WO2024025845A1 - Folate-conjugated drugs and uses thereof - Google Patents
Folate-conjugated drugs and uses thereof Download PDFInfo
- Publication number
- WO2024025845A1 WO2024025845A1 PCT/US2023/028509 US2023028509W WO2024025845A1 WO 2024025845 A1 WO2024025845 A1 WO 2024025845A1 US 2023028509 W US2023028509 W US 2023028509W WO 2024025845 A1 WO2024025845 A1 WO 2024025845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- pharmaceutically acceptable
- acceptable salt
- substituted
- cancer
- Prior art date
Links
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 title claims description 90
- 239000003814 drug Substances 0.000 title claims description 60
- 235000019152 folic acid Nutrition 0.000 title claims description 53
- 239000011724 folic acid Substances 0.000 title claims description 51
- 229940079593 drug Drugs 0.000 title claims description 42
- 229940014144 folate Drugs 0.000 title description 8
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 123
- 201000011510 cancer Diseases 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 68
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 34
- 150000001875 compounds Chemical class 0.000 claims description 212
- 150000003839 salts Chemical class 0.000 claims description 116
- -1 Duo5 Chemical compound 0.000 claims description 106
- 125000000217 alkyl group Chemical group 0.000 claims description 48
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 claims description 42
- 229960000304 folic acid Drugs 0.000 claims description 42
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 35
- 239000004606 Fillers/Extenders Substances 0.000 claims description 24
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 22
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 20
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 claims description 19
- 206010033128 Ovarian cancer Diseases 0.000 claims description 17
- 150000001412 amines Chemical class 0.000 claims description 15
- 239000003112 inhibitor Substances 0.000 claims description 15
- ZVYVPGLRVWUPMP-FYSMJZIKSA-N exatecan Chemical compound C1C[C@H](N)C2=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC3=CC(F)=C(C)C1=C32 ZVYVPGLRVWUPMP-FYSMJZIKSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 206010027406 Mesothelioma Diseases 0.000 claims description 11
- 229950009429 exatecan Drugs 0.000 claims description 11
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 10
- 241000124008 Mammalia Species 0.000 claims description 10
- 201000005202 lung cancer Diseases 0.000 claims description 10
- 208000020816 lung neoplasm Diseases 0.000 claims description 10
- 229940124823 proteolysis targeting chimeric molecule Drugs 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- 210000000481 breast Anatomy 0.000 claims description 9
- 230000002401 inhibitory effect Effects 0.000 claims description 9
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 8
- 108010044540 auristatin Proteins 0.000 claims description 8
- 210000004072 lung Anatomy 0.000 claims description 8
- 230000002611 ovarian Effects 0.000 claims description 8
- 230000035755 proliferation Effects 0.000 claims description 8
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 7
- 229940122429 Tubulin inhibitor Drugs 0.000 claims description 7
- 229930195731 calicheamicin Natural products 0.000 claims description 7
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 claims description 7
- 108010088751 Albumins Proteins 0.000 claims description 6
- 102000009027 Albumins Human genes 0.000 claims description 6
- 208000026310 Breast neoplasm Diseases 0.000 claims description 6
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 claims description 6
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 6
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 6
- 229940045799 anthracyclines and related substance Drugs 0.000 claims description 6
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 6
- 229940127093 camptothecin Drugs 0.000 claims description 6
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 claims description 6
- 229960005501 duocarmycin Drugs 0.000 claims description 6
- VQNATVDKACXKTF-XELLLNAOSA-N duocarmycin Chemical compound COC1=C(OC)C(OC)=C2NC(C(=O)N3C4=CC(=O)C5=C([C@@]64C[C@@H]6C3)C=C(N5)C(=O)OC)=CC2=C1 VQNATVDKACXKTF-XELLLNAOSA-N 0.000 claims description 6
- 229930184221 duocarmycin Natural products 0.000 claims description 6
- 230000002357 endometrial effect Effects 0.000 claims description 6
- 239000002829 mitogen activated protein kinase inhibitor Substances 0.000 claims description 6
- 201000002528 pancreatic cancer Diseases 0.000 claims description 6
- YUOCYTRGANSSRY-UHFFFAOYSA-N pyrrolo[2,3-i][1,2]benzodiazepine Chemical compound C1=CN=NC2=C3C=CN=C3C=CC2=C1 YUOCYTRGANSSRY-UHFFFAOYSA-N 0.000 claims description 6
- 238000002560 therapeutic procedure Methods 0.000 claims description 6
- 238000013518 transcription Methods 0.000 claims description 6
- 230000035897 transcription Effects 0.000 claims description 6
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 claims description 6
- 239000005483 tyrosine kinase inhibitor Substances 0.000 claims description 6
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 claims description 5
- FJHBVJOVLFPMQE-QFIPXVFZSA-N 7-Ethyl-10-Hydroxy-Camptothecin Chemical compound C1=C(O)C=C2C(CC)=C(CN3C(C4=C([C@@](C(=O)OC4)(O)CC)C=C33)=O)C3=NC2=C1 FJHBVJOVLFPMQE-QFIPXVFZSA-N 0.000 claims description 5
- 239000012623 DNA damaging agent Substances 0.000 claims description 5
- 229940123780 DNA topoisomerase I inhibitor Drugs 0.000 claims description 5
- 102100027629 Kinesin-like protein KIF11 Human genes 0.000 claims description 5
- 229940124647 MEK inhibitor Drugs 0.000 claims description 5
- 229930126263 Maytansine Natural products 0.000 claims description 5
- 108010043958 Peptoids Proteins 0.000 claims description 5
- 102000009572 RNA Polymerase II Human genes 0.000 claims description 5
- 108010009460 RNA Polymerase II Proteins 0.000 claims description 5
- 239000000365 Topoisomerase I Inhibitor Substances 0.000 claims description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- 208000023965 endometrium neoplasm Diseases 0.000 claims description 5
- 229960004768 irinotecan Drugs 0.000 claims description 5
- 229940043355 kinase inhibitor Drugs 0.000 claims description 5
- 208000037841 lung tumor Diseases 0.000 claims description 5
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 claims description 5
- 239000003757 phosphotransferase inhibitor Substances 0.000 claims description 5
- 208000025421 tumor of uterus Diseases 0.000 claims description 5
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 claims description 5
- 206010046766 uterine cancer Diseases 0.000 claims description 5
- WVHGJJRMKGDTEC-WCIJHFMNSA-N 2-[(1R,4S,8R,10S,13S,16S,27R,34S)-34-[(2S)-butan-2-yl]-8,22-dihydroxy-13-[(2R,3S)-3-hydroxybutan-2-yl]-2,5,11,14,27,30,33,36,39-nonaoxo-27lambda4-thia-3,6,12,15,25,29,32,35,38-nonazapentacyclo[14.12.11.06,10.018,26.019,24]nonatriaconta-18(26),19(24),20,22-tetraen-4-yl]acetamide Chemical compound CC[C@H](C)[C@@H]1NC(=O)CNC(=O)[C@@H]2Cc3c([nH]c4cc(O)ccc34)[S@](=O)C[C@H](NC(=O)CNC1=O)C(=O)N[C@@H](CC(N)=O)C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H]([C@@H](C)[C@H](C)O)C(=O)N2 WVHGJJRMKGDTEC-WCIJHFMNSA-N 0.000 claims description 4
- 231100000729 Amatoxin Toxicity 0.000 claims description 4
- 229950001573 abemaciclib Drugs 0.000 claims description 4
- 108010014709 amatoxin Proteins 0.000 claims description 4
- UZWDCWONPYILKI-UHFFFAOYSA-N n-[5-[(4-ethylpiperazin-1-yl)methyl]pyridin-2-yl]-5-fluoro-4-(7-fluoro-2-methyl-3-propan-2-ylbenzimidazol-5-yl)pyrimidin-2-amine Chemical compound C1CN(CC)CCN1CC(C=N1)=CC=C1NC1=NC=C(F)C(C=2C=C3N(C(C)C)C(C)=NC3=C(F)C=2)=N1 UZWDCWONPYILKI-UHFFFAOYSA-N 0.000 claims description 4
- AHJRHEGDXFFMBM-UHFFFAOYSA-N palbociclib Chemical compound N1=C2N(C3CCCC3)C(=O)C(C(=O)C)=C(C)C2=CN=C1NC(N=C1)=CC=C1N1CCNCC1 AHJRHEGDXFFMBM-UHFFFAOYSA-N 0.000 claims description 4
- 229960004390 palbociclib Drugs 0.000 claims description 4
- LIRYPHYGHXZJBZ-UHFFFAOYSA-N trametinib Chemical compound CC(=O)NC1=CC=CC(N2C(N(C3CC3)C(=O)C3=C(NC=4C(=CC(I)=CC=4)F)N(C)C(=O)C(C)=C32)=O)=C1 LIRYPHYGHXZJBZ-UHFFFAOYSA-N 0.000 claims description 4
- 229960004066 trametinib Drugs 0.000 claims description 4
- YGGSSUISOYLCBF-UHFFFAOYSA-N 1-nitroso-1-propylurea Chemical compound CCCN(N=O)C(N)=O YGGSSUISOYLCBF-UHFFFAOYSA-N 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 claims 1
- 102000006815 folate receptor Human genes 0.000 abstract description 81
- 108020005243 folate receptor Proteins 0.000 abstract description 81
- 239000000878 small molecule-drug conjugate Substances 0.000 abstract description 74
- 239000000203 mixture Substances 0.000 description 205
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 132
- 125000001424 substituent group Chemical group 0.000 description 112
- 210000004027 cell Anatomy 0.000 description 107
- 235000002639 sodium chloride Nutrition 0.000 description 86
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 72
- 125000004404 heteroalkyl group Chemical group 0.000 description 71
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 68
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 66
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 59
- 239000000243 solution Substances 0.000 description 58
- 125000000753 cycloalkyl group Chemical group 0.000 description 57
- 125000005647 linker group Chemical group 0.000 description 54
- 238000003556 assay Methods 0.000 description 53
- 229910052757 nitrogen Inorganic materials 0.000 description 52
- 125000003118 aryl group Chemical group 0.000 description 51
- 125000001072 heteroaryl group Chemical group 0.000 description 50
- 239000011347 resin Substances 0.000 description 48
- 229920005989 resin Polymers 0.000 description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 46
- 238000006243 chemical reaction Methods 0.000 description 39
- 108090000765 processed proteins & peptides Proteins 0.000 description 39
- 239000011541 reaction mixture Substances 0.000 description 34
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 33
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 32
- 101001023230 Homo sapiens Folate receptor alpha Proteins 0.000 description 29
- 238000000338 in vitro Methods 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 28
- 102100035139 Folate receptor alpha Human genes 0.000 description 27
- 125000002950 monocyclic group Chemical group 0.000 description 27
- 125000005842 heteroatom Chemical group 0.000 description 25
- 150000001413 amino acids Chemical group 0.000 description 23
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 23
- 229940002612 prodrug Drugs 0.000 description 23
- 239000000651 prodrug Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 23
- 235000001014 amino acid Nutrition 0.000 description 22
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 22
- 239000000126 substance Substances 0.000 description 22
- 239000012453 solvate Substances 0.000 description 21
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 20
- 125000002947 alkylene group Chemical group 0.000 description 20
- 230000000155 isotopic effect Effects 0.000 description 20
- 125000004429 atom Chemical group 0.000 description 19
- 239000002552 dosage form Substances 0.000 description 19
- 238000009472 formulation Methods 0.000 description 19
- 238000011282 treatment Methods 0.000 description 19
- 239000007821 HATU Substances 0.000 description 18
- 125000004122 cyclic group Chemical group 0.000 description 18
- 125000005549 heteroarylene group Chemical group 0.000 description 18
- 125000006588 heterocycloalkylene group Chemical group 0.000 description 18
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 18
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 17
- 125000004474 heteroalkylene group Chemical group 0.000 description 17
- 108010093470 monomethyl auristatin E Proteins 0.000 description 17
- 239000000843 powder Substances 0.000 description 17
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 125000000732 arylene group Chemical group 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 238000007792 addition Methods 0.000 description 15
- 239000003937 drug carrier Substances 0.000 description 14
- 230000008685 targeting Effects 0.000 description 14
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 239000000725 suspension Substances 0.000 description 13
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 229940127089 cytotoxic agent Drugs 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 208000032839 leukemia Diseases 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- 238000004007 reversed phase HPLC Methods 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 239000001963 growth medium Substances 0.000 description 11
- 229920001184 polypeptide Polymers 0.000 description 11
- 102000004196 processed proteins & peptides Human genes 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 11
- 238000011200 topical administration Methods 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- 229910052736 halogen Inorganic materials 0.000 description 10
- 125000000623 heterocyclic group Chemical group 0.000 description 10
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 9
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 9
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 9
- 206010025323 Lymphomas Diseases 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000611 antibody drug conjugate Substances 0.000 description 9
- 229940049595 antibody-drug conjugate Drugs 0.000 description 9
- 150000001721 carbon Chemical group 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 125000002993 cycloalkylene group Chemical group 0.000 description 9
- 239000002254 cytotoxic agent Substances 0.000 description 9
- 231100000599 cytotoxic agent Toxicity 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 210000004881 tumor cell Anatomy 0.000 description 9
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 8
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 8
- 208000017604 Hodgkin disease Diseases 0.000 description 8
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 8
- 239000012980 RPMI-1640 medium Substances 0.000 description 8
- 238000012054 celltiter-glo Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 125000000392 cycloalkenyl group Chemical group 0.000 description 8
- 238000010511 deprotection reaction Methods 0.000 description 8
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 238000007920 subcutaneous administration Methods 0.000 description 8
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 8
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 7
- 125000006582 (C5-C6) heterocycloalkyl group Chemical group 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 239000002246 antineoplastic agent Substances 0.000 description 7
- 125000002619 bicyclic group Chemical group 0.000 description 7
- 239000002775 capsule Substances 0.000 description 7
- 150000001720 carbohydrates Chemical class 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 7
- 238000001990 intravenous administration Methods 0.000 description 7
- 238000004020 luminiscence type Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- HXCHCVDVKSCDHU-PJKCJEBCSA-N s-[(2r,3s,4s,6s)-6-[[(2r,3s,4s,5r,6r)-5-[(2s,4s,5s)-5-(ethylamino)-4-methoxyoxan-2-yl]oxy-4-hydroxy-6-[[(2s,5z,9r,13e)-9-hydroxy-12-(methoxycarbonylamino)-13-[2-(methyltrisulfanyl)ethylidene]-11-oxo-2-bicyclo[7.3.1]trideca-1(12),5-dien-3,7-diynyl]oxy]-2-m Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-PJKCJEBCSA-N 0.000 description 7
- 125000000547 substituted alkyl group Chemical group 0.000 description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 description 7
- 238000012384 transportation and delivery Methods 0.000 description 7
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 208000028564 B-cell non-Hodgkin lymphoma Diseases 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- 102000010451 Folate receptor alpha Human genes 0.000 description 6
- 108050001931 Folate receptor alpha Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 6
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 238000003570 cell viability assay Methods 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 239000000562 conjugate Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 210000003734 kidney Anatomy 0.000 description 6
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 6
- 208000021937 marginal zone lymphoma Diseases 0.000 description 6
- 201000000050 myeloid neoplasm Diseases 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 125000003107 substituted aryl group Chemical group 0.000 description 6
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 6
- 125000005717 substituted cycloalkylene group Chemical group 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 102000001708 Protein Isoforms Human genes 0.000 description 5
- 108010029485 Protein Isoforms Proteins 0.000 description 5
- 229910006074 SO2NH2 Inorganic materials 0.000 description 5
- 229910006069 SO3H Inorganic materials 0.000 description 5
- 241000534944 Thia Species 0.000 description 5
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 5
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 5
- 230000001472 cytotoxic effect Effects 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 239000000796 flavoring agent Substances 0.000 description 5
- 201000005787 hematologic cancer Diseases 0.000 description 5
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000007918 intramuscular administration Methods 0.000 description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000002780 morpholines Chemical class 0.000 description 5
- 238000007911 parenteral administration Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 5
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 5
- 229960004528 vincristine Drugs 0.000 description 5
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 5
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 4
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 4
- HCZMHWVFVZAHCR-UHFFFAOYSA-N 2-[2-(2-sulfanylethoxy)ethoxy]ethanethiol Chemical compound SCCOCCOCCS HCZMHWVFVZAHCR-UHFFFAOYSA-N 0.000 description 4
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 4
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- BTFJIXJJCSYFAL-UHFFFAOYSA-N arachidyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 229940125904 compound 1 Drugs 0.000 description 4
- 229940126543 compound 14 Drugs 0.000 description 4
- 239000006071 cream Substances 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 150000002224 folic acids Chemical class 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 229960003180 glutathione Drugs 0.000 description 4
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 description 4
- 230000036210 malignancy Effects 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 4
- 108010059074 monomethylauristatin F Proteins 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 230000036515 potency Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 238000013207 serial dilution Methods 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 4
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 3
- MPDDTAJMJCESGV-CTUHWIOQSA-M (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoate Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-M 0.000 description 3
- MSTNYGQPCMXVAQ-RYUDHWBXSA-N (6S)-5,6,7,8-tetrahydrofolic acid Chemical class C([C@H]1CNC=2N=C(NC(=O)C=2N1)N)NC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 MSTNYGQPCMXVAQ-RYUDHWBXSA-N 0.000 description 3
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 3
- XXJGBENTLXFVFI-UHFFFAOYSA-N 1-amino-methylene Chemical compound N[CH2] XXJGBENTLXFVFI-UHFFFAOYSA-N 0.000 description 3
- BGAJNPLDJJBRHK-UHFFFAOYSA-N 3-[2-[5-(3-chloro-4-propan-2-yloxyphenyl)-1,3,4-thiadiazol-2-yl]-3-methyl-6,7-dihydro-4h-pyrazolo[4,3-c]pyridin-5-yl]propanoic acid Chemical compound C1=C(Cl)C(OC(C)C)=CC=C1C1=NN=C(N2C(=C3CN(CCC(O)=O)CCC3=N2)C)S1 BGAJNPLDJJBRHK-UHFFFAOYSA-N 0.000 description 3
- 125000003143 4-hydroxybenzyl group Chemical group [H]C([*])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 206010009944 Colon cancer Diseases 0.000 description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 208000034578 Multiple myelomas Diseases 0.000 description 3
- 206010029260 Neuroblastoma Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 3
- 208000009956 adenocarcinoma Diseases 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- 229940125782 compound 2 Drugs 0.000 description 3
- 229940125807 compound 37 Drugs 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 3
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 229960004679 doxorubicin Drugs 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 235000019439 ethyl acetate Nutrition 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 229960002949 fluorouracil Drugs 0.000 description 3
- 125000003929 folic acid group Chemical group 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 229960001031 glucose Drugs 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 3
- 125000001188 haloalkyl group Chemical group 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 230000002489 hematologic effect Effects 0.000 description 3
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 3
- 150000007857 hydrazones Chemical class 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 239000004922 lacquer Substances 0.000 description 3
- 238000012417 linear regression Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000003563 lymphoid tissue Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 3
- 125000002911 monocyclic heterocycle group Chemical group 0.000 description 3
- 210000004877 mucosa Anatomy 0.000 description 3
- 201000005962 mycosis fungoides Diseases 0.000 description 3
- 206010028537 myelofibrosis Diseases 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 3
- 239000002453 shampoo Substances 0.000 description 3
- 235000011083 sodium citrates Nutrition 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 3
- 239000000230 xanthan gum Substances 0.000 description 3
- 229920001285 xanthan gum Polymers 0.000 description 3
- 235000010493 xanthan gum Nutrition 0.000 description 3
- 229940082509 xanthan gum Drugs 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 2
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 2
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 2
- ALBODLTZUXKBGZ-JUUVMNCLSA-N (2s)-2-amino-3-phenylpropanoic acid;(2s)-2,6-diaminohexanoic acid Chemical compound NCCCC[C@H](N)C(O)=O.OC(=O)[C@@H](N)CC1=CC=CC=C1 ALBODLTZUXKBGZ-JUUVMNCLSA-N 0.000 description 2
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 2
- UDQTXCHQKHIQMH-KYGLGHNPSA-N (3ar,5s,6s,7r,7ar)-5-(difluoromethyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3ah-pyrano[3,2-d][1,3]thiazole-6,7-diol Chemical compound S1C(NCC)=N[C@H]2[C@@H]1O[C@H](C(F)F)[C@@H](O)[C@@H]2O UDQTXCHQKHIQMH-KYGLGHNPSA-N 0.000 description 2
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 2
- SLURUCSFDHKXFR-WWMWMSKMSA-N (7s,9s)-7-[[(1s,3r,4as,9s,9ar,10as)-9-methoxy-1-methyl-3,4,4a,6,7,9,9a,10a-octahydro-1h-pyrano[1,2][1,3]oxazolo[3,4-b][1,4]oxazin-3-yl]oxy]-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound O=C1C2=CC=CC(OC)=C2C(=O)C(C(O)=C23)=C1C(O)=C3C[C@@](O)(C(=O)CO)C[C@@H]2O[C@H]1C[C@@H]2N3CCO[C@H](OC)[C@H]3O[C@@H]2[C@H](C)O1 SLURUCSFDHKXFR-WWMWMSKMSA-N 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 2
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 2
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 2
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 2
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 2
- AZLWQVJVINEILY-UHFFFAOYSA-N 2-(2-dodecoxyethoxy)ethanol Chemical compound CCCCCCCCCCCCOCCOCCO AZLWQVJVINEILY-UHFFFAOYSA-N 0.000 description 2
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 2
- NPRYCHLHHVWLQZ-TURQNECASA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynylpurin-8-one Chemical compound NC1=NC=C2N(C(N(C2=N1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C NPRYCHLHHVWLQZ-TURQNECASA-N 0.000 description 2
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- OJRUSAPKCPIVBY-KQYNXXCUSA-N C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N Chemical compound C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N OJRUSAPKCPIVBY-KQYNXXCUSA-N 0.000 description 2
- KCBAMQOKOLXLOX-BSZYMOERSA-N CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O Chemical compound CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O KCBAMQOKOLXLOX-BSZYMOERSA-N 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- 229940126657 Compound 17 Drugs 0.000 description 2
- 229940126639 Compound 33 Drugs 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 238000005698 Diels-Alder reaction Methods 0.000 description 2
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 206010020631 Hypergammaglobulinaemia benign monoclonal Diseases 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical group O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 2
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 2
- 206010067387 Myelodysplastic syndrome transformation Diseases 0.000 description 2
- 208000014767 Myeloproliferative disease Diseases 0.000 description 2
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 2
- 229940121753 Nicotinamide phosphoribosyl transferase inhibitor Drugs 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920001214 Polysorbate 60 Polymers 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 208000009527 Refractory anemia Diseases 0.000 description 2
- 208000033501 Refractory anemia with excess blasts Diseases 0.000 description 2
- 206010072684 Refractory cytopenia with unilineage dysplasia Diseases 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 2
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 2
- PSLUFJFHTBIXMW-WYEYVKMPSA-N [(3r,4ar,5s,6s,6as,10s,10ar,10bs)-3-ethenyl-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-6-(2-pyridin-2-ylethylcarbamoyloxy)-5,6,6a,8,9,10-hexahydro-2h-benzo[f]chromen-5-yl] acetate Chemical compound O([C@@H]1[C@@H]([C@]2(O[C@](C)(CC(=O)[C@]2(O)[C@@]2(C)[C@@H](O)CCC(C)(C)[C@@H]21)C=C)C)OC(=O)C)C(=O)NCCC1=CC=CC=N1 PSLUFJFHTBIXMW-WYEYVKMPSA-N 0.000 description 2
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000001266 acyl halides Chemical class 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 102000025171 antigen binding proteins Human genes 0.000 description 2
- 108091000831 antigen binding proteins Proteins 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000008228 bacteriostatic water for injection Substances 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 229960004217 benzyl alcohol Drugs 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- QZPQTZZNNJUOLS-UHFFFAOYSA-N beta-lapachone Chemical compound C12=CC=CC=C2C(=O)C(=O)C2=C1OC(C)(C)CC2 QZPQTZZNNJUOLS-UHFFFAOYSA-N 0.000 description 2
- 239000003124 biologic agent Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 150000001719 carbohydrate derivatives Chemical class 0.000 description 2
- 229940085237 carbomer-980 Drugs 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 229960004630 chlorambucil Drugs 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229960004106 citric acid Drugs 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 229960002173 citrulline Drugs 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 229940125773 compound 10 Drugs 0.000 description 2
- 229940125758 compound 15 Drugs 0.000 description 2
- 229940126142 compound 16 Drugs 0.000 description 2
- 229940125810 compound 20 Drugs 0.000 description 2
- 229940125833 compound 23 Drugs 0.000 description 2
- 229940125961 compound 24 Drugs 0.000 description 2
- 229940125846 compound 25 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 229940125877 compound 31 Drugs 0.000 description 2
- 229940127573 compound 38 Drugs 0.000 description 2
- 229940126540 compound 41 Drugs 0.000 description 2
- 229940125936 compound 42 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- COFJBSXICYYSKG-OAUVCNBTSA-N cph2u7dndy Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 COFJBSXICYYSKG-OAUVCNBTSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000006352 cycloaddition reaction Methods 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 2
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 229960000975 daunorubicin Drugs 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229940008099 dimethicone Drugs 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 229940079868 disodium laureth sulfosuccinate Drugs 0.000 description 2
- YGAXLGGEEQLLKV-UHFFFAOYSA-L disodium;4-dodecoxy-4-oxo-2-sulfonatobutanoate Chemical compound [Na+].[Na+].CCCCCCCCCCCCOC(=O)CC(C([O-])=O)S([O-])(=O)=O YGAXLGGEEQLLKV-UHFFFAOYSA-L 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 229960000878 docusate sodium Drugs 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 201000003908 endometrial adenocarcinoma Diseases 0.000 description 2
- 208000029382 endometrium adenocarcinoma Diseases 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 201000003444 follicular lymphoma Diseases 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000013537 high throughput screening Methods 0.000 description 2
- 229960001101 ifosfamide Drugs 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229960000448 lactic acid Drugs 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229940100491 laureth-2 Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- RENRQMCACQEWFC-UGKGYDQZSA-N lnp023 Chemical compound C1([C@H]2N(CC=3C=4C=CNC=4C(C)=CC=3OC)CC[C@@H](C2)OCC)=CC=C(C(O)=O)C=C1 RENRQMCACQEWFC-UGKGYDQZSA-N 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 2
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 201000000248 mediastinal malignant lymphoma Diseases 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 201000005328 monoclonal gammopathy of uncertain significance Diseases 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 208000016586 myelodysplastic syndrome with excess blasts Diseases 0.000 description 2
- 229940043348 myristyl alcohol Drugs 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- QZGIWPZCWHMVQL-UIYAJPBUSA-N neocarzinostatin chromophore Chemical compound O1[C@H](C)[C@H](O)[C@H](O)[C@@H](NC)[C@H]1O[C@@H]1C/2=C/C#C[C@H]3O[C@@]3([C@@H]3OC(=O)OC3)C#CC\2=C[C@H]1OC(=O)C1=C(O)C=CC2=C(C)C=C(OC)C=C12 QZGIWPZCWHMVQL-UIYAJPBUSA-N 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 229960001756 oxaliplatin Drugs 0.000 description 2
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 2
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229940113124 polysorbate 60 Drugs 0.000 description 2
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 2
- 235000010241 potassium sorbate Nutrition 0.000 description 2
- 239000004302 potassium sorbate Substances 0.000 description 2
- 229940069338 potassium sorbate Drugs 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 2
- 229960003415 propylparaben Drugs 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 208000023933 refractory anemia with excess blasts in transformation Diseases 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 229960002668 sodium chloride Drugs 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 229960001790 sodium citrate Drugs 0.000 description 2
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 2
- 229940083608 sodium hydroxide Drugs 0.000 description 2
- 229940057950 sodium laureth sulfate Drugs 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000001587 sorbitan monostearate Substances 0.000 description 2
- 235000011076 sorbitan monostearate Nutrition 0.000 description 2
- 229940035048 sorbitan monostearate Drugs 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 206010062261 spinal cord neoplasm Diseases 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 230000003393 splenic effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- PVYJZLYGTZKPJE-UHFFFAOYSA-N streptonigrin Chemical compound C=1C=C2C(=O)C(OC)=C(N)C(=O)C2=NC=1C(C=1N)=NC(C(O)=O)=C(C)C=1C1=CC=C(OC)C(OC)=C1O PVYJZLYGTZKPJE-UHFFFAOYSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 235000019640 taste Nutrition 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Substances C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- 229960001196 thiotepa Drugs 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- 229960004355 vindesine Drugs 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 1
- ABJSOROVZZKJGI-OCYUSGCXSA-N (1r,2r,4r)-2-(4-bromophenyl)-n-[(4-chlorophenyl)-(2-fluoropyridin-4-yl)methyl]-4-morpholin-4-ylcyclohexane-1-carboxamide Chemical compound C1=NC(F)=CC(C(NC(=O)[C@H]2[C@@H](C[C@@H](CC2)N2CCOCC2)C=2C=CC(Br)=CC=2)C=2C=CC(Cl)=CC=2)=C1 ABJSOROVZZKJGI-OCYUSGCXSA-N 0.000 description 1
- BQLKLYYHZOLCLV-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-[2-[2-[2-[3-(2,5-dioxopyrrolidin-1-yl)oxy-3-oxopropoxy]ethoxy]ethoxy]ethoxy]propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCOCCOCCOCCOCCC(=O)ON1C(=O)CCC1=O BQLKLYYHZOLCLV-UHFFFAOYSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- WDQLRUYAYXDIFW-RWKIJVEZSA-N (2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-4-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)O1 WDQLRUYAYXDIFW-RWKIJVEZSA-N 0.000 description 1
- AGGWFDNPHKLBBV-YUMQZZPRSA-N (2s)-2-[[(2s)-2-amino-3-methylbutanoyl]amino]-5-(carbamoylamino)pentanoic acid Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=O AGGWFDNPHKLBBV-YUMQZZPRSA-N 0.000 description 1
- YXTKHLHCVFUPPT-YYFJYKOTSA-N (2s)-2-[[4-[(2-amino-5-formyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid;(1r,2r)-1,2-dimethanidylcyclohexane;5-fluoro-1h-pyrimidine-2,4-dione;oxalic acid;platinum(2+) Chemical compound [Pt+2].OC(=O)C(O)=O.[CH2-][C@@H]1CCCC[C@H]1[CH2-].FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 YXTKHLHCVFUPPT-YYFJYKOTSA-N 0.000 description 1
- FLWWDYNPWOSLEO-HQVZTVAUSA-N (2s)-2-[[4-[1-(2-amino-4-oxo-1h-pteridin-6-yl)ethyl-methylamino]benzoyl]amino]pentanedioic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1C(C)N(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FLWWDYNPWOSLEO-HQVZTVAUSA-N 0.000 description 1
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 1
- DLKUYSQUHXBYPB-NSSHGSRYSA-N (2s,4r)-4-[[2-[(1r,3r)-1-acetyloxy-4-methyl-3-[3-methylbutanoyloxymethyl-[(2s,3s)-3-methyl-2-[[(2r)-1-methylpiperidine-2-carbonyl]amino]pentanoyl]amino]pentyl]-1,3-thiazole-4-carbonyl]amino]-2-methyl-5-(4-methylphenyl)pentanoic acid Chemical compound N([C@@H]([C@@H](C)CC)C(=O)N(COC(=O)CC(C)C)[C@H](C[C@@H](OC(C)=O)C=1SC=C(N=1)C(=O)N[C@H](C[C@H](C)C(O)=O)CC=1C=CC(C)=CC=1)C(C)C)C(=O)[C@H]1CCCCN1C DLKUYSQUHXBYPB-NSSHGSRYSA-N 0.000 description 1
- CGMTUJFWROPELF-YPAAEMCBSA-N (3E,5S)-5-[(2S)-butan-2-yl]-3-(1-hydroxyethylidene)pyrrolidine-2,4-dione Chemical compound CC[C@H](C)[C@@H]1NC(=O)\C(=C(/C)O)C1=O CGMTUJFWROPELF-YPAAEMCBSA-N 0.000 description 1
- KVXXEKIGMOEPSA-ZETCQYMHSA-N (3s)-4-[(2-methylpropan-2-yl)oxycarbonyl]morpholine-3-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCOC[C@H]1C(O)=O KVXXEKIGMOEPSA-ZETCQYMHSA-N 0.000 description 1
- TVIRNGFXQVMMGB-OFWIHYRESA-N (3s,6r,10r,13e,16s)-16-[(2r,3r,4s)-4-chloro-3-hydroxy-4-phenylbutan-2-yl]-10-[(3-chloro-4-methoxyphenyl)methyl]-6-methyl-3-(2-methylpropyl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetrone Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H](O)[C@@H](Cl)C=2C=CC=CC=2)C/C=C/C(=O)N1 TVIRNGFXQVMMGB-OFWIHYRESA-N 0.000 description 1
- YQOLEILXOBUDMU-KRWDZBQOSA-N (4R)-5-[(6-bromo-3-methyl-2-pyrrolidin-1-ylquinoline-4-carbonyl)amino]-4-(2-chlorophenyl)pentanoic acid Chemical compound CC1=C(C2=C(C=CC(=C2)Br)N=C1N3CCCC3)C(=O)NC[C@H](CCC(=O)O)C4=CC=CC=C4Cl YQOLEILXOBUDMU-KRWDZBQOSA-N 0.000 description 1
- XRBSKUSTLXISAB-XVVDYKMHSA-N (5r,6r,7r,8r)-8-hydroxy-7-(hydroxymethyl)-5-(3,4,5-trimethoxyphenyl)-5,6,7,8-tetrahydrobenzo[f][1,3]benzodioxole-6-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H](CO)[C@@H]2C(O)=O)=C1 XRBSKUSTLXISAB-XVVDYKMHSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- XRBSKUSTLXISAB-UHFFFAOYSA-N (7R,7'R,8R,8'R)-form-Podophyllic acid Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C(CO)C2C(O)=O)=C1 XRBSKUSTLXISAB-UHFFFAOYSA-N 0.000 description 1
- AESVUZLWRXEGEX-DKCAWCKPSA-N (7S,9R)-7-[(2S,4R,5R,6R)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione iron(3+) Chemical compound [Fe+3].COc1cccc2C(=O)c3c(O)c4C[C@@](O)(C[C@H](O[C@@H]5C[C@@H](N)[C@@H](O)[C@@H](C)O5)c4c(O)c3C(=O)c12)C(=O)CO AESVUZLWRXEGEX-DKCAWCKPSA-N 0.000 description 1
- JXVAMODRWBNUSF-KZQKBALLSA-N (7s,9r,10r)-7-[(2r,4s,5s,6s)-5-[[(2s,4as,5as,7s,9s,9ar,10ar)-2,9-dimethyl-3-oxo-4,4a,5a,6,7,9,9a,10a-octahydrodipyrano[4,2-a:4',3'-e][1,4]dioxin-7-yl]oxy]-4-(dimethylamino)-6-methyloxan-2-yl]oxy-10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2 Chemical compound O([C@@H]1C2=C(O)C=3C(=O)C4=CC=CC(O)=C4C(=O)C=3C(O)=C2[C@@H](O[C@@H]2O[C@@H](C)[C@@H](O[C@@H]3O[C@@H](C)[C@H]4O[C@@H]5O[C@@H](C)C(=O)C[C@@H]5O[C@H]4C3)[C@H](C2)N(C)C)C[C@]1(O)CC)[C@H]1C[C@H](N(C)C)[C@H](O)[C@H](C)O1 JXVAMODRWBNUSF-KZQKBALLSA-N 0.000 description 1
- INAUWOVKEZHHDM-PEDBPRJASA-N (7s,9s)-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-7-[(2r,4s,5s,6s)-5-hydroxy-6-methyl-4-morpholin-4-yloxan-2-yl]oxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1 INAUWOVKEZHHDM-PEDBPRJASA-N 0.000 description 1
- RCFNNLSZHVHCEK-IMHLAKCZSA-N (7s,9s)-7-(4-amino-6-methyloxan-2-yl)oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound [Cl-].O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)C1CC([NH3+])CC(C)O1 RCFNNLSZHVHCEK-IMHLAKCZSA-N 0.000 description 1
- NOPNWHSMQOXAEI-PUCKCBAPSA-N (7s,9s)-7-[(2r,4s,5s,6s)-4-(2,3-dihydropyrrol-1-yl)-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCC=C1 NOPNWHSMQOXAEI-PUCKCBAPSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- 125000004769 (C1-C4) alkylsulfonyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- FONKWHRXTPJODV-DNQXCXABSA-N 1,3-bis[2-[(8s)-8-(chloromethyl)-4-hydroxy-1-methyl-7,8-dihydro-3h-pyrrolo[3,2-e]indole-6-carbonyl]-1h-indol-5-yl]urea Chemical compound C1([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C4=CC(O)=C5NC=C(C5=C4[C@H](CCl)C3)C)=C2C=C(O)C2=C1C(C)=CN2 FONKWHRXTPJODV-DNQXCXABSA-N 0.000 description 1
- IGERFAHWSHDDHX-UHFFFAOYSA-N 1,3-dioxanyl Chemical group [CH]1OCCCO1 IGERFAHWSHDDHX-UHFFFAOYSA-N 0.000 description 1
- JPRPJUMQRZTTED-UHFFFAOYSA-N 1,3-dioxolanyl Chemical group [CH]1OCCO1 JPRPJUMQRZTTED-UHFFFAOYSA-N 0.000 description 1
- ILWJAOPQHOZXAN-UHFFFAOYSA-N 1,3-dithianyl Chemical group [CH]1SCCCS1 ILWJAOPQHOZXAN-UHFFFAOYSA-N 0.000 description 1
- FLOJNXXFMHCMMR-UHFFFAOYSA-N 1,3-dithiolanyl Chemical group [CH]1SCCS1 FLOJNXXFMHCMMR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical class C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001462 1-pyrrolyl group Chemical group [*]N1C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- BTOTXLJHDSNXMW-POYBYMJQSA-N 2,3-dideoxyuridine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(=O)NC(=O)C=C1 BTOTXLJHDSNXMW-POYBYMJQSA-N 0.000 description 1
- 125000004564 2,3-dihydrobenzofuran-2-yl group Chemical group O1C(CC2=C1C=CC=C2)* 0.000 description 1
- BOMZMNZEXMAQQW-UHFFFAOYSA-N 2,5,11-trimethyl-6h-pyrido[4,3-b]carbazol-2-ium-9-ol;acetate Chemical compound CC([O-])=O.C[N+]1=CC=C2C(C)=C(NC=3C4=CC(O)=CC=3)C4=C(C)C2=C1 BOMZMNZEXMAQQW-UHFFFAOYSA-N 0.000 description 1
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 1
- QCXJFISCRQIYID-IAEPZHFASA-N 2-amino-1-n-[(3s,6s,7r,10s,16s)-3-[(2s)-butan-2-yl]-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-10-propan-2-yl-8-oxa-1,4,11,14-tetrazabicyclo[14.3.0]nonadecan-6-yl]-4,6-dimethyl-3-oxo-9-n-[(3s,6s,7r,10s,16s)-7,11,14-trimethyl-2,5,9,12,15-pentaoxo-3,10-di(propa Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N=C2C(C(=O)N[C@@H]3C(=O)N[C@H](C(N4CCC[C@H]4C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]3C)=O)[C@@H](C)CC)=C(N)C(=O)C(C)=C2O2)C2=C(C)C=C1 QCXJFISCRQIYID-IAEPZHFASA-N 0.000 description 1
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 1
- 125000004174 2-benzimidazolyl group Chemical group [H]N1C(*)=NC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- VNBAOSVONFJBKP-UHFFFAOYSA-N 2-chloro-n,n-bis(2-chloroethyl)propan-1-amine;hydrochloride Chemical compound Cl.CC(Cl)CN(CCCl)CCCl VNBAOSVONFJBKP-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 1
- LFOIDLOIBZFWDO-UHFFFAOYSA-N 2-methoxy-6-[6-methoxy-4-[(3-phenylmethoxyphenyl)methoxy]-1-benzofuran-2-yl]imidazo[2,1-b][1,3,4]thiadiazole Chemical compound N1=C2SC(OC)=NN2C=C1C(OC1=CC(OC)=C2)=CC1=C2OCC(C=1)=CC=CC=1OCC1=CC=CC=C1 LFOIDLOIBZFWDO-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000389 2-pyrrolyl group Chemical group [H]N1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- YIMDLWDNDGKDTJ-QLKYHASDSA-N 3'-deamino-3'-(3-cyanomorpholin-4-yl)doxorubicin Chemical compound N1([C@H]2C[C@@H](O[C@@H](C)[C@H]2O)O[C@H]2C[C@@](O)(CC=3C(O)=C4C(=O)C=5C=CC=C(C=5C(=O)C4=C(O)C=32)OC)C(=O)CO)CCOCC1C#N YIMDLWDNDGKDTJ-QLKYHASDSA-N 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- PWMYMKOUNYTVQN-UHFFFAOYSA-N 3-(8,8-diethyl-2-aza-8-germaspiro[4.5]decan-2-yl)-n,n-dimethylpropan-1-amine Chemical compound C1C[Ge](CC)(CC)CCC11CN(CCCN(C)C)CC1 PWMYMKOUNYTVQN-UHFFFAOYSA-N 0.000 description 1
- QGJZLNKBHJESQX-UHFFFAOYSA-N 3-Epi-Betulin-Saeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(=C)C)C5C4CCC3C21C QGJZLNKBHJESQX-UHFFFAOYSA-N 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- CLOUCVRNYSHRCF-UHFFFAOYSA-N 3beta-Hydroxy-20(29)-Lupen-3,27-oic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C(O)=O)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C CLOUCVRNYSHRCF-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- KDDQRKBRJSGMQE-UHFFFAOYSA-N 4-thiazolyl Chemical group [C]1=CSC=N1 KDDQRKBRJSGMQE-UHFFFAOYSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- CWDWFSXUQODZGW-UHFFFAOYSA-N 5-thiazolyl Chemical group [C]1=CN=CS1 CWDWFSXUQODZGW-UHFFFAOYSA-N 0.000 description 1
- WYXSYVWAUAUWLD-SHUUEZRQSA-N 6-azauridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=N1 WYXSYVWAUAUWLD-SHUUEZRQSA-N 0.000 description 1
- YCWQAMGASJSUIP-YFKPBYRVSA-N 6-diazo-5-oxo-L-norleucine Chemical compound OC(=O)[C@@H](N)CCC(=O)C=[N+]=[N-] YCWQAMGASJSUIP-YFKPBYRVSA-N 0.000 description 1
- 229960005538 6-diazo-5-oxo-L-norleucine Drugs 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- FUXVKZWTXQUGMW-FQEVSTJZSA-N 9-Aminocamptothecin Chemical compound C1=CC(N)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 FUXVKZWTXQUGMW-FQEVSTJZSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 208000023761 AL amyloidosis Diseases 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 1
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 1
- CEIZFXOZIQNICU-UHFFFAOYSA-N Alternaria alternata Crofton-weed toxin Natural products CCC(C)C1NC(=O)C(C(C)=O)=C1O CEIZFXOZIQNICU-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 229940122035 Bcl-XL inhibitor Drugs 0.000 description 1
- VGGGPCQERPFHOB-MCIONIFRSA-N Bestatin Chemical compound CC(C)C[C@H](C(O)=O)NC(=O)[C@@H](O)[C@H](N)CC1=CC=CC=C1 VGGGPCQERPFHOB-MCIONIFRSA-N 0.000 description 1
- DIZWSDNSTNAYHK-XGWVBXMLSA-N Betulinic acid Natural products CC(=C)[C@@H]1C[C@H]([C@H]2CC[C@]3(C)[C@H](CC[C@@H]4[C@@]5(C)CC[C@H](O)C(C)(C)[C@@H]5CC[C@@]34C)[C@@H]12)C(=O)O DIZWSDNSTNAYHK-XGWVBXMLSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- MBABCNBNDNGODA-LTGLSHGVSA-N Bullatacin Natural products O=C1C(C[C@H](O)CCCCCCCCCC[C@@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)=C[C@H](C)O1 MBABCNBNDNGODA-LTGLSHGVSA-N 0.000 description 1
- KGGVWMAPBXIMEM-ZRTAFWODSA-N Bullatacinone Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@H]2OC(=O)[C@H](CC(C)=O)C2)CC1 KGGVWMAPBXIMEM-ZRTAFWODSA-N 0.000 description 1
- KGGVWMAPBXIMEM-JQFCFGFHSA-N Bullatacinone Natural products O=C(C[C@H]1C(=O)O[C@H](CCCCCCCCCC[C@H](O)[C@@H]2O[C@@H]([C@@H]3O[C@@H]([C@@H](O)CCCCCCCCCC)CC3)CC2)C1)C KGGVWMAPBXIMEM-JQFCFGFHSA-N 0.000 description 1
- 125000004406 C3-C8 cycloalkylene group Chemical group 0.000 description 1
- QIHHTRNUHMRKQK-MNFMTBGBSA-N CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](CN=[N+]=[N-])Cc1ccc(N)cc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C)C(C)C Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](CN=[N+]=[N-])Cc1ccc(N)cc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C)C(C)C QIHHTRNUHMRKQK-MNFMTBGBSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- SHHKQEUPHAENFK-UHFFFAOYSA-N Carboquone Chemical compound O=C1C(C)=C(N2CC2)C(=O)C(C(COC(N)=O)OC)=C1N1CC1 SHHKQEUPHAENFK-UHFFFAOYSA-N 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 229930189023 Carmaphycin Natural products 0.000 description 1
- AOCCBINRVIKJHY-UHFFFAOYSA-N Carmofur Chemical compound CCCCCCNC(=O)N1C=C(F)C(=O)NC1=O AOCCBINRVIKJHY-UHFFFAOYSA-N 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 208000005024 Castleman disease Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- XCDXSSFOJZZGQC-UHFFFAOYSA-N Chlornaphazine Chemical compound C1=CC=CC2=CC(N(CCCl)CCCl)=CC=C21 XCDXSSFOJZZGQC-UHFFFAOYSA-N 0.000 description 1
- MKQWTWSXVILIKJ-LXGUWJNJSA-N Chlorozotocin Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)NC(=O)N(N=O)CCCl MKQWTWSXVILIKJ-LXGUWJNJSA-N 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229940127007 Compound 39 Drugs 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229930188224 Cryptophycin Natural products 0.000 description 1
- 125000002353 D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- XXGMIHXASFDFSM-UHFFFAOYSA-N Delta9-tetrahydrocannabinol Natural products CCCCCc1cc2OC(C)(C)C3CCC(=CC3c2c(O)c1O)C XXGMIHXASFDFSM-UHFFFAOYSA-N 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- 108010002156 Depsipeptides Proteins 0.000 description 1
- AUGQEEXBDZWUJY-ZLJUKNTDSA-N Diacetoxyscirpenol Chemical compound C([C@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)C)O2 AUGQEEXBDZWUJY-ZLJUKNTDSA-N 0.000 description 1
- AUGQEEXBDZWUJY-UHFFFAOYSA-N Diacetoxyscirpenol Natural products CC(=O)OCC12CCC(C)=CC1OC1C(O)C(OC(C)=O)C2(C)C11CO1 AUGQEEXBDZWUJY-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- 229930193152 Dynemicin Natural products 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- AFMYMMXSQGUCBK-UHFFFAOYSA-N Endynamicin A Natural products C1#CC=CC#CC2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3C34OC32C(C)C(C(O)=O)=C(OC)C41 AFMYMMXSQGUCBK-UHFFFAOYSA-N 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- SAMRUMKYXPVKPA-VFKOLLTISA-N Enocitabine Chemical compound O=C1N=C(NC(=O)CCCCCCCCCCCCCCCCCCCCC)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 SAMRUMKYXPVKPA-VFKOLLTISA-N 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- OBMLHUPNRURLOK-XGRAFVIBSA-N Epitiostanol Chemical compound C1[C@@H]2S[C@@H]2C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 OBMLHUPNRURLOK-XGRAFVIBSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 229930189413 Esperamicin Natural products 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- MPBVHIBUJCELCL-UHFFFAOYSA-N Ibandronate Chemical compound CCCCCN(C)CCC(O)(P(O)(O)=O)P(O)(O)=O MPBVHIBUJCELCL-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010053574 Immunoblastic lymphoma Diseases 0.000 description 1
- 208000005531 Immunoglobulin Light-chain Amyloidosis Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 229920001491 Lentinan Polymers 0.000 description 1
- MEPSBMMZQBMKHM-UHFFFAOYSA-N Lomatiol Natural products CC(=C/CC1=C(O)C(=O)c2ccccc2C1=O)CO MEPSBMMZQBMKHM-UHFFFAOYSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- VJRAUFKOOPNFIQ-UHFFFAOYSA-N Marcellomycin Natural products C12=C(O)C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C=C2C(C(=O)OC)C(CC)(O)CC1OC(OC1C)CC(N(C)C)C1OC(OC1C)CC(O)C1OC1CC(O)C(O)C(C)O1 VJRAUFKOOPNFIQ-UHFFFAOYSA-N 0.000 description 1
- 208000009018 Medullary thyroid cancer Diseases 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- IVDYZAAPOLNZKG-KWHRADDSSA-N Mepitiostane Chemical compound O([C@@H]1[C@]2(CC[C@@H]3[C@@]4(C)C[C@H]5S[C@H]5C[C@@H]4CC[C@H]3[C@@H]2CC1)C)C1(OC)CCCC1 IVDYZAAPOLNZKG-KWHRADDSSA-N 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- HRHKSTOGXBBQCB-UHFFFAOYSA-N Mitomycin E Natural products O=C1C(N)=C(C)C(=O)C2=C1C(COC(N)=O)C1(OC)C3N(C)C3CN12 HRHKSTOGXBBQCB-UHFFFAOYSA-N 0.000 description 1
- 206010060880 Monoclonal gammopathy Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 229930182474 N-glycoside Natural products 0.000 description 1
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 102000015532 Nicotinamide phosphoribosyltransferase Human genes 0.000 description 1
- 108010064862 Nicotinamide phosphoribosyltransferase Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- SYNHCENRCUAUNM-UHFFFAOYSA-N Nitrogen mustard N-oxide hydrochloride Chemical compound Cl.ClCC[N+]([O-])(C)CCCl SYNHCENRCUAUNM-UHFFFAOYSA-N 0.000 description 1
- KGTDRFCXGRULNK-UHFFFAOYSA-N Nogalamycin Natural products COC1C(OC)(C)C(OC)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=C4C5(C)OC(C(C(C5O)N(C)C)O)OC4=C3C3=O)=C3C=C2C(C(=O)OC)C(C)(O)C1 KGTDRFCXGRULNK-UHFFFAOYSA-N 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910004727 OSO3H Inorganic materials 0.000 description 1
- 229930187135 Olivomycin Natural products 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 102100035591 POU domain, class 2, transcription factor 2 Human genes 0.000 description 1
- 101710084411 POU domain, class 2, transcription factor 2 Proteins 0.000 description 1
- VREZDOWOLGNDPW-ALTGWBOUSA-N Pancratistatin Chemical compound C1=C2[C@H]3[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)[C@@H]3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-ALTGWBOUSA-N 0.000 description 1
- VREZDOWOLGNDPW-MYVCAWNPSA-N Pancratistatin Natural products O=C1N[C@H]2[C@H](O)[C@H](O)[C@H](O)[C@H](O)[C@@H]2c2c1c(O)c1OCOc1c2 VREZDOWOLGNDPW-MYVCAWNPSA-N 0.000 description 1
- 206010033701 Papillary thyroid cancer Diseases 0.000 description 1
- 208000002774 Paraproteinemias Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010057150 Peplomycin Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000007456 Peroxiredoxin Human genes 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KMSKQZKKOZQFFG-HSUXVGOQSA-N Pirarubicin Chemical compound O([C@H]1[C@@H](N)C[C@@H](O[C@H]1C)O[C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1CCCCO1 KMSKQZKKOZQFFG-HSUXVGOQSA-N 0.000 description 1
- 208000021161 Plasma cell disease Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 206010036673 Primary amyloidosis Diseases 0.000 description 1
- 229940079156 Proteasome inhibitor Drugs 0.000 description 1
- 229940122712 RNA splicing inhibitor Drugs 0.000 description 1
- 101001039269 Rattus norvegicus Glycine N-methyltransferase Proteins 0.000 description 1
- 206010070308 Refractory cancer Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- OWPCHSCAPHNHAV-UHFFFAOYSA-N Rhizoxin Natural products C1C(O)C2(C)OC2C=CC(C)C(OC(=O)C2)CC2CC2OC2C(=O)OC1C(C)C(OC)C(C)=CC=CC(C)=CC1=COC(C)=N1 OWPCHSCAPHNHAV-UHFFFAOYSA-N 0.000 description 1
- NSFWWJIQIKBZMJ-YKNYLIOZSA-N Roridin A Chemical compound C([C@]12[C@]3(C)[C@H]4C[C@H]1O[C@@H]1C=C(C)CC[C@@]13COC(=O)[C@@H](O)[C@H](C)CCO[C@H](\C=C\C=C/C(=O)O4)[C@H](O)C)O2 NSFWWJIQIKBZMJ-YKNYLIOZSA-N 0.000 description 1
- CIEYTVIYYGTCCI-UHFFFAOYSA-N SJ000286565 Natural products C1=CC=C2C(=O)C(CC=C(C)C)=C(O)C(=O)C2=C1 CIEYTVIYYGTCCI-UHFFFAOYSA-N 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 description 1
- RJFAYQIBOAGBLC-UHFFFAOYSA-N Selenomethionine Natural products C[Se]CCC(N)C(O)=O RJFAYQIBOAGBLC-UHFFFAOYSA-N 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- 229910007161 Si(CH3)3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920000519 Sizofiran Polymers 0.000 description 1
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BXFOFFBJRFZBQZ-QYWOHJEZSA-N T-2 toxin Chemical compound C([C@@]12[C@]3(C)[C@H](OC(C)=O)[C@@H](O)[C@H]1O[C@H]1[C@]3(COC(C)=O)C[C@@H](C(=C1)C)OC(=O)CC(C)C)O2 BXFOFFBJRFZBQZ-QYWOHJEZSA-N 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- CGMTUJFWROPELF-UHFFFAOYSA-N Tenuazonic acid Natural products CCC(C)C1NC(=O)C(=C(C)/O)C1=O CGMTUJFWROPELF-UHFFFAOYSA-N 0.000 description 1
- 206010062122 Testicular choriocarcinoma Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 208000005485 Thrombocytosis Diseases 0.000 description 1
- 208000033781 Thyroid carcinoma Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- UMILHIMHKXVDGH-UHFFFAOYSA-N Triethylene glycol diglycidyl ether Chemical compound C1OC1COCCOCCOCCOCC1CO1 UMILHIMHKXVDGH-UHFFFAOYSA-N 0.000 description 1
- FYAMXEPQQLNQDM-UHFFFAOYSA-N Tris(1-aziridinyl)phosphine oxide Chemical compound C1CN1P(N1CC1)(=O)N1CC1 FYAMXEPQQLNQDM-UHFFFAOYSA-N 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 1
- ZYVSOIYQKUDENJ-ASUJBHBQSA-N [(2R,3R,4R,6R)-6-[[(6S,7S)-6-[(2S,4R,5R,6R)-4-[(2R,4R,5R,6R)-4-[(2S,4S,5S,6S)-5-acetyloxy-4-hydroxy-4,6-dimethyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-7-[(3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-4,10-dihydroxy-3-methyl-5-oxo-7,8-dihydro-6H-anthracen-2-yl]oxy]-4-[(2R,4R,5R,6R)-4-hydroxy-5-methoxy-6-methyloxan-2-yl]oxy-2-methyloxan-3-yl] acetate Chemical class COC([C@@H]1Cc2cc3cc(O[C@@H]4C[C@@H](O[C@@H]5C[C@@H](O)[C@@H](OC)[C@@H](C)O5)[C@H](OC(C)=O)[C@@H](C)O4)c(C)c(O)c3c(O)c2C(=O)[C@H]1O[C@H]1C[C@@H](O[C@@H]2C[C@@H](O[C@H]3C[C@](C)(O)[C@@H](OC(C)=O)[C@H](C)O3)[C@H](O)[C@@H](C)O2)[C@H](O)[C@@H](C)O1)C(=O)[C@@H](O)[C@@H](C)O ZYVSOIYQKUDENJ-ASUJBHBQSA-N 0.000 description 1
- SPJCRMJCFSJKDE-ZWBUGVOYSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] 2-[4-[bis(2-chloroethyl)amino]phenyl]acetate Chemical compound O([C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)C(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 SPJCRMJCFSJKDE-ZWBUGVOYSA-N 0.000 description 1
- IFJUINDAXYAPTO-UUBSBJJBSA-N [(8r,9s,13s,14s,17s)-17-[2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]acetyl]oxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl] benzoate Chemical compound C([C@@H]1[C@@H](C2=CC=3)CC[C@]4([C@H]1CC[C@@H]4OC(=O)COC(=O)CCCC=1C=CC(=CC=1)N(CCCl)CCCl)C)CC2=CC=3OC(=O)C1=CC=CC=C1 IFJUINDAXYAPTO-UUBSBJJBSA-N 0.000 description 1
- XZSRRNFBEIOBDA-CFNBKWCHSA-N [2-[(2s,4s)-4-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-3,4-dihydro-1h-tetracen-2-yl]-2-oxoethyl] 2,2-diethoxyacetate Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)C(OCC)OCC)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 XZSRRNFBEIOBDA-CFNBKWCHSA-N 0.000 description 1
- BGRWFTLTPYDFOH-HEVIKAOCSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[9H-fluoren-9-yloxycarbonyl(methyl)amino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl (4-nitrophenyl) carbonate Chemical compound C1=CC=CC=2C3=CC=CC=C3C(C1=2)OC(N([C@H](C(=O)N[C@H](C(=O)NC1=CC=C(C=C1)COC(=O)OC1=CC=C(C=C1)[N+](=O)[O-])CCCNC(=O)N)C(C)C)C)=O BGRWFTLTPYDFOH-HEVIKAOCSA-N 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- ZOZKYEHVNDEUCO-XUTVFYLZSA-N aceglatone Chemical compound O1C(=O)[C@H](OC(C)=O)[C@@H]2OC(=O)[C@@H](OC(=O)C)[C@@H]21 ZOZKYEHVNDEUCO-XUTVFYLZSA-N 0.000 description 1
- 229950002684 aceglatone Drugs 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229950004955 adozelesin Drugs 0.000 description 1
- BYRVKDUQDLJUBX-JJCDCTGGSA-N adozelesin Chemical compound C1=CC=C2OC(C(=O)NC=3C=C4C=C(NC4=CC=3)C(=O)N3C[C@H]4C[C@]44C5=C(C(C=C43)=O)NC=C5C)=CC2=C1 BYRVKDUQDLJUBX-JJCDCTGGSA-N 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 125000005237 alkyleneamino group Chemical group 0.000 description 1
- 125000005238 alkylenediamino group Chemical group 0.000 description 1
- 125000005530 alkylenedioxy group Chemical group 0.000 description 1
- 125000005529 alkyleneoxy group Chemical group 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 229960001220 amsacrine Drugs 0.000 description 1
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- BBDAGFIXKZCXAH-CCXZUQQUSA-N ancitabine Chemical compound N=C1C=CN2[C@@H]3O[C@H](CO)[C@@H](O)[C@@H]3OC2=N1 BBDAGFIXKZCXAH-CCXZUQQUSA-N 0.000 description 1
- 229950000242 ancitabine Drugs 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 229940045720 antineoplastic alkylating drug epoxides Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- 150000008209 arabinosides Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 229950011321 azaserine Drugs 0.000 description 1
- 125000003725 azepanyl group Chemical group 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- QGJZLNKBHJESQX-FZFNOLFKSA-N betulinic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C QGJZLNKBHJESQX-FZFNOLFKSA-N 0.000 description 1
- GPRLTFBKWDERLU-UHFFFAOYSA-N bicyclo[2.2.2]octane Chemical group C1CC2CCC1CC2 GPRLTFBKWDERLU-UHFFFAOYSA-N 0.000 description 1
- SHOMMGQAMRXRRK-UHFFFAOYSA-N bicyclo[3.1.1]heptane Chemical group C1C2CC1CCC2 SHOMMGQAMRXRRK-UHFFFAOYSA-N 0.000 description 1
- GNTFBMAGLFYMMZ-UHFFFAOYSA-N bicyclo[3.2.2]nonane Chemical group C1CC2CCC1CCC2 GNTFBMAGLFYMMZ-UHFFFAOYSA-N 0.000 description 1
- WNTGVOIBBXFMLR-UHFFFAOYSA-N bicyclo[3.3.1]nonane Chemical group C1CCC2CCCC1C2 WNTGVOIBBXFMLR-UHFFFAOYSA-N 0.000 description 1
- KVLCIHRZDOKRLK-UHFFFAOYSA-N bicyclo[4.2.1]nonane Chemical group C1C2CCC1CCCC2 KVLCIHRZDOKRLK-UHFFFAOYSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 229950006844 bizelesin Drugs 0.000 description 1
- 210000003969 blast cell Anatomy 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 description 1
- MUIWQCKLQMOUAT-AKUNNTHJSA-N bryostatin 20 Natural products COC(=O)C=C1C[C@@]2(C)C[C@]3(O)O[C@](C)(C[C@@H](O)CC(=O)O[C@](C)(C[C@@]4(C)O[C@](O)(CC5=CC(=O)O[C@]45C)C(C)(C)C=C[C@@](C)(C1)O2)[C@@H](C)O)C[C@H](OC(=O)C(C)(C)C)C3(C)C MUIWQCKLQMOUAT-AKUNNTHJSA-N 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- MBABCNBNDNGODA-LUVUIASKSA-N bullatacin Chemical compound O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@@H]1[C@@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-LUVUIASKSA-N 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 108700002839 cactinomycin Proteins 0.000 description 1
- 229950009908 cactinomycin Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- IVFYLRMMHVYGJH-PVPPCFLZSA-N calusterone Chemical compound C1C[C@]2(C)[C@](O)(C)CC[C@H]2[C@@H]2[C@@H](C)CC3=CC(=O)CC[C@]3(C)[C@H]21 IVFYLRMMHVYGJH-PVPPCFLZSA-N 0.000 description 1
- 229950009823 calusterone Drugs 0.000 description 1
- 229940088954 camptosar Drugs 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960002115 carboquone Drugs 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- XREUEWVEMYWFFA-CSKJXFQVSA-N carminomycin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XREUEWVEMYWFFA-CSKJXFQVSA-N 0.000 description 1
- 229930188550 carminomycin Natural products 0.000 description 1
- XREUEWVEMYWFFA-UHFFFAOYSA-N carminomycin I Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=C(O)C=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XREUEWVEMYWFFA-UHFFFAOYSA-N 0.000 description 1
- 229960003261 carmofur Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 229950001725 carubicin Drugs 0.000 description 1
- BBZDXMBRAFTCAA-AREMUKBSSA-N carzelesin Chemical compound C1=2NC=C(C)C=2C([C@H](CCl)CN2C(=O)C=3NC4=CC=C(C=C4C=3)NC(=O)C3=CC4=CC=C(C=C4O3)N(CC)CC)=C2C=C1OC(=O)NC1=CC=CC=C1 BBZDXMBRAFTCAA-AREMUKBSSA-N 0.000 description 1
- 229950007509 carzelesin Drugs 0.000 description 1
- 108010047060 carzinophilin Proteins 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229950008249 chlornaphazine Drugs 0.000 description 1
- 229960001480 chlorozotocin Drugs 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000014911 choriocarcinoma of testis Diseases 0.000 description 1
- 201000000336 choriocarcinoma of the testis Diseases 0.000 description 1
- 210000002987 choroid plexus Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 208000013056 classic Hodgkin lymphoma Diseases 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940126086 compound 21 Drugs 0.000 description 1
- 229940125851 compound 27 Drugs 0.000 description 1
- 229940127204 compound 29 Drugs 0.000 description 1
- 229940125878 compound 36 Drugs 0.000 description 1
- 229940125844 compound 46 Drugs 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- PSNOPSMXOBPNNV-VVCTWANISA-N cryptophycin 1 Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H]2[C@H](O2)C=2C=CC=CC=2)C/C=C/C(=O)N1 PSNOPSMXOBPNNV-VVCTWANISA-N 0.000 description 1
- 108010089438 cryptophycin 1 Proteins 0.000 description 1
- 108010090203 cryptophycin 8 Proteins 0.000 description 1
- PSNOPSMXOBPNNV-UHFFFAOYSA-N cryptophycin-327 Natural products C1=C(Cl)C(OC)=CC=C1CC1C(=O)NCC(C)C(=O)OC(CC(C)C)C(=O)OC(C(C)C2C(O2)C=2C=CC=CC=2)CC=CC(=O)N1 PSNOPSMXOBPNNV-UHFFFAOYSA-N 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 208000030381 cutaneous melanoma Diseases 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 125000004652 decahydroisoquinolinyl group Chemical group C1(NCCC2CCCCC12)* 0.000 description 1
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 1
- 229960005052 demecolcine Drugs 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229950003913 detorubicin Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 125000005959 diazepanyl group Chemical group 0.000 description 1
- WVYXNIXAMZOZFK-UHFFFAOYSA-N diaziquone Chemical compound O=C1C(NC(=O)OCC)=C(N2CC2)C(=O)C(NC(=O)OCC)=C1N1CC1 WVYXNIXAMZOZFK-UHFFFAOYSA-N 0.000 description 1
- 229950002389 diaziquone Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- PZXJOHSZQAEJFE-UHFFFAOYSA-N dihydrobetulinic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(C)C)C5C4CCC3C21C PZXJOHSZQAEJFE-UHFFFAOYSA-N 0.000 description 1
- OZRNSSUDZOLUSN-LBPRGKRZSA-N dihydrofolic acid Chemical compound N=1C=2C(=O)NC(N)=NC=2NCC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OZRNSSUDZOLUSN-LBPRGKRZSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical group C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 1
- 229930188854 dolastatin Natural products 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- ZWAOHEXOSAUJHY-ZIYNGMLESA-N doxifluridine Chemical compound O[C@@H]1[C@H](O)[C@@H](C)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ZWAOHEXOSAUJHY-ZIYNGMLESA-N 0.000 description 1
- 229950005454 doxifluridine Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229950004683 drostanolone propionate Drugs 0.000 description 1
- AFMYMMXSQGUCBK-AKMKHHNQSA-N dynemicin a Chemical compound C1#C\C=C/C#C[C@@H]2NC(C=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C3)=C3[C@@]34O[C@]32[C@@H](C)C(C(O)=O)=C(OC)[C@H]41 AFMYMMXSQGUCBK-AKMKHHNQSA-N 0.000 description 1
- FSIRXIHZBIXHKT-MHTVFEQDSA-N edatrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CC(CC)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FSIRXIHZBIXHKT-MHTVFEQDSA-N 0.000 description 1
- 229950006700 edatrexate Drugs 0.000 description 1
- 229960002759 eflornithine Drugs 0.000 description 1
- 238000007336 electrophilic substitution reaction Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- XOPYFXBZMVTEJF-PDACKIITSA-N eleutherobin Chemical compound C(/[C@H]1[C@H](C(=CC[C@@H]1C(C)C)C)C[C@@H]([C@@]1(C)O[C@@]2(C=C1)OC)OC(=O)\C=C\C=1N=CN(C)C=1)=C2\CO[C@@H]1OC[C@@H](O)[C@@H](O)[C@@H]1OC(C)=O XOPYFXBZMVTEJF-PDACKIITSA-N 0.000 description 1
- XOPYFXBZMVTEJF-UHFFFAOYSA-N eleutherobin Natural products C1=CC2(OC)OC1(C)C(OC(=O)C=CC=1N=CN(C)C=1)CC(C(=CCC1C(C)C)C)C1C=C2COC1OCC(O)C(O)C1OC(C)=O XOPYFXBZMVTEJF-UHFFFAOYSA-N 0.000 description 1
- 229950000549 elliptinium acetate Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- JOZGNYDSEBIJDH-UHFFFAOYSA-N eniluracil Chemical compound O=C1NC=C(C#C)C(=O)N1 JOZGNYDSEBIJDH-UHFFFAOYSA-N 0.000 description 1
- 229950010213 eniluracil Drugs 0.000 description 1
- 229950011487 enocitabine Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229950002973 epitiostanol Drugs 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- 150000003883 epothilone derivatives Chemical class 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 201000005619 esophageal carcinoma Diseases 0.000 description 1
- ITSGNOIFAJAQHJ-BMFNZSJVSA-N esorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)C[C@H](C)O1 ITSGNOIFAJAQHJ-BMFNZSJVSA-N 0.000 description 1
- 229950002017 esorubicin Drugs 0.000 description 1
- LJQQFQHBKUKHIS-WJHRIEJJSA-N esperamicin Chemical compound O1CC(NC(C)C)C(OC)CC1OC1C(O)C(NOC2OC(C)C(SC)C(O)C2)C(C)OC1OC1C(\C2=C/CSSSC)=C(NC(=O)OC)C(=O)C(OC3OC(C)C(O)C(OC(=O)C=4C(=CC(OC)=C(OC)C=4)NC(=O)C(=C)OC)C3)C2(O)C#C\C=C/C#C1 LJQQFQHBKUKHIS-WJHRIEJJSA-N 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- QSRLNKCNOLVZIR-KRWDZBQOSA-N ethyl (2s)-2-[[2-[4-[bis(2-chloroethyl)amino]phenyl]acetyl]amino]-4-methylsulfanylbutanoate Chemical compound CCOC(=O)[C@H](CCSC)NC(=O)CC1=CC=C(N(CCCl)CCCl)C=C1 QSRLNKCNOLVZIR-KRWDZBQOSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229960005237 etoglucid Drugs 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003020 exocrine pancreas Anatomy 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 1
- 235000008191 folinic acid Nutrition 0.000 description 1
- 239000011672 folinic acid Substances 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229940020967 gemzar Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000024924 glomerular filtration Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002341 glycosylamines Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000000224 granular leucocyte Anatomy 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 210000004837 gut-associated lymphoid tissue Anatomy 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 125000005179 haloacetyl group Chemical group 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 102000053180 human FOLR1 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- KNOSIOWNDGUGFJ-UHFFFAOYSA-N hydroxysesamone Natural products C1=CC(O)=C2C(=O)C(CC=C(C)C)=C(O)C(=O)C2=C1O KNOSIOWNDGUGFJ-UHFFFAOYSA-N 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 229940015872 ibandronate Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 230000002871 immunocytoma Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- DBIGHPPNXATHOF-UHFFFAOYSA-N improsulfan Chemical compound CS(=O)(=O)OCCCNCCCOS(C)(=O)=O DBIGHPPNXATHOF-UHFFFAOYSA-N 0.000 description 1
- 229950008097 improsulfan Drugs 0.000 description 1
- 125000004246 indolin-2-yl group Chemical group [H]N1C(*)=C([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 208000024312 invasive carcinoma Diseases 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical group NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 description 1
- 125000005969 isothiazolinyl group Chemical group 0.000 description 1
- 125000003965 isoxazolidinyl group Chemical group 0.000 description 1
- 125000003971 isoxazolinyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- CWPGNVFCJOPXFB-UHFFFAOYSA-N lapachol Chemical compound C1=CC=C2C(=O)C(=O)C(CC=C(C)C)=C(O)C2=C1 CWPGNVFCJOPXFB-UHFFFAOYSA-N 0.000 description 1
- SIUGQQMOYSVTAT-UHFFFAOYSA-N lapachol Natural products CC(=CCC1C(O)C(=O)c2ccccc2C1=O)C SIUGQQMOYSVTAT-UHFFFAOYSA-N 0.000 description 1
- 229940115286 lentinan Drugs 0.000 description 1
- 229960001691 leucovorin Drugs 0.000 description 1
- ZNOVTXRBGFNYRX-ABLWVSNPSA-N levomefolic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 ZNOVTXRBGFNYRX-ABLWVSNPSA-N 0.000 description 1
- 235000007635 levomefolic acid Nutrition 0.000 description 1
- 239000011578 levomefolic acid Substances 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- YROQEQPFUCPDCP-UHFFFAOYSA-N losoxantrone Chemical compound OCCNCCN1N=C2C3=CC=CC(O)=C3C(=O)C3=C2C1=CC=C3NCCNCCO YROQEQPFUCPDCP-UHFFFAOYSA-N 0.000 description 1
- 229950008745 losoxantrone Drugs 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 201000005249 lung adenocarcinoma Diseases 0.000 description 1
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 1
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 208000006178 malignant mesothelioma Diseases 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 201000005282 malignant pleural mesothelioma Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- MQXVYODZCMMZEM-ZYUZMQFOSA-N mannomustine Chemical compound ClCCNC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CNCCCl MQXVYODZCMMZEM-ZYUZMQFOSA-N 0.000 description 1
- 229950008612 mannomustine Drugs 0.000 description 1
- 229940099262 marinol Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229950009246 mepitiostane Drugs 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate group Chemical class CS(=O)(=O)[O-] AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- VJRAUFKOOPNFIQ-TVEKBUMESA-N methyl (1r,2r,4s)-4-[(2r,4s,5s,6s)-5-[(2s,4s,5s,6s)-5-[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-(dimethylamino)-6-methyloxan-2-yl]oxy-2-ethyl-2,5,7,10-tetrahydroxy-6,11-dioxo-3,4-dihydro-1h-tetracene-1-carboxylat Chemical compound O([C@H]1[C@@H](O)C[C@@H](O[C@H]1C)O[C@H]1[C@H](C[C@@H](O[C@H]1C)O[C@H]1C[C@]([C@@H](C2=CC=3C(=O)C4=C(O)C=CC(O)=C4C(=O)C=3C(O)=C21)C(=O)OC)(O)CC)N(C)C)[C@H]1C[C@H](O)[C@H](O)[C@H](C)O1 VJRAUFKOOPNFIQ-TVEKBUMESA-N 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- HRHKSTOGXBBQCB-VFWICMBZSA-N methylmitomycin Chemical compound O=C1C(N)=C(C)C(=O)C2=C1[C@@H](COC(N)=O)[C@@]1(OC)[C@H]3N(C)[C@H]3CN12 HRHKSTOGXBBQCB-VFWICMBZSA-N 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- 229960003539 mitoguazone Drugs 0.000 description 1
- MXWHMTNPTTVWDM-NXOFHUPFSA-N mitoguazone Chemical compound NC(N)=N\N=C(/C)\C=N\N=C(N)N MXWHMTNPTTVWDM-NXOFHUPFSA-N 0.000 description 1
- VFKZTMPDYBFSTM-GUCUJZIJSA-N mitolactol Chemical compound BrC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-GUCUJZIJSA-N 0.000 description 1
- 229950010913 mitolactol Drugs 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 208000037524 mixed cellularity Hodgkin lymphoma Diseases 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 125000006682 monohaloalkyl group Chemical group 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000004572 morpholin-3-yl group Chemical group N1C(COCC1)* 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- MQYXUWHLBZFQQO-UHFFFAOYSA-N nepehinol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C MQYXUWHLBZFQQO-UHFFFAOYSA-N 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 229960001420 nimustine Drugs 0.000 description 1
- VFEDRRNHLBGPNN-UHFFFAOYSA-N nimustine Chemical compound CC1=NC=C(CNC(=O)N(CCCl)N=O)C(N)=N1 VFEDRRNHLBGPNN-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- KGTDRFCXGRULNK-JYOBTZKQSA-N nogalamycin Chemical compound CO[C@@H]1[C@@](OC)(C)[C@@H](OC)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=C(O)C=C4[C@@]5(C)O[C@H]([C@H]([C@@H]([C@H]5O)N(C)C)O)OC4=C3C3=O)=C3C=C2[C@@H](C(=O)OC)[C@@](C)(O)C1 KGTDRFCXGRULNK-JYOBTZKQSA-N 0.000 description 1
- 229950009266 nogalamycin Drugs 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical group C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- CZDBNBLGZNWKMC-MWQNXGTOSA-N olivomycin Chemical class O([C@@H]1C[C@@H](O[C@H](C)[C@@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1)O[C@H]1O[C@@H](C)[C@H](O)[C@@H](OC2O[C@@H](C)[C@H](O)[C@@H](O)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@H](O)[C@H](OC)[C@H](C)O1 CZDBNBLGZNWKMC-MWQNXGTOSA-N 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 125000005963 oxadiazolidinyl group Chemical group 0.000 description 1
- 125000005882 oxadiazolinyl group Chemical group 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000005968 oxazolinyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- VREZDOWOLGNDPW-UHFFFAOYSA-N pancratistatine Natural products C1=C2C3C(O)C(O)C(O)C(O)C3NC(=O)C2=C(O)C2=C1OCO2 VREZDOWOLGNDPW-UHFFFAOYSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- QIMGFXOHTOXMQP-GFAGFCTOSA-N peplomycin Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCN[C@@H](C)C=1C=CC=CC=1)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QIMGFXOHTOXMQP-GFAGFCTOSA-N 0.000 description 1
- 229950003180 peplomycin Drugs 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 108030002458 peroxiredoxin Proteins 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 210000001986 peyer's patch Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000002743 phosphorus functional group Chemical group 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004483 piperidin-3-yl group Chemical group N1CC(CCC1)* 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229960000952 pipobroman Drugs 0.000 description 1
- NJBFOOCLYDNZJN-UHFFFAOYSA-N pipobroman Chemical compound BrCCC(=O)N1CCN(C(=O)CCBr)CC1 NJBFOOCLYDNZJN-UHFFFAOYSA-N 0.000 description 1
- NUKCGLDCWQXYOQ-UHFFFAOYSA-N piposulfan Chemical compound CS(=O)(=O)OCCC(=O)N1CCN(C(=O)CCOS(C)(=O)=O)CC1 NUKCGLDCWQXYOQ-UHFFFAOYSA-N 0.000 description 1
- 229950001100 piposulfan Drugs 0.000 description 1
- 229960001221 pirarubicin Drugs 0.000 description 1
- 208000011866 pituitary adenocarcinoma Diseases 0.000 description 1
- 208000031223 plasma cell leukemia Diseases 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 210000004043 pneumocyte Anatomy 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 125000006684 polyhaloalkyl group Polymers 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 229950004406 porfiromycin Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 208000003476 primary myelofibrosis Diseases 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 239000003207 proteasome inhibitor Substances 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 210000000512 proximal kidney tubule Anatomy 0.000 description 1
- WOLQREOUPKZMEX-UHFFFAOYSA-N pteroyltriglutamic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(=O)NC(CCC(=O)NC(CCC(O)=O)C(O)=O)C(O)=O)C(O)=O)C=C1 WOLQREOUPKZMEX-UHFFFAOYSA-N 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- BMKDZUISNHGIBY-UHFFFAOYSA-N razoxane Chemical compound C1C(=O)NC(=O)CN1C(C)CN1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-UHFFFAOYSA-N 0.000 description 1
- 229960000460 razoxane Drugs 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 201000001281 rectum adenocarcinoma Diseases 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 208000016691 refractory malignant neoplasm Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- OWPCHSCAPHNHAV-LMONGJCWSA-N rhizoxin Chemical compound C/C([C@H](OC)[C@@H](C)[C@@H]1C[C@H](O)[C@]2(C)O[C@@H]2/C=C/[C@@H](C)[C@]2([H])OC(=O)C[C@@](C2)(C[C@@H]2O[C@H]2C(=O)O1)[H])=C\C=C\C(\C)=C\C1=COC(C)=N1 OWPCHSCAPHNHAV-LMONGJCWSA-N 0.000 description 1
- 229950004892 rodorubicin Drugs 0.000 description 1
- MBABCNBNDNGODA-WPZDJQSSSA-N rolliniastatin 1 Natural products O1[C@@H]([C@@H](O)CCCCCCCCCC)CC[C@H]1[C@H]1O[C@@H]([C@H](O)CCCCCCCCCC[C@@H](O)CC=2C(O[C@@H](C)C=2)=O)CC1 MBABCNBNDNGODA-WPZDJQSSSA-N 0.000 description 1
- IMUQLZLGWJSVMV-UOBFQKKOSA-N roridin A Natural products CC(O)C1OCCC(C)C(O)C(=O)OCC2CC(=CC3OC4CC(OC(=O)C=C/C=C/1)C(C)(C23)C45CO5)C IMUQLZLGWJSVMV-UOBFQKKOSA-N 0.000 description 1
- VHXNKPBCCMUMSW-FQEVSTJZSA-N rubitecan Chemical compound C1=CC([N+]([O-])=O)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VHXNKPBCCMUMSW-FQEVSTJZSA-N 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229930182947 sarcodictyin Natural products 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229960002718 selenomethionine Drugs 0.000 description 1
- 150000007659 semicarbazones Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229950001403 sizofiran Drugs 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- 201000003708 skin melanoma Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000011091 sodium acetates Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- ZVCDLGYNFYZZOK-UHFFFAOYSA-M sodium cyanate Chemical compound [Na]OC#N ZVCDLGYNFYZZOK-UHFFFAOYSA-M 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 229950006315 spirogermanium Drugs 0.000 description 1
- ICXJVZHDZFXYQC-UHFFFAOYSA-N spongistatin 1 Natural products OC1C(O2)(O)CC(O)C(C)C2CCCC=CC(O2)CC(O)CC2(O2)CC(OC)CC2CC(=O)C(C)C(OC(C)=O)C(C)C(=C)CC(O2)CC(C)(O)CC2(O2)CC(OC(C)=O)CC2CC(=O)OC2C(O)C(CC(=C)CC(O)C=CC(Cl)=C)OC1C2C ICXJVZHDZFXYQC-UHFFFAOYSA-N 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000002128 sulfonyl halide group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- 239000005460 tetrahydrofolate Substances 0.000 description 1
- 125000004192 tetrahydrofuran-2-yl group Chemical group [H]C1([H])OC([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000005958 tetrahydrothienyl group Chemical group 0.000 description 1
- 125000005304 thiadiazolidinyl group Chemical group 0.000 description 1
- 125000005305 thiadiazolinyl group Chemical group 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000002769 thiazolinyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 125000005309 thioalkoxy group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000013077 thyroid gland carcinoma Diseases 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- 208000030045 thyroid gland papillary carcinoma Diseases 0.000 description 1
- YFTWHEBLORWGNI-UHFFFAOYSA-N tiamiprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC(N)=NC2=C1NC=N2 YFTWHEBLORWGNI-UHFFFAOYSA-N 0.000 description 1
- 229950011457 tiamiprine Drugs 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000440 toxicity profile Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229950001353 tretamine Drugs 0.000 description 1
- IUCJMVBFZDHPDX-UHFFFAOYSA-N tretamine Chemical compound C1CN1C1=NC(N2CC2)=NC(N2CC2)=N1 IUCJMVBFZDHPDX-UHFFFAOYSA-N 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- PXSOHRWMIRDKMP-UHFFFAOYSA-N triaziquone Chemical compound O=C1C(N2CC2)=C(N2CC2)C(=O)C=C1N1CC1 PXSOHRWMIRDKMP-UHFFFAOYSA-N 0.000 description 1
- 229960004560 triaziquone Drugs 0.000 description 1
- 229930013292 trichothecene Natural products 0.000 description 1
- 150000003327 trichothecene derivatives Chemical class 0.000 description 1
- 229960001670 trilostane Drugs 0.000 description 1
- KVJXBPDAXMEYOA-CXANFOAXSA-N trilostane Chemical compound OC1=C(C#N)C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@@]32O[C@@H]31 KVJXBPDAXMEYOA-CXANFOAXSA-N 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- 125000005455 trithianyl group Chemical group 0.000 description 1
- 229960000875 trofosfamide Drugs 0.000 description 1
- UMKFEPPTGMDVMI-UHFFFAOYSA-N trofosfamide Chemical compound ClCCN(CCCl)P1(=O)OCCCN1CCCl UMKFEPPTGMDVMI-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-LITAXDCLSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO)[C@H](O)[C@H]1O HDZZVAMISRMYHH-LITAXDCLSA-N 0.000 description 1
- 229930184737 tubulysin Natural products 0.000 description 1
- 229950009811 ubenimex Drugs 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- GBABOYUKABKIAF-IELIFDKJSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-IELIFDKJSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229940053867 xeloda Drugs 0.000 description 1
- 229950009268 zinostatin Drugs 0.000 description 1
- FBTUMDXHSRTGRV-ALTNURHMSA-N zorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(\C)=N\NC(=O)C=1C=CC=CC=1)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 FBTUMDXHSRTGRV-ALTNURHMSA-N 0.000 description 1
- 229960000641 zorubicin Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/55—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
- A61K47/551—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/545—Heterocyclic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/554—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being a steroid plant sterol, glycyrrhetic acid, enoxolone or bile acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/65—Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- SMDCs small molecule-drug conjugates
- ADCs Antibody-drug conjugates
- ADCs allow for the targeted delivery of a drug moiety to a tumor, and, in some embodiments intracellular accumulation therein, where systemic administration of unconjugated drugs may result in unacceptable levels of toxicity to normal cells (Polakis P. (2005) Current Opinion in Pharmacology 5:382-387).
- SMDCs Small molecule-drug conjugates
- ADCs Small molecule-drug conjugates
- SMDCs Small molecule-drug conjugates
- the antibody component is replaced by a targeting ligand that can be a peptide or a small molecule
- SMDCs have several strengths compared to ADCs. SMDCs are frequently easier to synthesize than biological agents. Most are nonimmunogenic, making them unlikely to provoke an autoimmune response (Min, H.K. et al. (2016) Korean J.
- SMDCs are more rapidly removed from the blood through glomerular filtration in the kidneys than are ADCs. This results in a better toxicity profile; however, it also has the potential to reduce the effective time on the tumor target (Vlashi, E. et al. (2013) ACS Nano 7:8573-8582).
- the present disclosure provides SMDCs comprising a folic acid conjugated to the drug moiety (payload) through linker moieties.
- the folic acid binds to folate receptor-expressing cancer cells and allows for selective uptake of the SMDC into the cancer cells.
- the SMDCs provided herein selectively deliver an effective amount of drug moiety to tumor tissue and reduce the non-specific toxicity associated with related SMDCs.
- the SMDC compounds described herein include those with anticancer activity.
- the folate receptor (FR) is a high-affinity membrane-associated protein, which exhibits limited expression on healthy cells, but is frequently overexpressed on a wide variety of specific cell types, such as epithelial tumor cells (e.g. ovarian, endometrial, breast, colorectal, kidney, lung, nasopharyngeal) and activated (but not resting) macrophages, which are involved in inflammation and autoimmune diseases.
- hFR ⁇ is overexpressed in a broad variety of cancers, among them adenocarcinomas of uterus, ovary, breast, cervix, kidney and colon and testicular choriocarcinoma, ependymal brain tumors, malignant pleural mesothelioma, and nonfunctioning pituitary adenocarcinoma, while hFR ⁇ in leukemias and activated macrophages (Wibowo, A. et al. (2013) Proc. Natl. Acad. Sci. U.S.A. 110:15180-15188; Low, P. et al. (2007) Acc. Chem. Res. 41:120-129).
- FR ⁇ Folate Receptor-alpha
- FLR1 Folate Receptor 1
- GPI glycosylphosphatidylinositol
- FR ⁇ has important functions relating to cell proliferation and survival (Kelemen L.E. (2006) Int. J. Cancer 119(2):2430250), and it mediates delivery of the physiological folate, 5-methyltetrahydrofolate, to the interior of cells.
- FR ⁇ is restricted to the apical membrane of epithelial cells in the kidney proximal tubules, alveolar pneumocytes of the lung, bladder, testes, choroid plexus, and thyroid (Weitman S.D. et al. (1992) Cancer Res. 52:3396-3401; Antony A.C. (1996) Ann. Rev. Nutr. 16:501 -521; Kalli K.R. et al. (2008) Gynecol. Oncol. 108:619-626).
- FR ⁇ is overexpressed in epithelial-derived tumors including ovarian, uterine, breast, endometrial, pancreatic, renal, lung, colorectal, and brain tumors.
- FR ⁇ This expression pattern of FR ⁇ makes it a desirable target for FR ⁇ -directed cancer therapy.
- Folate plays important roles in nucleotide biosynthesis and cell division, intracellular activities which occur in both malignant and certain normal cells. Upon binding the folate receptor, the folate impacts the cell cycle in dividing cells. This led to the use of folic acid and its analogues and derivatives as a targeting agent for the delivery of therapeutic and/or diagnostic agents to these specific cell populations to achieve a selective concentration of pharmaceutical and/or diagnostic agents in these specific cells relative to normal cells (Leamon and Low (2001) Drug Discov. Today 6:44-51; Leamon and Reddy (2004) Adv. Drug Deliv. Rev.
- the linker in SMDCs usually consists of a spacer and a cleavable bridge. Linkers are designed to preserve the activity of post-cleavage species and to optimize the drug release, pharmacokinetics, and pharmacodynamics of the targeting ligand and payload (Srinivasarao, M. et al. (2015) Nat. Rev. Drug Discov. 14: 203–219; Vlahov, I.R. and Leamon, C.P (2012) Bioconj. Chem. 23:1357-1369). Another function of the spacer is to improve the hydrophilicity of SMDC.
- the cleavable bridge retains stability during the SMDC transportation from the vasculature to the tumor, and is typically cleaved by one of two triggering methods.
- the first mechanism is cleavage in the endosomes of the target cells due to low pH.
- Such a cleavage bridge comprises acetals and hydrazones (Yang, J. et al. (2007) . J. Pharm. Exp. 321:462-468).
- the second mechanism is through use of a disulfide-based linker, which undergoes cleavage due to an intracellular excess of glutathione (GSH), thioredoxin, peroxiredoxins, and nicotinamide adenine dinucleotides (NADH and NADPH) (Srinivasarao, M. et al. (2015) Nat. Rev. Drug Discov. 14: 203–219).
- GSH glutathione
- thioredoxin thioredoxin
- peroxiredoxins nicotinamide adenine dinucleotides
- NADH and NADPH nicotinamide adenine dinucleotides
- multivalent ligands comprising several payloads linked to the targeting compound. Payloads that target mitosis, DNA replication, and protein translation are currently investigated.
- folate receptors such as folate receptor alpha (FR ⁇ )
- FR ⁇ folate receptor alpha
- FR ⁇ folate receptor alpha
- Folate receptor binds folic acid and analogues and derivatives thereof with very high affinity. Once the folate is bound to the folate receptor it impacts the cell cycle in dividing cells.
- SMDCs small molecule-drug conjugates
- L is a multivalent linker bound at least to a folic acid and a drug moiety
- HL is a half-life extender
- D is a drug moiety.
- a method of treating a FR-expressing cancer such as an FR ⁇ -expressing cancer in a subject in need thereof, said method including administering the compound or pharmaceutically acceptable salt thereof as described herein (including in an aspect embodiment table example or claim) to the subject
- a pharmaceutical composition comprising the compound or pharmaceutically acceptable salt thereof as described herein, and a pharmaceutically acceptable excipient.
- Embodiment 1 is a compound of the Formula (I) or (II): or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound at least to a folic acid and a drug moiety; HL is a half-life extender; and D is a drug moiety.
- Embodiment 2 is the compound or a pharmaceutically acceptable salt thereof of embodiment 1, wherein L is a bond, -C(O)-, -NH-, Amino Acid Unit, Peptoid, – (CH2CH2O)n–, –(CH2)n–, –(4-aminobenzyloxycarbonyl)–, –(C(O)CH2CH2C(O))–, –(C(O)CH2CH2NH)–,
- Embodiment 3 is the compound or a pharmaceutically acceptable salt thereof of embodiment 1 or 2, wherein L is -C(O)-, -NH-,–(CH2CH2O)n–, –(CH2)n–, –(4- aminobenzyloxycarbonyl)–, -Cys-, -Asp-, -Arg-, -Val-, -Glu-, -citrulline- (-Cit-), -Lys-, combinations thereof.
- Embodiment 4 is the compound or a pharmaceutically acceptable salt thereof of embodiment 3, wherein L is -C(O)-, -NH-, –(CH2CH2O)n–, –(CH2)n–, –SCH2CH2O–, – (C(O)CH2CH2C(O))–, -Val-, -Cit-, –(4-aminobenzyloxycarbonyl)–, -Arg-, -Asp-, -Lys-, - combinations thereof.
- Embodiment 5 is the compound or a pharmaceutically acceptable salt thereof of embodiment 4, wherein L is
- Embodiment 6 is the compound or a pharmaceutically acceptable salt thereof of any one of embodiments 1-5, wherein HL is a cholesterol-like half-life extender or albumin binder half-life extender.
- Embodiment 7 is the compound or a pharmaceutically acceptable salt thereof of embodiment 6, wherein HL is , ,
- Embodiment 8 is the compound or a pharmaceutically acceptable salt thereof of embodiment 7, wherein .
- Embodiment 9 is the compound or a pharmaceutically acceptable salt thereof of any one of embodiments 1-8, wherein D is a tubulin inhibitor or disruptor, kinase inhibitor, DNA damaging agent, transcription inhibitors, or proteolysis-targeting chimera (PROTAC).
- Embodiment 10 is the compound or a pharmaceutically acceptable salt thereof of embodiment 9, wherein D is a tubulin inhibitor.
- Embodiment 11 is the compound or a pharmaceutically acceptable salt thereof of any one of embodiments 1-9, wherein D is a pyrrolobenzodiazepine, duocarmycin, anthracycline, maytansinoid, auristatin, calicheamicin, camptothecin, RNA polymerase II inhibitor, topoisomerase I inhibitor, tyrosine kinase inhibitor, EG5 inhibitor, or MEK inhibitor.
- Embodiment 12 is the compound or a pharmaceutically acceptable salt thereof of embodiment 11, wherein D is an auristatin.
- Embodiment 13 is the compound or a pharmaceutically acceptable salt thereof of embodiment 11, wherein D is MMAE, MMAF, Duo5, PNU, SN-38, irinotecan, amatoxin, maytansine, exatecan, trametinib, abemaciclib, palbociclib, or examorpholine.
- Embodiment 14 is the compound or a pharmaceutically acceptable salt thereof of embodiment 13, wherein D is Duo5.
- Embodiment 15 is the compound or a pharmaceutically acceptable salt thereof of embodiment 13, wherein D is MMAE.
- Embodiment 16 is the compound or a pharmaceutically acceptable salt thereof of embodiment 13, wherein D is examorpholine.
- Embodiment 17 is the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-16, wherein the compound is: ⁇ ⁇ or a pharmaceutically acceptable salt thereof.
- Embodiment 18 is the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17, for use in therapy.
- Embodiment 19 is the compound or pharmaceutically acceptable salt thereof of embodiment 18, for use in treating a FR-expressing cancer, optionally wherein the FR- expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer.
- NSCLC non-small cell lung carcinoma
- Embodiment 20 is a method of treating a FR-expressing cancer in a subject, comprising administering the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17 to a subject in need thereof.
- Embodiment 21 is use of the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17 for the manufacture of a medicament.
- Embodiment 22 is use of the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17 for the manufacture of a medicament for treating a FR- expressing cancer, optionally wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer.
- NSCLC non-small cell lung carcinoma
- Embodiment 23 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of embodiments 19, 20, or 22, wherein the FR-expressing cancer is an epithelial-derived tumor.
- Embodiment 24 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of embodiment 23, wherein the epithelial-derived tumors are ovarian, uterine, breast, endometrial, pancreatic, renal, lung, colorectal, or brain tumors.
- Embodiment 25 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of embodiments 19, 20, or 22, wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC) or ovarian cancer.
- NSCLC non-small cell lung carcinoma
- Embodiment 26 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of embodiments 19, 20, or 22-25, wherein the FR-expressing cancer is in a mammal, optionally wherein the mammal is a human.
- Embodiment 27 is a method of inhibiting proliferation of a FR-expressing cell, comprising contacting the FR-expressing cell with the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17.
- Embodiment 28 is the use of embodiment 21, wherein the medicament is for inhibiting proliferation of a FR-expressing cell.
- Embodiment 29 is the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17, for use in inhibiting proliferation of a FR-expressing cell.
- Embodiment 30 is the method, use, or compound or pharmaceutically acceptable salt thereof for use of any one of embodiments 27-29, wherein the FR-expressing cell is a FR-expressing cancer cell, optionally wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer.
- NSCLC non-small cell lung carcinoma
- Embodiment 31 is the method, use, or compound or pharmaceutically acceptable salt thereof for use of any one of embodiments 27-29, wherein the FR-expressing cell is a FR-expressing non-small cell lung carcinoma (NSCLC) cell or FR-expressing ovarian cell.
- Embodiment 32 is a pharmaceutical composition comprising the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17, and a pharmaceutically acceptable excipient.
- FIGS. 1A-B show results of an in vitro efficacy study of Duo5 and MMAE using: KB (FR+) cells and A549 (FR-) cells.
- FIG. 1A shows results of an in vitro efficacy study of Duo5.
- FIG. 1B shows results of an in vitro efficacy study of MMAE.
- the log-molar concentration of the indicated compound is on the horizontal axis.
- FIGS. 2A-B show results of an in vitro efficacy and stability study of SMDCs (FR- PEG-Duo5, FR-VC- Duo5, FR-IODO- Duo5, FR-VC-PAB-MMAE, and FR-PL-MMAE) using: A549 (FR-) cells.
- FIG. 2A shows results of a 2-hour pulse assay.
- FIGS. 3A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-PEG- Duo5 (with and without pretreatment with folic acid) using: KB (FR+) cells.
- FIG. 3A shows results of a 2-hour pulse assay.
- FIG. 3B shows results of a 72-hour assay.
- FIGS. 4A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-VC- Duo5 (with and without pretreatment with folic acid) using: KB (FR+) cells.
- FIGS. 5A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-IODO- Duo5 (with and without pretreatment with folic acid) using: KB (FR+) cells.
- FIG. 5A shows results of a 2-hour pulse assay.
- FIG. 5B shows results of a 72-hour assay.
- FIGS. 6A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-VC-PAB-MMAE (with and without pretreatment with folic acid) using: KB (FR+) cells.
- FIG. 5A-B shows results of an in vitro efficacy, specificity, and stability study of SMDC FR-VC-PAB-MMAE (with and without pretreatment with folic acid) using: KB (FR+) cells.
- FIG. 6A shows results of a 2-hour pulse assay.
- FIG. 6B shows results of a 72- hour assay.
- FIGS. 7A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-PL-MMAE (with and without pretreatment with folic acid) using: KB (FR+) cells.
- FIG. 7A shows results of a 2-hour pulse assay.
- FIG. 7B shows results of a 72-hour assay.
- FIG. 8 shows results of an in vitro efficacy, specificity, and stability study of FR- IODO-Examorpholine using KB (FR+) cells with 120-hour assay.
- FIG. 8 shows results of an in vitro efficacy, specificity, and stability study of FR- IODO-Examorpholine using KB (FR+) cells with 120-hour assay.
- the term “and/or” used herein is to be taken mean specific disclosure of each of the specified features or components with or without the other.
- the term “and/or” as used in a phrase such as “A and/or B” herein is intended to include “A and B,” “A or B,” “A” (alone), and “B” (alone).
- the term “and/or” as used in a phrase such as “A, B, and/or C” is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).
- the term “about” refers to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, i.e., the limitations of the measurement system.
- “about” or “approximately” can mean within one or more than one standard deviation per the practice in the art.
- “about” or “approximately” can mean a range of up to 10% (i.e., ⁇ 10%) or more depending on the limitations of the measurement system.
- about 5 mg can include any number between 4.5 mg and 5.5 mg.
- the terms can mean up to an order of magnitude or up to 5-fold of a value.
- the meaning of “about” or “approximately” should be assumed to be within an acceptable error range for that particular value or composition. In embodiments, about includes the specified value.
- “comprises,” “comprising,” “containing” and “having” and the like can have the meaning ascribed to them in U.S. Patent law and can mean “includes,” “including,” and the like.
- Consisting essentially of or “consists essentially” likewise has the meaning ascribed in U.S.
- polypeptide polypeptide
- peptide and “protein” and other related terms used herein are used interchangeably to refer to a polymer of amino acid residues, wherein the polymer may in embodiments be conjugated to a moiety that does not consist of amino acids.
- the terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers.
- a "fusion protein” refers to a chimeric protein encoding two or more separate protein sequences that are recombinantly expressed as a single moiety.
- Polypeptides include mature molecules that have undergone cleavage. These terms encompass native and artificial proteins, protein fragments and polypeptide analogs (such as muteins, variants, chimeric proteins and fusion proteins) of a protein sequence as well as post-translationally, or otherwise covalently or non-covalently, modified proteins.
- Two or more polypeptides e.g., 3 polypeptide chains
- a polypeptide complex can be dimeric, trimeric, tetrameric, or higher order complexes depending on the number of polypeptide chains that form the complex.
- cancer cancer
- neoplasm and “tumor” are used interchangeably and, in either the singular or plural form, refer to cells that have undergone a malignant transformation that makes them pathological to the host organism.
- Primary cancer cells can be readily distinguished from non-cancerous cells by well-established techniques, particularly histological examination.
- the definition of a cancer cell includes not only a primary cancer cell, but any cell derived from a cancer cell ancestor.
- a “clinically detectable” tumor is one that is detectable on the basis of tumor mass; e.g., by procedures such as computed tomography (CT) scan, magnetic resonance imaging (MRI), X-ray, ultrasound or palpation on physical examination, and/or which is detectable because of the expression of one or more cancer-specific antigens in a sample obtainable from a patient.
- CT computed tomography
- MRI magnetic resonance imaging
- X-ray X-ray
- Tumors may be a hematopoietic (or hematologic or hematological or blood-related) cancer, for example, cancers derived from blood cells or immune cells, which may be referred to as “liquid tumors.”
- liquid tumors include leukemias such as chronic myelocytic leukemia, acute myelocytic leukemia, chronic lymphocytic leukemia and acute lymphocytic leukemia; plasma cell malignancies such as multiple myeloma, MGUS and Waldenstrom's macroglobulinemia; lymphomas such as non- Hodgkin's lymphoma, Hodgkin's lymphoma; and the like.
- the cancer may be any cancer in which an abnormal number of blast cells or unwanted cell proliferation is present or that is diagnosed as a hematological cancer, including both lymphoid and myeloid malignancies.
- Myeloid malignancies include, but are not limited to, acute myeloid (or myelocytic or myelogenous or myeloblastic) leukemia (undifferentiated or differentiated), acute promyeloid (or promyelocytic or promyelogenous or promyeloblastic) leukemia, acute myelomonocytic (or myelomonoblastic) leukemia, acute monocytic (or monoblastic) leukemia, erythroleukemia and megakaryocytic (or megakaryoblastic) leukemia.
- leukemias may be referred together as acute myeloid (or myelocytic or myelogenous) leukemia (AML).
- Myeloid malignancies also include myeloproliferative disorders (MPD) which include, but are not limited to, chronic myelogenous (or myeloid) leukemia (CML), chronic myelomonocytic leukemia (CMML), essential thrombocythemia (or thrombocytosis), and polcythemia vera (PCV).
- CML chronic myelogenous leukemia
- CMML chronic myelomonocytic leukemia
- PCV polcythemia vera
- Myeloid malignancies also include myelodysplasia (or myelodysplastic syndrome or MDS), which may be referred to as refractory anemia (RA), refractory anemia with excess blasts (RAEB), and refractory anemia with excess blasts in transformation (RAEBT); as well as myelofibrosis (MFS) with or without agnogenic myeloid metaplasia.
- RA refractory anemia
- RAEB refractory anemia with excess blasts
- RES myelofibrosis
- Hematopoietic cancers also include lymphoid malignancies, which may affect the lymph nodes, spleens, bone marrow, peripheral blood, and/or extranodal sites.
- B-cell malignancies include, but are not limited to, B-cell non- Hodgkin's lymphomas (B-NHLs).
- B-NHLs may be indolent (or low-grade), intermediate- grade (or aggressive) or high-grade (very aggressive).
- Indolent Bcell lymphomas include follicular lymphoma (FL); small lymphocytic lymphoma (SLL); marginal zone lymphoma (MZL) including nodal MZL, extranodal MZL, splenic MZL and splenic MZL with villous lymphocytes; lymphoplasmacytic lymphoma (LPL); and mucosa-associated-lymphoid tissue (MALT or extranodal marginal zone) lymphoma.
- FL follicular lymphoma
- SLL small lymphocytic lymphoma
- MZL marginal zone lymphoma
- LPL lymphoplasmacytic lymphoma
- MALT mucosa-associated-lymphoid tissue
- Intermediate-grade B-NHLs include mantle cell lymphoma (MCL) with or without leukemic involvement, diffuse large cell lymphoma (DLBCL), follicular large cell (or grade 3 or grade 3B) lymphoma, and primary mediastinal lymphoma (PML).
- MCL mantle cell lymphoma
- DLBCL diffuse large cell lymphoma
- follicular large cell or grade 3 or grade 3B lymphoma
- PML primary mediastinal lymphoma
- High-grade B-NHLs include Burkitt's lymphoma (BL), Burkitt-like lymphoma, small non-cleaved cell lymphoma (SNCCL) and lymphoblastic lymphoma.
- B-NHLs include immunoblastic lymphoma (or immunocytoma), primary effusion lymphoma, HIV associated (or AIDS related) lymphomas, and post-transplant lymphoproliferative disorder (PTLD) or lymphoma.
- B-cell malignancies also include, but are not limited to, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), Waldenstrom's macroglobulinemia (WM), hairy cell leukemia (HCL), large granular lymphocyte (LGL) leukemia, acute lymphoid (or lymphocytic or lymphoblastic) leukemia, and Castleman's disease.
- CLL chronic lymphocytic leukemia
- PLL prolymphocytic leukemia
- WM Waldenstrom's macroglobulinemia
- HCL hairy cell leukemia
- LGL large granular lymphocyte
- LAman's disease Castleman's disease.
- NHL may also include T-cell non-Hodgkin's lymphoma s (T-NHLs), which include, but are not limited to T-cell non-Hodgkin's lymphoma not otherwise specified (NOS), peripheral T-cell lymphoma (PTCL), anaplastic large cell lymphoma (ALCL), angioimmunoblastic lymphoid disorder (AILD), nasal natural killer (NK) cell/T-cell lymphoma, gamma/delta lymphoma, cutaneous T cell lymphoma, mycosis fungoides, and Sezary syndrome.
- T-NHLs T-cell non-Hodgkin's lymphoma s
- Hematopoietic cancers also include Hodgkin's lymphoma (or disease) including classical Hodgkin's lymphoma, nodular sclerosing Hodgkin's lymphoma, mixed cellularity Hodgkin's lymphoma, lymphocyte predominant (LP) Hodgkin's lymphoma, nodular LP Hodgkin's lymphoma, and lymphocyte depleted Hodgkin's lymphoma.
- Hematopoietic cancers also include plasma cell diseases or cancers such as multiple myeloma (MM) including smoldering MM, monoclonal gammopathy of undetermined (or unknown or unclear) significance (MGUS), plasmacytoma (bone, extramedullary), lymphoplasmacytic lymphoma (LPL), Waldenstrom's Macroglobulinemia, plasma cell leukemia, and primary amyloidosis (AL).
- MM multiple myeloma
- MGUS monoclonal gammopathy of undetermined (or unknown or unclear) significance
- MGUS monoclonal gammopathy of undetermined (or unknown or unclear) significance
- plasmacytoma bone, extramedullary
- LPL lymphoplasmacytic lymphoma
- Waldenstrom's Macroglobulinemia plasma cell leukemia
- plasma cell leukemia and primary amyloidosis
- AL primary amyloidosis
- Hematopoietic cancers may also
- Tissues which include hematopoietic cells referred herein to as “hematopoietic cell tissues” include bone marrow; peripheral blood; thymus; and peripheral lymphoid tissues, such as spleen, lymph nodes, lymphoid tissues associated with mucosa (such as the gut-associated lymphoid tissues), tonsils, Peyer's patches and appendix, and lymphoid tissues associated with other mucosa, for example, the bronchial linings.
- Exemplary cancers that may be treated with a compound or method provided herein include brain cancer, glioma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, pancreatic cancer, Medulloblastoma, melanoma, cervical cancer, gastric cancer, ovarian cancer, lung cancer, cancer of the head, Hodgkin's Disease, and Non-Hodgkin's Lymphomas.
- Exemplary cancers that may be treated with a compound or method provided herein include cancer of the thyroid, endocrine system, brain, breast, cervix, colon, head & neck, liver, kidney, lung, ovary, pancreas, rectum, stomach, and uterus.
- thyroid carcinoma cholangiocarcinoma, pancreatic adenocarcinoma, skin cutaneous melanoma, colon adenocarcinoma, rectum adenocarcinoma, stomach adenocarcinoma, esophageal carcinoma, head and neck squamous cell carcinoma, breast invasive carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, non-small cell lung carcinoma, mesothelioma, multiple myeloma, neuroblastoma, glioma, glioblastoma multiforme, ovarian cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, primary brain tumors, nasopharyngeal tumors, spinal cord tumors, malignant pancreatic insulanoma, malignant carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, thyroid cancer, neuroblastoma
- the cancers that may be treated with a compound or method provided herein include epithelial-derived tumors including ovarian, uterine, breast, endometrial, pancreatic, nasopharyngeal, kidney, lung, colorectal, testicular, spinal cord, and brain tumors.
- the cancers that may be treated with a compound or a method provided herein include serous and endometrioid epithelial ovarian cancer, renal cancer, endometrial adenocarcinoma, non-small cell lung carcinoma (NSCLC) of the adenocarcinoma subtype, mesotheliomas, and triple-negative breast cancer (TNBC).
- epithelial-derived tumors including ovarian, uterine, breast, endometrial, pancreatic, nasopharyngeal, kidney, lung, colorectal, testicular, spinal cord, and brain tumors.
- the cancers that may be treated with a compound or a method provided herein
- An "advanced” cancer is one which has spread outside the site or organ of origin, either by local invasion or metastasis.
- the term “advanced” cancer includes both locally advanced and metastatic disease.
- Metal-static cancer refers to cancer that has spread from one part of the body to another part of the body.
- a "refractory” cancer is one that progresses even though an anti-tumor treatment, such as a chemotherapy, is administered to the cancer patient.
- An example of a refractory cancer is one which is platinum refractory.
- a "recurrent" cancer is one that has regrown, either at the initial site or at a distant site, after a response to initial therapy.
- Binding affinity refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair (e.g., ligand and receptor).
- the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (K D ). Affinity can be measured by common methods known in the art, including those described herein. Specific illustrative and exemplary embodiments for measuring binding affinity are described in the following.
- a dissociation constant can be measured using a BIACORE surface plasmon resonance (SPR) assay.
- SPR surface plasmon resonance refers to an optical phenomenon that allows for the analysis of real-time interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE system (Biacore Life Sciences division of GE Healthcare, Piscataway, NJ).
- FR ⁇ or “FOLR1,” as used herein, refers to any native FR ⁇ from any vertebrate source, including mammals such as primates (e.g. humans, cynomolgus monkey (cyno)) and rodents (e.g., mice and rats), unless otherwise indicated.
- FR ⁇ is also referred to as "human folate receptor 1," and "FOLR 1".
- FR ⁇ is a single chain membrane protein capable of binding to folic acid and its analogs or derivatives.
- the term encompasses “full- length,” unprocessed FR ⁇ as well as any form of FR ⁇ that results from processing in the cell.
- the term also encompasses naturally occurring variants of FR ⁇ , e.g., splice variants, allelic variants, and isoforms.
- Human FR ⁇ sequences are known and include, for example, the sequences publicly available at UniProtKB Accession No. P 15328 (including isoforms).
- the term “FR-expressing cancer” refers to a cancer comprising cells that express FR on their surface.
- FR ⁇ -expressing cancer refers to a cancer comprising cells that express FR ⁇ on their surface.
- FR ⁇ a FR, such as FR ⁇ polypeptide or a nucleic acid encoding such a polypeptide
- Such increased expression or overexpression can be caused, for example, by mutation, gene amplification, increased transcription, increased translation, or increased protein stability.
- cytotoxic agent refers to a substance that inhibits or prevents a cellular function and/or causes cell death or destruction.
- Cytotoxic agents include, but are not limited to, radioactive isotopes (e.g., 211 At, 131 I, 125 I, 90 Y, 186 Re, 188 Re, 153 Sm, 212 Bi, 32 P, 212 Pb and radioactive isotopes of Lu); chemotherapeutic agents or drugs (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents); growth inhibitory agents; enzymes and fragments thereof such as nucleolytic enzymes; antibiotics; toxins such as small molecule toxins or enzymatically active toxins of
- a “chemotherapeutic agent” is a chemical compound useful in the treatment of a cancer.
- chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan
- calicheamicin especially calicheamicin gamma1I and calicheamicin omegaI1 (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-dox
- a “small molecule-drug conjugate” or “SMDC” is a targeting ligand conjugated to one or more heterologous molecule(s), including but not limited to a cytotoxic agent.
- the targeting ligand can be, for example, folic acid as described herein, or its analogs or derivatives (which target the folate receptor).
- the cytotoxic agent can be any cytotoxic agent described herein.
- the targeting ligand can be directly linked to the cytotoxic agent via a covalent bond, or the targeting ligand can be linked to the cytotoxic agent indirectly via a linker. Typically, the linker is covalently bonded to the targeting ligand and also covalently bonded to the cytotoxic agent.
- Such a linker may be a cleavable linker, for example, cleavable under certain pH condition (pH sensitive linker such as acetals or hydrazones), cleavable by a protease (protease sensitive linker such as peptide linkers), or cleavable in the presence of glutathione (glutathione sensitive linker such as disulfide linkers).
- the linker comprises a protease cleavage site, which may contain 2-5 amino acid residues that are recognizable and/or cleavable by a suitable protease.
- Such a peptide may comprise naturally-occurring amino acid residues, non-naturally occurring amino acid residues, modified amino acid residues, or a combination thereof.
- the peptide linker can be a dipeptide linker. Examples include a valine-citrulline (val-cit or VC) linker, a phenylalanine-lysine (phe-lys) linker, or maleimidocapronic-valine-citruline-p- aminobenzyloxycarbonyl (MC-VC-PAB) linker.
- the linker may be non- cleavable, e.g., a linker comprising optionally substituted alkane or thioether.
- the linker may comprise a functional group that can form a covalent bond with the targeting ligand.
- exemplary functional groups include, but are not limited to, a maleimide group, an iodoacetamide group, a vinyl sulfone group, an acrylate group, an acrylamide group, an acrylonitrile group, or a methacrylate group.
- the term “small molecule-drug conjugate” or “SMDC” refers to a conjugate wherein at least one cytotoxic agent is a therapeutic moiety such as a drug (“D”). As used herein, “D” refers to drug moiety and includes analogs or derivatives thereof.
- folic acid, or the analog or the derivative thereof is covalently bound to the linker (L), and the drug, or the analog or the derivative thereof, is also covalently bound to the linker (L).
- the linker (L) can comprise multiple linkers.
- the linker (L) can comprise one or more components selected from spacer linkers, releasable linkers, and heteroatom linkers, and any combinations thereof, in any order.
- conjugated when referring to two moieties means the two moieties are bonded, wherein the bond or bonds connecting the two moieties may be covalent or non-covalent.
- the two moieties are covalently bonded to each other (e.g.
- an “individual” or “subject” is a mammal. Mammals include, but are not limited to, domesticated animals (e.g., cows, sheep, cats, dogs, and horses), primates (e.g., humans and non-human primates such as monkeys), rabbits, and rodents (e.g., mice and rats). In certain embodiments, the individual or subject is a human.
- the subject is an adult, an adolescent, a child, or an infant.
- the terms “individual” or “patient” are used and are intended to be interchangeable with “subject”.
- pharmaceutically acceptable salts is meant to include salts of the active compounds that are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein.
- base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent.
- Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt.
- acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent.
- pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p- tolylsulfonic, citric, tartaric, oxalic, methanesulfonic, and the like.
- salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al., “Pharmaceutical Salts”, Journal of Pharmaceutical Science, 1977, 66, 1-19).
- Certain specific compounds of the present disclosure contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
- the compounds of the present disclosure may exist as salts, such as with pharmaceutically acceptable acids.
- the present disclosure includes such salts.
- Non-limiting examples of such salts include hydrochlorides, hydrobromides, phosphates, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, proprionates, tartrates (e.g., (+)-tartrates, (-)-tartrates, or mixtures thereof including racemic mixtures), succinates, benzoates, and salts with amino acids such as glutamic acid, and quaternary ammonium salts (e.g. methyl iodide, ethyl iodide, and the like). These salts may be prepared by methods known to those skilled in the art.
- the neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner.
- the parent form of the compound may differ from the various salt forms in certain physical properties, such as solubility in polar solvents.
- the present disclosure provides compounds, which are in a prodrug form.
- Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present disclosure.
- Prodrugs of the compounds described herein may be converted in vivo after administration.
- prodrugs can be converted to the compounds of the present disclosure by chemical or biochemical methods in an ex vivo environment, such as, for example, when contacted with a suitable enzyme or chemical reagent.
- Certain compounds of the present disclosure can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present disclosure. Certain compounds of the present disclosure may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present disclosure and are intended to be within the scope of the present disclosure.
- “Pharmaceutically acceptable excipient” and “pharmaceutically acceptable carrier” refer to a substance that aids the administration of an active agent to and absorption by a subject and can be included in the compositions of the present disclosure without causing a significant adverse toxicological effect on the patient.
- Non-limiting examples of pharmaceutically acceptable excipients include water, NaCl, normal saline solutions, lactated Ringer’s, normal sucrose, normal glucose, binders, fillers, disintegrants, lubricants, coatings, sweeteners, flavors, salt solutions (such as Ringer’s solution), alcohols, oils, gelatins, carbohydrates such as lactose, amylose or starch, fatty acid esters, hydroxymethycellulose, polyvinyl pyrrolidine, and colors, and the like.
- compositions can be sterilized and, if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with the compounds of the disclosure.
- auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with the compounds of the disclosure.
- auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with the compounds of the disclosure.
- pharmaceutical excipients are useful in the present disclosure.
- pharmaceutical formulation refers to a preparation which
- administering refers to the physical introduction of an agent to a subject, using any of the various methods and delivery systems known to those skilled in the art.
- exemplary routes of administration for the formulations disclosed herein include intravenous, intramuscular, subcutaneous, intraperitoneal, spinal or other parenteral routes of administration, for example by injection or infusion.
- parenteral administration means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, as well as in vivo electroporation.
- the formulation is administered via a non-parenteral route, e.g., orally.
- Non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically.
- Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) or consecutive administration in any order.
- the combination therapy can provide “synergy” and prove “synergistic”, i.e., the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately.
- a synergistic effect can be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined, unit dosage formulation; (2) delivered serially, by alternation, or in parallel as separate formulations; or (3) by some other regimen.
- a synergistic effect can be attained when the compounds are administered or delivered sequentially, e.g., by different injections in separate syringes.
- a synergistic combination produces effects that are greater than the additive effects of the individual components of the combination.
- An “effective amount” of an agent e.g., a pharmaceutical formulation, refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
- saccharide means carbohydrate (or sugar). In embodiments, the saccharide is a monosaccharide. In embodiments, the saccharide is a polysaccharide. The most basic unit of saccharide is a monomer of carbohydrate. The general formula is C n H 2n O n .
- saccharide derivative means sugar molecules that have been modified with substituents other than hydroxyl groups. Examples include glycosylamines, sugar phosphates, and sugar esters.
- a Charged Group means a chemical group bearing a positive or a negative charge, such as for example phosphate, phosphonate, sulfate, sulfonate, nitrate, carboxylate, carbonate, and the like.
- a Charged Group is at least 50% ionized in aqueous solution at least one pH in the range of 5-9.
- a Charged Group is an anionic Charged Group.
- Linker or “linker reagent” are used interchangeably and refer to a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches a targeting ligand to a drug moiety.
- linkers include a divalent radical.
- linkers can comprise one or more amino acid residues. The linker can be cleavable or non-cleavable.
- “Amino Acid Unit” has the formula hydrogen, methyl, isopropyl, isobutyl, sec-butyl, benzyl, p-hydroxybenzyl, —CH2OH, —CH(OH)CH3, — CH 2 SH —CH2CH2SCH3, —CH2CONH2, —CH2COOH, —CH2CH2CONH2, —CH2CH2COOH, —(CH2)3NHC( ⁇ NH)NH2, —(CH2)3NH2, —(CH2)3NHCOCH3, —(CH2)3NHCHO, —(CH 2 ) 4 NHC( ⁇ NH)NH 2 , —(CH 2 ) 4 NH 2 , —(CH 2 ) 4 NHCOCH 3 , —(CH 2 ) 4 NHCHO, —(CH 2 ) 3 NHCONH 2 , —(CH 2 ) 4 NHCONH 2 , —CH 2 CH 2 CH(OH)CH 2 NH 2 ,
- “Amino Acid Unit” has the formula methyl, isopropyl, isobutyl, sec-butyl, benzyl, p-hydroxybenzyl, —CH2OH, —CH(OH)CH3, — CH 2 CH 2 SCH 3 , —CH 2 CONH 2 , —CH 2 COOH, —CH2CH2CONH2, —CH2CH2COOH, —(CH2)3NHC( ⁇ NH)NH2, —(CH2)3NH2, —CH2SH, —(CH2)3NHCOCH3, —(CH2)3NHCHO, —(CH2)4NHC( ⁇ NH)NH2, —(CH2)4NH2, —(CH2)4NHCOCH3, —(CH2)4NHCHO, —(CH2)3NHCONH2, —(CH2)4NHCONH2, —CH2CH2CH(OH)CH2NH2, 2-pyridylmethyl-, 3-pyridylmethyl-, 4-pyridylmethyl-,
- Amino Acid Unit has the formula .
- Amino Acid Unit includes not only naturally occurring amino acids but also minor amino acids and non-naturally occurring amino acid analogs, such as for example, citrulline, norleucine, selenomethionine, ⁇ -amino acids (e.g., ⁇ -alanine, ⁇ -aspargine), and the like.
- the amino acid can be a modified amino acid, such as for example, ⁇ - amino acid amide, oxazole amino acid, thiazole amino acid, triazole amino acid, and the like.
- the modified amino acid has the formula .
- an amino acid unit may be referred to by its standard three-letter code for the amino acid (e.g., Ala, Cys, Asp, Glu etc.).
- “Peptoid” has the formula , here R 0 is methyl, isopropyl, isobutyl, sec-butyl, benzyl, p-hydroxybenzyl, —CH2OH, —CH(OH)CH3, —CH2CH2SCH3, — CH2CONH2, —CH2COOH, —CH2CH2CONH2, —CH2CH2COOH, — (CH 2 ) 3 NHC( ⁇ NH)NH 2 , —(CH 2 ) 3 NH 2 , —(CH 2 ) 3 NHCOCH 3 , —(CH 2 ) 3 NHCHO, — (CH 2 ) 4 NHC( ⁇ NH)NH 2 , —(CH 2 ) 4 NH 2 , —(CH2)4NHCOCH3, —(CH2)4NHCO
- peptoid has the formula .
- the term “half-life extender” refers to molecules that extend half-life of biopharmaceuticals.
- the half-life of SMDCs described herein can be extended by PEGylation (covalently linking a PEG to the SMDC), lipidation (covalently linking a lipid to the SMDC).
- the half-life of SMDCs described herein can be extended by covalently linking a cholesterol-like compound to the SMDC.
- the half-life of SMDCs described herein can be extended by covalently linking a small molecule albumin binder to the SMDC.
- the term “cholesterol-like” half-life extender refers to a compound with a structure closely resembling cholesterol with a linker on the hydroxyl end. In embodiments, “cholesterol-like” half-life extender refers to .
- the term “albumin binder” half-life extender refers to a small molecule that can be reversibly (non-covalently) bound by serum albumin. Serum albumin can bind a large diversity of small organic molecules such as fatty acids, dicarboxylic acids, bulky heterocycles, and aromatic carboxylic acids with a peripheric negative charge.
- bioconjugate and “bioconjugate linker” refers to the resulting association between atoms or molecules of “bioconjugate reactive groups” or “bioconjugate reactive moieties”.
- the association can be direct or indirect.
- a conjugate between a first bioconjugate reactive group e.g –NH 2 –C(O)OH –N- hydroxysuccinimide, or –maleimide
- a second bioconjugate reactive group e.g., sulfhydryl, sulfur-containing amino acid, amine, amine sidechain containing amino acid, or carboxylate
- covalent bond or linker e.g.
- bioconjugates or bioconjugate linkers are formed using bioconjugate chemistry (i.e.
- bioconjugate reactive groups including, but are not limited to nucleophilic substitutions (e.g., reactions of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions) and additions to carbon-carbon and carbon-heteroatom multiple bonds (e.g., Michael reaction, Diels-Alder addition).
- nucleophilic substitutions e.g., reactions of amines and alcohols with acyl halides, active esters
- electrophilic substitutions e.g., enamine reactions
- additions to carbon-carbon and carbon-heteroatom multiple bonds e.g., Michael reaction, Diels-Alder addition.
- the first bioconjugate reactive group e.g., maleimide moiety
- the second bioconjugate reactive group e.g. a sulfhydryl
- the first bioconjugate reactive group (e.g., haloacetyl moiety) is covalently attached to the second bioconjugate reactive group (e.g. a sulfhydryl).
- the first bioconjugate reactive group (e.g., pyridyl moiety) is covalently attached to the second bioconjugate reactive group (e.g. a sulfhydryl).
- the first bioconjugate reactive group e.g., –N- hydroxysuccinimide moiety
- is covalently attached to the second bioconjugate reactive group (e.g. an amine).
- the first bioconjugate reactive group (e.g., fluorophenyl ester moiety) reacts with the second bioconjugate reactive group (e.g. an amine) to form a covalent bond.
- the first bioconjugate reactive group (e.g., –sulfo–N- hydroxysuccinimide moiety) reacts with the second bioconjugate reactive group (e.g. an amine) to form a covalent bond.
- bioconjugate reactive moieties used for bioconjugate chemistries herein include, for example: (a) carboxyl groups and various derivatives thereof including, but not limited to, N-hydroxysuccinimide esters, N-hydroxybenztriazole esters, acid halides, acyl imidazoles, thioesters, p-nitrophenyl esters, alkyl, alkenyl, alkynyl and aromatic esters; (b) hydroxyl groups which can be converted to esters, ethers, aldehydes, etc.
- haloalkyl groups wherein the halide can be later displaced with a nucleophilic group such as, for example, an amine, a carboxylate anion, thiol anion, carbanion, or an alkoxide ion, thereby resulting in the covalent attachment of a new group at the site of the halogen atom;
- dienophile groups which are capable of participating in Diels-Alder reactions such as, for example, maleimido or maleimide groups;
- aldehyde or ketone groups such that subsequent derivatization is possible via formation of carbonyl derivatives such as, for example, imines, hydrazones, semicarbazones or oximes, or via such mechanisms as Grignard addition or alkyllithium addition;
- sulfonyl halide groups for subsequent reaction with amines, for example, to form sulfonamides;
- thiol groups which can be converted to disulf
- bioconjugate reactive groups can be chosen such that they do not participate in, or interfere with, the chemical stability of the conjugate described herein. Alternatively, a reactive functional group can be protected from participating in the crosslinking reaction by the presence of a protecting group.
- the bioconjugate comprises a molecular entity derived from the reaction of an unsaturated bond, such as a maleimide, and a sulfhydryl group.
- “Derivative” is a compound that is derived from a similar compound by a chemical reaction. In biochemistry, the word is used for compounds that at least theoretically can be formed from the precursor compound. In the past, derivative also meant a compound that can be imagined to arise from another compound, if one atom or group of atoms is replaced with another atom or group of atoms, but modern chemical language now uses the term structural analog for this meaning, thus eliminating ambiguity.
- Analog or “analogue” is used in accordance with its plain ordinary meaning within Chemistry and Biology and refers to a chemical compound that is structurally similar to another compound (i.e., a so-called “reference” compound) but differs in composition, e.g., in the replacement of one atom by an atom of a different element, or in the presence of a particular functional group, or the replacement of one functional group by another functional group, or the absolute stereochemistry of one or more chiral centers of the reference compound.
- reference compound i.e., a so-called “reference” compound
- folic acid and “folate” are often used interchangeably, though more appropriately, “folic acid” refers to the fully oxidized synthetic compound (pteroylmono- glutamic acid) used in dietary supplements and in food fortification, whereas “folate” refers to the various tetrahydrofolate derivatives naturally present in foods. Reduced folates are found as the partially reduced form 7,8-dihydrofolate or the reduced species 5,6,7,8- tetrahydrofolate (THF).
- THF 5,6,7,8- tetrahydrofolate
- folic acid and “folate” are used interchangeably herein to refer to the fully oxidized synthetic compound.
- alkyl by itself or as part of another substituent, means, unless otherwise stated, a straight (i.e., unbranched) or branched carbon chain (or carbon), or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include mono-, di- and multivalent radicals.
- the alkyl may include a designated number of carbons (e.g., C1-C10 means one to ten carbons).
- Alkyl is an uncyclized chain.
- saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, methyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
- An unsaturated alkyl group is one having one or more double bonds or triple bonds.
- Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4- pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
- An alkoxy is an alkyl attached to the remainder of the molecule via an oxygen linker (-O-).
- An alkyl moiety may be an alkenyl moiety.
- An alkyl moiety may be an alkynyl moiety.
- An alkyl moiety may be fully saturated.
- alkenyl may include more than one double bond and/or one or more triple bonds in addition to the one or more double bonds.
- An alkynyl may include more than one triple bond and/or one or more double bonds in addition to the one or more triple bonds.
- alkylene by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from an alkyl, as exemplified, but not limited by, -CH2CH2CH2CH2-.
- an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred herein.
- a “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms.
- alkenylene by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from an alkene.
- heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or combinations thereof, including at least one carbon atom and at least one heteroatom (e.g., O, N, P, Si, or S), and wherein the nitrogen and sulfur atoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized.
- heteroatom(s) e.g., O, N, S, Si, or P
- the heteroatom(s) may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule.
- Heteroalkyl is an uncyclized chain.
- a heteroalkyl moiety may include one heteroatom (e.g., O, N, S, Si, or P).
- a heteroalkyl moiety may include two optionally different heteroatoms (e.g., O, N, S, Si, or P).
- a heteroalkyl moiety may include three optionally different heteroatoms (e.g., O, N, S, Si, or P).
- a heteroalkyl moiety may include four optionally different heteroatoms (e.g., O, N, S, Si, or P).
- a heteroalkyl moiety may include five optionally different heteroatoms (e.g., O, N, S, Si, or P).
- a heteroalkyl moiety may include up to 8 optionally different heteroatoms (e.g., O, N, S, Si, or P).
- the term “heteroalkenyl,” by itself or in combination with another term, means, unless otherwise stated, a heteroalkyl including at least one double bond.
- a heteroalkenyl may optionally include more than one double bond and/or one or more triple bonds in addition to the one or more double bonds.
- heteroalkynyl by itself or in combination with another term, means, unless otherwise stated, a heteroalkyl including at least one triple bond.
- heteroalkynyl may optionally include more than one triple bond and/or one or more double bonds in addition to the one or more triple bonds.
- heteroalkylene by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from heteroalkyl, as exemplified, but not limited by, -CH2-CH2-S-CH2-CH2- and -CH2-S-CH2-CH2-NH-CH2-.
- heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like).
- heteroalkyl groups include those groups that are attached to the remainder of the molecule through a heteroatom, such as -C(O)R', -C(O)NR', -NR'R'', -OR', -SR', and/or -SO2R'.
- heteroalkyl is recited, followed by recitations of specific heteroalkyl groups, such as - NR'R'' or the like, it will be understood that the terms heteroalkyl and -NR'R'' are not redundant or mutually exclusive. Rather, the specific heteroalkyl groups are recited to add clarity. Thus, the term “heteroalkyl” should not be interpreted herein as excluding specific heteroalkyl groups, such as -NR'R'' or the like. [00109]
- Cycloalkyl and heterocycloalkyl are not aromatic. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule.
- Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
- heterocycloalkyl examples include, but are not limited to, 1- (1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3- morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like.
- the term “cycloalkyl” means a monocyclic, bicyclic, or a multicyclic cycloalkyl ring system.
- monocyclic ring systems are cyclic hydrocarbon groups containing from 3 to 8 carbon atoms, where such groups can be saturated or unsaturated, but not aromatic.
- cycloalkyl groups are fully saturated.
- monocyclic cycloalkyls examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
- Bicyclic cycloalkyl ring systems are bridged monocyclic rings or fused bicyclic rings.
- bridged monocyclic rings contain a monocyclic cycloalkyl ring where two non adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of between one and three additional carbon atoms (i.e., a bridging group of the form (CH 2 ) w , where w is 1, 2, or 3).
- alkylene bridge of between one and three additional carbon atoms
- a bridging group of the form (CH 2 ) w i.e., a bridging group of the form (CH 2 ) w , where w is 1, 2, or 3).
- bicyclic ring systems include, but are not limited to, bicyclo[3.1.1]heptane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]nonane, bicyclo[3.3.1]nonane, and bicyclo[4.2.1]nonane.
- fused bicyclic cycloalkyl ring systems contain a monocyclic cycloalkyl ring fused to either a phenyl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, a monocyclic heterocyclyl, or a monocyclic heteroaryl.
- the bridged or fused bicyclic cycloalkyl is attached to the parent molecular moiety through any carbon atom contained within the monocyclic cycloalkyl ring.
- cycloalkyl groups are optionally substituted with one or two groups which are independently oxo or thia.
- the fused bicyclic cycloalkyl is a 5 or 6 membered monocyclic cycloalkyl ring fused to either a phenyl ring, a 5 or 6 membered monocyclic cycloalkyl, a 5 or 6 membered monocyclic cycloalkenyl, a 5 or 6 membered monocyclic heterocyclyl, or a 5 or 6 membered monocyclic heteroaryl, wherein the fused bicyclic cycloalkyl is optionally substituted by one or two groups which are independently oxo or thia.
- multicyclic cycloalkyl ring systems are a monocyclic cycloalkyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a bicyclic aryl, a monocyclic or bicyclic heteroaryl, a monocyclic or bicyclic cycloalkyl, a monocyclic or bicyclic cycloalkenyl, and a monocyclic or bicyclic heterocyclyl.
- multicyclic cycloalkyl is attached to the parent molecular moiety through any carbon atom contained within the base ring.
- multicyclic cycloalkyl ring systems are a monocyclic cycloalkyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a monocyclic heteroaryl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, and a monocyclic heterocyclyl.
- a cycloalkyl is a cycloalkenyl.
- the term “cycloalkenyl” is used in accordance with its plain ordinary meaning.
- a cycloalkenyl is a monocyclic, bicyclic, or a multicyclic cycloalkenyl ring system.
- monocyclic cycloalkenyl ring systems are cyclic hydrocarbon groups containing from 3 to 8 carbon atoms, where such groups are unsaturated (i.e., containing at least one annular carbon carbon double bond), but not aromatic.
- monocyclic cycloalkenyl ring systems include cyclopentenyl and cyclohexenyl.
- bicyclic cycloalkenyl rings are bridged monocyclic rings or a fused bicyclic rings.
- bridged monocyclic rings contain a monocyclic cycloalkenyl ring where two non adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of between one and three additional carbon atoms (i.e., a bridging group of the form (CH 2 ) w , where w is 1, 2, or 3).
- alkylene bridge of between one and three additional carbon atoms
- bicyclic cycloalkenyls include, but are not limited to, norbornenyl and bicyclo[2.2.2]oct 2 enyl.
- fused bicyclic cycloalkenyl ring systems contain a monocyclic cycloalkenyl ring fused to either a phenyl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, a monocyclic heterocyclyl, or a monocyclic heteroaryl.
- the bridged or fused bicyclic cycloalkenyl is attached to the parent molecular moiety through any carbon atom contained within the monocyclic cycloalkenyl ring.
- cycloalkenyl groups are optionally substituted with one or two groups which are independently oxo or thia.
- multicyclic cycloalkenyl rings contain a monocyclic cycloalkenyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two ring systems independently selected from the group consisting of a phenyl, a bicyclic aryl, a monocyclic or bicyclic heteroaryl, a monocyclic or bicyclic cycloalkyl, a monocyclic or bicyclic cycloalkenyl, and a monocyclic or bicyclic heterocyclyl.
- multicyclic cycloalkenyl is attached to the parent molecular moiety through any carbon atom contained within the base ring.
- multicyclic cycloalkenyl rings contain a monocyclic cycloalkenyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two ring systems independently selected from the group consisting of a phenyl, a monocyclic heteroaryl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, and a monocyclic heterocyclyl.
- a heterocycloalkyl is a heterocyclyl.
- heterocyclyl as used herein, means a monocyclic, bicyclic, or multicyclic heterocycle.
- the heterocyclyl monocyclic heterocycle is a 3, 4, 5, 6 or 7 membered ring containing at least one heteroatom independently selected from the group consisting of O, N, and S where the ring is saturated or unsaturated, but not aromatic.
- the 3 or 4 membered ring contains 1 heteroatom selected from the group consisting of O, N and S.
- the 5 membered ring can contain zero or one double bond and one, two or three heteroatoms selected from the group consisting of O, N and S.
- the 6 or 7 membered ring contains zero, one or two double bonds and one, two or three heteroatoms selected from the group consisting of O, N and S.
- the heterocyclyl monocyclic heterocycle is connected to the parent molecular moiety through any carbon atom or any nitrogen atom contained within the heterocyclyl monocyclic heterocycle.
- heterocyclyl monocyclic heterocycles include, but are not limited to, azetidinyl, azepanyl, aziridinyl, diazepanyl, 1,3-dioxanyl, 1,3-dioxolanyl, 1,3-dithiolanyl, 1,3-dithianyl, imidazolinyl, imidazolidinyl, isothiazolinyl, isothiazolidinyl, isoxazolinyl, isoxazolidinyl, morpholinyl, oxadiazolinyl, oxadiazolidinyl, oxazolinyl, oxazolidinyl, piperazinyl, piperidinyl, pyranyl, pyrazolinyl, pyrazolidinyl, pyrrolinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl
- the heterocyclyl bicyclic heterocycle is a monocyclic heterocycle fused to either a phenyl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, a monocyclic heterocycle, or a monocyclic heteroaryl.
- the heterocyclyl bicyclic heterocycle is connected to the parent molecular moiety through any carbon atom or any nitrogen atom contained within the monocyclic heterocycle portion of the bicyclic ring system.
- bicyclic heterocyclyls include, but are not limited to, 2,3-dihydrobenzofuran-2-yl, 2,3- dihydrobenzofuran-3-yl, indolin-1-yl, indolin-2-yl, indolin-3-yl, 2,3-dihydrobenzothien-2-yl, decahydroquinolinyl, decahydroisoquinolinyl, octahydro-1H-indolyl, and octahydrobenzofuranyl.
- heterocyclyl groups are optionally substituted with one or two groups which are independently oxo or thia.
- the bicyclic heterocyclyl is a 5 or 6 membered monocyclic heterocyclyl ring fused to a phenyl ring, a 5 or 6 membered monocyclic cycloalkyl, a 5 or 6 membered monocyclic cycloalkenyl, a 5 or 6 membered monocyclic heterocyclyl, or a 5 or 6 membered monocyclic heteroaryl, wherein the bicyclic heterocyclyl is optionally substituted by one or two groups which are independently oxo or thia.
- Multicyclic heterocyclyl ring systems are a monocyclic heterocyclyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a bicyclic aryl, a monocyclic or bicyclic heteroaryl, a monocyclic or bicyclic cycloalkyl, a monocyclic or bicyclic cycloalkenyl, and a monocyclic or bicyclic heterocyclyl.
- multicyclic heterocyclyl is attached to the parent molecular moiety through any carbon atom or nitrogen atom contained within the base ring.
- multicyclic heterocyclyl ring systems are a monocyclic heterocyclyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a monocyclic heteroaryl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, and a monocyclic heterocyclyl.
- multicyclic heterocyclyl groups include, but are not limited to 10H-phenothiazin-10-yl, 9,10-dihydroacridin-9-yl, 9,10-dihydroacridin-10-yl, 10H-phenoxazin-10-yl, 10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl, 1,2,3,4- tetrahydropyrido[4,3-g]isoquinolin-2-yl, 12H-benzo[b]phenoxazin-12-yl, and dodecahydro- 1H-carbazol-9-yl.
- halo or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as “haloalkyl” are meant to include monohaloalkyl and polyhaloalkyl.
- halo(C1-C4)alkyl includes, but is not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
- acyl means, unless otherwise stated, -C(O)R where R is a substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
- aryl means, unless otherwise stated, a polyunsaturated, aromatic, hydrocarbon substituent, which can be a single ring or multiple rings (preferably from 1 to 3 rings) that are fused together (i.e., a fused ring aryl) or linked covalently.
- a fused ring aryl refers to multiple rings fused together wherein at least one of the fused rings is an aryl ring.
- heteroaryl refers to aryl groups (or rings) that contain at least one heteroatom such as N, O, or S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized.
- heteroaryl includes fused ring heteroaryl groups (i.e., multiple rings fused together wherein at least one of the fused rings is a heteroaromatic ring).
- a 5,6-fused ring heteroarylene refers to two rings fused together, wherein one ring has 5 members and the other ring has 6 members, and wherein at least one ring is a heteroaryl ring.
- a 6,6-fused ring heteroarylene refers to two rings fused together, wherein one ring has 6 members and the other ring has 6 members, and wherein at least one ring is a heteroaryl ring.
- a 6,5-fused ring heteroarylene refers to two rings fused together, wherein one ring has 6 members and the other ring has 5 members, and wherein at least one ring is a heteroaryl ring.
- a heteroaryl group can be attached to the remainder of the molecule through a carbon or heteroatom.
- Non-limiting examples of aryl and heteroaryl groups include phenyl, naphthyl, pyrrolyl, pyrazolyl, pyridazinyl, triazinyl, pyrimidinyl, imidazolyl, pyrazinyl, purinyl, oxazolyl, isoxazolyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidyl, benzothiazolyl, benzoxazoyl benzimidazolyl, benzofuran, isobenzofuranyl, indolyl, isoindolyl, benzothiophenyl, isoquinolyl, quinoxalinyl, quinolyl, 1-naphthyl, 2- naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4- imidazolyl
- Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below.
- a heteroaryl group substituent may be -O- bonded to a ring heteroatom nitrogen.
- a fused ring heterocyloalkyl-aryl is an aryl fused to a heterocycloalkyl.
- a fused ring heterocycloalkyl-heteroaryl is a heteroaryl fused to a heterocycloalkyl.
- a fused ring heterocycloalkyl-cycloalkyl is a heterocycloalkyl fused to a cycloalkyl.
- a fused ring heterocycloalkyl-heterocycloalkyl is a heterocycloalkyl fused to another heterocycloalkyl.
- Fused ring heterocycloalkyl-aryl, fused ring heterocycloalkyl-heteroaryl, fused ring heterocycloalkyl-cycloalkyl, or fused ring heterocycloalkyl-heterocycloalkyl may each independently be unsubstituted or substituted with one or more of the substitutents described herein.
- Spirocyclic rings are two or more rings wherein adjacent rings are attached through a single atom.
- the individual rings within spirocyclic rings may be identical or different.
- Individual rings in spirocyclic rings may be substituted or unsubstituted and may have different substituents from other individual rings within a set of spirocyclic rings.
- Possible substituents for individual rings within spirocyclic rings are the possible substituents for the same ring when not part of spirocyclic rings (e.g. substituents for cycloalkyl or heterocycloalkyl rings).
- Spirocylic rings may be substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkyl or substituted or unsubstituted heterocycloalkylene and individual rings within a spirocyclic ring group may be any of the immediately previous list, including having all rings of one type (e.g. all rings being substituted heterocycloalkylene wherein each ring may be the same or different substituted heterocycloalkylene).
- heterocyclic spirocyclic rings means a spirocyclic rings wherein at least one ring is a heterocyclic ring and wherein each ring may be a different ring.
- substituted spirocyclic rings means that at least one ring is substituted and each substituent may optionally be different.
- alkylsulfonyl means a moiety having the formula -S(O2)-R', where R' is a substituted or unsubstituted alkyl group as defined above. R' may have a specified number of carbons (e.g., “C1-C4 alkylsulfonyl”).
- alkylarylene as an arylene moiety covalently bonded to an alkylene moiety (also referred to herein as an alkylene linker). In embodiments, the alkylarylene group has the formula: .
- An alkylarylene moiety may be substituted (e.g.
- the alkylarylene is unsubstituted.
- Each of the above terms e.g., “alkyl,” “heteroalkyl,” “cycloalkyl,” “heterocycloalkyl,” “aryl,” and “heteroaryl” includes both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
- R, R', R'', R'', and R''' each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl (e.g., aryl substituted with 1-3 halogens), substituted or unsubstituted heteroaryl, substituted or unsubstituted alkyl, alkoxy, or thioalkoxy groups, or arylalkyl groups.
- aryl e.g., aryl substituted with 1-3 halogens
- substituted or unsubstituted heteroaryl substituted or unsubstituted alkyl, alkoxy, or thioalkoxy groups, or arylalkyl groups.
- each of the R groups is independently selected as are each R', R'', R''', and R''' group when more than one of these groups is present.
- R' and R'' are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 4-, 5-, 6-, or 7- membered ring.
- -NR'R'' includes, but is not limited to, 1-pyrrolidinyl and 4- morpholinyl.
- alkyl is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., -CF 3 and -CH 2 CF 3 ) and acyl (e.g., - C(O)CH3, -C(O)CF3, -C(O)CH2OCH3, and the like).
- haloalkyl e.g., -CF 3 and -CH 2 CF 3
- acyl e.g., - C(O)CH3, -C(O)CF3, -C(O)CH2OCH3, and the like.
- each of the R groups is independently selected as are each R', R'', R'', and R''' groups when more than one of these groups is present.
- Substituents for rings e.g. cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene
- substituents on the ring may be depicted as substituents on the ring rather than on a specific atom of a ring (commonly referred to as a floating substituent).
- the substituent may be attached to any of the ring atoms (obeying the rules of chemical valency) and in the case of fused rings or spirocyclic rings, a substituent depicted as associated with one member of the fused rings or spirocyclic rings (a floating substituent on a single ring), may be a substituent on any of the fused rings or spirocyclic rings (a floating substituent on multiple rings).
- the multiple substituents may be on the same atom, same ring, different atoms, different fused rings, different spirocyclic rings, and each substituent may optionally be different.
- a point of attachment of a ring to the remainder of a molecule is not limited to a single atom (a floating substituent)
- the attachment point may be any atom of the ring and in the case of a fused ring or spirocyclic ring, any atom of any of the fused rings or spirocyclic rings while obeying the rules of chemical valency.
- a ring, fused rings, or spirocyclic rings contain one or more ring heteroatoms and the ring, fused rings, or spirocyclic rings are shown with one more floating substituents (including, but not limited to, points of attachment to the remainder of the molecule), the floating substituents may be bonded to the heteroatoms.
- the ring heteroatoms are shown bound to one or more hydrogens (e.g. a ring nitrogen with two bonds to ring atoms and a third bond to a hydrogen) in the structure or formula with the floating substituent, when the heteroatom is bonded to the floating substituent, the substituent will be understood to replace the hydrogen, while obeying the rules of chemical valency.
- Two or more substituents may optionally be joined to form aryl, heteroaryl, cycloalkyl, or heterocycloalkyl groups.
- Such so-called ring-forming substituents are typically, though not necessarily, found attached to a cyclic base structure.
- the ring-forming substituents are attached to adjacent members of the base structure.
- two ring-forming substituents attached to adjacent members of a cyclic base structure create a fused ring structure.
- the ring-forming substituents are attached to a single member of the base structure.
- two ring-forming substituents attached to a single member of a cyclic base structure create a spirocyclic structure.
- the ring-forming substituents are attached to non- adjacent members of the base structure.
- Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally form a ring of the formula -T-C(O)-(CRR')p-U-, wherein T and U are independently -NR-, -O-, -CRR'-, or a single bond, and p is an integer of from 0 to 3.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r-B-, wherein A and B are independently -CRR'-, -O-, -NR-, -S-, -S(O) -, -S(O) 2 -, -S(O) 2 NR'-, or a single bond, and r is an integer of from 1 to 4.
- One of the single bonds of the new ring so formed may optionally be replaced with a double bond.
- two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula - (CRR')s-X'- (C''R''')d-, where s and d are independently integers of from 0 to 3, and X' is - O-, -NR'-, -S-, -S(O)-, -S(O)2-, or -S(O)2NR'-.
- R, R', R'', and R''' are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
- heteroatom or “ring heteroatom” are meant to include oxygen (O), nitrogen (N), sulfur (S), phosphorus (P), and silicon (Si).
- a “substituent group,” as used herein, means a group selected from the following moieties: (A) oxo, halogen, -CCl3, -CBr3, -CF3, -CI3, -CH2Cl, -CH2Br, -CH2F, -CH2I, -CHCl2, -CHBr2, -CHF2, -CHI2, -CN, -OH, -NH2, -COOH, -CONH2, -NO2, -SH, -SO3H, -SO 4 H, -SO 2 NH 2 , ⁇ NHNH 2 , ⁇ ONH 2 , ⁇ NHC(O)NHNH 2 , -NHC(O)NH 2 , -NHSO 2 H, -NHC(O)H, -NHC(O)OH, -NHOH, -OCCl 3 , -OCF 3 , -OCBr 3 , -OCI 3
- a “size-limited substituent” or “ size-limited substituent group,” as used herein, means a group selected from all of the substituents described above for a “substituent group,” wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted C1-C20 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C8 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted C 6 -C 10 aryl, and each substituted or unsubstituted heteroaryl is
- a “lower substituent” or “ lower substituent group,” as used herein, means a group selected from all of the substituents described above for a “substituent group,” wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted C 1 -C 8 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3- C7 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 7 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted phenyl, and each substituted or unsubstituted heteroaryl is a substituted or unsubstitute
- each substituted group described in the compounds herein is substituted with at least one substituent group. More specifically, in some embodiments, each substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene described in the compounds herein are substituted with at least one substituent group. In other embodiments, at least one or all of these groups are substituted with at least one size-limited substituent group.
- each substituted or unsubstituted alkyl may be a substituted or unsubstituted C 1 -C 20 alkyl
- each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl
- each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C8 cycloalkyl
- each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl
- each substituted or unsubstituted aryl is a substituted or unsubstituted C 6 - C10 aryl
- each substituted or unsubstituted heteroaryl is a substituted or unsubstituted or unsubstituted
- each substituted or unsubstituted alkylene is a substituted or unsubstituted C 1 -C 20 alkylene
- each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 20 membered heteroalkylene
- each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted C 3 -C 8 cycloalkylene
- each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 3 to 8 membered heterocycloalkylene
- each substituted or unsubstituted arylene is a substituted or unsubstituted C6-C10 arylene
- each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 5 to 10 membered heteroarylene.
- each substituted or unsubstituted alkyl is a substituted or unsubstituted C 1 -C 8 alkyl
- each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl
- each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C7 cycloalkyl
- each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 7 membered heterocycloalkyl
- each substituted or unsubstituted aryl is a substituted or unsubstituted C6-C10 aryl
- each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 9 membered heteroaryl.
- each substituted or unsubstituted alkylene is a substituted or unsubstituted C 1 -C 8 alkylene
- each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 8 membered heteroalkylene
- each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted C 3 -C 7 cycloalkylene
- each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 3 to 7 membered heterocycloalkylene
- each substituted or unsubstituted arylene is a substituted or unsubstituted C6-C10 arylene
- each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 5 to 9 membered heteroarylene.
- the compound is a chemical species set forth in the Examples section, figures, or tables below.
- a substituted or unsubstituted moiety e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, and/or substituted or unsubstituted heteroarylene) is unsubstituted (e.g., is an unsubstituted alkyl, unsubstituted cycloalkyl, substituted
- a substituted or unsubstituted moiety e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, and/or substituted or unsubstituted heteroarylene) is substituted (e.g., is a substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alky
- a substituted moiety e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene
- is substituted with at least one substituent group wherein if the substituted moiety is substituted with a plurality of substituent groups, each substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of substituent groups, each substituent group is different.
- a substituted moiety e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene
- is substituted with at least one size-limited substituent group wherein if the substituted moiety is substituted with a plurality of size-limited substituent groups, each size-limited substituent group may optionally be different.
- each size-limited substituent group is different.
- a substituted moiety e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene
- each lower substituent group is different.
- a substituted moiety e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene
- substituted moiety is substituted with a plurality of groups selected from substituent groups, size-limited substituent groups, and lower substituent groups; each substituent group, size-limited substituent group, and/or lower substituent group is different.
- the phrase “or combinations thereof” means that any two or more of the items in the preceding list may be combined, and optionally repeated, in any order and in any orientation.
- q q Examorpholine morpholine analog of exatecan the structure of which is shown in Example S6, and which is also referred to as compound 50 FA Folic acid Compositions Small Molecule-Drug Conjugates
- L is a multivalent linker bound at least to a folic acid and a drug moiety
- HL is a half-life extender
- D is a drug moiety.
- L is a multivalent linker bound to a folic acid, a drug moiety, and HL; wherein: HL is a half-life extender; and D is a drug moiety.
- HL is a half-life extender
- D is a drug moiety.
- a compound of Formula (I): or a pharmaceutically acceptable salt thereof wherein: L is a multivalent linker bound to a folic acid, a drug moiety, and HL; wherein: HL is a half-life extender; and D is a drug moiety.
- a compound of Formula (II): or a pharmaceutically acceptable salt thereof wherein: L is a multivalent linker bound at least to a folic acid and a drug moiety; HL is a half-life extender; and D is a drug moiety.
- a compound of Formula (II): or a pharmaceutically acceptable salt thereof wherein: L is a multivalent linker bound to a folic acid, a drug moiety, and HL wherein HL is a half-life extender; and D is a drug moiety.
- Formulae (I) and (II) encompass tautomers, a mixture of two or more tautomers, isotopic variants, and/or a pharmaceutically acceptable salt, solvate, or hydrate thereof.
- D is a tubulin inhibitor or disruptor, apoptosis inducer, RNA splicing inhibitor, kinase inhibitor, DNA damaging agent, nicotinamide phosphoribosyltransferase inhibitor (NAMPT), peptidic proteasome inhibitors, transcription inhibitors, or proteolysis-targeting chimera (PROTAC).
- D is a tubulin inhibitor or disruptor, kinase inhibitor, DNA damaging agent, transcription inhibitors, or proteolysis-targeting chimera (PROTAC).
- D is a tubulin inhibitor.
- D is a tubulin disruptor.
- D is a kinase inhibitor.
- D is a DNA damaging agent.
- D is a transcription inhibitor.
- D is a proteolysis-targeting chimera (PROTAC).
- D is a pyrrolobenzodiazepine, indolinobenzodiazepine, duocarmycin, tubulysin, cryptomycin, anthracycline, maytansinoid, auristatin, carmaphycin, calicheamicin, camptothecin, thailanstatin and analogues, RNA polymerase II inhibitor, topoisomerase I inhibitor, tyrosine kinase inhibitor, Bcl-xL Inhibitor, EG5 inhibitor, or MEK inhibitor.
- D is a pyrrolobenzodiazepine, duocarmycin, anthracycline, maytansinoid, auristatin, calicheamicin, camptothecin, RNA polymerase II inhibitor, topoisomerase I inhibitor, tyrosine kinase inhibitor, EG5 inhibitor, or MEK inhibitor.
- D is a pyrrolobenzodiazepine.
- D is a duocarmycin.
- D is an anthracycline.
- D is a maytansinoid.
- D is an auristatin.
- D is a calicheamicin.
- D is a camptothecin. In embodiments, D is a topoisomerase I inhibitor. In embodiments, D is an RNA polymerase II inhibitor. In embodiments, D is a tyrosine kinase inhibitor. In embodiments, D is an EG5 inhibitor. In embodiments, D is a MEK inhibitor.
- D is MMAE.
- D is MMAF.
- D is Duo5. In embodiments, D is PNU-159682. In embodiments, D is SN-38. In embodiments, D is irinotecan. In embodiments, D is amatoxin. In embodiments, D is maytansine. In embodiments, D is exatecan. In embodiments, D is trametinib. In embodiments, D is abemaciclib. In embodiments, D is Palbociclib. In some embodiments, D is a morpholine analog of exatecan. In embodiments, D is examorpholine (the morpholine analog of exatecan for which the structure is shown in Example S6, and which is also referred to as compound 50). [00157] In embodiments, wherein the wavy line indicates a bond to the multivalent linker (L). In embodiments, D is wherein the wavy line indicates a bond to the multivalent linker (L). In embodiments, D is wherein the wavy line indicates a bond to the multivalent linker (L). In embodiments,
- L is a cleavable or a non-cleavable linker as described in US Patents Nos. US 9,884,127, US 9,981,046, US 9,801,951, US 10,117,944, US 10,590,165, and US 10,590,165, and US Patent publications Nos. US 2017/0340750, and US 2018/0360985, all of which are incorporated herein in their entireties.
- L is a bond, -C(O)-, -NH-, Amino Acid Unit, Peptoid, –(CH 2 CH 2 O) n –, –(CH 2 ) n –, –(4-aminobenzyloxycarbonyl)–, –(C(O)CH 2 CH 2 C(O))–, thereof; wherein n is an integer from 1 to 24; each R 2 and R 3 is independently H or substituted or unsubstituted alkyl.
- n is an integer from 1 to 24. In embodiments, n is 1. In embodiments, n is 2. In embodiments, n is 3. In embodiments, n is 4.
- n is 5. In embodiments, n is 6. In embodiments, n is 7. In embodiments, n is 8. In embodiments, n is 9. In embodiments, n is 10. In embodiments, n is 11. In embodiments, n is 12. In embodiments, n is 13. In embodiments, n is 14. In embodiments, n is 15. In embodiments, n is 16. In embodiments, n is 17. In embodiments, n is 18. In embodiments, n is 19. In embodiments, n is 20. In embodiments, n is 21. In embodiments, n is 22. In embodiments, n is 23. In embodiments, n is 24.
- each R 2 and R 3 is independently H or substituted or unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R 2 and R 3 is independently H. In embodiments, each R 2 and R 3 is independently substituted or unsubstituted alkyl. In embodiments, each R 2 and R 3 is independently substituted or unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl).
- each R 2 and R 3 is independently unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R 2 and R 3 is independently substituted alkyl (e.g., C 1 -C 8 alkyl, C 1 -C 6 alkyl, or C1-C4 alkyl).
- each R 2 and R 3 is independently H or substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) or unsubstituted alkyl (e.g., C 1 -C 8 alkyl, C 1 -C 6 alkyl, or C 1 -C 4 alkyl).
- each R 2 and R 3 is independently substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) or unsubstituted alkyl.
- each R 2 and R 3 is independently substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) or unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R 2 and R 3 is independently unsubstituted alkyl (e.g., C 1 -C 8 alkyl, C 1 -C 6 alkyl, or C 1 -C 4 alkyl).
- each R 2 and R 3 is independently substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) alkyl (e.g., C1- C 8 alkyl, C 1 -C 6 alkyl, or C 1 -C 4 alkyl).
- each R 2 and R 3 is independently methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, or hexyl.
- each R 2 and R 3 is independently methyl.
- each R 2 and R 3 is independently ethyl.
- each R 2 and R 3 is independently propyl. In embodiments, each R 2 and R 3 is independently butyl.
- L is -C(O)-, -NH-,–(CH2CH2O)n–, –(CH2)n–, -Cys-, -Asp-, -Arg- , -Val-, –(4-aminobenzyloxycarbonyl)–, -Glu-, -citrulline- (-Cit-), -Lys-, – (C(O)CH 2 CH 2 NH)–, –(C(O)CH2CH2C(O))–, –(C(O)(CH2)nNH)–, –S(CH2)nO–, –(N(R 2 )(CH2)nN(R 3 ))–, thereof.
- L is -C(O)-, -NH-, –(CH 2 CH 2 O) n –, –(CH 2 ) n –, –SCH 2 CH 2 O–, –(C(O)CH 2 CH 2 C(O))–, -Cys-, -Val-, -Cit-, -Arg-, -Asp-, -Lys-, –(4- aminobenzyloxycarbonyl) , , , , r combinations thereof.
- L is -C(O)-.
- L is -NH-.
- L is –(CH2CH2O)n–.
- L is –(CH2)n–. In embodiments, L is –SCH2CH2O–. In embodiments, L is –(C(O)CH2CH2C(O))–. In embodiments, L is -Cys-. In embodiments, L is -Val-. In embodiments, L is -Cit-. In embodiments, L is -Arg-. In embodiments, L is -Asp-. In embodiments, L is -Lys-. In embodiments, L is –(4-aminobenzyloxycarbonyl)–. In embodiments, L is . In embodiments, . embodiments, L is . , . , .
- L is . embodiments . embodiments, L is . [00170]
- HL is cholesterol-like half-life extender or albumin binder half- life extender.
- HL is cholesterol-like half-life extender.
- HL is an albumin binder half-life extender.
- HL is . In embodiments, HL is
- compositions, Uses, and Methods of Use [00182]
- a pharmaceutical composition including a compound of Formula (I) or (II) (an SMDC) as described herein, including embodiment
- the SMDC as described herein is included in a therapeutically effective amount.
- a pharmaceutical composition comprising a compound provided herein, including a compound of Formula (I) or (II), or an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or an isotopic variant thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and a pharmaceutically acceptable carrier (or excipient).
- the pharmaceutical composition may include optical isomers, diastereomers, enantiomers, isoforms, polymorphs, hydrates, solvates or products, or pharmaceutically acceptable salts of the compound described herein.
- the compound provided herein may be administered alone, or in combination with one or more other compounds.
- the pharmaceutical compositions that comprise a compound provided herein, e.g., a compound of Formula (I) or (II) can be formulated in various dosage forms for oral, parenteral, and topical administration.
- compositions can also be formulated as modified release dosage forms, including delayed-, extended-, prolonged-, sustained-, pulsatile-, controlled-, accelerated-, fast-, targeted-, programmed-release, and gastric retention dosage forms.
- modified release dosage forms including delayed-, extended-, prolonged-, sustained-, pulsatile-, controlled-, accelerated-, fast-, targeted-, programmed-release, and gastric retention dosage forms.
- These dosage forms can be prepared according to conventional methods and techniques known to those skilled in the art (see, Remington: The Science and Practice of Pharmacy, supra; Modified-Release Drug Delivery Technology, 2 nd Edition, Rathbone et al., Eds., Marcel Dekker, Inc.: New York, NY, 2008).
- the pharmaceutical composition may be formulated for oral administration, suppository administration, topical administration, intravenous administration, intraperitoneal administration, intramuscular administration, intralesional administration, intrathecal administration, intranasal administration, subcutaneous administration, implantation, transdermal administration, or transmucosal administration as described herein.
- the pharmaceutical compositions provided herein are formulated in a dosage form for oral administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- the pharmaceutical compositions provided herein are formulated as a suspension for oral administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excip
- the suspension provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, glycerin, sorbitol, sodium saccharin, xanthan gum, flavoring, citric acid, sodium citrate, methylparaben, propylparaben, and potassium sorbate.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or
- the suspension provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, glycerin, sorbitol, sodium saccharin, xanthan gum, flavoring, citric acid, sodium citrate, methylparaben, propylparaben, and potassium sorbate.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or
- the pharmaceutical compositions provided herein are formulated in a dosage form for parenteral administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- the pharmaceutical compositions provided herein are formulated in a dosage form for intravenous administration.
- the pharmaceutical compositions provided herein are formulated in a dosage form for intramuscular administration. In yet another embodiment, the pharmaceutical compositions provided herein are formulated in a dosage form for subcutaneous administration. [00190] In yet another embodiment, the pharmaceutical compositions provided herein are formulated in a dosage form for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- a compound provided herein e.g., a compound of Formula (I) or (II)
- an enantiomer e.g., a mixture of enantiomers, a mixture of two or more
- the pharmaceutical compositions provided herein are formulated as a cream for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- the cream provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, octyldodecanol, mineral oil, stearyl alcohol, cocamide DEA, polysorbate 60, myristyl alcohol, sorbitan monostearate, lactic acid, and benzyl alcohol.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer
- the cream provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, octyldodecanol, mineral oil, stearyl alcohol, cocamide DEA, polysorbate 60, myristyl alcohol, sorbitan monostearate, lactic acid, and benzyl alcohol.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or iso
- the pharmaceutical compositions provided herein are formulated as a gel for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- a compound provided herein e.g., a compound of Formula (I) or (II)
- an enantiomer e.g., a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof
- a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof e.
- the gel provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, isopropyl alcohol, octyldodecanol, dimethicone copolyol 190, carbomer 980, sodium hydroxide, and docusate sodium.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more
- the gel provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, isopropyl alcohol, octyldodecanol, dimethicone copolyol 190, carbomer 980, sodium hydroxide, and docusate sodium.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutical
- the pharmaceutical compositions provided herein are formulated as a shampoo for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- the shampoo provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, sodium laureth sulfate, disodium laureth sulfosuccinate, sodium chloride, and laureth-2.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutical
- the shampoo provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, sodium laureth sulfate, disodium laureth sulfosuccinate, sodium chloride, and laureth-2.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof
- the pharmaceutical compositions provided herein are formulated as a lacquer for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers.
- a compound provided herein e.g., a compound of Formula (I) or (II)
- an enantiomer e.g., a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof
- a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof
- the lacquer provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of ethyl acetate, isopropyl alcohol, and butyl monoester of poly(methylvinyl ether/maleic acid) in isopropyl alcohol.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or is
- the lacquer provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and ethyl acetate, isopropyl alcohol, and butyl monoester of poly(methylvinyl ether/maleic acid) in isopropyl alcohol.
- a compound provided herein e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solv
- compositions provided herein can be provided in a unit- dosage form or multiple-dosage form.
- a unit-dosage form refers to physically discrete a unit suitable for administration to a human and animal subject, and packaged individually as is known in the art. Each unit-dose contains a predetermined quantity of an active ingredient(s) sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carriers or excipients. Examples of a unit- dosage form include an ampoule, syringe, and individually packaged tablet and capsule. A unit-dosage form may be administered in fractions or multiples thereof.
- a multiple-dosage form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dosage form.
- Examples of a multiple-dosage form include a vial, bottle of tablets or capsules, or bottle of pints or gallons.
- the pharmaceutical compositions provided herein can be administered at once, or multiple times at intervals of time. It is understood that the precise dosage and duration of treatment may vary with the age, weight, and condition of the patient being treated, and may be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test or diagnostic data.
- compositions include those suitable for oral, rectal, nasal, topical (including transdermal, buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration or administration via an implant.
- the compositions may be prepared by any method well known in the art of pharmacy.
- Such methods include the step of bringing in association compounds of this disclosure or combinations thereof with any auxiliary agent.
- auxiliary agent(s) also named accessory ingredient(s)
- auxiliary agent(s) include those conventional in the art, such as carriers, fillers, binders, diluents, disintegrants, lubricants, colorants, flavouring agents, anti-oxidants, and wetting agents.
- Pharmaceutical compositions suitable for oral administration may be presented as discrete dosage units such as pills, tablets, cachets, dragées, lozenges, or capsules, or as a powder or granules, or as a solution or suspension.
- the active ingredient may also be presented as a bolus or paste.
- the compositions can further be processed into a suppository or enema for rectal administration.
- compositions include aqueous and non- aqueous sterile injection.
- the compositions may be presented in unit-dose or multi-dose containers, for example sealed vials and ampoules, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of sterile liquid carrier, for example water, prior to use.
- sterile liquid carrier for example water
- transdermal administration e.g. gels, patches or sprays can be contemplated.
- Compositions or formulations suitable for pulmonary administration e.g. by nasal inhalation include fine dusts or mists which may be generated by means of metered dose pressurized aerosols, nebulisers or insufflators.
- the exact dose and regimen of administration of the composition will necessarily be dependent upon the therapeutic or nutritional effect to be achieved and may vary with the particular formula, the route of administration, and the age and condition of the individual subject to whom the composition is to be administered.
- the therapeutically effective amount for each active compound can vary with factors including but not limited to the activity of the compound used, stability of the active compound in the patient’s body, the severity of the conditions to be alleviated, the total weight of the patient treated, the route of administration, the ease of absorption, distribution, and excretion of the active compound by the body, the age and sensitivity of the patient to be treated, and the like, as will be apparent to a skilled artisan.
- the amount of administration can be adjusted as the various factors change over time.
- the active compounds can be incorporated into a formulation that includes pharmaceutically acceptable carriers such as binders (e.g., gelatin, cellulose, gum tragacanth), excipients (e.g., starch, lactose), lubricants (e.g., magnesium stearate, silicon dioxide), disintegrating agents (e.g., alginate, Primogel, and corn starch), and sweetening or flavoring agents (e.g., glucose, sucrose, saccharin, methyl salicylate, and peppermint).
- binders e.g., gelatin, cellulose, gum tragacanth
- excipients e.g., starch, lactose
- lubricants e.g., magnesium stearate, silicon dioxide
- disintegrating agents e.g., alginate, Primogel, and corn starch
- sweetening or flavoring agents e.g., glucose, sucrose, saccharin, methyl salicylate, and peppermint
- the capsules and tablets can also be coated with various coatings known in the art to modify the flavors, tastes, colors, and shapes of the capsules and tablets.
- liquid carriers such as fatty oil can also be included in capsules.
- Suitable oral formulations can also be in the form of suspension, syrup, chewing gum, wafer, elixir, and the like. If desired, conventional agents for modifying flavors, tastes, colors, and shapes of the special forms can also be included.
- the active compounds can be dissolved in an acceptable lipophilic vegetable oil vehicle such as olive oil, corn oil and safflower oil.
- the active compounds can also be administered parenterally in the form of solution or suspension, or in lyophilized form capable of conversion into a solution or suspension form before use.
- diluents or pharmaceutically acceptable carriers such as sterile water and physiological saline buffer can be used.
- Other conventional solvents, pH buffers, stabilizers, anti-bacteria agents, surfactants, and antioxidants can all be included.
- useful components include sodium chloride, acetates, citrates or phosphates buffers, glycerin, dextrose, fixed oils, methyl parabens, polyethylene glycol, propylene glycol, sodium bisulfate, benzyl alcohol, ascorbic acid, and the like.
- parenteral formulations can be stored in any conventional containers such as vials and ampoules.
- Routes of topical administration include nasal, buccal, mucosal, rectal, or vaginal applications.
- the active compounds can be formulated into lotions, creams, ointments, gels, powders, pastes, sprays, suspensions, drops and aerosols.
- one or more thickening agents, humectants, and stabilizing agents can be included in the formulations. Examples of such agents include, but are not limited to, polyethylene glycol, sorbitol, xanthan gum, petrolatum, beeswax, or mineral oil, lanolin, squalene, and the like.
- a special form of topical administration is delivery by a transdermal patch.
- Methods for preparing transdermal patches are disclosed, e.g., in Brown, et al. (1988) Ann. Rev. Med. 39:221-229 which is incorporated herein by reference.
- Subcutaneous implantation for sustained release of the active compounds may also be a suitable route of administration. This entails surgical procedures for implanting an active compound in any suitable formulation into a subcutaneous space, e.g., beneath the anterior abdominal wall. See, e.g., Wilson et al. (1984) J. Clin. Psych. 45:242-247.
- Hydrogels can be used as a carrier for the sustained release of the active compounds. Hydrogels are generally known in the art.
- hydrogels are typically made by crosslinking high molecular weight biocompatible polymers into a network, which swells in water to form a gel like material.
- hydrogels are biodegradable or biosorbable.
- hydrogels made of polyethylene glycols, collagen, or poly(glycolic-co-L- lactic acid) may be useful. See, e.g., Phillips et al. (1984) J. Pharmaceut. Sci., 73: 1718- 1720.
- This disclosure further provides a compound as defined in any one of the embodiments herein above for use in therapy.
- This disclosure further provides a compound as defined in any one of the embodiments herein above for use as a medicament.
- the pharmaceutical composition may be formulated for dissolution into a solution for administration by such techniques as, for example, intravenous administration.
- the SMDCs and pharmaceutical compositions thereof are particularly useful for parenteral administration, i.e., subcutaneously (s.c.), intrathecally, intraperitoneally, intramuscularly (i.m.) or intravenously (i.v.).
- the SMDCs and pharmaceutical compositions thereof are administered intravenously or subcutaneously.
- Actual methods for preparing parenterally administrable compositions are well known or will be apparent to those skilled in the art and are described in more detail in, for example, Remington’s Pharmaceutical Science, 15 th ed., Mack Publishing Company, Easton, Pa.
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc.
- concentration of the antigen binding protein of the disclosure in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as about 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected.
- This disclosure further provides a compound as defined in any one of the embodiments herein above for use in therapy.
- This disclosure further provides a compound as defined in any one of the embodiments herein above for use as a medicament.
- a method of treating a disease in a subject in need thereof including administering an effective amount of a small molecule drug conjugate (SMDC) comprising folic acid, a conjugation linker moiety (L) that binds to the carbonyl of the folic acid, and to a drug moiety covalently bound to linker L, and where L is optionally covalently bound to a half-life extender (HL).
- SMDC small molecule drug conjugate
- L conjugation linker moiety
- an SMDC provided herein is used in a method of inhibiting proliferation of a FR-expressing cell, such as an FR-expressing cell, the method comprising contacting the cell with the SMDC, e.g., exposing the cell to the SMDC under conditions permissive for binding of the folic acid of the SMDC on the surface of the cell, thereby inhibiting the proliferation of the cell.
- the method is an in vitro or an in vivo method.
- the cell is a cancer cell.
- the cell is a non-small cell lung carcinoma (NSCLC).
- the cell is an ovarian cancer cell.
- the cell may be a mammalian cell, such as a human cell.
- Inhibition of cell proliferation in vitro may be assayed using the CellTiter-Glo TM Luminescent Cell Viability Assay, which is commercially available from Promega (Madison, WI). That assay determines the number of viable cells in culture based on quantitation of ATP present, which is an indication of metabolically active cells. See Crouch et al. (1993) J. Immunol. Meth. 160:81-88, US Pat. No. 6602677.
- the assay may be conducted in 96- or 384- well format, making it amenable to automated high-throughput screening (HTS). See Cree et al. (1995) AntiCancer Drugs 6:398-404.
- the assay procedure involves adding a single reagent (CellTiter-Glo ® Reagent) directly to cultured cells. This results in cell lysis and generation of a luminescent signal produced by a luciferase reaction.
- the luminescent signal is proportional to the amount of ATP present, which is directly proportional to the number of viable cells present in culture. Data can be recorded by luminometer or CCD camera imaging device.
- the luminescence output is expressed as relative light units (RLU).
- a SMDC for use as a medicament is provided.
- a SMDC for use in a method of treatment is provided.
- a method of treating a disease in a subject in need thereof said method including administering an effective amount of a pharmaceutical composition of the SMDC as described herein.
- the disease is cancer.
- the cancer is associated with overexpression of FR, such as FR ⁇ .
- the FR-expressing cancer is an epithelial-derived tumor.
- the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer.
- the FR-expressing cancer is non- small cell lung carcinoma (NSCLC) or ovarian cancer.
- the FR-expressing cancer is non-small cell lung carcinoma (NSCLC).
- the FR-expressing cancer is ovarian cancer. Any of the foregoing FR-expressing cancer types may be FR ⁇ - expressing cancers.
- the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent.
- the FR-expressing cancer such as the FR ⁇ -expressing cancer
- the mammal is human.
- the present disclosure provides for the use of a SMDC in the manufacture or preparation of a medicament.
- the medicament is for treatment of an FR-expressing cancer, such as an FR ⁇ -expressing cancer.
- the medicament is for use in a method of treating an FR-expressing cancer, such as an FR ⁇ -expressing cancer, the method comprising administering to an individual having an FR-expressing cancer, such as an FR ⁇ -expressing cancer, an effective amount of the medicament.
- the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent.
- the methods provided herein are for treating cancer in a mammal. In embodiments, the methods provided herein are for treating cancer in a human.
- the cancers that may be treated with an immunoconjugate or method provided herein include epithelial-derived tumors including ovarian, uterine, breast, endometrial, pancreatic, renal, lung, colorectal, and brain tumors.
- the cancers that may be treated with an immunoconjugate or a method provided herein include serous and endometrioid epithelial ovarian cancer, endometrial adenocarcinoma, non-small cell lung carcinoma (NSCLC) of the adenocarcinoma subtype, squamous lung cancer, mesotheliomas, and triple-negative breast cancer (TNBC).
- the cancer is ovarian cancer.
- the cancer is breast cancer.
- the cancer is lung cancer.
- the cancer is triple-negative breast cancer.
- the cancer is non-small cell lung carcinoma (NSCLC).
- the cancer is mesothelioma.
- an article of manufacture containing materials useful for the treatment, prevention and/or diagnosis of the disorders described above is provided.
- the article of manufacture (a kit) comprises a container and a label or package insert on or associated with the container.
- Suitable containers include, for example, bottles, vials, syringes, IV solution bags, etc.
- the containers may be formed from a variety of materials such as glass or plastic.
- the container holds a composition which is by itself or combined with another composition effective for treating, preventing and/or diagnosing the disorder and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- At least one active agent in the composition is an SMDC as described herein.
- the label or package insert indicates that the composition is used for treating the condition of choice.
- the article of manufacture may comprise (a) a first container with a composition contained therein, wherein the composition comprises an SMDC as described herein; and (b) a second container with a composition contained therein, wherein the composition comprises a further cytotoxic or otherwise therapeutic agent.
- the article of manufacture in this embodiment of the disclosure may further comprise a package insert indicating that the compositions can be used to treat a particular condition.
- the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution or dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
- BWFI bacteriostatic water for injection
- phosphate-buffered saline such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution or dextrose solution.
- BWFI bacteriostatic water for injection
- phosphate-buffered saline such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution or dextrose solution.
- BWFI bacteriostatic water for injection
- Ringer's solution such as bacterio
- reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 3).
- the resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each).
- Resin deprotection The resin was then treated with 2% hydrazine in DMF (10 mL). The mixture was allowed to react for 15 minutes. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each) and dichloromethane (3 times 10 mL each).
- Resin deprotection The resin was treated with peptide deprotection mixture (TFA, water, triisopropyl silane (TIPS), 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol) (SDBS), 94/2/2/2) at 45 o C for 30 minutes before it was filtered.
- TIPS triisopropyl silane
- SDBS 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol)
- reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 15).
- the resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each).
- reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 17).
- the resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each).
- reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 31).
- the resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each).
- reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 33).
- the resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each).
- Resin deprotection The resin was treated with peptide deprotection mixture (TFA, water, triisopropyl silane (TIPS), 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol) (SDBS), 94/2/2/2) at 45 o C for 30 minutes before it was filtered. The resulting TFA mixture was diluted with cold ether and the suspension was centrifuged with 5 minutes.
- TFA peptide deprotection mixture
- TIPS triisopropyl silane
- SDBS 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol)
- reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 38).
- the resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each).
- reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 42).
- the resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each).
- Resin deprotection The resin was treated with peptide deprotection mixture (TFA, water, triisopropyl silane (TIPS), 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol) (SDBS), 94/2/2/2) at 45 o C for 30 minutes before it was filtered. The resulting TFA mixture was diluted with cold ether and the suspension was centrifuged with 5 minutes.
- TFA peptide deprotection mixture
- TIPS triisopropyl silane
- SDBS 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol)
- FR-VC-PAB-MMAE was isolated as a fluffy yellowish powder. MS m/z 2670 (M+H).
- Example B1 In vitro Efficacy of Duo5 and MMAE.
- the in vitro efficacies of Duo5 (the synthesis of which has been previously described in US Patent 10,590,165, which is incorporated herein in its entirety and MMAE were evaluated using the following human cancer cell lines: KB (FR+) and A549 (FR-), purchased from the American Type Culture Collection (ATCC; Manassas, VA) and routinely cultured in folic acid free RPMI 1640 medium (Catalog #27016021; Thermo Fisher Scientific; Waltham, MA) and RPMI 1640 medium (ATCC modification) (Catalog #A1049101; Thermo Fisher Scientific; Waltham, MA) supplemented with 10% fetal bovine serum (FBS; Catalog #F4135; Sigma-Aldrich; St.
- FBS fetal bovine
- Tumor cells were washed with Dulbecco’s Phosphate Buffered Saline (DPBS; Catalog #PBL01; Caisson Labs; Smithfield, UT) and harvested by detachment with TrypLE Express (Catalog #1204013; Thermo Fisher Scientific; Waltham, MA). Viable cell counts were made by Trypan blue exclusion using a Countess II automated cell counter.
- DPBS Dulbecco’s Phosphate Buffered Saline
- TrypLE Express Catalog #1204013; Thermo Fisher Scientific; Waltham, MA.
- CellTiter-Glo 2.0 assay (Catalog #G9242; Promega; Madison, WI, USA) based on the manufacturer’s instructions.
- CellTiter Glo reagent reacts with ATP in metabolically active cells to give a luminescent readout that is directly proportional to the number of viable cells. Briefly, plates were removed from the incubator and equilibrated to room temperature before addition of CellTiter Glo reagent. Luminescence was measured using a SpectraMax iD3 microplate reader (Molecular Devices; San Jose, CA).
- FIGS.1A and 1B Duo5 and MMAE dose-dependently reduced KB and A549 cell viability in 3-day assays.
- the potencies of Duo5 and MMAE in KB as determined by IC50 were similar with 0.8982 nM and 0.3707 nM, respectively.
- IC 50 values of Duo5 and MMAE were higher in A549 than in KB, they inhibited cell proliferation across both cell lines in a dose-dependent manner regardless of FR expression level.
- FIGS. 1A and 1B Cell viability for Duo5 and MMAE are shown in FIGS. 1A and 1B and IC50 values are shown in Table 1.
- FIGS. 1A and 1B Cell viability for Duo5 and MMAE are shown in FIGS. 1A and 1B and IC50 values are shown in Table 1.
- FIGS. 1A and 1B Cell viability for Duo5 and MMAE are shown in FIGS. 1A and 1B and IC50 values are shown in Table 1.
- 1A-B show results of an in vitro efficacy study of A) Duo5 and B) MMAE using: KB (FR+) cells and A549 (FR-) cells.
- Table 1 IC50 Values (nM) of Duo5 and MMAE in Human Tumor Cells
- Example B2 In vitro Efficacy, Specificity, and Stability of Small Molecule-Drug Conjugates (SMDCs).
- SMDCs Small Molecule-Drug Conjugates
- SMDCs were evaluated using the following human cancer cell lines: FR-positive KB and FR-negative A549, purchased from the American Type Culture Collection (ATCC; Manassas, VA) and routinely cultured in folic acid free RPMI 1640 medium (Catalog #27016021; Thermo Fisher Scientific; Waltham, MA) and RPMI 1640 medium (ATCC modification) (Catalog #A1049101; Thermo Fisher Scientific; Waltham, MA) supplemented with 10% fetal bovine serum (FBS; Catalog #MT35011CV; Corning), respectively, and maintained at 37°C with 5% CO 2 in a humidified environment.
- ATCC American Type Culture Collection
- FBS fetal bovine serum
- Tumor cells were washed with Dulbecco’s Phosphate Buffered Saline (DPBS; Catalog #PBL01; Caisson Labs; Smithfield, UT) and harvested by detachment with TrypLE Express (Catalog #1204013; Thermo Fisher Scientific; Waltham, MA). Viable cell counts were made by Trypan blue exclusion using a Countess or Countess II automated cell counter.
- DPBS Phosphate Buffered Saline
- TrypLE Express Catalog #1204013; Thermo Fisher Scientific; Waltham, MA.
- Cell Viability Assay All cells were harvested and seeded into 384-well white wall flat bottom plates (Catalog #3570; Corning) at a density of 1,000 cells/well (for 120-hour assay) or 3,000 cells/well in folic acid free RPMI 1640 medium or RPMI 1640 medium (ATCC modification) supplemented with 10% fetal bovine (complete growth media). Plates were maintained at 37°C overnight to allow cells to adhere to the plate. The outer wells of plates contained complete growth media only. Thirty minutes prior to the addition of SMDCs, the media in designated wells of KB cells were replaced with complete growth media containing 100 ⁇ M folic acid (a binding site competitor).
- KB cells in those designated wells were used to determine the targeting specificity of SMDCs for FR.
- Working solutions of test articles were prepared at 100X final concentrations with 5-fold serial dilutions in DMSO and subsequently diluted at 5X final concentrations with 5-fold serial dilutions in complete growth media (in the presence or absence of 100 ⁇ M folic acid for KB).
- Cell treatment was performed in triplicates and maintained at 37°C for (1) 2 hours followed by washing 3 times with complete growth media and incubating with complete growth media for another 70 hours (2-hour pulse assay); or (2) 72 hours or 120 hours (for FR-IODO-Examorpholine treatment) (72-hour assay or 120-hour assay).
- Cells treated with SMDCs using 72-hour assay or 120-hour assay were used to determine the stability of SMDCs in complete growth media. After treatment, cell viability was determined by CellTiter-Glo 2.0 assay (Catalog #G9242; Promega; Madison, WI, USA) based on the manufacturer’s instructions.
- CellTiter Glo reagent reacts with ATP in metabolically active cells to give a luminescent readout that is directly proportional to the number of viable cells. Briefly, plates were removed from the incubator and equilibrated to room temperature before addition of CellTiter Glo reagent. Luminescence was measured using a SpectraMax iD3 microplate reader (Molecular Devices; San Jose, CA).
- IC50 Values (nM) of FA-SMDCs in Human Tumor Cells with 2-hour Pulse Assay are presented in Table 2.
- Table 2 IC50 Values (nM) of FA-SMDCs in Human Tumor Cells with 2-hour Pulse Assay
- FIGS. 3A-B show results of an in vitro efficacy, specificity, and stability study of FR-PEG-Duo5 using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay.
- FIGS. 3A-B show results of an in vitro efficacy, specificity, and stability study of FR-PEG-Duo5 using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay.
- FIGS. 4A-B show results of an in vitro efficacy, specificity, and stability study of FR-VC-Duo5 using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay.
- FIGS. 5A-B show results of an in vitro efficacy, specificity, and stability study of FR-IODO-Duo5 using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay.
- FIGS. 6A-B show results of an in vitro efficacy, specificity, and stability study of FR-VC-PAB-MMAE using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay.
- FIGS. 7A-B show results of an in vitro efficacy, specificity, and stability study of FR-PL-MMAE using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay.
- FIG. 8 shows results of an in vitro efficacy, specificity, and stability study of FR- IODO-Examorpholine using KB (FR+) cells with 120-hour assay.
- In vitro stability of the SMDCs described herein was evaluated with 72-hour assay or 120-hour assay against FR-positive KB and FR-negative A549 cancer cell lines using standard cell viability assays. As shown in FIGS.
- Example B3 Mouse Pharmacokinetics (PK) for FR-VC-IODO-Duo5.
- FR-VC-IODO-Duo5 and Duo5 are both dissolved as standard solution in DMSO (10 mM).
- the dosing formulation consists of 1% DMSO and 99% PBS. The dosing level was 1 mg/Kg.
- 30 male ICR mice was used in the study and the FR-VC-IODO-Duo5 was injected via IV route.
- the blood was sampled at the following time points: 0.5, 2, 4, 6, 8, 24, 48, 72 and 120 hours post dose.
- the sampled blood was treated with EDTA-K2 and 1 molar citric acid solution to denature proteases in serum.
- LCMS analysis was performed to monitor the serum level of FR-VC-IODO-Duo5 and Duo5. The result of the PK study is presented in FIG. 9, Table 4, and Table 5.
- BLQ Below the lower limit of quantification (LLOQ) If the adjusted rsq (linear regression coefficient of the concentration value on the terminal phase) is less than 0.9, T 1/2 might not be accurately estimated. No abnormal clinical sign was observed during the entire in-life study.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Provided, inter alia, are small molecule drug conjugates (SMDCs) which specifically bind Folate Receptor (FR). Further disclosed are pharmaceutical compositions, and methods for treating cancer.
Description
FOLATE-CONJUGATED DRUGS AND USES THEREOF CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to United States Provisional Application No. 63/392,066, filed July 25, 2022, the disclosure of which is hereby incorporated by reference in its entirety. [0002] Throughout this application various publications, patents, and/or patent applications are referenced. The disclosures of the publications, patents and/or patent applications are hereby incorporated by reference in their entireties into this application in order to more fully describe the state of the art to which this disclosure pertains. TECHNICAL FIELD [0003] The present disclosure relates to small molecule-drug conjugates (SMDCs) comprising folic acid and methods of making and using the same. INTRODUCTION AND SUMMARY [0004] Antibody-drug conjugates (ADCs) allow for the targeted delivery of a drug moiety to a tumor, and, in some embodiments intracellular accumulation therein, where systemic administration of unconjugated drugs may result in unacceptable levels of toxicity to normal cells (Polakis P. (2005) Current Opinion in Pharmacology 5:382-387). Small molecule-drug conjugates (SMDCs) are designed along similar principles as ADCs for drug delivery and tumor targeting applications, with the difference being that the antibody component is replaced by a targeting ligand that can be a peptide or a small molecule (Casi, G. and Neri, D. (2015) J. Med. Chem. 58: 8751–8761; Srinivasarao, M. et al. (2015) Nat. Rev. Drug Discov. 14: 203–219) [0005] SMDCs have several strengths compared to ADCs. SMDCs are frequently easier to synthesize than biological agents. Most are nonimmunogenic, making them unlikely to provoke an autoimmune response (Min, H.K. et al. (2016) Korean J. Intern. Med. 31:608- 611; Alkhayat, A.L.I. et al. (2018) CHEST 154:439A-440A). Transportation, storage, and administration are easier than with ADCs (Kurzrock, R. et al. (2012) Mol. Cancer Ther. 11:308-316). Molecular weights of SMDCs are much lower than those of ADCs, resulting in better cell permeability (particularly in solid tumors that may be poorly vascularized) (Manzoor, A.A. et al. (2012) Cancer Res. 72:5566-5575). The low molecular weight and other chemical features are also associated with better in vitro and in vivo stability than biological agents including monoclonal antibodies (Jain, R.K. and Stylianopoulos, T. (2010) Nat. Rev. Clin. Oncol. 7:653). Notably, SMDCs are more rapidly removed from the blood
through glomerular filtration in the kidneys than are ADCs. This results in a better toxicity profile; however, it also has the potential to reduce the effective time on the tumor target (Vlashi, E. et al. (2013) ACS Nano 7:8573-8582). [0006] The present disclosure provides SMDCs comprising a folic acid conjugated to the drug moiety (payload) through linker moieties. In embodiments, the folic acid binds to folate receptor-expressing cancer cells and allows for selective uptake of the SMDC into the cancer cells. In embodiments, the SMDCs provided herein selectively deliver an effective amount of drug moiety to tumor tissue and reduce the non-specific toxicity associated with related SMDCs. The SMDC compounds described herein include those with anticancer activity. [0007] The folate receptor (FR) is a high-affinity membrane-associated protein, which exhibits limited expression on healthy cells, but is frequently overexpressed on a wide variety of specific cell types, such as epithelial tumor cells (e.g. ovarian, endometrial, breast, colorectal, kidney, lung, nasopharyngeal) and activated (but not resting) macrophages, which are involved in inflammation and autoimmune diseases. This membrane protein binds extracellular folates with very high affinity and through an endocytic process, physically delivers them inside the cell for biological consumption. [0008] In humans, there are three functional isoforms of FR, namely hFRα, hFRβ, and hFRγ (Elnakat, H. and Ratnam, M. (2004) Adv. Drug Deliv. Rev. 56:1067-1084). hFRα is overexpressed in a broad variety of cancers, among them adenocarcinomas of uterus, ovary, breast, cervix, kidney and colon and testicular choriocarcinoma, ependymal brain tumors, malignant pleural mesothelioma, and nonfunctioning pituitary adenocarcinoma, while hFRβ in leukemias and activated macrophages (Wibowo, A. et al. (2013) Proc. Natl. Acad. Sci. U.S.A. 110:15180-15188; Low, P. et al. (2007) Acc. Chem. Res. 41:120-129). [0009] Folate Receptor-alpha (FRα), also known as Folate Receptor 1 (FOLR1), or Folate Binding Protein, is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein with a strong binding affinity for folic acid and reduced folic acid derivatives (Leung et al. (2013) Clin. Biochem. 46:1462- 1468). FRα has important functions relating to cell proliferation and survival (Kelemen L.E. (2006) Int. J. Cancer 119(2):2430250), and it mediates delivery of the physiological folate, 5-methyltetrahydrofolate, to the interior of cells. Expression of FRα on normal tissues is restricted to the apical membrane of epithelial cells in the kidney proximal tubules, alveolar pneumocytes of the lung, bladder, testes, choroid plexus, and thyroid (Weitman S.D. et al. (1992) Cancer Res. 52:3396-3401; Antony A.C. (1996) Ann. Rev. Nutr. 16:501 -521; Kalli K.R. et al. (2008) Gynecol. Oncol. 108:619-626). FRα is
overexpressed in epithelial-derived tumors including ovarian, uterine, breast, endometrial, pancreatic, renal, lung, colorectal, and brain tumors. This expression pattern of FRα makes it a desirable target for FRα-directed cancer therapy. [0010] Folate plays important roles in nucleotide biosynthesis and cell division, intracellular activities which occur in both malignant and certain normal cells. Upon binding the folate receptor, the folate impacts the cell cycle in dividing cells. This led to the use of folic acid and its analogues and derivatives as a targeting agent for the delivery of therapeutic and/or diagnostic agents to these specific cell populations to achieve a selective concentration of pharmaceutical and/or diagnostic agents in these specific cells relative to normal cells (Leamon and Low (2001) Drug Discov. Today 6:44-51; Leamon and Reddy (2004) Adv. Drug Deliv. Rev. 56:1127-41; Leamon et al, (2005) Bioconjugate Chem. 16:803-811) [0011] The linker in SMDCs usually consists of a spacer and a cleavable bridge. Linkers are designed to preserve the activity of post-cleavage species and to optimize the drug release, pharmacokinetics, and pharmacodynamics of the targeting ligand and payload (Srinivasarao, M. et al. (2015) Nat. Rev. Drug Discov. 14: 203–219; Vlahov, I.R. and Leamon, C.P (2012) Bioconj. Chem. 23:1357-1369). Another function of the spacer is to improve the hydrophilicity of SMDC. The cleavable bridge retains stability during the SMDC transportation from the vasculature to the tumor, and is typically cleaved by one of two triggering methods. The first mechanism is cleavage in the endosomes of the target cells due to low pH. Such a cleavage bridge comprises acetals and hydrazones (Yang, J. et al. (2007) . J. Pharm. Exp. 321:462-468). The second mechanism is through use of a disulfide-based linker, which undergoes cleavage due to an intracellular excess of glutathione (GSH), thioredoxin, peroxiredoxins, and nicotinamide adenine dinucleotides (NADH and NADPH) (Srinivasarao, M. et al. (2015) Nat. Rev. Drug Discov. 14: 203–219). [0012] As with ADCs, optimal conjugates have high binding affinity for their targets (Srinivasarao, M. et al. (2015) Nat. Rev. Drug Discov. 14: 203–219) and have highly cytotoxic payloads, similar to those used in ADCs. In some cases, to increase the cytotoxic activity of the conjugate, multivalent ligands, comprising several payloads linked to the targeting compound, are employed. Payloads that target mitosis, DNA replication, and protein translation are currently investigated. [0013] There is a need for improved methods of modulating the immune regulation of folate receptors such as folate receptor alpha (FRα) and the downstream signaling processes activated by folate receptors such as folate receptor alpha (FRα). Folate receptor binds folic
acid and analogues and derivatives thereof with very high affinity. Once the folate is bound to the folate receptor it impacts the cell cycle in dividing cells. The folate receptor is frequently overexpressed on epithelial tumor cells, in contrast, folate receptor expression in normal tissues is limited, making the folate receptor a good target for SMDCs. Thus, small molecule-drug conjugates (SMDCs) where the drug is conjugated to folic acid, can provide a very targeted and potent anti-tumor activity. [0014] In one aspect, provided herein is a compound of Formula (I) or (II):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound at least to a folic acid and a drug moiety; HL is a half-life extender; and D is a drug moiety. [0015] In an aspect, provided herein is a method of treating a FR-expressing cancer, such as an FRα-expressing cancer in a subject in need thereof, said method including administering the compound or pharmaceutically acceptable salt thereof as described herein (including in an aspect embodiment table example or claim) to the subject
[0016] In an aspect, provided herein is a pharmaceutical composition comprising the compound or pharmaceutically acceptable salt thereof as described herein, and a pharmaceutically acceptable excipient. [0017] The embodiments disclosed herein include but are not limited to the following. Embodiment 1 is a compound of the Formula (I) or (II):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound at least to a folic acid and a drug moiety; HL is a half-life extender; and D is a drug moiety. [0018] Embodiment 2 is the compound or a pharmaceutically acceptable salt thereof of embodiment 1, wherein L is a bond, -C(O)-, -NH-, Amino Acid Unit, Peptoid, – (CH2CH2O)n–, –(CH2)n–, –(4-aminobenzyloxycarbonyl)–, –(C(O)CH2CH2C(O))–, –(C(O)CH2CH2NH)–,
integer from 1 to 24; and each R2 and R3 is independently H or substituted or unsubstituted alkyl. [0019] Embodiment 3 is the compound or a pharmaceutically acceptable salt thereof of embodiment 1 or 2, wherein L is -C(O)-, -NH-,–(CH2CH2O)n–, –(CH2)n–, –(4- aminobenzyloxycarbonyl)–, -Cys-, -Asp-, -Arg-, -Val-, -Glu-, -citrulline- (-Cit-), -Lys-,
combinations thereof. [0020] Embodiment 4 is the compound or a pharmaceutically acceptable salt thereof of embodiment 3, wherein L is -C(O)-, -NH-, –(CH2CH2O)n–, –(CH2)n–, –SCH2CH2O–, – (C(O)CH2CH2C(O))–, -Val-, -Cit-, –(4-aminobenzyloxycarbonyl)–, -Arg-, -Asp-, -Lys-, -
combinations thereof. [0021] Embodiment 5 is the compound or a pharmaceutically acceptable salt thereof of embodiment 4, wherein L is
, wherein the carbonyl is linked to the drug moiety (D), the amine is linked to the folic acid, and the optional third linkage is to the half-life extender (HL). [0022] Embodiment 6 is the compound or a pharmaceutically acceptable salt thereof of any one of embodiments 1-5, wherein HL is a cholesterol-like half-life extender or albumin binder half-life extender. Embodiment 7 is the compound or a pharmaceutically acceptable salt thereof of embodiment 6, wherein HL is
, ,
[0023] Embodiment 8 is the compound or a pharmaceutically acceptable salt thereof of embodiment 7, wherein
. [0024] Embodiment 9 is the compound or a pharmaceutically acceptable salt thereof of any one of embodiments 1-8, wherein D is a tubulin inhibitor or disruptor, kinase inhibitor, DNA damaging agent, transcription inhibitors, or proteolysis-targeting chimera (PROTAC). [0025] Embodiment 10 is the compound or a pharmaceutically acceptable salt thereof of embodiment 9, wherein D is a tubulin inhibitor. [0026] Embodiment 11 is the compound or a pharmaceutically acceptable salt thereof of any one of embodiments 1-9, wherein D is a pyrrolobenzodiazepine, duocarmycin, anthracycline, maytansinoid, auristatin, calicheamicin, camptothecin, RNA polymerase II inhibitor, topoisomerase I inhibitor, tyrosine kinase inhibitor, EG5 inhibitor, or MEK inhibitor. [0027] Embodiment 12 is the compound or a pharmaceutically acceptable salt thereof of embodiment 11, wherein D is an auristatin. [0028] Embodiment 13 is the compound or a pharmaceutically acceptable salt thereof of embodiment 11, wherein D is MMAE, MMAF, Duo5, PNU, SN-38, irinotecan, amatoxin, maytansine, exatecan, trametinib, abemaciclib, palbociclib, or examorpholine. Embodiment 14 is the compound or a pharmaceutically acceptable salt thereof of embodiment 13, wherein D is Duo5. Embodiment 15 is the compound or a pharmaceutically acceptable salt thereof of embodiment 13, wherein D is MMAE. [0029] Embodiment 16 is the compound or a pharmaceutically acceptable salt thereof of embodiment 13, wherein D is examorpholine. [0030] Embodiment 17 is the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-16, wherein the compound is:
or a pharmaceutically acceptable salt thereof. [0031] Embodiment 18 is the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17, for use in therapy. [0032] Embodiment 19 is the compound or pharmaceutically acceptable salt thereof of embodiment 18, for use in treating a FR-expressing cancer, optionally wherein the FR- expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer. [0033] Embodiment 20 is a method of treating a FR-expressing cancer in a subject, comprising administering the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17 to a subject in need thereof. [0034] Embodiment 21 is use of the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17 for the manufacture of a medicament. [0035] Embodiment 22 is use of the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17 for the manufacture of a medicament for treating a FR- expressing cancer, optionally wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer. [0036] Embodiment 23 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of embodiments 19, 20, or 22, wherein the FR-expressing cancer is an epithelial-derived tumor. [0037] Embodiment 24 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of embodiment 23, wherein the epithelial-derived tumors are ovarian, uterine, breast, endometrial, pancreatic, renal, lung, colorectal, or brain tumors. [0038] Embodiment 25 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of embodiments 19, 20, or 22, wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC) or ovarian cancer. [0039] Embodiment 26 is the compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of embodiments 19, 20, or 22-25, wherein the FR-expressing cancer is in a mammal, optionally wherein the mammal is a human. [0040] Embodiment 27 is a method of inhibiting proliferation of a FR-expressing cell, comprising contacting the FR-expressing cell with the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17.
[0041] Embodiment 28 is the use of embodiment 21, wherein the medicament is for inhibiting proliferation of a FR-expressing cell. [0042] Embodiment 29 is the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17, for use in inhibiting proliferation of a FR-expressing cell. [0043] Embodiment 30 is the method, use, or compound or pharmaceutically acceptable salt thereof for use of any one of embodiments 27-29, wherein the FR-expressing cell is a FR-expressing cancer cell, optionally wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer. [0044] Embodiment 31 is the method, use, or compound or pharmaceutically acceptable salt thereof for use of any one of embodiments 27-29, wherein the FR-expressing cell is a FR-expressing non-small cell lung carcinoma (NSCLC) cell or FR-expressing ovarian cell. [0045] Embodiment 32 is a pharmaceutical composition comprising the compound or pharmaceutically acceptable salt thereof of any one of embodiments 1-17, and a pharmaceutically acceptable excipient. BRIEF DESCRIPTION OF THE DRAWINGS [0046] FIGS. 1A-B show results of an in vitro efficacy study of Duo5 and MMAE using: KB (FR+) cells and A549 (FR-) cells. FIG. 1A shows results of an in vitro efficacy study of Duo5. FIG. 1B shows results of an in vitro efficacy study of MMAE. Here and in subsequent figures, the log-molar concentration of the indicated compound is on the horizontal axis. [0047] FIGS. 2A-B show results of an in vitro efficacy and stability study of SMDCs (FR- PEG-Duo5, FR-VC- Duo5, FR-IODO- Duo5, FR-VC-PAB-MMAE, and FR-PL-MMAE) using: A549 (FR-) cells. FIG. 2A shows results of a 2-hour pulse assay. FIG. 2B shows results of a 72-hour assay or 120-hour assay (for FR-IODO-Examorpholine Treatment). [0048] FIGS. 3A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-PEG- Duo5 (with and without pretreatment with folic acid) using: KB (FR+) cells. FIG. 3A shows results of a 2-hour pulse assay. FIG. 3B shows results of a 72-hour assay. [0049] FIGS. 4A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-VC- Duo5 (with and without pretreatment with folic acid) using: KB (FR+) cells. FIG. 4A shows results of a 2-hour pulse assay. FIG. 4B shows results of a 72-hour assay. [0050] FIGS. 5A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-IODO- Duo5 (with and without pretreatment with folic acid) using: KB (FR+)
cells. FIG. 5A shows results of a 2-hour pulse assay. FIG. 5B shows results of a 72-hour assay. [0051] FIGS. 6A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-VC-PAB-MMAE (with and without pretreatment with folic acid) using: KB (FR+) cells. FIG. 6A shows results of a 2-hour pulse assay. FIG. 6B shows results of a 72- hour assay. [0052] FIGS. 7A-B show results of an in vitro efficacy, specificity, and stability study of SMDC FR-PL-MMAE (with and without pretreatment with folic acid) using: KB (FR+) cells. FIG. 7A shows results of a 2-hour pulse assay. FIG. 7B shows results of a 72-hour assay. [0053] FIG. 8 shows results of an in vitro efficacy, specificity, and stability study of FR- IODO-Examorpholine using KB (FR+) cells with 120-hour assay. [0054] FIG. 9 shows the results of the pharmacokinetic studies of FR-VC-IODO-Duo5 and Duo5 in mice. DETAILED DESCRIPTION OF THE DISCLOSURE Definitions: [0055] Unless defined otherwise, technical and scientific terms used herein have meanings that are commonly understood by those of ordinary skill in the art unless defined otherwise. Generally, terminologies pertaining to techniques of cell and tissue culture, molecular biology, immunology, microbiology, genetics, transgenic cell production, protein chemistry and nucleic acid chemistry and hybridization described herein are well known and commonly used in the art. The methods and techniques provided herein are generally performed according to conventional procedures well known in the art and as described in various general and more specific references that are cited and discussed herein unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992). All of the references cited herein are incorporated herein by reference in their entireties. Enzymatic reactions and enrichment/purification techniques are also well known and are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The terminology used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and
pharmaceutical chemistry described herein are well known and commonly used in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients. [0056] The headings provided herein are not limitations of the various aspects of the disclosure, which aspects can be understood by reference to the specification as a whole. [0057] Unless otherwise required by context herein, singular terms shall include pluralities and plural terms shall include the singular. Singular forms “a”, “an” and “the”, and singular use of any word, include plural referents unless expressly and unequivocally limited on one referent. [0058] It is understood the use of the alternative (e.g., “or”) herein is taken to mean either one or both or any combination thereof of the alternatives. [0059] The term “and/or” used herein is to be taken mean specific disclosure of each of the specified features or components with or without the other. For example, the term “and/or” as used in a phrase such as “A and/or B” herein is intended to include “A and B,” “A or B,” “A” (alone), and “B” (alone). Likewise, the term “and/or” as used in a phrase such as “A, B, and/or C” is intended to encompass each of the following aspects: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone). [0060] As used herein, the term “about” refers to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, i.e., the limitations of the measurement system. For example, “about” or “approximately” can mean within one or more than one standard deviation per the practice in the art. Alternatively, “about” or “approximately” can mean a range of up to 10% (i.e., ±10%) or more depending on the limitations of the measurement system. For example, about 5 mg can include any number between 4.5 mg and 5.5 mg. Furthermore, particularly with respect to biological systems or processes, the terms can mean up to an order of magnitude or up to 5-fold of a value. When particular values or compositions are provided in the instant disclosure, unless otherwise stated, the meaning of “about” or “approximately” should be assumed to be within an acceptable error range for that particular value or composition. In embodiments, about includes the specified value. [0061] In this disclosure, “comprises,” “comprising,” “containing” and “having” and the like can have the meaning ascribed to them in U.S. Patent law and can mean “includes,”
“including,” and the like. “Consisting essentially of or “consists essentially” likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments. [0062] The terms "polypeptide," "peptide" and "protein" and other related terms used herein are used interchangeably to refer to a polymer of amino acid residues, wherein the polymer may in embodiments be conjugated to a moiety that does not consist of amino acids. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. A "fusion protein" refers to a chimeric protein encoding two or more separate protein sequences that are recombinantly expressed as a single moiety. Polypeptides include mature molecules that have undergone cleavage. These terms encompass native and artificial proteins, protein fragments and polypeptide analogs (such as muteins, variants, chimeric proteins and fusion proteins) of a protein sequence as well as post-translationally, or otherwise covalently or non-covalently, modified proteins. Two or more polypeptides (e.g., 3 polypeptide chains) can associate with each other, via covalent and/or non-covalent association, to form a multimeric polypeptide complex (e.g., multi-specific antigen binding protein complex). Association of the polypeptide chains can also include peptide folding. Thus, a polypeptide complex can be dimeric, trimeric, tetrameric, or higher order complexes depending on the number of polypeptide chains that form the complex. [0063] As used herein, the terms “cancer,” “neoplasm,” and “tumor” are used interchangeably and, in either the singular or plural form, refer to cells that have undergone a malignant transformation that makes them pathological to the host organism. Primary cancer cells can be readily distinguished from non-cancerous cells by well-established techniques, particularly histological examination. The definition of a cancer cell, as used herein, includes not only a primary cancer cell, but any cell derived from a cancer cell ancestor. This includes metastasized cancer cells, and in vitro cultures and cell lines derived from cancer cells. When referring to a type of cancer that normally manifests as a solid tumor, a “clinically detectable” tumor is one that is detectable on the basis of tumor mass; e.g., by procedures such as computed tomography (CT) scan, magnetic resonance imaging (MRI), X-ray, ultrasound or
palpation on physical examination, and/or which is detectable because of the expression of one or more cancer-specific antigens in a sample obtainable from a patient. Tumors may be a hematopoietic (or hematologic or hematological or blood-related) cancer, for example, cancers derived from blood cells or immune cells, which may be referred to as “liquid tumors.” Specific examples of clinical conditions based on hematologic tumors include leukemias such as chronic myelocytic leukemia, acute myelocytic leukemia, chronic lymphocytic leukemia and acute lymphocytic leukemia; plasma cell malignancies such as multiple myeloma, MGUS and Waldenstrom's macroglobulinemia; lymphomas such as non- Hodgkin's lymphoma, Hodgkin's lymphoma; and the like. [0064] The cancer may be any cancer in which an abnormal number of blast cells or unwanted cell proliferation is present or that is diagnosed as a hematological cancer, including both lymphoid and myeloid malignancies. Myeloid malignancies include, but are not limited to, acute myeloid (or myelocytic or myelogenous or myeloblastic) leukemia (undifferentiated or differentiated), acute promyeloid (or promyelocytic or promyelogenous or promyeloblastic) leukemia, acute myelomonocytic (or myelomonoblastic) leukemia, acute monocytic (or monoblastic) leukemia, erythroleukemia and megakaryocytic (or megakaryoblastic) leukemia. These leukemias may be referred together as acute myeloid (or myelocytic or myelogenous) leukemia (AML). Myeloid malignancies also include myeloproliferative disorders (MPD) which include, but are not limited to, chronic myelogenous (or myeloid) leukemia (CML), chronic myelomonocytic leukemia (CMML), essential thrombocythemia (or thrombocytosis), and polcythemia vera (PCV). Myeloid malignancies also include myelodysplasia (or myelodysplastic syndrome or MDS), which may be referred to as refractory anemia (RA), refractory anemia with excess blasts (RAEB), and refractory anemia with excess blasts in transformation (RAEBT); as well as myelofibrosis (MFS) with or without agnogenic myeloid metaplasia. [0065] Hematopoietic cancers also include lymphoid malignancies, which may affect the lymph nodes, spleens, bone marrow, peripheral blood, and/or extranodal sites. Lymphoid cancers include B-cell malignancies, which include, but are not limited to, B-cell non- Hodgkin's lymphomas (B-NHLs). B-NHLs may be indolent (or low-grade), intermediate- grade (or aggressive) or high-grade (very aggressive). Indolent Bcell lymphomas include follicular lymphoma (FL); small lymphocytic lymphoma (SLL); marginal zone lymphoma (MZL) including nodal MZL, extranodal MZL, splenic MZL and splenic MZL with villous
lymphocytes; lymphoplasmacytic lymphoma (LPL); and mucosa-associated-lymphoid tissue (MALT or extranodal marginal zone) lymphoma. Intermediate-grade B-NHLs include mantle cell lymphoma (MCL) with or without leukemic involvement, diffuse large cell lymphoma (DLBCL), follicular large cell (or grade 3 or grade 3B) lymphoma, and primary mediastinal lymphoma (PML). High-grade B-NHLs include Burkitt's lymphoma (BL), Burkitt-like lymphoma, small non-cleaved cell lymphoma (SNCCL) and lymphoblastic lymphoma. Other B-NHLs include immunoblastic lymphoma (or immunocytoma), primary effusion lymphoma, HIV associated (or AIDS related) lymphomas, and post-transplant lymphoproliferative disorder (PTLD) or lymphoma. B-cell malignancies also include, but are not limited to, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), Waldenstrom's macroglobulinemia (WM), hairy cell leukemia (HCL), large granular lymphocyte (LGL) leukemia, acute lymphoid (or lymphocytic or lymphoblastic) leukemia, and Castleman's disease. NHL may also include T-cell non-Hodgkin's lymphoma s (T-NHLs), which include, but are not limited to T-cell non-Hodgkin's lymphoma not otherwise specified (NOS), peripheral T-cell lymphoma (PTCL), anaplastic large cell lymphoma (ALCL), angioimmunoblastic lymphoid disorder (AILD), nasal natural killer (NK) cell/T-cell lymphoma, gamma/delta lymphoma, cutaneous T cell lymphoma, mycosis fungoides, and Sezary syndrome. [0066] Hematopoietic cancers also include Hodgkin's lymphoma (or disease) including classical Hodgkin's lymphoma, nodular sclerosing Hodgkin's lymphoma, mixed cellularity Hodgkin's lymphoma, lymphocyte predominant (LP) Hodgkin's lymphoma, nodular LP Hodgkin's lymphoma, and lymphocyte depleted Hodgkin's lymphoma. Hematopoietic cancers also include plasma cell diseases or cancers such as multiple myeloma (MM) including smoldering MM, monoclonal gammopathy of undetermined (or unknown or unclear) significance (MGUS), plasmacytoma (bone, extramedullary), lymphoplasmacytic lymphoma (LPL), Waldenstrom's Macroglobulinemia, plasma cell leukemia, and primary amyloidosis (AL). Hematopoietic cancers may also include other cancers of additional hematopoietic cells, including polymorphonuclear leukocytes (or neutrophils), basophils, eosinophils, dendritic cells, platelets, erythrocytes and natural killer cells. Tissues which include hematopoietic cells referred herein to as “hematopoietic cell tissues” include bone marrow; peripheral blood; thymus; and peripheral lymphoid tissues, such as spleen, lymph nodes, lymphoid tissues associated with mucosa (such as the gut-associated lymphoid
tissues), tonsils, Peyer's patches and appendix, and lymphoid tissues associated with other mucosa, for example, the bronchial linings. [0067] Exemplary cancers that may be treated with a compound or method provided herein include brain cancer, glioma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, pancreatic cancer, Medulloblastoma, melanoma, cervical cancer, gastric cancer, ovarian cancer, lung cancer, cancer of the head, Hodgkin's Disease, and Non-Hodgkin's Lymphomas. Exemplary cancers that may be treated with a compound or method provided herein include cancer of the thyroid, endocrine system, brain, breast, cervix, colon, head & neck, liver, kidney, lung, ovary, pancreas, rectum, stomach, and uterus. Additional examples include, thyroid carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma, skin cutaneous melanoma, colon adenocarcinoma, rectum adenocarcinoma, stomach adenocarcinoma, esophageal carcinoma, head and neck squamous cell carcinoma, breast invasive carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, non-small cell lung carcinoma, mesothelioma, multiple myeloma, neuroblastoma, glioma, glioblastoma multiforme, ovarian cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, primary brain tumors, nasopharyngeal tumors, spinal cord tumors, malignant pancreatic insulanoma, malignant carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, endometrial cancer, adrenal cortical cancer, neoplasms of the endocrine or exocrine pancreas, medullary thyroid cancer, medullary thyroid carcinoma, melanoma, colorectal cancer, papillary thyroid cancer, hepatocellular carcinoma, or prostate cancer. [0068] In embodiments, the cancers that may be treated with a compound or method provided herein include epithelial-derived tumors including ovarian, uterine, breast, endometrial, pancreatic, nasopharyngeal, kidney, lung, colorectal, testicular, spinal cord, and brain tumors. In embodiments, the cancers that may be treated with a compound or a method provided herein include serous and endometrioid epithelial ovarian cancer, renal cancer, endometrial adenocarcinoma, non-small cell lung carcinoma (NSCLC) of the adenocarcinoma subtype, mesotheliomas, and triple-negative breast cancer (TNBC). [0069] An "advanced" cancer is one which has spread outside the site or organ of origin, either by local invasion or metastasis. The term "advanced" cancer includes both locally advanced and metastatic disease. "Metastatic" cancer refers to cancer that has spread from one part of the body to another part of the body. A "refractory" cancer is one that progresses
even though an anti-tumor treatment, such as a chemotherapy, is administered to the cancer patient. An example of a refractory cancer is one which is platinum refractory. A "recurrent" cancer is one that has regrown, either at the initial site or at a distant site, after a response to initial therapy. [0070] “Affinity” refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., a ligand) and its binding partner (e.g., a receptor). Unless indicated otherwise, as used herein, “binding affinity” refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair (e.g., ligand and receptor). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (KD). Affinity can be measured by common methods known in the art, including those described herein. Specific illustrative and exemplary embodiments for measuring binding affinity are described in the following. [0071] In one embodiment, a dissociation constant (KD) can be measured using a BIACORE surface plasmon resonance (SPR) assay. Surface plasmon resonance refers to an optical phenomenon that allows for the analysis of real-time interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE system (Biacore Life Sciences division of GE Healthcare, Piscataway, NJ). [0072] The term “FRα” or “FOLR1,” as used herein, refers to any native FRα from any vertebrate source, including mammals such as primates (e.g. humans, cynomolgus monkey (cyno)) and rodents (e.g., mice and rats), unless otherwise indicated. FRα is also referred to as "human folate receptor 1," and "FOLR 1". FRα is a single chain membrane protein capable of binding to folic acid and its analogs or derivatives. The term encompasses “full- length,” unprocessed FRα as well as any form of FRα that results from processing in the cell. The term also encompasses naturally occurring variants of FRα, e.g., splice variants, allelic variants, and isoforms. Human FRα sequences are known and include, for example, the sequences publicly available at UniProtKB Accession No. P 15328 (including isoforms). [0073] The term “FR-expressing cancer” refers to a cancer comprising cells that express FR on their surface. Similarly, the term “FRα-expressing cancer” refers to a cancer comprising cells that express FRα on their surface. [0074] The term "increased expression" or "overexpression" of FR, such as FRα, in a particular tumor, tissue, or cell sample refers to FR, such as FRα (a FR, such as FRα polypeptide or a nucleic acid encoding such a polypeptide) that is present at a level
higher than that which is present in a healthy or non- diseased (native, wild type) tissue or cells of the same type or origin. Such increased expression or overexpression can be caused, for example, by mutation, gene amplification, increased transcription, increased translation, or increased protein stability. [0075] The term “cytotoxic agent,” “payload,” or “drug” as used herein refers to a substance that inhibits or prevents a cellular function and/or causes cell death or destruction. Cytotoxic agents include, but are not limited to, radioactive isotopes (e.g., 211At, 131I, 125I, 90Y, 186Re, 188Re, 153Sm, 212Bi, 32P, 212Pb and radioactive isotopes of Lu); chemotherapeutic agents or drugs (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents); growth inhibitory agents; enzymes and fragments thereof such as nucleolytic enzymes; antibiotics; toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof; and the various antitumor or anticancer agents disclosed below. [0076] A “chemotherapeutic agent” is a chemical compound useful in the treatment of a cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylolomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN®), CPT-11 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scopolectin, and 9-aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; auristatin; pyrrolobenzodiazepine; anthracycline; duostatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosoureas such as carmustine,
chlorozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e. g., calicheamicin, especially calicheamicin gamma1I and calicheamicin omegaI1 (see, e.g., Agnew, Chem Intl. Ed. Engl., 33: 183-186 (1994)); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antiobiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino- doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, porfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5- fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; 2- ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine (ELDISINE®, FILDESIN®); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); thiotepa; taxoids, e.g., paclitaxel (TAXOL®; Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANETM Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Illinois), and docetaxel (TAXOTERE®; Rhône-Poulenc Rorer, Antony, France); chloranbucil; gemcitabine
(GEMZAR®); 6-thioguanine; mercaptopurine; methotrexate; tyrosine kinase inhibitors; MEK inhibitors; platinum analogs such as cisplatin and carboplatin; vinblastine (VELBAN®); platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine (ONCOVIN®); oxaliplatin; leucovovin; vinorelbine (NAVELBINE®); novantrone; edatrexate; daunomycin; aminopterin; ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; capecitabine (XELODA®); pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone; CVP, an abbreviation for a combined therapy of cyclophosphamide, vincristine, and prednisolone; and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATINTM) combined with 5-FU and leucovorin. [0077] A “small molecule-drug conjugate” or “SMDC” is a targeting ligand conjugated to one or more heterologous molecule(s), including but not limited to a cytotoxic agent. The targeting ligand can be, for example, folic acid as described herein, or its analogs or derivatives (which target the folate receptor). The cytotoxic agent can be any cytotoxic agent described herein. The targeting ligand can be directly linked to the cytotoxic agent via a covalent bond, or the targeting ligand can be linked to the cytotoxic agent indirectly via a linker. Typically, the linker is covalently bonded to the targeting ligand and also covalently bonded to the cytotoxic agent. Such a linker may be a cleavable linker, for example, cleavable under certain pH condition (pH sensitive linker such as acetals or hydrazones), cleavable by a protease (protease sensitive linker such as peptide linkers), or cleavable in the presence of glutathione (glutathione sensitive linker such as disulfide linkers). In some examples, the linker comprises a protease cleavage site, which may contain 2-5 amino acid residues that are recognizable and/or cleavable by a suitable protease. Such a peptide may comprise naturally-occurring amino acid residues, non-naturally occurring amino acid residues, modified amino acid residues, or a combination thereof. In one example, the peptide linker can be a dipeptide linker. Examples include a valine-citrulline (val-cit or VC) linker, a phenylalanine-lysine (phe-lys) linker, or maleimidocapronic-valine-citruline-p- aminobenzyloxycarbonyl (MC-VC-PAB) linker. Alternatively, the linker may be non- cleavable, e.g., a linker comprising optionally substituted alkane or thioether. In some examples, the linker may comprise a functional group that can form a covalent bond with the
targeting ligand. Exemplary functional groups include, but are not limited to, a maleimide group, an iodoacetamide group, a vinyl sulfone group, an acrylate group, an acrylamide group, an acrylonitrile group, or a methacrylate group. The term “small molecule-drug conjugate” or “SMDC” refers to a conjugate wherein at least one cytotoxic agent is a therapeutic moiety such as a drug (“D”). As used herein, “D” refers to drug moiety and includes analogs or derivatives thereof. Thus, folic acid, or the analog or the derivative thereof, is covalently bound to the linker (L), and the drug, or the analog or the derivative thereof, is also covalently bound to the linker (L). The linker (L) can comprise multiple linkers. For example, the linker (L) can comprise one or more components selected from spacer linkers, releasable linkers, and heteroatom linkers, and any combinations thereof, in any order. [0078] As used herein, the term “conjugated” when referring to two moieties means the two moieties are bonded, wherein the bond or bonds connecting the two moieties may be covalent or non-covalent. In embodiments, the two moieties are covalently bonded to each other (e.g. directly or through a covalently bonded intermediary). In embodiments, the two moieties are non-covalently bonded (e.g. through ionic bond(s), van der waal’s bond(s)/interactions, hydrogen bond(s), polar bond(s), or combinations or mixtures thereof). [0079] An “individual” or “subject” is a mammal. Mammals include, but are not limited to, domesticated animals (e.g., cows, sheep, cats, dogs, and horses), primates (e.g., humans and non-human primates such as monkeys), rabbits, and rodents (e.g., mice and rats). In certain embodiments, the individual or subject is a human. In certain embodiments, the subject is an adult, an adolescent, a child, or an infant. In some embodiments, the terms “individual” or “patient” are used and are intended to be interchangeable with “subject”. [0080] The term “pharmaceutically acceptable salts” is meant to include salts of the active compounds that are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present disclosure contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amino, or magnesium salt, or a similar salt. When compounds of the present disclosure contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such
compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, maleic, malonic, benzoic, succinic, suberic, fumaric, lactic, mandelic, phthalic, benzenesulfonic, p- tolylsulfonic, citric, tartaric, oxalic, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge et al., “Pharmaceutical Salts”, Journal of Pharmaceutical Science, 1977, 66, 1-19). Certain specific compounds of the present disclosure contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts. [0081] Thus, the compounds of the present disclosure may exist as salts, such as with pharmaceutically acceptable acids. The present disclosure includes such salts. Non-limiting examples of such salts include hydrochlorides, hydrobromides, phosphates, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, proprionates, tartrates (e.g., (+)-tartrates, (-)-tartrates, or mixtures thereof including racemic mixtures), succinates, benzoates, and salts with amino acids such as glutamic acid, and quaternary ammonium salts (e.g. methyl iodide, ethyl iodide, and the like). These salts may be prepared by methods known to those skilled in the art. [0082] The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound may differ from the various salt forms in certain physical properties, such as solubility in polar solvents. [0083] In addition to salt forms, the present disclosure provides compounds, which are in a prodrug form. Prodrugs of the compounds described herein are those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present disclosure. Prodrugs of the compounds described herein may be converted in vivo after administration. Additionally, prodrugs can be converted to the compounds of the present disclosure by chemical or biochemical methods in an ex vivo environment, such as, for example, when contacted with a suitable enzyme or chemical reagent.
[0084] Certain compounds of the present disclosure can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present disclosure. Certain compounds of the present disclosure may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present disclosure and are intended to be within the scope of the present disclosure. [0085] “Pharmaceutically acceptable excipient” and “pharmaceutically acceptable carrier” refer to a substance that aids the administration of an active agent to and absorption by a subject and can be included in the compositions of the present disclosure without causing a significant adverse toxicological effect on the patient. Non-limiting examples of pharmaceutically acceptable excipients include water, NaCl, normal saline solutions, lactated Ringer’s, normal sucrose, normal glucose, binders, fillers, disintegrants, lubricants, coatings, sweeteners, flavors, salt solutions (such as Ringer’s solution), alcohols, oils, gelatins, carbohydrates such as lactose, amylose or starch, fatty acid esters, hydroxymethycellulose, polyvinyl pyrrolidine, and colors, and the like. Such preparations can be sterilized and, if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances and the like that do not deleteriously react with the compounds of the disclosure. One of skill in the art will recognize that other pharmaceutical excipients are useful in the present disclosure. [0086] The term “pharmaceutical formulation” refers to a preparation which is in such form as to permit the biological activity of an active ingredient contained therein to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered. [0087] The term “administering”, “administered” and grammatical variants refers to the physical introduction of an agent to a subject, using any of the various methods and delivery systems known to those skilled in the art. Exemplary routes of administration for the formulations disclosed herein include intravenous, intramuscular, subcutaneous, intraperitoneal, spinal or other parenteral routes of administration, for example by injection or infusion. The phrase “parenteral administration” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal,
intralymphatic, intralesional, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, as well as in vivo electroporation. In some embodiments, the formulation is administered via a non-parenteral route, e.g., orally. Other non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods. [0088] Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) or consecutive administration in any order. The combination therapy can provide “synergy” and prove “synergistic”, i.e., the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect can be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined, unit dosage formulation; (2) delivered serially, by alternation, or in parallel as separate formulations; or (3) by some other regimen. When delivered in alternation therapy, a synergistic effect can be attained when the compounds are administered or delivered sequentially, e.g., by different injections in separate syringes. A synergistic combination produces effects that are greater than the additive effects of the individual components of the combination. [0089] An “effective amount” of an agent, e.g., a pharmaceutical formulation, refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result. [0090] The abbreviations used herein have their conventional meaning within the chemical and biological arts. The chemical structures and formulae set forth herein are constructed according to the standard rules of chemical valency known in the chemical arts. [0091] The term saccharide means carbohydrate (or sugar). In embodiments, the saccharide is a monosaccharide. In embodiments, the saccharide is a polysaccharide. The most basic unit of saccharide is a monomer of carbohydrate. The general formula is CnH2nOn. The term saccharide derivative means sugar molecules that have been modified with substituents other than hydroxyl groups. Examples include glycosylamines, sugar phosphates, and sugar
esters. Other saccharide derivatives include for example beta-D-glucuronyl, D-galactosyl, and D-glucosyl. [0092] The term “Charged Group” means a chemical group bearing a positive or a negative charge, such as for example phosphate, phosphonate, sulfate, sulfonate, nitrate, carboxylate, carbonate, and the like. In some embodiments, a Charged Group is at least 50% ionized in aqueous solution at least one pH in the range of 5-9. In some embodiments, a Charged Group is an anionic Charged Group. [0093] “Linker” or “linker reagent” are used interchangeably and refer to a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches a targeting ligand to a drug moiety. In various embodiments, linkers include a divalent radical. In various embodiments, linkers can comprise one or more amino acid residues. The linker can be cleavable or non-cleavable. [0094] “Amino Acid Unit” has the formula
hydrogen, methyl, isopropyl, isobutyl, sec-butyl, benzyl, p-hydroxybenzyl, —CH2OH, —CH(OH)CH3, — CH2SH —CH2CH2SCH3, —CH2CONH2, —CH2COOH, —CH2CH2CONH2, —CH2CH2COOH, —(CH2)3NHC(═NH)NH2, —(CH2)3NH2, —(CH2)3NHCOCH3, —(CH2)3NHCHO, —(CH2)4NHC(═NH)NH2, —(CH2)4NH2, —(CH2)4NHCOCH3, —(CH2)4NHCHO, —(CH2)3NHCONH2, —(CH2)4NHCONH2, —CH2CH2CH(OH)CH2NH2, 2-pyridylmethyl-, 3-pyridylmethyl-, 4-pyridylmethyl-, phenyl, or cyclohexyl; or the formula
. embodiments, “Amino Acid Unit” has the formula
methyl, isopropyl, isobutyl, sec-butyl, benzyl, p-hydroxybenzyl, —CH2OH, —CH(OH)CH3, — CH2CH2SCH3, —CH2CONH2, —CH2COOH, —CH2CH2CONH2, —CH2CH2COOH, —(CH2)3NHC(═NH)NH2, —(CH2)3NH2, —CH2SH, —(CH2)3NHCOCH3, —(CH2)3NHCHO, —(CH2)4NHC(═NH)NH2, —(CH2)4NH2,
—(CH2)4NHCOCH3, —(CH2)4NHCHO, —(CH2)3NHCONH2, —(CH2)4NHCONH2, —CH2CH2CH(OH)CH2NH2, 2-pyridylmethyl-, 3-pyridylmethyl-, 4-pyridylmethyl-, phenyl, or cyclohexyl. In embodiments, “Amino Acid Unit” has the formula
. various embodiments, Amino Acid Unit includes not only naturally occurring amino acids but also minor amino acids and non-naturally occurring amino acid analogs, such as for example, citrulline, norleucine, selenomethionine, β-amino acids (e.g., β-alanine, β-aspargine), and the like. In embodiments, the amino acid can be a modified amino acid, such as for example, α- amino acid amide, oxazole amino acid, thiazole amino acid, triazole amino acid, and the like. In embodiments, the modified amino acid has the formula
. An amino acid unit may be referred to by its standard three-letter code for the amino acid (e.g., Ala, Cys, Asp, Glu etc.). [0095] “Peptoid” has the formula
, here R0 is methyl, isopropyl, isobutyl, sec-butyl, benzyl, p-hydroxybenzyl, —CH2OH, —CH(OH)CH3, —CH2CH2SCH3, — CH2CONH2, —CH2COOH, —CH2CH2CONH2, —CH2CH2COOH, — (CH2)3NHC(═NH)NH2, —(CH2)3NH2, —(CH2)3NHCOCH3, —(CH2)3NHCHO, — (CH2)4NHC(═NH)NH2, —(CH2)4NH2, —(CH2)4NHCOCH3, —(CH2)4NHCHO, —(CH2)3NHCONH2, —(CH2)4NHCONH2, —CH2CH2CH(OH)CH2NH2, 2-pyridylmethyl-, 3-pyridylmethyl-, 4-pyridylmethyl-, phenyl, or cyclohexyl. In embodiments, peptoid has the formula
.
[0096] As used herein, the term “half-life extender” refers to molecules that extend half-life of biopharmaceuticals. In embodiments, the half-life of SMDCs described herein can be extended by PEGylation (covalently linking a PEG to the SMDC), lipidation (covalently linking a lipid to the SMDC). In embodiments, the half-life of SMDCs described herein can be extended by covalently linking a cholesterol-like compound to the SMDC. In embodiments, the half-life of SMDCs described herein can be extended by covalently linking a small molecule albumin binder to the SMDC. [0097] As used herein, the term “cholesterol-like” half-life extender refers to a compound with a structure closely resembling cholesterol with a linker on the hydroxyl end. In embodiments, “cholesterol-like” half-life extender refers to
. [0098] As used herein, the term “albumin binder” half-life extender refers to a small molecule that can be reversibly (non-covalently) bound by serum albumin. Serum albumin can bind a large diversity of small organic molecules such as fatty acids, dicarboxylic acids, bulky heterocycles, and aromatic carboxylic acids with a peripheric negative charge. In
[0099] As used herein, the terms “bioconjugate” and “bioconjugate linker” refers to the resulting association between atoms or molecules of “bioconjugate reactive groups” or “bioconjugate reactive moieties”. The association can be direct or indirect. For example, a conjugate between a first bioconjugate reactive group (e g –NH2 –C(O)OH –N-
hydroxysuccinimide, or –maleimide) and a second bioconjugate reactive group (e.g., sulfhydryl, sulfur-containing amino acid, amine, amine sidechain containing amino acid, or carboxylate) provided herein can be direct, e.g., by covalent bond or linker (e.g. a first linker of second linker), or indirect, e.g., by non-covalent bond (e.g. electrostatic interactions (e.g. ionic bond, hydrogen bond, halogen bond), van der Waals interactions (e.g. dipole-dipole, dipole-induced dipole, London dispersion), ring stacking (pi effects), hydrophobic interactions and the like). In embodiments, bioconjugates or bioconjugate linkers are formed using bioconjugate chemistry (i.e. the association of two bioconjugate reactive groups) including, but are not limited to nucleophilic substitutions (e.g., reactions of amines and alcohols with acyl halides, active esters), electrophilic substitutions (e.g., enamine reactions) and additions to carbon-carbon and carbon-heteroatom multiple bonds (e.g., Michael reaction, Diels-Alder addition). These and other useful reactions are discussed in, for example, March, ADVANCED ORGANIC CHEMISTRY, 3rd Ed., John Wiley & Sons, New York, 1985; Hermanson, BIOCONJUGATE TECHNIQUES, Academic Press, San Diego, 1996; and Feeney et al., MODIFICATION OF PROTEINS; Advances in Chemistry Series, Vol. 198, American Chemical Society, Washington, D.C., 1982. In embodiments, the first bioconjugate reactive group (e.g., maleimide moiety) is covalently attached to the second bioconjugate reactive group (e.g. a sulfhydryl). In embodiments, the first bioconjugate reactive group (e.g., haloacetyl moiety) is covalently attached to the second bioconjugate reactive group (e.g. a sulfhydryl). In embodiments, the first bioconjugate reactive group (e.g., pyridyl moiety) is covalently attached to the second bioconjugate reactive group (e.g. a sulfhydryl). In embodiments, the first bioconjugate reactive group (e.g., –N- hydroxysuccinimide moiety) is covalently attached to the second bioconjugate reactive group (e.g. an amine). In embodiments, the first bioconjugate reactive group (e.g., fluorophenyl ester moiety) reacts with the second bioconjugate reactive group (e.g. an amine) to form a covalent bond. In embodiments, the first bioconjugate reactive group (e.g., –sulfo–N- hydroxysuccinimide moiety) reacts with the second bioconjugate reactive group (e.g. an amine) to form a covalent bond. [00100] Useful bioconjugate reactive moieties used for bioconjugate chemistries herein include, for example:
(a) carboxyl groups and various derivatives thereof including, but not limited to, N-hydroxysuccinimide esters, N-hydroxybenztriazole esters, acid halides, acyl imidazoles, thioesters, p-nitrophenyl esters, alkyl, alkenyl, alkynyl and aromatic esters; (b) hydroxyl groups which can be converted to esters, ethers, aldehydes, etc. (c) haloalkyl groups wherein the halide can be later displaced with a nucleophilic group such as, for example, an amine, a carboxylate anion, thiol anion, carbanion, or an alkoxide ion, thereby resulting in the covalent attachment of a new group at the site of the halogen atom; (d) dienophile groups which are capable of participating in Diels-Alder reactions such as, for example, maleimido or maleimide groups; (e) aldehyde or ketone groups such that subsequent derivatization is possible via formation of carbonyl derivatives such as, for example, imines, hydrazones, semicarbazones or oximes, or via such mechanisms as Grignard addition or alkyllithium addition; (f) sulfonyl halide groups for subsequent reaction with amines, for example, to form sulfonamides; (g) thiol groups, which can be converted to disulfides, reacted with acyl halides, or bonded to metals such as gold, or react with maleimides; (h) amine or sulfhydryl groups (e.g., present in cysteine), which can be, for example, acylated, alkylated or oxidized; (i) alkenes, which can undergo, for example, cycloadditions, acylation, Michael addition, etc; (j) epoxides, which can react with, for example, amines and hydroxyl compounds; (k) phosphoramidites and other standard functional groups useful in nucleic acid synthesis; (l) metal silicon oxide bonding; and (m) metal bonding to reactive phosphorus groups (e.g. phosphines) to form, for example, phosphate diester bonds. (n) azides coupled to alkynes using copper catalyzed cycloaddition click chemistry. (o) biotin conjugate can react with avidin or strepavidin to form a avidin-biotin complex or streptavidin-biotin complex.
[00101] The bioconjugate reactive groups can be chosen such that they do not participate in, or interfere with, the chemical stability of the conjugate described herein. Alternatively, a reactive functional group can be protected from participating in the crosslinking reaction by the presence of a protecting group. In embodiments, the bioconjugate comprises a molecular entity derived from the reaction of an unsaturated bond, such as a maleimide, and a sulfhydryl group. [00102] “Derivative” is a compound that is derived from a similar compound by a chemical reaction. In biochemistry, the word is used for compounds that at least theoretically can be formed from the precursor compound. In the past, derivative also meant a compound that can be imagined to arise from another compound, if one atom or group of atoms is replaced with another atom or group of atoms, but modern chemical language now uses the term structural analog for this meaning, thus eliminating ambiguity. [00103] “Analog,” or “analogue” is used in accordance with its plain ordinary meaning within Chemistry and Biology and refers to a chemical compound that is structurally similar to another compound (i.e., a so-called “reference” compound) but differs in composition, e.g., in the replacement of one atom by an atom of a different element, or in the presence of a particular functional group, or the replacement of one functional group by another functional group, or the absolute stereochemistry of one or more chiral centers of the reference compound. [00104] The terms “folic acid” and “folate” are often used interchangeably, though more appropriately, “folic acid” refers to the fully oxidized synthetic compound (pteroylmono- glutamic acid) used in dietary supplements and in food fortification, whereas “folate” refers to the various tetrahydrofolate derivatives naturally present in foods. Reduced folates are found as the partially reduced form 7,8-dihydrofolate or the reduced species 5,6,7,8- tetrahydrofolate (THF). The terms “folic acid” and “folate” are used interchangeably herein to refer to the fully oxidized synthetic compound. [00105] The term “alkyl,” by itself or as part of another substituent, means, unless otherwise stated, a straight (i.e., unbranched) or branched carbon chain (or carbon), or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include mono-, di- and multivalent radicals. The alkyl may include a designated number of carbons (e.g., C1-C10 means one to ten carbons). Alkyl is an uncyclized chain. Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl,
isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, methyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4- pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. An alkoxy is an alkyl attached to the remainder of the molecule via an oxygen linker (-O-). An alkyl moiety may be an alkenyl moiety. An alkyl moiety may be an alkynyl moiety. An alkyl moiety may be fully saturated. An alkenyl may include more than one double bond and/or one or more triple bonds in addition to the one or more double bonds. An alkynyl may include more than one triple bond and/or one or more double bonds in addition to the one or more triple bonds. [00106] The term “alkylene,” by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from an alkyl, as exemplified, but not limited by, -CH2CH2CH2CH2-. Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred herein. A “lower alkyl” or “lower alkylene” is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms. The term “alkenylene,” by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from an alkene. [00107] The term “heteroalkyl,” by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain, or combinations thereof, including at least one carbon atom and at least one heteroatom (e.g., O, N, P, Si, or S), and wherein the nitrogen and sulfur atoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) (e.g., O, N, S, Si, or P) may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Heteroalkyl is an uncyclized chain. Examples include, but are not limited to: -CH2-CH2-O-CH3, -CH2-CH2-NH-CH3, -CH2-CH2- N(CH3)-CH3, -CH2-S-CH2-CH3, -CH2-S-CH2, -S(O)-CH3, -CH2-CH2-S(O)2-CH3, -CH=CH- O-CH3, -Si(CH3)3, -CH2-CH=N-OCH3, -CH=CH-N(CH3)-CH3, -O-CH3, -O-CH2-CH3, and - CN. Up to two or three heteroatoms may be consecutive, such as, for example, -CH2-NH- OCH3 and -CH2-O-Si(CH3)3. A heteroalkyl moiety may include one heteroatom (e.g., O, N, S, Si, or P). A heteroalkyl moiety may include two optionally different heteroatoms (e.g., O, N, S, Si, or P). A heteroalkyl moiety may include three optionally different heteroatoms
(e.g., O, N, S, Si, or P). A heteroalkyl moiety may include four optionally different heteroatoms (e.g., O, N, S, Si, or P). A heteroalkyl moiety may include five optionally different heteroatoms (e.g., O, N, S, Si, or P). A heteroalkyl moiety may include up to 8 optionally different heteroatoms (e.g., O, N, S, Si, or P). The term “heteroalkenyl,” by itself or in combination with another term, means, unless otherwise stated, a heteroalkyl including at least one double bond. A heteroalkenyl may optionally include more than one double bond and/or one or more triple bonds in addition to the one or more double bonds. The term “heteroalkynyl,” by itself or in combination with another term, means, unless otherwise stated, a heteroalkyl including at least one triple bond. A heteroalkynyl may optionally include more than one triple bond and/or one or more double bonds in addition to the one or more triple bonds. [00108] Similarly, the term “heteroalkylene,” by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from heteroalkyl, as exemplified, but not limited by, -CH2-CH2-S-CH2-CH2- and -CH2-S-CH2-CH2-NH-CH2-. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula - C(O)2R'- represents both -C(O)2R'- and -R'C(O)2-. As described above, heteroalkyl groups, as used herein, include those groups that are attached to the remainder of the molecule through a heteroatom, such as -C(O)R', -C(O)NR', -NR'R'', -OR', -SR', and/or -SO2R'. Where “heteroalkyl” is recited, followed by recitations of specific heteroalkyl groups, such as - NR'R'' or the like, it will be understood that the terms heteroalkyl and -NR'R'' are not redundant or mutually exclusive. Rather, the specific heteroalkyl groups are recited to add clarity. Thus, the term “heteroalkyl” should not be interpreted herein as excluding specific heteroalkyl groups, such as -NR'R'' or the like. [00109] The terms “cycloalkyl” and “heterocycloalkyl,” by themselves or in combination with other terms, mean, unless otherwise stated, cyclic versions of “alkyl” and “heteroalkyl,” respectively. Cycloalkyl and heterocycloalkyl are not aromatic. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the remainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl,
cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1- (1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3- morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like. A “cycloalkylene” and a “heterocycloalkylene,” alone or as part of another substituent, means a divalent radical derived from a cycloalkyl and heterocycloalkyl, respectively. [00110] In embodiments, the term “cycloalkyl” means a monocyclic, bicyclic, or a multicyclic cycloalkyl ring system. In embodiments, monocyclic ring systems are cyclic hydrocarbon groups containing from 3 to 8 carbon atoms, where such groups can be saturated or unsaturated, but not aromatic. In embodiments, cycloalkyl groups are fully saturated. Examples of monocyclic cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl. Bicyclic cycloalkyl ring systems are bridged monocyclic rings or fused bicyclic rings. In embodiments, bridged monocyclic rings contain a monocyclic cycloalkyl ring where two non adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of between one and three additional carbon atoms (i.e., a bridging group of the form (CH2)w , where w is 1, 2, or 3). Representative examples of bicyclic ring systems include, but are not limited to, bicyclo[3.1.1]heptane, bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, bicyclo[3.2.2]nonane, bicyclo[3.3.1]nonane, and bicyclo[4.2.1]nonane. In embodiments, fused bicyclic cycloalkyl ring systems contain a monocyclic cycloalkyl ring fused to either a phenyl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, a monocyclic heterocyclyl, or a monocyclic heteroaryl. In embodiments, the bridged or fused bicyclic cycloalkyl is attached to the parent molecular moiety through any carbon atom contained within the monocyclic cycloalkyl ring. In embodiments, cycloalkyl groups are optionally substituted with one or two groups which are independently oxo or thia. In embodiments, the fused bicyclic cycloalkyl is a 5 or 6 membered monocyclic cycloalkyl ring fused to either a phenyl ring, a 5 or 6 membered monocyclic cycloalkyl, a 5 or 6 membered monocyclic cycloalkenyl, a 5 or 6 membered monocyclic heterocyclyl, or a 5 or 6 membered monocyclic heteroaryl, wherein the fused bicyclic cycloalkyl is optionally substituted by one or two groups which are independently oxo or thia. In embodiments, multicyclic cycloalkyl ring systems are a monocyclic cycloalkyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a
bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a bicyclic aryl, a monocyclic or bicyclic heteroaryl, a monocyclic or bicyclic cycloalkyl, a monocyclic or bicyclic cycloalkenyl, and a monocyclic or bicyclic heterocyclyl. In embodiments, the multicyclic cycloalkyl is attached to the parent molecular moiety through any carbon atom contained within the base ring. In embodiments, multicyclic cycloalkyl ring systems are a monocyclic cycloalkyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a monocyclic heteroaryl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, and a monocyclic heterocyclyl. Examples of multicyclic cycloalkyl groups include, but are not limited to tetradecahydrophenanthrenyl, perhydrophenothiazin-1-yl, and perhydrophenoxazin-1-yl. [00111] In embodiments, a cycloalkyl is a cycloalkenyl. The term “cycloalkenyl” is used in accordance with its plain ordinary meaning. In embodiments, a cycloalkenyl is a monocyclic, bicyclic, or a multicyclic cycloalkenyl ring system. In embodiments, monocyclic cycloalkenyl ring systems are cyclic hydrocarbon groups containing from 3 to 8 carbon atoms, where such groups are unsaturated (i.e., containing at least one annular carbon carbon double bond), but not aromatic. Examples of monocyclic cycloalkenyl ring systems include cyclopentenyl and cyclohexenyl. In embodiments, bicyclic cycloalkenyl rings are bridged monocyclic rings or a fused bicyclic rings. In embodiments, bridged monocyclic rings contain a monocyclic cycloalkenyl ring where two non adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of between one and three additional carbon atoms (i.e., a bridging group of the form (CH2)w, where w is 1, 2, or 3). Representative examples of bicyclic cycloalkenyls include, but are not limited to, norbornenyl and bicyclo[2.2.2]oct 2 enyl. In embodiments, fused bicyclic cycloalkenyl ring systems contain a monocyclic cycloalkenyl ring fused to either a phenyl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, a monocyclic heterocyclyl, or a monocyclic heteroaryl. In embodiments, the bridged or fused bicyclic cycloalkenyl is attached to the parent molecular moiety through any carbon atom contained within the monocyclic cycloalkenyl ring. In embodiments, cycloalkenyl groups are optionally substituted with one or two groups which are independently oxo or thia. In embodiments, multicyclic cycloalkenyl rings contain a monocyclic cycloalkenyl ring (base ring) fused to either (i) one ring system selected from the
group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two ring systems independently selected from the group consisting of a phenyl, a bicyclic aryl, a monocyclic or bicyclic heteroaryl, a monocyclic or bicyclic cycloalkyl, a monocyclic or bicyclic cycloalkenyl, and a monocyclic or bicyclic heterocyclyl. In embodiments, the multicyclic cycloalkenyl is attached to the parent molecular moiety through any carbon atom contained within the base ring. In embodiments, multicyclic cycloalkenyl rings contain a monocyclic cycloalkenyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two ring systems independently selected from the group consisting of a phenyl, a monocyclic heteroaryl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, and a monocyclic heterocyclyl. [00112] In embodiments, a heterocycloalkyl is a heterocyclyl. The term “heterocyclyl” as used herein, means a monocyclic, bicyclic, or multicyclic heterocycle. The heterocyclyl monocyclic heterocycle is a 3, 4, 5, 6 or 7 membered ring containing at least one heteroatom independently selected from the group consisting of O, N, and S where the ring is saturated or unsaturated, but not aromatic. The 3 or 4 membered ring contains 1 heteroatom selected from the group consisting of O, N and S. The 5 membered ring can contain zero or one double bond and one, two or three heteroatoms selected from the group consisting of O, N and S. The 6 or 7 membered ring contains zero, one or two double bonds and one, two or three heteroatoms selected from the group consisting of O, N and S. The heterocyclyl monocyclic heterocycle is connected to the parent molecular moiety through any carbon atom or any nitrogen atom contained within the heterocyclyl monocyclic heterocycle. Representative examples of heterocyclyl monocyclic heterocycles include, but are not limited to, azetidinyl, azepanyl, aziridinyl, diazepanyl, 1,3-dioxanyl, 1,3-dioxolanyl, 1,3-dithiolanyl, 1,3-dithianyl, imidazolinyl, imidazolidinyl, isothiazolinyl, isothiazolidinyl, isoxazolinyl, isoxazolidinyl, morpholinyl, oxadiazolinyl, oxadiazolidinyl, oxazolinyl, oxazolidinyl, piperazinyl, piperidinyl, pyranyl, pyrazolinyl, pyrazolidinyl, pyrrolinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothienyl, thiadiazolinyl, thiadiazolidinyl, thiazolinyl, thiazolidinyl, thiomorpholinyl, 1,1-dioxidothiomorpholinyl (thiomorpholine sulfone), thiopyranyl, and trithianyl. The heterocyclyl bicyclic heterocycle is a monocyclic heterocycle fused to either a phenyl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, a monocyclic heterocycle, or a
monocyclic heteroaryl. The heterocyclyl bicyclic heterocycle is connected to the parent molecular moiety through any carbon atom or any nitrogen atom contained within the monocyclic heterocycle portion of the bicyclic ring system. Representative examples of bicyclic heterocyclyls include, but are not limited to, 2,3-dihydrobenzofuran-2-yl, 2,3- dihydrobenzofuran-3-yl, indolin-1-yl, indolin-2-yl, indolin-3-yl, 2,3-dihydrobenzothien-2-yl, decahydroquinolinyl, decahydroisoquinolinyl, octahydro-1H-indolyl, and octahydrobenzofuranyl. In embodiments, heterocyclyl groups are optionally substituted with one or two groups which are independently oxo or thia. In certain embodiments, the bicyclic heterocyclyl is a 5 or 6 membered monocyclic heterocyclyl ring fused to a phenyl ring, a 5 or 6 membered monocyclic cycloalkyl, a 5 or 6 membered monocyclic cycloalkenyl, a 5 or 6 membered monocyclic heterocyclyl, or a 5 or 6 membered monocyclic heteroaryl, wherein the bicyclic heterocyclyl is optionally substituted by one or two groups which are independently oxo or thia. Multicyclic heterocyclyl ring systems are a monocyclic heterocyclyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a bicyclic aryl, a monocyclic or bicyclic heteroaryl, a monocyclic or bicyclic cycloalkyl, a monocyclic or bicyclic cycloalkenyl, and a monocyclic or bicyclic heterocyclyl. The multicyclic heterocyclyl is attached to the parent molecular moiety through any carbon atom or nitrogen atom contained within the base ring. In embodiments, multicyclic heterocyclyl ring systems are a monocyclic heterocyclyl ring (base ring) fused to either (i) one ring system selected from the group consisting of a bicyclic aryl, a bicyclic heteroaryl, a bicyclic cycloalkyl, a bicyclic cycloalkenyl, and a bicyclic heterocyclyl; or (ii) two other ring systems independently selected from the group consisting of a phenyl, a monocyclic heteroaryl, a monocyclic cycloalkyl, a monocyclic cycloalkenyl, and a monocyclic heterocyclyl. Examples of multicyclic heterocyclyl groups include, but are not limited to 10H-phenothiazin-10-yl, 9,10-dihydroacridin-9-yl, 9,10-dihydroacridin-10-yl, 10H-phenoxazin-10-yl, 10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl, 1,2,3,4- tetrahydropyrido[4,3-g]isoquinolin-2-yl, 12H-benzo[b]phenoxazin-12-yl, and dodecahydro- 1H-carbazol-9-yl. [00113] The terms “halo” or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally,
terms such as “haloalkyl” are meant to include monohaloalkyl and polyhaloalkyl. For example, the term “halo(C1-C4)alkyl” includes, but is not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like. [00114] The term “acyl” means, unless otherwise stated, -C(O)R where R is a substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl. [00115] The term “aryl” means, unless otherwise stated, a polyunsaturated, aromatic, hydrocarbon substituent, which can be a single ring or multiple rings (preferably from 1 to 3 rings) that are fused together (i.e., a fused ring aryl) or linked covalently. A fused ring aryl refers to multiple rings fused together wherein at least one of the fused rings is an aryl ring. The term “heteroaryl” refers to aryl groups (or rings) that contain at least one heteroatom such as N, O, or S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. Thus, the term “heteroaryl” includes fused ring heteroaryl groups (i.e., multiple rings fused together wherein at least one of the fused rings is a heteroaromatic ring). A 5,6-fused ring heteroarylene refers to two rings fused together, wherein one ring has 5 members and the other ring has 6 members, and wherein at least one ring is a heteroaryl ring. Likewise, a 6,6-fused ring heteroarylene refers to two rings fused together, wherein one ring has 6 members and the other ring has 6 members, and wherein at least one ring is a heteroaryl ring. And a 6,5-fused ring heteroarylene refers to two rings fused together, wherein one ring has 6 members and the other ring has 5 members, and wherein at least one ring is a heteroaryl ring. A heteroaryl group can be attached to the remainder of the molecule through a carbon or heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, naphthyl, pyrrolyl, pyrazolyl, pyridazinyl, triazinyl, pyrimidinyl, imidazolyl, pyrazinyl, purinyl, oxazolyl, isoxazolyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidyl, benzothiazolyl, benzoxazoyl benzimidazolyl, benzofuran, isobenzofuranyl, indolyl, isoindolyl, benzothiophenyl, isoquinolyl, quinoxalinyl, quinolyl, 1-naphthyl, 2- naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4- imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3- thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl,
2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2-quinoxalinyl, 5-quinoxalinyl, 3- quinolyl, and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below. An “arylene” and a “heteroarylene,” alone or as part of another substituent, mean a divalent radical derived from an aryl and heteroaryl, respectively. A heteroaryl group substituent may be -O- bonded to a ring heteroatom nitrogen. [00116] A fused ring heterocyloalkyl-aryl is an aryl fused to a heterocycloalkyl. A fused ring heterocycloalkyl-heteroaryl is a heteroaryl fused to a heterocycloalkyl. A fused ring heterocycloalkyl-cycloalkyl is a heterocycloalkyl fused to a cycloalkyl. A fused ring heterocycloalkyl-heterocycloalkyl is a heterocycloalkyl fused to another heterocycloalkyl. Fused ring heterocycloalkyl-aryl, fused ring heterocycloalkyl-heteroaryl, fused ring heterocycloalkyl-cycloalkyl, or fused ring heterocycloalkyl-heterocycloalkyl may each independently be unsubstituted or substituted with one or more of the substitutents described herein. [00117] Spirocyclic rings are two or more rings wherein adjacent rings are attached through a single atom. The individual rings within spirocyclic rings may be identical or different. Individual rings in spirocyclic rings may be substituted or unsubstituted and may have different substituents from other individual rings within a set of spirocyclic rings. Possible substituents for individual rings within spirocyclic rings are the possible substituents for the same ring when not part of spirocyclic rings (e.g. substituents for cycloalkyl or heterocycloalkyl rings). Spirocylic rings may be substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkyl or substituted or unsubstituted heterocycloalkylene and individual rings within a spirocyclic ring group may be any of the immediately previous list, including having all rings of one type (e.g. all rings being substituted heterocycloalkylene wherein each ring may be the same or different substituted heterocycloalkylene). When referring to a spirocyclic ring system, heterocyclic spirocyclic rings means a spirocyclic rings wherein at least one ring is a heterocyclic ring and wherein each ring may be a different ring. When referring to a spirocyclic ring system, substituted spirocyclic rings means that at least one ring is substituted and each substituent may optionally be different. [00118] The symbol “ ” (a wavy line) denotes the point of attachment of a chemical moiety to the remainder of a molecule or chemical formula.
[00119] The term “oxo,” as used herein, means an oxygen that is double bonded to a carbon atom. [00120] The term “alkylsulfonyl,” as used herein, means a moiety having the formula -S(O2)-R', where R' is a substituted or unsubstituted alkyl group as defined above. R' may have a specified number of carbons (e.g., “C1-C4 alkylsulfonyl”). [00121] The term “alkylarylene” as an arylene moiety covalently bonded to an alkylene moiety (also referred to herein as an alkylene linker). In embodiments, the alkylarylene group has the formula:
. [00122] An alkylarylene moiety may be substituted (e.g. with a substituent group) on the alkylene moiety or the arylene linker (e.g. at carbons 2, 3, 4, or 6) with halogen, oxo, -N3, - CF3, -CCl3, -CBr3, -CI3, -CN, -CHO, -OH, -NH2, -COOH, -CONH2, -NO2, -SH, -SO2CH3 - SO3H, , -OSO3H, -SO2NH2, −NHNH2, −ONH2, −NHC(O)NHNH2, substituted or unsubstituted C1-C5 alkyl or substituted or unsubstituted 2 to 5 membered heteroalkyl). In embodiments, the alkylarylene is unsubstituted. [00123] Each of the above terms (e.g., “alkyl,” “heteroalkyl,” “cycloalkyl,” “heterocycloalkyl,” “aryl,” and “heteroaryl”) includes both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below. [00124] Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) can be one or more of a variety of groups selected from, but not limited to, -OR', =O, =NR', =N-OR', -NR'R'', -SR', -halogen, - SiR'R''R''', -OC(O)R', -C(O)R', -CO2R', -CONR'R'', -OC(O)NR'R'', -NR''C(O)R', -NR'- C(O)NR''R''', -NR''C(O)2R', -NR-C(NR'R''R''')=NR'''', -NR-C(NR'R'')=NR''', -S(O)R', - S(O)2R', -S(O)2NR'R'', -NRSO2R', −NR'NR''R''', −ONR'R'', −NR'C(O)NR''NR'''R'''', -CN, - NO2, -NR'SO2R'', -NR'C(O)R'', -NR'C(O)-OR'', -NR'OR'', in a number ranging from zero to (2m'+1), where m' is the total number of carbon atoms in such radical. R, R', R'', R''', and R'''' each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl,
substituted or unsubstituted aryl (e.g., aryl substituted with 1-3 halogens), substituted or unsubstituted heteroaryl, substituted or unsubstituted alkyl, alkoxy, or thioalkoxy groups, or arylalkyl groups. When a compound described herein includes more than one R group, for example, each of the R groups is independently selected as are each R', R'', R''', and R'''' group when more than one of these groups is present. When R' and R'' are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 4-, 5-, 6-, or 7- membered ring. For example, -NR'R'' includes, but is not limited to, 1-pyrrolidinyl and 4- morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term “alkyl” is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., -CF3 and -CH2CF3) and acyl (e.g., - C(O)CH3, -C(O)CF3, -C(O)CH2OCH3, and the like). [00125] Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are varied and are selected from, for example: -OR', -NR'R'', -SR', - halogen, -SiR'R''R''', -OC(O)R', -C(O)R', -CO2R', -CONR'R'', -OC(O)NR'R'', -NR''C(O)R', - NR'-C(O)NR''R''', -NR''C(O)2R', -NR-C(NR'R''R''')=NR'''', -NR-C(NR'R'')=NR''', -S(O)R', - S(O)2R', -S(O)2NR'R'', -NRSO2R', −NR'NR''R''', −ONR'R'', −NR'C(O)NR''NR'''R'''', -CN, - NO2, -R', -N3, -CH(Ph)2, fluoro(C1-C4)alkoxy, and fluoro(C1-C4)alkyl, -NR'SO2R'', - NR'C(O)R'', -NR'C(O)-OR'', -NR'OR'', in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R', R'', R''', and R'''' are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. When a compound described herein includes more than one R group, for example, each of the R groups is independently selected as are each R', R'', R''', and R'''' groups when more than one of these groups is present. [00126] Substituents for rings (e.g. cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene) may be depicted as substituents on the ring rather than on a specific atom of a ring (commonly referred to as a floating substituent). In such a case, the substituent may be attached to any of the ring atoms (obeying the rules of chemical valency) and in the case of fused rings or spirocyclic rings, a substituent depicted as associated with one member of the fused rings or spirocyclic rings (a floating substituent on a single ring), may be a substituent on any of the fused rings or
spirocyclic rings (a floating substituent on multiple rings). When a substituent is attached to a ring, but not a specific atom (a floating substituent), and a subscript for the substituent is an integer greater than one, the multiple substituents may be on the same atom, same ring, different atoms, different fused rings, different spirocyclic rings, and each substituent may optionally be different. Where a point of attachment of a ring to the remainder of a molecule is not limited to a single atom (a floating substituent), the attachment point may be any atom of the ring and in the case of a fused ring or spirocyclic ring, any atom of any of the fused rings or spirocyclic rings while obeying the rules of chemical valency. Where a ring, fused rings, or spirocyclic rings contain one or more ring heteroatoms and the ring, fused rings, or spirocyclic rings are shown with one more floating substituents (including, but not limited to, points of attachment to the remainder of the molecule), the floating substituents may be bonded to the heteroatoms. Where the ring heteroatoms are shown bound to one or more hydrogens (e.g. a ring nitrogen with two bonds to ring atoms and a third bond to a hydrogen) in the structure or formula with the floating substituent, when the heteroatom is bonded to the floating substituent, the substituent will be understood to replace the hydrogen, while obeying the rules of chemical valency. [00127] Two or more substituents may optionally be joined to form aryl, heteroaryl, cycloalkyl, or heterocycloalkyl groups. Such so-called ring-forming substituents are typically, though not necessarily, found attached to a cyclic base structure. In one embodiment, the ring-forming substituents are attached to adjacent members of the base structure. For example, two ring-forming substituents attached to adjacent members of a cyclic base structure create a fused ring structure. In another embodiment, the ring-forming substituents are attached to a single member of the base structure. For example, two ring-forming substituents attached to a single member of a cyclic base structure create a spirocyclic structure. In yet another embodiment, the ring-forming substituents are attached to non- adjacent members of the base structure. [00128] Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally form a ring of the formula -T-C(O)-(CRR')p-U-, wherein T and U are independently -NR-, -O-, -CRR'-, or a single bond, and p is an integer of from 0 to 3. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula -A-(CH2)r-B-, wherein A and B are independently -CRR'-, -O-, -NR-, -S-, -S(O) -, -S(O)2-, -S(O)2NR'-, or a single bond, and r is
an integer of from 1 to 4. One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula - (CRR')s-X'- (C''R''R''')d-, where s and d are independently integers of from 0 to 3, and X' is - O-, -NR'-, -S-, -S(O)-, -S(O)2-, or -S(O)2NR'-. The substituents R, R', R'', and R''' are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. [00129] As used herein, the terms “heteroatom” or “ring heteroatom” are meant to include oxygen (O), nitrogen (N), sulfur (S), phosphorus (P), and silicon (Si). [00130] A “substituent group,” as used herein, means a group selected from the following moieties: (A) oxo, halogen, -CCl3, -CBr3, -CF3, -CI3, -CH2Cl, -CH2Br, -CH2F, -CH2I, -CHCl2, -CHBr2, -CHF2, -CHI2, -CN, -OH, -NH2, -COOH, -CONH2, -NO2, -SH, -SO3H, -SO4H, -SO2NH2, −NHNH2, −ONH2, −NHC(O)NHNH2, -NHC(O)NH2, -NHSO2H, -NHC(O)H, -NHC(O)OH, -NHOH, -OCCl3, -OCF3, -OCBr3, -OCI3,-OCHCl2, -OCHBr2, -OCHI2, -OCHF2, -N3, unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl), unsubstituted heteroalkyl (e.g., 2 to 8 membered heteroalkyl, 2 to 6 membered heteroalkyl, or 2 to 4 membered heteroalkyl), unsubstituted cycloalkyl (e.g., C3-C8 cycloalkyl, C3-C6 cycloalkyl, or C5-C6 cycloalkyl), unsubstituted heterocycloalkyl (e.g., 3 to 8 membered heterocycloalkyl, 3 to 6 membered heterocycloalkyl, or 5 to 6 membered heterocycloalkyl), unsubstituted aryl (e.g., C6-C10 aryl, C10 aryl, or phenyl), or unsubstituted heteroaryl (e.g., 5 to 10 membered heteroaryl, 5 to 9 membered heteroaryl, or 5 to 6 membered heteroaryl), and (B) alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl), heteroalkyl (e.g., 2 to 8 membered heteroalkyl, 2 to 6 membered heteroalkyl, or 2 to 4 membered heteroalkyl), cycloalkyl (e.g., C3-C8 cycloalkyl, C3-C6 cycloalkyl, or C5-C6 cycloalkyl), heterocycloalkyl (e.g., 3 to 8 membered heterocycloalkyl, 3 to 6 membered heterocycloalkyl, or 5 to 6 membered heterocycloalkyl), aryl (e.g., C6-C10 aryl, C10 aryl, or phenyl), heteroaryl (e.g., 5 to 10 membered heteroaryl, 5 to 9 membered heteroaryl, or 5 to 6 membered heteroaryl), substituted with at least one substituent selected from:
(i) oxo, halogen, -CCl3, -CBr3, -CF3, -CI3, -CH2Cl, -CH2Br, -CH2F, -CH2I, -CHCl2, -CHBr2, -CHF2, -CHI2, -CN, -OH, -NH2, -COOH, -CONH2, -NO2, -SH, -SO3H, -SO4H, -SO2NH2, −NHNH2, −ONH2, −NHC(O)NHNH2, -NHC(O)NH2, -NHSO2H, -NHC(O)H, -NHC(O)OH, -NHOH, -OCCl3, -OCF3, -OCBr3, -OCI3,-OCHCl2, -OCHBr2, -OCHI2, -OCHF2, -N3, unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl), unsubstituted heteroalkyl (e.g., 2 to 8 membered heteroalkyl, 2 to 6 membered heteroalkyl, or 2 to 4 membered heteroalkyl), unsubstituted cycloalkyl (e.g., C3-C8 cycloalkyl, C3-C6 cycloalkyl, or C5-C6 cycloalkyl), unsubstituted heterocycloalkyl (e.g., 3 to 8 membered heterocycloalkyl, 3 to 6 membered heterocycloalkyl, or 5 to 6 membered heterocycloalkyl), unsubstituted aryl (e.g., C6-C10 aryl, C10 aryl, or phenyl), or unsubstituted heteroaryl (e.g., 5 to 10 membered heteroaryl, 5 to 9 membered heteroaryl, or 5 to 6 membered heteroaryl), and (ii) alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl), heteroalkyl (e.g., 2 to 8 membered heteroalkyl, 2 to 6 membered heteroalkyl, or 2 to 4 membered heteroalkyl), cycloalkyl (e.g., C3-C8 cycloalkyl, C3-C6 cycloalkyl, or C5-C6 cycloalkyl), heterocycloalkyl (e.g., 3 to 8 membered heterocycloalkyl, 3 to 6 membered heterocycloalkyl, or 5 to 6 membered heterocycloalkyl), aryl (e.g., C6-C10 aryl, C10 aryl, or phenyl), heteroaryl (e.g., 5 to 10 membered heteroaryl, 5 to 9 membered heteroaryl, or 5 to 6 membered heteroaryl), substituted with at least one substituent selected from: (a) oxo, halogen, -CCl3, -CBr3, -CF3, -CI3, -CH2Cl, -CH2Br, -CH2F, -CH2I, -CHCl2, -CHBr2, -CHF2, -CHI2, -CN, -OH, -NH2, -COOH, -CONH2, -NO2, -SH, -SO3H, -SO4H, -SO2NH2, −NHNH2, −ONH2, −NHC(O)NHNH2, -NHC(O)NH2, -NHSO2H, -NHC(O)H, -NHC(O)OH, -NHOH, -OCCl3, -OCF3, -OCBr3, -OCI3, -OCHCl2, -OCHBr2, -OCHI2, -OCHF2, -N3, unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl), unsubstituted heteroalkyl (e.g., 2 to 8 membered heteroalkyl, 2 to 6 membered heteroalkyl, or 2 to 4 membered heteroalkyl), unsubstituted cycloalkyl (e.g., C3-C8 cycloalkyl, C3-C6 cycloalkyl, or C5-C6 cycloalkyl), unsubstituted heterocycloalkyl (e.g., 3 to 8 membered heterocycloalkyl, 3 to 6 membered heterocycloalkyl, or 5 to 6 membered heterocycloalkyl), unsubstituted aryl (e.g., C6-C10 aryl, C10 aryl, or phenyl), or unsubstituted heteroaryl (e.g., 5 to 10 membered heteroaryl, 5 to 9 membered heteroaryl, or 5 to 6 membered heteroaryl), and
(b) alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl), heteroalkyl (e.g., 2 to 8 membered heteroalkyl, 2 to 6 membered heteroalkyl, or 2 to 4 membered heteroalkyl), cycloalkyl (e.g., C3-C8 cycloalkyl, C3-C6 cycloalkyl, or C5-C6 cycloalkyl), heterocycloalkyl (e.g., 3 to 8 membered heterocycloalkyl, 3 to 6 membered heterocycloalkyl, or 5 to 6 membered heterocycloalkyl), aryl (e.g., C6-C10 aryl, C10 aryl, or phenyl), heteroaryl (e.g., 5 to 10 membered heteroaryl, 5 to 9 membered heteroaryl, or 5 to 6 membered heteroaryl), substituted with at least one substituent selected from: oxo, halogen, -CCl3, -CBr3, -CF3, -CI3, -CH2Cl, -CH2Br, -CH2F, -CH2I, -CHCl2, -CHBr2, -CHF2, -CHI2, -CN, -OH, -NH2, -COOH, -CONH2, -NO2, -S H, -SO3H, -SO4H, -SO2NH2, −NHNH2, −ONH2, −NHC(O)NHNH2, -NHC(O)NH2, -NHSO2H, -NHC(O)H, -NHC(O)OH, -NHOH, -OCCl3, -OCF3, -OCBr3, -OCI3,-OCHCl2, -OCHBr2, -OCHI2, -OCHF2, -N3, unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl), unsubstituted heteroalkyl (e.g., 2 to 8 membered heteroalkyl, 2 to 6 membered heteroalkyl, or 2 to 4 membered heteroalkyl), unsubstituted cycloalkyl (e.g., C3-C8 cycloalkyl, C3-C6 cycloalkyl, or C5-C6 cycloalkyl), unsubstituted heterocycloalkyl (e.g., 3 to 8 membered heterocycloalkyl, 3 to 6 membered heterocycloalkyl, or 5 to 6 membered heterocycloalkyl), unsubstituted aryl (e.g., C6-C10 aryl, C10 aryl, or phenyl), or unsubstituted heteroaryl (e.g., 5 to 10 membered heteroaryl, 5 to 9 membered heteroaryl, or 5 to 6 membered heteroaryl). [00131] A “size-limited substituent” or “ size-limited substituent group,” as used herein, means a group selected from all of the substituents described above for a “substituent group,” wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted C1-C20 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C8 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted C6-C10 aryl, and each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 10 membered heteroaryl. [00132] A “lower substituent” or “ lower substituent group,” as used herein, means a group selected from all of the substituents described above for a “substituent group,” wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted C1-C8 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered
heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3- C7 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 7 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted phenyl, and each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 6 membered heteroaryl. [00133] In some embodiments, each substituted group described in the compounds herein is substituted with at least one substituent group. More specifically, in some embodiments, each substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene described in the compounds herein are substituted with at least one substituent group. In other embodiments, at least one or all of these groups are substituted with at least one size-limited substituent group. In other embodiments, at least one or all of these groups are substituted with at least one lower substituent group. [00134] In other embodiments of the compounds herein, each substituted or unsubstituted alkyl may be a substituted or unsubstituted C1-C20 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C8 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted C6- C10 aryl, and/or each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 10 membered heteroaryl. In some embodiments of the compounds herein, each substituted or unsubstituted alkylene is a substituted or unsubstituted C1-C20 alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 20 membered heteroalkylene, each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted C3-C8 cycloalkylene, each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 3 to 8 membered heterocycloalkylene, each substituted or unsubstituted arylene is a substituted or unsubstituted C6-C10 arylene, and/or each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 5 to 10 membered heteroarylene. [00135] In some embodiments, each substituted or unsubstituted alkyl is a substituted or unsubstituted C1-C8 alkyl, each substituted or unsubstituted heteroalkyl is a substituted or
unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted C3-C7 cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 7 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted C6-C10 aryl, and/or each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 9 membered heteroaryl. In some embodiments, each substituted or unsubstituted alkylene is a substituted or unsubstituted C1-C8 alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 8 membered heteroalkylene, each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted C3-C7 cycloalkylene, each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 3 to 7 membered heterocycloalkylene, each substituted or unsubstituted arylene is a substituted or unsubstituted C6-C10 arylene, and/or each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 5 to 9 membered heteroarylene. In some embodiments, the compound is a chemical species set forth in the Examples section, figures, or tables below. [00136] In embodiments, a substituted or unsubstituted moiety (e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, and/or substituted or unsubstituted heteroarylene) is unsubstituted (e.g., is an unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, unsubstituted alkylene, unsubstituted heteroalkylene, unsubstituted cycloalkylene, unsubstituted heterocycloalkylene, unsubstituted arylene, and/or unsubstituted heteroarylene, respectively). In embodiments, a substituted or unsubstituted moiety (e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, and/or substituted or unsubstituted heteroarylene) is substituted (e.g., is a substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted
aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene, respectively). [00137] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is substituted with at least one substituent group, wherein if the substituted moiety is substituted with a plurality of substituent groups, each substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of substituent groups, each substituent group is different. [00138] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is substituted with at least one size-limited substituent group, wherein if the substituted moiety is substituted with a plurality of size-limited substituent groups, each size-limited substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of size-limited substituent groups, each size-limited substituent group is different. [00139] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is substituted with at least one lower substituent group, wherein if the substituted moiety is substituted with a plurality of lower substituent groups, each lower substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of lower substituent groups, each lower substituent group is different. [00140] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is
substituted with at least one substituent group, size-limited substituent group, or lower substituent group; wherein if the substituted moiety is substituted with a plurality of groups selected from substituent groups, size-limited substituent groups, and lower substituent groups; each substituent group, size-limited substituent group, and/or lower substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of groups selected from substituent groups, size-limited substituent groups, and lower substituent groups; each substituent group, size-limited substituent group, and/or lower substituent group is different. [00141] The phrase “or combinations thereof” means that any two or more of the items in the preceding list may be combined, and optionally repeated, in any order and in any orientation. [00142] As used herein, common organic chemistry abbreviations are defined as follows:
q q Examorpholine morpholine analog of exatecan, the structure of which is shown in Example S6, and which is also referred to as compound 50 FA Folic acid
Compositions Small Molecule-Drug Conjugates [00143] In one aspect, provided herein is a compound of Formula (I) or (II):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound at least to a folic acid and a drug moiety; HL is a half-life extender; and D is a drug moiety. [00144] In one aspect, provided herein is a compound of Formula (I) or (II):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound to a folic acid, a drug moiety, and HL; wherein: HL is a half-life extender; and D is a drug moiety. [00145] In embodiments, provided herein is a compound of Formula (I):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound at least to a folic acid and a drug moiety; and
D is a drug moiety. [00146] In embodiments, provided herein is a compound of Formula (I):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound to a folic acid, a drug moiety, and HL; wherein: HL is a half-life extender; and D is a drug moiety. [00147] In embodiments, provided herein is a compound of Formula (II):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound at least to a folic acid and a drug moiety; HL is a half-life extender; and D is a drug moiety.
[00148] In embodiments, provided herein is a compound of Formula (II):
or a pharmaceutically acceptable salt thereof, wherein: L is a multivalent linker bound to a folic acid, a drug moiety, and HL wherein HL is a half-life extender; and D is a drug moiety. [00149] In general, Formulae (I) and (II) encompass tautomers, a mixture of two or more tautomers, isotopic variants, and/or a pharmaceutically acceptable salt, solvate, or hydrate thereof. [00150] In embodiments, D is a tubulin inhibitor or disruptor, apoptosis inducer, RNA splicing inhibitor, kinase inhibitor, DNA damaging agent, nicotinamide phosphoribosyltransferase inhibitor (NAMPT), peptidic proteasome inhibitors, transcription inhibitors, or proteolysis-targeting chimera (PROTAC). [00151] In embodiments, D is a tubulin inhibitor or disruptor, kinase inhibitor, DNA damaging agent, transcription inhibitors, or proteolysis-targeting chimera (PROTAC). [00152] In embodiments, D is a tubulin inhibitor. In embodiments, D is a tubulin disruptor. In embodiments, D is a kinase inhibitor. In embodiments, D is a DNA damaging agent. In embodiments, D is a transcription inhibitor. In embodiments, D is a proteolysis-targeting chimera (PROTAC). [00153] In embodiments, D is a pyrrolobenzodiazepine, indolinobenzodiazepine, duocarmycin, tubulysin, cryptomycin, anthracycline, maytansinoid, auristatin, carmaphycin, calicheamicin, camptothecin, thailanstatin and analogues, RNA polymerase II inhibitor, topoisomerase I inhibitor, tyrosine kinase inhibitor, Bcl-xL Inhibitor, EG5 inhibitor, or MEK inhibitor.
[00154] In embodiments, D is a pyrrolobenzodiazepine, duocarmycin, anthracycline, maytansinoid, auristatin, calicheamicin, camptothecin, RNA polymerase II inhibitor, topoisomerase I inhibitor, tyrosine kinase inhibitor, EG5 inhibitor, or MEK inhibitor. [00155] In embodiments, D is a pyrrolobenzodiazepine. In embodiments, D is a duocarmycin. In embodiments, D is an anthracycline. In embodiments, D is a maytansinoid. In embodiments, D is an auristatin. In embodiments, D is a calicheamicin. In embodiments, D is a camptothecin. In embodiments, D is a topoisomerase I inhibitor. In embodiments, D is an RNA polymerase II inhibitor. In embodiments, D is a tyrosine kinase inhibitor. In embodiments, D is an EG5 inhibitor. In embodiments, D is a MEK inhibitor. [00156] In embodiments, D is monomethyl auristatin E (MMAE), monomethyl auristatin F (MMAF), duostatin 5 (Duo5), PNU-159682, 7-ethyl-10-hydroxycamptothecin (SN-38), irinotecan, amatoxin, maytansine, exatecan, trametinib, abemaciclib, palbociclib, =an exatecan derivative or analog, a morpholine analog of exatecan, or examorpholine (morpholine analog of exatecan, the structure of which is shown in Example S6, and which is also referred to as compound 50). In embodiments, D is MMAE. In embodiments, D is MMAF. In embodiments, D is Duo5. In embodiments, D is PNU-159682. In embodiments, D is SN-38. In embodiments, D is irinotecan. In embodiments, D is amatoxin. In embodiments, D is maytansine. In embodiments, D is exatecan. In embodiments, D is trametinib. In embodiments, D is abemaciclib. In embodiments, D is Palbociclib. In some embodiments, D is a morpholine analog of exatecan. In embodiments, D is examorpholine (the morpholine analog of exatecan for which the structure is shown in Example S6, and which is also referred to as compound 50). [00157] In embodiments,
, wherein the wavy line indicates a bond to the multivalent linker (L). In embodiments, D is
wherein the wavy line indicates a bond to the
wavy line indicates a bond to the multivalent linker (L). [00158] In embodiments, L is a cleavable or a non-cleavable linker as described in US Patents Nos. US 9,884,127, US 9,981,046, US 9,801,951, US 10,117,944, US 10,590,165, and US 10,590,165, and US Patent publications Nos. US 2017/0340750, and US 2018/0360985, all of which are incorporated herein in their entireties. [00159] In embodiments, L is a bond, -C(O)-, -NH-, Amino Acid Unit, Peptoid, –(CH2CH2O)n–, –(CH2)n–, –(4-aminobenzyloxycarbonyl)–, –(C(O)CH2CH2C(O))–,
thereof; wherein n is an integer from 1 to 24; each R2 and R3 is independently H or substituted or unsubstituted alkyl. [00160] In embodiments, n is an integer from 1 to 24. In embodiments, n is 1. In embodiments, n is 2. In embodiments, n is 3. In embodiments, n is 4. In embodiments, n is
5. In embodiments, n is 6. In embodiments, n is 7. In embodiments, n is 8. In embodiments, n is 9. In embodiments, n is 10. In embodiments, n is 11. In embodiments, n is 12. In embodiments, n is 13. In embodiments, n is 14. In embodiments, n is 15. In embodiments, n is 16. In embodiments, n is 17. In embodiments, n is 18. In embodiments, n is 19. In embodiments, n is 20. In embodiments, n is 21. In embodiments, n is 22. In embodiments, n is 23. In embodiments, n is 24. [00161] In embodiments, each R2 and R3 is independently H or substituted or unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R2 and R3 is independently H. In embodiments, each R2 and R3 is independently substituted or unsubstituted alkyl. In embodiments, each R2 and R3 is independently substituted or unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R2 and R3 is independently unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R2 and R3 is independently substituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). [00162] In embodiments, each R2 and R3 is independently H or substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) or unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R2 and R3 is independently substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) or unsubstituted alkyl. In embodiments, each R2 and R3 is independently substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) or unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R2 and R3 is independently unsubstituted alkyl (e.g., C1-C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). In embodiments, each R2 and R3 is independently substituted (e.g., substituted with at least one substituent group, size-limited substituent group, or lower substituent group) alkyl (e.g., C1- C8 alkyl, C1-C6 alkyl, or C1-C4 alkyl). [00163] In embodiments, each R2 and R3 is independently methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, or hexyl. In embodiments, each R2 and R3 is independently methyl. In embodiments, each R2 and R3 is independently ethyl. In embodiments, each R2 and R3 is independently propyl. In embodiments, each R2 and R3 is independently butyl.
[00164] In embodiments, L is -C(O)-, -NH-,–(CH2CH2O)n–, –(CH2)n–, -Cys-, -Asp-, -Arg- , -Val-, –(4-aminobenzyloxycarbonyl)–, -Glu-, -citrulline- (-Cit-), -Lys-, – (C(O)CH2CH2NH)–, –(C(O)CH2CH2C(O))–, –(C(O)(CH2)nNH)–, –S(CH2)nO–, –(N(R2)(CH2)nN(R3))–,
thereof. [00166] In embodiments, L is -C(O)-, -NH-, –(CH2CH2O)n–, –(CH2)n–, –SCH2CH2O–, –(C(O)CH2CH2C(O))–, -Cys-, -Val-, -Cit-, -Arg-, -Asp-, -Lys-, –(4-
aminobenzyloxycarbonyl)
, , , ,
r combinations thereof. [00167] In embodiments, L is -C(O)-. In embodiments, L is -NH-. In embodiments, L is –(CH2CH2O)n–. In embodiments, L is –(CH2)n–. In embodiments, L is –SCH2CH2O–. In embodiments, L is –(C(O)CH2CH2C(O))–. In embodiments, L is -Cys-. In embodiments, L is -Val-. In embodiments, L is -Cit-. In embodiments, L is -Arg-. In embodiments, L is -Asp-. In embodiments, L is -Lys-. In embodiments, L is –(4-aminobenzyloxycarbonyl)–. In embodiments, L is
. In embodiments,
. embodiments, L is
. , . , .
, wherein the carbonyl is linked to the drug moiety (D), the amine is linked to the folic acid, and the optional third linkage is to the half-life extender (HL).
.
In embodiments, L is
. embodiments
. embodiments, L is
. [00170] In embodiments, HL is cholesterol-like half-life extender or albumin binder half- life extender. In embodiments, HL is cholesterol-like half-life extender. In embodiments, HL is an albumin binder half-life extender.
T C P 0 0-3 2 1 0-3 2 2 1 0.oN t e k co D y e n r ott A si dnu op m oc e h t ni er eh w,)I( al u mro Ffo sdnu op m oc . e f r o a e r e n i t e h r tl e h as d e el d i b v a o tp r p ec , c s t a n e yl l m a i c d it o u b e c m a e m n I ra hp ] a 6 7 10
T C P 0 0-3 2 1 0-3 2 2 1 0.o N t e k co D y e n r ott A si dnu op m oc e h t ni er eh w,)I( 5 al 7 u mro Ffo sdnu op m oc . e f r o a e r e n i t e h r tl e h as d e el d i b v a o tp r p ec , c s t a n e yl l m a i c d it o u b e c m a e m n I ra hp ] a 9 7 ro 1 0 0
[
T C P 0 0-3 2 1 0-3 2 2 1 0.o N t e k co D y e n r ott A si dnu op m oc e h t ni er e h w,) II( 6 al 7 u mro Ffo dnu op m oc . a f s o i e r e n i e h t r tl e h as d e el d i b v a o tp r p ec , c s t a n e yl l m a i c d it o u b e c m a e m n I ra hp ] a 0 8 10
T C P 0 0-3 2 1 0-3 2 2 1 0.o N t e k co D y e n r ott A 77
Pharmaceutical Compositions, Uses, and Methods of Use [00182] In an aspect, provided herein is a pharmaceutical composition including a compound of Formula (I) or (II) (an SMDC) as described herein, including embodiments, and a pharmaceutically acceptable carrier. In embodiments, the SMDC as described herein is included in a therapeutically effective amount. [00183] In embodiments, provided herein is a pharmaceutical composition comprising a compound provided herein, including a compound of Formula (I) or (II), or an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or an isotopic variant thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and a pharmaceutically acceptable carrier (or excipient). [00184] In embodiments, the pharmaceutical composition may include optical isomers, diastereomers, enantiomers, isoforms, polymorphs, hydrates, solvates or products, or pharmaceutically acceptable salts of the compound described herein. [00185] The compound provided herein may be administered alone, or in combination with one or more other compounds. The pharmaceutical compositions that comprise a compound provided herein, e.g., a compound of Formula (I) or (II), can be formulated in various dosage forms for oral, parenteral, and topical administration. The pharmaceutical compositions can also be formulated as modified release dosage forms, including delayed-, extended-, prolonged-, sustained-, pulsatile-, controlled-, accelerated-, fast-, targeted-, programmed-release, and gastric retention dosage forms. These dosage forms can be prepared according to conventional methods and techniques known to those skilled in the art (see, Remington: The Science and Practice of Pharmacy, supra; Modified-Release Drug Delivery Technology, 2nd Edition, Rathbone et al., Eds., Marcel Dekker, Inc.: New York, NY, 2008). [00186] The pharmaceutical composition may be formulated for oral administration, suppository administration, topical administration, intravenous administration, intraperitoneal administration, intramuscular administration, intralesional administration, intrathecal administration, intranasal administration, subcutaneous administration, implantation, transdermal administration, or transmucosal administration as described herein. [00187] In embodiments, the pharmaceutical compositions provided herein are formulated in a dosage form for oral administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a
mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. [00188] In embodiments, the pharmaceutical compositions provided herein are formulated as a suspension for oral administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. In embodiments, the suspension provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, glycerin, sorbitol, sodium saccharin, xanthan gum, flavoring, citric acid, sodium citrate, methylparaben, propylparaben, and potassium sorbate. In another embodiment, the suspension provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, glycerin, sorbitol, sodium saccharin, xanthan gum, flavoring, citric acid, sodium citrate, methylparaben, propylparaben, and potassium sorbate. [00189] In another embodiment, the pharmaceutical compositions provided herein are formulated in a dosage form for parenteral administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. In embodiments, the pharmaceutical compositions provided herein are formulated in a dosage form for intravenous administration. In another embodiment, the pharmaceutical compositions provided herein are formulated in a dosage form for intramuscular administration. In yet another embodiment, the pharmaceutical compositions provided herein
are formulated in a dosage form for subcutaneous administration. [00190] In yet another embodiment, the pharmaceutical compositions provided herein are formulated in a dosage form for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. [00191] In embodiments, the pharmaceutical compositions provided herein are formulated as a cream for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. In embodiments, the cream provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, octyldodecanol, mineral oil, stearyl alcohol, cocamide DEA, polysorbate 60, myristyl alcohol, sorbitan monostearate, lactic acid, and benzyl alcohol. In another embodiment, the cream provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, octyldodecanol, mineral oil, stearyl alcohol, cocamide DEA, polysorbate 60, myristyl alcohol, sorbitan monostearate, lactic acid, and benzyl alcohol. [00192] In embodiments, the pharmaceutical compositions provided herein are formulated as a gel for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. In embodiments,
the gel provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, isopropyl alcohol, octyldodecanol, dimethicone copolyol 190, carbomer 980, sodium hydroxide, and docusate sodium. In embodiments, the gel provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, isopropyl alcohol, octyldodecanol, dimethicone copolyol 190, carbomer 980, sodium hydroxide, and docusate sodium. [00193] In embodiments, the pharmaceutical compositions provided herein are formulated as a shampoo for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. In embodiments, the shampoo provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of water, sodium laureth sulfate, disodium laureth sulfosuccinate, sodium chloride, and laureth-2. In embodiments, the shampoo provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and water, sodium laureth sulfate, disodium laureth sulfosuccinate, sodium chloride, and laureth-2. [00194] In embodiments, the pharmaceutical compositions provided herein are formulated as a lacquer for topical administration, which comprise a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a
mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more pharmaceutically acceptable excipients or carriers. In embodiments, the lacquer provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and one or more excipients or carriers selected from the group consisting of ethyl acetate, isopropyl alcohol, and butyl monoester of poly(methylvinyl ether/maleic acid) in isopropyl alcohol. In embodiments, the lacquer provided herein comprises a compound provided herein, e.g., a compound of Formula (I) or (II), including an enantiomer, a mixture of enantiomers, a mixture of two or more diastereomers, a tautomer, a mixture of two or more tautomers, or isotopic variants thereof; or a pharmaceutically acceptable salt, solvate, hydrate, or prodrug thereof; and ethyl acetate, isopropyl alcohol, and butyl monoester of poly(methylvinyl ether/maleic acid) in isopropyl alcohol. [00195] The pharmaceutical compositions provided herein can be provided in a unit- dosage form or multiple-dosage form. A unit-dosage form, as used herein, refers to physically discrete a unit suitable for administration to a human and animal subject, and packaged individually as is known in the art. Each unit-dose contains a predetermined quantity of an active ingredient(s) sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carriers or excipients. Examples of a unit- dosage form include an ampoule, syringe, and individually packaged tablet and capsule. A unit-dosage form may be administered in fractions or multiples thereof. A multiple-dosage form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dosage form. Examples of a multiple-dosage form include a vial, bottle of tablets or capsules, or bottle of pints or gallons. [00196] The pharmaceutical compositions provided herein can be administered at once, or multiple times at intervals of time. It is understood that the precise dosage and duration of treatment may vary with the age, weight, and condition of the patient being treated, and may be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test or diagnostic data. It is further understood that for any particular individual, specific dosage regimens should be adjusted over time according to the individual need and
the professional judgment of the person administering or supervising the administration of the formulations. [00197] Pharmaceutical compositions include those suitable for oral, rectal, nasal, topical (including transdermal, buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration or administration via an implant. The compositions may be prepared by any method well known in the art of pharmacy. [00198] Such methods include the step of bringing in association compounds of this disclosure or combinations thereof with any auxiliary agent. The auxiliary agent(s), also named accessory ingredient(s), include those conventional in the art, such as carriers, fillers, binders, diluents, disintegrants, lubricants, colorants, flavouring agents, anti-oxidants, and wetting agents. [00199] Pharmaceutical compositions suitable for oral administration may be presented as discrete dosage units such as pills, tablets, cachets, dragées, lozenges, or capsules, or as a powder or granules, or as a solution or suspension. The active ingredient may also be presented as a bolus or paste. The compositions can further be processed into a suppository or enema for rectal administration. [00200] For parenteral administration, suitable compositions include aqueous and non- aqueous sterile injection. The compositions may be presented in unit-dose or multi-dose containers, for example sealed vials and ampoules, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of sterile liquid carrier, for example water, prior to use. For transdermal administration, e.g. gels, patches or sprays can be contemplated. Compositions or formulations suitable for pulmonary administration e.g. by nasal inhalation include fine dusts or mists which may be generated by means of metered dose pressurized aerosols, nebulisers or insufflators. [00201] The exact dose and regimen of administration of the composition will necessarily be dependent upon the therapeutic or nutritional effect to be achieved and may vary with the particular formula, the route of administration, and the age and condition of the individual subject to whom the composition is to be administered. [00202] The therapeutically effective amount for each active compound can vary with factors including but not limited to the activity of the compound used, stability of the active compound in the patient’s body, the severity of the conditions to be alleviated, the total
weight of the patient treated, the route of administration, the ease of absorption, distribution, and excretion of the active compound by the body, the age and sensitivity of the patient to be treated, and the like, as will be apparent to a skilled artisan. The amount of administration can be adjusted as the various factors change over time. [00203] For oral delivery, the active compounds can be incorporated into a formulation that includes pharmaceutically acceptable carriers such as binders (e.g., gelatin, cellulose, gum tragacanth), excipients (e.g., starch, lactose), lubricants (e.g., magnesium stearate, silicon dioxide), disintegrating agents (e.g., alginate, Primogel, and corn starch), and sweetening or flavoring agents (e.g., glucose, sucrose, saccharin, methyl salicylate, and peppermint). The formulation can be orally delivered in the form of enclosed gelatin capsules or compressed tablets. Capsules and tablets can be prepared in any conventional techniques. The capsules and tablets can also be coated with various coatings known in the art to modify the flavors, tastes, colors, and shapes of the capsules and tablets. In addition, liquid carriers such as fatty oil can also be included in capsules. [00204] Suitable oral formulations can also be in the form of suspension, syrup, chewing gum, wafer, elixir, and the like. If desired, conventional agents for modifying flavors, tastes, colors, and shapes of the special forms can also be included. In addition, for convenient administration by enteral feeding tube in patients unable to swallow, the active compounds can be dissolved in an acceptable lipophilic vegetable oil vehicle such as olive oil, corn oil and safflower oil. [00205] The active compounds can also be administered parenterally in the form of solution or suspension, or in lyophilized form capable of conversion into a solution or suspension form before use. In such formulations, diluents or pharmaceutically acceptable carriers such as sterile water and physiological saline buffer can be used. Other conventional solvents, pH buffers, stabilizers, anti-bacteria agents, surfactants, and antioxidants can all be included. For example, useful components include sodium chloride, acetates, citrates or phosphates buffers, glycerin, dextrose, fixed oils, methyl parabens, polyethylene glycol, propylene glycol, sodium bisulfate, benzyl alcohol, ascorbic acid, and the like. The parenteral formulations can be stored in any conventional containers such as vials and ampoules. [00206] Routes of topical administration include nasal, buccal, mucosal, rectal, or vaginal applications. For topical administration, the active compounds can be formulated into
lotions, creams, ointments, gels, powders, pastes, sprays, suspensions, drops and aerosols. Thus, one or more thickening agents, humectants, and stabilizing agents can be included in the formulations. Examples of such agents include, but are not limited to, polyethylene glycol, sorbitol, xanthan gum, petrolatum, beeswax, or mineral oil, lanolin, squalene, and the like. A special form of topical administration is delivery by a transdermal patch. Methods for preparing transdermal patches are disclosed, e.g., in Brown, et al. (1988) Ann. Rev. Med. 39:221-229 which is incorporated herein by reference. [00207] Subcutaneous implantation for sustained release of the active compounds may also be a suitable route of administration. This entails surgical procedures for implanting an active compound in any suitable formulation into a subcutaneous space, e.g., beneath the anterior abdominal wall. See, e.g., Wilson et al. (1984) J. Clin. Psych. 45:242-247. Hydrogels can be used as a carrier for the sustained release of the active compounds. Hydrogels are generally known in the art. They are typically made by crosslinking high molecular weight biocompatible polymers into a network, which swells in water to form a gel like material. In some instances, hydrogels are biodegradable or biosorbable. For purposes of this disclosure, hydrogels made of polyethylene glycols, collagen, or poly(glycolic-co-L- lactic acid) may be useful. See, e.g., Phillips et al. (1984) J. Pharmaceut. Sci., 73: 1718- 1720. [00208] This disclosure further provides a compound as defined in any one of the embodiments herein above for use in therapy. This disclosure further provides a compound as defined in any one of the embodiments herein above for use as a medicament. [00209] The pharmaceutical composition may be formulated for dissolution into a solution for administration by such techniques as, for example, intravenous administration. The SMDCs and pharmaceutical compositions thereof are particularly useful for parenteral administration, i.e., subcutaneously (s.c.), intrathecally, intraperitoneally, intramuscularly (i.m.) or intravenously (i.v.). In embodiment, the SMDCs and pharmaceutical compositions thereof are administered intravenously or subcutaneously. [00210] Actual methods for preparing parenterally administrable compositions are well known or will be apparent to those skilled in the art and are described in more detail in, for example, Remington’s Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pa. For the preparation of intravenously administrable formulations of the disclosure see Akers, M. J. “Excipient-Drug interactions in Parenteral Formulations”, J. Pharm Sci 91
(2002) 2283-2300; the entire contents of which are incorporated herein by reference and to which the reader is specifically referred. [00211] The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc. The concentration of the antigen binding protein of the disclosure in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as about 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected. [00212] This disclosure further provides a compound as defined in any one of the embodiments herein above for use in therapy. This disclosure further provides a compound as defined in any one of the embodiments herein above for use as a medicament. [00213] In an aspect, provided herein is a method of treating a disease in a subject in need thereof, said method including administering an effective amount of a small molecule drug conjugate (SMDC) comprising folic acid, a conjugation linker moiety (L) that binds to the carbonyl of the folic acid, and to a drug moiety covalently bound to linker L, and where L is optionally covalently bound to a half-life extender (HL). In embodiments, the folic acid binds to FR, such as FRα. [00214] In one aspect, an SMDC provided herein is used in a method of inhibiting proliferation of a FR-expressing cell, such as an FR-expressing cell, the method comprising contacting the cell with the SMDC, e.g., exposing the cell to the SMDC under conditions permissive for binding of the folic acid of the SMDC on the surface of the cell, thereby inhibiting the proliferation of the cell. In embodiments, the method is an in vitro or an in vivo method. In embodiments, the cell is a cancer cell. In embodiments, the cell is a non-small cell lung carcinoma (NSCLC). In embodiments, the cell is an ovarian cancer cell. In any of these embodiments, the cell may be a mammalian cell, such as a human cell. [00215] Inhibition of cell proliferation in vitro may be assayed using the CellTiter-GloTM Luminescent Cell Viability Assay, which is commercially available from Promega (Madison, WI). That assay determines the number of viable cells in culture based on quantitation of ATP present, which is an indication of metabolically active cells. See Crouch et al. (1993) J. Immunol. Meth. 160:81-88, US Pat. No. 6602677. The assay may be conducted in 96- or 384- well format, making it amenable to automated high-throughput screening (HTS). See Cree et
al. (1995) AntiCancer Drugs 6:398-404. The assay procedure involves adding a single reagent (CellTiter-Glo® Reagent) directly to cultured cells. This results in cell lysis and generation of a luminescent signal produced by a luciferase reaction. The luminescent signal is proportional to the amount of ATP present, which is directly proportional to the number of viable cells present in culture. Data can be recorded by luminometer or CCD camera imaging device. The luminescence output is expressed as relative light units (RLU). [00216] In another aspect, a SMDC for use as a medicament is provided. In further aspects, a SMDC for use in a method of treatment is provided. In another aspect, provided herein is a method of treating a disease in a subject in need thereof, said method including administering an effective amount of a pharmaceutical composition of the SMDC as described herein. [00217] In embodiments, the disease is cancer. In embodiments, the cancer is associated with overexpression of FR, such as FRα. In embodiments, provided herein is SMDC for use in a method of treating an individual having a FR-expressing cancer, such as a FRα- expressing cancer, the method comprising administering to the individual an effective amount of the SMDC. In embodiments, the FR-expressing cancer is an epithelial-derived tumor. In embodiments, the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer. In embodiments, the FR-expressing cancer is non- small cell lung carcinoma (NSCLC) or ovarian cancer. In embodiments, the FR-expressing cancer is non-small cell lung carcinoma (NSCLC). In embodiments, the FR-expressing cancer is ovarian cancer. Any of the foregoing FR-expressing cancer types may be FRα- expressing cancers. In embodiments, the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent. [00218] In embodiments, the FR-expressing cancer, such as the FRα-expressing cancer, is in a mammal. In embodiments, the mammal is human. [00219] In a further aspect, the present disclosure provides for the use of a SMDC in the manufacture or preparation of a medicament. In embodiment, the medicament is for treatment of an FR-expressing cancer, such as an FRα-expressing cancer. In a further embodiment, the medicament is for use in a method of treating an FR-expressing cancer, such as an FRα-expressing cancer, the method comprising administering to an individual having an FR-expressing cancer, such as an FRα-expressing cancer, an effective amount of the
medicament. In embodiments, the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent. [00220] In embodiments, the methods provided herein are for treating cancer in a mammal. In embodiments, the methods provided herein are for treating cancer in a human. [00221] In embodiments, the cancers that may be treated with an immunoconjugate or method provided herein include epithelial-derived tumors including ovarian, uterine, breast, endometrial, pancreatic, renal, lung, colorectal, and brain tumors. In embodiments, the cancers that may be treated with an immunoconjugate or a method provided herein include serous and endometrioid epithelial ovarian cancer, endometrial adenocarcinoma, non-small cell lung carcinoma (NSCLC) of the adenocarcinoma subtype, squamous lung cancer, mesotheliomas, and triple-negative breast cancer (TNBC). [00222] In embodiments, the cancer is ovarian cancer. In embodiments, the cancer is breast cancer. In embodiments, the cancer is lung cancer. In embodiments, the cancer is triple-negative breast cancer. In embodiments, the cancer is non-small cell lung carcinoma (NSCLC). In embodiments, the cancer is mesothelioma. Articles of Manufacture [00223] In a further aspect, provided herein is an article of manufacture containing materials useful for the treatment, prevention and/or diagnosis of the disorders described above is provided. The article of manufacture (a kit) comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, IV solution bags, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is by itself or combined with another composition effective for treating, preventing and/or diagnosing the disorder and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an SMDC as described herein. The label or package insert indicates that the composition is used for treating the condition of choice. Moreover, the article of manufacture (a kit) may comprise (a) a first container with a composition contained therein, wherein the composition comprises an SMDC as described herein; and (b) a second container with a composition contained therein, wherein the composition comprises a further cytotoxic or otherwise therapeutic agent. The article of manufacture in this embodiment of the disclosure may further comprise a package insert indicating that the
compositions can be used to treat a particular condition. Alternatively, or additionally, the article of manufacture may further comprise a second (or third) container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution or dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes. EXAMPLES [00224] The following examples are meant to be illustrative and can be used to further understand embodiments of the present disclosure and should not be construed as limiting the scope of the present teachings in any way. [00225] The chemical reactions described in the Examples can be readily adapted to prepare a number of other compounds of the present disclosure, and alternative methods for preparing the compounds of this disclosure are deemed to be within the scope of this disclosure. For example, the synthesis of non-exemplified compounds according to the present disclosure can be successfully performed by modifications apparent to those skilled in the art, e.g., by utilizing other suitable reagents known in the art other than those described, or by making routing modifications of reaction conditions, reagents, and starting materials. Alternatively, other reactions disclosed herein or known in the art will be recognized as having applicability for preparing other compounds of the present disclosure. Synthetic Examples Example S1: Synthesis of Compound FR-PEG-Duo5.
[00226] S-Trityl-L-cysteine-2-chlorotrityl resin Chem Impex, compound 1, (0.3 - 1.1 meq/g, 200 - 400 mesh, 2 g, 2.2 mmol) was suspended in DMF (10 mL) in a peptide synthesis vessel. To a solution of compound 2 (2.11 g, 5.5 mmol) and DIPEA (1.14 g, 8.8 mmol) in 10 mL DMF, was added HATU (2.25 g, 5.94 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (with compound 1) and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10
mL each). The completion of the reaction was determined by Kaiser test (formation of compound 3). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). [00227] To a solution of compound 4 (2.33 g, 5.5 mmol) and DIPEA (1.14 g, 8.8 mmol) in 10 mL DMF, was added HATU (2.25 g, 5.94 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 3), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 5). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). [00228] To a solution of compound 6 (0.98 g, 2.42 mmol) and DIPEA (1.14 g, 8.8 mmol) in 10 mL DMF, was added HATU (2.25 g, 5.94 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 5), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 7). The resin was then treated with 2% hydrazine in DMF (10 mL). The mixture was allowed to react for 15 minutes. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each) and dichloromethane (3 times 10 mL each). [00229] Resin deprotection: The resin was treated with peptide deprotection mixture (TFA, water, triisopropyl silane (TIPS), 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol) (SDBS), 94/2/2/2) at 45oC for 30 minutes before it was filtered. The resulting TFA mixture was diluted with cold ether and the suspension was centrifuged with 5 minutes. The ether solution was discarded and the solid was redissolved in minimal amount of acetonitrile/water (6/4) mixture. The crude product was purified directly on reverse phase HPLC and desired product peak was combined and freeze dried. Compound 7 was isolated as a fluffy yellowish powder. MS m/z 690.7 (M+H). [00230] Compound 9 (110 mg, 0.31 mmol) was added to a DMF solution of compound 8 (Duo5, the synthesis of which has been previously described in US Patent 10,590,165, which
is incorporated herein in its entirety) (200 mg, 0.26 mmol), DIPEA (100 mg, 0.77 mmol), HOBt (81 mg, 0.6 mmol), and DMAP (50 mg) at room temperature. The resulting mixture was stirred at 50oC for 5 hours and LCMS showed a major desired product peak. The crude reaction mixture was purified directly on reverse phase HPLC and the desired product peak was combined and freeze dried. Compound 10 was isolated as a fluffy white powder. MS m/z 985.5 (M+H). [00231] To a solution of compound 7 (20 mg, 0.027 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) were added solution of compound 10 (27 mg, 0.027 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) and DIPEA (20 mg, 0.15mmol). The reaction mixture was stirred at room temperature for 1 hour. LCMS showed the desired peak mass. The crude mixture was purified directly on reverse phase HPLC. The desired peak was combined and freeze dried. FR-PEG-Duo5 was isolated as a fluffy yellowish powder. MS m/z 1563.7 (M+H). Example S2: Synthesis of Compound FR-VC-Duo5.
[00232] Rink amide-AM resin Chem Impex, compound 11, (1 g, 0.6-1.0 mmol/g, 200-400 mesh) was suspended in 10 mL DMF for 20 minutes in a peptide synthesis vessel. The resin was then treated with 10% piperidine in DMF (10 mL). The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each) and then DMF (3 times 10 mL each). To a solution of compound 12 (1.17
g, 2.5 mmol) were added DIPEA (1.14 g, 8.8 mmol) in 10 mL DMF, and HATU (1.1 g, 2.8 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (with compound 11) and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and again with DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 13). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00233] To a solution of compound 14 (1.02 g, 2.5 mmol) in 10 mL DMF, were added DIPEA (0.52 g, 4.0 mmol) and HATU (1.1 g, 2.8 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 13), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 15). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00234] To a solution of compound 2 (0.96 g, 2.5 mmol) in 10 mL DMF, were added DIPEA (0.52 g, 4.0 mmol) and HATU (1.1 g, 2.8 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 15), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 16). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00235] To a solution of compound 4 (1.1 g, 2.5 mmol) in 10 mL DMF, were added DIPEA (0.52 g, 4.0 mmol) and HATU (1.1 g, 2.8 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound
16), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 17). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00236] To a solution of compound 6 (0.5 g, 1.22 mmol) in 10 mL DMF, were added DIPEA (0.52 g, 4.0 mmol) and HATU (1.1 g, 2.8 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 17), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 18). The resin was then treated with 2% hydrazine in DMF (10 mL). The mixture was allowed to react for 15 minutes. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each) and dichloromethane (3 times 10 mL each). [00237] Resin deprotection: The resin was treated with peptide deprotection mixture (TFA, water, triisopropyl silane (TIPS), 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol) (SDBS), 94/2/2/2) at 45oC for 30 minutes before it was filtered. The resulting TFA mixture was diluted with cold ether and the suspension was centrifuged with 5 minutes. The ether solution was discarded and the solid was redissolved in minimal amount of acetonitrile/water (6/4) mixture. The crude product was purified directly on reverse phase HPLC and desired product peak was combined and freeze dried. Compound 18 was isolated as a fluffy
[00238] Compounds 8 (Duo5, 5g, 5.65 mmol, 1.0 eq), 19 (2.56 g, 1.0 eq), and HOAt (2.3 g, 3.0 eq) were combined and then 200 mL of DCM and DIPEA (5.9 mL, 6 eq) were added, until the mixture forms a clear solution. Then EDC (3.23 g, 3eq) was added, and the mixture was stirred for 1-2 hours, and checked for completion with LCMS. After reaction was complete, the mixture was washed with water 2x50 mL, then brine (50 mL), and then evaporated to give 764 g of compound 20
[00239] Compound 20 was dissolved in 70 mL of acetonitrile, and 4 ml piperidine was added. The mixture was stirred for 20 minutes and checked for completion with LCMS. After completion reaction mixture was evaporated under vacuum. The residue was redissolved in 50 mL of acetonitrile and evaporated again, then coevaporated with 50 mL of acetonitrile for the second time, dissolved in DCM and washed twice with water. The product was extracted from DCM with 0.5 M HCl (aqueous, about 2.5-3 equivalents of HCl to the product required, the pH of aqueous extract must be 4 or lower). Aqueous solution was washed with DCM, and basified with sodium bicarbonate to pH 9. The resulting mixture was extracted with DCM, washed twice with water, and evaporated to yield 4.8 g of compound 21. [00240] Compounds 21 (1.0 eq), 22 (1.0 eq), and HOBt (3.0 eq) were combined and then 200 mL of DCM and DIPEA (4 eq) were added, until the mixture forms a clear solution. Then EDC (3eq) was added, and the mixture was stirred for 1-2 hours, and checked for completion with LCMS. After reaction was complete, the mixture was washed with water 2x50 mL, then brine (50 mL), and then evaporated to give 6.4 g of compound 23. [00241] Compound 23 (6.4 g) was dissolved in 15 mL of MeOH, then 50 mL of 4M HCl in dioxane was added while stirring. Reaction was checked for completion with LCMS after 20 minutes. After completion, reaction mixture was evaporated under vacuum. The residue was redissolved in 50 mL of acetonitrile and evaporated again, then coevaporated with 50 mL of acetonitrile for the second time, and dried under vacuum for at least 1 hour to yield compound 24. [00242] Compound 24 was dissolved in 25 mL of EtOH and 25 mL of water. DIPEA was added to reach pH of 5-6 (if too much DIPEA added the pH can be adjusted back with AcOH), followed by addition of NaOCN (3 eq) and stirred for 16 hours. The reaction was checked for completion with LCMS (If not completed check pH (pH should be between 5 and 7, if not adjust with AcOH), continue stirring for 24 h). Compound 25 was used directly in the next step. [00243] NaOH (10 eq) dissolved in 3 mL of water was added to the reaction mixture of compound 25 (from previous step). Reaction mixture was warmed to 50 °C while stirring. After 1 hour the reaction was checked for completion using LCMS. After completion reaction mixture was adjusted to pH to 5 with AcOH, purified by HPLC, and lyophilized. 4.17 g of compound 26 was isolated.
[00244] TFA salt of compound 26 (4.17 g, 3.36 mmol) was dissolved in 100 mL DCM, followed by addition of compound 27 (5 eq) and add good quality EDC (3 eq). Reaction mixture was stirred for 20 minutes and checked for completion using LCMS. If not completed, more EDC was added and checked again in 10-20 min. After completion, the mixture was washed with 80 mL of water. DCM solution was dried over Na2SO4 for about 2- 5 min, then evaporated the solvent under vacuum at room temperature. The crude residue then dissolved in acetonitrile/water (7/3) and purified by HPLC in 10-15 runs injecting each time about 0.5-0.7 g of mixture. Only fractions containing desired diastereomer (major diastereomer) with acceptable purity were combined to give 3.8 g of compound 28 as a white powder. The yield (from compound 8) was 44%. MS m/z 1405.5 (M+H).
[00245] To a solution of compound 18 (20 mg, 0.024 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) were added solution of compound 28 (27 mg, 0.014 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) and DIPEA (20 mg, 0.15 mmol). The reaction mixture was stirred at room temperature for 1 hour. LCMS showed the desired peak mass. The crude mixture was purified directly on reverse phase HPLC. The desired peak was combined and freeze dried. FR-VC-Duo5 was isolated as a fluffy yellowish powder. MS m/z 2050.1 (M+H). Example S3: Synthesis of Compound FR-VC-IODO-Duo5.
[00246] To a solution of compound 29 (1.85 g, 5.50 mmol) in 10 mL DMF, were added DIPEA (1.20 g, 8.80 mmol) and HATU (2.30 g, 6.05 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 13), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 30). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00247] To a solution of compound 14 (2.30 g, 5.50 mmol) in 10 mL DMF, were added DIPEA (1.20 g, 8.80 mmol) and HATU (2.30 g, 6.05 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 30), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 31). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00248] To a solution of compound 2 (2.20 g, 5.50 mmol) in 10 mL DMF, were added DIPEA (1.20 g, 8.80 mmol) and HATU (2.30 g, 6.05 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 31), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 32). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00249] To a solution of compound 4 (3.40 g, 5.50 mmol) in 10 mL DMF, were added DIPEA (1.20 g, 8.80 mmol) and HATU (2.30 g, 6.05 mmol), and the resulting mixture was
stirred for 5 minutes before it was added to the peptide vessel (which contained compound 32), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 33). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). [00250] To a solution of compound 6 (1.16 g, 2.86 mmol) in 10 mL DMF, were added DIPEA (1.20 g, 8.80 mmol) and HATU (2.30 g, 6.05 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 33), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 34). The resin was then treated with 2% hydrazine in DMF (10 mL). The mixture was allowed to react for 15 minutes. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each) and dichloromethane (3 times 10 mL each).
T C P 0 0-3 2 1 0-3 2 2 1 0.o N t e k co D y e n r ott A 011
[00251] A water solution (1 mL) of ascorbic acid (0.17 g, 1.00 mmol) was added to a DMSO/water (1:1, 1 mL) solution of CuSO4 (0.037 g, 0.15 mmol) and compound 36 (0.13 g, 0.25 mmol) and stirred for 5 minutes. After 5 minutes, the solution was added to a stirred suspension of compound 34 (from reaction above) and compound 35 (0.67 g, 1.25 mmol) in 10 mL DMF. The reaction mixture was stirred for 1 day, the resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each) and dichloromethane (3 times 10 mL each). [00252] Resin deprotection: The resin was treated with peptide deprotection mixture (TFA, water, triisopropyl silane (TIPS), 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol) (SDBS), 94/2/2/2) at 45oC for 30 minutes before it was filtered. The resulting TFA mixture was diluted with cold ether and the suspension was centrifuged with 5 minutes. The ether solution was discarded and the solid was redissolved in minimal amount of acetonitrile/water (6/4) mixture. The crude product was purified directly on reverse phase HPLC and desired product peak was combined and freeze dried. Compound 37 was isolated as a fluffy yellowish powder. MS m/z 1458.5 (M+H).
[00253] To a solution of compound 37 (20 mg, 0.014 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) were added solution of 28 (20 mg, 0.014 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) and DIPEA (20 mg, 0.15 mmol). The reaction mixture was stirred at room temperature for 1 hour. LCMS showed the desired peak mass. The crude mixture was purified directly on reverse phase HPLC. The desired peak was combined and freeze dried. FR-VC-IODO-Duo5 was isolated as a fluffy yellowish powder. MS m/z 2679.1 (M+H). Example S4: Synthesis of Compound FR-PL-MMAE.
[00254] S-Trityl-L-cysteine-2-chlorotrityl resin Chem Impex, compound 1, (0.3 - 1.1 meq/g, 200 - 400 mesh, 2 g, 2.2 mmol) was suspended in DMF ( 10 mL) in a peptide synthesis vessel. To a solution of compound 14 (1.80 g, 4.4 mmol) in DMF (10 mL) and DIPEA (1.14 g, 8.8 mmol) was added HATU (2.25 g, 5.94 mmol) and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (with compound 1) and nitrogen was bubbled through the resulting mixture for 2 hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 38). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). [00255] To a solution of compound 39 (4.30 g, 6.6 mmol) in 10 mL DMF were added DIPEA (1.14 g, 8.8 mmol) and HATU (3.21 g, 6.60 mmol) and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 38), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 40). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). [00256] To a solution of compound 14 (1.80 g, 4.4 mmol) in 10 mL DMF were added DIPEA (1.14 g, 8.8 mmol) and HATU (2.25 g, 5.94 mmol) and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound
40). The resulting mixture was bubbled with nitrogen for 2 hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 41). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). [00257] To a solution of compound 4 (2.0 g, 4.4 mmol) in 10 mL DMF were added DIPEA (1.14 g, 8.8 mmol) and (2.25 g, 5.94 mmol) and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 41), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 42). The resin was then treated with 10% piperidine in DMF. The mixture was allowed to react for 1 hour. The resin was then washed with DMF (3 times 10 mL each), and isopropyl alcohol (3 times 10 mL each). [00258] To a solution of compound 6 (0.98 g, 2.42 mmol) in 10 mL DMF were added DIPEA (1.20 g, 8.80 mmol) and HATU (2.25 g, 5.94 mmol), and the resulting mixture was stirred for 5 minutes before it was added to the peptide vessel (which contained compound 42), and nitrogen was bubbled through the resulting mixture for two hours. The reaction mixture was then filtered and washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each), and then DMF (3 times 10 mL each). The completion of the reaction was determined by Kaiser test (formation of compound 43). The resin was then treated with 2% hydrazine in DMF (10 mL). The mixture was allowed to react for 15 minutes. The resin was then washed with DMF (3 times 10 mL each), isopropyl alcohol (3 times 10 mL each) and dichloromethane (3 times 10 mL each). [00259] Resin deprotection: The resin was treated with peptide deprotection mixture (TFA, water, triisopropyl silane (TIPS), 2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-1-thiol) (SDBS), 94/2/2/2) at 45oC for 30 minutes before it was filtered. The resulting TFA mixture was diluted with cold ether and the suspension was centrifuged with 5 minutes. The ether solution was discarded and the solid was redissolved in minimal amount of acetonitrile/water (6/4) mixture. The crude product was purified directly on reverse phase HPLC and desired
product peak was combined and freeze dried. Compound 43 was isolated as a fluffy yellowish powder. MS m/z 931.9 (M+H).
[00260] Compound 9 (29 mg, 0.084 mmol) was added to a DMF solution of MMAE compound 44 (50 mg, 0.070 mmol), DIPEA (100 mg, 0.4 mmol), HOBT (81 mg, 0.6 mmol), and DMAP (50 mg) at room temperature. The resulting mixture was stirred at 50oC for 5 hours and LCMS showed a major desired product peak. The crude reaction mixture was purified directly on reverse phase HPLC and the desired product peak was combined and freeze dried. Compound 45 was isolated as a fluffy white powder. MS m/z 931.5 (M+H).
T C P 0 0-3 2 1 0-3 2 2 1 0.o N t e k co D y e n r ott A 811
[00261] To a solution of compound 43 (28 mg, 0.036 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) were added solution of compound 45 (22 mg, 0.031 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) and DIPEA (20 mg, 0.15 mmol). The reaction mixture was stirred at room temperature for 1 hour. LCMS showed the desired peak mass. The crude mixture was purified directly on reverse phase HPLC. The desired peak was combined and freeze dried. FR-PL-MMAE was isolated as a fluffy yellowish powder. MS m/z 1750.8 (M+H). Example S5: Synthesis of Compound FR-VC-PAB-MMAE.
T C P 0 0-3 2 1 0-3 2 2 1 0.oN t e k co D y e n r ott A 021
[00262] To a solution of compound 7 (16 mg, 0.023 mmol) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) were added solution of compound 46 (20 mg, 0.015 mmol) (Catalog #SET0201, Levena Biopharma, Suzhou, China) in nitrogen degassed acetonitrile/water mixture (6:4, 0.5 mL) and DIPEA (20 mg, 0.15 mmol). The reaction mixture was stirred at room temperature for 1 hour. LCMS showed the desired peak mass. The crude mixture was purified directly on reverse phase HPLC. The desired peak was combined and freeze dried. FR-PL-MMAE was isolated as a fluffy yellowish powder. MS m/z 2006.0 (M+H).
T C P 0 0-3 2 1 0-3 2 2 1 0.o N t e k co D y e n r ott A 221
[00263] HATU (84 mg, 0.22 mmol) was added to a stirred solution of (s)-4-(tert- butoxycarbonyl)morpholine-3-carboxylic acid (48 mg, 0.20 mmol) and DIPEA (85 mg, 0.66 mmol) in DMF (3 mL). After 2 minutes, exatecan mesylate (100 mg, 0.18 mmol) was added to the reaction solution. The resulting mixture was stirred for 1 hour and the LCMS showed the desired product mass. [00264] The reaction mixture was poured into a separatory funnel with EtOAc and saturated NH4Cl solution. After mixture and separation, the organic phase was washed with brine, dried with Na2SO4, filtered, and evaporated to give crude product as oil. [00265] The crude acylated exatecan product was dissolved in CH2Cl2 (3 mL) and TFA (3 mL) was added dropwise. After 1 hour at room temperature, LCMS showed the desired Boc- deprotected product. The solution was evaporated and azeotrope-distilled with toluene to give the Boc-deprotected amine as TFA salt which was used in the following step without further purification. [00266] The above amine was dissolved in DMF and (9H-fluoren-9-yl)methyl ((S)-3- methyl-1-(((S)-1-((4-((((4-nitrophenoxy)carbonyl)oxy)methyl)phenyl)amino)-1-oxo-5- ureidopentan-2-yl)amino)-1-oxobutan-2-yl)carbamate (98 mg, 0.18 mmol) and DIPEA (85 mg, 0.66 mmol) were added to the solution. After 3 hours at room temperature, LCMS showed full conversion to the desired product. Diethyl amine (200 mg) was added to deprotect the FMOC group. After 3 hours, the solution was purified by reverse phase LCMS using acetonitrile and water as eluent. The desired fractions were combined and freeze dried to obtain a white fluffy powder. [00267] bis(2,5-dioxopyrrolidin-1-yl) 4,7,10,13-tetraoxahexadecanedioate (98 mg, 0.20 mmol) in DMF was added to the above exatecan intermediate and DIPEA (85 mg) in DMF. After 3 hours at room temperature, LCMS showed complete conversion to the desired acylated product. The mixture was purified by reverse phase LCMS using acetonitrile and water as eluent. The desired fractions were combined and freeze dried to obtain a white fluffy powder. MS m/z 1327.5 (M+H).
[00268] To a solution of compound 37 (35 mg, 0.024 mmol) in nitrogen-degassed acetonitrile/water mixture (6:4, 0.5 mL) were added solution of compound 54 (32 mg, 0.024 mmol) in nitrogen-degassed acetonitrile/water mixture (6:4, 0.5 mL) and DIPEA (20 mg, 0.15 mmol). The reaction mixture was stirred at room temperature for 1 hour. LCMS showed the desired peak mass. The crude mixture was purified directly on reverse phase HPLC. The desired peak was combined and freeze dried. FR-VC-PAB-MMAE was isolated as a fluffy yellowish powder. MS m/z 2670 (M+H). Example B1: In vitro Efficacy of Duo5 and MMAE. [00269] The in vitro efficacies of Duo5 (the synthesis of which has been previously described in US Patent 10,590,165, which is incorporated herein in its entirety and MMAE were evaluated using the following human cancer cell lines: KB (FR+) and A549 (FR-), purchased from the American Type Culture Collection (ATCC; Manassas, VA) and routinely cultured in folic acid free RPMI 1640 medium (Catalog #27016021; Thermo Fisher Scientific; Waltham, MA) and RPMI 1640 medium (ATCC modification) (Catalog #A1049101; Thermo Fisher Scientific; Waltham, MA) supplemented with 10% fetal bovine serum (FBS; Catalog #F4135; Sigma-Aldrich; St. Louis, MO), respectively, and maintained at 37°C with 5% CO2 in a humidified environment. [00270] Tumor cells were washed with Dulbecco’s Phosphate Buffered Saline (DPBS; Catalog #PBL01; Caisson Labs; Smithfield, UT) and harvested by detachment with TrypLE Express (Catalog #1204013; Thermo Fisher Scientific; Waltham, MA). Viable cell counts were made by Trypan blue exclusion using a Countess II automated cell counter. Cell Viability Assay: All cells were harvested and seeded into 384-well white wall flat bottom plates (Catalog #3570; Corning) at a density of 3,000 cells/well in folic acid free RPMI 1640 medium or RPMI 1640 medium (ATCC modification) supplemented with 10% fetal bovine serum (complete growth media). Plates were maintained at 37°C overnight to allow cells to adhere to the plate. The outer wells of plates contained complete growth media only. Working solutions of test articles were prepared at 100X final concentrations with 10-fold serial dilutions in DMSO and subsequently diluted at 5X final concentrations with 10-fold serial dilutions in complete growth media. Cell treatment was performed in triplicates and maintained at 37°C for 72-hour assay. After treatment, cell viability was determined by CellTiter-Glo 2.0 assay (Catalog #G9242; Promega; Madison, WI, USA) based on the manufacturer’s instructions. CellTiter Glo reagent reacts with ATP in metabolically active
cells to give a luminescent readout that is directly proportional to the number of viable cells. Briefly, plates were removed from the incubator and equilibrated to room temperature before addition of CellTiter Glo reagent. Luminescence was measured using a SpectraMax iD3 microplate reader (Molecular Devices; San Jose, CA). [00271] For Cytotoxicity assays, raw luminescence data was background subtracted with average luminescence from the wells containing medium only using Excel (Microsoft; Albuquerque, NM) and normalized to untreated controls using GraphPad Prism 9.0. Dose- response relationships and IC50 values were determined based on non-linear regression analysis of normalized data fit to a four-parameter logistic equation using GraphPad Prism 9.0. [00272] In vitro cytotoxic activities of the Duo5 and MMAE described herein were evaluated against FR-expressing KB and FR-negative A549 cancer cell lines using standard cell viability assays. As shown in FIGS.1A and 1B, Duo5 and MMAE dose-dependently reduced KB and A549 cell viability in 3-day assays. The potencies of Duo5 and MMAE in KB as determined by IC50 were similar with 0.8982 nM and 0.3707 nM, respectively. Although IC50 values of Duo5 and MMAE were higher in A549 than in KB, they inhibited cell proliferation across both cell lines in a dose-dependent manner regardless of FR expression level. [00273] Cell viability for Duo5 and MMAE are shown in FIGS. 1A and 1B and IC50 values are shown in Table 1. [00274] FIGS. 1A-B show results of an in vitro efficacy study of A) Duo5 and B) MMAE using: KB (FR+) cells and A549 (FR-) cells. Table 1: IC50 Values (nM) of Duo5 and MMAE in Human Tumor Cells
Example B2: In vitro Efficacy, Specificity, and Stability of Small Molecule-Drug Conjugates (SMDCs). [00275] SMDCs were evaluated using the following human cancer cell lines: FR-positive KB and FR-negative A549, purchased from the American Type Culture Collection (ATCC; Manassas, VA) and routinely cultured in folic acid free RPMI 1640 medium (Catalog #27016021; Thermo Fisher Scientific; Waltham, MA) and RPMI 1640 medium (ATCC modification) (Catalog #A1049101; Thermo Fisher Scientific; Waltham, MA) supplemented with 10% fetal bovine serum (FBS; Catalog #MT35011CV; Corning), respectively, and maintained at 37°C with 5% CO2 in a humidified environment. [00276] Tumor cells were washed with Dulbecco’s Phosphate Buffered Saline (DPBS; Catalog #PBL01; Caisson Labs; Smithfield, UT) and harvested by detachment with TrypLE Express (Catalog #1204013; Thermo Fisher Scientific; Waltham, MA). Viable cell counts were made by Trypan blue exclusion using a Countess or Countess II automated cell counter. Cell Viability Assay: All cells were harvested and seeded into 384-well white wall flat bottom plates (Catalog #3570; Corning) at a density of 1,000 cells/well (for 120-hour assay) or 3,000 cells/well in folic acid free RPMI 1640 medium or RPMI 1640 medium (ATCC modification) supplemented with 10% fetal bovine (complete growth media). Plates were maintained at 37°C overnight to allow cells to adhere to the plate. The outer wells of plates contained complete growth media only. Thirty minutes prior to the addition of SMDCs, the media in designated wells of KB cells were replaced with complete growth media containing 100 µM folic acid (a binding site competitor). KB cells in those designated wells were used to determine the targeting specificity of SMDCs for FR. Working solutions of test articles were prepared at 100X final concentrations with 5-fold serial dilutions in DMSO and subsequently diluted at 5X final concentrations with 5-fold serial dilutions in complete growth media (in the presence or absence of 100 µM folic acid for KB). Cell treatment was performed in triplicates and maintained at 37°C for (1) 2 hours followed by washing 3 times with complete growth media and incubating with complete growth media for another 70 hours (2-hour pulse assay); or (2) 72 hours or 120 hours (for FR-IODO-Examorpholine treatment) (72-hour assay or 120-hour assay). Cells treated with SMDCs using 72-hour assay or 120-hour assay were used to determine the stability of SMDCs in complete growth media. After treatment, cell viability was determined by CellTiter-Glo 2.0 assay (Catalog #G9242;
Promega; Madison, WI, USA) based on the manufacturer’s instructions. CellTiter Glo reagent reacts with ATP in metabolically active cells to give a luminescent readout that is directly proportional to the number of viable cells. Briefly, plates were removed from the incubator and equilibrated to room temperature before addition of CellTiter Glo reagent. Luminescence was measured using a SpectraMax iD3 microplate reader (Molecular Devices; San Jose, CA). [00277] For Cytotoxicity assays, raw luminescence data was background subtracted with average luminescence from the wells containing medium only using Excel (Microsoft; Albuquerque, NM) and normalized to untreated controls using GraphPad Prism 9.0. Dose- response relationships and IC50 values were determined based on non-linear regression analysis of normalized data fit to a four-parameter logistic equation using GraphPad Prism 9.0. [00278] Cytotoxicity, specificity, and stability of SMDCs are shown in FIGS. 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, and 8, and Tables 2 and 3. [00279] In vitro cytotoxic activities and targeting specificity of the SMDCs described herein were evaluated against FR-positive KB and FR-negative A549 cancer cell lines using standard cell viability assays. The specificity of SMDCs for FR was determined in two ways. First, as shown in FIGS. 2A, 3A (black circles), 4A (black circles), 5A (black circles), 6A (black circles), and 7A (black circles), treatment with SMDCs dose-dependently reduced KB cell viability and showed no or lower potent activity (>100X lower for FR-PEG-Duo5; >1000X lower for FR-VC-Duo5 and FR-VC-PAB-MMAE; >10X lower for FR-IODO-Duo5; and about 100X lower for FR-PL-MMAE) against A549 cells in 2-hour pulse assays. Secondly, as shown in FIGS. 3A, 4A, 5A, 6A, and 7A, treatment with SMDCs in the presence of 100 µM FA showed no or lower potent activity (>70X lower for FR-PEG-Duo5; >1000X lower for FR-VC-Duo5, FR-VC-PAB-MMAE, and FR-PL-MMAE; and >2X lower for FR-IODO-Duo5) against KB cells. Together, these data suggest that SMDCs target cells in a FR-dependent fashion since no potent activity or lower potent activity is observed when FR is absent or “blocked”. The potencies of SMDCs as determined by IC50 with 2-hour pulse assays ranging from 1.545 nM to 303.9 nM against FR-positive KB cells were observed (Table 2). [00280] IC50 Values (nM) of FA-SMDCs in Human Tumor Cells with 2-hour Pulse Assay are presented in Table 2.
Table 2: IC50 Values (nM) of FA-SMDCs in Human Tumor Cells with 2-hour Pulse Assay
[00281] FIGS. 2A-B show results of an in vitro efficacy and stability study of SMDCs using A549 (FR-) cells with: A) 2-hour pulse assay and B) 72-hour assay or 120-hour assay (for FR-IODO-Examorpholine Treatment). [00282] FIGS. 3A-B show results of an in vitro efficacy, specificity, and stability study of FR-PEG-Duo5 using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay. [00283] FIGS. 4A-B show results of an in vitro efficacy, specificity, and stability study of FR-VC-Duo5 using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay. [00284] FIGS. 5A-B show results of an in vitro efficacy, specificity, and stability study of FR-IODO-Duo5 using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay. [00285] FIGS. 6A-B show results of an in vitro efficacy, specificity, and stability study of FR-VC-PAB-MMAE using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay. [00286] FIGS. 7A-B show results of an in vitro efficacy, specificity, and stability study of FR-PL-MMAE using KB (FR+) cells with: A) 2-hour pulse assay and B) 72-hour assay. [00287] FIG. 8 shows results of an in vitro efficacy, specificity, and stability study of FR- IODO-Examorpholine using KB (FR+) cells with 120-hour assay.
[00288] In vitro stability of the SMDCs described herein was evaluated with 72-hour assay or 120-hour assay against FR-positive KB and FR-negative A549 cancer cell lines using standard cell viability assays. As shown in FIGS. 2B, 3B, 4B, 5B, 6B, 7B, and 8, treatment with FR-VC-Duo5, FR-IODO-Duo5, FR-VC-PAB-MMAE, and FR-IODO-Examorpholine showed FR-dependent cytotoxicity with higher potencies (>1000X higher for FR-VC-Duo5, >60X higher for FR-IODO-Duo5, >18X higher for FR-VC-PAB-MMAE, and >26X higher for FR-IODO-Examorpholine) in the presence of FR or in the absence of 100 µM FA, while treatment with FR-PEG-Duo5 and FR-PL-MMAE showed cytotoxicity regardless of FR expression level or the presence of free FA. These data indicate that FR-VC-Duo5, FR- IODO-Duo5, FR-VC-PAB-MMAE, and FR-IODO-Examorpholine are more stable in complete growth media than FR-PEG-Duo5 or FR-PL-MMAE. The potencies of SMDCs as determined by IC50 with 72-hour assays or 120-hour assay ranging from 0.5403 nM to 31.42 nM against FR-positive KB cells were observed (Table 3). [00289] IC50 Values (nM) of FA-SMDCs in Human Tumor Cells with 72-hour Assay are presented in Table 3. Table 3: IC50 Values (nM) of FA-SMDCs in Human Tumor Cells with 72-hour Assay or 120-hour Assay (for FR-IODO-Examorpholine Treatment)
Example B3: Mouse Pharmacokinetics (PK) for FR-VC-IODO-Duo5. [00290] FR-VC-IODO-Duo5 and Duo5 are both dissolved as standard solution in DMSO (10 mM). The dosing formulation consists of 1% DMSO and 99% PBS. The dosing level was 1 mg/Kg. [00291] 30 male ICR mice was used in the study and the FR-VC-IODO-Duo5 was injected via IV route. The blood was sampled at the following time points: 0.5, 2, 4, 6, 8, 24, 48, 72 and 120 hours post dose. The sampled blood was treated with EDTA-K2 and 1 molar citric acid solution to denature proteases in serum. [00292] LCMS analysis was performed to monitor the serum level of FR-VC-IODO-Duo5 and Duo5. The result of the PK study is presented in FIG. 9, Table 4, and Table 5. Table 4: Individual and mean plasma concentration-time data of FR-VC-IODO-Duo5 after an IV dose of FR-VC-IODO-Duo5 at 1 mg/kg to male ICR mouse (N=30/group)
LLOQ is 0.2 ng/mL for Duo5 or FR-VC-IODO-Duo5 in mouse plasma. NA: Not available. BLQ = Below the lower limit of quantification (LLOQ) If the adjusted rsq (linear regression coefficient of the concentration value on the terminal phase) is less than 0.9, T1/2 might not be accurately estimated. No abnormal clinical sign was observed during the entire in-life study. Table 5: Individual and mean plasma concentration-time data of Duo5 after an IV dose of Duo5 at 1 mg/kg to male ICR mouse (N=30/group)
[00293] Although the foregoing disclosure has been described in some detail by way of illustration and example for purposes of clarity of understanding, the descriptions and examples should not be construed as limiting the scope of the disclosure. Section headings are provided for the convenience of the reader and do not limit the scope of the disclosure.
The disclosures of all patent and scientific literature cited herein are expressly incorporated herein in their entirety by reference. To the extent that any material incorporated by reference is inconsistent with the express content of this disclosure, the express content controls.
Claims
2. The compound or a pharmaceutically acceptable salt thereof of claim 1, wherein L is a bond, -C(O)-, -NH-, Amino Acid Unit, Peptoid, –(CH2CH2O)n–, –(CH2)n–, –(4-aminobenzyloxycarbonyl)–, –(C(O)CH2CH2C(O))–, –(C(O)CH2CH2NH)–,
thereof; wherein n is an integer from 1 to 24; and each R2 and R3 is independently H or substituted or unsubstituted alkyl.
6. The compound or a pharmaceutically acceptable salt thereof of any one of claims 1-5, wherein HL is a cholesterol-like half-life extender or albumin binder half-life extender.
9. The compound or a pharmaceutically acceptable salt thereof of any one of claims 1-8, wherein D is a tubulin inhibitor or disruptor, kinase inhibitor, DNA damaging agent, transcription inhibitors, or proteolysis-targeting chimera (PROTAC).
10. The compound or a pharmaceutically acceptable salt thereof of claim 9, wherein D is a tubulin inhibitor.
11. The compound or a pharmaceutically acceptable salt thereof of any one of claims 1-9, wherein D is a pyrrolobenzodiazepine, duocarmycin, anthracycline, maytansinoid, auristatin, calicheamicin, camptothecin, RNA polymerase II inhibitor, topoisomerase I inhibitor, tyrosine kinase inhibitor, EG5 inhibitor, or MEK inhibitor.
12. The compound or a pharmaceutically acceptable salt thereof of claim 11, wherein D is an auristatin.
13. The compound or a pharmaceutically acceptable salt thereof of claim 11, wherein D is MMAE, MMAF, Duo5, PNU, SN-38, irinotecan, amatoxin, maytansine, exatecan, trametinib, abemaciclib, palbociclib, or examorpholine.
14. The compound or a pharmaceutically acceptable salt thereof of claim 13, wherein D is Duo5.
15. The compound or a pharmaceutically acceptable salt thereof of claim 13, wherein D is MMAE.
16. The compound or a pharmaceutically acceptable salt thereof of claim 13, wherein D is examorpholine.
17. The compound or pharmaceutically acceptable salt thereof of any one of claims 1-16, wherein the compound is:
T C P 0 0-3 2 1 0-3 2 2 1 0.oN t e k co D y e n r ott A 241
T C P 0 0-3 2 1 0-3 2 2 1 0.o N t e k co D y e n r ott A 341
18. The compound or pharmaceutically acceptable salt thereof of any one of claims 1-17, for use in therapy.
19. The compound or pharmaceutically acceptable salt thereof of claim 18, for use in treating a FR-expressing cancer, optionally wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer.
20. A method of treating a FR-expressing cancer in a subject, comprising administering the compound or pharmaceutically acceptable salt thereof of any one of claims 1-17 to a subject in need thereof.
21. Use of the compound or pharmaceutically acceptable salt thereof of any one of claims 1- 17 for the manufacture of a medicament.
22. Use of the compound or pharmaceutically acceptable salt thereof of any one of claims 1- 17 for the manufacture of a medicament for treating a FR-expressing cancer, optionally wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer.
23. The compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of claims 19, 20, or 22, wherein the FR-expressing cancer is an epithelial-derived tumor.
24. The compound or pharmaceutically acceptable salt thereof for use, use, or method of claim 23, wherein the epithelial-derived tumors are ovarian, uterine, breast, endometrial, pancreatic, renal, lung, colorectal, or brain tumors.
25. The compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of claims 19, 20, or 22, wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC) or ovarian cancer.
26. The compound or pharmaceutically acceptable salt thereof for use, use, or method of any one of claims 19, 20, or 22-25, wherein the FR-expressing cancer is in a mammal, optionally wherein the mammal is a human.
27. A method of inhibiting proliferation of a FR-expressing cell, comprising contacting the FR-expressing cell with the compound or pharmaceutically acceptable salt thereof of any one of claims 1-17.
28. The use of claim 21, wherein the medicament is for inhibiting proliferation of a FR- expressing cell.
29. The compound or pharmaceutically acceptable salt thereof of any one of claims 1-17, for use in inhibiting proliferation of a FR-expressing cell.
30. The method, use, or compound or pharmaceutically acceptable salt thereof for use of any one of claims 27-29, wherein the FR-expressing cell is a FR-expressing cancer cell, optionally wherein the FR-expressing cancer is non-small cell lung carcinoma (NSCLC), lung cancer, mesothelioma, or ovarian cancer.
31. The method, use, or compound or pharmaceutically acceptable salt thereof for use of any one of claims 27-29, wherein the FR-expressing cell is a FR-expressing non-small cell lung carcinoma (NSCLC) cell or FR-expressing ovarian cell.
32. A pharmaceutical composition comprising the compound or pharmaceutically acceptable salt thereof of any one of claims 1-17, and a pharmaceutically acceptable excipient.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263392066P | 2022-07-25 | 2022-07-25 | |
US63/392,066 | 2022-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024025845A1 true WO2024025845A1 (en) | 2024-02-01 |
Family
ID=87929276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2023/028509 WO2024025845A1 (en) | 2022-07-25 | 2023-07-24 | Folate-conjugated drugs and uses thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024025845A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013024035A1 (en) * | 2011-08-17 | 2013-02-21 | Merck & Cie | Folate conjugates of albumin-binding entities |
WO2014062697A2 (en) * | 2012-10-16 | 2014-04-24 | Endocyte, Inc. | Drug delivery conjugates containing unnatural amino acids and methods for using |
WO2021142145A1 (en) * | 2020-01-07 | 2021-07-15 | Gardeen Spencer S | Targeted steroid conjugates |
-
2023
- 2023-07-24 WO PCT/US2023/028509 patent/WO2024025845A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013024035A1 (en) * | 2011-08-17 | 2013-02-21 | Merck & Cie | Folate conjugates of albumin-binding entities |
WO2014062697A2 (en) * | 2012-10-16 | 2014-04-24 | Endocyte, Inc. | Drug delivery conjugates containing unnatural amino acids and methods for using |
WO2021142145A1 (en) * | 2020-01-07 | 2021-07-15 | Gardeen Spencer S | Targeted steroid conjugates |
Non-Patent Citations (3)
Title |
---|
HALLER STEPHANIE ET AL: "Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy", NUCLEAR MEDICINE AND BIOLOGY, vol. 42, no. 10, 1 October 2015 (2015-10-01), US, pages 770 - 779, XP093102698, ISSN: 0969-8051, DOI: 10.1016/j.nucmedbio.2015.06.006 * |
NAKHAEI ELNAZ ET AL: "Design of a ligand for cancer imaging with long blood circulation and an enhanced accumulation ability in tumors", MEDCHEMCOMM, vol. 8, no. 6, 1 January 2017 (2017-01-01), United Kingdom, pages 1190 - 1195, XP093102375, ISSN: 2040-2503, DOI: 10.1039/C7MD00102A * |
YIWU ZHENG ET AL: "Stabilizing p-Dithiobenzyl Urethane Linkers without Rate-Limiting Self-Immolation for Traceless Drug Release", CHEMMEDCHEM COMMUNICATIONS, WILEY-VCH, DE, vol. 14, no. 12, 16 May 2019 (2019-05-16), pages 1196 - 1203, XP072418567, ISSN: 1860-7179, DOI: 10.1002/CMDC.201900248 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6703632B2 (en) | Cytotoxic benzodiazepine derivative | |
CA3051737C (en) | Low molecular weight drug conjugates for binding to carbonic anhydrase ix | |
CN110960537B (en) | Combination of Bcl-2/Bcl-xL inhibitor and chemotherapeutic drug and application thereof | |
US20250205350A1 (en) | Antibody-Drug Conjugates and Uses Thereof | |
US20240181073A1 (en) | Antibody-Drug Conjugates Comprising an Anti-BCMA Antibody | |
ES2922898T3 (en) | Multifunctional inhibitors of the MEK/PI3K and mTOR/MEK/PI3K biological pathways and therapeutic methods using the same | |
WO2023144379A1 (en) | High-affinity ligands of fibroblast activation protein for targeted delivery applications | |
CA2922542A1 (en) | Arylquinoline and analog compounds and use thereof to treat cancer | |
ES2313365T3 (en) | T CELL LYMPHOMA TREATMENT USING 10-PROPARGIL-10-DEAZAAMINOPTERINA. | |
EP3773544B1 (en) | Phospholipid-flavagline conjugates and methods of using the same for targeted cancer therapy | |
WO2024025845A1 (en) | Folate-conjugated drugs and uses thereof | |
WO2024211236A2 (en) | Antibody-drug conjugates and uses thereof | |
JP7223502B2 (en) | Pharmaceutical composition | |
Vlková et al. | Synthesis and biological activity evaluation of novel 2, 6, 9-trisubstituted purine conjugates as potential protein kinases inhibitors | |
WO2024211234A1 (en) | Antibody-drug conjugates and uses thereof | |
WO2023217133A1 (en) | Antibody-drug conjugates comprising an anti-folr1 antibody | |
CA3133798A1 (en) | Non-hydrolyzable, non-cleavable, stable linkers for precision therapeutics and uses thereof | |
WO2024211235A1 (en) | Antibody-drug conjugates and uses thereof | |
TW202302154A (en) | Antibody-drug conjugates comprising an anti-bcma antibody | |
HK40016287B (en) | Combination of bcl-2/bcl-xl inhibitors and chemotherapeutic agent and use thereof | |
HK40016287A (en) | Combination of bcl-2/bcl-xl inhibitors and chemotherapeutic agent and use thereof | |
WO2025024681A1 (en) | Ire1alpha inhibitors and uses thereof | |
US20250129068A1 (en) | 4-(2-pyrazolo[3,4-b]pyridine-5-yl)ethynyl-2-pyridine derivatives useful as gcn2 inhibitors | |
JP2022145661A (en) | PD-1 and/or PD-L1 inhibitors | |
WO2017079003A1 (en) | Deuterated compounds for treating blood cancers, and compositions and methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23764742 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |