WO2024027247A1 - 包括天线的可折叠电子设备 - Google Patents
包括天线的可折叠电子设备 Download PDFInfo
- Publication number
- WO2024027247A1 WO2024027247A1 PCT/CN2023/092410 CN2023092410W WO2024027247A1 WO 2024027247 A1 WO2024027247 A1 WO 2024027247A1 CN 2023092410 W CN2023092410 W CN 2023092410W WO 2024027247 A1 WO2024027247 A1 WO 2024027247A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- branch
- electronic device
- foldable electronic
- antenna
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2258—Supports; Mounting means by structural association with other equipment or articles used with computer equipment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1615—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
- G06F1/1616—Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2258—Supports; Mounting means by structural association with other equipment or articles used with computer equipment
- H01Q1/2266—Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
Definitions
- the present application relates to the field of antenna technology, and in particular to foldable electronic devices including antennas.
- the all-metal industrial design (ID) thin and light personal computer (PC) has two large floors: the screen side case and the keyboard side case.
- the thickness of the whole machine is very small, leaving little internal space for antenna design. , brings new challenges to antenna design.
- Various embodiments of the present application provide a foldable electronic device including an antenna, which is not limited by limited internal space, and has a low directivity coefficient and excellent signal coverage capability.
- Foldable electronic devices may include: a first body, a second body, and a rotating shaft connecting the first body and the second body.
- the first body and the second body can rotate around the rotating shaft.
- the first body may include a metal shell 14, and the shell 14 may be called the first shell; the second body may include a metal shell 16, and the shell 16 may be called the second shell.
- the foldable electronic device may further include: a slot antenna formed by the hollow shell floor.
- the slot antenna may include a first branch and a second branch.
- the second branch is vertically connected to one end of the first branch.
- the feed of the slot antenna is The point is set on one of the branches.
- the horizontal current and the vertical current on the floor of the housing can be excited to jointly produce radiation, which can effectively reduce the antenna directivity coefficient, improve the antenna radiation pattern, and enhance the foldability Signal coverage capabilities of electronic devices.
- the slot antennas may be distributed in an area on the floor of the housing adjacent to the folded position.
- the folded position of the foldable electronic device is not covered by input/output panels with signal shielding properties such as display screens, so that the area on the floor of the housing adjacent to the folded position is not opposite to the display screen, thereby preventing the display screen from shielding antenna radiation signals .
- the folding position can be the position where the axis of the rotation shaft passes through, and can be externally expressed as a crease or crease position.
- the area adjacent to the folding position may mean that the distance between the farthest point from the folding position and the folding position does not exceed a specific distance value, such as 25mm, 30mm, etc.
- the first branch and the second branch are not distributed along the side of the housing floor at the same time.
- the floor horizontal current excited by the vertical branches distributed on the vertical sides of the floor can be prevented from being unevenly distributed on both sides of the vertical branches, thereby preventing the antenna radiation from being unbalanced in the horizontal direction and preventing the directivity coefficient of the slot antenna from increasing as a result. .
- the other branch is connected to the shell floor.
- the spacing between the sides of the plate is not less than a certain distance value, such as 1/2 operating wavelength.
- the size of the antenna branches longer antenna branches distributed along longer sides are beneficial to balancing the horizontal and vertical currents of the floor.
- the length difference between the two antenna branches should not be too large, and the length difference can be adapted to the difference between the length of the housing floor in the horizontal direction and its length in the vertical direction. Specifically, the difference between the length ratio of one branch to another branch and the length ratio of the longer side to the shorter side of the housing floor does not exceed the first value.
- the first housing and the second housing may be two independent metal housings.
- the rotating shaft connects the housing 14 and the housing 16 to form an open groove 71A and an open groove 71B with one end closed and the other end open.
- the grooves 71A and 71B still exist.
- the housing 14 and the housing 16 do not contact each other outside the rotating shaft.
- the first housing and the second housing may be two independent metal housings.
- the grooves 71A and 71B disappear, and the housing 14 and the housing 16 can contact each other outside the rotating shaft to form a short circuit.
- the housing 14 and the housing 16 are equivalent to being combined outside the rotating shaft. Integrated flooring.
- the housing 14 and the housing 16 can be two parts of a whole metal housing.
- This whole metal housing can be folded around the axis of rotation. A bend occurs at the location.
- the housing 14 and the housing 16 are naturally short-circuited because they are a whole body.
- the shell floor is the entire metal shell.
- the slot antenna can be distributed in an area on the floor of the housing adjacent to the folded position, and the first branches are selected to be distributed along the folded position.
- Distributing the antenna branches along the folded position may include: distributing the antenna branches along the side of the housing connected to the rotating shaft. The side of the housing to which the pivot is connected is the point on the floor of the housing closest to the folded position.
- the slot antenna can be distributed in an area on the floor of the housing adjacent to the folded position.
- the first branches can be selected to be distributed along the folded position.
- Distributing the antenna branches along the folded position may include: distributing the antenna branches along the side of the housing connected to the rotating shaft.
- the second branches can also be distributed along the side of the casing without being far away from the side of the casing. Because, when the foldable electronic device is in the open state, the housing 14 and the housing 16 can contact each other outside the rotating shaft to form a short circuit, and the antenna boundary conditions change, which is equivalent to the fact that the first branch is no longer along the floor of the housing. Only the second branch is distributed along the side of the housing floor. The antenna radiation is balanced and the antenna directivity coefficient is low.
- the slot antenna can be distributed in the bending area of the entire metal shell.
- the first branch or the second branch can be selected to be distributed along the folding position.
- the other antenna branch can be arranged along the side of the housing floor, or the other antenna branch can be arranged away from the side of the housing floor.
- the rotating shaft may be made of metal.
- the slot antennas can be further distributed outside the rotating shafts to avoid exciting the long slots between two or more rotating shafts to generate radiation.
- the slot antenna may further include: a third branch formed by the hollow shell floor.
- the third branch may be vertically connected to the other end of the first branch, and the feed point
- the distance between the third branches may be smaller than the second value, for example, 5 mm.
- the slot antenna may further include: a slot formed by slotting at a first position of the first branch, an inductor is loaded in the slot, and the first position includes the first resonance of the slot antenna.
- the frequency of the current is stronger. Slotting and loading an inductor at the current strong point of a resonant frequency can effectively change the resonance position of the resonant frequency and achieve tuning purposes.
- the current intensity point may refer to a location range where the current intensity is high (for example, the current intensity exceeds a specific intensity value). In order to avoid affecting the radiation of the slot antenna at other resonant frequencies, it is also necessary to consider avoiding strong current points at other resonant frequencies when selecting the slot location.
- the number of slot antennas can be multiple to implement MIMO antennas, such as Wi-Fi MIMO antennas.
- the number of slot antennas is specifically two, one slot antenna is arranged on the first outer side of the rotating shaft, and the other slot antenna is arranged on the second outer side of the rotating shaft.
- Figure 1A shows an electronic device including an antenna provided by an embodiment of the present application
- Figure 1B shows two folding directions of the electronic device including the antenna shown in Figure 1A;
- FIG. 2A and Figure 2B show a notebook computer involved in the embodiment of the present application
- Figure 2C shows several areas on the housing
- Figure 3A- Figure 3B shows an antenna design solution for an all-metal ID notebook computer
- Figure 3C shows the feeding position of the antenna design shown in Figures 3A-3B;
- Figure 3D is an antenna pattern simulation showing the antenna design shown in Figures 3A-3B;
- 4A and 4B show a slot antenna included in the foldable electronic device provided by the embodiment of the present application
- Figure 4C shows the current in the housing floor excited by the slot antenna
- Figure 5A shows the antenna layout of the slot antenna provided by the embodiment of the present application
- Figure 5B shows several antenna layouts on the housing floor
- Figure 5C shows the transmission direction of the floor current excited when both branches are distributed along the side of the floor and when the two branches are not distributed along the side of the floor at the same time;
- Figure 6A shows a slot antenna with an antenna branch size
- Figure 6B shows the radiation pattern simulation of the slot antenna of Figure 6A at 2.4GHz
- Figure 6C shows a slot antenna with another antenna branch size
- Figure 6D shows the radiation pattern simulation of the slot antenna of Figure 6C at 2.4GHz
- Figure 6E shows a slot antenna with yet another antenna branch size
- Figure 6F shows the radiation pattern simulation of the slot antenna of Figure 6E at 2.4GHz
- Figure 7 shows an electronic device including an antenna provided by an embodiment of the present application
- Figure 8 shows another electronic device including an antenna provided by an embodiment of the present application
- Figure 9 shows yet another electronic device including an antenna provided by an embodiment of the present application.
- 10A and 10B show another slot antenna included in the foldable electronic device provided by the embodiment of the present application.
- Figure 11A shows the S-parameter curve simulation of the slot antenna shown in Figures 10A and 10B;
- Figures 11B to 11D show the slot antenna shown in Figure 10A operating at 2.4GHz, 4.5GHz, and 6.7GHz. Current distribution simulation under
- Figure 11E shows the radiation pattern simulation of the slot antenna shown in Figure 10A at an operating frequency of 2.4GH
- Figures 12A and 12B show another slot antenna included in the foldable electronic device provided by the embodiment of the present application.
- Figure 13 shows a tuning effect of the slot antenna shown in Figures 12A and 12B;
- Figure 14A shows the S-parameter and efficiency curve simulation of the slot antenna shown in Figures 12A and 12B;
- Figures 14B to 14F show the current distribution simulation of the slot antenna shown in Figure 12A and Figure 12B at the operating frequencies of 1.47GHz, 2.4GHz, 4.5GHz, 5.5GHz, and 7.16GHz;
- Figures 14G to 14J show the radiation pattern simulations of the slot antenna shown in Figure 12A and Figure 12B at the operating frequencies of 2.4GHz, 4.5GHz, 5.5GHz, and 7.16GHz;
- Figure 15 shows a MIMO antenna included in the foldable electronic device provided by the present application.
- the foldable electronic device including an antenna can provide wireless communication services through the antenna, and can adopt one or more of the following communication technologies: global system for mobile communication (GSM) technology, code division multiplexing (code division multiple access, CDMA) communication technology, wideband code division multiple access (WCDMA) communication technology, general packet radio service (GPRS), long term evolution (long term evolution, LTE) Communication technology, Wi-Fi communication technology, 5G communication technology, millimeter wave (mmWave) communication technology, SUB-6G communication technology and other communication technologies in the future.
- GSM global system for mobile communication
- CDMA code division multiplexing
- WCDMA wideband code division multiple access
- GPRS general packet radio service
- long term evolution long term evolution
- LTE long term evolution
- Wi-Fi communication technology 5G communication technology
- mmWave millimeter wave
- SUB-6G communication technology SUB-6G communication technology and other communication technologies in the future.
- the following embodiments do not highlight the requirements of the communication network, but only illustrate the operating characteristics of the antenna in
- the foldable electronic device including the antenna provided by various embodiments of the present application can be bent or folded.
- FIG. 1A schematically illustrates a foldable electronic device including an antenna provided by the present application.
- the foldable electronic device may include: a first body 11 , a second body 12 , and a rotating shaft 13 connecting the first body 11 and the second body 12 .
- the first body 11 and the second body 12 can rotate around the rotation axis 13, and with the rotation, the form of the foldable electronic device can be switched between a folded state and an open state.
- the number of rotating shafts 13 may be one or more, and FIG. 1A shows two examples.
- the first body 11 may include a housing 14 .
- the second body 12 may include a housing 16 .
- the housing 14 and the housing 16 can respectively play a role in protecting the internal components of the first body 11 and the second body 12 .
- the material of the housing may be metal material, such as aluminum-magnesium alloy.
- the casing 14 and the casing 16 may be two independent casings, or may be two parts of an entire casing.
- the entire housing may be a housing that can be bent at the position of the rotating shaft 13 , such as a flexible housing.
- the first body 11 may also include an input/output panel 15 opposite to the housing 14 .
- the second body 12 may also include an input/output panel 17 opposite to the housing 16 .
- One implementation is that when one of the input/output panel 15 and the input/output panel 17 is an input panel (for example, a keyboard panel), the other is an output panel (for example, a display panel).
- Another implementation method is that both the input/output panel 15 and the input/output panel 17 can serve as input panels. and an output panel, wherein the input panel may be, for example, a touch panel, and the output panel may be, for example, a display panel.
- the input/output panel 15 and the input/output panel 17 can be a touch screen that has both a touch panel and a display panel. In this case, the input/output panel 15 and the input/output panel 17 can be a whole piece of flexible touch screen. two parts of the screen.
- the foldable electronic device can be divided into four sides: Side A, Side B, and Side C. and D side.
- surface A is the surface where the housing 14 of the first body 11 is located
- surface B is the surface where the input/output panel 15 of the first body 11 is located
- surface C is the surface where the input/output panel 17 of the second body 12 is located
- Surface D is the surface where the housing 16 of the second body 12 is located.
- the foldable electronic device can be in a fully or nearly fully folded state by folding the first body 11 and the second body 12 inward. At this time, surfaces A and D are exposed, and surfaces B and C may be in partial or complete contact.
- the inward folding may be as shown in FIG. 1B , where the first body 11 and the second body 12 are folded along the first direction 100A.
- the foldable electronic device can also be in another completely or nearly completely folded state by folding the first body 11 and the second body 12 outward. At this time, surface B and surface C are exposed, and surface A and surface D may be in partial or complete contact.
- the outward folding may be as shown in FIG. 1B , where the first body 11 and the second body 12 are folded along the second direction 100B.
- the foldable electronic device can also be in an open state by folding the first body 11 and the second body 12 outward or inward.
- the open state may mean that the angle between the B side and the C side of the foldable electronic device is greater than a specific angle.
- the specific angle may be, for example, 30°, 45°, 60°, 90°, etc., and at this time, the angle between the B side and the C side is
- the input/output panel can be fully exposed to the user so that human-computer interaction can be implemented conditionally.
- the open state can include multiple open positions, and the open position can be defined by the angle between surface B and surface C, such as 90°, 110°, 120°, 150°, 180°, 210°, 300°, etc. When the angle between surface B and surface C is equal to or close to 180°, the foldable electronic device is in a fully or nearly fully opened state.
- the folding position a of the foldable electronic device is not covered by an input/output panel with signal shielding characteristics such as a display screen, so that the area bb on the casing 14 adjacent to the folding position or the area cc on the casing 16 adjacent to the folding position are not in contact with the folding position a.
- the displays are opposite. This point has an important relationship with the antenna layout, which will be expanded on in subsequent embodiments.
- the folding position can be the position where the axis of the rotation shaft passes through, and can be externally expressed as a crease or crease position.
- the area bb or cc adjacent to the folding position may mean that the distance between the farthest point from the folding position in the area bb or cc and the folding position does not exceed a specific distance value, such as 25mm, 30mm, etc.
- the foldable electronic device can be a notebook computer, and the folded position of the notebook computer is not covered by the display screen.
- the first body 11 can be the host body 20
- the second body 12 can be the screen 21
- the housing 14 can be the housing 23 of the host body 20
- the housing 16 can be the housing 22 of the screen 21 .
- the host body 20 can also be equipped with components such as an input panel such as a keyboard, a computer motherboard, a processor, a hard disk, a memory, a universal serial bus (USB) interface, and other components.
- keyboards can also be extended to input components such as touch panels.
- the screen 21 can also be equipped with components such as a display screen, a backlight panel, an integrated circuit (IC), and the like.
- the surface where the casing 22 of the screen 21 is located is the surface A
- the surface where the display screen of the screen 21 is located is the surface B
- the surface where the keyboard on the host body 20 is located is the surface C
- the surface where the casing 23 of the host body 20 is located is the surface D.
- the air inlet grid 24 can be set on the D side, and a serial number (SN) label identifying the identity of the machine can also be pasted.
- FIG. 2C exemplarily shows the casing area of a notebook computer.
- area d is the relative area of the display screen on the housing
- area e is the area adjacent to the folding position. Area e and area d do not overlap. With the popularity of large-screen designs, area d accounts for a large proportion of the housing.
- the foldable electronic device can also be equipped with an antenna.
- the foldable electronic device can also be equipped with an antenna.
- antennas can be designed inside electronic devices.
- foldable electronic devices usually have a small thickness, which results in limited internal space for antenna design.
- the metal shell 14 and the metal shell 16 will form two large floors. Block the antenna signal.
- An all-metal ID may mean that the casing 14, the casing 16 and the rotating shaft 13 of the foldable electronic device are all made of metal.
- an antenna can be set in the area 18 between the two metal rotating shafts 13, such as a flexible printed circuit (FPC) antenna, laser direct structuring, LDS) antenna.
- FPC flexible printed circuit
- LDS laser direct structuring
- FIG 3C also shows the feeding point of the antenna located in area 18, which can be connected to the radio frequency module on the main body side through a coaxial line to realize feeding.
- the directivity of the antenna located in area 18 is poor.
- the directivity coefficient of the antenna when operating in the 2.4G frequency band is as high as 8-8.5dBi, which is not conducive to all-round coverage of the signal.
- the main reasons for poor directivity are: first, when the foldable electronic device is in the open state, taking a laptop as an example, especially when the angle between the screen and the main body of the host is about 110°, as shown in Figure 3D, the antenna The energy is mainly concentrated in front of the screen (side B), and the antenna gain in front of the screen is high, which results in weak signals in other areas, such as weak signals behind the screen (side A); secondly, the casing 14, casing The size of the two floors of the body 16 is large, which results in many floor current cycles and many zero points in the direction diagram excited by the antenna. Thirdly, the antenna also excites the slot 19 to produce radiation, and the high-order mode excited by the slot 19 has very directivity. high.
- various embodiments of the present application provide an antenna design solution applied to the above foldable electronic device.
- the slot antenna can be formed by hollowing out the metal shell 14 or the metal shell 16 .
- the slot antenna may include a first branch 43 and a second branch 45, wherein the first branch 43 and the second branch 45 may be perpendicular to each other, and the antenna shape may be equivalent to bending a strip slot antenna with both ends grounded. look.
- the feed point of the antenna is set on one of the branches, and the antenna can be fed by connecting it to the radio frequency module through a coaxial line.
- the horizontal current and the vertical current on the housing floor can be excited to jointly produce radiation, which can effectively reduce the antenna directivity coefficient, improve the antenna radiation pattern, and enhance Signal coverage capabilities of electronic devices.
- the horizontal and vertical are defined with reference to the foldable electronic device, rather than the earth's coordinate system.
- Horizontal may refer to the extension direction of the axis of the rotating shaft, which is the same as the extending direction of the side of the housing to which the rotating shaft is connected, and vertical refers to the direction perpendicular to the horizontal direction.
- the hollowed-out part of the metal shell to form the slot antenna can be filled with a non-metallic medium with a metal-like appearance to achieve a unified appearance.
- FIG. 4A and FIG. 4B are only examples. In actual applications, these dimensions can be determined according to design requirements such as structure, appearance, circuit, etc., and the various embodiments of the present application do not limit this.
- the antenna layout and antenna branch size of the slot antenna can be considered as follows.
- the slot antenna can be distributed in the area 14B of the housing (taking the housing 14 as an example) adjacent to the folded position. Because this area is not opposite to the display screen, the antenna radiation signal of the slot antenna distributed in this area is not will be blocked by the display.
- area 14A is the area on the housing opposite to the display screen, and the signal radiation of the antenna installed in this area will be shielded by the display screen.
- the slot 19 can be avoided and the slot antenna can be further arranged outside the rotating shaft.
- the first branches 43 are distributed along the side of the housing floor, and the second branches 45 are distributed away from the side of the housing floor. That is, the two branches of the slot antenna are not distributed along the sides of the housing floor at the same time.
- the current distribution on the floor excited by the slot antenna is shown in Figure 5C. Since the second branch 45 is no longer distributed on the side edge, the horizontal current excited by it will be evenly distributed on the floor on both sides of the branch. At this time, the antenna radiation is more balanced in the horizontal direction, and the antenna directivity coefficient is low.
- the branches are distributed along the side of the housing floor, which may mean that the branches are adjacent to the side, or it may be further defined that the branches are parallel to the side. Proximity may mean that the distance from the branch to the side does not exceed a specific distance value, such as 10 mm. Far away may mean that the distance from the branch to the side is not less than a specific distance value, such as 1/2 working wavelength.
- the size of the first branch 43 and the second branch 45 determines the ratio of the horizontal current and vertical current that excites the housing floor, that is, determines whether the horizontal current and vertical current that excite the housing floor can be balanced, thereby affecting the antenna. Balance of pattern coverage.
- the shell floor specification is 304mm*227mm. That is, the length of the housing floor in the horizontal direction is greater than its length in the vertical direction.
- Figure 6A shows a longer (60mm) strip slot antenna with both ends closed, that is, an unbent strip slot antenna.
- Figure 6B shows this slot antenna at an operating frequency of 2.4GHz. direction pattern simulation.
- the antenna directivity coefficient of this slot antenna is about 7.2dBi.
- the antenna radiation is obviously concentrated in the positive direction of the Y-axis.
- the antenna's directivity coefficient is very high, which is not conducive to all-round coverage of the signal.
- Figures 6C to 6E exemplarily show two antenna sizes of the bent L-shaped slot antenna
- Figures 6D to 6F show the pattern simulation of the slot antenna under these two antenna sizes at an operating frequency of 2.4GHz.
- the antenna directivity coefficient is about 3.5dBi, and the antenna radiation in all directions is balanced.
- the linear directivity coefficient increases significantly, about 6.2dBi, and the antenna radiation in each direction is no longer balanced but concentrated to Positive direction of X-axis.
- the slot antenna shown in FIG. 6A can be regarded as an L-shaped slot antenna in which the length of the second branch 45 is zero.
- “adaptive” means that if the difference between the length of the housing floor in the horizontal direction and its length in the vertical direction is larger, the length difference between the two antenna branches can also be correspondingly larger, and vice versa.
- the ratio of the longer side to the shorter side of the floor is 304/227
- the length ratio of an antenna branch distributed along the longer side to another antenna branch is close to the ratio 304/227.
- close may mean that the difference between the length ratio and the ratio 304/227 does not exceed a certain value, such as 20%.
- the horizontal and vertical currents on the housing floor excited by the slot antenna are more balanced, which is more conducive to reducing the antenna directivity coefficient.
- 20% is just an example.
- the selection of this difference can be guided by the result that the antenna directivity coefficient is relatively low.
- the length difference between the two antenna branches is within the coverage of each embodiment of the present application.
- antenna simulations are based on the following environment: the length*width of the metal housing 14 is 304mm*227mm, the length*width of the metal housing 16 is 304mm*227mm, and the overall thickness is 10mm.
- the housing 14 and the housing 16 of the foldable electronic device may be two independent metal housings.
- the housing 14 and the housing 16 can be connected through a metal rotating shaft 13 .
- the rotating shaft 13 connects the housing 14 and the housing 16 to form grooves 71A and 71B that are closed at one end and open at the other end.
- the grooves 71A and 71B still exist. At this time, the housings 14 and 16 do not contact each other outside the rotating shaft 13 .
- the L-shaped slot antenna can be formed by hollowing out the housing floor and includes a first branch 43 and a second branch 45 .
- the housing floor may be composed of a housing 14 or a housing 16 , with housing 14 being used as an example in FIG. 7 .
- the L-shaped slot antenna can be distributed in the area AA on the floor of the housing adjacent to the folded position.
- the first branch 43 can be selected to be distributed along the folded position.
- Distributing the antenna branches along the folded position may include: distributing the antenna branches along the side of the housing connected to the rotating shaft.
- the side of the housing to which the pivot is connected is the point on the floor of the housing closest to the folded position.
- the first branch arranged along the horizontal direction since the length of the housing floor in the horizontal direction is greater than its length in the vertical direction, in order to balance the horizontal and vertical currents that excite the housing floor, the first branch arranged along the horizontal direction
- the nodes 43 may be longer than the second branches 45 arranged in the vertical direction.
- the difference between the two can be adapted to the difference between the length of the housing floor in the horizontal direction and its length in the vertical direction.
- this embodiment does not rule out that the housing floor has another specification: the length in the vertical direction is greater than the length in the horizontal direction.
- the second branches 45 arranged in the vertical direction are larger than the first branches 43 arranged in the horizontal direction, so that the horizontal current and the vertical current of the floor can be excited in a more balanced manner.
- the slot antennas distributed adjacent to the folded position are not located in the opposite area of the display screen on the floor of the housing, and their antenna radiation signals will not be shielded by the display screen.
- the horizontal current on the casing floor excited by the antenna branches distributed along the folded position and the vertical current on the casing floor excited by another antenna branch jointly produce radiation, which can effectively reduce the antenna directivity coefficient.
- the slot antenna is approximately distributed in the middle of the foldable device, and its antenna branches distributed along the folded position can simultaneously excite horizontal currents on the floor of the housing on both sides of the folded position, making the pattern coverage in front of the screen and behind the screen better. balanced.
- the casing 14 and 16 of the foldable electronic device can be two parts of a whole metal casing, and the whole metal casing can be bent around the axis 13 in the folded position.
- the housing 14 and the housing 16 are naturally short-circuited because they are a whole, and there are no open grooves 71A and 71B between them as shown in Figure 7.
- the L-shaped slot antenna can be formed by hollowing out the housing floor and includes a first branch 43 and a second branch 45 .
- the housing floor is the entire metal housing.
- the L-shaped slot antenna can be distributed in the bending area of the entire metal shell.
- the first branch 43 or the second branch 45 can be selected to be distributed along the folded position.
- the other antenna branch can be arranged along the side of the housing floor, or the other antenna branch can be arranged away from the side of the housing floor.
- the first branches 43 may be longer than the second branches 45 arranged in the horizontal direction.
- the difference between the two can be adapted to the difference between the length of the housing floor in the vertical direction and its length in the horizontal direction.
- this embodiment does not rule out the possibility that a whole metal shell may have another specification: the length in the vertical direction is smaller than the length in the horizontal direction.
- the first branches 43 arranged along the horizontal direction are larger than the second branches 45 arranged along the vertical direction, which can stimulate the horizontal current and vertical current of the floor in a more balanced manner.
- the slot antenna distributed in the bending area is naturally adjacent to the folding position of the foldable electronic device and is not located in the opposite area of the display screen on the housing floor, and its antenna radiation signal will not be shielded by the display screen.
- the horizontal current on the casing floor excited by the antenna branches distributed along the folded position and the vertical current on the casing floor excited by another antenna branch jointly produce radiation, which can effectively reduce the antenna directivity coefficient.
- the slot antenna is approximately distributed in the middle of the foldable device, and its antenna branches distributed along the folded position can simultaneously excite horizontal currents on the floor of the housing on both sides of the folded position, making the pattern coverage in front of the screen and behind the screen better. balanced.
- the housing 14 and the housing 16 of the foldable electronic device may be two independent metal housings, and the housing 14 and the housing 16 are connected through the rotating shaft 13 .
- the grooves 71A and 71B disappear, and the housing 14 and the housing 16 can contact each other outside the rotating shaft to form a short circuit.
- the housing 14 and the housing 16 are equivalent. They are combined into an integrated floor outside the rotating shaft 13 .
- the L-shaped slot antenna can be formed by the hollow shell 14 or the shell 16 and includes a first branch 43 and a second branch 45 .
- the housing floor may be an integrated floor formed by the housing 14 and the housing 16 being combined outside the rotating shaft 13 .
- the L-shaped slot antenna can be distributed in the area AA on the floor of the housing adjacent to the folded position.
- the first branches 43 can be selected to be distributed along the folded position as shown in FIG. 9 .
- Distributing the antenna branches along the folded position may include: distributing the antenna branches along the side of the housing connected to the rotating shaft. What is different from the first embodiment is that when the first branches 43 are selected to be distributed along the side of the housing connected to the rotating shaft, as shown in Figure 9, the second branches 45 can also be distributed along the side of the housing without being far away from the housing. side.
- the housing 14 and the housing 16 can contact each other outside the rotating shaft to form a short circuit, and the antenna boundary conditions change, which is equivalent to the first branch 43 no longer running along the housing.
- the side of the floor is distributed, and only the second branch 45 is distributed along the side of the housing floor.
- the antenna radiation is balanced and the antenna directivity coefficient is low.
- the first branches 43 arranged along the vertical direction can Longer than the second branches 45 arranged in the horizontal direction.
- the difference between the two can be adapted to the difference between the length of the housing floor in the vertical direction and its length in the horizontal direction.
- the integrated floor formed by the shell 14 and the shell 16 has another specification: the length in the vertical direction is smaller than the length in the horizontal direction.
- the first branches 43 arranged along the horizontal direction are larger than the second branches 45 arranged along the vertical direction, which can stimulate the horizontal current and vertical current of the floor in a more balanced manner.
- the slot antenna may further include a third branch 46 formed by the hollow shell floor.
- the third branch 46 may also be vertically connected to the first branch.
- the second branch 45 is vertically connected to one end of the first branch 43
- the third branch 46 is vertically connected to the other end of the first branch 43 .
- the feed point can be provided adjacent to the third branch 46 , for example, it can be provided at the connection between the third branch 46 and the first branch 43 .
- the slot antenna may be equivalent to bending the L-shaped slot antenna provided in the above embodiment at the feed point to add a vertical branch at the feed point.
- Proximity may also mean that the distance from the feed point to the third branch 46 along the first branch 43 is less than a certain distance value, such as 5 mm.
- the third branch 46 added at the feed point can be used for impedance tuning, which can enhance resonance and improve radiation efficiency.
- the third branch 46 can be equivalent to an electric inductor. The larger the size, the larger the inductance value.
- the slot antenna operating in a specific frequency band can be impedance matched by selecting the size of the third branch 46 . At this time, the antenna pattern is basically unaffected.
- the simulation of the slot antenna shown in Figure 10A will be described below with reference to the accompanying drawings.
- the antenna dimensions on which the antenna simulation is based are as follows: the first branch 43 is 40 mm long, the second branch 45 is 21 mm long, and the third branch 46 is 14 mm long.
- Figure 11A shows the S-parameter curve simulation of the slot antenna before and after adding the third branch 46.
- the slot antenna can generate resonance in the operating frequency bands of 2.4GHz, 4.5GHz, and 6.7GHz.
- the resonance depth of the rear slot antenna is larger and the antenna radiation is stronger, especially the radiation in the 4.5GHz frequency band is significantly enhanced.
- the antenna provided in Embodiment 4 can also generate resonance in other frequency bands, which can be set by adjusting the size of the antenna branches.
- Figures 11B to 11D show the current distribution simulation of the slot antenna at the operating frequencies of 2.4GHz, 4.5GHz, and 6.7GHz.
- the slot antenna is a half-wavelength slot antenna at 2.4GHz
- the slot antenna is a full-wavelength slot antenna at 4.5GHz
- the slot antenna is a 3/2-wavelength slot antenna at 6.7GHz.
- Figure 11E shows the radiation pattern simulation of the slot antenna shown in Figure 10A at an operating frequency of 2.4GH.
- the antenna radiation pattern takes the simulation of a foldable device opened to a 180° position as an example. It can be seen that adding the third branch 46 basically does not affect the antenna pattern of the slot antenna, and the antenna pattern of the slot antenna still covers evenly.
- a slot 51 can also be formed at a specific position of the first branch 43 , and an inductor can be loaded in the slot 51 . Tuning purposes can be achieved through inductive loading.
- the current strong point in order to change the position of a certain resonance of the slot antenna provided in Embodiment 4, that is, to adjust the antenna frequency band, the current strong point can be determined according to the current distribution of the resonance, and the current strong point can be Slot 51 is opened and the inductor is loaded.
- the original 3/2 wavelength mode resonance at 6.7GHz can be tuned into the 5G band (450MHz-6000MHz).
- 450MHz-6000MHz is 5G frequency range 1 (Frequency Range 1, FR1).
- the current strong point is the location of the strong current determined by analyzing the current intensity distribution. For multi-frequency antennas, you can view the current distribution at different resonant frequencies and find the strong current points at each frequency. Slotting and loading an inductor at the current strong point of a resonant frequency can effectively change the resonance position of the resonant frequency and achieve tuning purposes.
- the current intensity point may refer to a location range where the current intensity is high (for example, the current intensity exceeds a specific intensity value).
- the simulation of the slot antenna shown in Figure 12A will be described below with reference to the accompanying drawings.
- the antenna dimensions on which the antenna simulation is based are as follows: the first branch 43 is 40 mm long, the second branch 45 is 21 mm long, and the third branch 46 is 14 mm long.
- Figure 14A shows a simulation of the S-parameters and efficiency curves of the slot antenna shown in Figure 12A.
- the slot antenna can generate resonance in the operating frequency bands of 1.47GHz, 2.4GHz, 4.5GHz, 5.5GHz, and 7.16GHz.
- the antenna radiation efficiency is high.
- the slot antenna with slot 51 and loaded with inductance can cover more operating frequency bands.
- Figures 14B to 14F show current distribution simulations of the slot antenna shown in Figure 12A at operating frequencies of 1.47GHz, 2.4GHz, 4.5GHz, 5.5GHz, and 7.16GHz.
- the slot 71A or slot 71B outside the rotating shaft is excited to work in the 1/4 wavelength mode at 1.47GHz
- the slot antenna works in the half-wavelength mode at 2.4GHz
- the slot antenna works in the full wavelength mode at 4.5GHz
- the slot antenna works in the full wavelength mode at 5.5GHz.
- the slot antenna under GHz works in 3/2 wavelength mode
- the slot antenna under 7.16GHz works in half-wavelength mode.
- Figures 14G to 14J show the radiation pattern simulations of the slot antenna shown in Figure 12A at several operating frequencies of 2.4GHz, 4.5GHz, 5.5GHz, and 7.16GHz.
- the antenna radiation pattern takes the simulation situation where the foldable device is opened to the 110° position as an example.
- Foldable electronic devices may include multiple slot antennas provided in the above embodiments to implement multiple input multiple output (multi input multi output, MIMO) antennas, such as wireless fidelity (Wi-Fi) MIMO antennas.
- MIMO multiple input multiple output
- Wi-Fi wireless fidelity
- two slot antennas can be arranged on the floor of the housing in an area adjacent to the folded position and located outside the rotating shaft, one on the first outer side of the rotating shaft and the other on the second outer side of the rotating shaft.
- the foldable electronic device has a single hinge or multiple hinges, it only has two outer sides. Multiple spindles can be considered as a whole.
- the rotating shaft is connected to the housing to form an open slot with one end closed and the other end open.
- the slot antenna is not limited to being formed by hollowing out a metal shell.
- the slot antenna may also be formed by hollowing out other metal floors disposed in the first body 11 or the second body 12 .
- the housing 14 and the housing 16 are non-metallic, and the slot antenna can be formed by hollowing out other metal floors adjacent to the folded position.
- the foldable electronic device including the slot antenna provided by various embodiments of the present application can also limit the antenna gain to meet the effective isotropic radiated power (EIRP) without changing the antenna efficiency. and power spectral density (PSD) related regulations to obtain good wired conduction power and improve the over-the-air (OTA) performance of electronic equipment.
- EIRP effective isotropic radiated power
- PSD power spectral density
- the antenna branch is along the side of the housing (or the housing floor), which may mean that the antenna branch is adjacent to the side, or it may be further defined that the antenna branch is parallel to the side.
- Proximity may mean that the distance from the antenna branch to the side does not exceed a specific distance value, such as 10 mm.
- Far away may mean that the distance from the antenna branch to the side exceeds a specific distance value, such as 40 mm.
- the antenna branch mentioned in the above embodiments is "adjacent" to the side of the housing (or housing floor), which may mean that the distance from the center point of the antenna branch to the side does not exceed a certain distance value, or that the antenna branch The average distance from all points on the antenna to the side does not exceed a certain distance value, or the distance from the farthest point on the antenna branch to the side does not exceed a certain distance value.
- the antenna branch mentioned in the above embodiments is "far away" from the side of the housing (or housing floor), which may mean that the distance from the center point of the antenna branch to the side is not less than a certain distance value, or that the antenna branch The average distance from all points on the antenna to the side is not less than a certain distance value, or the distance from the nearest point on the antenna branch to the side is not less than a certain distance value.
- open and closed mentioned in the above embodiments may be relative to each other. Closed refers to grounding and open refers to not grounded. Or it may be relative to other conductors. Closed refers to electrical connection to other conductors. , open means not electrically connected to other conductors.
- the feed point may refer to any point in the connection area (also called the connection point) between the feed line and the conductor.
- An antenna branch parallel to the side of the casing may mean that the vertical distances from various points on the antenna branch, such as the two end points and the midpoint, to the side of the casing are nearly equal or measured in a specific distance measurement unit (such as millimeters). Same distance value.
- the operating wavelength of an antenna in a certain wavelength mode may refer to the wavelength of a signal radiated by the antenna.
- the half-wavelength mode of a suspended metal antenna can produce resonance in the 1.575GHz frequency band, where the operating wavelength in the half-wavelength mode refers to the wavelength at which the antenna radiates signals in the 1.575GHz frequency band.
- the wavelength of the radiation signal in the medium can be calculated as follows: Among them, ⁇ is the relative dielectric constant of the medium, and frequency is the frequency of the radiation signal.
- the gaps and grooves in the above embodiments can be filled with insulating medium.
- the "working wavelength” mentioned in the above embodiments may refer to the wavelength corresponding to the center frequency of the resonant frequency.
- the operating wavelength can be the wavelength calculated using the frequency of 1955MHz.
- the "operating wavelength” can also refer to the wavelength corresponding to the non-center frequency of the resonant frequency.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Support Of Aerials (AREA)
Abstract
本申请实施例提供了一种包括天线的可折叠电子设备,该可折叠电子设备可包括:第一主体、第二主体,以及连接第一主体和第二主体的转轴。第一主体、第二主体可绕转轴发生转动,伴随该转动,可折叠电子设备的形态可以在折叠态、打开态之间发生切换。该天线可以是通过镂空第一主体或第二主体的金属壳体来形成的槽天线。该槽天线可包括第一枝节和第二枝节,其中第一枝节和第二枝节可以相互垂直。这样,因第一枝节和第二枝节相互垂直,而可以激励起壳体地板上的水平电流和垂直电流,共同产生辐射,可以有效降低天线方向性系数,改善天线辐射方向图,提升电子设备的信号覆盖能力。
Description
本申请要求于2022年08月03日提交中国专利局、申请号为202210926607.7、申请名称为“包括天线的可折叠电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及天线技术领域,特别涉及包括天线的可折叠电子设备。
全金属工业设计(industry design,ID)的轻薄个人电脑(personal computer,PC)具有屏幕侧壳体和键盘侧壳体两块大地板,且整机厚度很小,留给天线设计的内部空间小,为天线设计带来了新的挑战。
发明内容
本申请的各种实施例提供了一种包括天线的可折叠电子设备,该天线不受有限内部空间的限制,而且天线方向性系数低,信号覆盖能力优。
本申请各种实施例提供的可折叠电子设备可包括:第一主体、第二主体,以及连接第一主体和第二主体的转轴,第一主体、第二主体可绕转轴发生转动。其中,第一主体可包括金属的壳体14,壳体14可以称为第一壳体;第二主体可包括金属的壳体16,壳体16可以称为第二壳体。
该可折叠电子设备还可包括:通过镂空壳体地板形成的槽天线,槽天线可包括第一枝节和第二枝节,第二枝节垂直连接于第一枝节的一端,槽天线的馈电点设置在其中一个枝节上。
这样,因第一枝节和第二枝节相互垂直,而可以激励起壳体地板上的水平电流和垂直电流,共同产生辐射,可以有效降低天线方向性系数,改善天线辐射方向图,提升可折叠电子设备的信号覆盖能力。
其中,槽天线可以分布于壳体地板上邻近折叠位置的区域。可折叠电子设备的折叠位置处不被显示屏等有信号屏蔽特性的输入/输出面板覆盖,可使得壳体地板上邻近折叠位置的区域不与显示屏相对,从而可以避免显示屏屏蔽天线辐射信号。折叠位置可以是转轴轴线贯穿的位置,可以外部表现为折痕、折缝位置。邻近折叠位置的区域可以是指,该区域中距离折叠位置最远的点与折叠位置的间距不超过特定距离值,例如25mm,30mm等。
进一步的,关于天线枝节在壳体地板上的布局可以进行如下考虑:第一枝节和第二枝节不同时沿壳体地板的侧边分布。这样,可避免地板垂直侧边分布的垂直枝节激励起的地板水平电流在该垂直枝节两侧分布不均衡,进而避免天线辐射在水平方向上不均衡,避免槽天线的方向性系数因此而升高。
当第一枝节和第二枝节中的一个枝节沿壳体地板的侧边分布时,另一个枝节与壳体地
板的侧边之间的间距不小于特定距离值,例如1/2个工作波长。
进一步的,关于天线枝节的尺寸可以进行如下考虑:沿更长侧边分布的天线枝节更长有益于均衡地板的水平电流、垂直电流。而且,两个天线枝节之间的长度差不宜太大,该长度差可以与壳体地板在水平方向上的长度和其在垂直方向上的长度之差相适应。具体的,一个枝节与另一个枝节的长度比值,和,壳体地板的较长侧边与较短侧边的长度比值,之差不超过第一值。
基于上述可折叠电子设备,在第一种可能的实现方式中,第一壳体、第二壳体可以是两块独立的金属壳体。在转轴外侧,转轴连接壳体14、壳体16而形成一端封闭、另一端开放的开放槽71A、开放槽71B。而且,在可折叠电子设备处于打开态时,槽71A、槽71B依然存在,此时壳体14、壳体16在转轴外侧并不会相互接触。
基于上述可折叠电子设备,在第二种可能的实现方式中,第一壳体、第二壳体可以是两块独立的金属壳体。当可折叠电子设备处于打开态时,槽71A、槽71B消失,壳体14和壳体16能够在转轴外侧相互接触形成短接,此时壳体14和壳体16相当于在转轴外侧联合成一体化的地板。
基于上述可折叠电子设备,在第三种可能的实现方式中,壳体14、壳体16可以是一整块金属壳体的两个部分,这一整块金属壳体可以绕转轴而在折叠位置处发生弯折。此时,在转轴外侧,壳体14、壳体16因是一整体而自然短接。壳体地板即这一整块金属壳体。
基于上述第一种可能的实现方式,进一步的:槽天线可以分布在壳体地板上邻近折叠位置的区域,选择第一枝节沿折叠位置分布。天线枝节沿折叠位置分布可以包括:将该天线枝节沿转轴所连接的壳体侧边分布。转轴所连接的壳体侧边是壳体地板上最邻近折叠位置的地方。当选择第一枝节沿转轴所连接的壳体侧边分布时,第二枝节与壳体侧边的距离不小于1/2个工作波长,以均衡激励起壳体地板的水平电流和垂直电流。
基于上述第二种可能的实现方式,进一步的:槽天线可以分布在壳体地板上邻近折叠位置的区域,具体可以选择第一枝节沿折叠位置分布。天线枝节沿折叠位置分布可以包括:将该天线枝节沿转轴所连接的壳体侧边分布。当选择第一枝节沿转轴所连接的壳体侧边分布时,第二枝节也可以沿壳体侧边分布而不远离壳体侧边。因为,在可折叠电子设备处于打开态时,壳体14和壳体16能够在转轴外侧相互接触形成短接,天线边界条件因而发生改变,相当于第一枝节此时不再沿壳体地板的侧边分布,仅有第二枝节沿壳体地板的侧边分布,天线辐射均衡,天线方向性系数较低。
基于上述第三种可能的实现方式,进一步的:槽天线可以分布在这一整块金属壳体的弯折区域,具体可以选择第一枝节或第二枝节沿折叠位置而分布。当选择两个天线枝节中的一个沿折叠位置而设时,可以将另一个天线枝节沿壳体地板的侧边而设,也可以将另一个天线枝节远离壳体地板的侧边而设。
基于上述多种可能的实现方式,进一步的,转轴可以是金属的。此时,槽天线可进一步分布于转轴外侧,避免激励起两个或以上个转轴之间的长槽产生辐射。
基于上述多种可能的实现方式,进一步的,槽天线还可以包括:通过镂空壳体地板形成的第三枝节,第三枝节可以垂直连接于第一枝节的另一端,馈电点到第三枝节的间距可以小于第二值,例如5mm。
基于上述多种可能的实现方式,进一步的,槽天线还可以包括:在第一枝节的第一位置处开槽形成的槽,槽内加载有电感,第一位置包括槽天线的第一谐振频率的电流强点。在一个谐振频率的电流强点处开槽加载电感能够有效改变该谐振频率的谐振的位置,实现调谐目的。电流强点可以是指电流强度高(例如电流强度超过特定强度值)的一个位置范围。为避免影响槽天线在其他谐振频率的辐射,选择的开槽位置时还需考虑避开其他谐振频率的电流强点。
以上内容描述的折叠电子设备中,槽天线的数量可以为多个,以实现MIMO天线,例如Wi-Fi MIMO天线。一种可能中,槽天线的数量具体为两个,一个槽天线设于转轴的第一外侧,另一个槽天线设于转轴第二外侧。
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1A示出了本申请实施例提供的包括天线的电子设备;
图1B示出了图1A所示的包括天线的电子设备的两种折叠方向;
图2A和图2B示出了本申请实施例涉及的笔记本电脑;
图2C示出了壳体上的几种区域;
图3A-图3B示出了一种在全金属ID的笔记本电脑的天线设计方案;
图3C是示出了图3A-图3B所示天线设计方案的馈电位置;
图3D是示出了图3A-图3B所示天线设计方案的天线方向图仿真;
图4A和图4B示出了本申请实施例提供的可折叠电子设备包括的一种槽天线;
图4C示出了槽天线激励起的壳体地板的电流;
图5A示出了本申请实施例提供的槽天线的天线布局;
图5B示出了在壳体地板上的几种天线布局;
图5C示出了两个枝节都沿地板侧边分布与两个枝节不同时沿地板侧边分布所激励起地板电流的传输方向;
图6A示出了一种天线枝节尺寸的槽天线;
图6B示出了图6A槽天线在2.4GHz下辐射方向图仿真;
图6C示出了另一种天线枝节尺寸的槽天线;
图6D示出了图6C槽天线在2.4GHz下辐射方向图仿真;
图6E示出了再一种天线枝节尺寸的槽天线;
图6F示出了图6E槽天线在2.4GHz下辐射方向图仿真;
图7示出了本申请实施例提供的一种包括天线的电子设备;
图8示出了本申请实施例提供的另一种包括天线的电子设备;
图9示出了本申请实施例提供的再一种包括天线的电子设备;
图10A和图10B示出了本申请实施例提供的可折叠电子设备包括的另一种槽天线;
图11A示出了图10A和图10B所示槽天线的S参数曲线仿真;
图11B-图11D示出了图10A所示槽天线在2.4GHz、4.5GHz、6.7GHz这几种工作频率
下的电流分布仿真;
图11E示出了图10A所示槽天线在2.4GH工作频率下的辐射方向图仿真;
图12A和图12B示出了本申请实施例提供的可折叠电子设备包括的另一种槽天线;
图13示出了图12A和图12B所示槽天线的一个调谐效果;
图14A示出了图12A和图12B所示槽天线的S参数和效率曲线仿真;
图14B至图14F示出了图12A和图12B所示槽天线在1.47GHz、2.4GHz、4.5GHz、5.5GHz、7.16GHz这几种工作频率下的电流分布仿真;
图14G至图14J示出了图12A和图12B所示槽天线在2.4GHz、4.5GHz、5.5GHz、7.16GHz这几种工作频率下的辐射方向图仿真;
图15示出了本申请提供的可折叠电子设备包括的MIMO天线。
下面结合附图对本申请实施例进行描述。
本申请各个实施例提供的包括天线的可折叠电子设备可以通过天线提供无线通信服务,可采用以下一种或多种通信技术:全球移动通讯(global system for mobile communication,GSM)技术、码分多址(code division multiple access,CDMA)通信技术、宽带码分多址(widebandcode division multiple access,WCDMA)通信技术、通用封包无线服务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)通信技术、Wi-Fi通信技术、5G通信技术、毫米波(mmWave)通信技术、SUB-6G通信技术以及未来其他通信技术等。以下实施例不突出通信网络的需求,仅以频段高低说明天线的工作特性。
本申请各个实施例提供的包括天线的可折叠电子设备可以弯曲或者折叠。
图1A示例性示出了本申请提供的包括天线的可折叠电子设备。如图1A所示,可折叠电子设备可包括:第一主体11、第二主体12,以及连接第一主体11和第二主体12的转轴13。
第一主体11、第二主体12可绕转轴13发生转动,伴随该转动,可折叠电子设备的形态可以在折叠态、打开态之间发生切换。转轴13的数量可以是一个或多个,图1A以两个示例。
第一主体11可以包括壳体14。第二主体12可以包括壳体16。壳体14、壳体16可以分别起到保护第一主体11、第二主体12内部器件的作用。壳体的材料可以是金属材料,例如铝镁合金。
壳体14、壳体16可以是两片独立的壳体,也可以是一整片壳体的两个部分。当壳体14、壳体16为后者时,这一整片壳体可以是能够在转轴13位置处发生弯折的壳体,例如柔性壳体。
第一主体11还可以包括与壳体14相对而设的输入/输出面板15。第二主体12还可以包括与壳体16相对而设的输入/输出面板17。一种实现方式是,当输入/输出面板15、输入/输出面板17中的一个为输入面板(例如键盘面板)时,另一个则为输出面板(例如显示面板)。另一种实现方式是,输入/输出面板15、输入/输出面板17都可以兼具输入面板
和输出面板,其中输入面板可例如为触控面板,输出面板可例如为显示面板。例如,输入/输出面板15、输入/输出面板17可以为兼具触控面板和显示面板的触控屏,此时,输入/输出面板15和输入/输出面板17可以为一整片柔性触控屏的两个部分。
为了方便描述可折叠电子设备的折叠态、打开态以及介于二者之间的动态切换,如图1A所示,可以将可折叠电子设备分为四个面:A面、B面、C面和D面。其中,其中,A面为第一主体11的壳体14所在面,B面为第一主体11的输入/输出面板15所在面,C面为第二主体12的输入/输出面板17所在面,D面为第二主体12的壳体16所在面。
可折叠电子设备可以通过向内折第一主体11和第二主体12而处于一种完全或近完全折叠态。此时,A面和D面暴露在外,B面和C面可发生部分或完全接触。这里,向内折可以如图1B所示,第一主体11和第二主体12沿第一方向100A发生折叠。
可折叠电子设备也可以通过向外折第一主体11和第二主体12而处于另一种完全或近完全折叠态。此时,B面和C面暴露在外,A面和D面可发生部分或完全接触。这里,向外折可以如图1B所示,第一主体11和第二主体12沿第二方向100B发生折叠。
可折叠电子设备也可以通过向外折或向内折第一主体11和第二主体12而处于打开态。打开态可以是指可折叠电子设备的B面和C面之间的夹角大于特定角度,该特定角度可例如30°、45°、60°、90°等,此时B面和C面的输入/输出面板能够充分暴露于用户而使得人机交互有条件实施。打开态可以包括多个打开位置,该打开位置可以用B面和C面之间的夹角来定义,例如90°、110°、120°、150°、180°、210°、300°等。当B面和C面之间的夹角等于或接近于180°时,可折叠电子设备处于完全或近完全打开态。
可折叠电子设备的折叠位置a处不被显示屏等有信号屏蔽特性的输入/输出面板覆盖,可使得壳体14上邻近折叠位置的区域bb或壳体16上邻近折叠位置的区域cc不与显示屏相对。这一点和天线布局有着重要关系,后续实施例中会展开。折叠位置可以是转轴轴线贯穿的位置,可以外部表现为折痕、折缝位置。区域bb或cc邻近折叠位置可以是指,区域bb或cc中距离折叠位置最远的点与折叠位置的间距不超过特定距离值,例如25mm,30mm等。
举例说明,如图2A和图2B所示,可折叠电子设备可以为笔记本电脑,笔记本电脑的折叠位置处没有被显示屏覆盖。此时,第一主体11可以是主机主体20,第二主体12可以是屏幕21;壳体14可以是主机主体20的壳体23,壳体16可以是屏幕21的壳体22。除了壳体23,主机主体20还可配置有键盘这类输入面板、计算机主板、处理器、硬盘、内存、通用串行总线(universal serial bus,USB)接口等部件。不限于传统意义上的实体按键,键盘还可以扩展至触控面板等输入部件。除了壳体22,屏幕21还可配置有显示屏、背光板、集成电路(integrated circuit,IC)等部件。屏幕21的壳体22所在面为A面,屏幕21的显示屏所在面为B面,主机主体20上的键盘所在面为C面,主机主体20的壳体23所在面为D面。D面可以设置进风栅格24,还可以粘贴有标识机器身份的序列码(serial number,SN)标签。图2C示例性示出了笔记本电脑的壳体区域。其中,区域d为显示屏在壳体上的相对区域,区域e为邻近折叠位置的区域。区域e与区域d不重叠。随着大屏设计流行,区域d在壳体中占比很大。
不限于上面提及的壳体14、壳体16以及转轴13等,可折叠电子设备还可配置有天线,
以实现上述一种或多种通信技术。
传统的做法是,天线可以设计在电子设备内部。但是,可折叠电子设备通常整机厚度小从而导致天线设计的内部空间有限,且对于全金属ID的可折叠电子设备来说,其金属壳体14和金属壳体16会形成两块大地板而对天线信号形成遮挡。全金属ID可以是指,可折叠电子设备的壳体14、壳体16以及转轴13都是金属的。
考虑到这些问题,如图3A和图3B所示,可以在两个金属的转轴13之间的区域18中设置天线,例如柔性电路板(flexible printed circuit,FPC)天线、激光直接成型(laserdirectstructuring,LDS)天线。在区域18,两个金属的转轴13将壳体14和壳体16连接起来形成了两端接地的封闭槽(slot)19,这样天线可以通过槽19向外辐射。图3C还示出了设于区域18中的天线的馈电点,可通过同轴线与主体侧的射频模块连接来实现馈电。但是,设于区域18中的天线的方向性差,如图3D所示,天线工作在2.4G频段时的方向性系数高达到8~8.5dBi,不利于信号的全方位覆盖。方向性差的主要原因有:其一,当可折叠电子设备处于打开态,以笔记本电脑为例,尤其是屏幕和主机主体之间呈约110°的夹角时,如图3D所示,天线的能量主要集中在屏幕前方(B面这一侧),屏幕前方的天线增益高,这导致其他区域的信号弱,如屏幕后方(A面这一侧)信号弱;其二,壳体14、壳体16两块地板的尺寸较大,导致天线激励的地板电流周期多,方向图零点多;其三,天线还会激励起槽19产生辐射,槽19被激励起的高次模的方向性很高。
为了解决上述天线设计问题,本申请各个实施例提供了应用于上述可折叠电子设备的天线设计方案。
如图4A和图4B所示,可以通过镂空金属壳体14或金属壳体16来形成槽天线。该槽天线可包括第一枝节43和第二枝节45,其中第一枝节43和第二枝节45可以相互垂直,天线形态可相当于是将两端接地的条形槽天线进行弯折后形成的样子。该天线的馈电点设置在其中一个枝节上,可通过同轴线与射频模块连接来实现对天线馈电。这样,因第一枝节43和第二枝节45相互垂直,而可以激励起壳体地板上的水平电流和垂直电流,共同产生辐射,可以有效降低天线方向性系数,改善天线辐射方向图,提升电子设备的信号覆盖能力。
该槽天线激励起地板的电流分布可如图4C所示。
其中,水平、垂直是以可折叠电子设备为参考而定义的,而非参考地球坐标系。水平可以是指转轴轴线的延伸方向,同于转轴所连接的壳体侧边的延伸方向,垂直便是指与水平方向相垂直的方向。金属壳体因形成槽天线而被镂空的部分可填充外观类金属的非金属介质以实现外观的统一。
图4A和图4B中示出的尺寸仅仅是一种示例,实际应用中,这些尺寸可以根据结构、外观、电路等设计需求来确定,本申请各个实施例对此不作限制。
进一步的,槽天线的天线布局以及天线枝节尺寸可作如下考虑。
1.天线布局
如图5A所示,该槽天线可分布于壳体(以壳体14示例)上邻近折叠位置的区域14B,因为该区域不与显示屏相对,分布在该区域的槽天线的天线辐射信号不会被显示屏屏蔽。
图5A中,区域14A是壳体上与显示屏相对的区域,在该区域设置的天线的信号辐射会受显示屏屏蔽。
对于具有两个或更多金属转轴的可折叠电子设备,为避免转轴连接金属壳体形成的长槽19被激励产生方向性系数高的高次模的问题,镂空壳体地板形成槽天线时,如图5A所示,可以避开槽19而进一步将槽天线设于转轴外侧。
另外,当两个枝节都沿着壳体地板的侧边分布时,激励起地板的电流分布如图5B所示,沿水平侧边分布的第一枝节43激励起地板的垂直电流,沿垂直侧边分布的第二枝节45激励起地板的水平电流。但,因第二枝节45分布在侧边边缘,所以其激励起的水平电流集中分布在该枝节一侧的地板上,从而导致该枝节另一侧因地板空间极小而水平电流很弱。此时,天线辐射在水平方向上不均衡,槽天线的方向性系数会显著升高。考虑到这一点,两个枝节中,只选择一个可以沿壳体地板的侧边分布,另一个需要远离壳体地板的侧边。例如,如图5C所示,第一枝节43沿壳体地板的侧边分布,第二枝节45远离壳体地板的侧边分布。即,槽天线的两个枝节不同时沿壳体地板的侧边分布。此时,槽天线激励起地板的电流分布如图5C所示,因第二枝节45不再分布在侧边边缘,所以其激励起的水平电流会均衡的分布在该枝节两侧的地板上。此时,天线辐射在水平方向上更加均衡,天线方向性系数低。这里,枝节沿壳体地板的侧边分布,可以是指该枝节邻近于该侧边,也可以进一步限定该枝节平行于该侧边。邻近可以是指该枝节到该侧边的距离不超过特定距离值,例如10mm。远离可以是指该枝节到该侧边的距离不小于特定距离值,例如1/2个工作波长。
2.天线枝节尺寸
第一枝节43、第二枝节45的尺寸决定了激励起壳体地板的水平电流、垂直电流的比例,即决定了是否能均衡激励起壳体地板的水平电流和垂直电流,从而会影响天线方向图覆盖的均衡性。
假设壳体地板规格为304mm*227mm。即,壳体地板在水平方向上的长度大于其在垂直方向上的长度。
首先,作为对照,图6A示出了两端封闭的、较长(60mm)的条形槽天线,即未弯折的条形槽天线,图6B示出了2.4GHz工作频率下这种槽天线的方向图仿真。
可以看出,这种槽天线的天线方向性系数约7.2dBi,天线辐射明显集中到Y轴正方向,天线的方向系数很高,不利于信号的全方位覆盖。
其次,图6C至图6E示例性示出了弯折的L型槽天线的两种天线尺寸,图6D至图6F示出了2.4GHz工作频率下这两种天线尺寸下槽天线的方向图仿真。如图6C和图6D所示,当第一枝节43比第二枝节45长15mm时,天线方向性系数约3.5dBi,各个方向上的天线辐射均衡。而如图6E和图6F所示,当第一枝节43比第二枝节45短15mm时,线方向性系数显著升高,约6.2dBi,各个方向上的天线辐射不再均衡而是集中到X轴正向方向。
也即,沿更长侧边分布的天线枝节更长有益于均衡地板的水平电流、垂直电流。进一步的,两个天线枝节之间的长度差不宜太大,该长度差可以与壳体地板在水平方向上的长度和其在垂直方向上的长度之差相适应,这样可以进一步降低天线方向性系数,提升信号全方位覆盖能力。其中,图6A所示的槽天线可以看作是第二枝节45的长度为零的L型槽天线。
其中,“相适应”是指,若壳体地板在水平方向上的长度与其垂直方向上的长度之差越大,则这两个天线枝节之间的长度差也可以相应更大,反之则反。例如,地板的较长侧边与较短侧边的比值为304/227,沿较长侧边分布的天线枝节与另一天线枝节的长度比值与该比值304/227接近。这里,接近可以是指长度比值与该比值304/227的差值不超过一定值,例如20%。此时,槽天线激励起的壳体地板的水平电流、垂直电流更加均衡,更有利于降低天线方向性系数。当然,20%仅是一种示例,实际应用中,该差值的选择可以以天线方向性系数相对较低这一结果为导向。只要实施该“相适应”有利于进一步降低天线方向性系数,这两个天线枝节之间的长度差就都处于本申请各个实施例覆盖范围。
下面结合附图详细说明本申请各个实施例。以下实施例中,天线仿真均基于如下的环境:金属壳体14的长*宽为304mm*227mm,金属壳体16的长*宽为304mm*227mm,整机厚度10mm。
实施例一
如图7所示,可折叠电子设备的壳体14、壳体16可以是两块独立的金属壳体。壳体14和壳体16可通过金属转轴13连接。在金属转轴13外侧,转轴13连接壳体14、壳体16而形成一端封闭、另一端开放的槽71A、槽71B。而且,如图7所示,在可折叠电子设备处于打开态时,槽71A、槽71B依然存在,此时壳体14、壳体16在转轴13外侧并不会相互接触。
可折叠电子设备中,L型槽天线可以通过镂空壳体地板而形成,包括第一枝节43和第二枝节45。该壳体地板可以由壳体14或壳体16而构成,图7以壳体14示例。L型槽天线可以分布在壳体地板上邻近折叠位置的区域AA,具体可以如图7所示,选择第一枝节43沿折叠位置分布。天线枝节沿折叠位置分布可以包括:将该天线枝节沿转轴所连接的壳体侧边分布。转轴所连接的壳体侧边是壳体地板上最邻近折叠位置的地方。当选择第一枝节43沿转轴所连接的壳体侧边分布时,第二枝节45可远离壳体侧边,以均衡激励起壳体地板的水平电流和垂直电流。
参见前述天线枝节尺寸的内容,由于壳体地板在水平方向的长度大于其在垂直方向的长度,因此,为了均衡激励起壳体地板的水平电流和垂直电流,沿水平方向排布的第一枝节43可以长于沿垂直方向排布的第二枝节45。二者的差距可与壳体地板在水平方向的长度与其在垂直方向的长度的差距相适应。当然,本实施例不排除壳体地板呈现另一种规格:垂直方向的长度大于水平方向的长度。此时,沿垂直排布的第二枝节45大于沿水平方向排布的第一枝节43,可以更均衡的激励起地板的水平电流和垂直电流。
实施例一中,邻近折叠位置而分布的槽天线,没有处于显示屏在壳体地板上的相对区域,其天线辐射信号不会被显示屏屏蔽。沿折叠位置而分布的天线枝节激励起的壳体地板的水平电流,与另一天线枝节激励起的壳体地板的垂直电流,共同产生辐射,可以有效降低天线方向性系数。不仅于此,此时槽天线近似分布在可折叠设备的中间,其沿折叠位置而分布的天线枝节可同时激励起折叠位置两侧壳体地板的水平电流,使得屏前屏后方向图覆盖更均衡。
实施例二
如图8所示,可折叠电子设备的壳体14、壳体16可以是一整块金属壳体的两个部分,这一整块金属壳体可以绕转轴13而在折叠位置处发生弯折。此时,在转轴13外侧,壳体14、壳体16因是一整体而自然短接,二者之间没有图7所示的开放槽71A、槽71B。
可折叠电子设备中,L型槽天线可以通过镂空壳体地板而形成,包括第一枝节43和第二枝节45。该壳体地板即这一整块金属壳体。
L型槽天线可以分布在这一整块金属壳体的弯折区域,具体可以选择第一枝节43或第二枝节45沿折叠位置而分布。当选择两个天线枝节中的一个沿折叠位置而设时,可以将另一个天线枝节沿壳体地板的侧边而设,也可以将另一个天线枝节远离壳体地板的侧边而设。
参见前述天线枝节尺寸的内容,由于一整块金属壳体在垂直方向的长度明显大于其在水平方向的长度,因此,为了均衡激励起壳体地板的水平电流和垂直电流,沿垂直方向排布的第一枝节43可以长于沿水平方向排布的第二枝节45。二者的差距可与壳体地板在垂直方向的长度与其在水平方向的长度的差距相适应。当然,本实施例不排除一整块金属壳体呈现另一种规格:垂直方向的长度小于水平方向的长度。此时,沿水平方向排布的第一枝节43大于沿垂直排布的第二枝节45,可以更均衡的激励起地板的水平电流和垂直电流。
实施例二中,分布在该弯折区域中的槽天线自然与可折叠电子设备的折叠位置邻近,没有处于显示屏在壳体地板上的相对区域,其天线辐射信号不会被显示屏屏蔽。沿折叠位置而分布的天线枝节激励起的壳体地板的水平电流,与另一天线枝节激励起的壳体地板的垂直电流,共同产生辐射,可以有效降低天线方向性系数。不仅于此,此时槽天线近似分布在可折叠设备的中间,其沿折叠位置而分布的天线枝节可同时激励起折叠位置两侧壳体地板的水平电流,使得屏前屏后方向图覆盖更均衡。
实施例三
可折叠电子设备的壳体14、壳体16可以是两块独立的金属壳体,壳体14和壳体16通过转轴13连接。如图9所示,当可折叠电子设备处于打开态时,槽71A、槽71B消失,壳体14和壳体16能够在转轴外侧相互接触形成短接,此时壳体14和壳体16相当于在转轴13外侧联合成一体化的地板。
可折叠电子设备中,L型槽天线可以通过镂空壳体14或壳体16而形成,包括第一枝节43和第二枝节45。在可折叠电子设备处于打开态时,该壳体地板可以为壳体14和壳体16在转轴13外侧联合所形成的一体化地板。
L型槽天线可以分布在壳体地板上邻近折叠位置的区域AA,具体可以如图9所示选择第一枝节43沿折叠位置分布。天线枝节沿折叠位置分布可以包括:将该天线枝节沿转轴所连接的壳体侧边分布。与实施例一不同的是,当选择第一枝节43沿转轴所连接的壳体侧边分布时,如图9所示,第二枝节45也可以沿壳体侧边分布而不远离壳体侧边。因为,在可折叠电子设备处于打开态时,壳体14和壳体16能够在转轴外侧相互接触形成短接,天线边界条件因而发生改变,相当于第一枝节43此时不再沿壳体地板的侧边分布,仅有第二枝节45沿壳体地板的侧边分布,天线辐射均衡,天线方向性系数较低。
由于在可折叠电子设备处于打开态时壳体14和壳体16在转轴13外侧联合所形成的一
体化地板,这个一体化地板在垂直方向的长度明显大于其在水平方向的长度,因此,为了均衡激励起壳体地板的水平电流和垂直电流,沿垂直方向排布的第一枝节43可以长于沿水平方向排布的第二枝节45。二者的差距可与壳体地板在垂直方向的长度与其在水平方向的长度的差距相适应。当然,本实施例不排除壳体14和壳体16联合形成的一体化地板呈现另一种规格:垂直方向的长度小于水平方向的长度。此时,沿水平方向排布的第一枝节43大于沿垂直排布的第二枝节45,可以更均衡的激励起地板的水平电流和垂直电流。
实施例四
基于以上实施例,如图10A和图10B所示,槽天线还可进一步包括镂空壳体地板形成的第三枝节46,与第二枝节45一样,第三枝节46也可垂直连接第一枝节43。第二枝节45垂直连接于第一枝节43的一端,第三枝节46垂直连接于第一枝节43的另一端。在第一枝节43上,馈电点可邻近第三枝节46而设,例如可设于第三枝节46与第一枝节43的连接处。该槽天线可相当于在馈电点处弯折以上实施例提供的L型槽天线,以在馈电处增加一垂直枝节。邻近还可以是指,沿着第一枝节43,馈电点到第三枝节46的间距小于一定距离值,例如5mm。
在馈电处增加的第三枝节46可以用于阻抗调谐,可以增强谐振,提高辐射效率。第三枝节46可等效为一电感应,其尺寸越大,电感值越大。实际用中,通过选择第三枝节46的尺寸可以对工作在特定频段下的槽天线进行阻抗匹配。此时,天线方向图基本不受影响。
下面结合附图说明图10A所示槽天线的仿真。天线仿真所基于的天线尺寸如下:第一枝节43长40mm,第二枝节45长21mm,第三枝节46长14mm。
图11A示出了增加第三枝节46前后槽天线的S参数曲线仿真。如图11A所示,槽天线可以产生2.4GHz、4.5GHz、6.7GHz这几种工作频段下的谐振。而且,增加第三枝节46后槽天线的谐振深度更大,天线辐射更强,尤其是4.5GHz频段下辐射明显增强。除了图11A中示出的这几种工作频段,实施例四提供的天线还可以产生其他频段的谐振,具体可通过调整天线枝节的尺寸来设置。
图11B至图11D示出了槽天线在2.4GHz、4.5GHz、6.7GHz这几种工作频率下的电流分布仿真。其中,槽天线在2.4GHz下为半波长槽天线,槽天线在4.5GHz下为全波长槽天线,槽天线在6.7GHz下为3/2波长槽天线。
图11E示出了图10A所示槽天线在2.4GH工作频率下的辐射方向图仿真。天线辐射方向图以可折叠设备打开至180°位置处的仿真情况为例。可以看出,增加第三枝节46基本没有影响槽天线的天线方向图,槽天线的天线方向图仍然覆盖均匀。
实施例五
基于以上实施例,还可以在第一枝节43的特定位置处开槽形成槽51,并在槽51内加载电感。通过电感加载可以实现调谐目的。
例如,如图12A和图12B所示,为改变实施例四提供的槽天线的某个谐振的位置,即调节天线频段,可以根据该谐振的电流分布确定电流强点,并在电流强点处开设槽51并加载电感。这样,如图13所示,可以将原来在6.7GHz处的3/2波长模式谐振调谐到5G带内
(450MHz-6000MHz)。450MHz-6000MHz为5G频率范围1(Frequency Range 1,FR1)。
这里,电流强点是通过分析电流强弱分布而确定的强电流的位置。对于多频天线,可以查看不同谐振频率下的电流分布,找到各个频率的电流强点。在一个谐振频率的电流强点处开槽加载电感能够有效改变该谐振频率的谐振的位置,实现调谐目的。电流强点可以是指电流强度高(例如电流强度超过特定强度值)的一个位置范围。进一步的,为避免影响槽天线在其他谐振频率的辐射,选择的开槽位置时还需考虑避开其他谐振频率的电流强点。
不限于调谐6.7GHz的谐振,还可以调谐其他频率的谐振,具体可通过改变槽51的开设位置来改变。
下面结合附图说明图12A所示槽天线的仿真。天线仿真所基于的天线尺寸如下:第一枝节43长40mm,第二枝节45长21mm,第三枝节46长14mm。
图14A示出了图12A所示槽天线的S参数和效率曲线仿真。如图14A所示,槽天线可以产生1.47GHz、2.4GHz、4.5GHz、5.5GHz、7.16GHz这几种工作频段下的谐振。天线辐射效率高。相比于图10A所示槽天线的S参数曲线仿真,开设槽51并加载电感的槽天线可以覆盖更多工作频段。
图14B至图14F示出了图12A所示槽天线在1.47GHz、2.4GHz、4.5GHz、5.5GHz、7.16GHz这几种工作频率下的电流分布仿真。其中,在1.47GHz下激励起转轴外侧的槽71A或槽71B工作在1/4波长模式,在2.4GHz下槽天线工作在半波长模式,在4.5GHz下槽天线工作在全波长模式,在5.5GHz下槽天线工作在3/2波长模式,在7.16GHz下槽天线工作在半波长模式。
图14G至图14J示出了图12A所示槽天线在2.4GHz、4.5GHz、5.5GHz、7.16GHz这几种工作频率下的辐射方向图仿真。天线辐射方向图以可折叠设备打开至110°位置处的仿真情况为例。
可折叠电子设备可以包括多个以上实施例提供的槽天线,以实现多输入多输出(multi input multi output,MIMO)天线,例如无线高保真(wireless fidelity,Wi-Fi)MIMO天线。如图15所示,在壳体地板上邻近折叠位置且位于转轴外侧的区域可以布设两个槽天线,一个设于转轴的第一外侧,另一个设于转轴第二外侧。不论可折叠电子设备具有单个转轴还是具有多个转轴,都只具有两个外侧。多个转轴可作为整体考虑。在这两个外侧,转轴均连接壳体形成了一端封闭另一端开放的开放槽。
不限于通过镂空金属壳体而形成槽天线,镂空形成槽天线的也可以是设置于第一主体11或第二主体12中的其他金属地板。例如,当可折叠电子设备是非金属ID的笔记本电脑时,壳体14和壳体16是非金属的,可以通过镂空邻近折叠位置的其他金属地板形成槽天线。
除了降低天线方向性系数,本申请各个实施例提供的包括槽天线的可折叠电子设备还能够在天线效率不变情况下限制天线增益使其满足有效全向辐射功率(effective isotropic radiated power,EIRP)和功率谱密度(powerspectrumdensity,PSD)的相关规定,获得良好的有线传导功率,提升电子设备的空中下载(OTA)性能。
这里,天线枝节沿壳体(或壳体地板)的侧边,可以是指该天线枝节邻近于该侧边,也可以进一步限定该天线枝节平行于该侧边。邻近可以是指该天线枝节到该侧边的距离不超过特定距离值,例如10mm。远离可以是指该天线枝节到该侧边的距离超过特定距离值,例如40mm。
以上实施例中提及的天线枝节“邻近”壳体(或壳体地板)的侧边,可以是指该天线枝节上的中心点到该侧边的距离不超过一定距离值,或该天线枝节上的全部点到该侧边的平均距离不超过一定距离值,或该天线枝节上最远点到该侧边的距离不超过一定距离值。
以上实施例中提及的天线枝节“远离”壳体(或壳体地板)的侧边,可以是指该天线枝节上的中心点到该侧边的距离不小于一定距离值,或该天线枝节上的全部点到该侧边的平均距离不小于一定距离值,或该天线枝节上最近点到该侧边的距离不小于一定距离值。
以上实施例中提及的开放、封闭,可以是相对地而言的,封闭是指接地,开放是指不接地,或者可以是相对于其他导电体而言的,封闭是指电连接其他导电体,开放是指不电连接其他导电体。
另外,本申请以上内容中提及的馈电点、中间或中间位置、平行等这类关于位置、距离的限定,均是针对当前工艺水平而言的,而不是数学意义上绝对严格的定义。举例说明,馈电点可以是指馈线与导体的连接区域(又可称为连接处)中的任一点。一天线枝节平行于壳体侧边可以是指该天线枝节上各点,例如两端端点、中点,到该壳体侧边的垂直距离近乎相等或者以特定距离度量单位(例如毫米)衡量为相同距离数值。
本申请中,天线的某种波长模式(如二分之一波长模式等)中的工作波长可以是指该天线辐射的信号的波长。例如,悬浮金属天线的二分之一波长模式可产生1.575GHz频段的谐振,其中二分之一波长模式中的工作波长是指天线辐射1.575GHz频段的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:波长=光速/频率,其中频率为辐射信号的频率。辐射信号在介质中的波长可以如下计算:其中,ε为该介质的相对介电常数,频率为辐射信号的频率。以上实施例中的缝隙、槽中可以填充绝缘介质。
以上实施例中提及的“工作波长”可以是指谐振频率的中心频率对应的波长。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那工作波长可以为利用1955MHz这个频率计算出来的波长。不限于中心频率,“工作波长”也可以是指谐振频率的非中心频率对应的波长。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (36)
- 一种包括天线的可折叠电子设备,其特征在于,所述可折叠电子设备包括:第一主体、第二主体,以及连接所述第一主体和所述第二主体的转轴,所述第一主体、所述第二主体可绕转轴发生转动;所述第一主体包括金属的第一壳体,所述第二主体包括金属的第二壳体;所述可折叠电子设备还包括:通过镂空壳体地板形成的槽天线,所述槽天线包括第一枝节和第二枝节,所述第二枝节垂直连接于所述第一枝节的一端,所述槽天线的馈电点设置在其中一个枝节上;所述槽天线分布于所述壳体地板上邻近折叠位置的区域。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述第一壳体、所述第二壳体是两块独立的金属壳体。
- 如权利要求2所述的可折叠电子设备,其特征在于,在所述可折叠电子设备处于打开态时,所述第一壳体、所述第二壳体在所述转轴外侧不会相互接触,所述壳体地板为所述第一壳体或所述第二壳体。
- 如权利要求2所述的可折叠电子设备,其特征在于,在所述可折叠电子设备处于打开态时,所述第一壳体、所述第二壳体在所述转轴外侧相互接触形成短接,所述壳体地板为所述第一壳体和所述第二壳体在所述转轴外侧联合成的一体化地板。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节中的一个枝节沿所述转轴所连接的壳体侧边分布。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述第一壳体、所述第二壳体是一整块金属壳体的两个部分。
- 如权利要求6所述的可折叠电子设备,其特征在于,所述壳体地板为所述一整块金属壳体,所述一整片壳体能够在所述转轴处发生弯折。
- 如权利要求6所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节中的一个枝节沿所述折叠位置分布。
- 如权利要求7所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节中的一个枝节沿所述折叠位置分布。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节不同时沿所述壳体地板的侧边分布。
- 如权利要求10所述的可折叠电子设备,其特征在于,当所述第一枝节和所述第二枝节中的一个枝节沿所述壳体地板的侧边分布时,另一个枝节与所述壳体地板的侧边之间的间距不小于1/2个工作波长。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述转轴是金属的,所述槽天线也分布于所述转轴外侧。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节中,沿所述壳体地板的较长侧边分布的一个枝节比另一个枝节更长。
- 如权利要求13所述的可折叠电子设备,其特征在于,所述一个枝节与所述另一个枝节的长度比值,和,所述壳体地板的较长侧边与较短侧边的长度比值,之差不超过第一 值。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述折叠位置处不被有信号屏蔽特性的输入/输出面板覆盖。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述槽天线还包括:通过镂空所述壳体地板形成的第三枝节,所述第三枝节垂直连接于所述第一枝节的另一端,所述馈电点到所述第三枝节的间距小于第二值。
- 如权利要求1所述的可折叠电子设备,其特征在于,所述槽天线还包括:在所述第一枝节的第一位置处开槽形成的槽,所述槽内加载有电感,所述第一位置包括所述槽天线的第一谐振频率的电流强点。
- 如权利要求1-17中任一项所述的可折叠电子设备,其特征在于,所述槽天线的数量为多个。
- 如权利要求18所述的可折叠电子设备,其特征在于,所述槽天线的数量具体为两个,一个槽天线设于所述转轴的第一外侧,另一个槽天线设于所述转轴第二外侧。
- 一种包括天线的可折叠电子设备,其特征在于,所述可折叠电子设备包括:第一主体、第二主体,以及连接所述第一主体和所述第二主体的转轴,所述第一主体、所述第二主体可绕转轴发生转动;所述第一主体包括金属的第一壳体,所述第二主体包括金属的第二壳体;所述可折叠电子设备还包括:通过镂空壳体地板形成的槽天线,所述槽天线包括第一枝节和第二枝节,所述第二枝节垂直连接于所述第一枝节的一端,所述槽天线的馈电点设置在其中一个枝节上;所述槽天线分布于所述壳体地板上邻近折叠位置的区域,所述第一枝节和所述第二枝节不同时沿所述壳体地板的侧边分布,当所述第一枝节和所述第二枝节中的一个枝节沿所述壳体地板的侧边分布时,另一个枝节与所述壳体地板的侧边之间的间距不小于1/2个工作波长。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述第一壳体、所述第二壳体是两块独立的金属壳体。
- 如权利要求21所述的可折叠电子设备,其特征在于,在所述可折叠电子设备处于打开态时,所述第一壳体、所述第二壳体在所述转轴外侧不会相互接触,所述壳体地板为所述第一壳体或所述第二壳体。
- 如权利要求21所述的可折叠电子设备,其特征在于,在所述可折叠电子设备处于打开态时,所述第一壳体、所述第二壳体在所述转轴外侧相互接触形成短接,所述壳体地板为所述第一壳体和所述第二壳体在所述转轴外侧联合成的一体化地板。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节中的一个枝节沿所述转轴所连接的壳体侧边分布。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述第一壳体、所述第二壳体是一整块金属壳体的两个部分。
- 如权利要求25所述的可折叠电子设备,其特征在于,所述壳体地板为一整块金属壳体,所述一整块壳体能够在所述转轴处发生弯折。
- 如权利要求25所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝 节中的一个枝节沿所述折叠位置分布。
- 如权利要求26所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节中的一个枝节沿所述折叠位置分布。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述转轴是金属的,所述槽天线也分布于所述转轴外侧。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述第一枝节和所述第二枝节中,沿所述壳体地板的较长侧边分布的一个枝节比另一个枝节更长。
- 如权利要求30所述的可折叠电子设备,其特征在于,所述一个枝节与所述另一个枝节的长度比值,和,所述壳体地板的较长侧边与较短侧边的长度比值,之差不超过第一值。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述折叠位置处不被有信号屏蔽特性的输入/输出面板覆盖。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述槽天线还包括:通过镂空所述壳体地板形成的第三枝节,所述第三枝节垂直连接于所述第一枝节的另一端,所述馈电点到所述第三枝节的间距小于第二值。
- 如权利要求20所述的可折叠电子设备,其特征在于,所述槽天线还包括:在所述第一枝节的第一位置处开槽形成的槽,所述槽内加载有电感,所述第一位置包括所述槽天线的第一谐振频率的电流强点。
- 如权利要求20-34中任一项所述的可折叠电子设备,其特征在于,所述槽天线的数量为多个。
- 如权利要求35所述的可折叠电子设备,其特征在于,所述槽天线的数量具体为两个,一个槽天线设于所述转轴的第一外侧,另一个槽天线设于所述转轴第二外侧。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23848958.7A EP4459790A1 (en) | 2022-08-03 | 2023-05-06 | Folding electronic device comprising antenna |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210926607.7 | 2022-08-03 | ||
CN202210926607.7A CN115224467B (zh) | 2022-08-03 | 2022-08-03 | 包括天线的可折叠电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024027247A1 true WO2024027247A1 (zh) | 2024-02-08 |
Family
ID=83615340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/092410 WO2024027247A1 (zh) | 2022-08-03 | 2023-05-06 | 包括天线的可折叠电子设备 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4459790A1 (zh) |
CN (1) | CN115224467B (zh) |
WO (1) | WO2024027247A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115224467B (zh) * | 2022-08-03 | 2023-07-25 | 荣耀终端有限公司 | 包括天线的可折叠电子设备 |
CN118867636A (zh) * | 2023-04-28 | 2024-10-29 | 华为技术有限公司 | 可折叠电子设备 |
CN117254851B (zh) * | 2023-11-17 | 2024-04-05 | 荣耀终端有限公司 | 一种卫星通信方法及可折叠设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103597661A (zh) * | 2011-01-13 | 2014-02-19 | 汤姆逊许可公司 | 印刷槽型定向天线,和包括多个印刷槽型定向天线的阵列的系统 |
US20150295303A1 (en) * | 2014-04-14 | 2015-10-15 | Compal Electronics, Inc. | Electronic device having antenna structure |
CN111949070A (zh) * | 2019-05-14 | 2020-11-17 | 华为技术有限公司 | 一种电子设备 |
CN113675588A (zh) * | 2020-05-15 | 2021-11-19 | 深圳富泰宏精密工业有限公司 | 电子设备 |
CN115224467A (zh) * | 2022-08-03 | 2022-10-21 | 荣耀终端有限公司 | 包括天线的可折叠电子设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202633501U (zh) * | 2011-11-03 | 2012-12-26 | 云南大学 | 一种宽频带紧凑型平面两天线系统 |
CN217215072U (zh) * | 2022-05-20 | 2022-08-16 | 北京小米移动软件有限公司 | 天线结构及终端设备 |
-
2022
- 2022-08-03 CN CN202210926607.7A patent/CN115224467B/zh active Active
-
2023
- 2023-05-06 WO PCT/CN2023/092410 patent/WO2024027247A1/zh active Application Filing
- 2023-05-06 EP EP23848958.7A patent/EP4459790A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103597661A (zh) * | 2011-01-13 | 2014-02-19 | 汤姆逊许可公司 | 印刷槽型定向天线,和包括多个印刷槽型定向天线的阵列的系统 |
US20150295303A1 (en) * | 2014-04-14 | 2015-10-15 | Compal Electronics, Inc. | Electronic device having antenna structure |
CN111949070A (zh) * | 2019-05-14 | 2020-11-17 | 华为技术有限公司 | 一种电子设备 |
CN113675588A (zh) * | 2020-05-15 | 2021-11-19 | 深圳富泰宏精密工业有限公司 | 电子设备 |
CN115224467A (zh) * | 2022-08-03 | 2022-10-21 | 荣耀终端有限公司 | 包括天线的可折叠电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN115224467A (zh) | 2022-10-21 |
CN115224467B (zh) | 2023-07-25 |
EP4459790A1 (en) | 2024-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115224467B (zh) | 包括天线的可折叠电子设备 | |
CN104934707B (zh) | 天线结构 | |
WO2023071478A1 (zh) | 一种终端天线及电子设备 | |
TWI528642B (zh) | 天線及電子裝置 | |
Wong et al. | Small-size uniplanar WWAN tablet computer antenna using a parallel-resonant strip for bandwidth enhancement | |
CN111799544B (zh) | 可翻转电子设备的超宽带天线 | |
WO2022033018A1 (zh) | 高集成度多天线组及其天线组模块 | |
CN111697317A (zh) | 移动装置 | |
CN110556621B (zh) | 天线架构及通信装置 | |
CN106711599A (zh) | 移动装置 | |
TW201843877A (zh) | 行動裝置和天線結構 | |
CN108023166A (zh) | 移动装置 | |
CN104425874B (zh) | 天线及电子装置 | |
CN110690552A (zh) | 移动装置 | |
CN109309284A (zh) | 天线装置和移动装置 | |
CN110875514B (zh) | 移动装置 | |
CN218123712U (zh) | 天线系统 | |
TWI827202B (zh) | 開迴路天線及電子裝置 | |
TWI774301B (zh) | 電子裝置與天線饋入模組 | |
TWM637124U (zh) | 多頻帶天線裝置 | |
WO2019154501A1 (en) | Antenna, antenna arrangement, and electronic device | |
CN115207632A (zh) | 电子装置与天线馈入模块 | |
TW202209754A (zh) | 行動裝置 | |
TWI868814B (zh) | 筆記型電腦的無線網路天線 | |
CN112397888B (zh) | 移动装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23848958 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023848958 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023848958 Country of ref document: EP Effective date: 20240801 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18840741 Country of ref document: US |