WO2024014372A1 - Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment - Google Patents
Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment Download PDFInfo
- Publication number
- WO2024014372A1 WO2024014372A1 PCT/JP2023/024887 JP2023024887W WO2024014372A1 WO 2024014372 A1 WO2024014372 A1 WO 2024014372A1 JP 2023024887 W JP2023024887 W JP 2023024887W WO 2024014372 A1 WO2024014372 A1 WO 2024014372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel plate
- burner
- direct
- zone
- air ratio
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D91/00—Burners specially adapted for specific applications, not otherwise provided for
- F23D91/02—Burners specially adapted for specific applications, not otherwise provided for for use in particular heating operations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/52—Methods of heating with flames
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/005—Furnaces in which the charge is moving up or down
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/48—Nozzles
- F23D14/58—Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
- F23D14/583—Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration of elongated shape, e.g. slits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
Definitions
- the present invention relates to a method for heating a steel sheet, a method for manufacturing a plated steel sheet, a direct-fired heating furnace, and continuous hot-dip galvanizing equipment using a direct-fired heating furnace.
- Si has the advantage that its addition cost is low compared to other elements, and it can increase the strength of steel without impairing its ductility. Therefore, Si-containing steel is promising as a high-strength steel plate.
- Si-containing steel is promising as a high-strength steel plate.
- High-strength steel sheets are annealed at a temperature range of 600 to 900°C in a reducing atmosphere in a process immediately before a galvanizing process such as hot-dip galvanizing.
- Si is an element that is more easily oxidized than Fe
- Si is concentrated on the surface of the steel sheet at this time.
- Si oxide is formed on the surface of the steel sheet, and this Si oxide significantly deteriorates the wettability with zinc, resulting in non-plating.
- Si is concentrated on the surface, even if zinc plating is attached, there will be a significant delay in alloying in the alloying process after hot-dip galvanizing, and productivity will deteriorate.
- Patent Document 1 proposes a pre-plating method in which Fe-based plating is performed on a steel plate (original plate) before plating using an electroplating method.
- Patent Documents 2 and 3 propose an oxidation-reduction method in which a steel plate is heated in an oxidizing atmosphere in advance to form an Fe-based oxide film on the surface, and then annealed and plated in a reduction furnace.
- the latter oxidation-reduction method can be applied by adjusting the combustion atmosphere in a conventional non-oxidation furnace (NOF) method or direct fire furnace (DFF) method hot-dip plating line.
- NOF non-oxidation furnace
- DFF direct fire furnace
- Patent Document 6 proposes a method of using a slit burner in which the shape of the burner nozzle outlet is parallel to the width direction of the steel sheet in a horizontal furnace for uniformity in the width direction of the steel sheet.
- a slit burner is installed in the oxidation furnace behind the non-oxidation furnace, in a horizontal furnace, the oxidation furnace atmosphere flows into the non-oxidation furnace, causing uneven plate temperature, and the Fe-based oxide film becomes uneven, causing the slit burner to flow into the non-oxidation furnace.
- the burner does not have the effect of making the flame uniform in the width direction.
- the thickness of the oxide film is uneven due to the conventional burner nozzle shape and arrangement.
- a slit burner is used, if a horizontal furnace that is followed by a non-oxidizing furnace, an oxidizing furnace, and a reducing furnace is used in combination, the Fe-based oxide film will be formed non-uniformly, and even if a slit burner is used in an oxidizing furnace, non-uniformity will occur. Not resolved.
- the present invention has been made in view of the above problems, and aims to produce galvanized steel sheets of stable quality without any unplating by a relatively easy method suitable for practical use.
- the present invention which has been made to solve the above problems, has the following configuration.
- [1] The front and back sides of a steel plate passing through a direct-fired heating furnace having an oxidation zone operated at an air ratio of 1 or more and a reduction zone operated at an air ratio of less than 1, passing through at least the oxidation zone.
- [2] The method for heating a steel plate according to [1], wherein the direct-fired heating furnace conveys the steel plate in the vertical direction and sucks combustion exhaust gas from an exhaust port installed below the slit burner. .
- the air ratio of the oxidation zone is 1.00 or more and less than 1.50
- a method for producing a plated steel sheet comprising heating a cold rolled steel sheet by the heating method described in any one of [1] to [3], and further subjecting the cold rolled steel sheet to a plating treatment.
- the air ratio of the oxidation zone is 1.00 or more and less than 1.50
- the slit burner comprises: In a range where the temperature of the steel plate passing through the oxidation zone is 400 ° C. or higher,
- the oxidation zone includes a burner group having two or more slit burners that can independently control the air ratio and combustion rate, according to any one of [7] to [9].
- Direct-fired heating furnace [12] Continuous hot-dip galvanizing equipment equipped with the direct-fired heating furnace according to any one of [7] to [9].
- the continuous hot-dip galvanizing equipment according to [12] further comprising an alloying equipment for alloying hot-dip galvanizing.
- an excellent galvanized steel sheet having a beautiful surface appearance with no unplating can be obtained.
- the present invention is particularly effective when the base material is a high-Si content steel sheet, which is particularly difficult to galvanize, and is useful as a method for improving the plating quality in the production of high-Si content galvanized steel sheets.
- FIG. 3 is a front view of an example of the arrangement of each open fire burner.
- BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of continuous hot-dip galvanizing equipment which is one embodiment of the present invention.
- FIG. 2 is an explanatory diagram showing an image of an actual state of combustion and heating of a steel plate by the slit burner of the present invention.
- BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the structure of the direct-fired heating furnace of this invention.
- a direct-fired heating furnace that heats a steel plate using a direct-fired burner has a high thermal efficiency, so it has the characteristic of being able to heat a steel plate to a predetermined temperature at low cost.
- Direct-fired heating furnaces control the temperature of the steel plate, and at the same time, when hot-dipping high-strength steel, such as high-Si steel, the atmosphere of the direct-fired burner is controlled to be oxidizing, so that the surface of the steel plate is It is necessary to ensure an appropriate oxide film (Fe-based oxide). After securing an appropriate amount of Fe-based oxide, reduction annealing is performed to internally oxidize Si, thereby improving the plating properties of high-Si steel.
- oxide film Fe-based oxide
- a method has been devised in which a slit burner is used instead of a circular burner to uniformly control the thickness of the Fe-based oxide film in the traveling direction/width direction.
- FIG. 1 shows an embodiment of a direct-fired heating furnace (DFF) arranged in an annealing facility of a continuous hot-dip galvanizing facility according to an embodiment of the present invention.
- DFF direct-fired heating furnace
- the type of annealing equipment be a vertical furnace, in other words, by transporting the steel plate in the vertical direction (including transporting it while turning it up and down in the vertical direction), it is possible to avoid expanding the scale of the equipment in the horizontal direction. , it becomes possible to thread the sheet at high speed.
- Another advantage is that it is easy to separate the atmosphere in the heating zone and the soaking zone. Conveying in the vertical direction refers to conveying in the vertical direction.
- FIG. 1 shows an embodiment of a direct-fired heating furnace (DFF) arranged in an annealing facility of a continuous hot-dip galvanizing facility according to an embodiment of the present invention.
- the type of annealing equipment be a vertical furnace, in other words, by transporting the steel plate in the vertical direction (
- FIG. 1 is a direct-fired heating furnace (DFF), 1-1 is an oxidation zone of the DFF, 1-2 is a reduction zone of the DFF, 2 is a flame injection port attached to a slit burner, and 3 is attached to a circular burner.
- S is the steel plate (including the steel strip)
- 4 is the radiation thermometer
- 5 is the flame
- 6 is the exhaust port
- L is the burner located most upstream in the direction of movement of the steel strip S of the burner group 14 in the reduction zone.
- the length of the steel plate S heating area by the burner group up to the most downstream burner 11 is the burner group in the oxidation zone, 12 is the burner group in the oxidation zone, 13 is the burner group in the oxidation zone, and 14 is the burner group in the reduction zone.
- a control device is provided to control the air ratio in the oxidation zone and the reduction zone.
- Figure 2 shows an example of continuous hot-dip galvanizing equipment. From the entrance side of the equipment, a preheating zone 20, a heating zone 21, a soaking zone 22, cooling zones 23 and 24, a plating bath (zinc pot) 25, and an alloying zone 26 as necessary are provided. A cooling zone 27 may be provided after the alloying zone 26.
- the steel plate to be heated may be in the form of a steel strip (coil) rather than a cut plate.
- the steel plate is not particularly limited, but cold-rolled steel plates are often used.
- the direct-fired heating furnace 1 of the present invention is assumed to be a heating furnace introduced into the heating zone 21 in continuous hot-dip galvanizing equipment.
- the direct-fired heating furnace 1 is composed of an oxidation zone 1-1 and a reduction zone 1-2, and the oxidation zone 1-1 is composed of three burner groups (zones), 11 to 13, in the steel plate advancing direction.
- a circular burner is installed in the burner group 11 in the oxidation zone, and its flame injection port is indicated by 3 in the figure, and slit burners are installed in the burner group 12 and 13 (in the oxidation zone). 2, the flame injection port is indicated by the reference numeral 2.
- the reduction zone had only one zone of 14 burner groups (burner groups in the reduction zone), and circular burners were installed.
- the flame injection port of the circular burner is designated by numeral 3 in the figure.
- the combustion rate and air ratio of the burner groups 11, 12, and 13 in the oxidation zone 1-1 can be controlled independently for each burner group.
- the burner groups 11 to 13 in the oxidation zone burn under conditions where the combustion rate is equal to or higher than a predetermined threshold value.
- each burner group is not limited. It is practical to divide the entire direct-fired heating furnace into 2 to 5 parts and control each part as a group.
- slit burners may be provided not only in the oxidation zone but also in both the oxidation zone 1-1 and the reduction zone 1-2.
- the slit burner is arranged opposite to the steel plate surface in the width direction of the steel plate S passing through the oxidation zone 1-1. Further, in order to uniformly heat the steel plate S in the width direction, a slit burner is arranged to extend in the width direction of the steel plate so that the flame 5 is injected over the entire width of the steel plate S. Furthermore, in order to accommodate the manufacture of steel plates S of various widths, the amount of flame injection can be controlled for each of the four regions divided in the width direction. Although it is divided into four here, the number of divisions is not limited, and depending on the flame injection structure of the slit burner and the width of the steel plate, division may not be necessary. On the other hand, the circular burners are distributed and arranged opposite to the steel plate surface.
- FIG. 3 is an explanatory diagram showing an image of the actual state of combustion and heating of a steel plate by the slit burner of the present invention, and the slit burner will be explained below based on the contents described therein.
- the slit burner has a rectangular burner flame injection port in which the length of the opening in the width direction of the steel plate S is longer than the length of the opening in the direction in which the steel plate S advances (also referred to as slit gap B).
- the detailed dimensions are not particularly limited.
- the length of the opening in the direction in which the steel plate S moves, ie, the short side, is B, then the length of the opening in the width direction, ie, the long side, is approximately 2B to 200B.
- burners that inject a slit-shaped flame such as those having elongated rectangular (slit) flame injection ports, are collectively referred to as "slit burners.” Therefore, there are no particular limitations on the internal structure or injection port.
- the flame injection port can control the injection width of the flame 5 by dividing the injection port in the width direction, and by using the above, the injection width of the flame 5 can be adjusted according to the width of the target steel plate. is possible.
- oxidation can be carried out more efficiently by arranging several slit burners in tandem.
- the spacing between them is not limited, but if the spacing is about 3B to 10B, interference between the flames 5 and temperature unevenness will be less likely to occur.
- At least one slit burner is installed in the oxidation zone 1-1, especially in the area where the plate temperature is in the above range. It is good to apply. Further, it is more preferable to use a slit burner in a temperature range of 450° C. or higher. On the other hand, since the amount of oxidation increases rapidly at high temperatures exceeding 650°C, it is preferable to use a slit burner where the plate temperature is 650°C or lower. The temperature is more preferably 600°C or lower, and most preferably 550°C or lower.
- the plate temperature can be determined by determining the steel type, plate thickness, plate width, line speed, and air ratio. , it is possible to estimate it in advance based on the combustion rate, etc. It is also possible to actually measure the plate temperature by installing radiation thermometers at several locations in the oxidation zone 1-1 in the sheet passing direction.
- the slit burner on the downstream side of the oxidation zone 1-1 in the sheet passing direction, where the sheet temperature is high.
- Slit burners may be applied to all burners in the oxidation zone 1-1, but the slit gap B at the slit burner outlet is narrower than that of a circular burner, and it may be clogged with foreign matter such as pieces of burner tiles, or the flame 5 may be at a high temperature.
- a conventional circular burner may be placed upstream of the oxidation zone 1-1, where the plate temperature is low, and a slit burner may be placed downstream. Even when a circular burner is used on the upstream side, from the viewpoint of heating efficiency, it is desirable to use a direct heating method in which the flame collides with the steel plate perpendicularly.
- the arrangement of the flame injection ports 2 associated with the slit burner may be arranged so as to be shifted in the traveling direction of the steel plate S on the front and back sides of the steel plate S, that is, may be offset.
- offset amount is in the range of about B to 3B. If the amount of offset is too large, there is a risk that the heating temperature will differ between the front and back surfaces.
- the burners are arranged vertically, so the flame is unstable due to the interference of the flame and combustion gas injected by the burner on the downstream side (lower part of the furnace), and the temperature is not uniform across the width and length of the steel plate. performance and stability will decrease.
- interference of flame and combustion gas can be alleviated by arranging them in a staggered manner, but with slit burners, interference from the downstream side is unavoidable because there is no cut in the flame in the width direction. Therefore, in the present invention, it is preferable to provide a slit-shaped exhaust port in the section where the slit burner is installed, and by providing the slit-shaped exhaust port, interference of flame and combustion gas can be easily alleviated.
- At least one set of exhaust ports is installed at the connection portion of each zone, one on the front and the other on the back.
- the exhaust port is preferably installed below the slit burner, and the combustion exhaust gas is sucked through the exhaust port.
- combustion exhaust gas refers to the high-temperature gas produced by the reaction between fuel and air, and contains mainly carbon dioxide and water vapor, which are reaction products, and nitrogen contained in the air, as well as unreacted surplus fuel components. It is a gas composed of trace components such as gas, oxygen, and intermediate products of reactions. If the equipment length and heating capacity satisfy the required performance, an exhaust port may be installed between the individual slit burners forming each zone.
- the burner combustion rate is the value obtained by dividing the amount of fuel gas actually introduced into the burner by the amount of fuel gas in the burner at the maximum combustion load.
- the combustion rate is 100% when the fuel is burned at the maximum combustion load.
- the combustion rate of the burner is not particularly limited, but if the combustion load of the burner becomes low, a stable combustion state cannot be obtained, so it is preferably set to the following threshold value or more.
- the predetermined threshold value of the combustion rate is the ratio of the amount of fuel gas at the lower limit of the combustion load that can ensure a stable combustion state to the amount of fuel gas at the maximum combustion load.
- the combustion rate threshold varies somewhat depending on the burner structure, etc., but can be easily determined by conducting a combustion test. Usually, the threshold value will be about 30%.
- combustion or combustion stop can be freely selected for each burner group.
- the air ratio in the oxidation zone 1-1 is less than 1.50. It is more preferable to operate the oxidation zone 1-1 at an air ratio of 1.40 or less, most preferably 1.30 or less.
- the air ratio is the amount of air actually introduced into the burner divided by the amount of air required to completely burn the fuel gas.
- the circular burners of the burner group 14 in the reduction zone 1-2 must have an air ratio of less than 1, and are preferably operated with an air ratio of 0.70 or more and less than 1.00, thereby controlling the combustion rate. is also possible.
- the air ratio is less than 0.70, the fuel consumption rate will deteriorate and the steel plate will be contaminated by soot, so the air ratio is preferably 0.70 or more. More preferably, the air ratio is 0.75 or more, most preferably 0.80 or more.
- the air ratio is preferably less than 1.00. More preferably, the air ratio is 0.95 or less, most preferably 0.90 or less.
- the number of burner groups to be burned is determined by considering the heating load, amount of oxidation formed, etc.
- the burner group for combustion by setting the air ratio and combustion rate to values within the above ranges, plate temperature fluctuations in the traveling direction of the steel plates S are reduced for various steel plates S.
- a sufficient amount of Fe oxide necessary for internally oxidizing Si for example, can be stably generated in the direction of movement of the steel plate S.
- Reducing plate temperature fluctuations in the traveling direction of the steel plate S also contributes to stabilizing the oxide reduction action in the burner group 14 of the subsequent reduction zone 1-2.
- the reduction in the plate temperature fluctuation contributes to prevention of insufficient reduction of Fe oxide in the RT furnace, internal oxidation of Si, and also contributes to suppressing oxide adhesion to the rolls of the RT furnace.
- the burner groups 11 to 13 in the oxidation zone 1-1 are oxidation burners
- the burner group 14 in the reduction zone 1-2 is a reduction burner
- the heating area by the burner groups 11 to 13 in the oxidation zone 1-1 is The area heated by the burner group 14 in the oxidation zone and the reduction zone 1-2 becomes the reduction zone.
- the length of the reducing atmosphere is short, an Fe oxide film will remain on the surface layer and the pickup prevention effect will be insufficient.
- the length of the reducing atmosphere is long, a surface enriched layer of Si or the like will be formed on the surface layer of the steel sheet during subsequent reduction annealing, which will impede plating properties.
- the length in the traveling direction of the steel plate S of the burner group 14 of the reduction zone 1-2 is preferably 150 mm or more, and more preferably 300 mm or more when uniformity in the width direction is also considered. More preferably, it is 500 mm or more, and most preferably 1000 mm or more.
- the upper limit of the length of the reduction zone is not particularly defined, if it is too long, the amount of temperature increase ⁇ Trd in the reduction zone will increase, so it will be necessary to reduce the amount of temperature increase ⁇ Tox in the oxidation zone. For this reason, a reduction zone that is too long is disadvantageous in securing the amount of oxidation, so it is desirable that the reduction zone be 10 m or less.
- the length is more preferably 5 m or less, and even more preferably 3 m or less. Furthermore, this is advantageous in terms of cost.
- the length in the traveling direction of the steel plate of the burner group 14 in the reduction zone 1-2 is from the flame injection port 3 attached to the circular burner located most upstream in the traveling direction of the steel plate in the burner group 14 in the reduction zone 1-2 to the most downstream length. This is the length ("L" in FIG. 1) of the heating area of the steel plate S by the burner group up to the flame injection port 3 attached to a certain circular burner. Note that even when a slit burner is applied to the burner group 14 of the reduction zone 1-2, it is preferable that the reduction zone length is set as above.
- ⁇ Length of oxidation zone> The length of the steel plates of the burner groups 11 to 13 in the oxidation zone 1-1 in the advancing direction (oxidation zone length) should be long enough to ensure the necessary amount of internal oxidation.
- the amount of oxidation changes depending on the type of steel being threaded, temperature history, threading speed, and steel sheet size, so it is important to ensure a zone length that can secure the required amount of oxidation even under the least oxidizing production conditions. is necessary.
- the steel plate S is oxidized and then reduced in the direct-fired heating furnace 1.
- the amount of oxidation formed in the oxidation zone needs to be precisely controlled in the traveling direction/width direction of the steel plate S.
- a burner placed facing the surface of the steel sheet S is It is necessary to divide the fuel into at least two groups and to be able to independently control the combustion rate and air ratio for each group. When deciding on a burner group, it is better not to mix slit burners and circular burners in one group, but to separate them into separate groups and control them separately.
- the burners arranged facing the surface of the steel plate S in the oxidation zone 1-1 are divided into two or more burner groups in the traveling direction of the steel plate S, whose combustion rate and air ratio can be independently controlled.
- the thickness of the Fe-based oxide film formed in the oxidation zone 1-1 varies depending on the Si content and thickness of the target steel sheet S, but is preferably 100 to 500 nm. If the thickness is less than 100 nm, the function as a barrier layer for preventing diffusion and concentration of Si to the surface may be insufficient, so the thickness of the Fe-based oxide film is preferably 100 nm or more. The thickness of the Fe-based oxide film is more preferably 150 nm or more, and even more preferably 200 nm or more. On the other hand, if the thickness exceeds 500 nm, the function as a barrier layer will hardly change, and the heating time of the oxidation zone 1-1 will become longer, and the amount of fuel used will also increase. Therefore, the thickness of the Fe-based oxide film is preferably 500 nm or less. The thickness of the Fe-based oxide film is more preferably 450 nm or less, and even more preferably 400 nm or less.
- the thickness of the above-mentioned Fe-based oxide film is determined by monitoring the plate temperature at the entrance and exit of the direct-fired heating furnace 1, and by determining the steel type, plate thickness, line speed, air ratio in the oxidation zone 1-1, and combustion rate in the oxidation zone 1-1. By correcting it, it can be estimated relatively easily. By mainly adjusting the combustion rate of the oxidation zone 1-1 based on this value, stable oxidation conditions can be determined and ensured, thereby making it possible to obtain a steel plate S free of unplated defects.
- the steel sheet S oxidized/reduced in the direct-fired heating furnace 1 is subsequently reductively annealed in an RT furnace, cooled, and further immersed in a hot-dip galvanizing bath to be hot-dip galvanized, or further subjected to alloying treatment if necessary. be done. After reduction annealing, conventional methods may be used.
- the plating method is not particularly limited, and electrogalvanizing may be used instead of hot-dip galvanizing.
- the surface layer is reduced and reduced Fe is present, so in the next reduction annealing step, the Fe-based oxide is The reduction causes internal oxidation of Si, and also prevents oxides from adhering to the roll. Therefore, there are no indentations caused by roll pickup, surface layer concentration of Si, and plating defects caused by insufficient reduction of Fe-based oxides.
- the hot-dip galvanized steel sheet to be manufactured by the present invention is effective when containing a large amount of metal elements such as Si that are more easily oxidized than Fe, but specifically contains 0.1 to 3.0 mass% of Si. It is particularly effective in producing high-Si-containing hot-dip galvanized steel sheets.
- An annealing furnace (RT furnace), a cooling zone, hot-dip plating equipment, alloying treatment equipment, etc. are arranged downstream of the direct-fired heating furnace 1.
- the annealing furnace, cooling zone, hot-dip plating equipment, alloying treatment equipment, etc. are not particularly limited, and any commonly used equipment may be used.
- a preheating furnace may be arranged upstream of the direct-fired heating furnace 1.
- the DFF 1 consisting of four burner groups (11 to 14) is used as the heating burner, and the three burner groups ( 11 to 13) are the oxidation zone 1-1, the final burner group (14) is the reduction zone 1-2, and the oxidation zone 1-1 is the case where the air ratio and combustion rate are individually controlled for each burner group ( The tests were conducted separately for cases A) and case (B), where burner groups 11 to 13 in the oxidation zone are collectively controlled under the same conditions. Note that the air ratio and combustion rate in the reduction zone are controlled separately from those in the oxidation zone.
- Figure 1 shows an example of burner arrangement.
- Figure 1 shows the burner group 11 in the oxidation zone, the flame injection port 3 attached to the circular burner in the burner group 14 in the reduction zone, the burner group 12 in the oxidation zone, the flame injection port 2 attached to the slit burner in the burner group 13 in the oxidation zone. are placed.
- the burner type was changed for each burner group depending on the conditions and the test was conducted.
- a gas having the composition shown in Table 1 was used as the fuel gas for the burner.
- the length of each burner group (“L" in FIG. 1) was 3 m, and the slit gap B was 20 mm.
- Table 2 shows the steel composition of the steel strip S used in the test.
- test conditions were: plate thickness 1.0 mm, plate width 1000 mm, DFF1 inlet average plate temperature 200 °C, DFF1 outlet average temperature 650 °C, annealing temperature (RT furnace) 850 °C, plating bath temperature 463 °C, plating The Al concentration was 0.135% and the alloying temperature was 550°C.
- Three levels of steel strip S speed (LS) were examined: 60 mpm, 90 mpm, and 120 mpm. The burner was used at a combustion rate of 30% or more.
- Evaluations included low-ki defects (pickups) caused by peroxidation, plating appearance, quality deviations in the steel plate advancing direction and width direction, and temperature deviations in the steel plate advancing direction. Evaluations A and B are passed, and evaluation C is failed.
- Patent Document 7 For low-ki defects (pick-ups) caused by peroxidation, a 1 m 2 field of view of the surface of the steel plate in the randomly sampled steel strip S was inspected using an optical surface defect meter.
- the surface defect meter described above can detect flaws with a diameter of 0.5 mm or more, and these were determined to be dent defects caused by contact with the pickup, here as low-ki defects.
- the appearance of the plating was evaluated by measuring the dispersion of the Fe concentration (alloying ratio) in the plating with respect to the target value on the surface of the steel plate after the alloying treatment. It is determined that the smaller the variation in the Fe concentration in the plating with respect to the target value, the better the appearance of the plating.
- the Fe concentration was measured by the same method as described in Patent Document 8 below, which is calculated from the change in the diffraction peak angle of the alloy phase constituting the plating layer using the X-ray diffraction method.
- the quality in the traveling direction and the width direction was determined by selecting three locations in the traveling direction of the steel strip S at the tip, center, and tail end, and taking samples with a length of 1000 mm in the width direction. This was done based on the evaluation results of the lower part of the central part and the appearance of the plating.
- the width direction in a sample of width x 1000 mm taken from the center of the steel strip S, the low marks at 5 points at the center, 1/4 width, 3/4 width, and both ends, and the plating appearance. Based on the evaluation results, the evaluation was made as follows.
- Samples Nos. 1 to 8 and 15 were manufactured under the condition that the conveyance speed of the steel strip S was 60 mpm.
- Condition 1 is a comparative example using only a circular burner. Although a circular burner was used, the combustion rate was less than 30%, and the combustion state of the burner was unstable. In addition, the burner groups 11 to 13 in the oxidation zone are collectively controlled, and there are large variations in quality in the width direction and the traveling direction.
- Condition 2 is a case where slit burners are applied to the burner groups 11 to 13 in contrast to the circular burners of Condition 1.
- the combustion state of the burner was unstable as in Condition 1, but by applying the slit burner, both the low-kick defects and the plating appearance were improved, and the quality variation in both the width direction and the traveling direction was slightly improved.
- Condition 3 is a case where the air ratio and combustion rate can be controlled for each burner group, whereas in conditions 1 and 2 the burner groups 11 to 13 are controlled all at once. Thereby, only the necessary combustion burners (in this case, only the burner group 13) can be operated. However, since the burner group 13 operated under Condition 3 was a circular burner, uneven combustion was likely to occur and the surface quality tended to be inferior to that under Condition 1.
- Condition 4 is an example in which control is performed for each burner group as in Condition 3, but the burner shape is changed from circular to slit burner. This improved the surface quality and made the quality more uniform across the width and in the direction of travel.
- Condition 5 is an example in which the slit burner was used under the same control as Condition 4, but the air ratio of the burner group 13 decreased to 0.90. In this example, although more uniformity in the width direction and the traveling direction was obtained than under condition 3, many defects appeared and the product was rejected.
- Condition 6 is an example in which the air ratio of burner group 13 was 1.65, which was excessive compared to condition 5. The degree of defects was reduced and fell within the acceptable range.
- Condition 7 is an example in which the air ratio of the reduction zone of the burner group 14 is higher than that of condition 4 at 1.00. In this case as well, like Condition 5, the uniformity was relatively good, but there were many defects and it was rejected.
- Condition 8 is an example in which the air ratio in the reduction zone is lower than that in condition 7. The degree of defects was reduced compared to Condition 7 and fell within the acceptable range.
- Conditions 9 and 10 are examples in which the steel strip S was produced at a conveyance speed of 90 mpm, and in both cases, the air ratio and combustion rate were controlled for each burner group.
- Condition 9 uses both a slit burner and a circular burner in the oxidation zone. However, since the slit burner was not applied in the range where the steel plate temperature reached 400°C, although the surface quality was within the acceptable range, there were some areas where it was poor.
- Condition 10 the burner used in the oxidation zone consisted of only a slit burner, and the surface quality was superior to Condition 9.
- Conditions 11 to 13 are examples in which the steel strip S was manufactured at a conveying speed of 120 mpm. A slit burner was introduced into the oxidation zone under all conditions.
- Condition 11 does not perform control for each burner group, but performs collective control, and although some circular burners are used, the surface quality is within the acceptable range due to the introduction of slit burners, similar to condition 2.
- Condition 12 is an example of the invention in which the surface quality was better than Condition 11 by controlling each burner group.
- Condition 13 is an example in which a slit burner is used in the reduction zone in addition to the oxidation zone. This further improved the surface quality.
- Condition 14 is an example in which a slit burner was introduced into the horizontal annealing furnace and operated as an oxidation zone. Because it was a horizontal furnace, the conveyance speed was lower than that of the invention example, and the production was performed at 30 mpm. A slit burner was used in the oxidation zone, and the peroxide defects and plating appearance were within the acceptable range, but the upstream Exhaust gas partially flowed into the non-oxidizing furnace, causing slight unplating and alloying unevenness in the width and length directions.
- Condition 15 is an example in which the operation was carried out under the same conditions as Condition 2, but the exhaust ports installed between each zone were closed (equivalent to a state where there is no exhaust port) and combustion gas was not sucked. As a result, although the stability decreased due to interference between flames and the number of defects increased compared to Condition 2, the surface quality was within the acceptable range.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electrochemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
本発明は、鋼板の加熱方法、めっき鋼板の製造方法、並びに、直火型加熱炉、直火型加熱炉を用いた連続溶融亜鉛めっき設備に関するものである。 The present invention relates to a method for heating a steel sheet, a method for manufacturing a plated steel sheet, a direct-fired heating furnace, and continuous hot-dip galvanizing equipment using a direct-fired heating furnace.
鋼板の高張力化には、Si、Mn、P、Alなどの固溶強化元素の添加が行われることが多い。特に、Siは添加コストが他元素と比較して低く、かつ鋼の延性を損なわずに高強度化できる利点がある。そのため、Si含有鋼は高張力鋼板として有望である。しかし、Siが鋼中に多量に含有されると、以下の問題が生じる。 To increase the tensile strength of steel sheets, solid solution strengthening elements such as Si, Mn, P, and Al are often added. In particular, Si has the advantage that its addition cost is low compared to other elements, and it can increase the strength of steel without impairing its ductility. Therefore, Si-containing steel is promising as a high-strength steel plate. However, when a large amount of Si is contained in steel, the following problems occur.
高張力鋼板は溶融亜鉛めっき等のめっき工程の直前工程にて還元雰囲気中で600~900℃の温度域で焼鈍される。SiはFeと比較して易酸化元素であるため、この時にSiが鋼板表面へ濃化する。その結果、鋼板表面にSi酸化物が形成され、このSi酸化物が亜鉛との濡れ性を著しく悪化させ、不めっきを生じさせる。さらに、Siが表面に濃化すると、亜鉛めっきが付着したとしても溶融亜鉛めっき後の合金化過程において、著しい合金化の遅延を生じ、生産性が悪化する。 High-strength steel sheets are annealed at a temperature range of 600 to 900°C in a reducing atmosphere in a process immediately before a galvanizing process such as hot-dip galvanizing. Since Si is an element that is more easily oxidized than Fe, Si is concentrated on the surface of the steel sheet at this time. As a result, Si oxide is formed on the surface of the steel sheet, and this Si oxide significantly deteriorates the wettability with zinc, resulting in non-plating. Furthermore, if Si is concentrated on the surface, even if zinc plating is attached, there will be a significant delay in alloying in the alloying process after hot-dip galvanizing, and productivity will deteriorate.
従来、このための対策として、特許文献1ではめっき前の鋼板(原板)にあらかじめ電気めっき法でFe系めっきを実施するプレめっき法が提案されている。あるいは、特許文献2、3では鋼板をあらかじめ酸化性雰囲気中で加熱して表面にFe系酸化被膜を形成した後に、還元炉での焼鈍・めっきを実施する酸化還元法が提案されている。
Conventionally, as a countermeasure for this,
しかしながら、前者のプレめっき法を採用しようとした場合、連続溶融亜鉛めっき設備においては焼鈍炉よりも入側に電気めっき設備を設置する必要があり、スペースや設備投資コストを考えると実施が困難である。 However, when trying to adopt the former pre-plating method, it is necessary to install electroplating equipment on the entry side of the annealing furnace in continuous hot-dip galvanizing equipment, which is difficult to implement considering space and equipment investment costs. be.
また、後者の酸化還元法は、従来の無酸化炉(NOF)方式や直火炉(DFF)方式の溶融めっきラインで、燃焼雰囲気を調整することによって適用可能である。 Furthermore, the latter oxidation-reduction method can be applied by adjusting the combustion atmosphere in a conventional non-oxidation furnace (NOF) method or direct fire furnace (DFF) method hot-dip plating line.
しかしながら、例えば、特許文献4、5に記載の従来使用されているバーナノズル出口の形状が円形のバーナの場合、バーナを千鳥配置のように分散配置しても、良好なめっき性を確保するための酸化時のFe系酸化被膜の厚さを均一にコントロールできず、不めっき欠陥が生じてしまう。
However, for example, in the case of conventionally used burners with a circular burner nozzle outlet shape as described in
一方、特許文献6では、板幅方向均一化のために横型炉にバーナノズル出口の形状が鋼板幅方向に対して平行なスリットバーナを用いる方法が提案されている。しかし、無酸化炉後方の酸化炉にスリットバーナを設置しても、横型炉では酸化炉雰囲気が無酸化炉に流入し、板温にムラが生じ、Fe系酸化皮膜が不均一となってスリットバーナで火炎を幅方向に均一にする効果を得られない。
On the other hand,
しかしながら、従来のプレめっき法は、燃焼時の炉内の雰囲気調整を行っても従来バーナノズル形状や配置では、酸化被膜の厚さが不均一となる。また、スリットバーナを適用しても、無酸化炉、酸化炉、還元炉と続く横型炉を併用するとFe系酸化被膜が不均一に形成され、酸化炉でスリットバーナを用いても不均一さが解消されない。 However, in the conventional pre-plating method, even if the atmosphere in the furnace during combustion is adjusted, the thickness of the oxide film is uneven due to the conventional burner nozzle shape and arrangement. In addition, even if a slit burner is used, if a horizontal furnace that is followed by a non-oxidizing furnace, an oxidizing furnace, and a reducing furnace is used in combination, the Fe-based oxide film will be formed non-uniformly, and even if a slit burner is used in an oxidizing furnace, non-uniformity will occur. Not resolved.
本発明は上記問題に鑑みてなされたものであり、実用に適した比較的容易な方法により、不めっきのない安定した品質の亜鉛めっき鋼板を製造することを目的としたものである。 The present invention has been made in view of the above problems, and aims to produce galvanized steel sheets of stable quality without any unplating by a relatively easy method suitable for practical use.
上記課題を解決するためになされた本発明とは、以下の構成を要旨とするものである。
[1] 空気比1以上で操業される酸化帯と空気比1未満で操業される還元帯とを有する直火型加熱炉を通過する鋼板の表面側と裏面側を、少なくとも前記酸化帯を通過する間に1つ以上のスリットバーナから噴射する火炎で加熱する、鋼板の加熱方法。
[2] 前記直火型加熱炉は、前記鋼板を上下方向に搬送し、かつ前記スリットバーナの下側に設置された排気口から燃焼排ガスを吸引する、[1]に記載の鋼板の加熱方法。
[3]前記酸化帯の空気比を1.00以上、1.50未満、
前記還元帯の空気比を0.70以上、1.00未満
に制御する[1]または[2]に記載の鋼板の加熱方法。
[4] 前記酸化帯を通過する鋼板の温度が400℃以上となる範囲で、
少なくとも1つ以上設置された前記スリットバーナで鋼板を加熱する、
[1]~[3]のいずれか1つに記載の鋼板の加熱方法。
[5] [1]~[3]のいずれか1つに記載された加熱方法により、冷延鋼板を加熱処理し、さらに、該冷延鋼板にめっき処理を施す、めっき鋼板の製造方法。
[6] 前記めっき処理は、電気亜鉛めっき処理、溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理のいずれかの方法を用いる、[5]に記載のめっき鋼板の製造方法。
[7] 空気比1以上で操業される酸化帯と、空気比1未満で操業される還元帯と、前記酸化帯および前記還元帯の空気比を制御可能な制御装置と、を有し、
少なくとも前記酸化帯の一部に、
前記酸化帯と前記還元帯を通過する鋼板に向けて火炎を噴射する、前記鋼板の幅方向に延設されたスリットバーナを前記鋼板の表面側と裏面側にそれぞれ1つ以上備える、直火型加熱炉。
[8] 前記鋼板を上下方向に搬送し、かつ前記スリットバーナの下側に設置された排気口から燃焼排ガスを吸引する[7]に記載の直火型加熱炉。
[9] 前記酸化帯の空気比は1.00以上、1.50未満、
前記還元帯の空気比は0.70以上、1.00未満に制御される
[7]または[8]に記載の直火型加熱炉。
[10] 前記スリットバーナが、
前記酸化帯を通過する鋼板の温度が400℃以上となる範囲に、
少なくとも1つ以上設置されている[7]~[9]のいずれか一つに記載の直火型加熱炉。
[11] 前記酸化帯には、前記空気比および燃焼率を独立に制御可能であるスリットバーナを2つ以上有するバーナ群が含まれる、[7]~[9]のいずれか一つに記載の直火型加熱炉。
[12] [7]~[9]のいずれか一つに記載の直火型加熱炉を備えた、連続溶融亜鉛めっき設備。
[13] さらに、溶融亜鉛めっきを合金化する合金化設備を備えた、[12]に記載の連続溶融亜鉛めっき設備。
The present invention, which has been made to solve the above problems, has the following configuration.
[1] The front and back sides of a steel plate passing through a direct-fired heating furnace having an oxidation zone operated at an air ratio of 1 or more and a reduction zone operated at an air ratio of less than 1, passing through at least the oxidation zone. A method of heating a steel plate by heating it with a flame sprayed from one or more slit burners during the heating process.
[2] The method for heating a steel plate according to [1], wherein the direct-fired heating furnace conveys the steel plate in the vertical direction and sucks combustion exhaust gas from an exhaust port installed below the slit burner. .
[3] The air ratio of the oxidation zone is 1.00 or more and less than 1.50,
The method for heating a steel plate according to [1] or [2], wherein the air ratio in the reduction zone is controlled to 0.70 or more and less than 1.00.
[4] In the range where the temperature of the steel plate passing through the oxidation zone is 400 ° C. or higher,
heating a steel plate with at least one or more installed slit burners;
The method for heating a steel plate according to any one of [1] to [3].
[5] A method for producing a plated steel sheet, comprising heating a cold rolled steel sheet by the heating method described in any one of [1] to [3], and further subjecting the cold rolled steel sheet to a plating treatment.
[6] The method for manufacturing a plated steel sheet according to [5], wherein the plating treatment uses any one of electrogalvanizing treatment, hot-dip galvanizing treatment, and alloying hot-dip galvanizing treatment.
[7] An oxidation zone operated at an air ratio of 1 or more, a reduction zone operated at an air ratio of less than 1, and a control device capable of controlling the air ratio of the oxidation zone and the reduction zone,
At least a part of the oxidation zone,
Direct-fire type, comprising one or more slit burners on the front side and the back side of the steel plate, each extending in the width direction of the steel plate and injecting a flame toward the steel plate passing through the oxidation zone and the reduction zone. heating furnace.
[8] The direct-fired heating furnace according to [7], wherein the steel plate is conveyed in the vertical direction and combustion exhaust gas is sucked through an exhaust port installed below the slit burner.
[9] The air ratio of the oxidation zone is 1.00 or more and less than 1.50,
The direct-fired heating furnace according to [7] or [8], wherein the air ratio in the reduction zone is controlled to be 0.70 or more and less than 1.00.
[10] The slit burner comprises:
In a range where the temperature of the steel plate passing through the oxidation zone is 400 ° C. or higher,
The direct-fired heating furnace according to any one of [7] to [9], wherein at least one or more direct-fired heating furnaces are installed.
[11] The oxidation zone includes a burner group having two or more slit burners that can independently control the air ratio and combustion rate, according to any one of [7] to [9]. Direct-fired heating furnace.
[12] Continuous hot-dip galvanizing equipment equipped with the direct-fired heating furnace according to any one of [7] to [9].
[13] The continuous hot-dip galvanizing equipment according to [12], further comprising an alloying equipment for alloying hot-dip galvanizing.
本発明によれば、不めっきのない美麗な表面外観を有する優れた亜鉛めっき鋼板が得られる。本発明は、亜鉛めっき処理が特に困難である高Si含有鋼板を母材とする場合に特に有効であり、高Si含有亜鉛めっき鋼板の製造におけるめっき品質を改善する方法として有用である。 According to the present invention, an excellent galvanized steel sheet having a beautiful surface appearance with no unplating can be obtained. The present invention is particularly effective when the base material is a high-Si content steel sheet, which is particularly difficult to galvanize, and is useful as a method for improving the plating quality in the production of high-Si content galvanized steel sheets.
直火バーナを用いて鋼板を加熱する直火型加熱炉は、熱効率が高いため、低コストで鋼板を所定の温度まで加熱できるという特徴をもつ。直火型加熱炉では、鋼板の温度を制御すると同時に、高Si鋼に代表されるハイテン鋼に溶融めっきを施す場合においては、直火バーナの雰囲気を酸化性にコントロールすることで、鋼板表面に適切な酸化被膜(Fe系酸化物)を確保することが必要である。適切な量のFe系酸化物を確保した後、還元焼鈍することでSiを内部酸化させ、高Si鋼のめっき性を向上させることができる。 A direct-fired heating furnace that heats a steel plate using a direct-fired burner has a high thermal efficiency, so it has the characteristic of being able to heat a steel plate to a predetermined temperature at low cost. Direct-fired heating furnaces control the temperature of the steel plate, and at the same time, when hot-dipping high-strength steel, such as high-Si steel, the atmosphere of the direct-fired burner is controlled to be oxidizing, so that the surface of the steel plate is It is necessary to ensure an appropriate oxide film (Fe-based oxide). After securing an appropriate amount of Fe-based oxide, reduction annealing is performed to internally oxidize Si, thereby improving the plating properties of high-Si steel.
しかしながら、従来使用されているバーナノズル出口の形状が円形のバーナの場合、バーナを千鳥配置のように分散配置しても、良好なめっき性を確保するためのFe系酸化被膜の厚さを鋼板進行方向/幅方向に均一にコントロールできず、不めっき欠陥が生じてしまう。 However, in the case of conventionally used burners with a circular burner nozzle outlet shape, even if the burners are distributed in a staggered arrangement, the thickness of the Fe-based oxide film to ensure good plating properties cannot be increased as the steel plate progresses. Uniform control in the direction/width direction is not possible, resulting in unplated defects.
そこで本発明では、円形バーナではなく、スリットバーナを適用し、Fe系酸化被膜の厚みを進行方向/幅方向に均一にコントロールする方法を考案した。 Therefore, in the present invention, a method has been devised in which a slit burner is used instead of a circular burner to uniformly control the thickness of the Fe-based oxide film in the traveling direction/width direction.
以下、本発明の実施形態に係る連続溶融亜鉛めっき設備に配置される直火型加熱炉および鋼板の加熱方法について図面を参照しながら説明する。 Hereinafter, a direct-fired heating furnace disposed in a continuous hot-dip galvanizing facility and a method of heating a steel plate according to an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の実施の形態に係る連続溶融亜鉛めっき設備の焼鈍設備に配置される直火型加熱炉(DFF)の一実施形態を示す。ここで、焼鈍設備の形式は縦型炉とすることが好ましく、つまり鋼板を上下方向に搬送する(上下方向に折り返しながら搬送することも含む)ことで、水平方向に設備規模を拡大することなく、高速に通板することが可能となる。また、加熱帯と均熱帯の雰囲気を分離しやすいといった利点もある。上下方向に搬送とは、鉛直方向に搬送することを指す。
図1において、(a)は直火型加熱炉の縦断面図、(b)は直火型加熱炉壁面に配置した各直火バーナの配置例を正面から見た図を示す。図1において、1は直火型加熱炉(DFF)、1-1はDFFの酸化帯、1-2はDFFの還元帯、2はスリットバーナに付随した火炎噴射口、3は円形バーナに付随した火炎噴射口、Sは鋼板(鋼帯も含む)、4は放射温度計、5は火炎、6は排気口、Lは還元帯のバーナ群14の鋼帯S移動方向最上流にあるバーナから最下流にあるバーナまでのバーナ群による鋼板S加熱領域の長さ、11は酸化帯のバーナ群、12は酸化帯のバーナ群、13は酸化帯のバーナ群、14は還元帯のバーナ群である。また、図示していないが、酸化帯および還元帯の空気比を制御する、制御装置を備えている。
FIG. 1 shows an embodiment of a direct-fired heating furnace (DFF) arranged in an annealing facility of a continuous hot-dip galvanizing facility according to an embodiment of the present invention. Here, it is preferable that the type of annealing equipment be a vertical furnace, in other words, by transporting the steel plate in the vertical direction (including transporting it while turning it up and down in the vertical direction), it is possible to avoid expanding the scale of the equipment in the horizontal direction. , it becomes possible to thread the sheet at high speed. Another advantage is that it is easy to separate the atmosphere in the heating zone and the soaking zone. Conveying in the vertical direction refers to conveying in the vertical direction.
In FIG. 1, (a) is a longitudinal cross-sectional view of a direct-fired heating furnace, and (b) is a front view of an arrangement example of direct-fired burners arranged on a wall surface of the direct-fired heating furnace. In Figure 1, 1 is a direct-fired heating furnace (DFF), 1-1 is an oxidation zone of the DFF, 1-2 is a reduction zone of the DFF, 2 is a flame injection port attached to a slit burner, and 3 is attached to a circular burner. S is the steel plate (including the steel strip), 4 is the radiation thermometer, 5 is the flame, 6 is the exhaust port, L is the burner located most upstream in the direction of movement of the steel strip S of the
<連続溶融亜鉛めっき設備に配置される直火型加熱炉>
図2に連続溶融亜鉛めっき設備の一例を示す。設備の入側から、予熱帯20、加熱帯21、均熱帯22、冷却帯23、24、さらにめっき浴(亜鉛ポット)25、必要に応じて合金化帯26を備えている。合金化帯26の後に冷却帯27を備えていてもよい。このように、連続溶融亜鉛めっき設備の一部に本願加熱炉を適用する場合、その加熱対象となる鋼板は切り板の状態ではなく、鋼帯(コイル)形状であって構わない。前記鋼板は、特に限定されるものではないが、冷延鋼板が用いられることが多い。
<Direct-fired heating furnace installed in continuous hot-dip galvanizing equipment>
Figure 2 shows an example of continuous hot-dip galvanizing equipment. From the entrance side of the equipment, a preheating
本発明の直火型加熱炉1は連続溶融亜鉛めっき設備の中でも加熱帯21に導入される加熱炉を想定するものである。
The direct-fired
本実施形態では、複数のスリットバーナを独立に制御することも可能である。直火型加熱炉1は酸化帯1-1と還元帯1-2から構成されており、酸化帯1-1は、鋼板進行方向に3つのバーナ群(ゾーン)、11~13から構成されている。本例では、酸化帯のバーナ群11には円形バーナを設置し、図中ではその火炎噴射口を3で示し、同(酸化帯)バーナ群12、13にはスリットバーナを設置し、図中ではその火炎噴射口を符号2で示している。還元帯はバーナ群(還元帯のバーナ群)14の1ゾーンのみとし、円形バーナを設置した。円形バーナの火炎噴射口が図中の符号3である。酸化帯1-1のバーナ群11、12、13はそれぞれのバーナ群ごとにバーナの燃焼率及び空気比を独立に制御可能である。酸化帯のバーナ群11~13は、燃焼率が予め定めた閾値以上の燃焼率となる条件で燃焼する。
In this embodiment, it is also possible to control multiple slit burners independently. The direct-fired
各バーナ群に含まれるバーナ数は限定しない。直火型加熱炉全体を2~5分割し、各々を群として制御するのが実用的である。 The number of burners included in each burner group is not limited. It is practical to divide the entire direct-fired heating furnace into 2 to 5 parts and control each part as a group.
また、例えば図4に示す設備のように、スリットバーナは酸化帯だけではなく、酸化帯1-1と還元帯1-2の両方に備えても構わない。 Furthermore, as in the equipment shown in FIG. 4, for example, slit burners may be provided not only in the oxidation zone but also in both the oxidation zone 1-1 and the reduction zone 1-2.
なお、スリットバーナは、酸化帯1-1を通過する鋼板Sの幅方向に鋼板面に対向して配置する。また、鋼板Sの幅方向にむらなく均一に加熱するため、鋼板Sの全幅に火炎5が噴射されるように、鋼板の幅方向にスリットバーナを延設して配置する。また、種々の幅の鋼板Sの製造に対応するために、火炎噴射量は幅方向4分割にした領域ごとで制御することが可能である。ここでは4分割したが、その分割数は限定されるものではなく、スリットバーナの火炎噴射構造や鋼板の幅によっては、分割不要の場合もある。一方、円形バーナは、鋼板面に対向して分散配置する。
Note that the slit burner is arranged opposite to the steel plate surface in the width direction of the steel plate S passing through the oxidation zone 1-1. Further, in order to uniformly heat the steel plate S in the width direction, a slit burner is arranged to extend in the width direction of the steel plate so that the
<スリットバーナ>
図3は、本発明のスリットバーナによる実際の鋼板の燃焼加熱状態のイメージを示した説明図であり、以下では、その記載内容に基づいてスリットバーナについて説明する。
<Slit burner>
FIG. 3 is an explanatory diagram showing an image of the actual state of combustion and heating of a steel plate by the slit burner of the present invention, and the slit burner will be explained below based on the contents described therein.
スリットバーナは、鋼板Sが進行する方向の開口部の長さ(スリットギャップBともいう)に対して、鋼板Sの幅方向の開口部の長さが長い矩形形状のバーナ火炎噴射口を有するものを指し、その詳細な寸法は特に限定するものではない。目安としては鋼板Sが進行する方向の開口部の長さ、すなわち短辺をBとする場合、幅方向の開口部長さ、すなわち長辺は2B~200B程度の長さである。本発明では、このように細長い矩形(スリット)状の火炎噴射口を有する等、スリット状の火炎を噴射するバーナを総称して「スリットバーナ」とする。そのため内部構造や噴射口について、特別に限定するものではない。さらに、火炎噴射口は、幅方向に噴射口を分割して火炎5の噴射幅を制御することができ、上記を利用して、対象鋼板の幅に応じて火炎5の噴射幅を調整することが可能である。
The slit burner has a rectangular burner flame injection port in which the length of the opening in the width direction of the steel plate S is longer than the length of the opening in the direction in which the steel plate S advances (also referred to as slit gap B). The detailed dimensions are not particularly limited. As a guide, if the length of the opening in the direction in which the steel plate S moves, ie, the short side, is B, then the length of the opening in the width direction, ie, the long side, is approximately 2B to 200B. In the present invention, burners that inject a slit-shaped flame, such as those having elongated rectangular (slit) flame injection ports, are collectively referred to as "slit burners." Therefore, there are no particular limitations on the internal structure or injection port. Further, the flame injection port can control the injection width of the
スリットバーナは、鋼板進行方向に1つのみでも有効であるが、数個をタンデムに配置することにより、より酸化を効率的に実施することができる。タンデム配置する場合の配置間隔は限定しないが、3B~10B程度の間隔をあけるとより互いの火炎5の干渉や、温度ムラが生じにくい。
Although it is effective to use only one slit burner in the steel plate traveling direction, oxidation can be carried out more efficiently by arranging several slit burners in tandem. When arranging them in tandem, the spacing between them is not limited, but if the spacing is about 3B to 10B, interference between the
さらに、Fe系酸化被膜は板温が400℃以上となる範囲で大部分が生成されるため、酸化帯1-1の中でも特に板温が上記範囲となるところに少なくとも1つ以上のスリットバーナを適用するのがよい。また、450℃以上の範囲にスリットバーナを適用するのがさらに好ましい。一方、650℃を上回るような高温では急激に酸化量が増加するという理由から、板温は650℃以下となるところにスリットバーナを適用することが好ましい。さらに好ましくは600℃以下で、もっとも好ましくは550℃以下である。好適温度範囲に達した際にスリットバーナで加熱するために、DFF1を通過中の鋼板Sの板温を予想、把握する方法として、板温は鋼種、板厚、板幅、ライン速度、空気比、燃焼率等によりあらかじめ推算することが可能である。また、酸化帯1-1の通板方向数か所に放射温度計を設置し、板温を実測することも可能である。 Furthermore, since most of the Fe-based oxide film is generated in the range where the plate temperature is 400°C or higher, at least one slit burner is installed in the oxidation zone 1-1, especially in the area where the plate temperature is in the above range. It is good to apply. Further, it is more preferable to use a slit burner in a temperature range of 450° C. or higher. On the other hand, since the amount of oxidation increases rapidly at high temperatures exceeding 650°C, it is preferable to use a slit burner where the plate temperature is 650°C or lower. The temperature is more preferably 600°C or lower, and most preferably 550°C or lower. In order to heat the steel plate S with a slit burner when it reaches a suitable temperature range, the plate temperature can be determined by determining the steel type, plate thickness, plate width, line speed, and air ratio. , it is possible to estimate it in advance based on the combustion rate, etc. It is also possible to actually measure the plate temperature by installing radiation thermometers at several locations in the oxidation zone 1-1 in the sheet passing direction.
上記のことから、板温が高温となる酸化帯1-1の通板方向下流側にスリットバーナを適用するのがよい。酸化帯1-1の全バーナにスリットバーナを適用してもよいが、スリットバーナ出口のスリットギャップBは円形バーナよりも狭く、バーナタイルの破片等の異物が詰まったり、火炎5が高温のためスリットが変形したりと、定期メンテナンスが必要な為、板温が低い酸化帯1-1の上流側に従来の円形バーナ、下流側にスリットバーナを配置してもよい。上流側に円形バーナを採用する場合でも、加熱効率の観点から火炎を鋼板に垂直に衝突させる直火加熱方式とすることが望ましい。
From the above, it is preferable to apply the slit burner on the downstream side of the oxidation zone 1-1 in the sheet passing direction, where the sheet temperature is high. Slit burners may be applied to all burners in the oxidation zone 1-1, but the slit gap B at the slit burner outlet is narrower than that of a circular burner, and it may be clogged with foreign matter such as pieces of burner tiles, or the
また、スリットバーナに付随した火炎噴射口2の配列は、鋼板S表裏で鋼板Sの進行方向にずらして配置、すなわち、オフセットさせてもよい。オフセットさせることにより、鋼板S端部からはみ出した火炎5が互いに干渉するのを防ぐことができる。従って、オフセットしない場合よりも、より鋼板Sを均一に加熱することが可能である。オフセット量はB~3B程度の範囲が目安である。オフセット量が大きすぎると、表裏面で加熱温度が変わってしまう恐れがある。縦型炉では上下方向にバーナが配置されるため、下流側(炉下部側)にあるバーナが噴射した火炎や燃焼ガスの干渉によって火炎が不安定になり、鋼板の幅・長手方向の温度均一性や安定性が低下してしまう。円形バーナの場合は千鳥配置にすることで火炎や燃焼ガスの干渉を緩和することができるが、スリットバーナでは幅方向に火炎の切れ目が無いため下流側からの干渉が避けられない。そこで本発明では、スリットバーナが設置された区間において、スリット状の排気口を設けることが好ましく、スリット状の排気口を設けることで火炎や燃焼ガスの干渉を緩和しやすくなる。
排気口は少なくとも各ゾーンの接続部に表裏一組ずつ設置されることが好ましい。排気口はスリットバーナの下側に設置されることが好ましく、排気口から燃焼排ガスを吸引する。具体的に、燃焼排ガスとは燃料と空気が反応することで生じる高温気体のことを指し、反応生成物である二酸化炭素や水蒸気と空気に含まれていた窒素を主として、未反応の余剰燃料成分や酸素、更に反応の中間生成物などの微量成分で構成される気体のことをいう。
設備長や加熱能力が要求性能を満足するのであれば、各ゾーンを構成する個々のスリットバーナの中間に排気口を設置してもよい。
Further, the arrangement of the
Preferably, at least one set of exhaust ports is installed at the connection portion of each zone, one on the front and the other on the back. The exhaust port is preferably installed below the slit burner, and the combustion exhaust gas is sucked through the exhaust port. Specifically, combustion exhaust gas refers to the high-temperature gas produced by the reaction between fuel and air, and contains mainly carbon dioxide and water vapor, which are reaction products, and nitrogen contained in the air, as well as unreacted surplus fuel components. It is a gas composed of trace components such as gas, oxygen, and intermediate products of reactions.
If the equipment length and heating capacity satisfy the required performance, an exhaust port may be installed between the individual slit burners forming each zone.
酸化帯1-1、還元帯1-2問わず、バーナの燃焼率は、最大燃焼負荷時のバーナの燃料ガス量で、実際にバーナに導入した燃料ガス量を割った値であり、バーナを最大燃焼負荷で燃焼したときが燃焼率100%である。本発明ではバーナの燃焼率は特に限定されるものではないが、バーナの燃焼負荷が低くなると安定した燃焼状態が得られなくなるため、下記閾値以上とすることが好ましい。燃焼率の予め定めた閾値は、最大燃焼負荷時の燃料ガス量に対する、安定した燃焼状態を確保できる燃焼負荷の下限における燃料ガス量の割合である。燃焼率の閾値は、バーナ構造等によって幾分異なるが、燃焼試験を行うこと等で容易に決定できる。通常、閾値は30%程度となる。 Regardless of oxidation zone 1-1 or reduction zone 1-2, the burner combustion rate is the value obtained by dividing the amount of fuel gas actually introduced into the burner by the amount of fuel gas in the burner at the maximum combustion load. The combustion rate is 100% when the fuel is burned at the maximum combustion load. In the present invention, the combustion rate of the burner is not particularly limited, but if the combustion load of the burner becomes low, a stable combustion state cannot be obtained, so it is preferably set to the following threshold value or more. The predetermined threshold value of the combustion rate is the ratio of the amount of fuel gas at the lower limit of the combustion load that can ensure a stable combustion state to the amount of fuel gas at the maximum combustion load. The combustion rate threshold varies somewhat depending on the burner structure, etc., but can be easily determined by conducting a combustion test. Usually, the threshold value will be about 30%.
<酸化帯および還元帯の空気比>
酸化帯1-1のバーナ群11~13は、バーナ群毎に、燃焼又は燃焼停止の選択が自在である。燃焼するときは、燃焼率を予め定めた設定値以上とすることが好ましく、かつ鋼板表面を安定して酸化させるために酸化帯1-1の空気比が1以上で操業する必要がある。酸化帯1-1の空気比は1.00以上で操業することが好ましい。酸化帯1-1の空気比は1.05以上で操業することがさらに好ましく、1.10以上で操業することがもっとも好ましい。
過剰な酸化膜の形成、窒素酸化物の発生、火炎の吹き消えを防ぐためには、酸化帯1-1での空気比は1.50未満で操業することが好ましい。酸化帯1-1の空気比は1.40以下で操業することがさらに好ましく、1.30以下で操業することがもっとも好ましい。空気比は、実際のバーナに導入した空気量を、燃料ガスを完全燃焼するために必要な空気量で割った値である。
<Air ratio of oxidation zone and reduction zone>
For the
In order to prevent the formation of an excessive oxide film, the generation of nitrogen oxides, and the blowing out of the flame, it is preferable to operate the air ratio in the oxidation zone 1-1 at less than 1.50. It is more preferable to operate the oxidation zone 1-1 at an air ratio of 1.40 or less, most preferably 1.30 or less. The air ratio is the amount of air actually introduced into the burner divided by the amount of air required to completely burn the fuel gas.
また、還元帯1-2のバーナ群14の円形バーナは空気比を1未満にする必要があり、さらには空気比を0.70以上1.00未満として操業することが好ましく、燃焼率の制御も可能である。還元帯1-2のバーナ群14で、空気比0.70以上1.00未満の範囲で燃焼することで、鋼板表面に生成しているFe酸化物を還元し、表層に還元Feを生成させることができる。具体的には、空気比が0.70未満だと燃料原単位の悪化やすすによる鋼板汚染が発生するため、空気比は0.70以上とすることが好ましい。さらに好ましくは、空気比は0.75以上であり、もっとも好ましくは0.80以上である。一方で1.00以上だと燃焼ガス中の酸素濃度が高くなり鋼板が酸化してしまう。鋼板表層部に還元Feが存在していることで、直火型加熱炉1を出た鋼板SがRT炉(焼鈍炉)内のロールに接触したときにロールへの酸化物の付着が防止され、酸化物付着に起因する欠陥(ピックアップ)を防止できる。そのため、空気比は1.00未満であることが好ましい。さらに好ましくは、空気比は0.95以下であり、もっとも好ましくは0.90以下である。
Further, the circular burners of the
通板する種々の鋼板Sについて、加熱負荷、形成酸化量等を考慮して、燃焼させるバーナ群数を決定する。燃焼させるバーナ群については、空気比、燃焼率を上記範囲内の値に設定することで、種々の鋼板Sに対して、鋼板Sの進行方向における板温変動を低減する。その結果、例えばSiを内部酸化させるのに必要な十分な量のFe酸化物を、鋼板Sの進行方向に安定して生成させることができる。鋼板Sの進行方向における板温変動の低減は、後続の還元帯1-2のバーナ群14における酸化物還元作用の安定化にも寄与する。また、上記板温変動の低減は、RT炉におけるFe酸化物の還元不足の防止、Siの内部酸化にも寄与し、RT炉のロールへの酸化物付着の抑制にも寄与する。
For the various steel sheets S to be passed, the number of burner groups to be burned is determined by considering the heating load, amount of oxidation formed, etc. Regarding the burner group for combustion, by setting the air ratio and combustion rate to values within the above ranges, plate temperature fluctuations in the traveling direction of the steel plates S are reduced for various steel plates S. As a result, a sufficient amount of Fe oxide necessary for internally oxidizing Si, for example, can be stably generated in the direction of movement of the steel plate S. Reducing plate temperature fluctuations in the traveling direction of the steel plate S also contributes to stabilizing the oxide reduction action in the
本実施形態では、酸化帯1-1のバーナ群11~13は酸化バーナ、還元帯1-2のバーナ群14は還元バーナであり、酸化帯1-1のバーナ群11~13による加熱領域は酸化ゾーン、還元帯1-2のバーナ群14による加熱領域は還元ゾーンとなる。
In this embodiment, the
還元雰囲気の長さが短いと表層にFe酸化膜が残りピックアップ防止効果が不十分となる。一方、還元雰囲気の長さが長いと、その後の還元焼鈍時に鋼板表層にSi等の表面濃化層が形成されるようになるため、めっき性が阻害されるようになる。 If the length of the reducing atmosphere is short, an Fe oxide film will remain on the surface layer and the pickup prevention effect will be insufficient. On the other hand, if the length of the reducing atmosphere is long, a surface enriched layer of Si or the like will be formed on the surface layer of the steel sheet during subsequent reduction annealing, which will impede plating properties.
<還元帯の長さ>
還元帯1-2のバーナ群14の鋼板Sの進行方向の長さ(還元ゾーン長)は、150mm以上が好ましく、巾方向の均一性も考慮すると300mm以上がより好ましい。さらに好ましくは、500mm以上であり、もっとも好ましくは1000mm以上である。還元ゾーンの長さの上限は特に規定されないが、長すぎると還元ゾーンでの昇温量ΔTrdが大きくなるため、酸化ゾーンでの昇温量ΔTox分を小さくする必要が出てくる。このため長すぎる還元ゾーンは酸化量確保に不利となることから、10m以下が望ましい。より好ましくは5m以下であり、さらに好ましくは3m以下である。さらにこれはコスト的にも有利となる。還元帯1-2のバーナ群14の鋼板の進行方向の長さは、還元帯1-2のバーナ群14の鋼板の進行方向最上流にある円形バーナに付随した火炎噴射口3から最下流にある円形バーナに付随した火炎噴射口3までのバーナ群による鋼板S加熱領域の長さ(図1中の“L”)である。なお、還元帯1-2のバーナ群14にスリットバーナが適用された場合においても、還元ゾーン長は上記とすることが好ましい。
<Length of reduction band>
The length in the traveling direction of the steel plate S of the
<酸化帯の長さ>
酸化帯1-1のバーナ群11~13の鋼板の進行方向の長さ(酸化ゾーン長)は必要な内部酸化量を確保できる長さを確保すべきである。ただし酸化量は、通板する鋼種、温度履歴、通板速度、鋼板サイズにより変化するので、生産条件の中でもっとも酸化しにくい条件でも必要酸化量を確保できるようなゾーン長を確保することが必要である。
<Length of oxidation zone>
The length of the steel plates of the
本発明では、直火型加熱炉1で、鋼板Sを酸化した後還元する。その中でも酸化ゾーンで形成する酸化量は、鋼板Sの進行方向/巾方向で精密に制御する必要がある。通板する種々の鋼種、温度履歴、通板速度、サイズの鋼板に対して酸化量を適切な量に制御するには、鋼板Sの表面に対向して配置したバーナを、鋼板進行方向で、少なくとも2つの群に分け、各々の群毎に、燃焼率及び空気比を独立に制御可能にする必要がある。バーナ群を決める際、スリットバーナと円形バーナは1つの群に混在させるのではなく、別の群として分け、別々に制御する方がよい。
In the present invention, the steel plate S is oxidized and then reduced in the direct-fired
還元ゾーンは、バーナを1つの群として制御しても本発明の意図する作用効果が得られる。従って、本発明では、酸化帯1-1の鋼板Sの表面に対向して配置したバーナを、鋼板Sの進行方向に、燃焼率及び空気比を独立に制御可能な2以上のバーナ群に分ければよい。 Even if the burners in the reduction zone are controlled as one group, the intended effects of the present invention can be obtained. Therefore, in the present invention, the burners arranged facing the surface of the steel plate S in the oxidation zone 1-1 are divided into two or more burner groups in the traveling direction of the steel plate S, whose combustion rate and air ratio can be independently controlled. Bye.
酸化帯1-1で形成されるFe系酸化被膜の厚みは、対象となる鋼板SのSi含有量や板厚などによっても変化するが、好ましくは100~500nmである。100nm未満ではSiの表面への拡散、濃化を阻止するバリア層としての機能が不十分となる恐れがあるため、Fe系酸化被膜の厚みは100nm以上が好ましい。Fe系酸化被膜の厚みは150nm以上がより好ましく、200nm以上がさらに好ましい。一方、500nmを超えると厚みとしても、バリア層としての機能がほとんど変わらないうえに酸化帯1-1の加熱時間が長くなり、使用燃料も増大するというデメリットも伴う。そのため、Fe系酸化被膜の厚みは500nm以下が好ましい。Fe系酸化被膜の厚みは450nm以下がより好ましく、400nm以下がさらに好ましい。 The thickness of the Fe-based oxide film formed in the oxidation zone 1-1 varies depending on the Si content and thickness of the target steel sheet S, but is preferably 100 to 500 nm. If the thickness is less than 100 nm, the function as a barrier layer for preventing diffusion and concentration of Si to the surface may be insufficient, so the thickness of the Fe-based oxide film is preferably 100 nm or more. The thickness of the Fe-based oxide film is more preferably 150 nm or more, and even more preferably 200 nm or more. On the other hand, if the thickness exceeds 500 nm, the function as a barrier layer will hardly change, and the heating time of the oxidation zone 1-1 will become longer, and the amount of fuel used will also increase. Therefore, the thickness of the Fe-based oxide film is preferably 500 nm or less. The thickness of the Fe-based oxide film is more preferably 450 nm or less, and even more preferably 400 nm or less.
上記Fe系酸化被膜の厚みは、直火型加熱炉1の入出の板温をモニタリングし、鋼種、板厚、ラインスピード、酸化帯1-1の空気比、酸化帯1-1の燃焼率で補正することにより、比較的容易に推定することができる。この値を元に主に酸化帯1-1の燃焼率を調整することによって、安定した酸化条件を決定、確保でき、これにより不めっき欠陥のない鋼板Sを得ることができる。
The thickness of the above-mentioned Fe-based oxide film is determined by monitoring the plate temperature at the entrance and exit of the direct-fired
直火型加熱炉1で酸化/還元した鋼板Sは、引き続き、RT炉で還元焼鈍後、冷却され、さらに溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきされ、または必要におうじてさらに合金化処理される。還元焼鈍以降は常法でよい。めっき方法は特に限定するものではなく、溶融亜鉛めっきの代わりに電気亜鉛めっきを行ってもよい。
The steel sheet S oxidized/reduced in the direct-fired
直火型加熱炉1で、適正な量のFe系酸化物が形成された後、その表層が還元されて還元Feが存在していることから、次の還元焼鈍工程では、Fe系酸化物が還元されてSiが内部酸化され、またロールへの酸化物付着が防止できる。それゆえにロールピックアップに起因する押し疵、Siの表層濃化、Fe系酸化物の還元不足に起因するめっき不良が発生しない。
After an appropriate amount of Fe-based oxide is formed in the direct-fired
本発明の製造対象となる溶融亜鉛めっき鋼板は、SiなどのFeより酸化しやすい金属元素を多く含む場合に有効であるが、具体的にはその中でもSiが0.1~3.0mass%含有されている高Si含有溶融亜鉛めっき鋼板の製造において特に顕著に効果を発揮する。 The hot-dip galvanized steel sheet to be manufactured by the present invention is effective when containing a large amount of metal elements such as Si that are more easily oxidized than Fe, but specifically contains 0.1 to 3.0 mass% of Si. It is particularly effective in producing high-Si-containing hot-dip galvanized steel sheets.
直火型加熱炉1の下流に、焼鈍炉(RT炉)、冷却帯、溶融めっき設備、合金化処理設備等が配置される。焼鈍炉、冷却帯、溶融めっき設備、合金化処理設備等は、特に限定されず、通常採用されるものでよい。直火型加熱炉1の上流に予熱炉が配置されることもある。
An annealing furnace (RT furnace), a cooling zone, hot-dip plating equipment, alloying treatment equipment, etc. are arranged downstream of the direct-fired
直火型加熱炉(DFF)1を備えるCGLにおいて、加熱用バーナを4つのバーナ群(11~14)から構成されているDFF1を用い、鋼帯Sの進行方向上流側の3つのバーナ群(11~13)は酸化帯1-1、最終のバーナ群(14)は還元帯1-2とし、さらに、酸化帯1-1はバーナ群毎に空気比と燃焼率を個別に制御する場合(A)と、酸化帯のバーナ群11~13を同一の条件で一括制御する場合(B)のケースに分けて試験を行った。なお、還元帯の空気比と燃焼率は酸化帯とは別に制御するものである。図1にバーナ配置の一例を示す。図1は酸化帯のバーナ群11、還元帯のバーナ群14に円形バーナに付随した火炎噴射口3、酸化帯のバーナ群12、酸化帯のバーナ群13にスリットバーナに付随した火炎噴射口2を配置している。バーナ種類は条件に応じて、バーナ群ごとに変更して試験を行った。バーナの燃料ガスには、表1のような組成のガスを使用した。なお各バーナ群の長さ(図1中の“L”)は3m、スリットギャップBは20mmとした。
In a CGL equipped with a direct-fired heating furnace (DFF) 1, the
試験に用いた鋼帯Sの鋼成分組成を表2に示す。 Table 2 shows the steel composition of the steel strip S used in the test.
その他の試験条件は、板厚1.0mm、板巾1000mm、DFF1入側平均板温200℃、DFF1出側平均温度650℃、焼鈍温度(RT炉)は850℃、めっき浴温463℃、めっきAl濃度0.135%、合金化温度550℃とした。鋼帯S速度(LS)は60mpm、90mpm、120mpmの3水準を検討した。バーナは、燃焼率30%以上で使用した。 Other test conditions were: plate thickness 1.0 mm, plate width 1000 mm, DFF1 inlet average plate temperature 200 °C, DFF1 outlet average temperature 650 °C, annealing temperature (RT furnace) 850 °C, plating bath temperature 463 °C, plating The Al concentration was 0.135% and the alloying temperature was 550°C. Three levels of steel strip S speed (LS) were examined: 60 mpm, 90 mpm, and 120 mpm. The burner was used at a combustion rate of 30% or more.
評価は、過酸化に起因するローキ欠陥(ピックアップ)、めっき外観について鋼板進行方向・幅方向品質偏差および鋼板進行方向温度偏差を評価した。評価A、Bは合格、Cは不合格である。 Evaluations included low-ki defects (pickups) caused by peroxidation, plating appearance, quality deviations in the steel plate advancing direction and width direction, and temperature deviations in the steel plate advancing direction. Evaluations A and B are passed, and evaluation C is failed.
本発明では、下記の特許文献7に記載されている方法と同じ手法で求めた。過酸化に起因するローキ欠陥(ピックアップ)は、ランダムに抽出した鋼帯Sにおける鋼板の表面の1m2の視野を光学式の表面欠陥計により検査した。上記の表面欠陥計では直径0.5mm以上のサイズの疵を検出でき、これをピックアップとの接触による凹み欠陥、ここでは、ローキ欠陥として判断した。
[特許文献7]特許第6607339号公報
A(良好):1m2あたり0個(ローキ欠陥の発生無し)
B(ほぼ良好):1m2あたり1~2個(軽微なローキ欠陥が散見される)
C(劣る):1m2あたり3個以上(ローキ欠陥あり)
In the present invention, it was determined using the same method as described in Patent Document 7 below. For low-ki defects (pick-ups) caused by peroxidation, a 1 m 2 field of view of the surface of the steel plate in the randomly sampled steel strip S was inspected using an optical surface defect meter. The surface defect meter described above can detect flaws with a diameter of 0.5 mm or more, and these were determined to be dent defects caused by contact with the pickup, here as low-ki defects.
[Patent Document 7] Patent No. 6607339 A (good): 0 pieces per 1 m 2 (no low kick defects)
B (almost good): 1 to 2 pieces per 1 m2 (slight low-ki defects are seen here and there)
C (poor): 3 or more pieces per 1 m2 (with low kick defects)
めっき外観の評価は、合金化処理後の鋼板表面において、めっき中のFe濃度(合金化率)の目標値に対するばらつきを測定することで判定した。めっき中のFe濃度の目標値に対するばらつきが小さいほどめっき外観は良好であると判断される。なお、Fe濃度は下記の特許文献8に記載されている方法と同じ手法である、X線回折法によりめっき層を構成する合金相の回折ピーク角度の変化から算出する方法にて測定した。
[特許文献8]特許第5962615号公報
A(良好):±0.5%未満(不めっきおよび合金化ムラなし)
B(ほぼ良好):±1%未満(軽微な不めっきまたは/および軽微な合金化ムラあり)
C(劣る):±1%以上(明瞭な不めっきまたは/および明瞭な合金化ムラあり)
評価A、Bは合格、Cは不合格である。
The appearance of the plating was evaluated by measuring the dispersion of the Fe concentration (alloying ratio) in the plating with respect to the target value on the surface of the steel plate after the alloying treatment. It is determined that the smaller the variation in the Fe concentration in the plating with respect to the target value, the better the appearance of the plating. Note that the Fe concentration was measured by the same method as described in Patent Document 8 below, which is calculated from the change in the diffraction peak angle of the alloy phase constituting the plating layer using the X-ray diffraction method.
[Patent Document 8] Patent No. 5962615 A (good): less than ±0.5% (no unplated and alloyed unevenness)
B (almost good): less than ±1% (slight unplating and/or slight alloying unevenness)
C (poor): ±1% or more (clear unplatedness and/or clear alloying unevenness)
Evaluations A and B are passed, and evaluation C is failed.
さらに、進行方向および幅方向の品質は、鋼帯Sの先端部、中央部、尾端部の進行方向に3か所場所を選定し1000mm長さのサンプルを幅方向に採取し、それぞれの幅中央部のローキ、めっき外観の評価結果から行った。また、幅方向は、鋼帯Sの中央部から採取した幅×1000mmのサンプルにおいて、それぞれ幅方向中央部、1/4幅および3/4幅の箇所、両端部の5点のローキ、めっき外観の評価結果を元に下記のように評価した。
◎:同一条件内でのローキ、メッキ性の評価ともに、Aのみであるもの
○:同一条件内でのローキ、メッキ性の評価ともに、AまたはBであるもの
△:同一条件内でのローキもしくはメッキ性の評価がBのみであるもの
×:同一条件内でのローキもしくはメッキ性の評価がCを含むもの
本発明において合格となるものは、ローキ欠陥、めっき外観で一つもC判定の箇所がなく、また幅方向および進行方向で◎、○、△の判定が得られたものである。判定は、幅方向、進行方向いずれも△以上であれば合格(〇)、×が含まれる場合を不合格(×)とした。
Furthermore, the quality in the traveling direction and the width direction was determined by selecting three locations in the traveling direction of the steel strip S at the tip, center, and tail end, and taking samples with a length of 1000 mm in the width direction. This was done based on the evaluation results of the lower part of the central part and the appearance of the plating. In addition, in the width direction, in a sample of width x 1000 mm taken from the center of the steel strip S, the low marks at 5 points at the center, 1/4 width, 3/4 width, and both ends, and the plating appearance. Based on the evaluation results, the evaluation was made as follows.
◎: Both the low kick and plating properties are evaluated as A or B under the same conditions ○: The low kick and plating properties are both evaluated as A or B under the same conditions △: Low kick or plated under the same conditions Items with a plating property evaluation of only B ×: Items with a low-ki or plating property evaluation of C under the same conditions Items that pass the test in this invention have no low-ki defects or plating appearance that is rated C. In addition, judgments of ◎, ◎, and △ were obtained in the width direction and the traveling direction. The judgment was made as a pass (〇) if the score was △ or more in both the width direction and the direction of travel, and as a fail (x) if the score was x.
条件No.1~8、15は鋼帯Sの搬送速度が60mpmの条件で製造したものである。 Condition No. Samples Nos. 1 to 8 and 15 were manufactured under the condition that the conveyance speed of the steel strip S was 60 mpm.
条件1は、円形バーナのみを用いた比較例である。円形バーナを用いていると同時に燃焼率が30%未満で、バーナの燃焼状態が不安定であった。また、酸化帯のバーナ群11~13を一括制御しており、幅方向、進行方向の品質ばらつきが大きい。
条件2は、バーナ群11~13に、条件1の円形バーナに対してスリットバーナを適用したもの場合である。バーナの燃焼状態は条件1同様不安定であったが、スリットバーナを適用したことによって、ローキ欠陥、めっき外観共に良好になり、幅方向、進行方向いずれの品質ばらつきもやや改善した。
条件3は、条件1、2ではバーナ群11~13を一括で制御していたのに対し、バーナ群毎に空気比や燃焼率を制御できるようにした場合である。これによって、必要な燃焼バーナのみ(この場合はバーナ群13のみ)を稼働させることができる。しかし、条件3は稼働したバーナ群13は円形バーナであったため、燃焼ムラが生じやすく条件1よりも表面品質が劣位となる傾向であった。
条件4は、条件3と同様にバーナ群毎に制御した例であるが、バーナ形状を円形からスリットバーナへ変更したものである。これによって、表面品質は向上し、幅方向・進行方向の品質もより均一になった。
条件5は、条件4と同じ制御でスリットバーナを用いたが、バーナ群13の空気比が0.90まで低下してしまった例である。本例においては、条件3よりも幅方向、進行方向の均一性は得られたものの、欠陥が多数発現し不合格となった。
条件6は、条件5に対し、バーナ群13の空気比が1.65と過剰だった例である。欠陥の程度が軽減し、合格範囲となった。
条件7は、条件4に対して、バーナ群14の還元帯の空気比が1.00と高くなった例である。この場合も、条件5同様に均一性の面では比較的良好であったが、欠陥が多発し不合格であった。
Condition 7 is an example in which the air ratio of the reduction zone of the
条件8は、条件7に対し、還元帯の空気比が低い例である。条件7よりは欠陥の程度が軽減し合格範囲となった。 Condition 8 is an example in which the air ratio in the reduction zone is lower than that in condition 7. The degree of defects was reduced compared to Condition 7 and fell within the acceptable range.
条件9、10は鋼帯Sの搬送速度が90mpmの条件で製造した例であり、いずれもバーナ群ごとに空気比や燃焼率を制御した。 Conditions 9 and 10 are examples in which the steel strip S was produced at a conveyance speed of 90 mpm, and in both cases, the air ratio and combustion rate were controlled for each burner group.
条件9は、酸化帯にスリットバーナと円形バーナを併用している。ただし、鋼板温度が400℃に達する範囲ではスリットバーナを適用していないため、表面品質は合格範囲ではあったものの、劣る箇所も生じた。 Condition 9 uses both a slit burner and a circular burner in the oxidation zone. However, since the slit burner was not applied in the range where the steel plate temperature reached 400°C, although the surface quality was within the acceptable range, there were some areas where it was poor.
条件10は、酸化帯で使用したバーナはスリットバーナのみで構成されており、表面品質は条件9よりも優れていた。 In Condition 10, the burner used in the oxidation zone consisted of only a slit burner, and the surface quality was superior to Condition 9.
条件11~13は鋼帯Sの搬送速度が120mpmの条件で製造した例である。いずれの条件でも酸化帯にスリットバーナを導入している。
条件11は、バーナ群毎の制御を行っておらず一括制御で、一部円形バーナを用いてはいるが、条件2と同様にスリットバーナの導入により表面品質は合格範囲である。
条件12は、バーナ群毎の制御を行うことによって、表面品質が条件11より良好となった発明例である。
条件13は、酸化帯に加えて、還元帯にもスリットバーナを用いた例である。これによって、表面品質はさらに改善した。
条件14は、横型焼鈍炉にスリットバーナを導入し、酸化帯として運用した例である。横型炉のため発明例に比べて搬送速度を低くし、30mpmで製造した。酸化帯でスリットバーナを適用しており、過酸化欠陥とめっき外観は合格の範囲であったが、上下方向に鋼板を搬送できる機構となっておらず、また排気口も備えていないため、上流の無酸化炉に排気が部分的に流入したことで幅方向および長手方向で軽微な不めっきや合金化ムラが発生した。
条件15は、条件2と同様の条件で操業したが、各ゾーン間に設置された排気口を閉止し(排気口が無い状態と同等)燃焼ガスを吸引しなかった例である。その結果、火炎同士の干渉により安定性が低下し条件2に比べて欠陥は増加したものの、表面品質は合格範囲にあった。
Condition 15 is an example in which the operation was carried out under the same conditions as
以上の例から、酸化帯にスリットバーナを導入することにより、表面品質を改善し、さらに、制御方法や燃焼条件を好適化することによって、より良い表面品質が得られることを確認した。 From the above examples, it has been confirmed that introducing a slit burner into the oxidation zone improves the surface quality, and furthermore, by optimizing the control method and combustion conditions, better surface quality can be obtained.
1 直火型加熱炉(DFF)
1-1 酸化帯
1-2 還元帯
2 スリットバーナに付随した火炎噴射口
3 円形バーナに付随した火炎噴射口
4 放射温度計
5 火炎
6 排気口
S 鋼板
L バーナ群14の鋼帯移動方向最上流にあるバーナから最下流にあるバーナまでのバーナ群による鋼板加熱領域の長さ
11 酸化帯のバーナ群
12 酸化帯のバーナ群
13 酸化帯のバーナ群
14 還元帯のバーナ群
B スリットギャップ
20 予熱帯
21 加熱帯(直火加熱)
22 均熱帯
23 冷却帯
24 冷却帯
25 めっき浴(亜鉛ポット)
26 合金化帯
27 冷却帯
1 Direct-fired heating furnace (DFF)
1-1 Oxidation zone 1-2
22 Soaking
26
Claims (13)
前記還元帯の空気比を0.70以上、1.00未満
に制御する請求項1または2に記載の鋼板の加熱方法。 The air ratio of the oxidation zone is 1.00 or more and less than 1.50,
The method for heating a steel plate according to claim 1 or 2, wherein the air ratio in the reduction zone is controlled to be 0.70 or more and less than 1.00.
少なくとも1つ以上設置された前記スリットバーナで鋼板を加熱する、
請求項1~3のいずれか1項に記載の鋼板の加熱方法。 In a range where the temperature of the steel plate passing through the oxidation zone is 400 ° C. or higher,
heating a steel plate with at least one or more installed slit burners;
The method for heating a steel plate according to any one of claims 1 to 3.
少なくとも前記酸化帯の一部に、
前記酸化帯と前記還元帯を通過する鋼板に向けて火炎を噴射する、前記鋼板の幅方向に延設されたスリットバーナを前記鋼板の表面側と裏面側にそれぞれ1つ以上備える、直火型加熱炉。 An oxidation zone operated at an air ratio of 1 or more, a reduction zone operated at an air ratio of less than 1, and a control device capable of controlling the air ratio of the oxidation zone and the reduction zone,
At least a part of the oxidation zone,
Direct-fire type, comprising one or more slit burners on the front side and the back side of the steel plate, each extending in the width direction of the steel plate and injecting a flame toward the steel plate passing through the oxidation zone and the reduction zone. heating furnace.
前記還元帯の空気比は0.70以上、1.00未満に制御される
請求項7または8に記載の直火型加熱炉。 The air ratio of the oxidation zone is 1.00 or more and less than 1.50,
The direct-fired heating furnace according to claim 7 or 8, wherein the air ratio in the reduction zone is controlled to be 0.70 or more and less than 1.00.
前記酸化帯を通過する鋼板の温度が400℃以上となる範囲に、
少なくとも1つ以上設置されている請求項7~9のいずれか一項に記載の直火型加熱炉。 The slit burner is
In a range where the temperature of the steel plate passing through the oxidation zone is 400 ° C. or higher,
The direct-fired heating furnace according to any one of claims 7 to 9, wherein at least one or more direct-fired heating furnaces are installed.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23839544.6A EP4530363A1 (en) | 2022-07-12 | 2023-07-05 | Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment |
JP2023555775A JP7622869B2 (en) | 2022-07-12 | 2023-07-05 | Steel sheet heating method, coated steel sheet manufacturing method, direct-fired heating furnace and continuous hot-dip galvanizing equipment |
CN202380051708.7A CN119604633A (en) | 2022-07-12 | 2023-07-05 | Steel plate heating method, coated steel plate manufacturing method, direct-fire type heating furnace and continuous hot-dip galvanizing equipment |
MX2025000317A MX2025000317A (en) | 2022-07-12 | 2025-01-07 | Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022111549 | 2022-07-12 | ||
JP2022-111549 | 2022-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024014372A1 true WO2024014372A1 (en) | 2024-01-18 |
Family
ID=89536677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024887 WO2024014372A1 (en) | 2022-07-12 | 2023-07-05 | Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4530363A1 (en) |
JP (1) | JP7622869B2 (en) |
CN (1) | CN119604633A (en) |
MX (1) | MX2025000317A (en) |
WO (1) | WO2024014372A1 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6229820A (en) | 1985-04-26 | 1987-02-07 | Nippon Kokan Kk <Nkk> | Direct flame reducing heating burner |
JPH0257639A (en) * | 1988-08-22 | 1990-02-27 | Kobe Steel Ltd | Method for continuously heating steel strip |
JPH037339A (en) | 1989-06-02 | 1991-01-14 | Aica Kogyo Co Ltd | Manufacture of decoration plate |
JPH04202630A (en) | 1990-11-30 | 1992-07-23 | Nippon Steel Corp | Production of hot-dip galvanized high tensile strength steel sheet of high si content excellent in adhesive strength of plating |
JPH0734210A (en) | 1993-07-14 | 1995-02-03 | Kawasaki Steel Corp | Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet |
JPH0959753A (en) | 1995-08-24 | 1997-03-04 | Sumitomo Metal Ind Ltd | Method for producing galvannealed steel sheet |
JP3889019B2 (en) | 2005-03-31 | 2007-03-07 | 株式会社神戸製鋼所 | Method for producing hot-dip galvanized steel sheet |
JP2008001934A (en) * | 2006-06-21 | 2008-01-10 | Kobe Steel Ltd | Hot-dip galvanization equipment |
JP2008144264A (en) | 2006-11-16 | 2008-06-26 | Jfe Steel Kk | Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet |
JP2020190017A (en) * | 2019-05-23 | 2020-11-26 | Jfeスチール株式会社 | Dew point control method and reducing atmosphere furnace of reducing atmosphere furnace, manufacturing method of cold-rolled steel sheet and manufacturing method of hot-dip galvanized steel sheet |
WO2021166350A1 (en) * | 2020-02-21 | 2021-08-26 | Jfeスチール株式会社 | Method for producing high-strength hot dipped galvanized steel sheet |
JP2021147648A (en) * | 2020-03-18 | 2021-09-27 | Jfeスチール株式会社 | Producing method of cold-rolled steel sheet and hot-dip galvanized steel sheet |
-
2023
- 2023-07-05 CN CN202380051708.7A patent/CN119604633A/en active Pending
- 2023-07-05 EP EP23839544.6A patent/EP4530363A1/en active Pending
- 2023-07-05 WO PCT/JP2023/024887 patent/WO2024014372A1/en active Application Filing
- 2023-07-05 JP JP2023555775A patent/JP7622869B2/en active Active
-
2025
- 2025-01-07 MX MX2025000317A patent/MX2025000317A/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6229820A (en) | 1985-04-26 | 1987-02-07 | Nippon Kokan Kk <Nkk> | Direct flame reducing heating burner |
JPH0257639A (en) * | 1988-08-22 | 1990-02-27 | Kobe Steel Ltd | Method for continuously heating steel strip |
JPH037339A (en) | 1989-06-02 | 1991-01-14 | Aica Kogyo Co Ltd | Manufacture of decoration plate |
JPH04202630A (en) | 1990-11-30 | 1992-07-23 | Nippon Steel Corp | Production of hot-dip galvanized high tensile strength steel sheet of high si content excellent in adhesive strength of plating |
JPH0734210A (en) | 1993-07-14 | 1995-02-03 | Kawasaki Steel Corp | Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet |
JPH0959753A (en) | 1995-08-24 | 1997-03-04 | Sumitomo Metal Ind Ltd | Method for producing galvannealed steel sheet |
JP3889019B2 (en) | 2005-03-31 | 2007-03-07 | 株式会社神戸製鋼所 | Method for producing hot-dip galvanized steel sheet |
JP2008001934A (en) * | 2006-06-21 | 2008-01-10 | Kobe Steel Ltd | Hot-dip galvanization equipment |
JP2008144264A (en) | 2006-11-16 | 2008-06-26 | Jfe Steel Kk | Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet |
JP2020190017A (en) * | 2019-05-23 | 2020-11-26 | Jfeスチール株式会社 | Dew point control method and reducing atmosphere furnace of reducing atmosphere furnace, manufacturing method of cold-rolled steel sheet and manufacturing method of hot-dip galvanized steel sheet |
WO2021166350A1 (en) * | 2020-02-21 | 2021-08-26 | Jfeスチール株式会社 | Method for producing high-strength hot dipped galvanized steel sheet |
JP2021147648A (en) * | 2020-03-18 | 2021-09-27 | Jfeスチール株式会社 | Producing method of cold-rolled steel sheet and hot-dip galvanized steel sheet |
Also Published As
Publication number | Publication date |
---|---|
EP4530363A1 (en) | 2025-04-02 |
MX2025000317A (en) | 2025-02-10 |
JP7622869B2 (en) | 2025-01-28 |
CN119604633A (en) | 2025-03-11 |
JPWO2024014372A1 (en) | 2024-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4108793B1 (en) | Method for producing high-strength hot dipped galvanized steel sheet | |
JP5720084B2 (en) | Continuous hot dip galvanizing apparatus and method for producing hot dip galvanized steel sheet | |
EP1829983B1 (en) | Method and facility for hot dip zinc plating | |
JP6131919B2 (en) | Method for producing galvannealed steel sheet | |
JP7243668B2 (en) | Method for manufacturing cold-rolled steel sheet and hot-dip galvanized steel sheet | |
KR101722350B1 (en) | Method for producing galvanized steel sheet and continuous galvanizing apparatus | |
JP6439654B2 (en) | Method for producing hot-dip galvanized steel sheet | |
JP2530939B2 (en) | Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si | |
JP7622869B2 (en) | Steel sheet heating method, coated steel sheet manufacturing method, direct-fired heating furnace and continuous hot-dip galvanizing equipment | |
JP7622868B2 (en) | Steel sheet heating method, coated steel sheet manufacturing method, direct-fired heating furnace and continuous hot-dip galvanizing equipment | |
JP6740973B2 (en) | Method for manufacturing hot-dip galvanized steel sheet | |
JP4718381B2 (en) | Hot dip galvanizing equipment | |
JP3889019B2 (en) | Method for producing hot-dip galvanized steel sheet | |
JP6128068B2 (en) | Method for producing galvannealed steel sheet | |
JP4563347B2 (en) | Steel plate pretreatment method in hot dip galvanizing annealing furnace | |
JP6696495B2 (en) | Method for manufacturing hot dip galvanized steel sheet | |
JP2704819B2 (en) | Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023555775 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23839544 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417102070 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2025/000317 Country of ref document: MX |
|
WWP | Wipo information: published in national office |
Ref document number: MX/A/2025/000317 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023839544 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023839544 Country of ref document: EP Effective date: 20250212 |
|
WWP | Wipo information: published in national office |
Ref document number: 2023839544 Country of ref document: EP |