a carbon layer. The carbon layer of the cathode body is arranged toward the anode body. The carbon layer is formed by forming the paste into a paste, forming an electrolyte layer on the anode body, then coating the paste on the electrolyte layer, and curing by heating. The metal layer is, for example, a silver layer, and the metal layer is formed by making it into a paste, coating it on top of the carbon layer, and curing it by heating.

 この陰極体には陰極リードが接続され、コンデンサ素子外に引き出されている。陰極リードは、陰極体に対してステッチ、コールドウェルド、超音波溶接、又はレーザー溶接などにより接続されている。 A cathode lead is connected to this cathode body and drawn out to the outside of the capacitor element. The cathode lead is connected to the cathode body by stitching, cold welding, ultrasonic welding, laser welding, or the like.

 (電解質層)
 (導電性高分子)
 共役系高分子としては、公知のものを特に限定なく使用することができる。例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリチオフェンビニレンなどが挙げられる。これら共役系高分子は、単独で用いられてもよく、2種類以上を組み合わせても良く、更に2種以上のモノマーの共重合体であってもよい。
(electrolyte layer)
(conductive polymer)
As the conjugated polymer, known ones can be used without particular limitation. Examples include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polythiophene vinylene, and the like. These conjugated polymers may be used alone, two or more types may be used in combination, or a copolymer of two or more types of monomers may be used.

 上記の共役系高分子の中でも、チオフェン又はその誘導体が重合されて成る共役系高分子が好ましく、3,4-エチレンジオキシチオフェン(すなわち、2,3-ジヒドロチエノ[3,4-b][1,4]ジオキシン)、3-アルキルチオフェン、3-アルコキシチオフェン、3-アルキル-4-アルコキシチオフェン、3,4-アルキルチオフェン、3,4-アルコキシチオフェン又はこれらの誘導体が重合された共役系高分子が好ましい。チオフェン誘導体としては、3位と4位に置換基を有するチオフェンから選択された化合物が好ましく、チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。アルキル基やアルコキシ基の炭素数は1~16が適している。 Among the above conjugated polymers, conjugated polymers formed by polymerizing thiophene or its derivatives are preferred, and 3,4-ethylenedioxythiophene (i.e., 2,3-dihydrothieno[3,4-b][1 , 4] dioxine), 3-alkylthiophene, 3-alkoxythiophene, 3-alkyl-4-alkoxythiophene, 3,4-alkylthiophene, 3,4-alkoxythiophene, or a conjugated polymer in which a derivative thereof is polymerized. is preferred. The thiophene derivative is preferably a compound selected from thiophenes having substituents at the 3- and 4-positions, and the substituents at the 3- and 4-positions of the thiophene ring form a ring together with the carbon atoms at the 3- and 4-positions. It's okay. Suitably, the alkyl group or alkoxy group has 1 to 16 carbon atoms.

 特に、EDOTと呼称される3,4-エチレンジオキシチオフェンの重合体、即ち、PEDOTと呼称されるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、3,4-エチレンジオキシチオフェンに置換基が付加されていてもよい。例えば、置換基として炭素数が1~5のアルキル基が付加されたアルキル化エチレンジオキシチオフェンが用いられてもよい。アルキル化エチレンジオキシチオフェンとしては、例えば、メチル化エチレンジオキシチオフェン(すなわち、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、エチル化エチレンジオキシチオフェン(すなわち、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、ブチル化エチレンジオキシチオフェン(すなわち、2-ブチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、2-アルキル-3,4-エチレンジオキシチオフェンなどが挙げられる。 Particularly preferred is a polymer of 3,4-ethylenedioxythiophene called EDOT, ie, poly(3,4-ethylenedioxythiophene) called PEDOT. Furthermore, a substituent may be added to 3,4-ethylenedioxythiophene. For example, alkylated ethylenedioxythiophene to which an alkyl group having 1 to 5 carbon atoms is added as a substituent may be used. Examples of the alkylated ethylenedioxythiophene include methylated ethylenedioxythiophene (i.e., 2-methyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin), ethylated ethylenedioxythiophene, oxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxin), butylated ethylenedioxythiophene (i.e., 2-butyl-2,3-dihydro- Examples include thieno[3,4-b][1,4]dioxin), 2-alkyl-3,4-ethylenedioxythiophene, and the like.

 ドーパントは、公知のものを特に限定なく使用することができる。ドーパントは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、高分子又は単量体を用いてもよい。例えば、ドーパントとしては、ポリアニオン、ホウ酸、硝酸、リン酸などの無機酸、酢酸、シュウ酸、クエン酸、酒石酸、スクアリン酸、ロジゾン酸、クロコン酸、サリチル酸、p-トルエンスルホン酸、1,2-ジヒドロキシ-3,5-ベンゼンジスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ボロジサリチル酸、ビスオキサレートボレート酸、スルホニルイミド酸、ドデシルベンゼンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などの有機酸が挙げられる。 As the dopant, any known dopant can be used without particular limitation. Dopants may be used alone or in combination of two or more. Further, polymers or monomers may be used. For example, dopants include polyanions, inorganic acids such as boric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2 -dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalate borate acid, sulfonylimidic acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, etc. Examples include organic acids.

 ポリアニオンは、例えば、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステルであって、アニオン基を有する構成単位のみからなるポリマー、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるポリマーが挙げられる。具体的には、ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などが挙げられる。 The polyanion is, for example, a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and has an anion group. Examples include polymers consisting only of units, and polymers consisting of constitutional units having an anionic group and constitutional units not having anionic groups. Specifically, polyanions include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), and polyisoprenesulfonic acid. , polyacrylic acid, polymethacrylic acid, polymaleic acid, and the like.

 この導電性高分子は、化学酸化重合又は電解酸化重合によって生成される。化学酸化重合では、導電性高分子の単量体ユニットとなるモノマーを含む溶液と酸化剤を混合して重合反応させる。酸化剤としては、ドーパントを放出する化合物であれば公知の何れでもよく、p-トルエンスルホン酸鉄(III)、ナフタレンスルホン酸鉄(III)、アントラキノンスルホン酸鉄(III)等の三価の鉄塩、若しくは、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム等のペルオキソ二硫酸塩、などを使用することができ、単独の化合物を使用しても良く、2種以上の化合物を使用してもよい。重合温度には厳密な制限がないが、一般的には10~200℃の範囲である。重合時間は、一般的には10分~30時間の範囲である。 This conductive polymer is produced by chemical oxidative polymerization or electrolytic oxidative polymerization. In chemical oxidative polymerization, a solution containing a monomer that becomes a monomer unit of a conductive polymer is mixed with an oxidizing agent and subjected to a polymerization reaction. The oxidizing agent may be any known compound that releases a dopant, including trivalent iron such as iron(III) p-toluenesulfonate, iron(III) naphthalenesulfonate, and iron(III) anthraquinonesulfonate. Salts or peroxodisulfates such as peroxodisulfate, ammonium peroxodisulfate, sodium peroxodisulfate, etc. can be used, and a single compound may be used, or two or more types of compounds may be used. Good too. There is no strict limit to the polymerization temperature, but it is generally in the range of 10 to 200°C. Polymerization time generally ranges from 10 minutes to 30 hours.

 電解酸化重合では、導電性高分子の単量体ユニットとなるモノマーと支持電解質とを混合して定電位法、定電流法又は電位掃引法により重合反応させる。支持電解質には、ボロジサリチル酸及びボロジサリチル酸塩からなる群から選択された少なくとも一種の化合物が含まれる。塩としては、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、エチルアンモニウム塩、ブチルアンモニウム塩等のアルキルアンモニウム塩、ジエチルアンモニウム塩、ジブチルアンモニウム塩等のジアルキルアンモニウム塩、トリエチルアンモニウム塩、トリブチルアンモニウム塩等のトリアルキルアンモニウム塩、テトラエチルアンモニウム塩、テトラブチルアンモニウム塩等のテトラアルキルアンモニウム塩が例示される。 In electrolytic oxidation polymerization, a monomer that becomes a monomer unit of a conductive polymer and a supporting electrolyte are mixed and subjected to a polymerization reaction using a constant potential method, a constant current method, or a potential sweep method. The supporting electrolyte includes at least one compound selected from the group consisting of borodisalicylic acid and borodisalicylate. Examples of salts include alkali metal salts such as lithium salts, sodium salts, and potassium salts; alkylammonium salts such as ammonium salts, ethylammonium salts, and butylammonium salts; dialkylammonium salts such as diethylammonium salts and dibutylammonium salts; and triethylammonium salts. , trialkylammonium salts such as tributylammonium salts, and tetraalkylammonium salts such as tetraethylammonium salts and tetrabutylammonium salts.

 定電位法による場合には、基準電極に対して1.0~1.5Vの電位が好適であり、定電流法による場合には、1~10000μA/cmの電流値が好適であり、電位掃引法による場合には、基準電極に対して0~1.5Vの範囲を5~200mV/秒の速度で掃引するのが好適である。重合温度には厳密な制限がないが、一般的には10~60℃の範囲である。重合時間は、一般的には10分~30時間の範囲である。 When using the constant potential method, a potential of 1.0 to 1.5 V with respect to the reference electrode is suitable; when using the constant current method, a current value of 1 to 10,000 μA/cm 2 is suitable; When using the sweep method, it is preferable to sweep the range of 0 to 1.5 V with respect to the reference electrode at a rate of 5 to 200 mV/sec. There is no strict limit to the polymerization temperature, but it is generally in the range of 10 to 60°C. Polymerization time generally ranges from 10 minutes to 30 hours.

 化学酸化重合又は電解酸化重合において、モノマー及び酸化剤又は支持電解質を添加する溶媒は、所望量のモノマー及び支持電解質を溶解することができ、電解酸化重合に悪影響を及ぼさない溶媒を特に限定なく使用することができる。例えば、溶媒としては、水、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、アセトニトリル、ブチロニトリル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,4-ジオキサン、γ-ブチロラクトン、酢酸メチル、酢酸エチル、安息香酸メチル、安息香酸エチル、エチレンカーボネート、プロピレンカーボネート、ニトロメタン、ニトロベンゼン、スルホラン、ジメチルスルホランが挙げられる。これらの溶媒は、単独で使用しても良く、2種以上を混合して使用してもよい。 In chemical oxidative polymerization or electrolytic oxidative polymerization, the solvent to which the monomer and oxidizing agent or supporting electrolyte are added may be any solvent that can dissolve the desired amount of monomer and supporting electrolyte and does not have a negative effect on the electrolytic oxidative polymerization. can do. For example, the solvent includes water, methanol, ethanol, isopropanol, butanol, ethylene glycol, acetonitrile, butyronitrile, acetone, methyl ethyl ketone, tetrahydrofuran, 1,4-dioxane, γ-butyrolactone, methyl acetate, ethyl acetate, methyl benzoate, benzoate. Examples include ethyl acid, ethylene carbonate, propylene carbonate, nitromethane, nitrobenzene, sulfolane, and dimethylsulfolane. These solvents may be used alone or in combination of two or more.

 導電性高分子は、導電性高分子の単量体ユニットとなるモノマー及び酸化剤又は支持電解質の溶液中に、導電性高分子を付着させる付着対象物を浸漬し、重合反応により生成することで、電解コンデンサ内に形成する。付着対象物は、少なくとも陽極体を含む。陽極体に加えて、陰極体とセパレータの一方又は両方を導電性高分子の付着対象物としてもよい。また、陽極体、陰極体及びセパレータが組み込まれたアセンブリであるコンデンサ素子を付着対象物として、導電性高分子の単量体ユニットとなるモノマー及び酸化剤又は支持電解質の溶液中に浸漬し、重合反応させてもよい。 Conductive polymers are produced by immersing the object to which the conductive polymer is attached into a solution of a monomer that becomes the monomer unit of the conductive polymer and an oxidizing agent or a supporting electrolyte, and then producing it through a polymerization reaction. , formed within an electrolytic capacitor. The object to be adhered includes at least the anode body. In addition to the anode body, one or both of the cathode body and the separator may be objects to which conductive polymers are attached. In addition, a capacitor element, which is an assembly including an anode body, a cathode body, and a separator, is immersed in a solution of a monomer that becomes a monomer unit of a conductive polymer and an oxidizing agent or a supporting electrolyte, and then polymerized. You may react.

 また、導電性高分子は、導電性高分子の粒子又は粉末が分散又は溶解した導電性高分子液を付着対象物に含浸させる含浸法を用いることで、電解コンデンサ内に形成してもよい。導電性高分子液は、化学酸化重合又は電解酸化重合後の溶液を限外濾過、陽イオン交換、及び陰イオン交換等によって精製し、残留モノマーや不純物を除去し、溶液に分散させておくことで調製される。 Further, the conductive polymer may be formed in the electrolytic capacitor by using an impregnation method in which the object to be attached is impregnated with a conductive polymer liquid in which conductive polymer particles or powder are dispersed or dissolved. Conductive polymer liquid is obtained by purifying the solution after chemical oxidation polymerization or electrolytic oxidation polymerization by ultrafiltration, cation exchange, anion exchange, etc. to remove residual monomers and impurities, and then dispersing it in the solution. It is prepared in

 導電性高分子液の溶媒は、導電性高分子が分散又は溶解すればよく、水又は水と有機溶媒の混合物が好ましい。有機溶媒としては、極性溶媒、アルコール類、エステル類、炭化水素類、カーボネート化合物、エーテル化合物、鎖状エーテル類、複素環化合物、ニトリル化合物等が挙げられる。 The solvent for the conductive polymer liquid only needs to disperse or dissolve the conductive polymer, and is preferably water or a mixture of water and an organic solvent. Examples of the organic solvent include polar solvents, alcohols, esters, hydrocarbons, carbonate compounds, ether compounds, chain ethers, heterocyclic compounds, and nitrile compounds.

 極性溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等が挙げられる。アルコール類としては、メタノール、エタノール、プロパノール、ブタノール等が挙げられる。エステル類としては、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。炭化水素類としては、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等が挙げられる。カーボネート化合物としては、エチレンカーボネート、プロピレンカーボネート等が挙げられる。エーテル化合物としては、ジオキサン、ジエチルエーテル等が挙げられる。鎖状エーテル類としては、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等が挙げられる。複素環化合物としては、3-メチル-2-オキサゾリジノン等が挙げられる。ニトリル化合物としては、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等が挙げられる。 Examples of the polar solvent include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and the like. Examples of alcohols include methanol, ethanol, propanol, butanol, and the like. Examples of esters include ethyl acetate, propyl acetate, butyl acetate, and the like. Examples of hydrocarbons include hexane, heptane, benzene, toluene, xylene, and the like. Examples of carbonate compounds include ethylene carbonate and propylene carbonate. Examples of the ether compound include dioxane and diethyl ether. Examples of chain ethers include ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether. Examples of the heterocyclic compound include 3-methyl-2-oxazolidinone and the like. Examples of the nitrile compound include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, and the like.

 導電性高分子液は、pHが調整され、また必要に応じて多価アルコール及び各種添加剤が加えられていてもよい。pH調整剤としては、例えばアンモニア水が挙げられる。多価アルコールとしては、ソルビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリオキシエチレングリコール、グリセリン、ポリオキシエチレングリセリン、キシリトール、エリスリトール、マンニトール、ジペンタエリスリトール、ペンタエリスリトール、又はこれらの2種以上の組み合わせが挙げられる。多価アルコールは、沸点が高いため、導電性高分子液を付着対象物に含浸させて乾燥させた後でも電解質層に残留し、電解コンデンサのESR低減や耐電圧向上効果が得られる。添加剤としては、例えば、有機バインダー、界面活性剤、分散剤、消泡剤、カップリング剤、酸化防止剤、紫外線吸収剤等が挙げられる。 The pH of the conductive polymer liquid may be adjusted, and polyhydric alcohol and various additives may be added as necessary. Examples of the pH adjuster include aqueous ammonia. Examples of polyhydric alcohols include sorbitol, ethylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene glycol, glycerin, polyoxyethylene glycerin, xylitol, erythritol, mannitol, dipentaerythritol, pentaerythritol, or a combination of two or more of these. can be mentioned. Since polyhydric alcohol has a high boiling point, it remains in the electrolyte layer even after the object to be adhered is impregnated with the conductive polymer liquid and dried, thereby reducing the ESR and improving the withstand voltage of the electrolytic capacitor. Examples of additives include organic binders, surfactants, dispersants, antifoaming agents, coupling agents, antioxidants, and ultraviolet absorbers.

 導電性高分子液を付着対象物に含浸させた後は、乾燥工程により溶媒を除去する。乾燥工程での温度環境は例えば40℃以上200℃以下であり、乾燥時間は例えば3分以上180分以下の範囲である。乾燥工程は複数回繰り返してもよい。減圧環境下で乾燥してもよく、例えば5kPa以上100kPa以下の圧力で減圧する。乾燥工程を予備乾燥と本乾燥の工程に分けてもよい。浸漬の他、導電性高分子溶液を滴下塗布又はスプレー塗布してもよい。 After impregnating the object with the conductive polymer liquid, the solvent is removed through a drying process. The temperature environment in the drying step is, for example, 40° C. or more and 200° C. or less, and the drying time is, for example, in the range of 3 minutes or more and 180 minutes or less. The drying step may be repeated multiple times. It may be dried in a reduced pressure environment, for example, the pressure is reduced from 5 kPa to 100 kPa. The drying process may be divided into a preliminary drying process and a main drying process. In addition to dipping, a conductive polymer solution may be applied by dropping or spraying.

 (柔粘性結晶)
 柔粘性結晶を構成するアニオン成分及びカチオン成分の種類は、電解コンデンサを使用する目的温度範囲内でイオン液体ではなく固体の状態となっていれば、特に限定されない。
(flexible crystal)
The types of anion component and cation component constituting the flexible crystal are not particularly limited as long as they are in a solid state rather than an ionic liquid within the target temperature range in which the electrolytic capacitor is used.

 柔粘性結晶を構成するアニオン成分としては、各種アミドアニオン、トリス(トリフルオロメタンスルホニル)メタニドアニオン、各種ホスフェートアニオン、各種ボレートアニオン、各種スルホン系アニオン、テトラフルオロアルミナートアニオン、マンデラートアニオン及びベンゾアートアニオンが挙げられる。 The anion components constituting the flexible crystal include various amide anions, tris (trifluoromethanesulfonyl) methanide anions, various phosphate anions, various borate anions, various sulfone anions, tetrafluoroaluminate anions, mandelate anions, and benzoates. Examples include anions.

 各種アミドアニオンは、NHアニオンの2つの水素原子がパーフルオロアルキルスルホニル基、フルオロスルホニル基又はこれらの両方で置換されている。各種アミドアニオンには、例えば直鎖状が含まれ、下記化学式(1)で表される各種ビス(パーフルオロアルキルスルホニル)アミドアニオン、ビス(フルオロスルホニル)アミドアニオン、及び各種N-(フルオロスルホニル)-N-(パーフルオロアルキルスルホニル)アミドアニオンが含まれる。 In various amide anions, two hydrogen atoms of the NH 2 anion are substituted with a perfluoroalkylsulfonyl group, a fluorosulfonyl group, or both. Various amide anions include, for example, linear ones, such as various bis(perfluoroalkylsulfonyl)amide anions, bis(fluorosulfonyl)amide anions, and various N-(fluorosulfonyl) represented by the following chemical formula (1). -N-(perfluoroalkylsulfonyl)amide anion is included.

 (化1)

Figure JPOXMLDOC01-appb-I000001
 化学式(1)の式中、n及びmは0以上の整数であり、炭素数は何れでもよい。 (Chem.1)
Figure JPOXMLDOC01-appb-I000001
In the chemical formula (1), n and m are integers of 0 or more, and the number of carbon atoms may be any number.

 化学式(1)の式中、n及びmが1以上であれば、ビス(パーフルオロアルキルスルホニル)アミドアニオンである。ビス(パーフルオロアルキルスルホニル)アミドアニオンとしては、具体的には下記化学式(2)で表されるビス(トリフルオロメタンスルホニル)アミドアニオン(TFSAアニオン)、下記化学式(3)で表されるビス(ペンタフルオロエチルスルホニル)アミドアニオン(BETAアニオン)が挙げられる。 In the chemical formula (1), if n and m are 1 or more, it is a bis(perfluoroalkylsulfonyl)amide anion. Specifically, the bis(perfluoroalkylsulfonyl)amide anion includes bis(trifluoromethanesulfonyl)amide anion (TFSA anion) represented by the following chemical formula (2), and bis(pentafluorocarbonyl)amide anion represented by the following chemical formula (3). fluoroethylsulfonyl)amide anion (BETA anion).

 (化2)

Figure JPOXMLDOC01-appb-I000002
(Case 2)
Figure JPOXMLDOC01-appb-I000002

 (化3)

Figure JPOXMLDOC01-appb-I000003
(Case 3)
Figure JPOXMLDOC01-appb-I000003

 また、ビス(パーフルオロアルキルスルホニル)アミドアニオンとしては、具体的には、化学式(1)の式中、nが1でmが2であり、下記化学式(4)で表される(ペンタフルオロエチルスルホニル)トリフルオロメタンスルホニルアミドアニオンが挙げられる。 In addition, the bis(perfluoroalkylsulfonyl)amide anion is specifically, in the chemical formula (1), n is 1 and m is 2, and is represented by the following chemical formula (4) (pentafluoroethyl sulfonyl) trifluoromethanesulfonylamide anion.

 (化4)

Figure JPOXMLDOC01-appb-I000004
(Case 4)
Figure JPOXMLDOC01-appb-I000004

 化学式(1)の式中、炭素数が0の基は即ちフルオロスルホニル基であり、n及びmが0であれば、下記化学式(5)で表されるビス(フルオロスルホニル)アミドアニオン(FSAアニオン)である。 In the chemical formula (1), a group having 0 carbon atoms is a fluorosulfonyl group, and if n and m are 0, a bis(fluorosulfonyl)amide anion (FSA anion) represented by the following chemical formula (5) is used. ).

 (化5)

Figure JPOXMLDOC01-appb-I000005
(C5)
Figure JPOXMLDOC01-appb-I000005

 化学式(1)の式中、nが0であり、mが1以上であれば、下記化学式(6)で表されるN-(フルオロスルホニル)-N-(パーフルオロアルキルスルホニル)アミドアニオンである。N-(フルオロスルホニル)-N-(パーフルオロアルキルスルホニル)アミドアニオンとしては、具体的にはmが1であり、下記化学式(7)で表されN-(フルオロスルホニル)-N-(トリフルオロメタンスルホニル)アミドアニオン、mが2であり、下記化学式(8)で表されるN-(フルオロスルホニル)-N-(ペンタフルオロエチルスルホニル)アミドアニオンが挙げられる。 In the chemical formula (1), if n is 0 and m is 1 or more, it is an N-(fluorosulfonyl)-N-(perfluoroalkylsulfonyl)amide anion represented by the following chemical formula (6). . Specifically, the N-(fluorosulfonyl)-N-(perfluoroalkylsulfonyl)amide anion is represented by the following chemical formula (7), where m is 1, and N-(fluorosulfonyl)-N-(trifluoromethane). N-(fluorosulfonyl)-N-(pentafluoroethylsulfonyl)amide anion where m is 2 and is represented by the following chemical formula (8).

 (化6)

Figure JPOXMLDOC01-appb-I000006
(C6)
Figure JPOXMLDOC01-appb-I000006

 (化7)

Figure JPOXMLDOC01-appb-I000007
(Chem.7)
Figure JPOXMLDOC01-appb-I000007

 (化8)

Figure JPOXMLDOC01-appb-I000008
(Chem.8)
Figure JPOXMLDOC01-appb-I000008

 また、各種アミドアニオンには、下記化学式(9)で表され、NHアニオンの2つの水素原子がパーフルオロアルキルスルホニル基とフルオロアセチル基で置換された(パーフルオロアルキルスルホニル)フルオロアセトアミドアニオンが含まれる。
 (化9)

Figure JPOXMLDOC01-appb-I000009
 化学式(9)の式中、nは0以上の整数であり、炭素数は何れでもよい。 In addition, various amide anions include (perfluoroalkylsulfonyl) fluoroacetamide anions, which are represented by the following chemical formula (9) and have two hydrogen atoms of the NH 2 anion substituted with a perfluoroalkylsulfonyl group and a fluoroacetyl group. It will be done.
(C9)
Figure JPOXMLDOC01-appb-I000009
In the chemical formula (9), n is an integer of 0 or more, and the number of carbon atoms may be any number.

 また、各種アミドアニオンには、例えば五員環及び六員環のヘテロ環式が含まれ、下記化学式(10)で表されるN,N-ヘキサフルオロ-1,3-ジスルホニルアミドアニオン(CFSAアニオン)、及び下記化学式(11)で表されるN,N-ペンタフルオロ-1,3-ジスルホニルアミドアニオンが含まれる。 Various amide anions include, for example, five-membered and six-membered heterocyclic rings, and are represented by the following chemical formula (10): N,N-hexafluoro-1,3-disulfonyl amide anion (CFSA). anion), and N,N-pentafluoro-1,3-disulfonylamide anion represented by the following chemical formula (11).

 (化10)

Figure JPOXMLDOC01-appb-I000010
(Chem.10)
Figure JPOXMLDOC01-appb-I000010

 (化11)

Figure JPOXMLDOC01-appb-I000011
(Chem.11)
Figure JPOXMLDOC01-appb-I000011

 トリス(トリフルオロメタンスルホニル)メタニドアニオン(TFSMアニオン)は、下記化学式(12)によって表される。
 (化12)

Figure JPOXMLDOC01-appb-I000012
Tris(trifluoromethanesulfonyl) methanide anion (TFSM anion) is represented by the following chemical formula (12).
(Chem.12)
Figure JPOXMLDOC01-appb-I000012

 各種ホスフェートアニオンは、下記化学式(13)によって表されるヘキサフルオロホスフェートアニオン(PFアニオン)、または下記化学式(14)によって表され、PFの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルホスフェートアニオンである。 Various phosphate anions are hexafluorophosphate anions (PF 6 anions) represented by the following chemical formula (13), or represented by the following chemical formula (14), in which some fluorine atoms of PF 6 are substituted with fluoroalkyl groups. Various perfluoroalkyl phosphate anions.

 (化13)

Figure JPOXMLDOC01-appb-I000013
(Chem.13)
Figure JPOXMLDOC01-appb-I000013

 (化14)

Figure JPOXMLDOC01-appb-I000014
化学式(14)の式中、qは1以上の整数であり、炭素数は何れでもよい。 (Chem.14)
Figure JPOXMLDOC01-appb-I000014
In the chemical formula (14), q is an integer of 1 or more, and the number of carbon atoms may be any number.

 具体的には下記化学式(15)で表されるトリス(ペンタフルオロエチル)トリフルオロホスフェートアニオン(FAPアニオン)が挙げられる。
 (化15)

Figure JPOXMLDOC01-appb-I000015
Specifically, tris(pentafluoroethyl)trifluorophosphate anion (FAP anion) represented by the following chemical formula (15) can be mentioned.
(Chem.15)
Figure JPOXMLDOC01-appb-I000015

 各種ボレートアニオンは、下記化学式(16)によって表されるテトラフルオロボレートアニオン(BFアニオン)、下記化学式(17)によって表され、BFアニオンの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルボレートアニオンが挙げられる。各種パーフルオロアルキルボレートアニオンとしては、具体的には、例えば、モノ(フルオロアルキル)トリフルオロボレートアニオン、及びビス(フルオロアルキル)フルオロボレートアニオンが挙げられる。 Various borate anions include a tetrafluoroborate anion (BF 4 anion) represented by the following chemical formula (16), and a tetrafluoroborate anion (BF 4 anion) represented by the following chemical formula (17), in which some fluorine atoms of the BF 4 anion are substituted with fluoroalkyl groups. Various perfluoroalkyl borate anions can be mentioned. Specific examples of the various perfluoroalkylborate anions include mono(fluoroalkyl)trifluoroborate anions and bis(fluoroalkyl)fluoroborate anions.

 (化16)

Figure JPOXMLDOC01-appb-I000016
(Chem.16)
Figure JPOXMLDOC01-appb-I000016

 (化17)

Figure JPOXMLDOC01-appb-I000017
 式中、sは0以上の整数、tは1以上の整数であり、炭素数は何れでもよい。 (Chem.17)
Figure JPOXMLDOC01-appb-I000017
In the formula, s is an integer of 0 or more, t is an integer of 1 or more, and the number of carbon atoms may be any number.

 また、各種ボレートアニオンは、更に、下記化学式(18)によって表されるボレートアニオンが挙げられる。
 (化18)

Figure JPOXMLDOC01-appb-I000018
式中、R1及びR2は、それぞれ独立してケトン基又はベンジル位の水素が一つ脱離したベンジル基であり、またはR1とR2が共通の芳香族六員環の炭素原子である。式中、R3及びR4は、それぞれ独立してケトン基又はベンジル位の水素が一つ脱離したベンジル基であり、またはR3とR4が共通の芳香族六員環を構成する炭素原子である。 Further, various borate anions include borate anions represented by the following chemical formula (18).
(Chem.18)
Figure JPOXMLDOC01-appb-I000018
In the formula, R1 and R2 are each independently a ketone group or a benzyl group from which one hydrogen at the benzyl position has been removed, or R1 and R2 are carbon atoms of a common six-membered aromatic ring. In the formula, R3 and R4 are each independently a ketone group or a benzyl group from which one hydrogen at the benzyl position has been removed, or R3 and R4 are carbon atoms constituting a common six-membered aromatic ring.

 化学式(18)の式中、R1、R2、R3及びR4の全てがケトン基であれば、下記化学式(18A)で表されるビス(オキサラト)ボレートアニオン(BoBアニオンである。
 (化18A)

Figure JPOXMLDOC01-appb-I000019
In the chemical formula (18), if R1, R2, R3 and R4 are all ketone groups, it is a bis(oxalato)borate anion (BoB anion) represented by the following chemical formula (18A).
(Chem.18A)
Figure JPOXMLDOC01-appb-I000019

 また、化学式(18)の式中、R1とR2が共通の芳香族六員環を構成する炭素原子であり、R3とR4が共通の芳香族六員環を構成する炭素原子であれば、下記化学式(18B)で表されるビス(ピロカテコラト)ボレートアニオンである。
 (化18B)

Figure JPOXMLDOC01-appb-I000020
In addition, in the chemical formula (18), if R1 and R2 are carbon atoms constituting a common six-membered aromatic ring, and R3 and R4 are carbon atoms constituting a common six-membered aromatic ring, then the following It is a bis(pyrocatecholato)borate anion represented by the chemical formula (18B).
(Chem.18B)
Figure JPOXMLDOC01-appb-I000020

 また、化学式(18)の式中、R1とR4がベンジル位の水素が一つ脱離したベンジル基であり、R2とR3がケトン基であれば、下記化学式(18C)で表されるビス(マンデラト)ボレートアニオンである。
 (化18C)

Figure JPOXMLDOC01-appb-I000021
In addition, in the chemical formula (18), if R1 and R4 are benzyl groups with one hydrogen removed at the benzyl position, and R2 and R3 are ketone groups, bis( Mandelato) is a borate anion.
(Chemical 18C)
Figure JPOXMLDOC01-appb-I000021

 また、各種ボレートアニオンは、更に、下記化学式(19)によって表されるボレートアニオンが挙げられる。
 (化19)

Figure JPOXMLDOC01-appb-I000022
式中、R1~R6は、それぞれ独立してケトン基又はメチレン基である。または、式中、R1又はR3の何れかがケトン基又はメチレン基であり、他のR1及びR2の組み合わせ又はR2及びR3の組み合わせが共通の芳香族六員環の炭素原子である。そして、式中、R4又はR6の何れかがケトン基又はメチレン基であり、他のR4及びR5の組み合わせ又はR5及びR6の組み合わせが共通の芳香族六員環の炭素原子である。芳香族六員環は1つ又は4つのメチル基を有していてもよく、また芳香族六員環は、ナフタレン環のような、2つ以上の芳香族環を有する多環式芳香族環の一部である。 Further, various borate anions include borate anions represented by the following chemical formula (19).
(Chem.19)
Figure JPOXMLDOC01-appb-I000022
In the formula, R1 to R6 are each independently a ketone group or a methylene group. Alternatively, in the formula, either R1 or R3 is a ketone group or a methylene group, and the other combinations of R1 and R2 or the combinations of R2 and R3 are carbon atoms of a common six-membered aromatic ring. In the formula, either R4 or R6 is a ketone group or a methylene group, and the other combinations of R4 and R5 or the combinations of R5 and R6 are carbon atoms of a common six-membered aromatic ring. A six-membered aromatic ring may have one or four methyl groups, and a six-membered aromatic ring can also be a polycyclic aromatic ring having two or more aromatic rings, such as a naphthalene ring. is part of.

 化学式(19)の式中、R1及びR6がケトン基であり、R2とR3が共通の芳香族六員環を構成する炭素原子であり、R4とR5が共通の芳香族六員環を構成する炭素原子であれば、下記化学式(19A)で表されるビス(サリチラト)ボレートアニオン(BScBアニオン)である。
 (化19A)

Figure JPOXMLDOC01-appb-I000023
In the chemical formula (19), R1 and R6 are ketone groups, R2 and R3 are carbon atoms that constitute a common six-membered aromatic ring, and R4 and R5 constitute a common six-membered aromatic ring. If it is a carbon atom, it is a bis(salicylate)borate anion (BScB anion) represented by the following chemical formula (19A).
(Chem.19A)
Figure JPOXMLDOC01-appb-I000023

 化学式(19)の式中、R1及びR6がケトン基であり、R2とR3が共通の芳香族六員環を構成する炭素原子であり、R4とR5が共通の芳香族六員環を構成する炭素原子であり、両芳香族六員環がそれぞれ4つのメチル基を有する場合、下記化学式(19B)で表されるビス(テトラメチルサリチラト)ボレートアニオンである。
 (化19B)

Figure JPOXMLDOC01-appb-I000024
In the chemical formula (19), R1 and R6 are ketone groups, R2 and R3 are carbon atoms that constitute a common six-membered aromatic ring, and R4 and R5 constitute a common six-membered aromatic ring. When it is a carbon atom and both aromatic six-membered rings each have four methyl groups, it is a bis(tetramethylsalicylate)borate anion represented by the following chemical formula (19B).
(Chem.19B)
Figure JPOXMLDOC01-appb-I000024

 化学式(19)の式中、R1及びR6がケトン基であり、R2とR3が共通の芳香族六員環を構成する炭素原子であり、R4とR5が共通の芳香族六員環を構成する炭素原子であり、両芳香族六員環がそれぞれ1つのメチル基を有する場合、下記化学式(19C)で表されるビス(メチルサリチラト)ボレートアニオン(BmScBアニオン)である。
 (化19C)

Figure JPOXMLDOC01-appb-I000025
In the chemical formula (19), R1 and R6 are ketone groups, R2 and R3 are carbon atoms that constitute a common six-membered aromatic ring, and R4 and R5 constitute a common six-membered aromatic ring. When it is a carbon atom and both aromatic six-membered rings each have one methyl group, it is a bis(methylsalicylate)borate anion (BmScB anion) represented by the following chemical formula (19C).
(Chemical formula 19C)
Figure JPOXMLDOC01-appb-I000025

 化学式(19)の式中、R1及びR6がケトン基であり、R2とR3が共通のナフタレン環を構成する炭素原子であり、R4とR5が共通のナフタレン環を構成する炭素原子である場合、下記化学式(20A)で表されるビス(1-ヒドロキシ-2-ナフトラト)ボレートアニオン、下記化学式(20B)で表されるビス(2-ヒドロキシ-1-ナフトラト)ボレートアニオン(BhNBアニオン)、又は下記化学式(20C)で表されるビス(3-ヒドロキシ-2-ナフトラト)ボレートアニオンである。 In the chemical formula (19), when R1 and R6 are ketone groups, R2 and R3 are carbon atoms constituting a common naphthalene ring, and R4 and R5 are carbon atoms constituting a common naphthalene ring, Bis(1-hydroxy-2-naphthorato)borate anion represented by the following chemical formula (20A), bis(2-hydroxy-1-naphthorato)borate anion (BhNB anion) represented by the following chemical formula (20B), or the following It is a bis(3-hydroxy-2-naphthorato)borate anion represented by the chemical formula (20C).

 (化20A)

Figure JPOXMLDOC01-appb-I000026
(Case 20A)
Figure JPOXMLDOC01-appb-I000026

 (化20B)

Figure JPOXMLDOC01-appb-I000027
(Case 20B)
Figure JPOXMLDOC01-appb-I000027

 (化20C)

Figure JPOXMLDOC01-appb-I000028
(Chemical 20C)
Figure JPOXMLDOC01-appb-I000028

 各種スルホン系アニオンは、下記化学式(21)によって表されるアルキルスルホン酸アニオン、及び下記化学式(22)によって表される各種パーフルオロアルキルスルホン酸アニオンが挙げられる。 Examples of various sulfonic anions include alkylsulfonic acid anions represented by the following chemical formula (21) and various perfluoroalkylsulfonic acid anions represented by the following chemical formula (22).

 (化21)

Figure JPOXMLDOC01-appb-I000029
 化学式(21)の式中、xは1以上4以下の整数である。 (Case 21)
Figure JPOXMLDOC01-appb-I000029
In the chemical formula (21), x is an integer of 1 or more and 4 or less.

 (化22)

Figure JPOXMLDOC01-appb-I000030
 化学式(22)の式中、yは1以上4以下の整数である。 (Chem.22)
Figure JPOXMLDOC01-appb-I000030
In the chemical formula (22), y is an integer of 1 or more and 4 or less.

 具体的には、各種パーフルオロアルキルスルホン酸アニオンは、上記化学式(22)においてyが1であるトリフルオロメタンスルホン酸アニオン、上記化学式(22)においてyが2であるペンタフルオロエチルスルホン酸アニオン、上記化学式(22)においてyが3であるヘプタフルオロプロパンスルホン酸アニオン、及び上記化学式(22)においてyが4であるノナフルオロブタンスルホン酸アニオン等が挙げられる。 Specifically, various perfluoroalkylsulfonic acid anions include trifluoromethanesulfonic acid anions in which y is 1 in the above chemical formula (22), pentafluoroethyl sulfonic acid anions in which y is 2 in the above chemical formula (22), and the above. Examples include a heptafluoropropanesulfonic acid anion in which y is 3 in the chemical formula (22), and a nonafluorobutanesulfonic acid anion in which y is 4 in the chemical formula (22).

 テトラフルオロアルミナートアニオンは、下記式(23)で表される。
 (化23)

Figure JPOXMLDOC01-appb-I000031
The tetrafluoroaluminate anion is represented by the following formula (23).
(Case 23)
Figure JPOXMLDOC01-appb-I000031

 マンデラートアニオンは、下記式(24)で表される。
 (化24)

Figure JPOXMLDOC01-appb-I000032
Mandelate anion is represented by the following formula (24).
(Case 24)
Figure JPOXMLDOC01-appb-I000032

 ベンゾアートアニオンは、下記式(25)で表される。
 (化25)

Figure JPOXMLDOC01-appb-I000033
The benzoate anion is represented by the following formula (25).
(Chem.25)
Figure JPOXMLDOC01-appb-I000033

 柔粘性結晶を構成するカチオン成分としては、各種第4級アンモニウムカチオン、各種ピロリジニウムカチオン、各種ピペリジニウムカチオン、各種イミダゾリウムカチオン、各種ホスホニウムカチオンが挙げられる。 Examples of the cation component constituting the flexible crystal include various quaternary ammonium cations, various pyrrolidinium cations, various piperidinium cations, various imidazolium cations, and various phosphonium cations.

 第4級アンモニウムカチオンとしては、下記化学式(26)で表され、炭素数を問わない直鎖アルキル基で置換されたテトラアルキルアンモニウムカチオンが挙げられる。
 (化26)

Figure JPOXMLDOC01-appb-I000034
 式中、a、b、c及びdは1以上の整数であり、炭素数は何れでもよい。 Examples of the quaternary ammonium cation include a tetraalkylammonium cation represented by the following chemical formula (26) and substituted with a linear alkyl group having any number of carbon atoms.
(Case 26)
Figure JPOXMLDOC01-appb-I000034
In the formula, a, b, c and d are integers of 1 or more, and the number of carbon atoms may be any.

 上記化学式(26)中、a、b、c及びdが2である場合、下記化学式(27)で表されるテトラエチルアンモニウムカチオン(TEAカチオン)である。
 (化27)

Figure JPOXMLDOC01-appb-I000035
In the above chemical formula (26), when a, b, c and d are 2, it is a tetraethylammonium cation (TEA cation) represented by the following chemical formula (27).
(Case 27)
Figure JPOXMLDOC01-appb-I000035

 上記化学式(26)中、a、b及びcが2並びにdが1である場合、下記化学式(28)で表されるトリエチルメチルアンモニウムカチオン(TEMAカチオン)である。
 (化28)

Figure JPOXMLDOC01-appb-I000036
In the above chemical formula (26), when a, b and c are 2 and d is 1, the triethylmethylammonium cation (TEMA cation) is represented by the following chemical formula (28).
(C28)
Figure JPOXMLDOC01-appb-I000036

 また、第4級アンモニウムカチオンとしては、下記化学式(29)で表され、メチル基、エチル基又はイソプロピル基が結合する五員環のピロリジニウムカチオンが挙げられる。
 (化29)

Figure JPOXMLDOC01-appb-I000037
 式中、R1及びR2は、メチル基、エチル基又はイソプロピル基。 Furthermore, examples of the quaternary ammonium cation include a five-membered ring pyrrolidinium cation represented by the following chemical formula (29) to which a methyl group, ethyl group, or isopropyl group is bonded.
(Chem.29)
Figure JPOXMLDOC01-appb-I000037
In the formula, R1 and R2 are a methyl group, an ethyl group or an isopropyl group.

 上記化学式(29)で一般化される五員環のピロリジニウムカチオンの具体例としては、例えば、下記化学式(30)で表されるN-エチル-N-メチルピロリジニウムカチオン(P12カチオン)、下記化学式(31)で表されるN-イソプロピル-N-メチルピロリジニウムカチオン(P13isoカチオン)、下記化学式(32)で表されるN,N-ジエチルピロリジニウムカチオン(P22カチオン)が挙げられる。 Specific examples of the generalized five-membered pyrrolidinium cation represented by the above chemical formula (29) include, for example, N-ethyl-N-methylpyrrolidinium cation (P12 cation) represented by the following chemical formula (30). , N-isopropyl-N-methylpyrrolidinium cation (P13iso cation) represented by the following chemical formula (31), and N,N-diethylpyrrolidinium cation (P22 cation) represented by the following chemical formula (32). It will be done.

 (化30)

Figure JPOXMLDOC01-appb-I000038
(C30)
Figure JPOXMLDOC01-appb-I000038

 (化31)

Figure JPOXMLDOC01-appb-I000039
(Chem.31)
Figure JPOXMLDOC01-appb-I000039

 (化32)

Figure JPOXMLDOC01-appb-I000040
(C32)
Figure JPOXMLDOC01-appb-I000040

 また、第4級アンモニウムとしては、下記化学式(33)で表されるスピロ型ピロリジニウムカチオン(SBPカチオン)が挙げられる。
 (化33)

Figure JPOXMLDOC01-appb-I000041
Furthermore, examples of quaternary ammonium include spiro-type pyrrolidinium cations (SBP cations) represented by the following chemical formula (33).
(Chem.33)
Figure JPOXMLDOC01-appb-I000041

 各種ピペリジニウムカチオンは、次の化学式(34)に示され、メチル基、エチル基又はイソプロピル基が六員環のピペリジニウムカチオンが挙げられる。
 (化34)

Figure JPOXMLDOC01-appb-I000042
 式中、R3及びR4は、メチル基、エチル基又はイソプロピル基。 Various piperidinium cations are represented by the following chemical formula (34), and include piperidinium cations in which the methyl group, ethyl group, or isopropyl group is a six-membered ring.
(Chem.34)
Figure JPOXMLDOC01-appb-I000042
In the formula, R3 and R4 are a methyl group, an ethyl group, or an isopropyl group.

 上記化学式(34)で一般化される六員環のピペリジニウムカチオンの具体例としては、例えば、下記化学式(35)で表され、R1がメチル基及びR2がエチル基である1-エチル-1-メチルピペリジニウムカチオンが挙げられる。
 (化35)

Figure JPOXMLDOC01-appb-I000043
As a specific example of the six-membered piperidinium cation generalized by the above chemical formula (34), for example, 1-ethyl- Examples include 1-methylpiperidinium cation.
(Chem.35)
Figure JPOXMLDOC01-appb-I000043

 各種イミダゾリウムカチオンは、下記化学式(36)で表される1,3-ジアルキルイミダゾリウム又は1,2,3-トリアルキルイミダゾリウムカチオンである。
 (化36)

Figure JPOXMLDOC01-appb-I000044
 式中、hとiは1以上3以下の整数、jは0又は1 Various imidazolium cations are 1,3-dialkylimidazolium or 1,2,3-trialkylimidazolium cations represented by the following chemical formula (36).
(C36)
Figure JPOXMLDOC01-appb-I000044
In the formula, h and i are integers from 1 to 3, and j is 0 or 1.

 化学式(36)の式中、jが0、h及びiが1であれば、下記化学式(37)で表される1,3-ジメチルイミダゾリウムカチオン(DMIカチオン)である。このDMIカチオンの2位がメチル基で置換されてもよい。
 (化37)

Figure JPOXMLDOC01-appb-I000045
In the chemical formula (36), when j is 0, h and i are 1, it is a 1,3-dimethylimidazolium cation (DMI cation) represented by the following chemical formula (37). The 2-position of this DMI cation may be substituted with a methyl group.
(C37)
Figure JPOXMLDOC01-appb-I000045

 化学式(36)の式中、jが0、hが1及びiが2であれば、下記化学式(38)で表される1-エチル-3-メチルイミダゾリウムカチオン(EMIカチオン)である。このEMIカチオンの2位がメチル基で置換されてもよい。
 (化38)

Figure JPOXMLDOC01-appb-I000046
In the chemical formula (36), when j is 0, h is 1 and i is 2, it is a 1-ethyl-3-methylimidazolium cation (EMI cation) represented by the following chemical formula (38). The 2-position of this EMI cation may be substituted with a methyl group.
(C38)
Figure JPOXMLDOC01-appb-I000046

 化学式(36)の式中、jが0、hが1及びiが3であれば、下記化学式(39)で表される1-メチル-3-プロピルイミダゾリウムカチオン(MPIカチオン)である。このMPIカチオンの2位がメチル基で置換されてもよい。
 (化39)

Figure JPOXMLDOC01-appb-I000047
In the chemical formula (36), when j is 0, h is 1 and i is 3, it is a 1-methyl-3-propylimidazolium cation (MPI cation) represented by the following chemical formula (39). The 2-position of this MPI cation may be substituted with a methyl group.
(Chem.39)
Figure JPOXMLDOC01-appb-I000047

 各種ホスホニウムカチオンは、下記化学式(40)で表され、炭素数を問わない直鎖アルキル基で置換された、テトラアルキルホスホニウムカチオンが挙げられる。テトラアルキルホスホニウムカチオンとしては、例えばテトラエチルホスホニウムカチオンカチオン(TEPカチオン)が挙げられる。
 (化40)

Figure JPOXMLDOC01-appb-I000048
 式中、e、f、g及びhは1以上の整数であり、炭素数は何れでもよい。 Various phosphonium cations are represented by the following chemical formula (40), and include tetraalkylphosphonium cations substituted with a linear alkyl group having any number of carbon atoms. Examples of the tetraalkylphosphonium cation include tetraethylphosphonium cation (TEP cation).
(C40)
Figure JPOXMLDOC01-appb-I000048
In the formula, e, f, g and h are integers of 1 or more, and the number of carbon atoms may be any.

 このような柔粘性結晶を電解質層内に2種類以上含めるようにしてもよい。柔粘性結晶を構成可能な2種以上のアニオン成分が電解質層内で混合して用いると、アニオン成分を単種で使用する場合と比べて、電解質層のイオン伝導度が向上する。また、柔粘性結晶を構成可能な2種以上のカチオン成分が電解質層内で混合して用いると、カチオン成分が単種である場合と比べて、電解質層のイオン伝導度が向上する。 Two or more types of such flexible crystals may be included in the electrolyte layer. When two or more types of anion components capable of forming a flexible crystal are used as a mixture in an electrolyte layer, the ionic conductivity of the electrolyte layer is improved compared to a case where a single type of anion component is used. Furthermore, when two or more types of cationic components capable of forming a flexible crystal are mixed and used in an electrolyte layer, the ionic conductivity of the electrolyte layer is improved compared to a case where a single type of cationic component is used.

 2種類以上の柔粘性結晶を含める場合、アニオン同種の柔粘性結晶を電解質層内に含めるようにしてもよいし、カチオン同種の柔粘性結晶を電解質層内に含めるようにしてもよいし、アニオン成分及びカチオン成分が異なる柔粘性結晶を電解質層内に含めるようにしてもよい。異なる柔粘性結晶の電解質層内への配合割合は、等モル量であってもよいし、異なる量としてもよい。 When two or more types of flexible crystals are included, flexible crystals of the same type of anion may be included in the electrolyte layer, flexible crystals of the same type of cation may be included in the electrolyte layer, or flexible crystals of the same type of anion may be included in the electrolyte layer. Flexible crystals having different components and cationic components may be included in the electrolyte layer. The blending ratios of different flexible crystals in the electrolyte layer may be equal molar amounts or may be different amounts.

 また、柔粘性結晶には、当該柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンを含有させてもよい。柔粘性結晶に含有させるカチオン及びアニオンは、電解コンデンサの動作温度範囲内においてイオン解離していればよい。このようなカチオン及びアニオンは例えばイオン液体として柔粘性結晶に含有するようにすればよい。イオン液体は、室温を含む温度範囲において液体状態で存在する塩であり、イオンのみからなる液体である。 Furthermore, the flexible crystal may contain a combination of cations and anions that is different from the cation component and anion component of the flexible crystal. The cations and anions contained in the flexible crystals only need to be ionically dissociated within the operating temperature range of the electrolytic capacitor. Such cations and anions may be contained in the flexible crystal, for example, as an ionic liquid. An ionic liquid is a salt that exists in a liquid state in a temperature range including room temperature, and is a liquid consisting only of ions.

 柔粘性結晶に含有させるカチオンは、柔粘性結晶に含有させるアニオンが異なっていれば、柔粘性結晶を構成するカチオン成分と同種であってもよい。柔粘性結晶に含有させるアニオンは、柔粘性結晶に含有させるカチオンが異なっていれば、柔粘性結晶を構成するアニオン成分と同種であってもよい。柔粘性結晶に含有させるカチオンと柔粘性結晶を構成するカチオン成分とは異種であり、更に、柔粘性結晶に含有させるアニオンと柔粘性結晶を構成するアニオン成分とが異種であるようにしてもよい。 The cation contained in the flexible crystal may be of the same type as the cation component constituting the flexible crystal, as long as the anion contained in the flexible crystal is different. The anion contained in the flexible crystal may be of the same type as the anion component constituting the flexible crystal, as long as the cation contained in the flexible crystal is different. The cation contained in the flexible crystal and the cation component constituting the flexible crystal are different types, and furthermore, the anion contained in the flexible crystal and the anion component forming the flexible crystal may be different types. .

 このようなアニオンとしては、上記化学式(1)~(25)の各種アミドアニオン、トリス(トリフルオロメタンスルホニル)メタニドアニオン、各種ホスフェートアニオン、各種ボレートアニオン、各種スルホン系アニオン、テトラフルオロアルミナートアニオン、マンデラートアニオン及びベンゾアートアニオンが挙げられる。また、カチオンとしては、上記化学式(26)~(40)の各種第4級アンモニウムカチオン、各種ピロリジニウムカチオン、各種ピペリジニウムカチオン、各種イミダゾリウムカチオン、各種ホスホニウムカチオンが挙げられる。 Such anions include various amide anions of the above chemical formulas (1) to (25), tris(trifluoromethanesulfonyl)methanide anions, various phosphate anions, various borate anions, various sulfonic anions, tetrafluoroaluminate anions, Mendelate anions and benzoate anions are mentioned. Examples of the cation include various quaternary ammonium cations, various pyrrolidinium cations, various piperidinium cations, various imidazolium cations, and various phosphonium cations of the above chemical formulas (26) to (40).

 柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンは、目視によって柔粘性結晶に流動性が見られず固体状態になっていれば、含有量に限定はない。柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンを含有させることで、電解質層のイオン伝導度は更に向上する。柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンの配合割合は、等モル量であってもよいし、異なる量としてもよい。好ましくは、イオン液体の混合割合が60wt%以下であれば、柔粘性結晶は容易に固体形状を保つ。 There is no limit to the content of the cation and anion in a combination different from the cation component and anion component of the flexible crystal, as long as the flexible crystal does not have fluidity and is in a solid state when visually observed. The ionic conductivity of the electrolyte layer is further improved by containing a combination of cations and anions different from those of the cationic and anionic components of the flexible crystal. The blending ratio of cations and anions in combinations different from those of the cation component and anion component of the flexible crystals may be equimolar amounts or may be different amounts. Preferably, if the mixing ratio of the ionic liquid is 60 wt % or less, the flexible crystal easily maintains its solid shape.

 柔粘性結晶には、更にポリマーを添加して作製してもよい。ポリマーとしては、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド、ポリエステル、又はカーボネート系ポリマー等が挙げられる。カーボネート系ポリマーとしては、ポリエチレンカーボネート(PEC)、PECの誘導体、ポリプロピレンカーボネート、ポリトリメチレンカーボネート、又はポリトリメチレンカーボネートとポリカーボネートの共重合体等が挙げられる。これらポリマーの1種を単独で用いてもよく、2種類以上が組み合わせられても良い。 A flexible crystal may be produced by further adding a polymer. Examples of the polymer include polyethylene oxide (PEO), polypropylene oxide, polyester, and carbonate polymers. Examples of carbonate-based polymers include polyethylene carbonate (PEC), PEC derivatives, polypropylene carbonate, polytrimethylene carbonate, and copolymers of polytrimethylene carbonate and polycarbonate. One type of these polymers may be used alone, or two or more types may be used in combination.

 これらポリマーのうち、カーボネート系ポリマーは、例示であり、脂肪族ポリカーボネートであれば何れも使用可能である。また、2種以上を組み合わせて用いる場合、各種ポリマーが単重合の形態を採っていてもよく、2種以上のモノマーの共重合体として存在していてもよい。ポリマーの分子量に限定はないが、ポリマーの分子量は1000k以上が好ましく、またポリエチレンオキサイド(PEO)の分子量は1000k以上が好ましい。これらポリマーの添加により電解質層の機械強度を向上させることができ、また電解質層のイオン伝導度が向上する。 Among these polymers, the carbonate-based polymer is just an example, and any aliphatic polycarbonate can be used. Moreover, when using two or more types in combination, the various polymers may be in the form of a monopolymer, or may exist as a copolymer of two or more types of monomers. Although there is no limitation on the molecular weight of the polymer, the molecular weight of the polymer is preferably 1000k or more, and the molecular weight of polyethylene oxide (PEO) is preferably 1000k or more. By adding these polymers, the mechanical strength of the electrolyte layer can be improved, and the ionic conductivity of the electrolyte layer can also be improved.

 この柔粘性結晶は、例えば次の製造方法により作製できるが、以下に限らず、各種の手法を用いることができる。即ち、柔粘性結晶を構成するアニオン成分のアルカリ金属塩及びハロゲン化したカチオン成分を各々溶媒に溶解させる。アルカリ金属としては、Na、K、Li、Csが挙げられる。ハロゲンとしてはF、Cl、Br、Iが挙げられる。溶媒としては水が好ましい。ハロゲン化したカチオンの溶液に対してアニオンの金属塩の溶液を少しずつ滴下してイオン交換反応を行っていく。ハロゲン化したカチオンの溶液に対してアニオンの金属塩の溶液を等モル量添加し、攪拌する。 This flexible crystal can be produced, for example, by the following manufacturing method, but is not limited to the following, and various methods can be used. That is, the alkali metal salt of the anion component and the halogenated cation component constituting the flexible crystal are each dissolved in a solvent. Examples of alkali metals include Na, K, Li, and Cs. Examples of halogen include F, Cl, Br, and I. Water is preferred as the solvent. An ion exchange reaction is carried out by dropping a solution of an anion metal salt little by little into a solution of halogenated cations. An equimolar amount of the anion metal salt solution is added to the halogenated cation solution and stirred.

 このとき、イオン交換により、柔粘性結晶が生成されると共に、ハロゲン化アルカリ金属が生成される。ジクロロメタン等の有機溶媒を混合し、静置すると、混合液は水層と有機溶媒の層に分かれる。分液から水層を取り除くことで、ハロゲン化アルカリ金属は除去される。この操作は複数回繰り返せばよい。これにより、ハロゲン化アルカリ金属を除去した後、ジクロロメタン等の有機溶媒を蒸発させ、柔粘性結晶を得る。 At this time, due to ion exchange, flexible crystals are produced and alkali metal halides are produced. When an organic solvent such as dichloromethane is mixed and left to stand, the mixture separates into an aqueous layer and an organic solvent layer. By removing the aqueous layer from the liquid separation, the alkali metal halide is removed. This operation may be repeated multiple times. Thereby, after removing the alkali metal halide, the organic solvent such as dichloromethane is evaporated to obtain flexible crystals.

 この柔粘性結晶は、当該柔粘性結晶が可溶な溶媒に溶解させておく。溶媒は、極性溶媒が好ましい。極性溶媒としては、アセトニトリル、プロピレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、スルホラン、アセトン、メタノール、エタノール、イソプロピルアルコール又はこれらの混合が挙げられる。これら極性溶媒には、柔粘性結晶が効率良く溶解するため、電解質層の生産性に優れる。 This flexible crystal is dissolved in a solvent in which the flexible crystal is soluble. The solvent is preferably a polar solvent. Polar solvents include acetonitrile, propylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, ethylene carbonate, sulfolane, acetone, methanol, ethanol, isopropyl alcohol, or mixtures thereof. Since flexible crystals are efficiently dissolved in these polar solvents, the productivity of the electrolyte layer is excellent.

 そして、電解質層を付着させる付着対象物に柔粘性結晶の溶液を含浸させる。柔粘性結晶の溶液を含浸させた後、100℃等の溶媒が揮発する温度環境下で放置して乾燥により溶媒を揮散させ、更に150℃等の温度環境下で残った水分等を揮散させる。これにより、付着対象物上に柔粘性結晶が形成される。 Then, the object to which the electrolyte layer is to be attached is impregnated with a solution of flexible crystals. After being impregnated with a solution of flexible crystals, it is left in a temperature environment such as 100° C. where the solvent evaporates, and the solvent is evaporated by drying, and the remaining water etc. is further evaporated under a temperature environment such as 150° C. As a result, flexible crystals are formed on the object to be adhered.

 尚、柔粘性結晶には、電解質となるイオン性塩をドープしてもよい。イオン性塩としては、有機酸の塩、無機酸の塩、又は有機酸と無機酸との複合化合物の塩であり、単独又は2種以上を組み合わせて用いられる。 Incidentally, the flexible crystal may be doped with an ionic salt that becomes an electrolyte. Ionic salts include salts of organic acids, salts of inorganic acids, or salts of complex compounds of organic acids and inorganic acids, and may be used alone or in combination of two or more.

 有機酸としては、シュウ酸、コハク酸、グルタン酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸等のカルボン酸、フェノール類、スルホン酸が挙げられる。また、無機酸としては、テトラフルオロボレート等を含むホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸等が挙げられる。 Examples of organic acids include oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, Examples include carboxylic acids such as 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, and tridecanedioic acid, phenols, and sulfonic acids. Examples of inorganic acids include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid, etc., including tetrafluoroborate. Examples of the composite compound of an organic acid and an inorganic acid include borodisalicylic acid, borodioxalic acid, borodiglycolic acid, and the like.

 これら有機酸の塩、無機酸の塩、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、アンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウムとしては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等が挙げられる。アミン塩のアミンとしては、一級アミン、二級アミン、三級アミンが挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン等、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。 These salts of organic acids, salts of inorganic acids, and at least one salt of a composite compound of organic acids and inorganic acids include ammonium salts, quaternary ammonium salts, quaternized amidinium salts, amine salts, sodium salts, and potassium salts. Examples include salt. Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, and tetraethylammonium. Examples of the quaternized amidinium include ethyldimethylimidazolinium and tetramethylimidazolinium. Examples of the amine in the amine salt include primary amines, secondary amines, and tertiary amines. Primary amines include methylamine, ethylamine, propylamine, etc. Secondary amines include dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc. Tertiary amines include trimethylamine, triethylamine, tripropylamine, tributylamine, Examples include ethyldimethylamine and ethyldiisopropylamine.

 また、電解質層に導電性高分子と柔粘性結晶を含む電解コンデンサは、柔粘性結晶が非含有で導電性高分子のみの固体電解コンデンサと比べて、容量が向上する。特に、柔粘性結晶の含有量は、導電性高分子の含有量に対して重量比で2倍以上12倍以下であることが好ましい。柔粘性結晶の含有量が、導電性高分子の含有量に対して重量比で2倍以上であると、柔粘性結晶が非含有で導電性高分子のみの固体電解コンデンサよりも、電解コンデンサの静電容量が向上し、更にESRも低減する。 Furthermore, an electrolytic capacitor containing a conductive polymer and a flexible crystal in the electrolyte layer has improved capacity compared to a solid electrolytic capacitor containing only a conductive polymer and no flexible crystal. In particular, the content of the flexible crystals is preferably 2 times or more and 12 times or less by weight relative to the content of the conductive polymer. If the content of flexible crystals is more than twice the content of conductive polymer in terms of weight ratio, the electrolytic capacitor will be more durable than a solid electrolytic capacitor that does not contain flexible crystals and only has conductive polymer. Capacitance is improved and ESR is also reduced.

 もっとも、静電容量向上の観点では、柔粘性結晶の含有量を導電性高分子に対して重量比で12倍超としてもよい。但し、柔粘性結晶付着工程では、柔粘性結晶の溶液が用いられるが、柔粘性結晶の含有量を導電性高分子に対して重量比で12倍超にすると、柔粘性結晶の溶解性が低下し、簡便な滴下含浸が相対的に難しくなってくる。一方、柔粘性結晶の含有量を導電性高分子に対して重量比で12倍以下とすることで、柔粘性結晶の溶解性が高まる。そのため、柔粘性結晶の含有量を導電性高分子に対して重量比で12倍以下とすることで、電解質層を付着させる付着対象物に柔粘性結晶の溶液を含浸させる工程が簡便になる。 However, from the viewpoint of improving capacitance, the content of flexible crystals may be more than 12 times the weight ratio of the conductive polymer. However, in the process of attaching flexible crystals, a solution of flexible crystals is used, but if the content of flexible crystals exceeds 12 times the weight ratio of the conductive polymer, the solubility of the flexible crystals decreases. However, simple drip impregnation becomes relatively difficult. On the other hand, by setting the content of the flexible crystal to 12 times or less by weight of the conductive polymer, the solubility of the flexible crystal increases. Therefore, by setting the content of the flexible crystal to 12 times or less by weight of the conductive polymer, the process of impregnating the object to which the electrolyte layer is attached with a solution of the flexible crystal becomes simple.

 (セパレータ)
 セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロースおよびこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリビニルアルコール樹脂等があげられ、これらの樹脂を単独で又は混合して用いることができる。
(Separator)
Separators can be made of cellulose such as kraft, Manila hemp, esparto, hemp, rayon, and mixed papers thereof, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and their derivatives, polytetrafluoroethylene resins, and polyfluoride. Polyamide resins such as vinylidene resin, vinylon resin, aliphatic polyamide, semi-aromatic polyamide, and fully aromatic polyamide, polyimide resin, polyethylene resin, polypropylene resin, trimethylpentene resin, polyphenylene sulfide resin, acrylic resin, polyvinyl alcohol These resins can be used alone or in combination.

 (電解コンデンサの製造方法)
 (巻回型)
 このような電解コンデンサのうち、巻回型について組み立て工程の一例を示す。まず、陽極側の弁作用金属の箔の一面又は両面に拡面層を形成し、化成処理により拡面層に誘電体酸化皮膜を形成する。陰極側の弁作用金属の箔の一面又は両面にも必要に応じて拡面層を形成し、酸化皮膜を表面に形成する。陽極体と陰極体に対して、例え陽極リードと陰極リードをステッチ、コールドウェルド、超音波溶接又はレーザー溶接などにより接続しておく。
(Manufacturing method of electrolytic capacitor)
(wound type)
An example of an assembly process for a wound type electrolytic capacitor will be described below. First, a surface-expanding layer is formed on one or both surfaces of the valve metal foil on the anode side, and a dielectric oxide film is formed on the surface-expanding layer by chemical conversion treatment. If necessary, a surface expanding layer is formed on one or both surfaces of the valve metal foil on the cathode side, and an oxide film is formed on the surface. For example, the anode lead and the cathode lead are connected to the anode body and the cathode body by stitching, cold welding, ultrasonic welding, laser welding, or the like.

 長尺の陽極体と陰極体とをセパレータを介在させて巻回し、円筒状の巻回体を作製する。セパレータは、その一端が陽極体と陰極体の一端よりもはみ出すように重ね合わせておく。巻回体の芯が陽極体と陰極体の短辺に沿うように、はみ出したセパレータを先に巻き始めて巻芯部を作製する。そして、その巻芯部を巻軸にして、陽極体と陰極体の長辺を丸めていくことで巻回していく。 A long anode body and a cathode body are wound with a separator interposed therebetween to produce a cylindrical wound body. The separators are stacked so that one end thereof protrudes beyond one end of the anode body and the cathode body. The protruding separator is first wound to form a winding core so that the core of the winding body runs along the short sides of the anode body and the cathode body. Then, the core is used as a winding axis, and the long sides of the anode and cathode bodies are rolled up.

 巻回の後、陽極体及び陰極体を所望の幅に切断した際に露出した弁作用金属の地金部分、及び巻回等の物理的ストレスによって生じた陽極体及び陰極体の欠陥を修復する修復化成工程を設ける。 After winding, repair the bare metal parts of the valve metal exposed when cutting the anode and cathode bodies to the desired width, as well as defects in the anode and cathode bodies caused by physical stress such as winding. A restoration chemical process will be provided.

 修復化成工程では、巻回体を化成液に浸漬し、電圧を印加する。化成液としては、リン酸二水素アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液、ホウ酸とクエン酸などのジカルボン酸を混合した化成液を用いる。電圧は、例えば、化成電圧に対して0.1~1.2倍の値とすることが好ましい。また、修復化成時の電圧印加方法として、修復化成開始から一定電圧を印加する方法、または、一定の間隔で段階的に印加電圧を上昇させる方法などが適宜選択される。 In the repair chemical conversion process, the rolled body is immersed in a chemical liquid and a voltage is applied. Chemical liquids include phosphoric acid-based chemical liquids such as ammonium dihydrogen phosphate, boric acid-based chemical liquids such as ammonium borate, adipic acid-based chemical liquids such as ammonium adipate, and boric acid-based chemical liquids such as boric acid and citric acid. A chemical liquid mixed with dicarboxylic acid is used. The voltage is preferably set to a value that is, for example, 0.1 to 1.2 times the chemical formation voltage. Further, as a voltage application method during repair chemical formation, a method of applying a constant voltage from the start of repair chemical formation, a method of increasing the applied voltage stepwise at regular intervals, etc. are appropriately selected.

 次に、電解質形成工程に移り、陽極体と陰極体の間に電解質層を形成する。電解質形成工程は、高分子付着工程と柔粘性結晶付着工程に大別される。高分子付着工程では、導電性高分子を陽極体と陰極体の間に付着させ、柔粘性結晶付着工程では、柔粘性結晶を陽極体と陰極体との間に付着させる。 Next, the process moves to an electrolyte formation step, and an electrolyte layer is formed between the anode body and the cathode body. The electrolyte formation process is roughly divided into a polymer adhesion process and a flexible crystal adhesion process. In the polymer attachment step, a conductive polymer is attached between the anode body and the cathode body, and in the flexible crystal attachment step, a flexible crystal is attached between the anode body and the cathode body.

 導電性高分子液を用いた高分子付着工程では、巻回体を導電性高分子液に浸漬し、巻回体内に導電性高分子液を含浸させる。導電性高分子液の巻回体への含浸の促進を図るべく、必要に応じて減圧処理や加圧処理を施してもよい。含浸工程は複数回繰り返しても良い。導電性高分子液を巻回体に含浸させた後は、乾燥工程により導電性高分子液の溶媒を除去する。 In the polymer adhesion step using a conductive polymer liquid, the wound body is immersed in the conductive polymer liquid to impregnate the inside of the wound body with the conductive polymer liquid. In order to promote impregnation of the conductive polymer liquid into the wound body, a vacuum treatment or a pressure treatment may be performed as necessary. The impregnation step may be repeated multiple times. After impregnating the wound body with the conductive polymer liquid, the solvent of the conductive polymer liquid is removed by a drying process.

 導電性高分子を生成しながら導電性高分子を付着させる場合、導電性高分子の単量体ユニットとなるモノマー及び酸化剤又は支持電解質の溶液中に、巻回体を浸漬し、重合反応を生じさせる。導電性高分子を付着させた後は、乾燥工程により溶媒を除去する。 When attaching a conductive polymer while generating a conductive polymer, the rolled body is immersed in a solution of a monomer that becomes the monomer unit of the conductive polymer and an oxidizing agent or a supporting electrolyte to initiate a polymerization reaction. bring about After the conductive polymer is attached, the solvent is removed by a drying process.

 次に、柔粘性結晶付着工程では、柔粘性結晶の溶液に巻回体を浸漬し、柔粘性結晶の溶液を巻回体内に含浸させる。柔粘性結晶の溶液の巻回体への含浸の促進を図るべく、必要に応じて減圧処理や加圧処理を施してもよい。含浸工程は複数回繰り返しても良い。柔粘性結晶の溶液を巻回体に含浸させた後は、乾燥工程により溶媒を除去する。 Next, in the flexible crystal attachment step, the wound body is immersed in a solution of flexible crystals to impregnate the wound body with the solution of flexible crystals. In order to promote impregnation of the wound body with the flexible crystal solution, a vacuum treatment or a pressure treatment may be performed as necessary. The impregnation step may be repeated multiple times. After the wound body is impregnated with the flexible crystal solution, the solvent is removed by a drying process.

 巻回体には、導電性高分子を先に付着させてから、柔粘性結晶を後に付着させるようにしたが、柔粘性結晶を先に付着させてから、導電性高分子を後に付着させるようにしてもよい。ただし、陽極体と陰極体との導電パス形成の観点から、導電性高分子を先に付着させた方が好ましい。導電性高分子を先に付着させることで、柔粘性結晶と導電性高分子層を含む電解質層を均一に形成でき、良好な容量特性や良好なESR特性を発現できる。 The conductive polymer was attached first to the wound body, and then the flexible crystal was attached later. You can also do this. However, from the viewpoint of forming a conductive path between the anode body and the cathode body, it is preferable to attach the conductive polymer first. By attaching the conductive polymer first, it is possible to uniformly form an electrolyte layer including a flexible crystal and a conductive polymer layer, and it is possible to exhibit good capacity characteristics and good ESR characteristics.

 陽極体に対して導電性高分子と柔粘性結晶を付着させてから、陽極体と陰極体とをセパレータを介して対向させて巻回させてもよい。または、陽極体に加え、陰極体、セパレータ又は両方に対して導電性高分子と柔粘性結晶を付着させてから、陽極体と陰極体とをセパレータを介して対向させて巻回させてもよい。 After the conductive polymer and flexible crystal are attached to the anode body, the anode body and the cathode body may be wound so as to face each other with a separator in between. Alternatively, in addition to the anode body, a conductive polymer and a flexible crystal may be attached to the cathode body, the separator, or both, and then the anode body and the cathode body may be wound so as to face each other with the separator in between. .

 コンデンサ素子は、一端有底及び他端開口の外装ケースにコンデンサ素子を収容し、コンデンサ素子を封口体で外装ケースに封止する。そして、外装ケースにコンデンサ素子を封止した後、電解コンデンサは、エージング工程を経て作製が完了する。エージング工程では、電解コンデンサに直流電圧を印加して誘電体酸化皮膜層等の欠陥箇所を修復する。 The capacitor element is housed in an exterior case with a bottom at one end and an open end at the other end, and the capacitor element is sealed in the exterior case with a sealing body. After sealing the capacitor element in the exterior case, the electrolytic capacitor undergoes an aging process to complete its manufacture. In the aging process, a direct current voltage is applied to the electrolytic capacitor to repair defects such as the dielectric oxide film layer.

 (積層型)
 このような電解コンデンサのうち、積層型について組み立て工程の一例を示す。まず、まず、陽極体である弁作用金属の箔表面に拡面層を形成する。次に、拡面層を形成した箔に対して化成溶液中で化成処理を行い、当該弁作用金属の箔表面に誘電体酸化皮膜を形成する。後に陽極側の端子となる領域を含め、陽極となる領域を除き、絶縁レジスト層を印刷して乾燥させる。即ち、陽極側の端子となる領域に電解質層が形成されないように、絶縁レジスト層を印刷する。
(Laminated type)
An example of an assembly process for a multilayer type electrolytic capacitor will be described below. First, a surface expanding layer is formed on the surface of the valve metal foil that is the anode body. Next, the foil on which the surface-expanding layer has been formed is subjected to a chemical conversion treatment in a chemical solution to form a dielectric oxide film on the surface of the valve metal foil. An insulating resist layer is printed and dried, including the area that will later become the anode terminal, but excluding the area that will become the anode. That is, an insulating resist layer is printed so that an electrolyte layer is not formed in a region that will become a terminal on the anode side.

 絶縁レジスト層の印刷後、導電性高分子付着工程に移り、箔を導電性高分子液に浸漬し、誘電体酸化皮膜を覆うように導電性高分子を付着させる。乾燥により導電性高分子液の溶媒を除去した後、更に柔粘性結晶付着工程に移り、柔粘性結晶の溶液に浸漬し、柔粘性結晶を更に付着させる。そして、乾燥により柔粘性結晶の溶媒を除去する。このような導電性高分子の付着と柔粘性結晶の付着により、電解質層を形成した。 After printing the insulating resist layer, proceed to the conductive polymer adhesion step, where the foil is immersed in a conductive polymer liquid and the conductive polymer is adhered to cover the dielectric oxide film. After removing the solvent of the conductive polymer liquid by drying, the conductive polymer liquid is further moved to a flexible crystal attachment step, in which it is immersed in a solution of flexible crystals to further adhere flexible crystals. Then, the solvent of the flexible crystals is removed by drying. An electrolyte layer was formed by such adhesion of the conductive polymer and the adhesion of the flexible crystal.

 次に、スクリーン印刷機等により、電解質層上にカーボンペーストを印刷して乾燥させる。この乾燥工程により電解質層上にカーボン層が形成される。さらに、カーボン層上に銀ペースト等の金属ペーストを印刷して乾燥させる。この乾燥工程を経て、カーボン層上には銀層が形成される。これらカーボン層及び銀層は、電解コンデンサの陰極体に相当する。 Next, carbon paste is printed on the electrolyte layer using a screen printer or the like and dried. This drying process forms a carbon layer on the electrolyte layer. Furthermore, a metal paste such as silver paste is printed on the carbon layer and dried. Through this drying process, a silver layer is formed on the carbon layer. These carbon layers and silver layers correspond to the cathode body of an electrolytic capacitor.

 陰極体を形成した後、絶縁レジスト層を剥離する。尚、絶縁レジスト層の剥離は、レーザ照射又は治具の押し当てによる機械的剥離法を用いてもよい。剥離により露出した部分はめっき処理することで陽極の端子として完成させる。 After forming the cathode body, the insulating resist layer is peeled off. Note that the insulating resist layer may be peeled off using a mechanical peeling method using laser irradiation or pressing with a jig. The parts exposed by peeling are plated to complete the anode terminal.

 これにより作製されたコンデンサ素子は、例えば、ラミネートフィルムによって被覆する。または、耐熱性樹脂や絶縁樹脂などの樹脂をモールド、ディップコート若しくは印刷することでコンデンサ素子を封止する。 The capacitor element thus produced is covered with, for example, a laminate film. Alternatively, the capacitor element is sealed by molding, dip coating, or printing a resin such as a heat-resistant resin or an insulating resin.

 以下、実施例に基づいて電解コンデンサとその製造方法をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, an electrolytic capacitor and its manufacturing method will be explained in more detail based on Examples. Note that the present invention is not limited to the following examples.

 (実施例1-4)
 次のようにして実施例1乃至4と比較例1の電解コンデンサを作製した。まず、アルミニウム箔を用いて一対の電極を作製した。両電極箔はエッチング処理により拡面化した。一方の電極は陽極体とし、直流エッチングにより拡面化した。陽極体の拡面化の工程では、塩酸を含む水溶液中でアルミニウム箔に直流電流を流してピットを形成し、次いで、硝酸を含む水溶液中でアルミニウム箔に直流電流を流してピットを拡径した。他方の電極は陰極体とし、交流エッチングにより拡面化した。陰極体の拡面層の形成においては、塩酸を含む水溶液中でアルミニウム箔に交流電流を流すことで、海綿状のエッチングピットを形成した。
(Example 1-4)
Electrolytic capacitors of Examples 1 to 4 and Comparative Example 1 were manufactured in the following manner. First, a pair of electrodes was made using aluminum foil. Both electrode foils were enlarged by etching. One electrode was used as an anode body, and the area was enlarged by direct current etching. In the process of enlarging the surface of the anode body, a direct current was passed through the aluminum foil in an aqueous solution containing hydrochloric acid to form pits, and then a direct current was passed through the aluminum foil in an aqueous solution containing nitric acid to enlarge the diameter of the pits. . The other electrode was used as a cathode body, and the area was enlarged by AC etching. In forming the surface-expanding layer of the cathode body, spongy etched pits were formed by passing an alternating current through the aluminum foil in an aqueous solution containing hydrochloric acid.

 陽極体には化成処理により箔の表面に誘電体酸化皮膜を形成した。化成処理の工程では、濃度が1.4g/L及び液温が90℃のリン酸二水素アンモニウム水溶液内で、電流密度10mA/cmの電流を通電し、56.5Vの化成電圧に到達させた後、10分間保持した。 A dielectric oxide film was formed on the surface of the foil of the anode body by chemical conversion treatment. In the chemical conversion treatment process, a current with a current density of 10 mA/cm 2 was passed in an aqueous ammonium dihydrogen phosphate solution with a concentration of 1.4 g/L and a liquid temperature of 90°C to reach a chemical conversion voltage of 56.5 V. After that, it was held for 10 minutes.

 これら陽極体及び陰極体の各々にリード線を接続し、マニラ紙のセパレータを介して陽極箔と陰極箔を対向させて巻回した。巻回体は、直径10mm及び高さ10mmである。巻回体に対して、液温90℃のリン酸二水素アンモニウム水溶液内で56.5Vの印加電圧及び10mAの電流密度の条件で10分間通電することで、修復化成が行われた。 A lead wire was connected to each of the anode body and cathode body, and the anode foil and the cathode foil were wound so as to face each other with a manila paper separator in between. The roll has a diameter of 10 mm and a height of 10 mm. Restorative chemical formation was performed on the wound body by energizing it for 10 minutes at an applied voltage of 56.5 V and a current density of 10 mA in an aqueous ammonium dihydrogen phosphate solution with a liquid temperature of 90°C.

 巻回体には、最初に導電性高分子液を含浸させた。導電性高分子液は、ポリスチレンスルホン酸(PSS)がドープされたポリ(3,4-エチレンジオキシチオフェン)(PEDOT/PSS)を分散させてある。PEDOT/PSSは、導電性高分子液全体に対して1.2wt%の割合で添加されている。また、導電性高分子液には、当該導電性高分子分散液に対して10wt%の割合でエチレングリコールが添加されている。室温及び-0.3MPaの加圧環境において、10分間、この導電性高分子液を巻回体に含浸させた。含浸工程は計2回行われた。 The rolled body was first impregnated with a conductive polymer liquid. The conductive polymer liquid has poly(3,4-ethylenedioxythiophene) (PEDOT/PSS) doped with polystyrene sulfonic acid (PSS) dispersed therein. PEDOT/PSS is added at a rate of 1.2 wt% to the entire conductive polymer liquid. Moreover, ethylene glycol is added to the conductive polymer liquid at a rate of 10 wt% with respect to the conductive polymer dispersion. The wound body was impregnated with this conductive polymer liquid for 10 minutes at room temperature and in a pressurized environment of −0.3 MPa. The impregnation process was performed twice in total.

 巻回体を導電性高分子液から引き上げた後は、室温で10分間静置し、更に110℃の温度環境下で30分静置することで、巻回体を乾燥させた。これにより、陽極体の誘電体酸化皮膜上に導電性高分子を含む電解質層が形成された。 After the wound body was pulled up from the conductive polymer liquid, it was allowed to stand at room temperature for 10 minutes, and then left to stand still at a temperature of 110° C. for 30 minutes to dry the wound body. As a result, an electrolyte layer containing a conductive polymer was formed on the dielectric oxide film of the anode body.

 次に、実施例1乃至4については、陽極体と陰極体の間に導電性高分子に加えて柔粘性結晶を付着させた。実施例1乃至4の柔粘性結晶は、下表1の通りである。
 (表1)

Figure JPOXMLDOC01-appb-I000049
Next, in Examples 1 to 4, in addition to the conductive polymer, a flexible crystal was attached between the anode body and the cathode body. The flexible crystals of Examples 1 to 4 are shown in Table 1 below.
(Table 1)
Figure JPOXMLDOC01-appb-I000049

 表1のように、実施例1には、柔粘性結晶としてP12BFを付着させた。即ち、P12カチオンとBFアニオンを1:1のモル比で含む柔粘性結晶を付着させた。P12カチオンは、化学式(30)で示されるN-エチル-N-メチルピロリジニウムカチオンである。 As shown in Table 1, in Example 1, P12BF 4 was attached as a flexible crystal. That is, a flexible crystal containing P12 cation and BF4 anion in a molar ratio of 1:1 was attached. The P12 cation is an N-ethyl-N-methylpyrrolidinium cation represented by the chemical formula (30).

 実施例2には、柔粘性結晶としてP12FSAを付着させた。即ち、P12カチオンとFSAアニオンを1:1のモル比で含む柔粘性結晶を付着させた。FSAアニオンは、化学式(5)で示されるビス(フルオロスルホニル)アミドアニオンである。 In Example 2, P12FSA was attached as a flexible crystal. That is, a flexible crystal containing P12 cation and FSA anion in a molar ratio of 1:1 was attached. The FSA anion is a bis(fluorosulfonyl)amide anion represented by the chemical formula (5).

 実施例3には、柔粘性結晶としてP12BoBを付着させた。即ち、P12カチオンとBoBアニオンを1:1のモル比で含む柔粘性結晶を付着させた。BoBアニオンは、化学式(18A)で示されるビス(オキサラト)ボレートアニオンである。 In Example 3, P12BoB was attached as a flexible crystal. That is, a flexible crystal containing P12 cation and BoB anion in a molar ratio of 1:1 was attached. The BoB anion is a bis(oxalato)borate anion represented by the chemical formula (18A).

 実施例4には、柔粘性結晶としてP12BScBを付着させた。即ち、P12カチオンとBScBアニオンを1:1のモル比で含む柔粘性結晶を付着させた。BScBアニオンは、化学式(19A)で示されるビス(サリチラト)ボレートアニオンである。 In Example 4, P12BScB was attached as a flexible crystal. That is, a flexible crystal containing P12 cations and BScB anions in a molar ratio of 1:1 was attached. The BScB anion is a bis(salicylate)borate anion represented by the chemical formula (19A).

 柔粘性結晶は、アセトニトリルに溶液全体に対して40wt%の割合となるように加えられた。このアセトニトリル溶液を巻回体に滴下し、巻回体内にアセトニトリル溶液を含浸させた。含浸量は、1個の巻回体に対して570mgとなった。 The flexible crystals were added to acetonitrile at a ratio of 40 wt% to the total solution. This acetonitrile solution was dropped onto the wound body to impregnate the inside of the wound body with the acetonitrile solution. The amount of impregnation was 570 mg for one rolled body.

 含浸後は、巻回体を45℃のアルゴン雰囲気下に2時間静置し、60℃のアルゴン雰囲気下に2時間静置し、80℃のアルゴン雰囲気下に2時間静置し、最後に100℃のアルゴン雰囲気下に12時間静置することで、アセトニトリル溶液を乾燥させた。これにより、実施例1乃至4には、導電性高分子と柔粘性結晶を含む電解質層が形成された。比較例1には、導電性高分子を含み、柔粘性結晶は非含有の電解質層が形成された。 After impregnation, the wound body was left standing under an argon atmosphere at 45°C for 2 hours, left standing under an argon atmosphere at 60°C for 2 hours, left standing under an argon atmosphere at 80°C for 2 hours, and finally impregnated with 100°C. The acetonitrile solution was dried by standing for 12 hours under an argon atmosphere at .degree. As a result, in Examples 1 to 4, electrolyte layers containing conductive polymers and flexible crystals were formed. In Comparative Example 1, an electrolyte layer containing a conductive polymer but not containing a flexible crystal was formed.

 この実施例1乃至4並びに比較例1のコンデンサ素子を外装ケース内に収容し、外装ケースの開口部を封口体で封止した。封口体と外装ケースとは加締め加工により密着させた。この後、実施例1乃至6並びに比較例1の電解コンデンサに、105℃の温度環境下で40.25Vの電圧を1時間印加することでエージング処理を施した。この結果、直径10mm及び高さ10mm、定格電圧36WV、及び270μFの各電解コンデンサが作製された。 The capacitor elements of Examples 1 to 4 and Comparative Example 1 were housed in an exterior case, and the opening of the exterior case was sealed with a sealant. The sealing body and the outer case were made to fit tightly together by crimping. Thereafter, the electrolytic capacitors of Examples 1 to 6 and Comparative Example 1 were subjected to aging treatment by applying a voltage of 40.25 V for 1 hour in a temperature environment of 105°C. As a result, electrolytic capacitors with a diameter of 10 mm, a height of 10 mm, a rated voltage of 36 WV, and 270 μF were manufactured.

 実施例1乃至4並びに比較例1の電解コンデンサの静電容量(Cap)、等価直列抵抗(ESR)及び誘電正接(tanδ)を測定した。Cap、tanδ及びESRはLCRメータ(株式会社エヌエフ回路設計ブロック製、型番ZM2376)を用いて室温下で測定した。Cap、ESR及びtanδの測定周波数は120Hzであり、交流電流レベルは1.0Vmsの正弦波である。 The capacitance (Cap), equivalent series resistance (ESR), and dielectric loss tangent (tanδ) of the electrolytic capacitors of Examples 1 to 4 and Comparative Example 1 were measured. Cap, tan δ, and ESR were measured at room temperature using an LCR meter (manufactured by NF Circuit Design Block Co., Ltd., model number ZM2376). The measurement frequency of Cap, ESR, and tan δ is 120 Hz, and the alternating current level is a 1.0 Vms sine wave.

 実施例1乃至4並びに比較例1の電解コンデンサのCap、ESR及びtanδの測定結果を下表2に示す。
 (表2)

Figure JPOXMLDOC01-appb-I000050
The measurement results of Cap, ESR, and tan δ of the electrolytic capacitors of Examples 1 to 4 and Comparative Example 1 are shown in Table 2 below.
(Table 2)
Figure JPOXMLDOC01-appb-I000050

 表2に示すように、電解質層に導電性高分子と柔粘性結晶を含む実施例1乃至4の電解コンデンサは、柔粘性結晶が非含有で導電性高分子のみの導電性高分子固体電解コンデンサと比べて、容量が向上していることが確認された。尚、実施例1乃至4の電解コンデンサのESR及びtanδも満足し得る範囲であり、幾つかの実施例は比較例1よりも良好になっている。 As shown in Table 2, the electrolytic capacitors of Examples 1 to 4 containing conductive polymers and flexible crystals in the electrolyte layer are conductive polymer solid electrolytic capacitors that do not contain flexible crystals and only have conductive polymers. It was confirmed that the capacity was improved compared to Note that the ESR and tan δ of the electrolytic capacitors of Examples 1 to 4 are also within a satisfactory range, and some of the Examples are better than Comparative Example 1.

 (実施例5-6)
 実施例5及び6の電解コンデンサを作製した。実施例5及び6では、柔粘性結晶にイオン液体を含有させた。柔粘性結晶へのイオン液体の含有を除き、実施例5及び6の電解コンデンサの構成、組成、製法及び製法条件は、実施例1乃至4の電解コンデンサと同一である。
(Example 5-6)
Electrolytic capacitors of Examples 5 and 6 were manufactured. In Examples 5 and 6, the flexible crystal contained an ionic liquid. Except for the inclusion of the ionic liquid in the flexible crystal, the structure, composition, manufacturing method, and manufacturing conditions of the electrolytic capacitors of Examples 5 and 6 are the same as those of the electrolytic capacitors of Examples 1 to 4.

 実施例5において、柔粘性結晶は、P12カチオンとBFアニオンを1:1のモル比で含むP12BFである。イオン液体は、EMIカチオンとBFアニオンを1:1のモル比で含むEMIBFである。EMIカチオンは、化学式(38)で示される1-エチル-3-メチルイミダゾリウムである。P12BFとEMIBFは等モル量となるように準備された。 In Example 5, the flexible crystal is P12BF4 containing P12 cations and BF4 anions in a 1:1 molar ratio. The ionic liquid is EMIBF4 , which contains EMI cations and BF4 anions in a 1:1 molar ratio. The EMI cation is 1-ethyl-3-methylimidazolium shown by chemical formula (38). P12BF 4 and EMIBF 4 were prepared in equimolar amounts.

 実施例6において、柔粘性結晶は、P12カチオンとFSAアニオンを1:1のモル比で含むP12FSAである。イオン液体は、EMIカチオンとFSAアニオンを1:1のモル比で含むEMIBFである。P12FSAとEMIFSAは等モル量となるように準備した。 In Example 6, the flexible crystal is P12FSA containing P12 cations and FSA anions in a 1:1 molar ratio. The ionic liquid is EMIBF 4 containing EMI cations and FSA anions in a 1:1 molar ratio. P12FSA and EMIFSA were prepared in equimolar amounts.

 実施例5及び6の電解コンデンサの静電容量(Cap)、等価直列抵抗(ESR)及び誘電正接(tanδ)を実施例1乃至4並びに比較例1と同一の条件で測定した。実施例5及び6の電解コンデンサのCap、ESR及びtanδの測定結果を下表3に示す。
 (表3)

Figure JPOXMLDOC01-appb-I000051
The capacitance (Cap), equivalent series resistance (ESR), and dielectric loss tangent (tan δ) of the electrolytic capacitors of Examples 5 and 6 were measured under the same conditions as Examples 1 to 4 and Comparative Example 1. The measurement results of Cap, ESR, and tan δ of the electrolytic capacitors of Examples 5 and 6 are shown in Table 3 below.
(Table 3)
Figure JPOXMLDOC01-appb-I000051

 表3に示すように、柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンを含有する柔粘性結晶を用いた場合、比較例1と比べて大幅に容量が向上していることが確認できる。また、実施例5及び6の電解コンデンサは、ESR及びtanδについても比較例1よりも明確に飛躍的に低減していることが確認できる。 As shown in Table 3, when a flexible crystal containing a combination of cations and anions different from the cation and anion components of the flexible crystal is used, the capacity is significantly improved compared to Comparative Example 1. can be confirmed. Furthermore, it can be confirmed that the electrolytic capacitors of Examples 5 and 6 clearly and dramatically reduced ESR and tan δ compared to Comparative Example 1.

 (実施例7-9)
 実施例7乃至9と比較例2の電解コンデンサを作製した。実施例7乃至9の電解コンデンサは、柔粘性結晶の種類が実施例1乃至4と異なる。比較例2の電解コンデンサは、巻回体のサイズを除き、比較例1と同一製造方法で作成され、同一構成を有する。実施例7乃至9並びに比較例2の巻回体は、実施例1乃至4と異なり、直径6.8mm及び高さ5.8mmである。
(Example 7-9)
Electrolytic capacitors of Examples 7 to 9 and Comparative Example 2 were manufactured. The electrolytic capacitors of Examples 7 to 9 differ from those of Examples 1 to 4 in the type of flexible crystal. The electrolytic capacitor of Comparative Example 2 was manufactured by the same manufacturing method as Comparative Example 1, except for the size of the wound body, and had the same configuration. The rolled bodies of Examples 7 to 9 and Comparative Example 2 differ from Examples 1 to 4 in that they have a diameter of 6.8 mm and a height of 5.8 mm.

 実施例7には、柔粘性結晶としてP12BScBを付着させた。即ち、P12カチオンとBScBアニオンを1:1のモル比で含む柔粘性結晶を付着させた。BScBアニオンは、化学式(19A)で表されるビス(サリチラト)ボレートアニオンである。 In Example 7, P12BScB was attached as a flexible crystal. That is, a flexible crystal containing P12 cations and BScB anions in a molar ratio of 1:1 was attached. The BScB anion is a bis(salicylate)borate anion represented by the chemical formula (19A).

 実施例8には、柔粘性結晶としてP12BmScBを付着させた。即ち、P12カチオンとBmScBアニオンを1:1のモル比で含む柔粘性結晶を付着させた。BmScBアニオンは、化学式(19C)で表されるビス(メチルサリチラト)ボレートアニオンである。 In Example 8, P12BmScB was attached as a flexible crystal. That is, a flexible crystal containing P12 cations and BmScB anions in a molar ratio of 1:1 was attached. The BmScB anion is a bis(methylsalicylate)borate anion represented by the chemical formula (19C).

 実施例9には、柔粘性結晶としてTEABhNBを付着させた。即ち、TEAカチオンとBhNBアニオンを1:1のモル比で含む柔粘性結晶を付着させた。TEAカチオンは、化学式(27)で表されるテトラエチルアンモニウムカチオン(TEAカチオン)である。BhNBアニオンは、化学式(20B)で表されるビス(2-ヒドロキシ-1-ナフトラト)ボレートアニオンである。 In Example 9, TEABhNB was attached as a flexible crystal. That is, a flexible crystal containing TEA cations and BhNB anions in a molar ratio of 1:1 was attached. The TEA cation is a tetraethylammonium cation (TEA cation) represented by the chemical formula (27). The BhNB anion is a bis(2-hydroxy-1-naphthorato)borate anion represented by the chemical formula (20B).

 実施例7及び8の柔粘性結晶は、γ-ブチロラクトンに溶液全体に対して50wt%の割合となるように加えられた。実施例9の柔粘性結晶は、γ-ブチロラクトンに溶液全体に対して25wt%の割合となるように加えられた。このγ-ブチロラクトン溶液を巻回体に滴下し、巻回体内にγ-ブチロラクトン溶液を含浸させた。γ-ブチロラクトン溶液は、室温及び-80kPaの減圧環境で30分間含浸させた。このとき、-80kPaは大気圧を基準としたときのゲージ圧力であり、負圧で表される圧力は大気圧を基準としたゲージ圧力である。 The flexible crystals of Examples 7 and 8 were added to γ-butyrolactone in a proportion of 50 wt% based on the total solution. The flexible crystals of Example 9 were added to γ-butyrolactone in a proportion of 25 wt% based on the total solution. This γ-butyrolactone solution was dropped onto the rolled body to impregnate the inside of the rolled body with the γ-butyrolactone solution. The γ-butyrolactone solution was impregnated for 30 minutes at room temperature and in a reduced pressure environment of −80 kPa. At this time, -80 kPa is a gauge pressure based on atmospheric pressure, and the pressure expressed as negative pressure is a gauge pressure based on atmospheric pressure.

 含浸後は、巻回体を室温及び-100kPa以下の減圧環境で一晩静置し、45℃及び-100kPa以下の減圧環境に2時間静置し、60℃及び-100kPa以下の減圧環境に2時間静置し、80℃及び-100kPa以下の減圧環境に2時間静置し、最後に90℃及び-100kPa以下の減圧環境に一晩静置することで、γ-ブチロラクトン溶液を十分に乾燥させ、γ-ブチロラクトンを取り除いた。これにより、実施例7乃至9には、導電性高分子と柔粘性結晶を含む電解質層が形成された。比較例2には、導電性高分子を含み、柔粘性結晶は非含有の電解質層が形成された。 After impregnation, the rolled body was left standing at room temperature and a reduced pressure environment of -100 kPa or less overnight, left standing at 45 °C and a reduced pressure environment of -100 kPa or less for 2 hours, and then left at 60 °C and a reduced pressure environment of -100 kPa or less for 2 hours. The γ-butyrolactone solution was left to stand for 2 hours at 80°C and a reduced pressure of -100 kPa or less, and finally left to stand at 90°C and a reduced pressure of -100 kPa or less overnight to thoroughly dry the γ-butyrolactone solution. , γ-butyrolactone was removed. As a result, in Examples 7 to 9, electrolyte layers containing conductive polymers and flexible crystals were formed. In Comparative Example 2, an electrolyte layer containing a conductive polymer but not containing a flexible crystal was formed.

 実施例7乃至9並びに比較例2の電解コンデンサの静電容量(Cap)、等価直列抵抗(ESR)及び誘電正接(tanδ)を測定した。測定条件は、実施例1乃至4並びに比較例1と同一である。 The capacitance (Cap), equivalent series resistance (ESR), and dielectric loss tangent (tanδ) of the electrolytic capacitors of Examples 7 to 9 and Comparative Example 2 were measured. The measurement conditions are the same as in Examples 1 to 4 and Comparative Example 1.

 実施例7乃至9並びに比較例2の電解コンデンサのCap、ESR及びtanδの測定結果を下表4に示す。
 (表4)

Figure JPOXMLDOC01-appb-I000052
The measurement results of Cap, ESR, and tan δ of the electrolytic capacitors of Examples 7 to 9 and Comparative Example 2 are shown in Table 4 below.
(Table 4)
Figure JPOXMLDOC01-appb-I000052

 表4に示すように、電解質層に導電性高分子と柔粘性結晶を含む実施例7乃至9の電解コンデンサは、柔粘性結晶が非含有で導電性高分子のみの導電性高分子固体電解コンデンサと比べて、容量が向上していることが確認された。実施例7乃至9の電解コンデンサのESR及びtanδも満足し得る範囲であり、実施例7は比較例2よりも良好になっている。 As shown in Table 4, the electrolytic capacitors of Examples 7 to 9 containing conductive polymers and flexible crystals in the electrolyte layer are conductive polymer solid electrolytic capacitors that do not contain flexible crystals and only have conductive polymers. It was confirmed that the capacity was improved compared to The ESR and tan δ of the electrolytic capacitors of Examples 7 to 9 are also within a satisfactory range, and Example 7 is better than Comparative Example 2.

 (実施例10-14)
 実施例10乃至14と比較例3の電解コンデンサを作製した。実施例10乃至14には、柔粘性結晶としてP12BScBを付着させており、実施例7と同一製造方法で作成され、同一構成を有する。また、比較例3は、比較例1と同一製造方法で作成され、同一構成を有する。導電性高分子の含有量、および、柔粘性結晶の含有量は、それぞれの付着工程の前後の重量を測定すればよく、実施例10から実施例14の電解コンデンサに含有された導電性高分子の重量は3mgであった。
(Example 10-14)
Electrolytic capacitors of Examples 10 to 14 and Comparative Example 3 were manufactured. In Examples 10 to 14, P12BScB is attached as a flexible crystal, and they are manufactured by the same manufacturing method as Example 7 and have the same configuration. Furthermore, Comparative Example 3 was produced using the same manufacturing method as Comparative Example 1, and has the same configuration. The content of the conductive polymer and the content of the flexible crystal can be determined by measuring the weight before and after each attachment step. The weight was 3 mg.

 但し、実施例10乃至14の電解コンデンサは、導電性高分子と柔粘性結晶の重量比率が異なる。実施例10には、導電性高分子に対して重量比で0.2倍の柔粘性結晶が含まれている。実施例11には、導電性高分子に対して重量比で1倍の柔粘性結晶が含まれている。実施例12には、導電性高分子に対して重量比で2倍の柔粘性結晶が含まれている。実施例13には、導電性高分子に対して重量比で5倍の柔粘性結晶が含まれている。実施例14には、導電性高分子に対して重量比で12倍の柔粘性結晶が含まれている。 However, the electrolytic capacitors of Examples 10 to 14 have different weight ratios of the conductive polymer and the flexible crystal. Example 10 contains flexible crystals in a weight ratio of 0.2 times that of the conductive polymer. Example 11 contains flexible crystals in a weight ratio of 1 times that of the conductive polymer. Example 12 contains twice as much flexible crystal by weight as the conductive polymer. Example 13 contains 5 times as much flexible crystal by weight as the conductive polymer. Example 14 contains 12 times as much flexible crystal by weight as the conductive polymer.

 これら実施例10乃至14並びに比較例3の電解コンデンサの静電容量(Cap)及び等価直列抵抗(ESR)を測定した。Cap、tanδ及びESRはLCRメータ(株式会社エヌエフ回路設計ブロック製、型番ZM2376)を用いて室温下で測定した。Capの測定周波数は10kHzであり、ESRの測定周波数は100kHzであり、交流電流レベルは1.0Vmsの正弦波である。 The capacitance (Cap) and equivalent series resistance (ESR) of the electrolytic capacitors of Examples 10 to 14 and Comparative Example 3 were measured. Cap, tan δ, and ESR were measured at room temperature using an LCR meter (manufactured by NF Circuit Design Block Co., Ltd., model number ZM2376). The measurement frequency of Cap is 10 kHz, the measurement frequency of ESR is 100 kHz, and the alternating current level is a 1.0 Vms sine wave.

 実施例10乃至14並びに比較例3の電解コンデンサのCap及びESRの測定結果を下表5に示す。
 (表5)

Figure JPOXMLDOC01-appb-I000053
The measurement results of Cap and ESR of the electrolytic capacitors of Examples 10 to 14 and Comparative Example 3 are shown in Table 5 below.
(Table 5)
Figure JPOXMLDOC01-appb-I000053

 上表5に示すように、実施例10乃至14の電解コンデンサは、比較例3と比べて静電容量が高い。更に、実施例10乃至14の電解コンデンサは、比較例3と比べてもESRが良好になっている。このように、柔粘性結晶の含有量が、導電性高分子に対して重量比で2倍以上12倍以下であると、電解コンデンサの静電容量が高く、且つESRが良好になることが確認された。 As shown in Table 5 above, the electrolytic capacitors of Examples 10 to 14 have higher capacitance than Comparative Example 3. Furthermore, the electrolytic capacitors of Examples 10 to 14 have better ESR than Comparative Example 3. In this way, it was confirmed that when the content of flexible crystals is 2 times or more and 12 times or less by weight of the conductive polymer, the capacitance of the electrolytic capacitor is high and the ESR is good. It was done.

Claims (9)

 導電性高分子と柔粘性結晶を含む電解質層を備えること、
 を特徴とする電解コンデンサ。
comprising an electrolyte layer containing a conductive polymer and a flexible crystal;
An electrolytic capacitor featuring:
 前記導電性高分子は、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸とを含むこと、
 を特徴とする請求項1記載の電解コンデンサ。
the conductive polymer includes poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid;
The electrolytic capacitor according to claim 1, characterized in that:
 前記柔粘性結晶には、当該柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンが更に含まれること、
 を特徴とする請求項1又は2記載の電解コンデンサ。
the flexible crystal further contains a cation and anion in a different combination from the cation component and anion component of the flexible crystal;
The electrolytic capacitor according to claim 1 or 2, characterized in that:
 前記柔粘性結晶の量は、前記導電性高分子の量を1としたときに、重量比で2倍以上12倍以下であること、
 を特徴とする請求項1又は2記載の電解コンデンサ。
The amount of the flexible crystal is 2 times or more and 12 times or less in weight ratio when the amount of the conductive polymer is 1;
The electrolytic capacitor according to claim 1 or 2, characterized in that:
 一対の電極間に電解質層を形成する電解質層形成工程を含み、
 前記電解質形成工程は、
 前記一対の電極の一方又は両方に導電性高分子を付着させる高分子付着工程と、
 前記一対の電極の一方又は両方に柔粘性結晶を付着させる柔粘性結晶付着工程と、
 を有すること、
 を特徴とする電解コンデンサの製造方法。
Including an electrolyte layer forming step of forming an electrolyte layer between a pair of electrodes,
The electrolyte forming step includes:
a polymer adhesion step of adhering a conductive polymer to one or both of the pair of electrodes;
a flexible crystal attachment step of attaching a flexible crystal to one or both of the pair of electrodes;
to have,
A method for manufacturing an electrolytic capacitor characterized by:
 前記一対の電極の一方は、弁作用金属の箔体であり、当該箔上に誘電体酸化皮膜が形成された陽極体であり、
 前記一対の電極の他方は、陰極体であること、
 を特徴とする請求項5記載の電解コンデンサの製造方法。
One of the pair of electrodes is a valve metal foil body, and an anode body having a dielectric oxide film formed on the foil,
the other of the pair of electrodes is a cathode body;
6. The method of manufacturing an electrolytic capacitor according to claim 5.
 前記高分子付着工程は、前記導電性高分子を含む液体を前記一対の電極間に含浸させる含浸工程を有すること、
 を特徴とする請求項5又は6記載の電解コンデンサの製造方法。
The polymer adhesion step includes an impregnation step of impregnating a liquid containing the conductive polymer between the pair of electrodes;
The method for manufacturing an electrolytic capacitor according to claim 5 or 6, characterized in that:
 前記柔粘性結晶付着工程では、前記柔粘性結晶のカチオン成分及びアニオン成分とは異なる組み合わせのカチオン及びアニオンを含む前記柔粘性結晶を付着させること、
 を特徴とする請求項5又は6記載の電解コンデンサの製造方法。
In the flexible crystal attachment step, attaching the flexible crystal containing a cation and anion in a different combination from the cation component and anion component of the flexible crystal;
The method for manufacturing an electrolytic capacitor according to claim 5 or 6, characterized in that:
 前記柔粘性結晶付着工程では、前記柔粘性結晶の量を、前記導電性高分子の量を1としたときに、重量比で2倍以上12倍以下の割合で付着させること、
 を特徴とする請求項5又は6記載の電解コンデンサの製造方法。
In the flexible crystal attachment step, the amount of the flexible crystal is deposited at a weight ratio of 2 times or more and 12 times or less when the amount of the conductive polymer is 1;
The method for manufacturing an electrolytic capacitor according to claim 5 or 6, characterized in that:
PCT/JP2023/028472 2022-08-05 2023-08-03 Electrolytic capacitor and manufacturing method WO2024029603A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380056336.7A CN119604957A (en) 2022-08-05 2023-08-03 Electrolytic capacitor and manufacturing method
JP2024539207A JPWO2024029603A1 (en) 2022-08-05 2023-08-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022125706 2022-08-05
JP2022-125706 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024029603A1 true WO2024029603A1 (en) 2024-02-08

Family

ID=89849445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028472 WO2024029603A1 (en) 2022-08-05 2023-08-03 Electrolytic capacitor and manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2024029603A1 (en)
CN (1) CN119604957A (en)
TW (1) TW202410089A (en)
WO (1) WO2024029603A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257288A (en) * 2005-03-17 2006-09-28 Kaneka Corp Composition for coating metal surface, method of manufacturing conductive polymer, coating method for metal surface, electrolytic capacitor and method for manufacturing the same
JP2012151147A (en) * 2011-01-14 2012-08-09 Kaneka Corp Electrolyte for electrolytic capacitor and method for forming the same
WO2014050071A1 (en) * 2012-09-26 2014-04-03 三洋電機株式会社 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2014063915A (en) * 2012-09-21 2014-04-10 Japan Carlit Co Ltd Solid electrolytic capacitor
JP6402269B1 (en) * 2018-04-26 2018-10-10 株式会社トーキン Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2020187887A (en) * 2019-05-13 2020-11-19 日立化成株式会社 Composition, electrode, and secondary battery
WO2022050013A1 (en) * 2020-09-04 2022-03-10 日本ケミコン株式会社 Electrical double layer capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257288A (en) * 2005-03-17 2006-09-28 Kaneka Corp Composition for coating metal surface, method of manufacturing conductive polymer, coating method for metal surface, electrolytic capacitor and method for manufacturing the same
JP2012151147A (en) * 2011-01-14 2012-08-09 Kaneka Corp Electrolyte for electrolytic capacitor and method for forming the same
JP2014063915A (en) * 2012-09-21 2014-04-10 Japan Carlit Co Ltd Solid electrolytic capacitor
WO2014050071A1 (en) * 2012-09-26 2014-04-03 三洋電機株式会社 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP6402269B1 (en) * 2018-04-26 2018-10-10 株式会社トーキン Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2020187887A (en) * 2019-05-13 2020-11-19 日立化成株式会社 Composition, electrode, and secondary battery
WO2022050013A1 (en) * 2020-09-04 2022-03-10 日本ケミコン株式会社 Electrical double layer capacitor

Also Published As

Publication number Publication date
JPWO2024029603A1 (en) 2024-02-08
CN119604957A (en) 2025-03-11
TW202410089A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
US11450485B2 (en) Solid electrolytic capacitor
JP7226593B2 (en) solid electrolytic capacitor
JP2023176004A (en) solid electrolytic capacitor
WO2023054502A1 (en) Solid electrolytic capacitor
JP6878896B2 (en) Electrolytic capacitors and their manufacturing methods
US20250149255A1 (en) Solid electrolyte capacitor and method for manufacturing same
WO2024029603A1 (en) Electrolytic capacitor and manufacturing method
JP7501814B1 (en) Solid Electrolytic Capacitors
JP7509337B1 (en) Solid electrolytic capacitor and manufacturing method
US20250140484A1 (en) Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion
JP7615800B2 (en) Conductive polymer dispersion, solid electrolytic capacitor, and method for producing the solid electrolytic capacitor
JP7697312B2 (en) Manufacturing method of solid electrolytic capacitor
EP4383296A1 (en) Solid electrolytic capacitor and manufacturing method
KR102337435B1 (en) Electrolytic capacitor and manufacturing method thereof
WO2023171618A1 (en) Electrolytic solution for solid electrolytic capacitor and solid electrolytic capacitor
WO2024143420A1 (en) Solid electrolytic capacitor and manufacturing method
TW202414467A (en) Solid electrolytic capacitor and manufacturing method
WO2025063070A1 (en) Solid electrolytic capacitor and manufacturing method
JP2024052275A (en) Solid electrolytic capacitor and manufacturing method
WO2024185816A1 (en) Solid electrolytic capacitor, smoothing circuit, filter circuit, and manufacturing method
JP2023112558A (en) Solid electrolytic capacitor and manufacturing method
TW202437288A (en) Solid electrolytic capacitor and manufacturing method
JP2024093013A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024539207

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE