WO2024024802A1 - Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor - Google Patents
Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor Download PDFInfo
- Publication number
- WO2024024802A1 WO2024024802A1 PCT/JP2023/027262 JP2023027262W WO2024024802A1 WO 2024024802 A1 WO2024024802 A1 WO 2024024802A1 JP 2023027262 W JP2023027262 W JP 2023027262W WO 2024024802 A1 WO2024024802 A1 WO 2024024802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cathode
- solid electrolytic
- resin
- capacitor
- electrolytic capacitor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/055—Etched foil electrodes
Definitions
- the present invention relates to an electrolytic capacitor having a structure in which a capacitor element in which a dielectric layer and a solid electrolyte layer are formed on a valve metal body and a cathode film are laminated.
- the solid electrolytic capacitor of Patent Document 1 includes an element stack in which a first layer each functions as a capacitor and a second layer each functions as a cathode.
- the first layer consists of a valve metal body with a dielectric layer formed on its surface, and a solid electrolyte layer provided on the dielectric layer.
- the second layer consists of metal foil.
- a carbon paste layer is formed between the first layer and the second layer, that is, between the solid electrolyte layer and the metal foil.
- the solid electrolyte layer and the metal foil are electrically connected and physically adhered to each other by a carbon paste layer.
- an object of the present invention is to provide a solid electrolytic capacitor that suppresses cathode corrosion and internal peeling insulation.
- the solid electrolytic capacitor of the present invention includes a plurality of capacitor elements and a plurality of cathodes.
- Each of the plurality of capacitor elements includes a membrane-like valve metal body, a dielectric layer, and a solid electrolyte layer.
- the cathode includes a second resin base material and a second conductive material.
- the plurality of capacitor elements and the plurality of cathodes are alternately stacked with the solid electrolyte layer and the cathode in contact with each other.
- the region where the solid electrolyte layer and the cathode are in contact has a portion where the solid electrolyte layer and the cathode coexist.
- the solid electrolyte layer and the cathode are mainly made of the same type of resin, and the solid electrolyte layer and the cathode coexist at the contact portion between them. Therefore, the contact area between the solid electrolyte layer and the cathode is increased, and the adhesive strength between the solid electrolyte layer and the cathode is improved. Furthermore, the formation of distinct interfaces due to differences in physical properties is suppressed, and peeling is suppressed. Furthermore, since the cathode is not a metal foil, corrosion is suppressed.
- FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 3(A) is a plan view of the capacitor element, and
- FIG. 3(B) is a side sectional view of the capacitor element.
- FIG. 4 is a cross-sectional view showing the structure of the cathode film.
- FIG. 5 is an enlarged cross-sectional view of the contact portion between the outer layer CP and the cathode film.
- FIG. 6 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to the present embodiment.
- FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 3(A) is a
- FIG. 7(A) is an external perspective view of a capacitor element sheet
- FIG. 7(B) is an external perspective view of a cathode sheet
- FIG. 8 is an external perspective view of a laminate (sheet-type capacitor laminate) of a capacitor element sheet and a cathode sheet.
- FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along a plane perpendicular to the top, bottom, and end surfaces of the element body of the solid electrolytic capacitor.
- FIG. 2 in order to describe the configuration in an easy-to-understand manner, dimensions in each direction are appropriately emphasized, and in particular, dimensions in the height direction (z-axis direction in the figure) are emphasized (exaggerated).
- the solid electrolytic capacitor 10 includes an element body 11, a resin electrode 71, a resin electrode 72, an external electrode 81, and an external electrode 82.
- the element body 11 has a rectangular parallelepiped shape and has a top surface, a bottom surface, an end surface 111, an end surface 112, and two side surfaces.
- the element body 11 includes a plurality of capacitor elements 20, a plurality of cathode films 30, an insulating resin 50, and an insulator layer 500.
- FIG. 3(A) is a plan view of the capacitor element
- FIG. 3(B) is a side sectional view of the capacitor element
- FIG. 3(B) is a cross-sectional view taken along a plane perpendicular to the flat membrane surface and the end surface of the capacitor element.
- the capacitor element 20 includes an anode electrode 21, an inner layer CP22, and an outer layer CP23.
- a solid electrolyte layer SEL is configured by the inner layer CP22 and the outer layer CP23.
- the anode electrode 21 has a flat film shape and has an end surface 211, an end surface 212, a flat film surface 213, and a flat film surface 214. Although illustration of the detailed structure is omitted in FIG. 3, the anode electrode 21 includes a large number of holes recessed from the flat membrane surfaces 213 and 214. In other words, the portion of the anode electrode 21 having a predetermined thickness near the flat membrane surfaces 213 and 214 is a porous body in a porous state. The ratio of the thicknesses of the porous body and core metal portion on one side of the anode electrode 21 to the thickness of the porous body on the other side is approximately 1:1:1. Dielectric layer 210 covers the outer surface of anode electrode 21 .
- the dielectric layer 210 is schematically shown as covering the macroscopic surface (flat membrane surfaces 213 and 214) of the anode electrode 21. has been done. However, in reality, the dielectric layer 210 covers not only the macroscopic surface (flat membrane surfaces 213 and 214) of the anode electrode 21 but also the inner surfaces of the many holes in the anode electrode 21.
- the anode electrode 21 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, or silicon, or an alloy containing these metals. Note that the anode electrode 21 is preferably made of aluminum or an aluminum alloy. The anode electrode 21 may be any valve metal body that exhibits a so-called valve action.
- the inner layer CP22 covers the surface of the dielectric layer 210.
- the inner layer CP22 is made of a conductive polymer.
- the inner layer CP22 is filled into the fine recesses of the porous portion.
- the outer layer CP23 covers the surface of the inner layer CP22.
- the outer layer CP23 is a layer formed to cover the entire dielectric layer 210 after the inner layer CP22 filling the fine recesses of the porous portion is formed.
- the outer layer CP23 is made of the same material as the inner layer CP22.
- the outer layer CP23 only needs to contain a resin material, and may be made of a different material (including composition) from the inner layer CP22.
- the insulator layer 500 is formed near the end surfaces 211 and 212 of the flat film surfaces 213 and 214 of the anode electrode 21.
- the insulator layer 500 is a frame and regulates the formation area of the inner layer CP22 and the outer layer CP23. Thereby, for example, the inner layer CP22 and the outer layer CP23 do not reach the end surface 211 of the anode electrode 21.
- the anode electrode 21 and the solid electrolyte layer face each other with the dielectric layer 210 in between, and the capacitor element 20 is a capacitor having a predetermined capacitance.
- FIG. 4 is a cross-sectional view showing the structure of the cathode film.
- the cathode film 30 includes an insulating base material 31 and a plurality of conductive fillers 32.
- the insulating base material 31 is a film with a predetermined thickness and includes a resin material.
- the conductive filler 32 is metal particles. Note that the conductive filler 32 is not limited to metal, but is preferably metal.
- the cathode film 30 has electrical conductivity while the main body has insulating properties. Further, since the cathode film 30 is not a metal foil, corrosion due to moisture or the like is suppressed.
- the insulating base material 31 of the cathode film 30 may be thermosetting or thermoplastic, each having its own advantages. Note that the advantages of each will be described later.
- the plurality of capacitor elements 20 and the plurality of cathode films 30 are arranged such that their flat film surfaces are substantially parallel to the top and bottom surfaces of the element body 11.
- the plurality of capacitor elements 20 and the plurality of cathode films 30 are alternately stacked in a direction perpendicular to the top surface and the bottom surface (height direction of the element body 11 (z-axis direction in the figure)). Note that in FIG. 2, the number of the plurality of capacitor elements 20 is three, and the number of the plurality of cathode films 30 is four, but the number is not limited to this.
- the capacitor element 20 and the cathode film 30, which are adjacent to each other in the stacking direction, are in contact with each other. More specifically, the flat film surface of the cathode film 30 contacts the outer surface 230 of the outer layer CP23 of the capacitor element 20.
- the end faces 211 of the plurality of capacitor elements 20 are exposed to the outside of the element body 11 from the end face 111 of the element body 11. Further, the end faces 311 of the plurality of cathode films 30 are exposed to the outside of the element body 11 from the end face 112 of the element body 11 .
- the resin electrode 71 contacts the end surface 111 of the element body 11 and covers the end surface 111. Thereby, the resin electrode 71 is connected to the end surfaces 211 of the plurality of capacitor elements 20.
- the external electrode 81 has a laminated structure of an electrode film 811 and an electrode film 812.
- the electrode film 811 covers the outer surface of the resin electrode 71, and the electrode film 812 covers the outer surface of the electrode film 811.
- the resin electrode 71 and the external electrode 81 constitute a first terminal conductor.
- the resin electrode 72 contacts and covers the end surface 112 of the element body 11 . Thereby, the resin electrode 72 is connected to the end surface 311 of the plurality of cathode films 30.
- the external electrode 82 has a laminated structure of an electrode film 821 and an electrode film 822.
- the electrode film 821 covers the outer surface of the resin electrode 72, and the electrode film 822 covers the outer surface of the electrode film 821.
- the resin electrode 72 and the external electrode 82 constitute a second terminal conductor.
- FIG. 5 is an enlarged cross-sectional view of the contact portion between the outer layer CP and the cathode film.
- the outer layer CP23 and the cathode film 30 coexist in the region 323 where the outer layer CP23 and the cathode film 30 are in contact.
- “mixed” means that the ratio of the resin part based on the outer layer CP23 and the resin part based on the cathode film 30 in the lamination direction (z-axis direction in FIG. 5) of the outer layer CP23 and the cathode film 30 is In the plane perpendicular to the direction (the two-dimensional region determined by the x-axis direction and the y-axis direction in FIG. 5), the area is not uniform, and the parts based on the outer layer CP23 and the parts based on the cathode film 30 are complicated. It's a mixed state. In other words, a resin solid solution region is formed.
- the contact area between the outer layer CP23 and the cathode film 30 is increased, and the adhesive strength is improved. Furthermore, the formation of a clear interface between the outer layer CP23 and the cathode film 30 due to physical property differences is suppressed, and interfacial peeling between the outer layer CP23 and the cathode film 30 is suppressed.
- the solid electrolytic capacitor 10 can suppress corrosion of the cathode and suppress peeling insulation between the cathode and the solid electrolyte layer.
- the resin material of the outer layer CP23 and the resin material of the cathode film 30 be completely the same, they may have similar compositions within the range that provides the above-mentioned effects.
- both the cathode film 30 and the resin electrode 72 contain a resin material (resin component). Thereby, the difference in physical properties between the cathode film 30 and the resin electrode 72 is reduced, and peeling and insulation between the cathode film 30 and the resin electrode 72 can be suppressed.
- FIG. 6 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to the present embodiment.
- FIG. 7(A) is an external perspective view of a capacitor element sheet
- FIG. 7(B) is an external perspective view of a cathode sheet.
- FIG. 8 is an external perspective view of a laminate (sheet-type capacitor laminate) of a capacitor element sheet and a cathode sheet.
- a capacitor element sheet 20M is formed (S11). As shown in FIG. 7(A), the capacitor element sheet 20M is a sheet in which a plurality of capacitor elements 20 are two-dimensionally arranged.
- the specific configuration of the plurality of capacitor elements 20 is as described above, and includes an anode electrode 21, a dielectric layer 210, an inner layer CP22, and an outer layer CP23, and an insulator layer 500 for the inner layer CP22 and the outer layer CP23 is formed. has been done.
- a cathode sheet 30M is formed (S12). As shown in FIG. 7(B), the cathode sheet 30M is a sheet in which a plurality of cathode films 30 are two-dimensionally arranged. The arrangement pitch of the plurality of cathode films 30 and the arrangement pitch of the plurality of capacitor elements 20 are the same.
- a plurality of capacitor element sheets 20M and a plurality of cathode sheets 30M are sequentially laminated and heat-pressed (S13). More specifically, the plurality of capacitor element sheets 20M are stacked so that the outer surfaces 230 of the plurality of outer layers CP23 of the plurality of outer layers CP23 of the capacitor element sheets 20M adjacent to each other in the stacking direction and the cathode film 30 portion of the cathode sheet 30M face each other and come into contact with each other.
- the plurality of cathode sheets 30M are laminated. As a result, a sheet-type capacitor laminate is formed.
- this sheet-type capacitor laminate is heated and pressurized. Due to this heating and pressurization, a portion at a predetermined depth from the contact surface between the outer layer CP23 and the cathode film 30 is deformed, and as described above, the portion based on the outer layer CP23 and the portion based on the cathode film 30 become complicated. The mixture becomes mixed (resin solid solution region: see FIG. 5).
- the sheet-type capacitor laminate is cut into pieces along cutting lines CL1 and CL2 as shown in FIG. 8 (S14).
- the cathode sheet 30M cathode film 30
- burrs generated on the cut surface can be suppressed. Thereby, undesired short circuits and the like can be suppressed.
- the singulated capacitor laminate is coated with insulating resin 50 (S15).
- the insulating resin 50 is heated and pressurized.
- the insulating resin 50 is solidified, and the element body 11 of the solid electrolytic capacitor 10 is formed.
- the thermocompression bonding of the insulating resin 50 can be performed in such a way that the portion based on the above-mentioned outer layer CP23 and the portion based on the cathode film 30 are complicated. It can be used to properly adjust the mixed state.
- Terminal conductors are formed on the end faces 111 and 112 of the element body 11 (S16). More specifically, the resin electrode 71 is formed on the end surface 111 of the element body 11, and the electrode films 811 and 812 are formed on the surface of the resin electrode 71. A resin electrode 72 is formed on the end surface 112 of the element body 11, and electrode films 821 and 822 are formed on the surface of the resin electrode 72.
- the solid electrolytic capacitor 10 can be manufactured without using a conductive adhesive between the outer layer CP 23 and the cathode film 30.
- the solid electrolytic capacitor 10 in which the adhesive strength between the outer layer CP23 and the cathode film 30 is strong and peeling insulation is suppressed can be manufactured easily and more reliably.
- the insulating base material 31 is a thermosetting resin
- the shape of the cathode film 30 is highly maintainable when it is heated and compressed and cooled, that is, after the resin is solid-dissolved. This increases the stability of adhesion between the cathode film 30 and the outer layer CP23, and increases the long-term reliability of the solid electrolytic capacitor 10.
- the insulating base material 31 is a thermosetting resin and the content rate of the conductive filler 32 is high
- the shape of the cathode film 30 is highly maintained when it is heat-pressed and cooled, that is, after the resin has dissolved into solid solution. This increases the stability of adhesion between the cathode film 30 and the outer layer CP23, and increases the long-term reliability of the solid electrolytic capacitor 10.
- the content of the conductive filler 32 is high, the strength of the cathode film 30 is high, and it can be firmly bonded even in a small resin solid solution region.
- a specific numerical value indicating whether the content rate of the conductive filler 32 is low or high can be appropriately set from the viewpoint of the fluidity and strength of the cathode film 30.
- the case where the content of the conductive filler 32 is 30% by volume or less is defined as low content of the conductive filler 32, and from the viewpoint of improving the strength, the conductive filler 32 content is defined as low.
- a case where the content rate of the conductive filler 32 is 70% by volume or more is defined as having a high content rate of the conductive filler 32. Note that these are just examples, and can be adjusted as appropriate depending on the physical properties, thickness, etc. of the insulating base material 31, and the degree of influence of the content rate of the conductive filler 32 on the fluidity or strength of the cathode film 30. It can be set as appropriate.
- the insulating base material 31 is a thermoplastic resin Since the insulating base material 31 has high fluidity during heating, the resin solid solution region becomes large (in the thickness direction) and the adhesive strength between the outer layer CP23 and the cathode film 30 becomes high. Further, additional processing on the material side is not required for heating and melting.
- Solid electrolytic capacitor 11 Element body 20: Capacitor element 20M: Capacitor element sheet 21: Anode electrode 22: Inner layer CP 23: Outer layer CP 30: Cathode film 30M: Cathode sheet 31: Insulating base material 32: Conductive filler 50: Insulating resin 71, 72: Resin electrodes 81, 82: External electrodes 111, 112: End surface 210: Dielectric layer 211, 212: End surfaces 213, 214: flat film surface 230: outer surface 311: end surface 323: region 500: insulator layer 811, 812, 821, 822: electrode film
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
本発明は、弁作用金属体に誘電体層および固体電解質層を形成したコンデンサ素子と陰極膜とを積層した構成の電解コンデンサに関する。 The present invention relates to an electrolytic capacitor having a structure in which a capacitor element in which a dielectric layer and a solid electrolyte layer are formed on a valve metal body and a cathode film are laminated.
特許文献1の固体電解コンデンサは、それぞれがコンデンサとして機能する第1層と、それぞれが陰極となる第2層とを積層した素子積層体を備える。第1層は、表面に誘電体層が形成された弁作用金属体、および、この誘電体層上に設けられた固体電解質層からなる。第2層は、金属箔からなる。 The solid electrolytic capacitor of Patent Document 1 includes an element stack in which a first layer each functions as a capacitor and a second layer each functions as a cathode. The first layer consists of a valve metal body with a dielectric layer formed on its surface, and a solid electrolyte layer provided on the dielectric layer. The second layer consists of metal foil.
第1層と第2層との間、すなわち、固体電解質層と金属箔との間には、カーボンペースト層が形成されている。固体電解質層と金属箔とは、カーボンペースト層によって、電気的に接続し、物理的に接着している。 A carbon paste layer is formed between the first layer and the second layer, that is, between the solid electrolyte layer and the metal foil. The solid electrolyte layer and the metal foil are electrically connected and physically adhered to each other by a carbon paste layer.
しかしながら、特許文献1の構成では、外部からの水分侵入等によって、金属箔からなる陰極の腐食が発生する可能性がある。また、特許文献1の構成では、金属箔と固体電解質層との線膨張係数の差から、金属箔と固体電解質層との間の熱履歴による膨張収縮応力にって剥離絶縁が生じる可能性がある。 However, in the configuration of Patent Document 1, corrosion of the cathode made of metal foil may occur due to moisture intrusion from the outside. In addition, in the configuration of Patent Document 1, due to the difference in linear expansion coefficient between the metal foil and the solid electrolyte layer, there is a possibility that peeling insulation will occur due to expansion and contraction stress due to thermal history between the metal foil and the solid electrolyte layer. be.
したがって、本発明は、陰極の腐食や内部の剥離絶縁を抑制する固体電解コンデンサを提供することを目的とする。 Therefore, an object of the present invention is to provide a solid electrolytic capacitor that suppresses cathode corrosion and internal peeling insulation.
この発明の固体電解コンデンサは、複数のコンデンサ素子、複数の陰極を備える。複数のコンデンサ素子は、膜状の弁作用金属体、誘電体層、および、固体電解質層を、それぞれに備える。陰極は、第2樹脂基材と第2導電材とを含む。複数のコンデンサ素子と複数の陰極とは、固体電解質層と陰極とが接触した状態で交互に積層されている。固体電解質層と陰極とが接触する領域は、固体電解質層と陰極とが混在する部分を有する。 The solid electrolytic capacitor of the present invention includes a plurality of capacitor elements and a plurality of cathodes. Each of the plurality of capacitor elements includes a membrane-like valve metal body, a dielectric layer, and a solid electrolyte layer. The cathode includes a second resin base material and a second conductive material. The plurality of capacitor elements and the plurality of cathodes are alternately stacked with the solid electrolyte layer and the cathode in contact with each other. The region where the solid electrolyte layer and the cathode are in contact has a portion where the solid electrolyte layer and the cathode coexist.
この構成では、固体電解質層と陰極とが同類の樹脂を主体としており、これらの接触部では固体電解質層と陰極とが混在している。したがって、固体電解質層と陰極との接触面積は大きくなり、固体電解質層と陰極との接着強度が向上する。また、物性的な差による界面が明確に生じることが抑制され、剥離が抑制される。また、陰極が金属箔でないので、腐食が抑制される。 In this configuration, the solid electrolyte layer and the cathode are mainly made of the same type of resin, and the solid electrolyte layer and the cathode coexist at the contact portion between them. Therefore, the contact area between the solid electrolyte layer and the cathode is increased, and the adhesive strength between the solid electrolyte layer and the cathode is improved. Furthermore, the formation of distinct interfaces due to differences in physical properties is suppressed, and peeling is suppressed. Furthermore, since the cathode is not a metal foil, corrosion is suppressed.
この発明によれば、陰極の腐食や内部の剥離絶縁を抑制できる。 According to this invention, corrosion of the cathode and internal peeling insulation can be suppressed.
本発明の実施形態に係る固体電解コンデンサ、および、固体電解コンデンサの製造方法について、図を参照して説明する。 A solid electrolytic capacitor and a method for manufacturing a solid electrolytic capacitor according to an embodiment of the present invention will be described with reference to the drawings.
(固体電解コンデンサ10の構成の説明)
図1は、本発明の実施形態に係る固体電解コンデンサの外観斜視図である。図2は、本発明の実施形態に係る固体電解コンデンサの構成を示す側面断面図である。図2は、固体電解コンデンサの素体の天面、底面および端面に直交する面による断面図である。なお、図2では、構成を分かり易く記載するため、各方向の寸法を適宜強調しており、特に、高さ方向(図のz軸方向)の寸法を強調(誇張)している。
(Description of the configuration of the solid electrolytic capacitor 10)
FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along a plane perpendicular to the top, bottom, and end surfaces of the element body of the solid electrolytic capacitor. In addition, in FIG. 2, in order to describe the configuration in an easy-to-understand manner, dimensions in each direction are appropriately emphasized, and in particular, dimensions in the height direction (z-axis direction in the figure) are emphasized (exaggerated).
図1、図2に示すように、固体電解コンデンサ10は、素体11、樹脂電極71、樹脂電極72、外部電極81、および、外部電極82を備える。
As shown in FIGS. 1 and 2, the solid
素体11は、直方体形状であり、天面、底面、端面111、端面112、二個の側面を有する。素体11は、複数のコンデンサ素子20、複数の陰極膜30、絶縁性樹脂50、および、絶縁体層500を備える。
The
(コンデンサ素子20)
図3(A)は、コンデンサ素子の平面図であり、図3(B)はコンデンサ素子の側面断面図である。図3(B)は、コンデンサ素子の平膜面および端面に直交する面による断面図である。
(Capacitor element 20)
FIG. 3(A) is a plan view of the capacitor element, and FIG. 3(B) is a side sectional view of the capacitor element. FIG. 3(B) is a cross-sectional view taken along a plane perpendicular to the flat membrane surface and the end surface of the capacitor element.
図3(A)、図3(B)に示すように、コンデンサ素子20は、陽極電極21、内層CP22、および、外層CP23を備える。内層CP22と外層CP23とによって、固体電解質層SELが構成される。
As shown in FIGS. 3(A) and 3(B), the
陽極電極21は、平膜状であり、端面211、端面212、平膜面213、平膜面214を有する。図3では詳細な構造の図示は割愛されているが、陽極電極21は、平膜面213、214から凹む多数の孔を備える。言い換えれば、陽極電極21における平膜面213、214の近傍の所定厚みの部分は、ポーラス状態の多孔質体である。陽極電極21の一方側の多孔質体と芯金部分と他方側の多孔質体の厚みの比は、1:1:1程度である。誘電体層210は、陽極電極21の外面を覆う。図3では陽極電極21の詳細な構造の図示が割愛されているため、誘電体層210は模式的に陽極電極21の巨視的な表面(平膜面213、214)を覆っているように図示されている。しかしながら、実際には、誘電体層210は、陽極電極21の巨視的な表面(平膜面213、214)のみならず、陽極電極21の多数の孔の内面も覆っている。
The
陽極電極21は、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、ケイ素等の金属単体、または、これらの金属を含む合金等からなる。なお、陽極電極21は、アルミニウムまたはアルミニウム合金であることが好ましい。陽極電極21は、いわゆる弁作用を示す弁作用金属体であればよい。
The
内層CP22は、誘電体層210の表面を覆う。内層CP22は、導電性高分子からなる。内層CP22は、多孔質部の細かい凹部に充填される。
The inner layer CP22 covers the surface of the
外層CP23は、内層CP22の表面を覆う。言い換えれば、例えば、外層CP23は、多孔質部の細かい凹部を充填する内層CP22が形成された後に誘電体層210全体を被覆するように形成された層である。外層CP23は、内層CP22と同様の材料からなる。外層CP23は、樹脂材料を含んでいればよく、内層CP22と異なる材料(組成も含む)であってもよい。
The outer layer CP23 covers the surface of the inner layer CP22. In other words, for example, the outer layer CP23 is a layer formed to cover the entire
絶縁体層500は、陽極電極21の平膜面213、214における端面211、212付近に形成されている。絶縁体層500は枠体であり、内層CP22および外層CP23の形成領域を規制する。これにより、例えば、内層CP22および外層CP23は、陽極電極21における端面211に達しない。
The
このような構成によって、陽極電極21と固体電解質層(内層CP22と外層CP23との積層体)とは、誘電体層210を挟んで対向し、コンデンサ素子20は、所定の静電容量を有するコンデンサとして機能する。
With this configuration, the
(陰極膜30)
図4は、陰極膜の構成を示す断面図である。図4に示すように、陰極膜30は、絶縁性基材31と、複数の導電性フィラー32とを備える。絶縁性基材31は、所定厚みの膜であり、樹脂材料を含む。導電性フィラー32は、金属粒子である。なお、導電性フィラー32は、金属に限るものではないが、金属であることが好ましい。
(Cathode film 30)
FIG. 4 is a cross-sectional view showing the structure of the cathode film. As shown in FIG. 4, the
このような構成を備えることで、陰極膜30は、主体が絶縁性を有しながら、導電性を有する。そして、陰極膜30は、金属箔でないので、水分等による腐食が抑制される。
With such a configuration, the
陰極膜30の絶縁性基材31は、熱硬化性であっても、熱可塑性であってもよく、それぞれに応じた利点を有する。なお、それぞれに利点は後述する。
The insulating
(複数のコンデンサ素子20と複数の陰極膜30との積層構造)
複数のコンデンサ素子20と複数の陰極膜30とは、それぞれの平膜面が素体11の天面および底面に略平行になるように配置される。複数のコンデンサ素子20と複数の陰極膜30とは、天面および底面に直交する方向(素体11の高さ方向(図のz軸方向))に、交互に積層される。なお、図2では、複数のコンデンサ素子20の個数は、3であり、複数の陰極膜30の個数は、4であるが、これに限るものではない。
(Laminated structure of
The plurality of
この際、互いに積層方向に隣接するコンデンサ素子20と陰極膜30とは、接触している。より具体的には、陰極膜30の平膜面は、コンデンサ素子20の外層CP23の外面230に接触する。
At this time, the
(素体11の構成)
このような複数のコンデンサ素子20と複数の陰極膜30との積層体は、絶縁性樹脂50によって覆われる。これにより、素体11が形成される。
(Configuration of element body 11)
Such a laminate of a plurality of
複数のコンデンサ素子20の端面211は、素体11の端面111から素体11の外部に露出する。また、複数の陰極膜30の端面311は、素体11の端面112から素体11の外部に露出する。
The end faces 211 of the plurality of
(端子導体の構成)
樹脂電極71は、素体11の端面111に当接し、端面111を覆う。これにより、樹脂電極71は、複数のコンデンサ素子20の端面211に接続する。外部電極81は、電極膜811と電極膜812との積層構造である。電極膜811は、樹脂電極71の外面を覆い、電極膜812は、電極膜811の外面を覆う。樹脂電極71と外部電極81とによって、第1端子導体が構成される。
(Configuration of terminal conductor)
The
樹脂電極72は、素体11の端面112に当接し、端面112を覆う。これにより、樹脂電極72は、複数の陰極膜30の端面311に接続する。外部電極82は、電極膜821と電極膜822との積層構造である。電極膜821は、樹脂電極72の外面を覆い、電極膜822は、電極膜821の外面を覆う。樹脂電極72と外部電極82とによって、第2端子導体が構成される。
The
以上の構成によって、固体電解コンデンサ10は実現される。
With the above configuration, the solid
(固体電解質層と陰極膜30との接続構成)
以上の構成において、外層CP23と陰極膜30との接触部分は、以下の構造を備える。図5は、外層CPと陰極膜との接触部分の拡大した断面図である。
(Connection configuration between solid electrolyte layer and cathode membrane 30)
In the above configuration, the contact portion between the outer layer CP23 and the
図5に示すように、外層CP23と陰極膜30とが接触する領域323は、外層CP23と陰極膜30とが混在する。ここでの混在するとは、外層CP23と陰極膜30との積層方向(図5のz軸方向)における外層CP23を元とする樹脂部分と陰極膜30を元とする樹脂部分との割合が、積層方向に直交する面(図5のx軸方向とy軸方向によって決められる二次元領域)において、一様でなく、外層CP23を元とする部分と陰極膜30を元とする部分とが入り組んで混ざり合った状態である。言い換えれば、樹脂固溶領域が形成される。
As shown in FIG. 5, in the
なお、外層CP23を構成する樹脂材料と陰極膜30を構成する樹脂材料とが同じ場合、図5の実線に示すように、明確な境界線は見えないが、実質的には、外層CP23と陰極膜30とが混在する。
Note that when the resin material that constitutes the outer layer CP23 and the resin material that constitutes the
このような構成によって、外層CP23と陰極膜30とは、接触面積が大きくなり、接着強度は向上する。さらに、外層CP23と陰極膜30とは、物性的な差による界面が明確に生じることが抑制され、外層CP23と陰極膜30との界面剥離は抑制される。
With such a configuration, the contact area between the outer layer CP23 and the
これにより、固体電解コンデンサ10は、陰極の腐食を抑制し、且つ、陰極と固体電解質層との剥離絶縁を抑制できる。なお、外層CP23の樹脂材料と陰極膜30の樹脂材料とは、完全に同じであることが好ましいが、上述の作用効果を奏する範囲内において、類似する組成のものであってもよい。
Thereby, the solid
また、複数の陰極膜30は、樹脂電極72に接続される。この構成では、陰極膜30と樹脂電極72とがともに樹脂材料(樹脂成分)を含んでいる。これにより、陰極膜30と樹脂電極72との物性的な差が軽減され、陰極膜30と樹脂電極72との剥離絶縁を抑制できる。
Further, the plurality of
(固体電解コンデンサ10の製造方法)
上述の構成からなる固体電解コンデンサ10は、例えば、次のように製造される。図6は、本実施形態に係る固体電解コンデンサの製造方法の概略フローの一例を示すフローチャートである。図7(A)は、コンデンサ素子シートの外観斜視図であり、図7(B)は、陰極シートの外観斜視図である。図8は、コンデンサ素子シートと陰極シートとの積層体(シート型コンデンサ積層体)の外観斜視図である。
(Method for manufacturing solid electrolytic capacitor 10)
The solid
コンデンサ素子シート20Mを形成する(S11)。図7(A)に示すように、コンデンサ素子シート20Mは、複数のコンデンサ素子20が二次元配列されたシートである。複数のコンデンサ素子20の具体的な構成は、上述の通りであり、陽極電極21、誘電体層210、内層CP22、および、外層CP23を備え、内層CP22および外層CP23用の絶縁体層500が形成されている。
A
陰極シート30Mを形成する(S12)。図7(B)に示すように、陰極シート30Mは、複数の陰極膜30が二次元配列されたシートである。複数の陰極膜30の配列ピッチと複数のコンデンサ素子20の配列ピッチとは同じである。
A
複数のコンデンサ素子シート20Mと複数の陰極シート30Mとを順に積層し、加熱圧着する(S13)。より具体的には、積層方向に隣り合うコンデンサ素子シート20Mの複数の外層CP23の外面230と陰極シート30Mの陰極膜30の部分とが対向して当接するように、複数のコンデンサ素子シート20Mと複数の陰極シート30Mとは積層される。これにより、シート型コンデンサ積層体が形成される。
A plurality of
そして、このシート型コンデンサ積層体に対して、加熱、加圧を行う。この加熱、加圧によって、外層CP23と陰極膜30との接触面から所定深さの部分が変形し、上述のような外層CP23を元とする部分と陰極膜30を元とする部分とが入り組んで混ざり合った状態(樹脂固溶領域:図5参照)となる。
Then, this sheet-type capacitor laminate is heated and pressurized. Due to this heating and pressurization, a portion at a predetermined depth from the contact surface between the outer layer CP23 and the
シート型コンデンサ積層体を、図8に示すような切断線CL1、CL2に沿って切断し、個片化する(S14)。この際、陰極シート30M(陰極膜30)が樹脂を基材としているので、切断面に発生するバリを抑制できる。これにより、不所望な短絡等を抑制できる。
The sheet-type capacitor laminate is cut into pieces along cutting lines CL1 and CL2 as shown in FIG. 8 (S14). At this time, since the
個片化したコンデンサ積層体を絶縁性樹脂50で被覆する(S15)。この際、絶縁性樹脂50を加熱加圧する。これにより、絶縁性樹脂50は固化、固体電解コンデンサ10の素体11は、形成される。この際、絶縁性樹脂50の加熱圧着時の温度を適宜調整すれば、絶縁性樹脂50の加熱圧着は、上述の外層CP23を元とする部分と陰極膜30を元とする部分とが入り組んで混ざり合った状態を適正調整することに利用可能である。
The singulated capacitor laminate is coated with insulating resin 50 (S15). At this time, the insulating
素体11の端面111および端面112に端子導体を形成する(S16)。より具体的には、素体11の端面111に樹脂電極71を形成し、樹脂電極71の表面に電極膜811、812を形成する。素体11の端面112に樹脂電極72を形成し、樹脂電極72の表面に電極膜821、822を形成する。
Terminal conductors are formed on the end faces 111 and 112 of the element body 11 (S16). More specifically, the
以上のような製造方法を用いることによって、外層CP23と陰極膜30との間に導電性接着剤を用いずに、固体電解コンデンサ10を製造できる。そして、外層CP23と陰極膜30との接着強度が強く、剥離絶縁を抑制する固体電解コンデンサ10を、容易に且つより確実に製造できる。
By using the manufacturing method described above, the solid
(陰極膜30の物性)
(絶縁性基材31が熱硬化性樹脂であり、導電性フィラー32の含有率が低い場合)
加熱前の状態にて絶縁性基材31の流動性が高いので、樹脂固溶領域が大きく(厚み方向)なり、外層CP23と陰極膜30との接着強度は高くなる。
(Physical properties of cathode film 30)
(When the insulating
Since the insulating
また、絶縁性基材31が熱硬化性樹脂であるので、加熱圧着して冷却したとき、すなわち、樹脂が固溶した後において、陰極膜30の形状の維持性が高い。これにより、陰極膜30と外層CP23との接着の安定性が高くなり、固体電解コンデンサ10として長期的な信頼性が高くなる。
Furthermore, since the insulating
(絶縁性基材31が熱硬化性樹脂であり、導電性フィラー32の含有率が高い場合)
絶縁性基材31が熱硬化性樹脂であるので、加熱圧着して冷却したとき、すなわち、樹脂が固溶した後において、陰極膜30の形状の維持性が高い。これにより、陰極膜30と外層CP23との接着の安定性が高くなり、固体電解コンデンサ10として長期的な信頼性が高くなる。
(When the insulating
Since the insulating
また、導電性フィラー32の含有率が高いので、陰極膜30としての強度が高く、少ない樹脂固溶領域でも強固に接着できる。
Furthermore, since the content of the
導電性フィラー32の含有率が低いまたは高いを示す具体的な数値については、陰極膜30の流動性や強度の観点から適宜設定できる。一例として、流動性を向上させるという観点から、導電性フィラー32の含有率が30体積%以下の場合を、導電性フィラー32の含有率が低いと定義し、強度を向上させるという観点から、導電性フィラー32の含有率が70体積%以上の場合を、導電性フィラー32の含有率が高いと定義する。なお、これらは、一例であって、例えば、絶縁性基材31の物性、厚み等によって適宜調整できるものであり、導電性フィラー32の含有率が陰極膜30の流動性または強度に与える影響度によって適宜設定できる。
A specific numerical value indicating whether the content rate of the
(絶縁性基材31が熱可塑性樹脂である場合)
加熱時の絶縁性基材31の流動性が高いので、樹脂固溶領域が大きく(厚み方向)なるり、外層CP23と陰極膜30との接着強度は高くなる。また、加熱融解に対して材料側の追加加工が不要である。
(When the insulating
Since the insulating
10:固体電解コンデンサ
11:素体
20:コンデンサ素子
20M:コンデンサ素子シート
21:陽極電極
22:内層CP
23:外層CP
30:陰極膜
30M:陰極シート
31:絶縁性基材
32:導電性フィラー
50:絶縁性樹脂
71、72:樹脂電極
81、82:外部電極
111、112:端面
210:誘電体層
211、212:端面
213、214:平膜面
230:外面
311:端面
323:領域
500:絶縁体層
811、812、821、822:電極膜
10: Solid electrolytic capacitor 11: Element body 20:
23: Outer layer CP
30:
Claims (7)
複数の陰極と、
を備え、
前記陰極は、第2樹脂基材と第2導電材とを含み、
前記複数のコンデンサ素子と前記複数の陰極とは、前記固体電解質層と前記陰極とが接触した状態で交互に積層されており、
前記固体電解質層と前記陰極とが接触する領域は、前記固体電解質層と前記陰極とが混在する部分を有する、
固体電解コンデンサ。 a plurality of capacitor elements each including a membrane-like valve metal body, a dielectric layer, and a solid electrolyte layer;
a plurality of cathodes;
Equipped with
The cathode includes a second resin base material and a second conductive material,
The plurality of capacitor elements and the plurality of cathodes are alternately stacked with the solid electrolyte layer and the cathode in contact with each other,
A region where the solid electrolyte layer and the cathode are in contact has a portion where the solid electrolyte layer and the cathode are mixed.
Solid electrolytic capacitor.
請求項1に記載の固体電解コンデンサ。 The second resin base material is a thermosetting resin.
The solid electrolytic capacitor according to claim 1.
請求項1に記載の固体電解コンデンサ。 the second resin base material is a thermoplastic resin;
The solid electrolytic capacitor according to claim 1.
前記コンデンサ積層体を絶縁封止し、前記複数の弁作用金属体を一方端面に露出し、前記複数の陰極を他方端面に露出する絶縁性樹脂と、
前記一方端面に形成され、前記複数の弁作用金属体に接続する第1端子導体と、
前記他方端面に形成され、前記陰極に接続する第2端子導体と、
を備え、
前記第2端子導体は、前記他方端面に接触する樹脂電極を備える、
請求項1乃至請求項3のいずれかに記載の固体電解コンデンサ。 a capacitor laminate in which the plurality of capacitor elements and the plurality of cathodes are stacked;
an insulating resin that insulates and seals the capacitor laminate, exposes the plurality of valve metal bodies on one end surface, and exposes the plurality of cathodes on the other end surface;
a first terminal conductor formed on the one end surface and connected to the plurality of valve metal bodies;
a second terminal conductor formed on the other end surface and connected to the cathode;
Equipped with
The second terminal conductor includes a resin electrode that contacts the other end surface.
A solid electrolytic capacitor according to any one of claims 1 to 3.
複数の陰極が配列形成された陰極シートを形成する工程と、
前記コンデンサ素子シートと前記陰極シートとを積層する工程と、
積層された前記コンデンサ素子シートと前記陰極シートとを加熱圧着する工程と、
を有する、固体電解コンデンサの製造方法。 forming a capacitor element sheet in which capacitor elements including a membrane-like valve metal body, a dielectric layer, and a solid electrolyte layer are arranged;
forming a cathode sheet in which a plurality of cathodes are arranged;
laminating the capacitor element sheet and the cathode sheet;
a step of heat-pressing the laminated capacitor element sheet and the cathode sheet;
A method for manufacturing a solid electrolytic capacitor, comprising:
請求項5に記載の固体電解コンデンサの製造方法。 The cathode sheet includes a resin base material of thermosetting resin,
The method for manufacturing a solid electrolytic capacitor according to claim 5.
請求項5に記載の固体電解コンデンサの製造方法。 The cathode sheet includes a resin base material of thermoplastic resin,
The method for manufacturing a solid electrolytic capacitor according to claim 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024537761A JPWO2024024802A1 (en) | 2022-07-28 | 2023-07-25 | |
CN202380055385.9A CN119522463A (en) | 2022-07-28 | 2023-07-25 | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-120111 | 2022-07-28 | ||
JP2022120111 | 2022-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024024802A1 true WO2024024802A1 (en) | 2024-02-01 |
Family
ID=89706375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027262 WO2024024802A1 (en) | 2022-07-28 | 2023-07-25 | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2024024802A1 (en) |
CN (1) | CN119522463A (en) |
WO (1) | WO2024024802A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155695A (en) * | 2019-03-22 | 2020-09-24 | 株式会社村田製作所 | Solid electrolytic capacitor |
WO2021066090A1 (en) * | 2019-10-04 | 2021-04-08 | 株式会社村田製作所 | Electrolytic capacitor |
-
2023
- 2023-07-25 CN CN202380055385.9A patent/CN119522463A/en active Pending
- 2023-07-25 WO PCT/JP2023/027262 patent/WO2024024802A1/en active Application Filing
- 2023-07-25 JP JP2024537761A patent/JPWO2024024802A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155695A (en) * | 2019-03-22 | 2020-09-24 | 株式会社村田製作所 | Solid electrolytic capacitor |
WO2021066090A1 (en) * | 2019-10-04 | 2021-04-08 | 株式会社村田製作所 | Electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024024802A1 (en) | 2024-02-01 |
CN119522463A (en) | 2025-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100508321B1 (en) | Electric double-layer capacitor and method for preparing the same | |
JP2023053310A (en) | Electrolytic capacitor, and method for manufacturing the same | |
US10032567B2 (en) | Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor | |
JP7408288B2 (en) | solid electrolytic capacitor | |
JP7067512B2 (en) | Solid electrolytic capacitors | |
US9490076B2 (en) | Solid electrolytic capacitor and manufacturing method therefor | |
WO2022163645A1 (en) | Electrolytic capacitor | |
TW200937469A (en) | Stacked solid electrolytic capacitor | |
WO2024024802A1 (en) | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor | |
CN110400698B (en) | Electrolytic capacitors | |
CN111755253A (en) | Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor | |
US11211204B2 (en) | Solid electrolytic capacitor and method for manufacturing same | |
WO2022163644A1 (en) | Electrolytic capacitor | |
JP3424247B2 (en) | Solid electrolytic capacitors | |
WO2024135309A1 (en) | Solid electrolytic capacitor | |
CN223155823U (en) | Solid electrolytic capacitor | |
WO2024029458A1 (en) | Solid electrolytic capacitor | |
JP7601054B2 (en) | Electronic component and method for manufacturing electronic component | |
JP2023181685A (en) | solid electrolytic capacitor | |
JP5450001B2 (en) | Electrolytic capacitor manufacturing method | |
WO2023243626A1 (en) | Electrolytic capacitor | |
CN120390971A (en) | Solid electrolytic capacitors | |
WO2024247449A1 (en) | Solid electrolytic capacitor and method for producing solid electrolytic capacitor | |
WO2023153424A1 (en) | Solid electrolytic capacitor, and solid electrolytic capacitor manufacturing method | |
WO2024090047A1 (en) | Solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23846532 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024537761 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |