[go: up one dir, main page]

WO2024013961A1 - Method and device for controlling vehicle - Google Patents

Method and device for controlling vehicle Download PDF

Info

Publication number
WO2024013961A1
WO2024013961A1 PCT/JP2022/027799 JP2022027799W WO2024013961A1 WO 2024013961 A1 WO2024013961 A1 WO 2024013961A1 JP 2022027799 W JP2022027799 W JP 2022027799W WO 2024013961 A1 WO2024013961 A1 WO 2024013961A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
vehicle
control
power
predetermined value
Prior art date
Application number
PCT/JP2022/027799
Other languages
French (fr)
Japanese (ja)
Inventor
一真 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/027799 priority Critical patent/WO2024013961A1/en
Publication of WO2024013961A1 publication Critical patent/WO2024013961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators

Definitions

  • the present invention relates to vehicle control that appropriately combines securing power for an electric load for automatic driving and fuel efficiency improvement control such as idling stop control in a vehicle having an automatic driving function.
  • the power supply for the electric loads for automatic driving including the electric actuators and their control circuits that realize the operation.
  • a highly reliable power supply configuration is required.
  • Patent Document 1 describes, in addition to a main battery made of a lead battery that supplies power to electrical loads necessary for normal driving, an additional battery made of a lithium ion battery that supplies power to electrical loads for automatic driving such as ADAS actuators.
  • a configuration is disclosed. This circuit is divided into a first load circuit that includes a main battery and a general electrical load, and a second load circuit that includes an additional battery and an electrical load for automatic operation, and a circuit intermittent mechanism is provided between the two. ing. Then, voltage fluctuations in each load circuit are monitored to control disconnection and connection of both load circuits.
  • Patent Document 1 does not disclose fuel efficiency improvement control that involves stopping power generation, such as idling stop control, and does not disclose how the circuit intermittent mechanism is controlled when fuel efficiency improvement control is applied. do not have.
  • Patent Document 2 discloses that in a vehicle with an automatic driving function, when it is detected that the alternator has failed, a period of time during which the alternator can be operated is determined, and the steering is switched to automatic operation by the end of this possible operation time. It is disclosed that a voice message or the like is outputted so that the manual operation is transferred from the original to the manual operation.
  • Patent Document 2 does not disclose how to achieve both fuel efficiency improvement control such as idling stop control and securing power for automatic driving.
  • the vehicle control method includes: engine and a generator driven by the engine; an electricity storage device that is charged with the electric power generated by the generator and supplies electric power necessary for automatic operation of the vehicle to an electric load for automatic operation; Equipped with permitting the start of fuel efficiency improvement control to reduce the drive energy of the generator on the condition that the state of charge of the electricity storage device is higher than a first predetermined value; The first predetermined value is higher than the second predetermined value, which is a state of charge in which the power storage device can output power necessary for automatic operation.
  • the start of fuel efficiency improvement control is permitted on the condition that the state of charge of the power storage device that supplies power to the electric load for automatic operation is higher than the first predetermined value, and is not permitted when the state of charge is lower than the first predetermined value.
  • the state of charge of the power storage device tends to be maintained higher than the second predetermined value, and power supply to the automatic driving electric load is ensured.
  • FIG. 1 is an explanatory diagram showing a system configuration of a power supply system according to an embodiment.
  • FIG. 2 is an explanatory diagram showing the basic operation of a power supply system according to an embodiment.
  • a time chart showing charging and discharging of a lead acid battery and a lithium ion battery during idling stop control.
  • FIG. 3 is an explanatory diagram showing operations in idling stop control.
  • FIG. 3 is an explanatory diagram showing the relationship between a first predetermined value and a second predetermined value for each of a lead acid battery and a lithium ion battery.
  • FIG. 1 is an explanatory diagram showing the system configuration of a power supply system in a vehicle having an automatic driving function according to an embodiment.
  • the vehicle of one embodiment is basically a vehicle that runs on the power of the engine 1.
  • the engine 1 for example, a spark ignition engine, that is, a gasoline engine can be used, but a diesel engine that performs compression self-ignition may also be used.
  • the engine 1 includes a generator, such as an alternator 2.
  • the alternator 2 is driven by a crank pulley 4 of the engine 1 via a belt transmission mechanism 3.
  • the engine 1 further includes a starter motor 5 as a starting motor.
  • the starter motor 5 is of a general type and includes a pinion that engages and disengages from a ring gear (not shown) of the engine 1.
  • a vehicle includes a large number of electrical loads, and in one embodiment, the large number of electrical loads are roughly divided into a load A group 21 and a load B group 22, as schematically shown in FIG.
  • Load group A 21 includes various electrical loads necessary for running a general vehicle, such as the fuel system, ignition system, and control system of the engine 1, lighting, air conditioners, electrical components such as audio, etc. It will be done.
  • the load A group 21 further includes a load (corresponding to the first electrical load in the claims) of one system of electrical loads for automatic operation necessary for automatic operation of a vehicle configured as a redundant system. There is.
  • the load B group 22 includes the load of the other system of the automatic driving electric loads (corresponding to the second electric load in the claims) necessary for automatic operation of the vehicle configured as a redundant system.
  • an electric power steering device has a configuration including two motor sections and two motor drive control circuit sections that are redundant with each other.
  • one motor section and the corresponding drive control circuit section correspond to the first electric load included in the load A group 21
  • the other motor section and the corresponding drive control circuit section correspond to the first electric load included in the load B group 22. This corresponds to 2 electrical loads.
  • the power supply system of one embodiment includes two secondary batteries that temporarily store electric power generated by the alternator 2. That is, it includes a lead acid battery 6 which corresponds to a first power storage device in the claims, and a lithium ion battery 7 which corresponds to a second power storage device.
  • the lead-acid battery 6 is a so-called 12V battery that is often used as an on-board battery for automobiles, and a battery with an appropriate capacity is used in consideration of the load A group 21 and the load B group 22 as a whole.
  • the lithium ion battery 7 is a type of backup power source that is mainly used to secure power for the electric loads for automatic operation in the load group B 22. For example, a battery with a relatively smaller capacity than the lead acid battery 6 may be used. used. Note that lithium ion batteries generally have lower internal resistance and better charge/discharge characteristics than lead acid batteries.
  • the lithium ion battery 7 has the same voltage as the lead acid battery 6 by adjusting the number of cells.
  • the lead-acid battery 6 has a built-in current/voltage sensor 8 that detects the current and voltage of the lead-acid battery 6.
  • the current/voltage sensor 8 detects current and voltage during charging and discharging, and based on these, the amount of charge (SOC) of the lead-acid battery 6 is estimated.
  • the lithium ion battery 7 includes a battery management system (BMS) 9 and a LiB relay 10 inside a battery pack containing cells.
  • the battery management system 9 detects voltage and current on a cell-by-cell basis to suppress overcharging and overdischarging, as well as equalizing cell voltages and calculating the amount of charge (SOC).
  • LiB relay 10 is a relay with contacts, and corresponds to a second disconnection device in the claims.
  • the lead-acid battery 6 is connected to the alternator 2, starter motor 5, and load A group 21 as a main circuit 11.
  • a lithium ion battery 7 containing a LiB relay 10 is connected to a load B group 22 as a backup circuit 12.
  • the main circuit 11 and the backup circuit 12 are connected to each other via a circuit cutoff switch 13 (corresponding to a disconnection device in the claims).
  • the circuit breaker switch 13 is composed of a semiconductor switch in consideration of responsiveness. As shown in FIG. 1, the circuit break switch 13 is arranged between the lead-acid battery 6 for supplying electric power to the starter motor 5 and the load group B 22 mainly consisting of electric loads for automatic operation.
  • the connection/disconnection of the circuit breaker switch 13 and the LiB relay 10 are controlled by a controller 14 that controls the power supply.
  • the controller 14 also controls the voltage and power generation amount of the alternator 2, and further controls the starter motor 5 when starting the engine 1 (initial starting and restarting after idling stop).
  • the controller 14 may be composed of a plurality of modules or controllers.
  • the controller 14 appropriately executes fuel efficiency improvement control that reduces the driving energy of the generator, that is, the alternator 2, in order to reduce fuel consumption of the vehicle.
  • the fuel efficiency improvement control includes idling stop control that stops the engine 1 when the vehicle temporarily stops at an intersection or the like, power generation control that reduces the amount of power generated by the alternator 2 to substantially zero, and the like.
  • idling stop control will be explained as an example, but power generation amount control can also be performed in the same way as idling stop control.
  • FIG. 2 is an explanatory diagram for explaining the basic operation of the power supply system of the embodiment shown in FIG. 1.
  • main current flows are indicated by arrows.
  • FIG. 2(a) shows a state in which the ignition switch of the vehicle is turned off. In this ignition switch OFF state, the circuit break switch 13 is ON (conducting state), and the LiB relay 10 is controlled to be OFF (blocking state). Although many electrical loads do not require power in this ignition switch OFF state, some electrical loads consume power even during standby, and so-called standby current flows in the circuit.
  • the lead-acid battery 6 supplies the necessary power to both the load A group 21 and the load B group 22 during standby. Since the LiB relay 10 is in the cutoff state, the amount of charge of the lithium ion battery 7 does not decrease.
  • both the lead acid battery 6 and the lithium ion battery 7 are charged by the power generation of the alternator 2.
  • the voltage is controlled so that the charge amount of the lead-acid battery 6, which decreases due to power consumption when the ignition switch is OFF and during cranking, and the charge amount of the lithium-ion battery 7, which slightly decreases due to natural discharge, quickly recovers. .
  • FIG. 2(d) shows a normal running state in which the lead acid battery 6 and the lithium ion battery 7 are sufficiently charged. Both circuit breaker switch 13 and LiB relay 10 are in the ON state. In this state, power is basically supplied from the alternator 2 to the load A group 21 and the load B group 22. Under such conditions, fuel efficiency improvement control, such as idling stop control, is executed as appropriate.
  • Idling stop control is an effective means of reducing vehicle fuel consumption.
  • the accelerator pedal is turned off, the brake pedal is turned on, and the charge amount of the lead-acid battery 6 or lithium-ion battery 7 is set to a predetermined value.
  • the engine 1 is executed when several idling stop conditions such as being equal to or higher than the level (LABSOC2, LiBSOC1 described later) are satisfied simultaneously (so-called AND condition), and the engine 1 is automatically stopped. Thereafter, automatic restart is performed when any one of several restart conditions such as brake pedal OFF or a start request from the air conditioner is satisfied (so-called OR condition).
  • FIG. 4 is an explanatory diagram for explaining the operation during the idling stop control.
  • the circuit break switch 13 is turned OFF.
  • LiB relay 10 remains in the ON state.
  • the engine 1 is stopped and the alternator 2 stops generating power, so power is supplied to the loads A group 21 from the lead acid battery 6, and power is supplied to the loads B group 22 from the lithium ion battery 7. be done. Thereby, electric power is reliably supplied to the two mutually redundant electric loads for automatic operation included in the load A group 21 and the load B group 22 respectively.
  • the LiB relay 10 is actually in the ON state as one of the idling stop conditions. In other words, it is desirable to prevent the idling stop control from being started in a state where power cannot be supplied from the lithium ion battery 7 to the load group B 22.
  • the lithium ion battery 7 Since the lithium ion battery 7 has a lower internal resistance than the lead acid battery 6, if both the lead acid battery 6 and the lithium ion battery 7 are connected to the starter motor 5, the power on the lithium ion battery 7 side will be reduced. are consumed preferentially. Since the circuit break switch 13 is OFF, there is no effect on the lithium ion battery 7 at the time of restart.
  • the circuit cutoff switch 13 is controlled to be turned OFF substantially simultaneously with the start of the idling stop control in preparation for restarting. Therefore, when a restart request is made, there is no delay time required to turn off the circuit breaker switch 13, and restart can be started promptly. Further, there is no concern that electric power may be taken out from the lithium ion battery 7 to the load group A 21 during idling stop control.
  • FIG. 4(c) shows the control state immediately after the restart.
  • the lead-acid battery 6 is charged first. Therefore, the state in which the circuit breaker switch 13 is turned OFF continues for a predetermined period after the restart.
  • the lead-acid battery 6 is charged by the power generated by the alternator 2.
  • the load B group 22 receives power from the lithium ion battery 7. This is done in consideration of the fact that the lead-acid battery 6 consumes power due to cranking during restart, and that the internal resistance of the lead-acid battery 6 is greater than the internal resistance of the lithium-ion battery 7.
  • the circuit break switch 13 is controlled to be ON, and charging of both the lead acid battery 6 and the lithium ion battery 7 begins.
  • FIG. 3 is a time chart showing power supply control during idling stop control, and in this example, idling stop control is executed twice.
  • the period marked "IS" in the column (a) at the top is the idling stop control period (corresponding to FIG. 4(a)), and the period marked "LAB charging” is the priority charging period for the lead-acid battery 6. (corresponding to FIG. 4(c)), the period marked as "LiB+LAB charging” is the charging period for both the lithium ion battery 7 and the lead-acid battery 6 (corresponding to FIG. 4(d)).
  • the lead-acid battery 6 is prioritized for charging, and then both the lithium-ion battery 7 and the lead-acid battery 6 are charged.
  • LABSOC1 is the target SOC of the lead-acid battery 6 for ending preferential charging of the lead-acid battery 6 after restart.
  • LABSOC2 is an idling stop prohibition SOC of the lead-acid battery 6, which is one of the idling stop conditions.
  • LABSOC2 is set to a lower value than LABSOC1.
  • the amount of charge of the lead-acid battery 6 decreases due to the power consumption of the load A group 21 during idling stop control and cranking at restart, and increases during the subsequent charging period.
  • the priority charging period of the lead-acid battery 6 after the first idling stop control ends when the amount of charge of the lead-acid battery 6 reaches LABSOC1 at time t3. That is, it is assumed that the predetermined period for preferentially charging the lead-acid battery 6 has passed since the charging target LABSOC1 has been reached.
  • the first idling stop control in the time chart ends at time t2, for example, when the driver turns off the brake pedal.
  • the second idling stop control ends when the amount of charge of the lead-acid battery 6 decreases to LABSOC2, which is the idling stop prohibition SOC, at time t5.
  • LiBSOC1 is an idling stop prohibition SOC that prohibits idling stop control in cases below this level.
  • this LiBSOC1 is also the lower limit SOC at which the lithium-ion battery 7 should be charged, and if the charge amount of the lithium-ion battery 7 decreases to LiBSOC1 while the lead-acid battery 6 is being preferentially charged after idling stop control, the lithium-ion battery 7 will be charged. The process moves on to charging both the battery 7 and the lead-acid battery 6.
  • LiBSOC2 is an automatic operation warning SOC that is the lower limit for outputting the electric power necessary for automatic operation functions to the electric load for automatic operation of load group B 22, and the amount of charge of the lithium ion battery 7 during automatic operation is determined by this LiBSOC2. If the value falls below this level, an alert (audio, screen display, etc.) will be issued to the driver to prompt him or her to switch from automatic to manual operation.
  • LiBSOC1 is set to a higher value than LiBSOC2 so as to provide an appropriate margin before issuing an alert.
  • the amount of charge of the lithium ion battery 7 decreases due to the power consumption of the load group B 22 during the idling stop control and the subsequent priority charging period of the lead acid battery 6, and both the lithium ion battery 7 and the lead acid battery 6 are charged. increases during the charging period.
  • the priority charging period for the lead-acid battery 6 after the second idling stop control ends when the amount of charge of the lithium ion battery 7 decreases to LiBSOC1 at time t6. That is, it is assumed that the predetermined period for preferentially charging the lead-acid battery 6 has passed since the LiBSOC has decreased to 1.
  • the predetermined period for preferentially charging the lead-acid battery 6 may be determined by its duration. In this case, the preferential charging of the lead-acid battery 6 is terminated after a certain period of time has elapsed, and the charging of both the lithium ion battery 7 and the lead-acid battery 6 is started.
  • FIG (e) shows the open/closed state of the circuit breaker switch 13 (abbreviated as HNS in the figure).
  • the circuit cutoff switch 13 is open (OFF) during the idling stop control and during the priority charging period of the lead-acid battery 6, and is closed (ON) during the charging period of both the lithium ion battery 7 and the lead-acid battery 6.
  • Column (f) shows the open/closed state of the LiB relay 10. The LiB relay 10 maintains a closed state (ON) during the period of the time chart in the figure.
  • LABSOC2 and LiBSOC1 (corresponding to the first predetermined value in the claims), which are the idling stop prohibition SOCs of the lead-acid battery 6 and the lithium ion battery 7, and an alert regarding automatic driving are determined.
  • the relationship between the second predetermined value and the second predetermined value to be issued will be further explained.
  • the lead-acid battery 6 as shown in column (a) of FIG. 5, if the charge amount (SOC) of the lead-acid battery 6 is less than LABSOC2, which is the idling stop prohibition SOC, idling stop control is prohibited, and the idling stop control is prohibited from LABSOC2. Start of idling stop control is permitted on the condition that the vehicle speed is also high.
  • This LABSOC2 is set higher than LABSOC3 in which the lead-acid battery 6 is in a charged state in which it can output the electric power necessary for automatic operation to the electric load for automatic operation. It is desirable to provide an appropriate margin between the two.
  • the amount of charge (SOC) of the lead-acid battery 6 is less than LABSOC2, which is the SOC for prohibiting idling stop, the start of idling stop control is not permitted, so an excessive decrease in the amount of charge due to idling stop control is avoided, and automatic activation in the redundant system It is possible to maintain driving functions.
  • LABSOC3 which is necessary for the automatic driving function, is defined as the lower limit charging state in which cranking by the starter motor 5 is possible.
  • LABSOC1 and LABSOC2 are compared with sequentially calculated SOC values.
  • LABSOC3 is also possible to compare LABSOC3 with the calculated SOC value.
  • the lead-acid battery 6 if the charge level (SOC) of the lead-acid battery 6 falls below LABSOC3 during automatic operation, an alert (audio, screen display, etc.) will be sent to the driver to prompt the driver to switch from automatic operation to manual operation. It is desirable to issue such information.
  • SOC charge level
  • LiBSOC1 is set higher than LiBSOC2 in which the lithium ion battery 7 is in a charged state in which it can output power necessary for automatic operation to an electric load for automatic operation. It is desirable to provide an appropriate margin between the two.
  • the amount of charge (SOC) of the lithium-ion battery 7 is less than LiBSOC1, which is the SOC for prohibiting idling stop, the start of idling stop control is not permitted, so an excessive decrease in the amount of charge due to idling stop control is avoided, and the automatic driving function is maintained. is possible.
  • LiBSOC1 the SOC for prohibiting idling stop
  • LABSOC2 and LiBSOC1 which correspond to the first predetermined value in the claims, and LABSOC3 and LiBSOC2, which correspond to the second predetermined value, have respective capacities, etc. with respect to the lead acid battery 6 and the lithium ion battery 7. Each of them is set individually (that is, optimally). Note that in FIG. 5, LiBSOC1 and LiBSOC2 of the lithium ion battery 7 are shown higher than LABSOC2 and LABSOC3 of the lead acid battery 6, but this is only an example.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the lead acid battery 6 or the lithium ion battery 7 is used as the power storage device, but the power storage device may be of any type such as a suitable secondary battery or a capacitor.
  • the generator may be a motor generator capable of cranking the engine 1.
  • the electric load for automatic operation is divided into two redundant electric loads, but the present invention is applicable not only to such a redundant system.
  • the first predetermined value is set so that the idling stop control is terminated when the amount of charge (SOC) decreases to the first predetermined value (LABSOC2, LiBSOC1) during the idling stop control.
  • the first Predetermined values (LABSOC2, LiBSOC1) may be set.
  • a certain upper limit time is set for the idling stop control, and after the idling stop control starts, if the duration of the idling stop control reaches the upper limit time without other restart conditions being met, the idling stop control is ended. Perform a restart.
  • the first predetermined value is set to a level that does not fall below the second predetermined value during the idling stop control. In this case, after the start of the idling stop control, even if the current amount of charge (SOC) becomes less than or equal to the first predetermined value, the idling stop control will be continued.
  • SOC current amount of charge
  • idling stop control has been described as fuel efficiency improvement control, but control may also be used to substantially reduce the amount of power generated by the alternator 2 to 0 (that is, stop power generation drive).
  • the process can be performed in the same manner as in the case of the idling stop control in the above embodiment, except that restarting is not required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

This vehicle having an automatic driving function is provided with: an alternator (2); a starter motor (5); a load A group (21) including one of two automatic driving electric loads constituting a redundant system and a load B group (22) including the other thereof; a lead-acid battery (6); and a backup lithium ion battery (7). The start of fuel efficiency improvement control such as idling stop control is permitted on the condition that an SOC of the lead-acid battery (6) and an SOC of the lithium ion battery (7) are higher than first prescribed values (LABSOC2 and LiBSOC1). The first prescribed values are higher than second prescribed values (LABSOC3 and LibSOC2) showing a state of charge in which output of power necessary for automatic driving is enabled.

Description

車両の制御方法および装置Vehicle control method and device

 この発明は、自動運転機能を有する車両において、自動運転用電気負荷の電源確保とアイドリングストップ制御等の燃費向上制御とを適切に組み合わせた車両の制御に関する。 The present invention relates to vehicle control that appropriately combines securing power for an electric load for automatic driving and fuel efficiency improvement control such as idling stop control in a vehicle having an automatic driving function.

 車両のステアリングやブレーキ等を制御システムが操作する自動運転機能(いわゆる運転支援機能を含む)を有する車両にあっては、操作を実現する電動アクチュエータやその制御回路を含む自動運転用電気負荷に対する電源として、高い信頼性を有する電源構成が要求される。 For vehicles with automatic driving functions (including so-called driving support functions) in which the control system operates the vehicle's steering, brakes, etc., the power supply for the electric loads for automatic driving, including the electric actuators and their control circuits that realize the operation. As such, a highly reliable power supply configuration is required.

 特許文献1には、通常の走行に必要な電気負荷に電力供給を行う鉛バッテリからなる主バッテリに加えて、ADASアクチュエータ等の自動運転用電気負荷に電力供給を行うリチウムイオンバッテリからなる追加バッテリを備えた構成が開示されている。このものでは、主バッテリおよび一般的な電気負荷を含む第1負荷回路と、追加バッテリおよび自動運転用電気負荷を含む第2負荷回路と、に区分されており、両者間に回路断続機構を備えている。そして、各負荷回路の電圧変動を監視して両負荷回路の遮断・接続を制御している。 Patent Document 1 describes, in addition to a main battery made of a lead battery that supplies power to electrical loads necessary for normal driving, an additional battery made of a lithium ion battery that supplies power to electrical loads for automatic driving such as ADAS actuators. A configuration is disclosed. This circuit is divided into a first load circuit that includes a main battery and a general electrical load, and a second load circuit that includes an additional battery and an electrical load for automatic operation, and a circuit intermittent mechanism is provided between the two. ing. Then, voltage fluctuations in each load circuit are monitored to control disconnection and connection of both load circuits.

 しかしながら、この特許文献1には、アイドリングストップ制御のような発電停止を伴う燃費向上制御に関する開示はなく、燃費向上制御を適用した場合に、回路断続機構をどのように制御するのかは開示されていない。 However, this Patent Document 1 does not disclose fuel efficiency improvement control that involves stopping power generation, such as idling stop control, and does not disclose how the circuit intermittent mechanism is controlled when fuel efficiency improvement control is applied. do not have.

 特許文献2には、自動運転機能を有する車両において、オルタネータが故障したことを検出したときに、その後に運転可能な動作可能時間を求めるとともに、この動作可能時間が終了するまでに操舵を自動運転から手動操作に移管するように音声メッセージ等を出力することが開示されている。 Patent Document 2 discloses that in a vehicle with an automatic driving function, when it is detected that the alternator has failed, a period of time during which the alternator can be operated is determined, and the steering is switched to automatic operation by the end of this possible operation time. It is disclosed that a voice message or the like is outputted so that the manual operation is transferred from the original to the manual operation.

 しかしながら、この特許文献2には、アイドリングストップ制御のような燃費向上制御と自動運転のための電源確保とをどのように両立させるかの開示はない。 However, Patent Document 2 does not disclose how to achieve both fuel efficiency improvement control such as idling stop control and securing power for automatic driving.

特開2017-177857号公報Japanese Patent Application Publication No. 2017-177857 特開2017-099249号公報Japanese Patent Application Publication No. 2017-099249

 この発明に係る車両の制御方法は、
 エンジンと、
 上記エンジンによって発電駆動される発電機と、
 上記発電機によって発電された電力により充電され、車両の自動運転に必要な電力を自動運転用電気負荷に供給する蓄電デバイスと、
 を備え、
 上記蓄電デバイスの充電状態が第1所定値より高いことを条件として上記発電機の駆動エネルギを低減する燃費向上制御の開始を許可し、
 上記第1所定値は、上記蓄電デバイスが自動運転に必要な電力を出力可能な充電状態である第2所定値よりも高い。
The vehicle control method according to the present invention includes:
engine and
a generator driven by the engine;
an electricity storage device that is charged with the electric power generated by the generator and supplies electric power necessary for automatic operation of the vehicle to an electric load for automatic operation;
Equipped with
permitting the start of fuel efficiency improvement control to reduce the drive energy of the generator on the condition that the state of charge of the electricity storage device is higher than a first predetermined value;
The first predetermined value is higher than the second predetermined value, which is a state of charge in which the power storage device can output power necessary for automatic operation.

 エンジンを停止するアイドリングストップ制御や発電機の発電量を実質的に0とする発電量制御等の燃費向上制御によって発電機の駆動エネルギの低減ひいては燃料消費の低減を図ることができる。本発明では、自動運転用電気負荷に電力供給を行う蓄電デバイスの充電状態が第1所定値より高いことを条件として燃費向上制御の開始が許可され、第1所定値以下では許可されない。これにより、蓄電デバイスの充電状態が第2所定値よりも高く保たれる傾向となり、自動運転用電気負荷への電力供給が確保される。 It is possible to reduce the drive energy of the generator and, in turn, reduce fuel consumption, through fuel efficiency improvement controls such as idling stop control that stops the engine and power generation control that reduces the amount of power generated by the generator to substantially zero. In the present invention, the start of fuel efficiency improvement control is permitted on the condition that the state of charge of the power storage device that supplies power to the electric load for automatic operation is higher than the first predetermined value, and is not permitted when the state of charge is lower than the first predetermined value. As a result, the state of charge of the power storage device tends to be maintained higher than the second predetermined value, and power supply to the automatic driving electric load is ensured.

一実施例の電源システムのシステム構成を示す説明図。FIG. 1 is an explanatory diagram showing a system configuration of a power supply system according to an embodiment. 一実施例の電源システムの基本的な動作を示した説明図。FIG. 2 is an explanatory diagram showing the basic operation of a power supply system according to an embodiment. アイドリングストップ制御における鉛酸電池とリチウムイオン電池の充放電等を示したタイムチャート。A time chart showing charging and discharging of a lead acid battery and a lithium ion battery during idling stop control. アイドリングストップ制御における動作を示した説明図。FIG. 3 is an explanatory diagram showing operations in idling stop control. 鉛酸電池およびリチウムイオン電池の各々についての第1所定値と第2所定値との関係を示した説明図。FIG. 3 is an explanatory diagram showing the relationship between a first predetermined value and a second predetermined value for each of a lead acid battery and a lithium ion battery.

 以下、この発明の一実施例を図面に基づいて詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

 図1は、一実施例の自動運転機能を有する車両における電源システムのシステム構成を示す説明図である。一実施例の車両は、基本的にエンジン1の動力によって走行する形式の車両である。エンジン1としては、例えば火花点火式エンジンつまりガソリンエンジンを用いることができるが、圧縮自己着火を行うディーゼルエンジンであってもよい。エンジン1は、発電機例えばオルタネータ2を備えている。オルタネータ2は、ベルト伝動機構3を介してエンジン1のクランクプーリ4によって駆動される。エンジン1は、さらに、始動用モータとしてスタータモータ5を備えている。スタータモータ5は、エンジン1のリングギア(図示せず)と係合・離脱するピニオンを備えた一般的な形式のものである。 FIG. 1 is an explanatory diagram showing the system configuration of a power supply system in a vehicle having an automatic driving function according to an embodiment. The vehicle of one embodiment is basically a vehicle that runs on the power of the engine 1. As the engine 1, for example, a spark ignition engine, that is, a gasoline engine can be used, but a diesel engine that performs compression self-ignition may also be used. The engine 1 includes a generator, such as an alternator 2. The alternator 2 is driven by a crank pulley 4 of the engine 1 via a belt transmission mechanism 3. The engine 1 further includes a starter motor 5 as a starting motor. The starter motor 5 is of a general type and includes a pinion that engages and disengages from a ring gear (not shown) of the engine 1.

 車両は、多数の電気負荷を含んでいるが、一実施例においては、図1に模式的に示すように、多数の電気負荷が負荷A群21と負荷B群22とに大別される。負荷A群21には、一般的な車両の走行に必要な種々の電気負荷、例えば、エンジン1の燃料系統や点火系統および制御系統、照明類、空調装置、オーディオ等の電装品、等々が含まれる。そして、負荷A群21には、さらに、冗長系として構成される車両の自動運転に必要な自動運転用電気負荷の一方の系統の負荷(請求項における第1電気負荷に相当)が含まれている。 A vehicle includes a large number of electrical loads, and in one embodiment, the large number of electrical loads are roughly divided into a load A group 21 and a load B group 22, as schematically shown in FIG. Load group A 21 includes various electrical loads necessary for running a general vehicle, such as the fuel system, ignition system, and control system of the engine 1, lighting, air conditioners, electrical components such as audio, etc. It will be done. The load A group 21 further includes a load (corresponding to the first electrical load in the claims) of one system of electrical loads for automatic operation necessary for automatic operation of a vehicle configured as a redundant system. There is.

 そして負荷B群22には、冗長系として構成される車両の自動運転に必要な自動運転用電気負荷の他方の系統の負荷(請求項における第2電気負荷に相当)が含まれている。 The load B group 22 includes the load of the other system of the automatic driving electric loads (corresponding to the second electric load in the claims) necessary for automatic operation of the vehicle configured as a redundant system.

 冗長系として構成されるこれら2つの自動運転用電気負荷は、実質的に同等の機能を有している。例えばレベル2の自動運転機能においては、エンジン1のスロットルバルブや車両のブレーキが電動アクチュエータを介して運転支援システムによって制御されるとともに、車両のステアリング操作が電動パワーステアリング装置を介して運転支援システムによって制御される。このような自動運転を担うアクチュエータ類や制御回路等には、一方が故障したときに他方によって機能を維持し得るように冗長システムが求められる。 These two electrical loads for automatic operation configured as a redundant system have substantially the same functions. For example, in a level 2 autonomous driving function, the throttle valve of engine 1 and the vehicle's brakes are controlled by the driving support system via an electric actuator, and the steering operation of the vehicle is controlled by the driving support system via an electric power steering device. controlled. The actuators, control circuits, etc. that are responsible for such automatic driving require a redundant system so that if one fails, the other can maintain its function.

 例えば電動パワーステアリング装置は、互いに冗長となった2つのモータ部と2つのモータ駆動制御回路部とを備えた構成となる。この場合、一方のモータ部および対応する駆動制御回路部が負荷A群21に含まれる第1電気負荷に相当し、他方のモータ部および対応する駆動制御回路部が負荷B群22に含まれる第2電気負荷に相当するものとなる。 For example, an electric power steering device has a configuration including two motor sections and two motor drive control circuit sections that are redundant with each other. In this case, one motor section and the corresponding drive control circuit section correspond to the first electric load included in the load A group 21, and the other motor section and the corresponding drive control circuit section correspond to the first electric load included in the load B group 22. This corresponds to 2 electrical loads.

 一実施例の電源システムは、オルタネータ2が発電した電力を一時的に蓄える2つの二次電池を備える。すなわち、請求項における第1蓄電デバイスに相当する鉛酸電池6と第2蓄電デバイスに相当するリチウムイオン電池7とを備える。鉛酸電池6は、自動車の車載バッテリとして多用されるいわゆる12Vバッテリであり、負荷A群21および負荷B群22の全体を考慮した適当な容量の電池が用いられる。リチウムイオン電池7は、主に負荷B群22の自動運転用電気負荷の電力確保に利用される一種のバックアップ電源であり、例えば、鉛酸電池6の容量よりも相対的に小さな容量の電池が用いられる。なお、一般にリチウムイオン電池は、鉛酸電池に比較して内部抵抗が小さく、充放電特性に優れている。リチウムイオン電池7は、セル数の調整により鉛酸電池6と同等の電圧を有している。 The power supply system of one embodiment includes two secondary batteries that temporarily store electric power generated by the alternator 2. That is, it includes a lead acid battery 6 which corresponds to a first power storage device in the claims, and a lithium ion battery 7 which corresponds to a second power storage device. The lead-acid battery 6 is a so-called 12V battery that is often used as an on-board battery for automobiles, and a battery with an appropriate capacity is used in consideration of the load A group 21 and the load B group 22 as a whole. The lithium ion battery 7 is a type of backup power source that is mainly used to secure power for the electric loads for automatic operation in the load group B 22. For example, a battery with a relatively smaller capacity than the lead acid battery 6 may be used. used. Note that lithium ion batteries generally have lower internal resistance and better charge/discharge characteristics than lead acid batteries. The lithium ion battery 7 has the same voltage as the lead acid battery 6 by adjusting the number of cells.

 鉛酸電池6は、当該鉛酸電池6の電流および電圧を検出する電流/電圧センサ8を内蔵している。この電流/電圧センサ8によって充電時および放電時の電流および電圧が検出され、これらに基づいて鉛酸電池6の充電量(SOC)が推定される。リチウムイオン電池7は、セルを収容したバッテリパック内に、バッテリマネージメントシステム(BMS)9とLiBリレー10とを内蔵している。バッテリマネージメントシステム9は、セル単位での電圧および電流の検出を行い、過充電や過放電を抑制するとともに、セル電圧の均等化や充電量(SOC)の算出等を行う。また、セルの温度の検出を行うとともに過電流の監視を行い、例えば異常高温時や過電流時にLiBリレー10を遮断することでリチウムイオン電池7を保護する機能を有している。なお、LiBリレー10は、有接点のリレーからなり、請求項における第2断接装置に相当する。 The lead-acid battery 6 has a built-in current/voltage sensor 8 that detects the current and voltage of the lead-acid battery 6. The current/voltage sensor 8 detects current and voltage during charging and discharging, and based on these, the amount of charge (SOC) of the lead-acid battery 6 is estimated. The lithium ion battery 7 includes a battery management system (BMS) 9 and a LiB relay 10 inside a battery pack containing cells. The battery management system 9 detects voltage and current on a cell-by-cell basis to suppress overcharging and overdischarging, as well as equalizing cell voltages and calculating the amount of charge (SOC). It also has the function of detecting cell temperature and monitoring overcurrent, and protecting the lithium ion battery 7 by cutting off the LiB relay 10 at abnormally high temperatures or overcurrent, for example. Note that the LiB relay 10 is a relay with contacts, and corresponds to a second disconnection device in the claims.

 鉛酸電池6は、主回路11として、オルタネータ2、スタータモータ5および負荷A群21に接続されている。LiBリレー10を内蔵したリチウムイオン電池7は、バックアップ回路12として、負荷B群22に接続されている。そして、主回路11とバックアップ回路12とは、回路遮断スイッチ13(請求項における断接装置に相当する)を介して互いに接続されている。回路遮断スイッチ13は、応答性を考慮して半導体スイッチから構成されている。図1に示すように、回路遮断スイッチ13は、スタータモータ5に電力を供給するための鉛酸電池6と主に自動運転用電気負荷からなる負荷B群22との間に配置されている。 The lead-acid battery 6 is connected to the alternator 2, starter motor 5, and load A group 21 as a main circuit 11. A lithium ion battery 7 containing a LiB relay 10 is connected to a load B group 22 as a backup circuit 12. The main circuit 11 and the backup circuit 12 are connected to each other via a circuit cutoff switch 13 (corresponding to a disconnection device in the claims). The circuit breaker switch 13 is composed of a semiconductor switch in consideration of responsiveness. As shown in FIG. 1, the circuit break switch 13 is arranged between the lead-acid battery 6 for supplying electric power to the starter motor 5 and the load group B 22 mainly consisting of electric loads for automatic operation.

 回路遮断スイッチ13の断接やLiBリレー10の断接は、電源制御を司るコントローラ14によって制御される。コントローラ14は、また、オルタネータ2の電圧ならびに発電量を制御しており、さらには、エンジン1の始動(初期始動およびアイドリングストップ後の再始動)に際してスタータモータ5を制御している。なお、コントローラ14は、複数のモジュールないしコントローラから構成されていてもよい。 The connection/disconnection of the circuit breaker switch 13 and the LiB relay 10 are controlled by a controller 14 that controls the power supply. The controller 14 also controls the voltage and power generation amount of the alternator 2, and further controls the starter motor 5 when starting the engine 1 (initial starting and restarting after idling stop). Note that the controller 14 may be composed of a plurality of modules or controllers.

 コントローラ14は、車両の燃料消費を低減するために、発電機つまりオルタネータ2の駆動エネルギを低減する燃費向上制御を適宜に実行する。燃費向上制御としては、交差点等での一時的な車両停止の際にエンジン1を停止するアイドリングストップ制御やオルタネータ2の発電量を実質的に0とする発電量制御等が含まれる。以下の具体的な実施例では、アイドリングストップ制御を例に説明するが、発電量制御もアイドリングストップ制御と同様に行うことができる。 The controller 14 appropriately executes fuel efficiency improvement control that reduces the driving energy of the generator, that is, the alternator 2, in order to reduce fuel consumption of the vehicle. The fuel efficiency improvement control includes idling stop control that stops the engine 1 when the vehicle temporarily stops at an intersection or the like, power generation control that reduces the amount of power generated by the alternator 2 to substantially zero, and the like. In the following specific examples, idling stop control will be explained as an example, but power generation amount control can also be performed in the same way as idling stop control.

 図2は、図1に示した一実施例の電源システムの基本的な動作を説明するための説明図である。なお、図2を含む以下の説明図では、主要な電流の流れを矢印でもって示してある。図2(a)は、車両のイグニッションスイッチがOFFとなっている状態を示す。このイグニッションスイッチOFF状態では、回路遮断スイッチ13はON(導通状態)であり、LiBリレー10はOFF(遮断状態)に制御される。このイグニッションスイッチOFF状態では多くの電気負荷が電力を必要としていないが、一部の電気負荷は待機中も電力消費があり、いわゆる待機電流が回路内を流れる。図2(a)に矢印で示すように、鉛酸電池6によって負荷A群21および負荷B群22の双方に待機中に必要な電力が供給される。LiBリレー10が遮断状態であることから、リチウムイオン電池7の充電量の減少は生じない。 FIG. 2 is an explanatory diagram for explaining the basic operation of the power supply system of the embodiment shown in FIG. 1. In the following explanatory diagrams including FIG. 2, main current flows are indicated by arrows. FIG. 2(a) shows a state in which the ignition switch of the vehicle is turned off. In this ignition switch OFF state, the circuit break switch 13 is ON (conducting state), and the LiB relay 10 is controlled to be OFF (blocking state). Although many electrical loads do not require power in this ignition switch OFF state, some electrical loads consume power even during standby, and so-called standby current flows in the circuit. As shown by arrows in FIG. 2A, the lead-acid battery 6 supplies the necessary power to both the load A group 21 and the load B group 22 during standby. Since the LiB relay 10 is in the cutoff state, the amount of charge of the lithium ion battery 7 does not decrease.

 イグニッションスイッチがONとなると、図2(b)に矢印で示すように、鉛酸電池6からスタータモータ5に電力が供給され、エンジン1のクランキングおよび始動(初期始動)が行われる。クランキング中はLiBリレー10はOFFのままであり、リチウムイオン電池7の電力は消費されない。 When the ignition switch is turned on, power is supplied from the lead-acid battery 6 to the starter motor 5, as shown by the arrow in FIG. 2(b), and the engine 1 is cranked and started (initial start). During cranking, the LiB relay 10 remains OFF, and the power of the lithium ion battery 7 is not consumed.

 始動が完了すると、図2(c)に示すように、LiBリレー10がONとなる。そのため、矢印で示すように、オルタネータ2の発電により、鉛酸電池6およびリチウムイオン電池7の双方に充電が行われる。イグニッションスイッチOFF中およびクランキング時の電力消費によって減少している鉛酸電池6の充電量および自然放電により僅かに低下するリチウムイオン電池7の充電量が速やかに回復するように電圧が制御される。 When the start is completed, the LiB relay 10 is turned on, as shown in FIG. 2(c). Therefore, as shown by the arrow, both the lead acid battery 6 and the lithium ion battery 7 are charged by the power generation of the alternator 2. The voltage is controlled so that the charge amount of the lead-acid battery 6, which decreases due to power consumption when the ignition switch is OFF and during cranking, and the charge amount of the lithium-ion battery 7, which slightly decreases due to natural discharge, quickly recovers. .

 図2(d)は、鉛酸電池6およびリチウムイオン電池7が十分に充電されている通常走行状態を示している。回路遮断スイッチ13およびLiBリレー10はいずれもON状態である。この状態では、基本的に、負荷A群21および負荷B群22に対しオルタネータ2から電力が供給される。このような状態の下で、燃費向上制御例えばアイドリングストップ制御が適宜に実行される。 FIG. 2(d) shows a normal running state in which the lead acid battery 6 and the lithium ion battery 7 are sufficiently charged. Both circuit breaker switch 13 and LiB relay 10 are in the ON state. In this state, power is basically supplied from the alternator 2 to the load A group 21 and the load B group 22. Under such conditions, fuel efficiency improvement control, such as idling stop control, is executed as appropriate.

 図2(d)の制御状態から車両が停車してイグニッションスイッチがOFFとなると、LiBリレー10はOFFとなり、再び図2(a)の状態に戻る。 When the vehicle stops and the ignition switch is turned OFF from the control state shown in FIG. 2(d), the LiB relay 10 is turned OFF and the state returns to the state shown in FIG. 2(a) again.

 次に、アイドリングストップ制御の際の電源制御について、図3のタイムチャートと図4の動作説明図とを参照して説明する。 Next, power supply control during idling stop control will be explained with reference to the time chart of FIG. 3 and the operation diagram of FIG. 4.

 アイドリングストップ制御は車両の燃料消費低減の上で有効な手段であり、車速がほぼ0、暖機完了後、アクセルペダルOFF、ブレーキペダルON、鉛酸電池6やリチウムイオン電池7の充電量が所定レベル(後述のLABSOC2、LiBSOC1)以上である、等のいくつかのアイドリングストップ条件が同時成立(いわゆるAND条件)したときに実行され、エンジン1が自動停止する。その後、ブレーキペダルOFF、空調装置からの始動要求、等のいくつかの再始動条件の中のいずれか1つが成立(いわゆるOR条件)したときに、自動再始動が行われる。 Idling stop control is an effective means of reducing vehicle fuel consumption.When the vehicle speed is approximately 0 and after warming up, the accelerator pedal is turned off, the brake pedal is turned on, and the charge amount of the lead-acid battery 6 or lithium-ion battery 7 is set to a predetermined value. The engine 1 is executed when several idling stop conditions such as being equal to or higher than the level (LABSOC2, LiBSOC1 described later) are satisfied simultaneously (so-called AND condition), and the engine 1 is automatically stopped. Thereafter, automatic restart is performed when any one of several restart conditions such as brake pedal OFF or a start request from the air conditioner is satisfied (so-called OR condition).

 図4は、アイドリングストップ制御の際の動作を説明するための説明図であり、前述した図2(d)の通常制御状態からアイドリングストップ条件が成立してアイドリングストップ制御が開始すると、図4(a)に示すように回路遮断スイッチ13がOFFとなる。LiBリレー10はON状態のままである。アイドリングストップ制御中はエンジン1が停止し、オルタネータ2の発電が停止するので、負荷A群21には鉛酸電池6から電力が供給され、負荷B群22にはリチウムイオン電池7から電力が供給される。これにより、負荷A群21および負荷B群22に個々に含まれる互いに冗長となった2つの自動運転用電気負荷に確実に電力が供給される。 FIG. 4 is an explanatory diagram for explaining the operation during the idling stop control. When the idling stop condition is established and the idling stop control starts from the normal control state shown in FIG. As shown in a), the circuit break switch 13 is turned OFF. LiB relay 10 remains in the ON state. During idling stop control, the engine 1 is stopped and the alternator 2 stops generating power, so power is supplied to the loads A group 21 from the lead acid battery 6, and power is supplied to the loads B group 22 from the lithium ion battery 7. be done. Thereby, electric power is reliably supplied to the two mutually redundant electric loads for automatic operation included in the load A group 21 and the load B group 22 respectively.

 なお、LiBリレー10が実際にON状態であることをアイドリングストップ条件の1つに含めることが好ましい。つまり、リチウムイオン電池7から負荷B群22への電力供給が不能な状態でアイドリングストップ制御が開始されることがないようにすることが望ましい。 Note that it is preferable to include the fact that the LiB relay 10 is actually in the ON state as one of the idling stop conditions. In other words, it is desirable to prevent the idling stop control from being started in a state where power cannot be supplied from the lithium ion battery 7 to the load group B 22.

 次に、再始動条件が成立して再始動が行われるときは、図4(b)に示すように、鉛酸電池6からスタータモータ5へ電力が供給され、再始動のためのクランキングが実行される。このとき、回路遮断スイッチ13はOFF、LiBリレー10はONのままである。そのため、負荷B群22の自動運転用電気負荷にリチウムイオン電池7から電力供給が継続される一方でリチウムイオン電池7がスタータモータ5および鉛酸電池6から切り離された状態となり、リチウムイオン電池7から主回路11側への電力の持ち出しが発生しない。リチウムイオン電池7は鉛酸電池6に比較して内部抵抗が小さいので、仮に鉛酸電池6とリチウムイオン電池7との双方がスタータモータ5に接続されていると、リチウムイオン電池7側の電力が優先的に消費されてしまう。回路遮断スイッチ13がOFFであることで、再始動時のリチウムイオン電池7への影響がない。 Next, when restart conditions are met and a restart is performed, power is supplied from the lead-acid battery 6 to the starter motor 5, and cranking for the restart is performed, as shown in FIG. 4(b). executed. At this time, the circuit breaker switch 13 remains OFF and the LiB relay 10 remains ON. Therefore, while power continues to be supplied from the lithium ion battery 7 to the automatic operation electric loads of the load group B 22, the lithium ion battery 7 is disconnected from the starter motor 5 and the lead acid battery 6, and the lithium ion battery 7 Electric power is not carried out from the main circuit 11 side to the main circuit 11 side. Since the lithium ion battery 7 has a lower internal resistance than the lead acid battery 6, if both the lead acid battery 6 and the lithium ion battery 7 are connected to the starter motor 5, the power on the lithium ion battery 7 side will be reduced. are consumed preferentially. Since the circuit break switch 13 is OFF, there is no effect on the lithium ion battery 7 at the time of restart.

 ここで、上記実施例では、再始動に備えてアイドリングストップ制御の開始と実質的に同時に回路遮断スイッチ13がOFFに制御される。そのため、再始動要求があったときに回路遮断スイッチ13をOFFに切り換えるための遅れ時間が発生せず、速やかに再始動を開始することができる。またアイドリングストップ制御中のリチウムイオン電池7から負荷A群21への電力の持ち出しの懸念もない。 Here, in the above embodiment, the circuit cutoff switch 13 is controlled to be turned OFF substantially simultaneously with the start of the idling stop control in preparation for restarting. Therefore, when a restart request is made, there is no delay time required to turn off the circuit breaker switch 13, and restart can be started promptly. Further, there is no concern that electric power may be taken out from the lithium ion battery 7 to the load group A 21 during idling stop control.

 図4(c)は、再始動後の直後の制御状態を示している。再始動後は、まず鉛酸電池6の充電を優先的に行う。そのため、回路遮断スイッチ13をOFFとした状態が再始動後の所定期間の間継続される。オルタネータ2の発電によって鉛酸電池6が充電される。この間、負荷B群22はリチウムイオン電池7から電力供給を受ける。これは、再始動時のクランキングにより鉛酸電池6の電力消費があること、鉛酸電池6の内部抵抗がリチウムイオン電池7の内部抵抗よりも大きいこと、等を考慮したものである。 FIG. 4(c) shows the control state immediately after the restart. After restarting, the lead-acid battery 6 is charged first. Therefore, the state in which the circuit breaker switch 13 is turned OFF continues for a predetermined period after the restart. The lead-acid battery 6 is charged by the power generated by the alternator 2. During this time, the load B group 22 receives power from the lithium ion battery 7. This is done in consideration of the fact that the lead-acid battery 6 consumes power due to cranking during restart, and that the internal resistance of the lead-acid battery 6 is greater than the internal resistance of the lithium-ion battery 7.

 その後、図4(d)に示すように、回路遮断スイッチ13がONに制御され、鉛酸電池6およびリチウムイオン電池7の双方の充電に移行する。 Thereafter, as shown in FIG. 4(d), the circuit break switch 13 is controlled to be ON, and charging of both the lead acid battery 6 and the lithium ion battery 7 begins.

 図3は、アイドリングストップ制御の際の電源制御を示したタイムチャートであり、この例では、アイドリングストップ制御が2回実行されている。最上段の(a)欄に「IS」と記した期間がアイドリングストップ制御の期間(図4(a)に対応)であり、「LAB充電」と記した期間が鉛酸電池6の優先充電期間(図4(c)に対応)、「LiB+LAB充電」と記した期間がリチウムイオン電池7と鉛酸電池6の双方の充電期間(図4(d)に対応)である。前述したようにアイドリングストップ制御の終了後は鉛酸電池6の優先充電期間となり、その後、リチウムイオン電池7と鉛酸電池6の双方の充電へと移行する。 FIG. 3 is a time chart showing power supply control during idling stop control, and in this example, idling stop control is executed twice. The period marked "IS" in the column (a) at the top is the idling stop control period (corresponding to FIG. 4(a)), and the period marked "LAB charging" is the priority charging period for the lead-acid battery 6. (corresponding to FIG. 4(c)), the period marked as "LiB+LAB charging" is the charging period for both the lithium ion battery 7 and the lead-acid battery 6 (corresponding to FIG. 4(d)). As described above, after the idling stop control ends, the lead-acid battery 6 is prioritized for charging, and then both the lithium-ion battery 7 and the lead-acid battery 6 are charged.

 (b)欄は、鉛酸電池6(図ではLABと略称している)の充電量(SOC)の変化を示す。LABSOC1は、再始動後の鉛酸電池6の優先充電を終了するための鉛酸電池6の目標SOCである。LABSOC2は、アイドリングストップ条件の1つとなる鉛酸電池6のアイドリングストップ禁止SOCである。LABSOC2はLABSOC1よりも低い値に設定される。鉛酸電池6の充電量(SOC)がLABSOC2を下回ったらアイドリングストップ制御が禁止され、その後、LABSOC1に回復するまではいわゆるヒステリシスとしてアイドリングストップ制御が禁止された状態となる。鉛酸電池6の充電量は、アイドリングストップ制御中の負荷A群21の電力消費および再始動時のクランキングによって低下していき、その後の充電期間において上昇する。図示例では、1回目のアイドリングストップ制御の後の鉛酸電池6の優先充電期間は、時間t3において鉛酸電池6の充電量がLABSOC1に達したことで終了している。すなわち、充電目標LABSOC1へ到達したことで鉛酸電池6の優先充電を行う所定期間が経過したものとみなしている。 Column (b) shows changes in the amount of charge (SOC) of the lead-acid battery 6 (abbreviated as LAB in the figure). LABSOC1 is the target SOC of the lead-acid battery 6 for ending preferential charging of the lead-acid battery 6 after restart. LABSOC2 is an idling stop prohibition SOC of the lead-acid battery 6, which is one of the idling stop conditions. LABSOC2 is set to a lower value than LABSOC1. When the amount of charge (SOC) of the lead-acid battery 6 falls below LABSOC2, idling stop control is prohibited, and thereafter, a state in which idling stop control is prohibited as so-called hysteresis occurs until it recovers to LABSOC1. The amount of charge of the lead-acid battery 6 decreases due to the power consumption of the load A group 21 during idling stop control and cranking at restart, and increases during the subsequent charging period. In the illustrated example, the priority charging period of the lead-acid battery 6 after the first idling stop control ends when the amount of charge of the lead-acid battery 6 reaches LABSOC1 at time t3. That is, it is assumed that the predetermined period for preferentially charging the lead-acid battery 6 has passed since the charging target LABSOC1 has been reached.

 タイムチャートにおける1回目のアイドリングストップ制御は、時間t2において例えば運転者がブレーキペダルをOFFとした等で終了している。これに対し、2回目のアイドリングストップ制御は、時間t5において鉛酸電池6の充電量がアイドリングストップ禁止SOCであるLABSOC2まで低下したことで終了している。 The first idling stop control in the time chart ends at time t2, for example, when the driver turns off the brake pedal. On the other hand, the second idling stop control ends when the amount of charge of the lead-acid battery 6 decreases to LABSOC2, which is the idling stop prohibition SOC, at time t5.

 (c)欄は、リチウムイオン電池7(図ではLiBと略称している)の充電量(SOC)の変化を示す。LiBSOC1は、これ以下の場合にアイドリングストップ制御を禁止するアイドリングストップ禁止SOCである。また、このLiBSOC1はリチウムイオン電池7を充電すべき下限のSOCでもあり、アイドリングストップ制御後に鉛酸電池6の優先充電を行っている間にリチウムイオン電池7の充電量がLiBSOC1まで低下したらリチウムイオン電池7と鉛酸電池6の双方の充電へと移行する。LiBSOC2は、負荷B群22の自動運転用電気負荷に自動運転機能に必要な電力を出力可能な下限となる自動運転警告SOCであり、自動運転実施中にリチウムイオン電池7の充電量がこのLiBSOC2を下回ったら運転者に対し自動運転から手動運転への切換を促すアラート(音声や画面表示など)が発出される。LiBSOC1は、アラート発出までに適当な余裕を与えるようにLiBSOC2よりも高い値に設定される。リチウムイオン電池7の充電量は、アイドリングストップ制御中およびこれに続く鉛酸電池6の優先充電期間における負荷B群22の電力消費によって低下していき、リチウムイオン電池7と鉛酸電池6の双方の充電期間において上昇する。図示例では、2回目のアイドリングストップ制御の後の鉛酸電池6の優先充電期間は、時間t6においてリチウムイオン電池7の充電量がLiBSOC1まで低下したことで終了している。すなわち、LiBSOC1まで低下したことで鉛酸電池6の優先充電を行う所定期間が経過したものとみなしている。 Column (c) shows changes in the amount of charge (SOC) of the lithium ion battery 7 (abbreviated as LiB in the figure). LiBSOC1 is an idling stop prohibition SOC that prohibits idling stop control in cases below this level. In addition, this LiBSOC1 is also the lower limit SOC at which the lithium-ion battery 7 should be charged, and if the charge amount of the lithium-ion battery 7 decreases to LiBSOC1 while the lead-acid battery 6 is being preferentially charged after idling stop control, the lithium-ion battery 7 will be charged. The process moves on to charging both the battery 7 and the lead-acid battery 6. LiBSOC2 is an automatic operation warning SOC that is the lower limit for outputting the electric power necessary for automatic operation functions to the electric load for automatic operation of load group B 22, and the amount of charge of the lithium ion battery 7 during automatic operation is determined by this LiBSOC2. If the value falls below this level, an alert (audio, screen display, etc.) will be issued to the driver to prompt him or her to switch from automatic to manual operation. LiBSOC1 is set to a higher value than LiBSOC2 so as to provide an appropriate margin before issuing an alert. The amount of charge of the lithium ion battery 7 decreases due to the power consumption of the load group B 22 during the idling stop control and the subsequent priority charging period of the lead acid battery 6, and both the lithium ion battery 7 and the lead acid battery 6 are charged. increases during the charging period. In the illustrated example, the priority charging period for the lead-acid battery 6 after the second idling stop control ends when the amount of charge of the lithium ion battery 7 decreases to LiBSOC1 at time t6. That is, it is assumed that the predetermined period for preferentially charging the lead-acid battery 6 has passed since the LiBSOC has decreased to 1.

 なお、鉛酸電池6の優先充電を行う所定期間をその継続時間で定めてもよい。この場合、鉛酸電池6の優先充電は、一定時間経過した段階で終了し、リチウムイオン電池7と鉛酸電池6の双方の充電へと移行する。 Note that the predetermined period for preferentially charging the lead-acid battery 6 may be determined by its duration. In this case, the preferential charging of the lead-acid battery 6 is terminated after a certain period of time has elapsed, and the charging of both the lithium ion battery 7 and the lead-acid battery 6 is started.

 (d)欄は、オルタネータ2(図ではALTと略称している)が発電状態(Generate)にあるか非発電状態(Not Generate)にあるかを示している。アイドリングストップ制御中は発電が停止する。 Column (d) shows whether the alternator 2 (abbreviated as ALT in the figure) is in a power generation state (Generate) or a non-power generation state (Not Generate). Power generation stops during idling stop control.

 (e)欄は、回路遮断スイッチ13(図ではHNSと略称している)の開閉状態を示している。回路遮断スイッチ13は、アイドリングストップ制御中および鉛酸電池6の優先充電期間中は開(OFF)であり、リチウムイオン電池7と鉛酸電池6の双方の充電期間中は閉(ON)である。(f)欄は、LiBリレー10の開閉状態を示している。LiBリレー10は、図のタイムチャートの期間中、閉状態(ON)を維持している。 Column (e) shows the open/closed state of the circuit breaker switch 13 (abbreviated as HNS in the figure). The circuit cutoff switch 13 is open (OFF) during the idling stop control and during the priority charging period of the lead-acid battery 6, and is closed (ON) during the charging period of both the lithium ion battery 7 and the lead-acid battery 6. . Column (f) shows the open/closed state of the LiB relay 10. The LiB relay 10 maintains a closed state (ON) during the period of the time chart in the figure.

 次に、図5に基づいて、鉛酸電池6およびリチウムイオン電池7の各々のアイドリングストップ禁止SOCであるLABSOC2およびLiBSOC1(請求項における第1所定値に相当する)と、自動運転についてのアラートを発出する第2所定値と、の関係について、さらに説明する。 Next, based on FIG. 5, LABSOC2 and LiBSOC1 (corresponding to the first predetermined value in the claims), which are the idling stop prohibition SOCs of the lead-acid battery 6 and the lithium ion battery 7, and an alert regarding automatic driving are determined. The relationship between the second predetermined value and the second predetermined value to be issued will be further explained.

 鉛酸電池6に関しては、図5の(a)欄に示すように、鉛酸電池6の充電量(SOC)がアイドリングストップ禁止SOCであるLABSOC2以下であればアイドリングストップ制御が禁止され、LABSOC2よりも高いことを条件としてアイドリングストップ制御の開始が許可される。このLABSOC2は、鉛酸電池6が自動運転用電気負荷に対し自動運転に必要な電力を出力可能な充電状態であるLABSOC3よりも高く設定されている。両者間には適当な余裕を与えることが望ましい。鉛酸電池6の充電量(SOC)がアイドリングストップ禁止SOCであるLABSOC2以下であるとアイドリングストップ制御の開始が許可されないため、アイドリングストップ制御による過度の充電量低下が回避され、冗長系での自動運転機能の維持が可能である。 Regarding the lead-acid battery 6, as shown in column (a) of FIG. 5, if the charge amount (SOC) of the lead-acid battery 6 is less than LABSOC2, which is the idling stop prohibition SOC, idling stop control is prohibited, and the idling stop control is prohibited from LABSOC2. Start of idling stop control is permitted on the condition that the vehicle speed is also high. This LABSOC2 is set higher than LABSOC3 in which the lead-acid battery 6 is in a charged state in which it can output the electric power necessary for automatic operation to the electric load for automatic operation. It is desirable to provide an appropriate margin between the two. If the amount of charge (SOC) of the lead-acid battery 6 is less than LABSOC2, which is the SOC for prohibiting idling stop, the start of idling stop control is not permitted, so an excessive decrease in the amount of charge due to idling stop control is avoided, and automatic activation in the redundant system It is possible to maintain driving functions.

 なお、自動運転機能に必要なLABSOC3は、一実施例では、スタータモータ5によるクランキングが可能な下限の充電状態として規定されている。つまり、アイドリングストップ制御後の再始動時等のクランキングが正常に行われている限りはLABSOC3を上回っているものとみなされる。そのため、逐次算出されるSOC値とLABSOC3との比較は行わない。LABSOC1およびLABSOC2については、逐次算出されるSOC値との比較がなされる。勿論、LABSOC3についても算出されたSOC値との比較を行うようにしてもよい。鉛酸電池6に関しても、自動運転実施中に鉛酸電池6の充電量(SOC)がLABSOC3を下回ったら運転者に対し自動運転から手動運転への切換を促すアラート(音声や画面表示など)を発出することが望ましい。 Note that in one embodiment, LABSOC3, which is necessary for the automatic driving function, is defined as the lower limit charging state in which cranking by the starter motor 5 is possible. In other words, as long as cranking, such as when restarting after idling stop control, is performed normally, it is considered that LABSOC3 is exceeded. Therefore, no comparison is made between the sequentially calculated SOC value and LABSOC3. LABSOC1 and LABSOC2 are compared with sequentially calculated SOC values. Of course, it is also possible to compare LABSOC3 with the calculated SOC value. Regarding the lead-acid battery 6, if the charge level (SOC) of the lead-acid battery 6 falls below LABSOC3 during automatic operation, an alert (audio, screen display, etc.) will be sent to the driver to prompt the driver to switch from automatic operation to manual operation. It is desirable to issue such information.

 リチウムイオン電池7に関しては、図5の(b)欄に示すように、リチウムイオン電池7の充電量(SOC)がアイドリングストップ禁止SOCであるLiBSOC1以下であればアイドリングストップ制御が禁止され、LiBSOC1よりも高いことを条件としてアイドリングストップ制御の開始が許可される。このLiBSOC1は、リチウムイオン電池7が自動運転用電気負荷に対して自動運転に必要な電力を出力可能な充電状態であるLiBSOC2よりも高く設定されている。両者間には適当な余裕を与えることが望ましい。リチウムイオン電池7の充電量(SOC)がアイドリングストップ禁止SOCであるLiBSOC1以下であるとアイドリングストップ制御の開始が許可されないため、アイドリングストップ制御による過度の充電量低下が回避され、自動運転機能の維持が可能である。リチウムイオン電池7の充電量(SOC)がLiBSOC2を下回ったら、上述したように、運転者に対し自動運転から手動運転への切換を促すアラートが発出される。 Regarding the lithium ion battery 7, as shown in column (b) of FIG. 5, if the charge amount (SOC) of the lithium ion battery 7 is less than LiBSOC1, which is the idling stop prohibition SOC, idling stop control is prohibited, and the idling stop control is prohibited from LiBSOC1. Start of idling stop control is permitted on the condition that the vehicle speed is also high. This LiBSOC1 is set higher than LiBSOC2 in which the lithium ion battery 7 is in a charged state in which it can output power necessary for automatic operation to an electric load for automatic operation. It is desirable to provide an appropriate margin between the two. If the amount of charge (SOC) of the lithium-ion battery 7 is less than LiBSOC1, which is the SOC for prohibiting idling stop, the start of idling stop control is not permitted, so an excessive decrease in the amount of charge due to idling stop control is avoided, and the automatic driving function is maintained. is possible. When the amount of charge (SOC) of the lithium ion battery 7 falls below LiBSOC2, as described above, an alert is issued to prompt the driver to switch from automatic driving to manual driving.

 図5に示すように、請求項における第1所定値に相当するLABSOC2ならびにLiBSOC1、および第2所定値に相当するLABSOC3ならびにLiBSOC2は、鉛酸電池6およびリチウムイオン電池7に関して、各々の容量等を考慮してそれぞれ個別に(つまり最適に)設定される。なお、図5では、リチウムイオン電池7のLiBSOC1ならびにLiBSOC2の方が鉛酸電池6のLABSOC2ならびにLABSOC3よりも高く示されているが、これは一例に過ぎない。 As shown in FIG. 5, LABSOC2 and LiBSOC1, which correspond to the first predetermined value in the claims, and LABSOC3 and LiBSOC2, which correspond to the second predetermined value, have respective capacities, etc. with respect to the lead acid battery 6 and the lithium ion battery 7. Each of them is set individually (that is, optimally). Note that in FIG. 5, LiBSOC1 and LiBSOC2 of the lithium ion battery 7 are shown higher than LABSOC2 and LABSOC3 of the lead acid battery 6, but this is only an example.

 以上、この発明の一実施例を詳細に説明したが、この発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば、上記実施例では蓄電デバイスとして鉛酸電池6やリチウムイオン電池7を用いているが、蓄電デバイスとしては、適当な二次電池やキャパシタ等、いかなる形式のものであってもよい。また発電機としては、エンジン1のクランキングが可能なモータ・ジェネレータであってもよい。 Although one embodiment of the present invention has been described above in detail, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, the lead acid battery 6 or the lithium ion battery 7 is used as the power storage device, but the power storage device may be of any type such as a suitable secondary battery or a capacitor. Furthermore, the generator may be a motor generator capable of cranking the engine 1.

 上記実施例では自動運転用電気負荷が冗長な2つの電気負荷に区分されているが、本発明は、このような冗長システムに限らずに適用が可能である。 In the above embodiment, the electric load for automatic operation is divided into two redundant electric loads, but the present invention is applicable not only to such a redundant system.

 また、上記実施例ではアイドリングストップ制御中に第1所定値(LABSOC2、LiBSOC1)まで充電量(SOC)が低下したときにアイドリングストップ制御を終了するものとして第1所定値を設定しているが、アイドリングストップ制御を所定の上限時間の間継続した場合に蓄電デバイス(鉛酸電池6、リチウムイオン電池7)の充電量(SOC)が第2所定値(LABSOC3、LiBSOC2)を下回らないように第1所定値(LABSOC2、LiBSOC1)を設定するようにしてもよい。つまり、アイドリングストップ制御に一定の上限時間を定めておき、アイドリングストップ制御開始後、他の再始動条件が成立しないままアイドリングストップ制御の継続時間が上限時間に達したら、アイドリングストップ制御を終了して再始動を行う。このとき、アイドリングストップ制御中に第2所定値を下回ることがないレベルに第1所定値を設定する。この場合は、アイドリングストップ制御の開始後、現在の充電量(SOC)が第1所定値以下となっても、アイドリングストップ制御が継続されることとなる。 Further, in the above embodiment, the first predetermined value is set so that the idling stop control is terminated when the amount of charge (SOC) decreases to the first predetermined value (LABSOC2, LiBSOC1) during the idling stop control. When the idling stop control is continued for a predetermined upper limit time, the first Predetermined values (LABSOC2, LiBSOC1) may be set. In other words, a certain upper limit time is set for the idling stop control, and after the idling stop control starts, if the duration of the idling stop control reaches the upper limit time without other restart conditions being met, the idling stop control is ended. Perform a restart. At this time, the first predetermined value is set to a level that does not fall below the second predetermined value during the idling stop control. In this case, after the start of the idling stop control, even if the current amount of charge (SOC) becomes less than or equal to the first predetermined value, the idling stop control will be continued.

 上記実施例では燃費向上制御としてアイドリングストップ制御について説明したが、オルタネータ2の発電量を実質的に0とする(つまり発電駆動を停止)制御であってもよい。この場合、再始動が不要な点を除き、上記実施例のアイドリングストップ制御の場合と同様に処理することができる。 In the above embodiment, idling stop control has been described as fuel efficiency improvement control, but control may also be used to substantially reduce the amount of power generated by the alternator 2 to 0 (that is, stop power generation drive). In this case, the process can be performed in the same manner as in the case of the idling stop control in the above embodiment, except that restarting is not required.

Claims (12)

 エンジンと、
 上記エンジンによって発電駆動される発電機と、
 上記発電機によって発電された電力により充電され、車両の自動運転に必要な電力を自動運転用電気負荷に供給する蓄電デバイスと、
 を備え、
 上記蓄電デバイスの充電状態が第1所定値より高いことを条件として上記発電機の駆動エネルギを低減する燃費向上制御の開始を許可し、
 上記第1所定値は、上記蓄電デバイスが自動運転に必要な電力を出力可能な充電状態である第2所定値よりも高い、
 車両の制御方法。
engine and
a generator driven by the engine;
an electricity storage device that is charged with the electric power generated by the generator and supplies electric power necessary for automatic operation of the vehicle to an electric load for automatic operation;
Equipped with
permitting the start of fuel efficiency improvement control to reduce the drive energy of the generator on the condition that the state of charge of the electricity storage device is higher than a first predetermined value;
The first predetermined value is higher than the second predetermined value at which the power storage device is in a charged state capable of outputting power necessary for automatic driving.
How to control the vehicle.
 上記燃費向上制御の開始後、上記蓄電デバイスの充電状態が上記第1所定値まで低下したときに、上記燃費向上制御を終了して上記エンジンによる上記発電機の発電駆動を行う、
 請求項1に記載の車両の制御方法。
After the start of the fuel efficiency improvement control, when the state of charge of the electricity storage device decreases to the first predetermined value, the fuel efficiency improvement control is ended and the generator is driven to generate electricity by the engine;
A method for controlling a vehicle according to claim 1.
 上記燃費向上制御の継続時間に上限時間を設け、上記燃費向上制御の開始後、その継続時間が上記上限時間に達したときには上記燃費向上制御を終了して上記エンジンによる上記発電機の発電駆動を行い、
 上記第1所定値は、上記燃費向上制御を上記上限時間の間継続しても上記蓄電デバイスの充電状態が上記第2所定値を下回らないように設定される、
 請求項1に記載の車両の制御方法。
An upper limit time is set for the duration of the fuel efficiency improvement control, and when the duration reaches the upper limit after the start of the fuel efficiency improvement control, the fuel efficiency improvement control is ended and the generator is driven to generate electricity by the engine. conduct,
The first predetermined value is set so that the state of charge of the electricity storage device does not fall below the second predetermined value even if the fuel efficiency improvement control is continued for the upper limit time.
A method for controlling a vehicle according to claim 1.
 上記燃費向上制御は、上記エンジンによる上記発電機の発電駆動を停止する制御である、
 請求項1に記載の車両の制御方法。
The fuel efficiency improvement control is a control that stops the power generation drive of the generator by the engine.
A method for controlling a vehicle according to claim 1.
 上記燃費向上制御は、車両停車時に上記エンジンを停止させるアイドリングストップ制御である、
 請求項1に記載の車両の制御方法。
The fuel efficiency improvement control is an idling stop control that stops the engine when the vehicle is stopped.
A method for controlling a vehicle according to claim 1.
 車両の自動運転実施中に上記蓄電デバイスの充電状態が上記第2所定値まで低下したときには、自動運転から手動運転への移行を促すアラートを車両の運転者に発出する、
 請求項1に記載の車両の制御方法。
When the state of charge of the electricity storage device falls to the second predetermined value during automatic driving of the vehicle, an alert is issued to the driver of the vehicle to prompt a transition from automatic driving to manual driving;
A method for controlling a vehicle according to claim 1.
 上記蓄電デバイスは第1蓄電デバイスと第2蓄電デバイスとを含み、
 上記自動運転用電気負荷は互いに冗長系を構成する第1電気負荷と第2電気負荷とを含み、
 上記第1電気負荷および上記第2電気負荷は上記第1蓄電デバイスと上記第2蓄電デバイスの双方から電力の供給を受け、
 上記第1所定値および上記第2所定値は、上記第1蓄電デバイスおよび上記第2蓄電デバイスの各々に対して個別に設定される、
 請求項1に記載の車両の制御方法。
The electricity storage device includes a first electricity storage device and a second electricity storage device,
The automatic operation electric load includes a first electric load and a second electric load that mutually constitute a redundant system,
The first electrical load and the second electrical load receive power from both the first electrical storage device and the second electrical storage device,
The first predetermined value and the second predetermined value are individually set for each of the first power storage device and the second power storage device,
A method for controlling a vehicle according to claim 1.
 上記第1蓄電デバイスと上記第2蓄電デバイスとの間に設けられた断接装置を備え、
 上記断接装置が遮断状態にあるときに、上記第1電気負荷は上記第1蓄電デバイスから電力の供給を受け、上記第2電気負荷は上記第2蓄電デバイスから電力の供給を受ける、
 請求項7に記載の車両の制御方法。
comprising a disconnection device provided between the first electricity storage device and the second electricity storage device,
When the connection/disconnection device is in a cutoff state, the first electric load receives power from the first power storage device, and the second electric load receives power from the second power storage device.
The vehicle control method according to claim 7.
 上記燃費向上制御は、車両停車時に上記エンジンを停止させるアイドリングストップ制御であり、
 上記アイドリングストップ制御が開始された場合に上記断接装置を遮断状態に制御する、
 請求項8に記載の車両の制御方法。
The fuel efficiency improvement control is an idling stop control that stops the engine when the vehicle is stopped,
controlling the disconnection device to be in a disconnected state when the idling stop control is started;
The vehicle control method according to claim 8.
 上記アイドリングストップ制御を終了してエンジンを再始動させるときに、上記断接装置を遮断状態としたまま上記第1蓄電デバイスの電力で上記エンジンのクランキングを行う、
 請求項9に記載の車両の制御方法。
When the idling stop control is ended and the engine is restarted, cranking the engine using the electric power of the first electricity storage device while keeping the disconnection device in a disconnected state;
The vehicle control method according to claim 9.
 上記第2電気負荷と上記第2蓄電デバイスとの間に設けられた第2断接装置を備え、上記第2断接装置が導通状態であることを上記アイドリングストップ制御の開始条件の1つとする、
 請求項9に記載の車両の制御方法。
A second disconnection device is provided between the second electrical load and the second power storage device, and one of the conditions for starting the idling stop control is that the second disconnection device is in a conductive state. ,
The vehicle control method according to claim 9.
 エンジンと、
 上記エンジンによって発電駆動される発電機と、
 上記発電機によって発電された電力により充電され、車両の自動運転に必要な電力を自動運転用電気負荷に供給する蓄電デバイスと、
 コントローラと、
 を備え、
 上記コントローラは、
 上記蓄電デバイスの充電状態が第1所定値より高いことを条件として上記発電機の駆動エネルギを低減する燃費向上制御の開始を許可し、
 上記第1所定値は、上記蓄電デバイスが自動運転に必要な電力を出力可能な充電状態である第2所定値よりも高い、
 車両の制御装置。
engine and
a generator driven by the engine;
an electricity storage device that is charged with the electric power generated by the generator and supplies electric power necessary for automatic operation of the vehicle to an electric load for automatic operation;
controller and
Equipped with
The above controller is
permitting the start of fuel efficiency improvement control to reduce the drive energy of the generator on the condition that the state of charge of the electricity storage device is higher than a first predetermined value;
The first predetermined value is higher than the second predetermined value at which the power storage device is in a charged state capable of outputting power necessary for automatic operation.
Vehicle control device.
PCT/JP2022/027799 2022-07-15 2022-07-15 Method and device for controlling vehicle WO2024013961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027799 WO2024013961A1 (en) 2022-07-15 2022-07-15 Method and device for controlling vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027799 WO2024013961A1 (en) 2022-07-15 2022-07-15 Method and device for controlling vehicle

Publications (1)

Publication Number Publication Date
WO2024013961A1 true WO2024013961A1 (en) 2024-01-18

Family

ID=89536329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027799 WO2024013961A1 (en) 2022-07-15 2022-07-15 Method and device for controlling vehicle

Country Status (1)

Country Link
WO (1) WO2024013961A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052482A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Engine start method and engine start apparatus
JP2017099249A (en) * 2015-11-13 2017-06-01 古河電気工業株式会社 Power supply device and method for controlling power supply device
JP2017184428A (en) * 2016-03-30 2017-10-05 株式会社オートネットワーク技術研究所 Switch device and controller for on-vehicle power supply
JP2021154996A (en) * 2020-03-30 2021-10-07 スズキ株式会社 Control device of vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052482A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Engine start method and engine start apparatus
JP2017099249A (en) * 2015-11-13 2017-06-01 古河電気工業株式会社 Power supply device and method for controlling power supply device
JP2017184428A (en) * 2016-03-30 2017-10-05 株式会社オートネットワーク技術研究所 Switch device and controller for on-vehicle power supply
JP2021154996A (en) * 2020-03-30 2021-10-07 スズキ株式会社 Control device of vehicle

Similar Documents

Publication Publication Date Title
JP5889750B2 (en) Vehicle power supply system
JP7189751B2 (en) vehicle power supply
US20180233943A1 (en) Power supply system for vehicle
US10005365B2 (en) Vehicle power source
JP5307847B2 (en) Vehicle power supply system
CN108656968B (en) Power supply device for vehicle
US20060186738A1 (en) Method of supplying electric current, method of starting internal combustion engine, power supply apparatus, and vehicle
JP2004328988A (en) Power supply system for vehicle
JP2006029142A (en) Vehicle engine start control device
RU2668491C1 (en) Power feeding system
CN109952236B (en) Control method of vehicle power supply system and vehicle power supply system
JP2020192866A (en) Vehicular power supply control device
JP6801367B2 (en) Vehicle power supply system control method and vehicle power supply system
JP7114026B2 (en) vehicle power supply controller
JP7316519B2 (en) vehicle power supply controller
JP2014036458A (en) Vehicular power system
WO2024013961A1 (en) Method and device for controlling vehicle
WO2024013960A1 (en) Control method for vehicle and device
WO2024013962A1 (en) Method and device for controlling vehicle
WO2024013963A1 (en) Control method and device for vehicle
JP7236341B2 (en) vehicle power supply
JP7227718B2 (en) vehicle power supply
JP6936683B2 (en) Vehicle power supply system and vehicle power supply system control device
JP6179484B2 (en) Vehicle power supply control device
JP2024047239A (en) Control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22950452

Country of ref document: EP

Kind code of ref document: A1