[go: up one dir, main page]

WO2024016380A1 - 半导体结构的处理方法、处理装置及处理系统 - Google Patents

半导体结构的处理方法、处理装置及处理系统 Download PDF

Info

Publication number
WO2024016380A1
WO2024016380A1 PCT/CN2022/109550 CN2022109550W WO2024016380A1 WO 2024016380 A1 WO2024016380 A1 WO 2024016380A1 CN 2022109550 W CN2022109550 W CN 2022109550W WO 2024016380 A1 WO2024016380 A1 WO 2024016380A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
semiconductor substrate
photoresist layer
protrusion
etching
Prior art date
Application number
PCT/CN2022/109550
Other languages
English (en)
French (fr)
Other versions
WO2024016380A9 (zh
Inventor
刘京
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US18/151,510 priority Critical patent/US20240027911A1/en
Publication of WO2024016380A1 publication Critical patent/WO2024016380A1/zh
Publication of WO2024016380A9 publication Critical patent/WO2024016380A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Definitions

  • the present disclosure relates to the field of semiconductor technology, and specifically, to a processing method, a processing device, and a processing system for a semiconductor structure.
  • DRAM Dynamic Random Access Memory
  • the photolithography process is an important process method in the DRAM manufacturing process. This method usually requires the formation of a photoresist layer on the surface of the semiconductor structure to be etched. However, the edges of the formed photoresist layer are prone to bulges. After the bulges are dried, It is easy to fall off, thereby causing contamination to the subsequent process equipment, and the equipment maintenance cost is high.
  • the present disclosure provides a processing method, processing device and processing system for a semiconductor structure, which can reduce equipment maintenance costs and improve product yield.
  • a method of processing a semiconductor structure including:
  • the photoresist layer including an adjacently distributed edge region and a middle region, the edge region including a protrusion
  • detecting the position information of the protrusion and determining a target etching area based on the position information, where the protrusion is located within the target etching area includes:
  • the area enclosed by the boundary of the protrusion close to the middle area and the boundary of the edge area far from the middle area is determined as the target etching area.
  • detecting the boundary of the protrusion close to the middle area includes:
  • the boundary of the protrusion close to the middle area is determined based on the change curve.
  • determining the boundary of the protrusion close to the middle area according to the change curve includes:
  • the starting position of the flattened area after passing the peak in the change curve is used as the boundary of the protrusion close to the middle area.
  • etching the photoresist layer located in the target etching area includes:
  • a plasma etching process is used to etch the photoresist layer located in the target etching area.
  • forming a photoresist layer on the semiconductor substrate includes:
  • a photoresist layer is formed on the semiconductor substrate using a spin coating process.
  • the processing method further includes:
  • a processing device for a semiconductor structure including:
  • a spin coating machine located in the vacuum chamber, is used to form a photoresist layer on a semiconductor substrate.
  • the photoresist layer includes an adjacently distributed edge region and a middle region, and the edge region includes a protrusion;
  • a position detection component located in the vacuum chamber, used to detect the position information of the protrusion, and determine the target etching area according to the position information, and the protrusion is located in the target etching area;
  • An etching machine is located in the vacuum chamber and is electrically connected to the position detection component.
  • the etching machine is used to receive the target etching area determined by the position detection component and etch the area located in the target.
  • the photoresist layer within the etched area is located in the vacuum chamber and is electrically connected to the position detection component.
  • the spin coating machine includes:
  • a turntable, used to carry the semiconductor substrate, and the turntable can drive the semiconductor substrate to rotate;
  • a dropper is provided in the vacuum chamber, and its opening is opposite to the turntable. The dropper is used to drop the material of the photoresist layer onto the surface of the semiconductor substrate.
  • the spin coating machine further includes:
  • a first nozzle disposed opposite to the turntable, is used to spray wetting material onto the surface of the semiconductor substrate before dropping the material of the photoresist layer onto the surface of the semiconductor substrate, so as to improve the quality of the semiconductor substrate. Adhesion to the surface of the substrate.
  • the position detection component is located on a side of the semiconductor substrate away from the turntable, and can move from the outside of the semiconductor substrate to the middle via the edge area. Area moves.
  • the position detection component includes:
  • a detection circuit configured to detect the boundary of the protrusion close to the middle region during movement from the outside of the semiconductor substrate through the edge region to the middle region;
  • An area determination module is configured to determine a target etching area based on the boundary of the protrusion close to the middle area and the boundary of the edge area far from the middle area.
  • the position detection component further includes:
  • a curve generation module configured to generate a change curve according to the actual position of the detection probe of the detection circuit and the thickness of the photoresist layer corresponding to the actual position;
  • a boundary determination module configured to determine the boundary of the protrusion close to the middle area according to the change curve.
  • the boundary determination module is configured to use the starting position of the flattened area after passing the peak in the change curve as the boundary of the protrusion close to the middle area.
  • the etching machine includes:
  • a control component electrically connected to the position detection component, is used to receive the target etching area determined by the position detection component, and control the second nozzle to inject etching gas into the target etching area.
  • the etching gas includes oxygen-containing gas.
  • the oxygen-containing gas includes at least one of oxygen, carbon monoxide, or carbon dioxide.
  • the etching gas includes hydrogen and nitrogen.
  • the processing device further includes:
  • a gas concentration detection component is inserted deep into the vacuum chamber to detect the gas concentration in the vacuum chamber, and when the gas concentration is less than a preset value, determine the etching of the photoresist layer in the target etching area. Finish.
  • a semiconductor structure processing system including the semiconductor structure processing device described in any one of the above, and
  • a moving device used to transport the semiconductor substrate from the spin coating machine to the etching machine.
  • the processing method, processing device and processing system of the semiconductor structure of the present disclosure can obtain the position information of the bumps through detection, determine the target etching area containing the bumps based on the position information of the bumps, and etching the target etching area within the target etching area. All photoresist layers are removed. During this process, all the bumps located in the target etching area can be etched away, which can avoid contamination of the equipment due to the bumps falling in the subsequent process.
  • FIG. 1 is a flow chart of a method for processing a semiconductor structure in an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the photoresist layer in an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of an etching machine in an embodiment of the present disclosure.
  • Figure 4 is a top view of Figure 3;
  • FIG. 5 is a thickness variation curve of the photoresist layer in the target etching area in an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • a photolithography process is usually used to pattern the semiconductor structure.
  • photoresist needs to be spin-coated on the surface of the semiconductor structure to be etched.
  • the excess photoresist will be pushed to the edge area of the semiconductor structure due to centrifugal force.
  • most of the photoresist in the edge area will be thrown away from the surface of the semiconductor structure.
  • a part of the photoresist will remain in the edge area of the semiconductor structure.
  • the relative speed of the air flow in the edge area of the semiconductor structure is relatively large, causing the photoresist remaining in the edge area to solidify quickly and form bumps. .
  • the protrusions are easy to fall off, thereby contaminating the baking tray robot and other subsequent process equipment.
  • the photoresist located in the edge area is exposed and developed (the formed developed area includes the area where the bumps are located), and then the bumps are removed.
  • the photoresist is a negative photoresist, development is more difficult. It is difficult to remove the bump completely.
  • FIG. 1 shows a flow chart of a method for processing a semiconductor structure in an embodiment of the present disclosure.
  • Step S110 providing a semiconductor substrate
  • Step S120 form a photoresist layer on the semiconductor substrate, the photoresist layer includes an adjacently distributed edge region and a middle region, and the edge region includes a protrusion;
  • Step S130 detect the position information of the protrusion, and determine the target etching area according to the position information, and the protrusion is located in the target etching area;
  • Step S140 Etch the photoresist layer located in the target etching area.
  • the processing method of the semiconductor structure of the present disclosure can obtain the position information of the bumps through detection, determine the target etching area containing the bumps based on the position information of the bumps, and remove all the photoresist layers in the target etching area through etching. . During this process, all the bumps located in the target etching area can be etched away, which can avoid contamination of the equipment due to the bumps falling in the subsequent process.
  • step S110 a semiconductor substrate is provided.
  • the semiconductor substrate can be in a flat plate structure, which can be rectangular, circular, elliptical, polygonal or irregular in shape, and its material can be silicon and/or other semiconductor materials.
  • the shape and material of the semiconductor substrate are not specifically limited here. .
  • the semiconductor substrate may be a semiconductor structure before any patterning process.
  • it may be a structure before etching to form word line trenches; for example, it may be It is the structure before etching to form the capacitor contact hole; or it can be the structure before etching to form the bit line trench; of course, the semiconductor structure can also be the structure before other patterning processes, which are not mentioned here. List them one by one.
  • a photoresist layer is formed on the semiconductor substrate.
  • the photoresist layer includes an adjacently distributed edge region and a middle region, and the edge region includes a protrusion.
  • Photoresist layer Spin coating or other processes may be used to form a photoresist layer on the surface of the semiconductor substrate, and the process for forming the photoresist layer is not particularly limited here.
  • the material of the photoresist layer may be photoresist, for example, it may be a positive photoresist or a negative photoresist.
  • the photoresist layer may include a middle region and an edge region, and the middle region and the edge region may be adjacently distributed.
  • the middle area can be circular, rectangular or irregularly shaped, and the edge area can be annular and can surround the middle area.
  • the edge region may be annular, and when the edge region is annular, the middle region may be circular, and the diameter of the middle region is equal to the inner diameter of the inner ring of the edge region.
  • the surface of the photoresist in the middle area is relatively flat, and the edge area has protrusions 201.
  • the height of the protrusions 201 in the direction perpendicular to the semiconductor substrate 100 is greater than the thickness of the photoresist in the middle area.
  • the protrusion 201 may occupy a small area in the edge area, or may surround the middle area along with the edge area.
  • forming the photoresist layer 200 on the semiconductor substrate 100 may include step S210 and step S220, wherein:
  • Step S210 perform pretreatment on the surface of the semiconductor substrate 100 to improve the adhesiveness of the semiconductor substrate 100 .
  • the surface of the semiconductor substrate 100 can be pre-treated, thereby improving the adhesion of the surface of the semiconductor substrate 100, so that the photoresist layer 200 subsequently formed on its surface can be easily connected to the surface of the semiconductor substrate 100. Close adhesion helps the photoresist layer 200 to better adhere to the surface of the semiconductor substrate 100 .
  • a wetting solution can be sprayed on the surface of the semiconductor substrate 100, and the wetting solution can improve the wettability of the surface of the semiconductor substrate 100, thereby improving the adhesion of the subsequently formed photoresist layer 200 on the surface of the semiconductor substrate 100.
  • Step S220 using a spin coating process to form a photoresist layer 200 on the semiconductor substrate 100.
  • the photoresist layer 200 can be formed on the surface of the semiconductor substrate 100 by spin coating.
  • the semiconductor substrate 100 can be fixed on a turntable, and while the turntable drives the semiconductor substrate 100 to rotate at high speed, photoresist raw materials are dropped onto the surface of the semiconductor substrate 100. Under the action of the centrifugal force of the rotation, The raw material of the photoresist can be spread over the surface of the semiconductor substrate 100 .
  • a photoresist layer 200 with a relatively uniform thickness can be formed in the middle area of the semiconductor substrate 100. At the same time, most of the photoresist in the edge area of the semiconductor substrate 100 will be thrown away from its surface.
  • the photoresist will remain in the edge area of the semiconductor substrate 100 to form bumps 201 .
  • the area between the boundary of the photoresist layer and the boundary of the protrusion 201 farthest from the boundary of the photoresist layer can be defined as the edge area of the photoresist layer 200 .
  • the edge area can be an annular area, and the protrusion 201 can be located at Between the inner ring and the outer ring of the annular area, at the same time, the area outside the edge area can be defined as the middle area, that is, the middle area can be located within the inner ring of the edge area.
  • the number of protrusions 201 may be one or multiple, and is not specifically limited here. In some embodiments of the present disclosure, the number of protrusions 201 may be one, and the protrusion 201 may be annular, surrounding the middle area; in other embodiments of the present disclosure, the number of protrusions 201 may be multiple. , the plurality of protrusions 201 can be distributed at intervals, and can be annular around the middle area.
  • step S130 the position information of the protrusion is detected, and a target etching area is determined based on the position information, and the protrusion is located in the target etching area.
  • the position detection component 2 can be used to detect the position information of the protrusion 201, and then obtain the specific position of the protrusion 201, so as to facilitate subsequent targeted Removal of bumps 201.
  • the target etching area can be determined based on the position information of the protrusion 201, so that the photoresist layer 200 in the target etching area can be subsequently etched in a targeted manner. It should be noted that the protrusion 201 may be located in the target etching area, and the protrusion 201 may be removed during subsequent etching of the target etching area.
  • the protrusion 201 is located in the target etching area may include step S310 and step S320, in:
  • Step S310 detect the boundary of the protrusion 201 close to the middle area.
  • the position detection component 2 can be disposed on a side of the semiconductor substrate 100 away from the turntable.
  • the position detection component 2 can be located above the semiconductor structure and can be accessed from the outside of the semiconductor substrate 100 through the edge.
  • the area moves to the middle area, and it can detect the thickness of the photoresist layer 200 in the area directly facing it while moving from the outside of the semiconductor substrate 100 to the middle area via the edge area.
  • the thickness of a certain area is obvious
  • the thickness is greater than that of other areas, it is considered that there is a protrusion 201 in this area, and the boundary of the protrusion 201 close to the middle area can be determined according to the specific position of the protrusion 201 .
  • the center point of the photoresist layer 200 can be the center of the circle, and the point closest to the center of the inner ring of the annular protrusion 201 can be the radius to draw a circle.
  • the circumferential line of the circle serves as the boundary of the protrusion 201 close to the middle area; when there are multiple protrusions 201, the center point of the photoresist layer 200 can be the center of the circle, and the circle is drawn with the point closest to the center of the multiple protrusions 201 as the radius. , the circumferential line of the circle is used as the boundary of the protrusion 201 close to the middle area.
  • detecting the boundary of the protrusion 201 close to the middle area may include step S3101 and step S3102, wherein:
  • Step S3101 Generate a change curve according to the actual position of the detection probe of the detection circuit and the thickness of the photoresist layer 200 corresponding to the actual position.
  • the position detection component 2 may include a detection circuit, and the detection circuit may detect the boundary of the protrusion 201 close to the middle area during the movement from the outside of the semiconductor substrate 100 through the edge area to the middle area.
  • the detection circuit may include a detection probe.
  • the detection probe can detect the thickness of the photoresist layer 200 in the area directly opposite to its actual position in real time while moving from the outside of the semiconductor substrate 100 through the edge area to the middle area, and can detect the thickness of the photoresist layer 200 according to the actual position of the detection probe and the middle area.
  • the thickness of the photoresist layer 200 corresponding to the actual position generates a change curve of thickness with position.
  • the change curve can be shown in Figure 5.
  • A is the boundary of the semiconductor substrate, and the position detection component starts from the edge of the semiconductor substrate. Moving toward the middle, it can move at least to the flat position B after the wave peak.
  • Step S3102 Determine the boundary of the protrusion 201 close to the middle area according to the change curve.
  • the boundary of the protrusion 201 close to the middle region can be determined based on the changing trend of the thickness with position in the change curve. For example, if the change curve shows a change trend that first increases, then decreases, and then remains unchanged, the starting position of the flattened area after passing the peak in the change curve can be used as the boundary of the protrusion 201 close to the middle area. For example, the flat position B in FIG. 5 can be used as the boundary of the protrusion 201 close to the middle area.
  • step S320 the area enclosed by the boundary of the protrusion 201 close to the middle area and the boundary of the edge area far from the middle area is determined as the target etching area.
  • the target etching area may be surrounded by a boundary of the protrusion 201 close to the middle area and a boundary of the edge area away from the middle area.
  • the target etching area can be an annular area
  • the inner ring of the annular area can be a circular ring
  • the shape of the outer ring is the same as the shape of the outer periphery of the photoresist layer 200 .
  • the number of protrusions 201 may be multiple, and each protrusion 201 may have a corresponding boundary.
  • the center of the photoresist layer 200 may be The point is the center of the circle, and the point closest to the center of the plurality of protrusions 201 is used as the radius to draw a circle.
  • the circumferential line of the circle is used as the protrusion 201 to be close to the boundary of the middle area, and the circle and the edge area are surrounded by the boundary away from the middle area.
  • the area is defined as the target etching area.
  • the center point of the photoresist layer 200 can be the center of the circle, and the point closest to the center of the closed figure can be the radius to draw a circle, and the circle can be The circumferential line serves as the boundary of the protrusion 201 close to the middle area, and the area enclosed by the circle and the edge area away from the boundary of the middle area is defined as the target etching area.
  • step S140 the photoresist layer located in the target etching area is etched.
  • the photoresist layer 200 located in the target area can be removed using an etching process. During this process, all the protrusions 201 located in the target etching area can be etched away, which can avoid contamination of the equipment due to the fall of the protrusions 201 in subsequent processes. , there is no need to frequently wipe the equipment, which can reduce the maintenance cost of the equipment; at the same time, it can also prevent the bumps 201 from falling on other parts of the semiconductor substrate 100, which can reduce the probability of defects and thereby improve the product yield.
  • a plasma etching process may be used to etch the photoresist layer 200 located within the target etching area.
  • an etching machine can be used to spray etching gas into the target etching area to form plasma, and then chemically react with the material of the photoresist layer 200 through the plasma, thereby removing the photoresist layer 200 located in the target etching area.
  • the etching gas may be an oxygen-containing gas.
  • it may be at least one of oxygen, carbon monoxide, or carbon dioxide.
  • the etching gas may also include inert gases. , for example, it may include nitrogen, argon, neon or helium, etc.
  • the etching can also be other types of gases, as long as the material of the photoresist layer 200 can be removed without damaging the semiconductor substrate 100.
  • the etching gas can also be a mixed gas of hydrogen and nitrogen, and no etching gas is used here. The type is specially limited.
  • the semiconductor post-processing method of the present disclosure may further include:
  • Step S150 remove the material of the photoresist layer 200 located on the sidewalls and back of the semiconductor substrate 100 .
  • An etching or ashing process can be used to remove the material of the photoresist layer 200 located on the side walls and back of the semiconductor substrate 100 to prevent the material of the photoresist layer 200 located on the side walls and back of the semiconductor substrate 100 from falling off during subsequent processes. Contaminating the equipment can further reduce the maintenance cost of the equipment; at the same time, it can also prevent the material of the photoresist layer 200 located on the side walls and back of the semiconductor substrate 100 from falling on other parts of the semiconductor substrate 100, which can further reduce the risk of defects. probability to improve product yield.
  • an etching process can be used to remove the material of the photoresist layer 200 located on the sidewalls and back of the semiconductor substrate 100 .
  • an etching machine can be used to spray the material on the sidewalls and back of the semiconductor substrate 100 .
  • the etching gas forms a plasma, and then chemically reacts with the material of the photoresist layer 200 located on the sidewalls and back of the semiconductor substrate 100 through the plasma, thereby converting the photoresist layer 200 located on the sidewalls and back of the semiconductor substrate 100 . Material removal.
  • the plasma when etching the photoresist layer 200 in the target etching area, can be locally diffused. For example, it can be diffused to the sidewalls and backside of the semiconductor substrate 100, thereby displacing the plasma located on the semiconductor substrate 100. The side walls of the bottom 100 and the material of the photoresist layer 200 on the back side are also removed.
  • Embodiments of the present disclosure also provide a processing device for semiconductor structures.
  • the processing device may include a box, a spin coating machine, a position detection component 2 and an etching machine, wherein:
  • the box may include a vacuum chamber
  • the spin coating machine can be installed in a vacuum chamber and used to form a photoresist layer 200 on the semiconductor substrate 100.
  • the photoresist layer 200 includes an adjacently distributed edge region and a middle region, and the edge region includes a protrusion 201;
  • the position detection component 2 can be installed in the vacuum chamber to detect the position information of the protrusion 201 and determine the target etching area based on the position information.
  • the protrusion 201 is located in the target etching area;
  • the etching machine can be placed in a vacuum chamber and is electrically connected to the position detection component 2.
  • the etching machine is used to receive the target etching area determined by the position detection component 2 and etch the photoresist layer 200 located in the target etching area.
  • the semiconductor structure processing device of the present disclosure can obtain the position information of the bump 201 through detection, determine the target etching area containing the bump 201 based on the position information of the bump 201, and etch all the photoresist in the target etching area. Layer 200 is all removed. During this process, all the protrusions 201 located in the target etching area can be etched away, which can avoid contamination of the equipment due to the fall of the protrusions 201 in the subsequent process. There is no need to frequently wipe the equipment, which can reduce the maintenance cost of the equipment.
  • the secondary bulge can further reduce the sources of defects in the product and improve product yield.
  • the semiconductor structure may at least include a semiconductor substrate 100.
  • the semiconductor substrate 100 may be in a flat plate structure, which may be rectangular, circular, elliptical, polygonal or irregular.
  • the material of the semiconductor substrate 100 may be a flat plate structure. It may be silicon and/or other semiconductor materials, and the shape and material of the semiconductor substrate 100 are not particularly limited here.
  • the semiconductor substrate 100 may be a semiconductor structure before any patterning process, for example, it may be a structure before etching to form word line trenches; for example, It can be the structure before etching to form the capacitor contact hole; or it can be the structure before etching to form the bit line trench; of course, the semiconductor structure can also be the structure before other patterning processes, here No more listing them one by one.
  • the box can be in the shape of a polyhedron or a cylinder, and of course it can also be in other shapes.
  • the shape of the box is not specifically limited here.
  • the material of the box can be organic glass, stainless steel or metal. Of course, it can also be other materials, for example, it can also be alloy materials.
  • the specific material of the box is not specifically limited here.
  • the spin coating machine can be installed in the box, and the photoresist layer 200 can be formed on the semiconductor substrate 100 through the spin coating machine.
  • the material of the photoresist layer 200 may be photoresist, for example, it may be a positive photoresist or a negative photoresist.
  • the photoresist layer 200 may include a middle region and an edge region, and the middle region and the edge region may be adjacently distributed.
  • the middle area can be circular, rectangular or irregular in shape, and the edge area can be annular and can surround the middle area.
  • the edge region may be annular, and when the edge region is annular, the middle region may be circular, and the diameter of the middle region is equal to the inner diameter of the inner ring of the edge region.
  • the surface of the photoresist in the middle area is relatively flat, and the edge area has protrusions 201 .
  • the height of the protrusions 201 in the direction perpendicular to the semiconductor substrate 100 is greater than the thickness of the photoresist in the middle area.
  • the protrusion 201 may occupy a small area in the edge area, or may surround the middle area along with the edge area.
  • a spin coating machine may include a turntable and a dropper, where:
  • the turntable may have a table, and the table may be a plane, and the plane may be set parallel to the horizontal plane.
  • the semiconductor substrate 100 may be placed on the turntable (that is, the turntable may be used to carry the semiconductor substrate 100), and may be fixedly connected to the turntable to prevent During the process of spin coating to form the photoresist layer 200, the semiconductor substrate 100 falls off the turntable.
  • an opening can be provided on the surface of the turntable, and a vacuum channel can be provided inside the turntable. One end of the vacuum channel is connected to the opening, and the other end is connected to the vacuum pump.
  • the semiconductor substrate 100 When the semiconductor substrate 100 is placed on the turntable, it can cover the opening on the turntable, and the semiconductor substrate 100 can be evacuated by a vacuum pump to adsorb the semiconductor substrate 100 on the turntable, avoiding the use of bonding or snapping to attach the semiconductor substrate 100 to the turntable. It is fixed with the turntable to avoid damaging the internal structure of the semiconductor substrate 100 and improve the product yield.
  • the opening can be located at the center of the turntable, thereby fixing the semiconductor substrate 100 at the center of the turntable, which helps to subsequently form the photoresist layer 200 with lower roughness (more uniform film thickness) on the surface of the semiconductor substrate 100.
  • the turntable can be connected to a motor. During the process of spin-coating the photoresist layer 200, the turntable can drive the semiconductor substrate 100 to rotate under the drive of the motor, so that the material used to form the photoresist layer 200 is laid flat on the surface of the semiconductor substrate 100.
  • the dropper can be in the shape of a tube, and the cross section of the dropper can be circular, elliptical, polygonal, rectangular or irregular.
  • the material can be rubber, plastic, metal tube or alloy, etc.
  • the shape and shape of the dropper are not specified here. Materials are subject to special restrictions.
  • the dropper may be disposed in the vacuum chamber, and may include an opening.
  • the opening may be disposed opposite the turntable.
  • the turntable drives the semiconductor substrate 100 to rotate
  • the dropper may be used to drip onto the surface of the semiconductor substrate 100 for forming photoresist.
  • the material of the layer 200 can be evenly coated on the middle area of the semiconductor substrate 100 under the action of centrifugal force during the rotation of the turntable, and the excess material can be thrown to the semiconductor substrate 100 edge area. During this process, due to the relatively large relative velocity of the air flow in the edge area, part of the material remaining in the edge area is easily solidified to form a protrusion 201 .
  • the material used to form the photoresist layer 200 can also be dropped on the surface of the semiconductor substrate 100 when the turntable is stationary, and then the semiconductor substrate 100 is driven by the turntable to rotate, thereby forming the photoresist layer 200 .
  • the spin coating machine may further include a first nozzle.
  • the first nozzle may be disposed opposite the turntable and may be used to drip the material of the photoresist layer 200 onto the surface of the semiconductor substrate 100 .
  • the wetting material was sprayed onto the surface of the semiconductor substrate 100 to improve the adhesion of the surface of the semiconductor substrate 100 so that the photoresist layer 200 subsequently formed on the surface can be closely adhered to the surface of the semiconductor substrate 100. This helps the photoresist layer 200 to better adhere to the surface of the semiconductor substrate 100 .
  • the first nozzle may be circular, rectangular, polygonal or other shapes, and the shape of the first nozzle is not particularly limited here.
  • the wetting solution can be sprayed onto the surface of the semiconductor substrate 100 through the first nozzle, and the wetting solution can improve the wettability of the surface of the semiconductor substrate 100, thereby improving the adhesion of the subsequently formed photoresist layer 200 on the surface of the semiconductor substrate 100. .
  • the position detection component 2 can be disposed on the side of the semiconductor substrate 100 away from the turntable.
  • the position detection component 2 can be located above the semiconductor substrate 100 and can move from the outside of the semiconductor substrate 100 through the edge area to the middle area, and It can detect the thickness of the photoresist layer 200 in the area directly facing the semiconductor substrate 100 while moving from the outside of the semiconductor substrate 100 through the edge area to the middle area.
  • the thickness of a certain area is significantly greater than the thickness of other areas, it is considered There is a protrusion 201 in this area, and the boundary of the protrusion 201 close to the middle area can be determined according to the specific position of the protrusion 201 .
  • the center point of the photoresist layer 200 can be the center of the circle, and the point closest to the center of the inner ring of the annular protrusion 201 can be the radius to draw a circle.
  • the circumferential line of the circle serves as the boundary of the protrusion 201 close to the middle area; when there are multiple protrusions 201, the center point of the photoresist layer 200 can be the center of the circle, and the circle is drawn with the point closest to the center of the multiple protrusions 201 as the radius. , the circumferential line of the circle is used as the boundary of the protrusion 201 close to the middle area.
  • the position detection component 2 may include a detection circuit and an area determination module, wherein:
  • the detection circuit can detect the boundary of the protrusion 201 close to the middle area while moving from the outside of the semiconductor substrate 100 through the edge area to the middle area.
  • the detection circuit can include a detection probe, and the detection probe moves from the semiconductor substrate 100 to the middle area. While the outside of the photoresist layer 200 moves from the edge area to the middle area, the thickness of the photoresist layer 200 in the area directly opposite to its actual position can be detected in real time.
  • the area determination module may determine the area formed by the boundary of the protrusion 201 close to the middle area and the boundary of the edge area far from the middle area as the target etching area. That is, the target etching area may be surrounded by the boundary of the protrusion 201 close to the middle area and the boundary of the edge area far from the middle area.
  • the target etching area can be an annular area
  • the inner ring of the annular area can be a circular ring
  • the shape of the outer ring is the same as the shape of the outer periphery of the photoresist layer 200 .
  • the number of protrusions 201 may be multiple, and each protrusion 201 may have a corresponding boundary.
  • the center of the photoresist layer 200 may be The point is the center of the circle, and the point closest to the center of the plurality of protrusions 201 is used as the radius to draw a circle.
  • the circumferential line of the circle is used as the protrusion 201 to be close to the boundary of the middle area, and the circle and the edge area are surrounded by the boundary away from the middle area.
  • the area is defined as the target etching area.
  • the center point of the photoresist layer 200 can be the center of the circle, and the point closest to the center of the closed figure can be the radius to draw a circle, and the circle can be The circumferential line serves as the boundary of the protrusion 201 close to the middle area, and the area enclosed by the circle and the edge area away from the boundary of the middle area is defined as the target etching area.
  • the detection component may further include a curve generation module and a boundary determination module, wherein:
  • the curve generation module can generate a change curve of thickness with position according to the actual position of the detection probe and the thickness of the photoresist layer 200 corresponding to the actual position.
  • the change curve can be shown in Figure 5.
  • A is the boundary of the semiconductor substrate.
  • the position detection component starts to move from the edge of the semiconductor substrate to the middle, and it can move at least to the flat position B after the wave peak.
  • the boundary determination module can determine the boundary of the protrusion 201 close to the middle area based on the changing trend of the thickness with position in the change curve.
  • the starting position of the flattened area after passing the peak in the change curve can be used as the boundary of the protrusion 201 close to the middle area.
  • the flat position B in FIG. 5 can be used as the boundary of the protrusion 201 close to the middle area.
  • the position detection component 2 may be a thickness sensor.
  • the etching machine can be set up in a vacuum chamber and can be used to etch the photoresist layer 200 located in the target etching area to remove the bumps 201. In this process, the photoresist layer 200 will not cause secondary bulges, and can further Reduce defects and improve product yield.
  • the spin coating machine can be electrically connected to the position detection component 2, and the etching machine can receive the target etching area determined by the position detection component 2 and etch the photoresist layer 200 located in the target etching area.
  • the etching machine may include a carrying platform 1, a second nozzle and a control component, wherein:
  • the bearing platform 1 may have a bearing surface, and the bearing surface may be a plane.
  • the plane may be set parallel to the horizontal plane, and the semiconductor substrate 100 with the photoresist layer 200 may be fixed on the bearing platform 1 (i.e., the bearing platform 1 may be used to carry light-emitting diodes with light-emitting diodes).
  • the semiconductor substrate 100 of the photoresist layer 200 is fixedly connected to the supporting platform 1 to prevent the semiconductor substrate 100 from falling off the supporting platform 1 during etching of the photoresist layer 200 .
  • the fixing method of the carrying platform 1 and the semiconductor substrate 100 is similar to the fixing method of the turntable and the semiconductor substrate 100, and therefore will not be described again here.
  • the carrying platform 1 can be connected to a motor.
  • the carrying platform 1 can drive the semiconductor substrate 100 to rotate under the driving of the motor, so as to remove all the photoresist layer 200 in the annular target etching area. Avoid leaving residue in some areas.
  • the second nozzle can be disposed opposite to the carrying platform 1 and can be used to inject the etching gas into the semiconductor substrate 100 having the photoresist layer 200 to form a plasma, and then chemically react with the material of the photoresist layer 200 through the plasma, thereby causing the target to be The photoresist layer 200 in the etched area is removed.
  • the etching gas may be an oxygen-containing gas.
  • it may be at least one of oxygen, carbon monoxide, or carbon dioxide.
  • the etching gas may also include inert gases. , for example, it may include nitrogen, argon, neon or helium, etc.
  • the etching can also be other types of gases, as long as the material of the photoresist layer 200 can be removed without damaging the semiconductor substrate 100.
  • the etching gas can also be a mixed gas of hydrogen and nitrogen, and no etching gas is used here. The type is specially limited.
  • the second nozzle may be tubular, and its cross-section may be circular, elliptical, polygonal, rectangular or irregular in shape, and its material may be rubber, plastic, metal tube or alloy, etc., in The shape and material of the second nozzle are not particularly limited.
  • the control component may be electrically connected to the position detection component 2.
  • the control component may be conductively connected to the position detection component 2.
  • the control component may be used to receive the target etching area determined by the position detection component 2 and control the second nozzle to inject the etching gas into the target etching area.
  • the control component may control the movement of the second nozzle according to the target etching area, thereby controlling the distance between the second nozzle and the edge of the semiconductor substrate 100 .
  • it can control the orthographic projection of the second nozzle on the semiconductor substrate 100 to cover the edge of the semiconductor substrate 100 , and when the orthographic projection of the second nozzle on the semiconductor substrate 100 covers the edge of the semiconductor substrate 100 , the control component
  • the second nozzle can be controlled to move slowly from the edge of the semiconductor substrate 100 to the boundary of the target etching area close to the middle area, and during the movement, the etching gas can be sprayed to the surface of the semiconductor substrate 100 at the same time, thereby completing the photolithography of the target etching area.
  • the resist layer 200 is etched.
  • control component can be a set computer program or a controller.
  • control component can also be other devices or equipment that can realize the above control functions, which are not listed here.
  • the processing system of the semiconductor structure of the present disclosure may further include a gas concentration detection component, which can penetrate deep into the vacuum chamber, and can detect the inside of the vacuum chamber through the gas concentration detection component.
  • the gas concentration is lower than the preset value, and when the gas concentration is less than the preset value, it can be determined that the photoresist layer 200 in the target etching area has been etched, and then the semiconductor substrate 100 with the photoresist layer 200 is sent out.
  • the gas concentration detection component may include a gas concentration detection probe.
  • the gas concentration detection probe may penetrate deep into the vacuum chamber.
  • the gas concentration detection probe may detect the gas concentration in the vacuum chamber. When it detects When the gas concentration is less than the preset value, it can be determined that the photoresist layer 200 in the target etching area has been completely etched away, and further it can be determined that the bump 201 has been completely removed.
  • the gas concentration detection component may be a gas concentration sensor.
  • Embodiments of the present disclosure also provide a processing system for semiconductor structures.
  • the processing system may include the processing device for semiconductor structures in any of the above embodiments and a moving device.
  • the moving device may be used to transfer the semiconductor substrate 100 from a spin coating machine. Transported to etching machine.
  • the mobile device may be a robot that transports the semiconductor substrate 100 during a semiconductor manufacturing process.
  • the mobile device may have a fixed sliding track, and the mobile device may reciprocate along the sliding track.
  • the sliding track can be provided in the vacuum chamber, and can be located at least between the spin coating machine and the etching machine.
  • the mobile device can spin-coat the semiconductor substrate with the photoresist layer 200 after the spin coating machine. 100 is transported to the etching machine through sliding rails.
  • the sliding track may be in a strip shape, and the sliding track may be fixed inside the vacuum chamber.
  • the sliding track may be a straight track or a track with an arc in the extension direction.
  • it may be an S-shaped or U-shaped track.
  • the type of the sliding track is not particularly limited here.
  • the moving device can also be used to transport the semiconductor substrate 100 from the entrance of the vacuum chamber to the spin coating machine, or can also send out the semiconductor substrate 100 with the photoresist layer 200 after etching is completed.
  • the semiconductor substrate 100 can be transported to the turntable of the spin coating machine through a mobile device through the entrance of the vacuum chamber, and a mechanical pump can be used to evacuate the inside of the turntable, thereby adsorbing the semiconductor substrate 100 to the turntable to avoid subsequent rotation.
  • the semiconductor substrate 100 is thrown out; the wetting material is sprayed onto the surface of the semiconductor substrate 100 through the first nozzle, thereby improving the adhesion of the semiconductor substrate 100 so that the photoresist layer 200 subsequently formed on its surface can be more It is well adhered to the semiconductor substrate 100; the semiconductor substrate 100 is driven by the turntable to rotate, and during the rotation process, the photoresist is dropped onto the surface of the semiconductor substrate 100 through the dropper, and then the photoresist is formed on the surface of the semiconductor substrate 100. Photoresist layer 200.
  • the semiconductor substrate 100 on which the photoresist layer 200 is formed is transported to the bearing table 1 of the etching machine by a moving device, and the surface of the photoresist layer 200 is detected by the position detection component 2 to determine the position of the photoresist layer 200 including the bump 201 .
  • the target etching area is transmitted to the control component.
  • the control component can control the orthographic projection of the second nozzle on the semiconductor substrate 100 to cover the edge of the semiconductor substrate 100 , and when the second nozzle is on the semiconductor substrate 100 When the orthographic projection covers the edge of the semiconductor substrate 100, the control component can control the second nozzle to move slowly from the edge of the semiconductor substrate 100 to the boundary of the target etching area close to the middle area, and can simultaneously move towards the semiconductor substrate 100 during the movement process.
  • the etching gas is sprayed onto the surface to remove the photoresist layer 200 in the target etching area including the protrusions 201 .
  • the gas concentration detection component can be inserted deep into the vacuum chamber, and the gas concentration in the vacuum chamber can be detected through the gas concentration detection component.
  • the gas concentration is less than the preset value, it is determined that the photoresist layer 200 in the target etching area is etched. After completion, finally, the semiconductor substrate 100 with the photoresist layer 200 is sent out by the moving device. During this process, all the protrusions 201 located in the target etching area can be etched away, which can avoid contamination of the equipment due to the fall of the protrusions 201 in the subsequent process. There is no need to frequently wipe the equipment, which can reduce the maintenance cost of the equipment. ; At the same time, it can also prevent the bumps 201 from falling on other parts of the semiconductor substrate 100, which can reduce the probability of defects, thereby improving product yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本公开是关于半导体技术领域,涉及一种半导体结构的处理方法、处理装置及处理系统。本公开的处理方法包括提供半导体衬底;在半导体衬底上形成光阻层,光阻层包括邻接分布的边缘区域和中间区域,边缘区域包括凸起;检测凸起的位置信息,并根据位置信息确定目标蚀刻区域,凸起位于目标蚀刻区域内;蚀刻位于目标蚀刻区域内的光阻层。本公开的处理方法可降低设备的维护成本,提高产品良率。 (图1)

Description

半导体结构的处理方法、处理装置及处理系统
交叉引用
本公开要求于2022年7月21日提交的申请号为202210864901.X名称为“半导体结构的处理方法、处理装置及处理系统”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及半导体技术领域,具体而言,涉及一种半导体结构的处理方法、处理装置及处理系统。
背景技术
动态随机存储器(Dynamic Random Access Memory,DRAM)因具有体积小、集成化程度高及传输速度快等优点,被广泛应用于手机、平板电脑等移动设备中。
光刻工艺是DRAM制程过程中的一道重要的工艺方法,该方法通常需要在待蚀刻的半导体结构表面形成光阻层,但是,形成的光阻层的边缘部分易出现凸起,凸起干燥后易脱落,进而对后续工艺的设备造成污染,设备维护成本较高。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
有鉴于此,本公开提供了一种半导体结构的处理方法、处理装置及处理系统,可降低设备的维护成本,提高产品良率。
根据本公开的一个方面,提供一种半导体结构的处理方法,包括:
提供半导体衬底;
在所述半导体衬底上形成光阻层,所述光阻层包括邻接分布的边缘区域和中间区域,所述边缘区域包括凸起;
检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内;
蚀刻位于所述目标蚀刻区域内的所述光阻层。
在本公开的一种示例性实施例中,所述检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内,包括:
检测所述凸起靠近所述中间区域的边界;
将所述凸起靠近所述中间区域的边界和所述边缘区域远离所述中间区域的边界围成的区域确定为目标蚀刻区域。
在本公开的一种示例性实施例中,所述检测所述凸起靠近所述中间区域的边界,包括:
根据检测电路的检测探头的实际位置与所述实际位置对应的所述光阻层的厚度生成变化曲线;
根据所述变化曲线确定所述凸起靠近所述中间区域的边界。
在本公开的一种示例性实施例中,所述根据所述变化曲线确定所述凸起靠近所述中间区域的边界,包括:
将所述变化曲线中经过峰值后的平坦化区域的起始位置作为所述凸起靠近所述中间区域的边界。
在本公开的一种示例性实施例中,所述蚀刻位于所述目标蚀刻区域内的所述光阻层,包括:
采用等离子体蚀刻工艺蚀刻位于所述目标蚀刻区域内的所述光阻层。
在本公开的一种示例性实施例中,所述在所述半导体衬底上形成光阻层包括:
对所述半导体衬底的表面进行预处理,以提高所述半导体衬底的粘接性;
采用旋涂工艺在所述半导体衬底上形成光阻层。
在本公开的一种示例性实施例中,所述处理方法还包括:
去除位于所述半导体衬底的侧壁及背面的所述光阻层的材料。
根据本公开的一个方面,提供一种半导体结构的处理装置,所述处理装置包括:
箱体,包括真空腔室;
旋涂机台,设于所述真空腔室内,用于在半导体衬底上形成光阻层,所述光阻层包括邻接分布的边缘区域和中间区域,所述边缘区域包括凸起;
位置检测组件,设于所述真空腔室内,用于检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内;
蚀刻机台,设于所述真空腔室内,并与所述位置检测组件电性连接,所述蚀刻机台用于接收所述位置检测组件确定的所述目标蚀刻区域,并蚀刻位于所述目标蚀刻区域内的所述光阻层。
在本公开的一种示例性实施例中,所述旋涂机台包括:
转台,用于承载所述半导体衬底,所述转台能带动所述半导体衬底旋转;
滴管,设于所述真空腔室内,且其开口与所述转台相对设置,所述滴管用于向所述半导体衬底的表面滴入所述光阻层的材料。
在本公开的一种示例性实施例中,所述旋涂机台还包括:
第一喷嘴,与所述转台相对设置,用于在向所述半导体衬底的表面滴入所述光阻层的材料之前向所述半导体衬底的表面喷射润湿材料,以提高所述半导体衬底的表面的粘接性。
在本公开的一种示例性实施例中,所述位置检测组件位于所述半导体衬底远离所述转台的一侧,并能由所述半导体衬底的外侧经由所述边缘区域向所述中间区域移动。
在本公开的一种示例性实施例中,所述位置检测组件包括:
检测电路,用于在由所述半导体衬底的外侧经由所述边缘区域向所述中间区域移动的过程中检测所述凸起靠近所述中间区域的边界;
区域确定模块,用于根据所述凸起靠近所述中间区域的边界和所述边缘区域远离所述中间区域的边界确定目标蚀刻区域。
在本公开的一种示例性实施例中,所述位置检测组件还包括:
曲线生成模块,用于根据所述检测电路的检测探头的实际位置与所述实际位置对应的所述光阻层的厚度生成变化曲线;
边界确定模块,用于根据所述变化曲线确定所述凸起靠近所述中间区域的边界。
在本公开的一种示例性实施例中,所述边界确定模块用于将所述变化曲线中经过峰值后的平坦化区域的起始位置作为所述凸起靠近所述中间区域的边界。
在本公开的一种示例性实施例中,所述蚀刻机台包括:
承载台,用于承载具有所述光阻层的所述半导体衬底;
第二喷嘴,与所述承载台相对设置;
控制组件,与所述位置检测组件电性连接,用于接收所述位置检测组件确定的所述目标蚀刻区域,并控制所述第二喷嘴向所述目标蚀刻区域喷射蚀刻气体。
在本公开的一种示例性实施例中,所述蚀刻气体包括含氧气体。
在本公开的一种示例性实施例中,所述含氧气体包括氧气、一氧化碳或二氧化碳中至少一种。
在本公开的一种示例性实施例中,所述蚀刻气体包括氢气和氮气。
在本公开的一种示例性实施例中,所述处理装置还包括:
气体浓度检测组件,深入至所述真空腔室内,用于检测所述真空腔内的气体浓度,并在所述气体浓度小于预设值时,判断所述目标蚀刻区域的所述光阻层蚀刻完成。
根据本公开的一个方面,提供一种半导体结构的处理系统,包括上述任意一项所述的半导体结构的处理装置,以及
移动装置,用于将所述半导体衬底由所述旋涂机运送至所述蚀刻机。
本公开的半导体结构的处理方法、处理装置及处理系统,可通过检测获得凸起的位置信息,根据凸起的位置信息确定包含凸起的目标蚀刻区域,通过蚀刻的方式将目标蚀刻区域内的所有光阻层全部去除。在此过程中,位于目标蚀刻区域内的凸起可被全部蚀刻掉,可避免在后续工艺中因凸起掉落而污染设备,无需频繁的对设备进行擦拭,可降低设备的维护成本;同时,还可避免凸起掉落在半导体衬底的其他部位,可减少缺陷产生的概率,避免产品报废,进而提高产品良率;此外,采用蚀刻的方式清除凸起不会造成二次隆起,可进一步减少产品中缺陷的来源, 提高产品良率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施方式中的半导体结构的处理方法的流程图;
图2为本公开实施方式中的光阻层的示意图;
图3为本公开实施方式中蚀刻机台的示意图;
图4为图3的俯视图;
图5为本公开实施方式中目标蚀刻区域内的光阻层的厚度变化曲线。
附图标记说明:
100、半导体衬底;200、光阻层;201、凸起;1、承载台;2、位置检测组件。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的 装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
在DRAM制程过程中,通常采用光刻工艺对半导体结构进行图案化,在此过程中,需要在待蚀刻的半导体结构的表面旋涂光刻胶。在旋涂光刻胶的过程中,多余的光刻胶受离心力的作用会被推到半导体结构的边缘区域,在此过程中,边缘区域的大部分光刻胶会被甩离半导体结构表面,然而,有一部分光刻胶会残留在半导体结构的边缘区域,在旋涂过程中,半导体结构的边缘区域的气流相对速度较大,致使残留在边缘区域的光刻胶很快固化,形成凸起。在后续烘烤工艺中,凸起易脱落,进而污染烘烤盘机械手和其他后续工艺的设备。
目前,常采用光学的方法去除凸起。例如,对位于边缘区域的光刻胶进行曝光并显影(形成的显影区包括凸起所在区域),进而去除凸起,然而,当光刻胶为负性光刻胶时,显影难度较大,很难将凸起完全清除。
基于此,本公开实施方式提供了一种半导体结构的处理方法,图1示出了本公开实施方式中的半导体结构的处理方法的流程图,参见图1所示,本公开半导体结构的处理方法包括步骤S110-步骤S140,其中:
步骤S110,提供半导体衬底;
步骤S120,在所述半导体衬底上形成光阻层,所述光阻层包括邻接分布的边缘区域和中间区域,所述边缘区域包括凸起;
步骤S130,检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内;
步骤S140,蚀刻位于所述目标蚀刻区域内的所述光阻层。
本公开的半导体结构的处理方法,可通过检测获得凸起的位置信息, 根据凸起的位置信息确定包含凸起的目标蚀刻区域,通过蚀刻的方式将目标蚀刻区域内的所有光阻层全部去除。在此过程中,位于目标蚀刻区域内的凸起可被全部蚀刻掉,可避免在后续工艺中因凸起掉落而污染设备,无需频繁的对设备进行擦拭,可降低设备的维护成本;同时,还可避免凸起掉落在半导体衬底的其他部位,可减少缺陷产生的概率,避免产品报废,进而提高产品良率;此外,采用蚀刻的方式清除凸起不会造成二次隆起,可进一步减少产品中缺陷的来源,提高产品良率。
下面对本公开实施方式中的半导体结构的处理方法的各步骤及具体细节进行详细说明:
如图1所示,在步骤S110中,提供半导体衬底。
半导体衬底可呈平板结构,其可为矩形、圆形、椭圆形、多边形或不规则图形,其材料可以是硅和/或其他半导体材料,在此不对半导体衬底的形状及材料做特殊限定。
在本公开的一种示例性实施方式中,半导体衬底可为任一图案化工艺之前的半导体结构,例如,其可以是用于蚀刻以形成字线沟槽之前的结构;又如,其可以是用于蚀刻以形成电容接触孔之前的结构;又或者,其可以是用于蚀刻以形成位线沟槽之前的结构;当然,半导体结构还可以是其他图案化工艺之前的结构,在此不再一一列举。
如图1所示,在步骤S120中,在所述半导体衬底上形成光阻层,所述光阻层包括邻接分布的边缘区域和中间区域,所述边缘区域包括凸起。
可采用旋涂或其他工艺在半导体衬底的表面形成光阻层,在此不对形成光阻层的工艺做特殊限定。光阻层的材料可为光刻胶,举例而言,其可以是正性光刻胶或负性光刻胶。
在本公开的一种示例性实施方式中,光阻层可包括中间区域和边缘区域,中间区域和边缘区域可邻接分布。中间区域可呈圆形、矩形或不规则图形,边缘区域可呈环形,并可围绕中间区域一周。举例而言,边缘区域可为圆环形,且当边缘区域为圆环形时,中间区域可为圆形,中间区域的直径与边缘区域的内环的内径相等。
如图2所示,中间区域的光刻胶的表面较为平整,边缘区域具有凸起201,在垂直于半导体衬底100的方向上凸起201的高度大于中间区 域的光刻胶的厚度。凸起201可占据边缘区域中的一小块区域,也可以随边缘区域环绕中间区域一周。
在本公开的一种示例性实施方式中,在半导体衬底100上形成光阻层200(即步骤S120)可包括步骤S210及步骤S220,其中:
步骤S210,对所述半导体衬底100的表面进行预处理,以提高所述半导体衬底100的粘接性。
在形成光阻层200前可对半导体衬底100的表面进行预处理,进而提高半导体衬底100表面的粘接性,以便于后续在其表面形成的光阻层200与半导体衬底100的表面紧密贴合,有助于光阻层200更好的附着于半导体衬底100的表面。
举例而言,可向半导体衬底100的表面喷涂润湿溶液,通过润湿溶液提高半导体衬底100表面的润湿性,进而提高后续形成的光阻层200在半导体衬底100表面的附着力。
步骤S220,采用旋涂工艺在所述半导体衬底100上形成光阻层200。
可采用旋涂的方式在半导体衬底100的表面形成光阻层200。举例而言,可将半导体衬底100固定于转台上,在转台带动半导体衬底100高速旋转的过程中,向半导体衬底100的表面滴入光刻胶的原材料,在旋转离心力的作用下,可将光刻胶的原材料铺满半导体衬底100的表面。在此过程中,可在半导体衬底100的中间区域形成厚度较为均匀的光阻层200,同时,半导体衬底100的边缘区域的大部分光刻胶会被甩离其表面,然而,有一部分光刻胶会残留在半导体衬底100的边缘区域,进而形成凸起201。可将光刻胶层的边界与凸起201距离光刻胶层的边界最远的边界之间的区域定义为光阻层200的边缘区域,该边缘区域可为环形区域,凸起201可位于环形区域的内环和外环之间,同时,可将边缘区域以外的区域定义为中间区域,即,中间区域可位于边缘区域的内环以内。
需要说明的是,凸起201的数量可为一个,也可为多个,在此不做特殊限定。在本公开的一些实施方式中,凸起201的数量可为一个,该凸起201可呈环形,环绕中间区域一周;在本公开的另一些实施方式中,凸起201的数量可为多个,多个凸起201可间隔分布,并可呈环形围绕 中间区域一周。
如图1所示,在步骤S130中,检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内。
在本公开的一种示例性实施方式中,如图3及图4所示,可采用位置检测组件2检测凸起201的位置信息,进而获得凸起201的具体位置,以便于后续有针对性的去除凸起201。可根据凸起201的位置信息确定目标蚀刻区域,以便于后续根据对目标蚀刻区域的光阻层200进行针对性的蚀刻。需要说明的是,凸起201可位于目标蚀刻区域内,进而在后续对目标蚀刻区域进行蚀刻的过程中可将凸起201去除。
在本公开的一种示例性实施方式中,检测凸起201的位置信息,并根据位置信息确定目标蚀刻区域,凸起201位于目标蚀刻区域内(即步骤S130)可包括步骤S310及步骤S320,其中:
步骤S310,检测所述凸起201靠近所述中间区域的边界。
在本公开的一些实施方式中,位置检测组件2可设于半导体衬底100远离转台的一侧,例如,位置检测组件2可位于半导体结构的上方,并能由半导体衬底100的外侧经由边缘区域向中间区域移动,且其能在由半导体衬底100的外侧经由边缘区域向中间区域移动的过程中检测其所在位置正对的区域的光阻层200的厚度,当某一区域的厚度明显大于其他区域的厚度时认为该区域存在凸起201,可根据凸起201的具体位置确定其靠近中间区域的边界。
举例而言,当凸起201为围绕中间区域一周的环形结构时,可以光阻层200的中心点为圆心,以环形凸起201的内环中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界;当凸起201为多个时,可以光阻层200的中心点为圆心,以多个凸起201中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界。
在本公开的另一些示例性实施方式中,检测凸起201靠近中间区域的边界(即步骤S310)可包括步骤S3101及步骤S3102,其中:
步骤S3101,根据检测电路的检测探头的实际位置与所述实际位置对应的所述光阻层200的厚度生成变化曲线。
位置检测组件2可包括检测电路,检测电路可在由半导体衬底100的外侧经由边缘区域向中间区域移动的过程中检测凸起201靠近中间区域的边界,举例而言,检测电路可包括检测探头,检测探头在由半导体衬底100的外侧经由边缘区域向中间区域移动的过程中可实时检测与其所在的实际位置正对的区域的光阻层200的厚度,并可根据检测探头的实际位置与实际位置对应的光阻层200的厚度生成厚度随位置变化的变化曲线,该变化曲线可如图5所示,图中,A为半导体衬底的边界,位置检测组件由半导体衬底的边缘开始向中间移动,其可至少移动至波峰后的平坦位置B。
步骤S3102,根据所述变化曲线确定所述凸起201靠近所述中间区域的边界。
可根据变化曲线中厚度随位置变化的变化趋势确定凸起201靠近中间区域的边界。举例而言,若变化曲线呈现出先增大后减小再保持不变的变化趋势,则可将变化曲线中经过峰值后的平坦化区域的起始位置作为凸起201靠近中间区域的边界。例如,可将图5中的平坦位置B作为凸起201靠近中间区域的边界。
步骤S320,将所述凸起201靠近所述中间区域的边界和所述边缘区域远离所述中间区域的边界围成的区域确定为目标蚀刻区域。
目标蚀刻区域可由凸起201靠近中间区域的边界和边缘区域远离中间区域的边界围成。举例而言,若凸起201靠近中间区域的边界为圆形时,目标蚀刻区域可为环形区域,该环形区域的内环可为圆环,外环的形状与光阻层200外周的形状相同。
在本公开的一种示例性实施方式中,凸起201的数量可为多个,每个凸起201均可具有与之对应的边界,在确定目标蚀刻区域时,可以光阻层200的中心点为圆心,以多个凸起201中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界,并将该圆与边缘区域远离中间区域的边界围城的区域定义为目标蚀刻区域。
除此之外,当凸起201靠近中间区域的边界为不规则的封闭图形时,可以光阻层200的中心点为圆心,以封闭图形中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界,并将该圆与 边缘区域远离中间区域的边界围城的区域定义为目标蚀刻区域。
如图2示,在步骤S140中,蚀刻位于所述目标蚀刻区域内的所述光阻层。
可采用蚀刻工艺去除位于目标区域内的光阻层200,在此过程中,位于目标蚀刻区域内的凸起201可被全部蚀刻掉,可避免在后续工艺中因凸起201掉落而污染设备,无需频繁的对设备进行擦拭,可降低设备的维护成本;同时,还可避免凸起201掉落在半导体衬底100的其他部位,可减少缺陷产生的概率,进而提高产品良率。
在本公开的一种示例性实施方式中,可采用等离子体蚀刻工艺蚀刻位于目标蚀刻区域内的光阻层200。举例而言,可采用蚀刻机台,向目标蚀刻区域喷射蚀刻气体形成等离子体,进而通过等离子体与光阻层200的材料发生化学反应,进而将位于目标蚀刻区域内的光阻层200清除。
举例而言,蚀刻气体可为含氧气体,例如,其可为氧气、一氧化碳或二氧化碳中至少一种,需要说明的是,为了防止各气体之间发生反应而爆炸,蚀刻气体还可包括惰性气体,例如,其可包括氮气、氩气、氖气或氦气等。当然,蚀刻还可为其他类型的气体,只要能去除光阻层200的材料且不损伤半导体衬底100即可,例如,蚀刻气体还可以是氢气和氮气的混合气体,在此不对蚀刻气体的类型做特殊限定。
在本公开的一种示例性实施方式中,本公开的半导体节后的处理方法还可包括:
步骤S150,去除位于所述半导体衬底100的侧壁及背面的所述光阻层200的材料。
可采用蚀刻或灰化工艺去除位于半导体衬底100的侧壁及背面的光阻层200的材料,避免位于半导体衬底100的侧壁及背面的光阻层200的材料在后续工艺过程中脱落而污染设备,可进一步降低设备的维护成本;同时还可避免位于半导体衬底100的侧壁及背面的光阻层200的材料掉落在半导体衬底100的其他部位,可进一步减少缺陷产生的概率,提高产品良率。
在本公开的一些实施方式中,可采用蚀刻工艺去除位于半导体衬底 100的侧壁及背面的光阻层200的材料,例如,可采用蚀刻机台向半导体衬底100的侧壁及背面喷射蚀刻气体形成等离子体,进而通过等离子体与位于半导体衬底100的侧壁及背面的光阻层200的材料发生化学反应,进而将位于半导体衬底100的侧壁及背面的光阻层200的材料清除。
在本公开的另一些实施方式中,在蚀刻目标蚀刻区域的光阻层200时,等离子体可在局部扩散,例如,其可扩散至半导体衬底100的侧壁及背面,进而将位于半导体衬底100的侧壁及背面的光阻层200的材料一并清除。
需要说明的是,尽管在附图中以特定顺序描述了本公开中半导体结构的处理方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本公开实施方式还提供一种半导体结构的处理装置,该处理装置可包括箱体、旋涂机台、位置检测组件2和蚀刻机台,其中:
箱体可包括真空腔室;
旋涂机台可设于真空腔室内,用于在半导体衬底100上形成光阻层200,光阻层200包括邻接分布的边缘区域和中间区域,边缘区域包括凸起201;
位置检测组件2可设于真空腔室内,用于检测凸起201的位置信息,并根据位置信息确定目标蚀刻区域,凸起201位于目标蚀刻区域内;
蚀刻机台可设于真空腔室内,并与位置检测组件2电性连接,蚀刻机台用于接收位置检测组件2确定的目标蚀刻区域,并蚀刻位于目标蚀刻区域内的光阻层200。
本公开的半导体结构的处理装置,可通过检测获得凸起201的位置信息,根据凸起201的位置信息确定包含凸起201的目标蚀刻区域,通过蚀刻的方式将目标蚀刻区域内的所有光阻层200全部去除。在此过程中,位于目标蚀刻区域内的凸起201可被全部蚀刻掉,可避免在后续工艺中因凸起201掉落而污染设备,无需频繁的对设备进行擦拭,可降低设备的维护成本;同时,还可避免凸起201掉落在半导体衬底100的其 他部位,可减少缺陷产生的概率,避免产品报废,进而提高产品良率;此外,采用蚀刻的方式清除凸起201不会造成二次隆起,可进一步减少产品中缺陷的来源,提高产品良率。
下面对本公开的半导体结构的处理装置的各部分进行详细说明:
在本公开的一种实例性实施方式中,半导体结构可至少包括半导体衬底100,半导体衬底100可呈平板结构,其可为矩形、圆形、椭圆形、多边形或不规则图形,其材料可以是硅和/或其他半导体材料,在此不对半导体衬底100的形状及材料做特殊限定。
在本公开的一种示例性实施方式中,半导体衬底100可为任一图案化工艺之前的半导体结构,例如,其可以是用于蚀刻以形成字线沟槽之前的结构;又如,其可以是用于蚀刻以形成电容接触孔之前的结构;又或者,其可以是用于蚀刻以形成位线沟槽之前的结构;当然,半导体结构还可以是其他图案化工艺之前的结构,在此不再一一列举。
箱体可以呈多面体或柱体,当然也可以是其他形状,在此不对箱体的形状做特殊限定。同时,箱体的材料可以是有机玻璃、不锈钢材料或金属材料,当然,也可以是其他材料,例如,还可以是合金材料,在此不对箱体的具体材料做特殊限定。
旋涂机台可设于箱体内,可通过旋涂机台在半导体衬底100上形成光阻层200。光阻层200的材料可为光刻胶,举例而言,其可以是正性光刻胶或负性光刻胶。
在本公开的一种示例性实施方式中,光阻层200可包括中间区域和边缘区域,中间区域和边缘区域可邻接分布。中间区域可呈圆形、矩形或不规则图形,边缘区域可呈环形,并可围绕中间区域一周。举例而言,边缘区域可为圆环形,且当边缘区域为圆环形时,中间区域可为圆形,中间区域的直径与边缘区域的内环的内径相等。
如图2所示,中间区域的光刻胶的表面较为平整,边缘区域具有凸起201,在垂直于半导体衬底100的方向上凸起201的高度大于中间区域的光刻胶的厚度。凸起201可占据边缘区域中的一小块区域,也可以随边缘区域环绕中间区域一周。
举例而言,旋涂机台可包括转台和滴管,其中:
转台可具有台面,台面可为平面,该平面可与水平面平行设置,可将半导体衬底100至于转台上(即转台可用于承载半导体衬底100),并可将其与转台固定连接,进而防止在旋涂形成光阻层200的过程中半导体衬底100从转台上掉落。举例而言,转台表面可设有开口,其内部可设有真空通道,真空通道的一端与开口连接,另一端与真空泵连接。将半导体衬底100至于转台上时,可使其覆盖转台上的开口,可通过真空泵抽真空,进而将半导体衬底100吸附在转台上,避免使用粘接或卡接等形式将半导体衬底100与转台固定,进而避免损伤半导体衬底100的内部结构,提高产品良率。优选的,开口可位于转台的中心,进而可将半导体衬底100固定在转台的中心位置,有助于后续在半导体衬底100表面形成粗糙度较低(薄膜厚度较为均匀)的光阻层200。转台可与电机连接,在旋涂光阻层200的过程中,在电机的驱动下转台可带动半导体衬底100旋转,进而使用于形成光阻层200的材料平铺于半导体衬底100的表面。
滴管可呈管状,滴管的横截面可呈圆形、椭圆形、多边形、矩形或不规则图形,其材料可为橡胶、塑料、金属管或合金等,在此不对出滴管的形状和材料做特殊限定。
滴管可设于真空腔室内,其可包括开口,开口可与转台相对设置,在转台带动半导体衬底100旋转的过程中可通过滴管向半导体衬底100的表面滴入用于形成光阻层200的材料,在转台转动过程中的离心力的作用下可将用于形成光阻层200的材料均匀的涂覆在半导体衬底100的中间区域,并将多余的材料甩至半导体衬底100的边缘区域。在此过程中,由于边缘区域气流相对速度较大,残留在边缘区域的部分材料易固化,形成凸起201。需要说明的是,也可在转台静止的时候将用于形成光阻层200的材料滴在半导体衬底100表面,再通过转台带动半导体衬底100转动,进而形成光阻层200。
在本公开的一种示例性实施方式中,旋涂机台还可包括第一喷嘴,第一喷嘴可与转台相对设置,可用于在向半导体衬底100的表面滴入光阻层200的材料之前向半导体衬底100的表面喷射润湿材料,以提高半导体衬底100的表面的粘接性,以便于后续在其表面形成的光阻层200 与半导体衬底100的表面紧密贴合,有助于光阻层200更好的附着于半导体衬底100的表面。
第一喷嘴可呈圆形、矩形、多边形或其它形状,在此不对第一喷嘴的形状做特殊限定。可通过第一喷嘴向半导体衬底100的表面喷涂润湿溶液,通过润湿溶液提高半导体衬底100表面的润湿性,进而提高后续形成的光阻层200在半导体衬底100表面的附着力。
位置检测组件2可设于半导体衬底100远离转台的一侧,例如,位置检测组件2可位于半导体衬底100的上方,并能由半导体衬底100的外侧经由边缘区域向中间区域移动,且其能在由半导体衬底100的外侧经由边缘区域向中间区域移动的过程中检测其所在位置正对的区域的光阻层200的厚度,当某一区域的厚度明显大于其他区域的厚度时认为该区域存在凸起201,可根据凸起201的具体位置确定其靠近中间区域的边界。
举例而言,当凸起201为围绕中间区域一周的环形结构时,可以光阻层200的中心点为圆心,以环形凸起201的内环中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界;当凸起201为多个时,可以光阻层200的中心点为圆心,以多个凸起201中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界。
在本公开的一种示例性实施方式中,位置检测组件2可包括检测电路和区域确定模块,其中:
检测电路可在由半导体衬底100的外侧经由边缘区域向中间区域移动的过程中检测凸起201靠近中间区域的边界,举例而言,检测电路可包括检测探头,检测探头在由半导体衬底100的外侧经由边缘区域向中间区域移动的过程中可实时检测与其所在的实际位置正对的区域的光阻层200的厚度。
区域确定模块可根据凸起201靠近中间区域的边界和边缘区域远离中间区域的边界围成的区域确定为目标蚀刻区域。即:目标蚀刻区域可由凸起201靠近中间区域的边界和边缘区域远离中间区域的边界围成。举例而言,若凸起201靠近中间区域的边界为圆形时,目标蚀刻区域可 为环形区域,该环形区域的内环可为圆环,外环的形状与光阻层200外周的形状相同。
在本公开的一种示例性实施方式中,凸起201的数量可为多个,每个凸起201均可具有与之对应的边界,在确定目标蚀刻区域时,可以光阻层200的中心点为圆心,以多个凸起201中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界,并将该圆与边缘区域远离中间区域的边界围城的区域定义为目标蚀刻区域。
除此之外,当凸起201靠近中间区域的边界为不规则的封闭图形时,可以光阻层200的中心点为圆心,以封闭图形中最靠近圆心的点为半径画圆,将该圆的圆周线作为凸起201靠近中间区域的边界,并将该圆与边缘区域远离中间区域的边界围城的区域定义为目标蚀刻区域。
在本公开的一种示例性实施方式中,检测组件还可包括曲线生成模块和边界确定模块,其中:
曲线生成模块可根据检测探头的实际位置与实际位置对应的光阻层200的厚度生成厚度随位置变化的变化曲线,该变化曲线可如图5所示,图中,A为半导体衬底的边界,位置检测组件由半导体衬底的边缘开始向中间移动,其可至少移动至波峰后的平坦位置B。边界确定模块可根据变化曲线中厚度随位置变化的变化趋势确定凸起201靠近中间区域的边界。举例而言,若变化曲线呈现出先增大后减小再保持不变的变化趋势,则可将变化曲线中经过峰值后的平坦化区域的起始位置作为凸起201靠近中间区域的边界。例如,可将图5中的平坦位置B作为凸起201靠近中间区域的边界。
举例而言,位置检测组件2可为厚度传感器。
蚀刻机台可设于真空腔室内,可用于蚀刻位于目标蚀刻区域内的光阻层200,进而将凸起201清除,在此过程中,不会造成光阻层200的二次隆起,可进一步减少缺陷,提高产品良率。举例而言,旋涂机台可与位置检测组件2电性连接,蚀刻机台可接收位置检测组件2确定的目标蚀刻区域,并蚀刻位于目标蚀刻区域内的光阻层200。
在本公开的一种示例性实施方式中,如图3及图4所示,蚀刻机台可包括承载台1、第二喷嘴及控制组件,其中:
承载台1可具有承载面,承载面可为平面,该平面可与水平面平行设置,可将具有光阻层200的半导体衬底100固定在承载台1上(即承载台1可用于承载具有光阻层200的半导体衬底100),并可将其与承载台1固定连接,进而防止在蚀刻光阻层200的过程中半导体衬底100从承载台1上掉落。举例而言,承载台1与半导体衬底100的固定方式和转台与半导体衬底100的固定方式类似,因此,此处不再赘述。承载台1可与电机连接,在蚀刻光阻层200的过程中,在电机的驱动下承载台1可带动半导体衬底100旋转,以便将环形的目标蚀刻区域中的光阻层200全部清除,避免部分区域残留。
第二喷嘴可与承载台1相对设置,可用于向具有光阻层200的半导体衬底100喷射蚀刻气体形成等离子体,进而通过等离子体与光阻层200的材料发生化学反应,进而将位于目标蚀刻区域内的光阻层200清除。
举例而言,蚀刻气体可为含氧气体,例如,其可为氧气、一氧化碳或二氧化碳中至少一种,需要说明的是,为了防止各气体之间发生反应而爆炸,蚀刻气体还可包括惰性气体,例如,其可包括氮气、氩气、氖气或氦气等。当然,蚀刻还可为其他类型的气体,只要能去除光阻层200的材料且不损伤半导体衬底100即可,例如,蚀刻气体还可以是氢气和氮气的混合气体,在此不对蚀刻气体的类型做特殊限定。
在本公开的一些实施方式中,第二喷嘴可呈管状,其横截面可呈圆形、椭圆形、多边形、矩形或不规则图形,其材料可为橡胶、塑料、金属管或合金等,在此不对出第二喷嘴的形状和材料做特殊限定。
控制组件可与位置检测组件2电性连接,例如,控制组件可与位置检测组件2通过导电连接。控制组件可用于接收位置检测组件2确定的目标蚀刻区域,并控制第二喷嘴向目标蚀刻区域喷射蚀刻气体。
举例而言,控制组件可以根据目标蚀刻区域控制第二喷嘴移动,进而控制第二喷嘴距离半导体衬底100的边缘的距离。例如,其可控制第二喷嘴在半导体衬底100上的正投影覆盖半导体衬底100的边缘,且当第二喷嘴在半导体衬底100上的正投影覆盖半导体衬底100的边缘时,控制组件可控制第二喷嘴由半导体衬底100的边缘向目标蚀刻区域靠近中间区域的边界缓慢移动,且在移动过程中可同时向半导体衬底100的 表面喷射蚀刻气体,进而完成对目标蚀刻区域的光阻层200的蚀刻。
举例而言,控制组件可为设定的计算机程序或控制器,当然,控制组件也可以是其他可以实现上述控制功能的装置或设备,在此不再一一列举。
在本公开的一种示例性实施方式中,本公开的半导体结构的处理系统还可包括气体浓度检测组件,该气体浓度检测组件可深入至真空腔室内,可通过气体浓度检测组件检测真空腔内的气体浓度,并可在气体浓度小于预设值时,判断目标蚀刻区域的光阻层200蚀刻完成,进而将具有光阻层200的半导体衬底100送出。
在本公开的一些实施方式中,气体浓度检测组件可包括气体浓度检测探头,气体浓度检测探头可深入至真空腔室内,可通过气体浓度检测探头检测真空腔室内的气体浓度,当其检测到的气体浓度小于预设值时,可判定目标蚀刻区域的光阻层200被完全蚀刻掉,进而判定凸起201被完全清除。
举例而言,气体浓度检测组件可为气体浓度传感器。
本公开实施方式还提供了一种半导体结构的处理系统,该处理系统可包括上述任一实施方式中的半导体结构的处理装置以及移动装置,该移动装置可用于将半导体衬底100由旋涂机运送至蚀刻机。举例而言,移动装置可为半导体制程过程中运送半导体衬底100的机器人。
本公开的半导体结构的处理系统的诸多细节及有益效果已经在上述半导体衬底的处理方法及半导体衬底的处理装置的实施方式中进行了详细说明,因此,此处不再赘述。
在本公开的一些实施方式中,移动装置可具有固定的滑动轨道,移动装置可沿滑动轨道往复移动。举例而言,滑动轨道可设于真空腔室内,并可至少位于旋涂机台与蚀刻机台之间,移动装置可将旋涂机台旋涂完成后的具有光阻层200的半导体衬底100通过滑动轨道运送至蚀刻机台。
在本公开的一些实施方式中,滑动轨道可呈条状,可将滑动轨道固定于真空腔室内部。滑动轨道可以是直线轨道,也可以是在延伸方向上具有弧度的轨道,例如,其可以是S型或者U型轨道,在此不对滑动轨道的类型做特殊限定。
需要说明的是,移动装置还可用于将半导体衬底100由真空腔室的入口运送至旋涂机台,或者,还可将蚀刻完成后具有光阻层200的半导体衬底100送出。
下面对本公开的半导体结构的处理系统的工作过程进行简要说明:
可通过移动装置将半导体衬底100有真空腔室的入口运送至旋涂机台的转台上,采用机械泵对转台内部抽真空,进而将半导体衬底100吸附在转台上,以避免后续旋转的过程中将半导体衬底100甩出;通过第一喷嘴向半导体衬底100表面喷涂润湿材料,进而提高半导体衬底100的粘接性,以便于后续在其表面形成的光阻层200能够更好的附着于半导体衬底100上;通过转台带动半导体衬底100转动,且在转动过程中,通过滴管向半导体衬底100的表面滴入光刻胶,进而在半导体衬底100的表面形成光阻层200。随后,通过移动装置将形成有光阻层200的半导体衬底100运送至蚀刻机台的承载台1上,通过位置检测组件2对光阻层200的表面进行检测,进而确定包含凸起201的目标蚀刻区域,并将蚀刻区域的具体位置传输至控制组件,控制组件可控制第二喷嘴半导体衬底100上的正投影覆盖半导体衬底100的边缘,且当第二喷嘴在半导体衬底100上的正投影覆盖半导体衬底100的边缘时,控制组件可控制第二喷嘴由半导体衬底100的边缘向目标蚀刻区域靠近中间区域的边界缓慢移动,且在移动过程中可同时向半导体衬底100的表面喷射蚀刻气体,进而将包含凸起201的目标蚀刻区域内的光阻层200清除。在上述过程中,可将气体浓度检测组件深入至真空腔室内,通过气体浓度检测组件检测真空腔内的气体浓度,并在气体浓度小于预设值时,判断目标蚀刻区域的光阻层200蚀刻完成,最后,通过移动装置将具有光阻层200的半导体衬底100送出。在此过程中,位于目标蚀刻区域内的凸起201可被全部蚀刻掉,可避免在后续工艺中因凸起201掉落而污染设备,无需频繁的对设备进行擦拭,可降低设备的维护成本;同时,还可避免凸起201掉落在半导体衬底100的其他部位,可减少缺陷产生的概率,进而提高产品良率。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或 者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (20)

  1. 一种半导体结构的处理方法,其中,包括:
    提供半导体衬底;
    在所述半导体衬底上形成光阻层,所述光阻层包括邻接分布的边缘区域和中间区域,所述边缘区域包括凸起;
    检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内;
    蚀刻位于所述目标蚀刻区域内的所述光阻层。
  2. 根据权利要求1所述的处理方法,其中,所述检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内,包括:
    检测所述凸起靠近所述中间区域的边界;
    将所述凸起靠近所述中间区域的边界和所述边缘区域远离所述中间区域的边界围成的区域确定为目标蚀刻区域。
  3. 根据权利要求2所述的处理方法,其中,所述检测所述凸起靠近所述中间区域的边界,包括:
    根据检测电路的检测探头的实际位置与所述实际位置对应的所述光阻层的厚度生成变化曲线;
    根据所述变化曲线确定所述凸起靠近所述中间区域的边界。
  4. 根据权利要求3所述的处理方法,其中,所述根据所述变化曲线确定所述凸起靠近所述中间区域的边界,包括:
    将所述变化曲线中经过峰值后的平坦化区域的起始位置作为所述凸起靠近所述中间区域的边界。
  5. 根据权利要求1所述的处理方法,其中,所述蚀刻位于所述目标蚀刻区域内的所述光阻层,包括:
    采用等离子体蚀刻工艺蚀刻位于所述目标蚀刻区域内的所述光阻层。
  6. 根据权利要求1-5任一项所述的处理方法,其中,所述在所述半导体衬底上形成光阻层包括:
    对所述半导体衬底的表面进行预处理,以提高所述半导体衬底的粘接性;
    采用旋涂工艺在所述半导体衬底上形成光阻层。
  7. 根据权利要求6所述的处理方法,其中,所述处理方法还包括:
    去除位于所述半导体衬底的侧壁及背面的所述光阻层的材料。
  8. 一种半导体结构的处理装置,其中,所述处理装置包括:
    箱体,包括真空腔室;
    旋涂机台,设于所述真空腔室内,用于在半导体衬底上形成光阻层,所述光阻层包括邻接分布的边缘区域和中间区域,所述边缘区域包括凸起;
    位置检测组件,设于所述真空腔室内,用于检测所述凸起的位置信息,并根据所述位置信息确定目标蚀刻区域,所述凸起位于所述目标蚀刻区域内;
    蚀刻机台,设于所述真空腔室内,并与所述位置检测组件电性连接,所述蚀刻机台用于接收所述位置检测组件确定的所述目标蚀刻区域,并蚀刻位于所述目标蚀刻区域内的所述光阻层。
  9. 根据权利要求8所述的处理装置,其中,所述旋涂机台包括:
    转台,用于承载所述半导体衬底,所述转台能带动所述半导体衬底旋转;
    滴管,设于所述真空腔室内,且其开口与所述转台相对设置,所述滴管用于向所述半导体衬底的表面滴入所述光阻层的材料。
  10. 根据权利要求9所述的处理装置,其中,所述旋涂机台还包括:
    第一喷嘴,与所述转台相对设置,用于在向所述半导体衬底的表面滴入所述光阻层的材料之前向所述半导体衬底的表面喷射润湿材料,以提高所述半导体衬底的表面的粘接性。
  11. 根据权利要求9所述的处理装置,其中,所述位置检测组件位于所述半导体衬底远离所述转台的一侧,并能由所述半导体衬底的外侧经由所述边缘区域向所述中间区域移动。
  12. 根据权利要求11所述的处理装置,其中,所述位置检测组件包括:
    检测电路,用于在由所述半导体衬底的外侧经由所述边缘区域向所述中间区域移动的过程中检测所述凸起靠近所述中间区域的边界;
    区域确定模块,用于根据所述凸起靠近所述中间区域的边界和所述边缘区域远离所述中间区域的边界确定目标蚀刻区域。
  13. 根据权利要求12所述的处理装置,其中,所述位置检测组件还包括:
    曲线生成模块,用于根据所述检测电路的检测探头的实际位置与所述实际位置对应的所述光阻层的厚度生成变化曲线;
    边界确定模块,用于根据所述变化曲线确定所述凸起靠近所述中间区域的边界。
  14. 根据权利要求13所述的处理装置,其中,所述边界确定模块用于将所述变化曲线中经过峰值后的平坦化区域的起始位置作为所述凸起靠近所述中间区域的边界。
  15. 根据权利要求8所述的处理装置,其中,所述蚀刻机台包括:
    承载台,用于承载具有所述光阻层的所述半导体衬底;
    第二喷嘴,与所述承载台相对设置;
    控制组件,与所述位置检测组件电性连接,用于接收所述位置检测组件确定的所述目标蚀刻区域,并控制所述第二喷嘴向所述目标蚀刻区域喷射蚀刻气体。
  16. 根据权利要求15所述的处理装置,其中,所述蚀刻气体包括含氧气体。
  17. 根据权利要求16所述的处理装置,其中,所述含氧气体包括氧气、一氧化碳或二氧化碳中至少一种。
  18. 根据权利要求15所述的处理装置,其中,所述蚀刻气体包括氢气和氮气。
  19. 根据权利要求8所述的处理装置,其中,所述处理装置还包括:
    气体浓度检测组件,深入至所述真空腔室内,用于检测所述真空腔内的气体浓度,并在所述气体浓度小于预设值时,判断所述目标蚀刻区域的所述光阻层蚀刻完成。
  20. 一种半导体结构的处理系统,其中,包括权利要求8-19任一项所述的半导体结构的处理装置,以及
    移动装置,用于将所述半导体衬底由所述旋涂机运送至所述蚀刻机。
PCT/CN2022/109550 2022-07-21 2022-08-01 半导体结构的处理方法、处理装置及处理系统 WO2024016380A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/151,510 US20240027911A1 (en) 2022-07-21 2023-01-09 Method, apparatus and system for processing semiconductor structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210864901.X 2022-07-21
CN202210864901.XA CN117497435A (zh) 2022-07-21 2022-07-21 半导体结构的处理方法、处理装置及处理系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/151,510 Continuation US20240027911A1 (en) 2022-07-21 2023-01-09 Method, apparatus and system for processing semiconductor structure

Publications (2)

Publication Number Publication Date
WO2024016380A1 true WO2024016380A1 (zh) 2024-01-25
WO2024016380A9 WO2024016380A9 (zh) 2024-03-07

Family

ID=89616884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109550 WO2024016380A1 (zh) 2022-07-21 2022-08-01 半导体结构的处理方法、处理装置及处理系统

Country Status (2)

Country Link
CN (1) CN117497435A (zh)
WO (1) WO2024016380A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607738A1 (de) * 2004-06-16 2005-12-21 Leica Microsystems Semiconductor GmbH Verfahren und System zur Inspektion eines Wafers
CN1826185A (zh) * 2003-07-18 2006-08-30 菲尼萨公司 边缘凸棱的控制方法与设备
JP2018041040A (ja) * 2016-09-09 2018-03-15 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
CN110391135A (zh) * 2019-08-08 2019-10-29 武汉新芯集成电路制造有限公司 去除光刻胶残留的方法及半导体器件的制造方法
CN110896021A (zh) * 2018-09-12 2020-03-20 长鑫存储技术有限公司 晶圆晶边清洗装置及晶圆晶边清洗方法
CN110941152A (zh) * 2018-09-25 2020-03-31 苏斯微技术光刻有限公司 处理基板的边缘光刻胶去除系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1826185A (zh) * 2003-07-18 2006-08-30 菲尼萨公司 边缘凸棱的控制方法与设备
EP1607738A1 (de) * 2004-06-16 2005-12-21 Leica Microsystems Semiconductor GmbH Verfahren und System zur Inspektion eines Wafers
JP2018041040A (ja) * 2016-09-09 2018-03-15 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
CN110896021A (zh) * 2018-09-12 2020-03-20 长鑫存储技术有限公司 晶圆晶边清洗装置及晶圆晶边清洗方法
CN110941152A (zh) * 2018-09-25 2020-03-31 苏斯微技术光刻有限公司 处理基板的边缘光刻胶去除系统和方法
CN110391135A (zh) * 2019-08-08 2019-10-29 武汉新芯集成电路制造有限公司 去除光刻胶残留的方法及半导体器件的制造方法

Also Published As

Publication number Publication date
CN117497435A (zh) 2024-02-02
WO2024016380A9 (zh) 2024-03-07

Similar Documents

Publication Publication Date Title
CN102108502B (zh) 成膜装置及成膜方法
JP4128383B2 (ja) 処理装置及び処理方法
KR102120498B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP5698487B2 (ja) 基板処理装置および基板処理方法
US6709531B2 (en) Chemical liquid processing apparatus for processing a substrate and the method thereof
US20080078423A1 (en) Substrate processing method and substrate processing apparatus
CN105702604A (zh) 涂敷处理方法和涂敷处理装置
JP2008198836A (ja) 基板処理装置および基板処理方法
JP5726686B2 (ja) 液処理装置、及び液処理装置の制御方法
JP2014179490A (ja) 基板処理装置および基板処理方法
EP3567429B1 (en) Photoresist coating method and device
JP2008027931A (ja) 基板処理装置および基板処理方法
JP2014179489A (ja) 基板処理装置
WO2024016380A1 (zh) 半导体结构的处理方法、处理装置及处理系统
JP2014157901A (ja) 基板処理装置および基板処理方法
KR101895409B1 (ko) 기판 처리 설비
US6576055B2 (en) Method and apparatus for controlling air over a spinning microelectronic substrate
US10593569B2 (en) Substrate processing method
US20240027911A1 (en) Method, apparatus and system for processing semiconductor structure
CN109148270B (zh) 成膜方法、存储介质和成膜系统
JP2007324509A (ja) 基板洗浄装置および基板洗浄方法
JP2003045845A (ja) ウエ−ハ端面エッチング洗浄処理装置
JP2004119829A (ja) 基板処理装置および基板処理方法
JPH09293658A (ja) 半導体装置の製造方法
JP2002176020A (ja) 基板処理装置および基板処理方法、ならびにデバイス製品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE