[go: up one dir, main page]

WO2023277145A1 - 多糖類ナノファイバー配合多糖類組成物の製造方法 - Google Patents

多糖類ナノファイバー配合多糖類組成物の製造方法 Download PDF

Info

Publication number
WO2023277145A1
WO2023277145A1 PCT/JP2022/026299 JP2022026299W WO2023277145A1 WO 2023277145 A1 WO2023277145 A1 WO 2023277145A1 JP 2022026299 W JP2022026299 W JP 2022026299W WO 2023277145 A1 WO2023277145 A1 WO 2023277145A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide
nanofibers
nanofiber
mixture
cellulose
Prior art date
Application number
PCT/JP2022/026299
Other languages
English (en)
French (fr)
Inventor
哲夫 藤江
直樹 和田
憲司 高橋
得雄 松島
慎治 宇都宮
Original Assignee
国立大学法人金沢大学
草野作工株式会社
住友ファーマフード&ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 草野作工株式会社, 住友ファーマフード&ケミカル株式会社 filed Critical 国立大学法人金沢大学
Priority to US18/575,045 priority Critical patent/US20240352234A1/en
Priority to EP22833291.2A priority patent/EP4365227A1/en
Priority to JP2023532064A priority patent/JPWO2023277145A1/ja
Publication of WO2023277145A1 publication Critical patent/WO2023277145A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present disclosure relates to a method for producing a polysaccharide composition containing polysaccharide nanofibers.
  • polysaccharide nanofibers such as cellulose nanofibers, chitosan nanofibers, and chitin nanofibers have already been proposed as fibers to be combined with resin (see, for example, Patent Document 1).
  • cellulose nanofiber For example, cellulose nanofiber (CNF) is known to have a large specific surface area and excellent reinforcing effect.
  • polysaccharide nanofibers have hydroxyl groups, which are hydrophilic groups, on their surface, and the presence of ester groups and ether groups modified with hydroxyl groups improves hydrophobicity and further increases steric bulkiness.
  • ester groups and ether groups modified with hydroxyl groups improves hydrophobicity and further increases steric bulkiness.
  • Patent Document 1 in order to uniformly disperse the polysaccharide nanofibers in the resin, after obtaining a dispersion containing a monomer, polysaccharide nanofibers, and a dispersion medium, which is a pre-stage of the resin, the monomer is polymerized. is proposed.
  • a modified cellulose nanofiber (A) in which some of the hydroxyl groups of cellulose nanofibers are modified with a substituent having a carboxyl group, and a resin composition containing a resin (B) have been proposed.
  • Patent Document 2 in order to obtain modified cellulose nanofibers (A), N-methyl-2-pyrrolidone (NMP) is added to an acetone slurry of cellulose nanofibers (CNF), and CNF is dispersed in NMP. Multiple rounds of purification were disclosed after reacting with polyacid anhydride.
  • Patent Document 2 also discloses reacting the epoxy group, hydroxyl group, amino group, etc. of the resin (B) with the carboxyl group of the modified cellulose (A). The technology used has a large number of steps and is a time-consuming method.
  • the present inventors have investigated a method for easily dispersing polysaccharide nanofibers from various viewpoints such as the type of resin (base material) in which polysaccharide nanofibers are to be dispersed and the dispersion method. and making the base material a polysaccharide whose molecular structure and repeating unit structure are similar to those of the polysaccharide nanofibers, and by adopting a specific dispersion method, the polysaccharide nanofibers are easily dispersed in the base material. I thought it was possible.
  • an object of the present disclosure is to provide a polysaccharide composition containing polysaccharide nanofibers, which can obtain a polysaccharide composition containing polysaccharide nanofibers whose mechanical properties are enhanced by polysaccharide nanofibers, and which can be easily implemented. is to provide a manufacturing method of
  • the present inventors have conducted intensive research to solve the above problems, and found that a polysaccharide composition containing polysaccharide nanofibers produced by a specific method has enhanced mechanical properties, and the method is The inventors have found that this is a method that can be easily implemented, leading to the present disclosure.
  • Example aspects of this embodiment are described as follows. (1) a sol containing polysaccharide nanofibers (A); a polysaccharide (B); A step of mixing the polysaccharide (B) with a solvent (C) capable of dissolving it to obtain a mixture; drying the mixture to obtain a dry mixture; A method for producing a polysaccharide composition containing polysaccharide nanofibers.
  • the polysaccharide nanofiber (A) is at least one polysaccharide nanofiber selected from bacterial cellulose nanofibers, plant-derived cellulose nanofibers, chitosan nanofibers, and chitin nanofibers, (1) A method for producing a polysaccharide nanofiber-containing polysaccharide composition according to 1.
  • the polysaccharide (B) is at least one polysaccharide selected from cellulose derivatives, chitosan, chitin, starch, starch derivatives, tamarind gum, xanthan gum, guar gum, guar gum derivatives, and gellan gum, (1 ) or the method for producing the polysaccharide nanofiber-containing polysaccharide composition according to (2).
  • any one of (1) to (4), wherein 0.1 to 60% by mass of the polysaccharide nanofiber (A) is contained in 100% by mass of the polysaccharide composition containing the polysaccharide nanofibers A method for producing the described polysaccharide nanofiber-containing polysaccharide composition.
  • the molded article according to (7) which has a shape of film, pellet, powder, plate, thread, or container. This specification includes the disclosure content of Japanese Patent Application No. 2021-110253, which is the basis of priority of this application.
  • a method for producing a polysaccharide nanofiber-containing polysaccharide composition that can obtain a polysaccharide nanofiber-containing polysaccharide composition whose mechanical properties are enhanced by polysaccharide nanofibers and that can be easily implemented. can provide.
  • FIG. 4 is a diagram showing the shape of dumbbell-shaped test pieces obtained in Examples and Comparative Examples.
  • the results of tensile tests of Examples 1 and 2 and Comparative Example 1 are shown.
  • the results of tensile tests of Example 1 and Comparative Examples 1 to 3 are shown.
  • Results of tensile tests of Examples 1, 3 to 5, and Comparative Example 1 are shown.
  • the results of tensile tests of Examples 6 and 7 and Comparative Example 1 are shown.
  • the results of tensile tests of Example 8 and Comparative Example 4 are shown.
  • the results of tensile tests of Example 9 and Comparative Example 5 are shown.
  • the results of tensile tests of Example 10 and Comparative Example 6 are shown.
  • Results of tensile tests of Examples 11 to 13 and Comparative Example 7 are shown.
  • Example 8 The results of tensile tests of Examples 8, 14 to 18 and Comparative Example 4 are shown.
  • the results of tensile tests of Example 19 and Comparative Example 8 are shown.
  • the results of tensile tests of Example 20 and Comparative Example 9 are shown.
  • the results of the tensile test of Example 21 and Comparative Example 10 are shown.
  • the results of the tensile test of Example 22 and Comparative Example 11 are shown.
  • 15 is a photograph of the yarn produced in Example 23 (FIG. 15, left) and the yarn produced in Comparative Example 12 (FIG. 15, right).
  • the results of the tensile test of Example 23 and Comparative Example 12 are shown.
  • 10 is a photograph of a cup-shaped molding produced in Example 24.
  • FIG. 11 is a photograph of a dish-shaped molding produced in Example 24.
  • One aspect of the present embodiment is a step of mixing a sol containing polysaccharide nanofibers (A), a polysaccharide (B), and a solvent (C) capable of dissolving the polysaccharide (B) to obtain a mixture. and drying the mixture to obtain a dry mixture.
  • the manufacturing method of the polysaccharide nanofiber-containing polysaccharide composition according to the present embodiment is also referred to as the “manufacturing method of the present embodiment” or simply the “manufacturing method”.
  • sol containing polysaccharide nanofibers (A) In the method for producing a polysaccharide nanofiber-blended polysaccharide composition of the present embodiment, a sol containing polysaccharide nanofibers (A) is used. That is, it can be said that the production method of the present embodiment has a step of preparing a sol containing polysaccharide nanofibers (A).
  • the sol containing the polysaccharide nanofibers (A) is preferably a sol containing 0.2 to 30 wt% of the polysaccharide nanofibers (A), more preferably a sol containing 0.5 to 20 wt%. More preferably, the sol contains 7 to 10 wt %. Note that the entire sol is 100 wt %.
  • the sol containing polysaccharide nanofibers (A) is preferably at least one kind of sol selected from hydrosol and organosol. That is, as the sol, one type of sol or two or more types of sol may be used. When two or more types of sols are used, the polysaccharide nanofibers (A) contained in each sol may be the same type of polysaccharide nanofibers or different types of polysaccharide nanofibers.
  • the sol containing polysaccharide nanofibers (A) is more preferably hydrosol or organosol, and still more preferably hydrosol.
  • the dispersion medium that constitutes the organosol is not particularly limited, but examples thereof include organic solvents such as alcohols, ethers, ketones, and esters. Specific examples of the dispersion medium include acetone, methyl ethyl ketone, tetrahydrofuran, methyl acetate, ethyl acetate, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, ethylene glycol, Propylene glycol, methyl glycol acetate, N-methylpyrrolidone, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, diacetone alcohol, methyl formate, ethyl lactate, acetonitrile, methyl glycol, dioxane, dioxolane and the like.
  • organic solvents such as alcohols, ethers, ketones, and est
  • acetone, tetrahydrofuran, N,N-dimethylformamide, dioxane, and dioxolane are preferred.
  • the dispersion medium may be used singly or in combination of two or more.
  • dioxane 1,4-dioxane is one of preferred embodiments.
  • Polysaccharide nanofibers (A) may be unmodified polysaccharide nanofibers or modified polysaccharide nanofibers.
  • the unmodified polysaccharide nanofiber means a nanofiber in which the hydroxy groups (OH groups) of the polysaccharide are not modified, and the modified polysaccharide nanofiber means that at least part of the hydroxy groups of the polysaccharide are modified. means nanofibers.
  • Modified polysaccharide nanofibers include hydrophobic modification (esterification, etherification, cyanation, etc.), cation modification, anion modification (TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation, etc.). ) and other chemically modified nanofibers.
  • modified polysaccharide nanofibers Compared to unmodified polysaccharide nanofibers, modified polysaccharide nanofibers have at least part of the hydroxy groups modified with ester groups, etc., so that the polarity is reduced, and when dispersed in general resins is suitable, but the production method of the present embodiment can easily disperse even unmodified polysaccharide nanofibers.
  • the polysaccharide nanofiber (A) is preferably at least one polysaccharide nanofiber selected from bacterial cellulose nanofibers, plant-derived cellulose nanofibers, chitosan nanofibers, and chitin nanofibers.
  • polysaccharide nanofibers (A) one type may be used alone, or two or more types may be used.
  • Bacterial cellulose nanofiber is also referred to as BCNF.
  • Plant-derived cellulose nanofibers include cellulose nanofibers derived from wood, bamboo, hemp, jute, kenaf, cotton, beets, and agricultural waste.
  • bamboo-derived cellulose nanofibers and wood-derived cellulose nanofibers are preferable, and bamboo-derived cellulose nanofibers are more preferable from the viewpoint of ease of fibrillation.
  • Bacterial cellulose nanofibers may be nanofibers derived from cellulose produced by bacterial cellulose-producing bacteria, and the type of bacterial cellulose-producing bacteria and the culture conditions for bacterial cellulose-producing bacteria are not particularly limited. of bacterial cellulose-producing bacteria, and the culture conditions of bacterial cellulose can be employed.
  • the sol containing the polysaccharide nanofibers (A) may contain components other than the polysaccharide nanofibers (A) and the dispersion medium.
  • Components other than the polysaccharide nanofiber (A) and the dispersion medium include water-soluble cellulose.
  • the sol containing the polysaccharide nanofibers (A) contains water-soluble cellulose in order to improve the dispersibility of the polysaccharide nanofibers.
  • Water-soluble cellulose includes at least one water-soluble cellulose selected from carboxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose.
  • the sol containing polysaccharide nanofibers (A) contains at least one water-soluble cellulose selected from carboxymethylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose.
  • the sol containing the polysaccharide nanofibers (A) contains water-soluble cellulose, 1 to 70 wt% of the water-soluble cellulose is included in the total 100 wt% of the polysaccharide nanofibers (A) and the water-soluble cellulose. preferably 5 to 50 wt%, particularly preferably 10 to 30 wt%.
  • the water-soluble cellulose can act as a dispersing agent for polysaccharide nanofibers, and is preferably contained in the sol in a state where the polysaccharide nanofibers (A) interact with the water-soluble cellulose.
  • polysaccharide nanofiber (A) and water-soluble cellulose are thought to interact with each other through intermolecular forces such as hydrogen bonding and van der Waals forces.
  • the sol containing polysaccharide nanofibers (A) contains water-soluble cellulose, it may be obtained by adding water-soluble cellulose to a sol that does not contain water-soluble cellulose.
  • a sol containing polysaccharide nanofibers (A) and water-soluble cellulose may be prepared by producing polysaccharide nanofibers (A).
  • the polysaccharide nanofibers (A) are bacterial cellulose nanofibers, for example, a sol containing bacterial cellulose nanofibers and water-soluble cellulose can be prepared by the following method.
  • a sol containing bacterial cellulose nanofibers and water-soluble cellulose can be obtained, for example, by subjecting bacterial cellulose-producing bacteria to a culture medium supplemented with water-soluble cellulose with agitation or aeration, and removing bacterial components from the resulting culture solution. It can be obtained by purifying cellulose nanofibers.
  • a commercially available product can be used as the water-soluble cellulose.
  • the amount of water-soluble cellulose added to the medium can be, for example, a final concentration of 0.5 to 5% (w/v) in the medium. It can be appropriately set according to (amount of interacting water-soluble cellulose).
  • bacterial cellulose-producing bacteria known bacteria capable of producing bacterial cellulose can be used. Specifically, for example, Gluconacetobacter xylinus strain ATCC53582, Gluconacetobacter hansenii strain ATCC23769, Gluconacetobacter xylinus strain ATCC700178 (BPR2001), Gluconacetobacter strain swingsii strain BPR3001E, Acetobacter xylinum strain JCM10150, Enterobacter sp. CJF-002 strain, Gluconacetobacter intermediate strain SIID9587 (accession number NITE BP-01495) and the like can be used.
  • the culture conditions for bacterial cellulose-producing bacteria can be the known culture conditions used for culturing the bacteria described above. Culture conditions for periods of 1 to 7 days can be mentioned.
  • a known medium used for culturing the bacteria described above such as Hestrin-Schramm standard medium (HS medium), can be used.
  • HS medium Hestrin-Schramm standard medium
  • bacterial cellulose nanofibers from the culture solution, first, dissolve the bacterial cells by adding an aqueous solution of sodium hydroxide (NaOH) to the culture solution and shaking it for several hours while heating it to about 60°C. This is subjected to centrifugation, and the supernatant is removed to remove the fungal components and collect the precipitate. Subsequently, after adding water to the precipitate and centrifuging, the operation of removing the supernatant may be repeated until the pH of the precipitate becomes 7 or less. As a result, a sol in which bacterial cellulose nanofibers bound (interacted) with water-soluble cellulose are dispersed in water can be obtained.
  • NaOH sodium hydroxide
  • the average fiber diameter of the polysaccharide nanofibers (A) is preferably 2 to 1000 nm from the viewpoint of sufficiently obtaining the effect of improving the physical properties of the polysaccharide nanofibers (A).
  • the cellulose nanofiber number average fiber diameter is more preferably 2 to 500 nm, still more preferably 2 to 450 nm, particularly preferably 2 to 400 nm.
  • the average fiber diameter can be the average value of diameters (widths) of 20 fibers observed using a transmission electron microscope (TEM).
  • the average fiber length of the polysaccharide nanofibers (A) is not particularly limited, but is preferably 0.5-20 ⁇ m, more preferably 1-15 ⁇ m. When the average fiber length is within the above range, the polysaccharide nanofiber-blended polysaccharide composition tends to have particularly excellent mechanical properties, which is preferable.
  • the average fiber length can be the average value of 20 fiber lengths observed using an electron microscope.
  • the average L/D (average fiber length/average fiber diameter) of the polysaccharide nanofibers (A) sufficiently improves the mechanical properties of the polysaccharide composition containing the polysaccharide nanofibers with a small amount of the polysaccharide nanofibers (A). From the viewpoint, it is preferably 50 or more, or 80 or more, or 100 or more, or 120 or more, or 150 or more. Although the upper limit is not particularly limited, it is preferably 10,000 or less from the viewpoint of handleability.
  • sol containing polysaccharide nanofibers commercially available products may be used.
  • Fibnano registered trademark
  • CM-NFBC HE-NFBC
  • HP-NFBC Kusano Sakuno
  • wood-derived nanoforest a sol containing plant-derived cellulose nanofibers, bamboo-derived nanoforest (manufactured by Chuetsu Pulp Industry), BiNFi-s chitosan nanofibers, a sol containing chitosan nanofibers (manufactured by Sugino Machine ), and BiNFi-s chitin nanofibers (manufactured by Sugino Machine), which is a sol containing chitin nanofibers.
  • CM-NFBC Fibnano (registered trademark) CM-NFBC, HE-NFBC, and HP-NFBC are sols containing bacterial cellulose nanofibers and water-soluble cellulose.
  • CM-NFBC contains carboxymethyl cellulose (CM) as water-soluble cellulose
  • HE-NFBC contains hydroxyethyl cellulose (HE) as water-soluble cellulose
  • HP-NFBC contains hydroxypropyl as water-soluble cellulose.
  • HP cellulose
  • Polysaccharide (B) Polysaccharide (B) is used in the method for producing a polysaccharide nanofiber-blended polysaccharide composition of the present embodiment.
  • the polysaccharide (B) is not particularly limited, but is usually a polysaccharide whose mechanical properties are desired to be improved by the polysaccharide nanofiber (A).
  • the polysaccharide (B) one type may be used alone, or two or more types may be used.
  • Polysaccharides (B) are polysaccharides that are not nanofibers, that is, polysaccharides other than polysaccharide nanofibers (A).
  • Polysaccharide nanofibers (A) usually do not dissolve in water or water-soluble solvents, but disperse, preferably monodisperse in water or water-soluble solvents, whereas polysaccharides (B) is usually soluble in water or water-soluble solvents.
  • Polysaccharides (B) include cellulose, chitosan, chitin, starch, glycogen, agarose, carrageenan, heparin, hyaluronic acid, xanthan gum, tamarind gum (also referred to as tamarind seed gum), gellan gum, guar gum, locust bin gum, agar, and carrageenan. , alginates, pectin, succinoglycan, gluconanman, cytrium seed gum, pullulan, gum arabic, gum karaya and derivatives thereof.
  • Derivatives include hydrophobic modification (esterification, etherification, cyanation, etc.), cation modification, anion modification (TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation, etc.). Modified polysaccharides are included.
  • the polysaccharide (B) is more preferably at least one polysaccharide selected from cellulose derivatives, chitosan, chitin, starch, starch derivatives, tamarind seed gum, xanthan gum, guar gum, guar gum derivatives, and gellan gum.
  • it is at least one polysaccharide selected from cellulose esters, chitosan, chitin, starch, etherified starch (eg, hydroxypropyl starch), tamarind seed gum, xanthan gum, guar gum, cationic guar gum derivatives, and gellan gum. , cellulose ester, chitosan, chitin, starch, and hydroxypropyl starch, and at least one polysaccharide selected from cellulose ester, starch and hydroxypropyl starch.
  • etherified starch eg, hydroxypropyl starch
  • tamarind seed gum e.g., xanthan gum, guar gum, cationic guar gum derivatives, and gellan gum.
  • cellulose ester, chitosan, chitin, starch, and hydroxypropyl starch e.g, hydroxypropyl starch
  • Cellulose esters include at least one cellulose ester selected from cellulose acetate, cellulose propionate, cellulose butyrate, cellulose isobutyrate, cellulose acetate butyrate, cellulose acetobutyrate, cellulose acetate propionate, and cellulose acetopropionate. At least one cellulose ester selected from cellulose acetate, cellulose acetate and cellulose propionate is preferred.
  • the degree of substitution of cellulose ester is preferably 0.05 to 2.95, more preferably 0.5 to 2.7.
  • the degree of substitution means the substitution rate of the hydroxy groups in the cellulose having three hydroxy groups per glucose unit constituting the cellulose. For example, cellulose with a degree of substitution of 2.5 means cellulose substituted with an average of 2.5 hydroxy groups per glucose unit.
  • the degree of substitution of the etherified starch is preferably 0.05 to 2.95, more preferably 0.07 to 2.7.
  • polysaccharide (B) commercially available products may be used, and examples of cellulose esters include Cellulose Acetate manufactured by Acros and Cellulose Propionate manufactured by Scientific Polymer.
  • etherified starch includes Cleartext B-3 (hydroxypropylated phosphate cross-linked starch) manufactured by Nihon Shokuhin Kako.
  • the polysaccharide (B) may be used as a composition containing other components.
  • Other ingredients include additives such as plasticizers, antibacterial agents, antifungal agents, antiseptic (bacteriostatic) agents, bactericides, antiviral agents, deodorants, thermoplastic agents, antioxidants, weathering agents, and light resistance. agents, heat-resistant agents, heat stabilizers, flame retardants, antistatic agents, heat dissipation materials, heat storage materials, compatibilizers, cross-linking agents, anti-hydrolysis agents, antifoaming agents, fibrous reinforcing materials, plate-like reinforcing materials, etc. is mentioned.
  • the other components may be used singly or in combination of two or more.
  • fibrous reinforcing materials synthetic fibers such as glass fiber, carbon fiber, graphite fiber, steel fiber, potassium titanate fiber, aramid fiber, vinylon fiber, polyester fiber, etc., natural fibers such as kenaf fiber, hemp fiber, cotton, bamboo fiber, etc. fibers.
  • Plate-like reinforcing materials include mica, talc, clay, glass flakes, and the like.
  • polysaccharide (B) for example, it preferably contains 0.3 to 70 wt% of polysaccharide (B), more preferably 0.5 to 50 wt%, and 1 to 40 wt%. is particularly preferred.
  • the whole composition containing polysaccharide (B) shall be 100 wt%.
  • solvent (C) In the method for producing the polysaccharide nanofiber-blended polysaccharide composition of the present embodiment, a solvent (C) capable of dissolving the polysaccharide (B) is used.
  • the solvent (C) capable of dissolving the polysaccharide (B) is also simply referred to as the solvent (C).
  • the solvent (C) is not particularly limited as long as it can dissolve the polysaccharide (B).
  • the solvent (C) one kind may be used alone, or two or more kinds may be used.
  • the solvent (C) is preferably at least one solvent selected from water and water-soluble solvents, more preferably a water-soluble solvent.
  • Water-soluble solvents include acetone, methyl ethyl ketone, tetrahydrofuran, methyl acetate, ethyl acetate, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, ethylene glycol, propylene glycol.
  • At least one solvent is preferred, more preferably at least one solvent selected from acetone, tetrahydrofuran, N,N-dimethylformamide, dioxane, and dioxolane.
  • Solvent (C) is water, acetone, methyl ethyl ketone, tetrahydrofuran, methyl acetate, ethyl acetate, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, ethylene glycol, selected from propylene glycol, methyl glycol acetate, N-methylpyrrolidone, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, diacetone alcohol, methyl formate, ethyl lactate, acetonitrile, methyl glycol, dioxane and dioxolane
  • One of preferred embodiments is at least one solvent selected from acetone, tetrahydrofuran, N,N-dimethylformamide, dioxane, and dioxolane. one of. As dioxane, 1,4
  • a method for producing a polysaccharide nanofiber-containing polysaccharide composition includes mixing a sol containing polysaccharide nanofibers (A), a polysaccharide (B), and a solvent (C) capable of dissolving the polysaccharide (B). , obtaining a mixture.
  • the method for mixing the sol containing the polysaccharide nanofibers (A), the polysaccharide (B), and the solvent (C) is not particularly limited.
  • the sol containing the polysaccharide nanofibers (A), the polysaccharide (B), and the components other than the solvent (C) may be mixed at the same time.
  • Components (other components) other than the sol containing the polysaccharide nanofiber (A), the polysaccharide (B), and the solvent (C) include a plasticizer, an antibacterial agent, an antifungal agent, an antiseptic (bacteriostatic) agent, Bactericides, antiviral agents, deodorants, thermoplastics, antioxidants, weather resistance agents, light resistance agents, heat resistance agents, heat stabilizers, flame retardants, antistatic agents, heat dissipation materials, heat storage materials, compatibilizers, Cross-linking agents, anti-hydrolysis agents, anti-foaming agents, fibrous reinforcing materials, plate-like reinforcing materials, and the like.
  • the other components may be used singly or in combination of two or more.
  • fibrous reinforcing materials synthetic fibers such as glass fiber, carbon fiber, graphite fiber, steel fiber, potassium titanate fiber, aramid fiber, vinylon fiber, polyester fiber, etc., natural fibers such as kenaf fiber, hemp fiber, cotton, bamboo fiber, etc. fibers.
  • Plate-like reinforcing materials include mica, talc, clay, glass flakes, and the like.
  • Plasticizers include glycerin, triacetin, diacetin, monoacetin, sorbitol, methyl citrate, ethyl citrate, phthalates, phosphates and the like.
  • the components can be included in the polysaccharide composition containing the polysaccharide nanofibers.
  • Other components may be components contained in the sol, polysaccharide, and solvent, or may be used as other components (for example, additives) in the step of obtaining a mixture.
  • the polysaccharide (B) is at least one polysaccharide selected from cellulose ester, tamarind seed gum, guar gum, and xanthan gum
  • the mixture preferably contains a plasticizer. be. By including a plasticizer, it is possible to obtain a polysaccharide nanofiber-blended polysaccharide composition that is excellent in strength and flexibility, as well as in water repellency and oil repellency.
  • the temperature for mixing is usually preferably 4 to 80°C, more preferably 10 to 30°C.
  • the pressure during mixing it may be carried out under normal pressure, under reduced pressure, or under increased pressure, but from the viewpoint of cost, it is preferable to carry out under normal pressure.
  • the mixing time is usually preferably 0.1 to 24 hours, more preferably 0.1 to 3 hours.
  • the above range is preferable because the polysaccharide nanofibers (A) tend to be uniformly dispersed.
  • the amount of the sol containing the polysaccharide nanofibers (A) used in the step of obtaining the mixture is usually 0.1% of the polysaccharide nanofibers (A) in 100% by mass of the polysaccharide composition containing the polysaccharide nanofibers. 60% by mass, preferably 0.3 to 55% by mass, more preferably 0.3 to 50% by mass.
  • the amount of the polysaccharide (B) used in the step of obtaining the mixture is usually 40 to 99.7% by mass, preferably 40 to 99.7% by mass of the polysaccharide (B) in 100% by mass of the polysaccharide composition containing polysaccharide nanofibers.
  • the content may be 45 to 99.5% by mass, more preferably 50 to 99% by mass.
  • the amount of other components is usually 0.5 to 50% by mass, preferably 0.5 to 50% by mass, in 100% by mass of the polysaccharide nanofiber-blended polysaccharide composition, although it varies depending on the type of other components. may be contained in an amount of 1 to 40% by mass.
  • the sol containing the polysaccharide nanofibers (A) is a hydrosol, that is, water is used as a dispersion medium, and the solvent (C) is a water-soluble solvent
  • the quantitative ratio of the two is, for example, 1.5:8.5 to 5.5:4.5.
  • the amounts of water and the water-soluble solvent are azeotropically boiling in the step of obtaining the dry mixture.
  • a method for producing a polysaccharide nanofiber-containing polysaccharide composition has a step of drying the mixture obtained by the step of obtaining a mixture to obtain a dry mixture.
  • the step of obtaining a dry mixture is performed for the purpose of removing the dispersion medium that constitutes the sol containing the polysaccharide nanofibers (A) and the solvent (C).
  • substantially 100% by mass of the dispersion medium and solvent (C) are removed.
  • removing substantially 100% by mass means removing 99% by mass or more of the dispersion medium and the solvent (C) from the dry mixture.
  • the method for producing a polysaccharide composition containing polysaccharide nanofibers may have a step of kneading a dry mixture to obtain a polysaccharide composition containing polysaccharide nanofibers, as described below.
  • the dry mixture may be a polysaccharide nanofiber-containing polysaccharide composition.
  • a film-shaped dry mixture is obtained by drying the mixture obtained in the step of obtaining the mixture while spreading it on a pallet or the like, and the film-shaped dry mixture is mixed with polysaccharide nanofibers. It may be a saccharide composition.
  • the temperature at which the step of obtaining the dry mixture is carried out varies depending on the boiling points of the dispersion medium and the solvent (C) constituting the sol, whether the drying step is carried out under normal pressure or under reduced pressure, etc., but for example 20 to It is carried out at 90°C, preferably 30-80°C. Carrying out under normal pressure is preferable from the viewpoint of cost, and carrying out under reduced pressure is preferable from the viewpoint that drying can be performed at a low temperature. Drying under reduced pressure (vacuum drying) and drying under normal pressure may be combined.
  • the drying time is usually preferably 3-120 hours, more preferably 1-48 hours.
  • the pressure when drying under reduced pressure is preferably -10 to -100 kPa (gauge pressure), more preferably -50 to -100 kPa (gauge pressure), and particularly preferably -60 to -80 kPa (gauge pressure).
  • Drying can be performed, for example, by distilling off the solvent using a vacuum dryer or evaporator, or by distilling off the solvent by distillation under reduced pressure.
  • the method for producing a polysaccharide nanofiber-containing polysaccharide composition may optionally include steps other than the step of obtaining a mixture and the step of obtaining a dry mixture.
  • Optional steps include, for example, a step of kneading a dry mixture to obtain a polysaccharide nanofiber-containing polysaccharide composition.
  • the polysaccharide nanofiber-containing polysaccharide composition may be obtained as pellets, or may be obtained as a molded body having a desired shape, and after obtaining pellets, it is secondary molded to have a desired shape.
  • a molded body may be obtained.
  • Kneading is preferable because the polysaccharide nanofibers (A) tend to disperse more uniformly in the polysaccharide (B).
  • the kneading conditions are not particularly limited, but if the kneading time is lengthened or the kneading speed is increased, the polysaccharide nanofibers (A) tend to disperse more.
  • the temperature for kneading is, for example, 170 to 220°C, preferably 170 to 210°C.
  • the kneading time is, for example, 3 minutes to 30 minutes, preferably 5 minutes to 20 minutes.
  • the spinning temperature is, for example, 170 to 220°C, preferably 180 to 215°C, more preferably 190 to 210°C, and still more preferably. is between 195°C and 205°C.
  • the spinning temperature is around 200° C., the fiber diameter of the yarn to be spun and the diameter of the spinneret are approximately the same, and the mechanical strength of the obtained yarn tends to be excellent, which is preferable.
  • the polysaccharide nanofiber-containing polysaccharide composition obtained by the method for producing a polysaccharide nanofiber-containing polysaccharide composition of the present embodiment has: It tends to have excellent mechanical properties.
  • the present inventors have found the reason why the polysaccharide nanofiber-containing polysaccharide composition obtained by the production method of the present embodiment has excellent mechanical properties, as well as the solvent (C), the polysaccharide (B), the polysaccharide nanofiber (A ), the polysaccharide nanofibers (A) are uniformly dispersed in the polysaccharide (B) compared to conventionally known methods.
  • the shape of the polysaccharide nanofiber-containing polysaccharide composition obtained by the method for producing a polysaccharide nanofiber-containing polysaccharide composition of the present embodiment is not particularly limited, and a molded body having a desired shape can be obtained.
  • the molded article containing the polysaccharide composition containing polysaccharide nanofibers may be obtained by producing the polysaccharide composition containing polysaccharide nanofibers under conditions to obtain a desired shape, and the polysaccharide composition containing polysaccharide nanofibers It may also be obtained by forming the article.
  • the shape of the molded body is preferably film, pellet, powder, plate, thread, or container, for example. Examples of containers include cups, plates, bowls, and boxes.
  • CM-BCNF sol hydrosol containing carboxymethyl cellulose (CM) and bacterial cellulose nanofiber (BCNF) at a total of 1 wt% (in a total of 100 wt% of CM and BCNF, CM content 13.7 wt%, BCNF content 86.3 wt% %)
  • CM-NFBC carboxymethyl cellulose
  • HE-BCNF sol Hydrosol containing a total of 1 wt% of hydroxyethyl cellulose (HE) and bacterial cellulose nanofibers (BCNF) (in a total of 100 wt% of HE and BCNF, HE content 22.5 wt%, BCNF content 77.5 wt% %)
  • Kusano Fibnano (registered trademark) HE-NFBC
  • HP-BCNF sol Hydrosol containing hydroxypropyl cellulose (HP) and bacterial
  • Example 1 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> 250 mL of acetone was added to 50 g of CM-BCNF sol (total amount of CM and BCNF: 0.5 g), and after stirring until uniform dispersion, 4.5 g of CA was added and stirred until CA was completely dissolved to obtain a mixture.
  • ⁇ Film preparation> 1.0 to 2.0 g of the pellets were weighed and heated at 200° C. for 6 minutes without pressure using a heat press (manufactured by Imoto Seisakusho, model 180C) to dissolve the resin. A state of being pressurized to 56 MPa was maintained for 4 minutes, and then slowly cooled to room temperature while a load of 20 kg was applied to prepare a film.
  • a heat press manufactured by Imoto Seisakusho, model 180C
  • ⁇ Tensile test> A tensile test was performed on the prepared dumbbell-shaped test piece using a tensile tester (EZ-SX 200N manufactured by Shimadzu Corporation) at a speed of 5 mm/min.
  • Example 1 A film was produced according to the film preparation section of Example 1, except that the pellets of Example 1 were changed to CA pellets, and a dumbbell-shaped test piece was produced from the film in the same manner as in Example 1, A tensile test was performed.
  • CM-BCNF sol (CM and BCNF total amount 0.5 g) was added to a 500 mL beaker. 250 mL of acetone was added to the beaker and stirred (approximately 300 mL total volume).
  • a glass filter with a glass filter was installed on the suction filter, and a PTFE membrane filter with a pore size of 0.45 ⁇ m was installed on the glass filter.
  • the solution in the beaker was slowly poured into the glass filter. About 50 mL of the dispersion liquid containing BCNF was left in the glass filter, and about 250 mL of the liquid was dropped into the suction bottle by suction filtration.
  • CM-BCNF sol organosol
  • CM-BCNF sol was carried out in the same manner as in Example 1, except that the CM-BCNF sol (organosol) was changed. did
  • Example 1 From Comparative Example 1, Example 1, and Example 2, the polysaccharide nanofiber-containing polysaccharide composition obtained by the production method of the present embodiment was compared with the material not containing polysaccharide nanofibers (Comparative Example 1). An improvement in strength (strengthening of mechanical properties) was confirmed at the time. It was suggested that both hydrosol and organosol are useful as the sol containing polysaccharide nanofibers (A).
  • CM-BCNF sol was lyophilized to obtain CM-BCNF (a mixture of CM and BCNF).
  • CM-BCNF a mixture of CM and BCNF
  • 0.5 g of CM-BCNF was finely pulverized, mixed well with 4.5 g of CA, and then kneaded under the conditions described in the kneading section of Example 1 to obtain pellets (total amount of CM and BCNF: 10 wt %).
  • a film and a dumbbell-shaped test piece were produced by the method described in Example 1, and a tensile test was conducted.
  • CM-BCNF sol was lyophilized to obtain CM-BCNF (a mixture of CM and BCNF).
  • CM-BCNF a mixture of CM and BCNF.
  • 1.0 g of CM-BCNF was finely pulverized, 4.0 g of CA was mixed well, and then kneaded under the conditions described in the kneading section of Example 1 to prepare a masterbatch (total amount of CM and BCNF: 20 wt%).
  • Example 2 After 2.5 g of the masterbatch and 2.5 g of CA were mixed well, they were kneaded under the conditions described in the kneading section of Example 1 to obtain pellets (total amount of CM and BCNF: 10 wt%). Using the obtained pellets, a film and a dumbbell-shaped test piece were produced by the method described in Example 1, and a tensile test was conducted.
  • Example 3 Drying of the mixture in Example 1 was performed in the same manner as in Example 1, except that the following operation was performed to produce a dry mixture (cast film), pellets, films, and dumbbell-shaped test pieces, and tensile tests were performed.
  • Example 4 Drying of the mixture in Example 1 was performed in the same manner as in Example 1, except that the following operation was performed to produce a dry mixture (cast film), pellets, films, and dumbbell-shaped test pieces, and tensile tests were performed.
  • Example 5 Drying of the mixture in Example 1 was performed in the same manner as in Example 1, except that the following operation was performed to produce a dry mixture (cast film), pellets, films, and dumbbell-shaped test pieces, and tensile tests were performed.
  • the polysaccharide nanofiber-containing polysaccharide composition obtained by the production method of the present embodiment is a material that does not contain polysaccharide nanofibers, regardless of the type of drying method. An improvement in strength (strengthening of mechanical properties) was confirmed when compared with (Comparative Example 1).
  • Example 6 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> Distilled water and 250 mL of acetone were added to the CM-BCNF sol, and after stirring until they were uniformly dispersed, CA was added and stirred until CA was completely dissolved to obtain a mixture.
  • Example 7 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> Distilled water and 250 mL of acetone were added to the CM-BCNF sol, and after stirring until they were uniformly dispersed, CA was added and stirred until CA was completely dissolved to obtain a mixture.
  • Example 8 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> 250 mL of acetone was added to 50 g of CM-BCNF sol, and after stirring until uniform dispersion, 4.5 g of CA was added and stirred until CA was completely dissolved to obtain a mixture.
  • Example 4 The procedure was carried out in the same manner as in Example 8 except that 50 g of CM-BCNF sol was changed to 0.5 g of CA (no plasticizer) and 50 g of distilled water, mixture, dry mixture (cast film), pellet, film, dumbbell type test Strips were produced and tensile tested.
  • CA no plasticizer
  • Example 8 The results of the tensile tests of Example 8 and Comparative Example 4 are shown in Table 6 and FIG.
  • Example 9 A mixture, a dry mixture (cast film), a pellet, a film, and a dumbbell-shaped specimen were produced in the same manner as in Example 8 except that acetone was changed to tetrahydrofuran (THF), and a tensile test was performed.
  • THF tetrahydrofuran
  • Example 5 The procedure of Example 9 was repeated except that 50 g of CM-BCNF sol was changed to 0.5 g of CA (no plasticizer) and 50 g of distilled water. Strips were produced and tensile tested.
  • Example 9 The results of the tensile tests of Example 9 and Comparative Example 5 are shown in Table 7 and FIG.
  • the resulting polysaccharide nanofiber-containing polysaccharide composition contained polysaccharides.
  • An improvement in strength (enhancement of mechanical properties) was confirmed when compared with a material that does not contain saccharide nanofibers (Comparative Example 5).
  • Example 10 A mixture, a dry mixture (cast film), a pellet, a film, and a dumbbell-shaped test piece were produced in the same manner as in Example 8 except that CA was changed to CP, and a tensile test was performed.
  • Example 8 except that the mixture in Example 8 was changed to a mixture obtained by adding 5.0 g of CP to an aqueous solution obtained by mixing 50 g of distilled water and 250 mL of acetone and stirring until CP was completely dissolved.
  • a mixture, a dry mixture (cast film), a pellet, a film, and a dumbbell-shaped specimen were produced in the same manner and subjected to a tensile test.
  • Example 10 The results of the tensile tests of Example 10 and Comparative Example 6 are shown in Table 8 and FIG.
  • ⁇ Drying of mixture (preparation of cast film)> Pour the mixture into a stainless steel vat, leave it in a vacuum dryer, and perform vacuum drying for about 3 hours while circulating air at -10 kPa (gauge pressure) at 70 ° C. While defoaming, the total mass is about 10 g. After removing the moisture until the mixture became , the mixture was returned to room temperature and air-dried for about 2 days to obtain a dry mixture (cast film).
  • Example 7 A cast film and a dumbbell-shaped test piece were produced in the same manner as in Example 11 except that the CM-BCNF sol was not used, and a tensile test was performed.
  • Example 14 The procedure of Example 8 was repeated except that the CM-BCNF sol was changed to HE-BCNF sol.
  • Example 15 The procedure was carried out in the same manner as in Example 8, except that the CM-BCNF sol was changed to HP-BCNF sol.
  • Example 16 20.6 g of distilled water was added to 29.4 g of bamboo CNF sol (hydrosol containing 1.7 wt% bamboo-derived cellulose nanofiber (bamboo CNF)) (bamboo CNF 0.5 g) to obtain a hydrosol containing 1 wt% of bamboo-derived cellulose nanofiber ( 1 wt% bamboo CNF sol) was prepared.
  • Example 17 40 g of distilled water was added to 10 g of chitin NF sol (hydrosol containing 5 wt % of chitin nanofibers (chitin NF)) (0.5 g of chitin NF) to prepare a hydrosol containing 1 wt % of chitin nanofibers (1 wt % chitin NF sol).
  • Example 18 40 g of distilled water was added to 10 g of chitosan NF sol (hydrosol containing 5 wt % of chitosan nanofibers (chitosan NF)) (0.5 g of chitosan NF) to prepare a hydrosol containing 1 wt % of chitosan nanofibers (1 wt % chitosan NF sol).
  • Example 19 ⁇ Preparation of tamarind seed gum aqueous solution (mixture) in which BCNF is dispersed> 56 mL of distilled water was added to 7 g of CM-BCNF sol, and after stirring until uniform dispersion, 0.63 g of tamarind seed gum was added and stirred until the tamarind seed gum was completely dissolved to obtain a mixture.
  • Example 8 A cast film and a dumbbell-shaped test piece were produced in the same manner as in Example 19 except that the CM-BCNF sol was not used, and a tensile test was performed.
  • Example 19 The results of the tensile tests of Example 19 and Comparative Example 8 are shown in Table 11 and Fig. 11.
  • Example 20 The procedure was carried out in the same manner as in Example 19, except that the tamarind seed gum was changed to xanthan gum.
  • Example 20 The results of the tensile tests of Example 20 and Comparative Example 9 are shown in Table 12 and Fig. 12.
  • Example 21 The procedure was carried out in the same manner as in Example 19, except that the tamarind seed gum was changed to guar gum.
  • Example 21 The results of the tensile tests of Example 21 and Comparative Example 10 are shown in Table 13 and FIG.
  • Example 22 The procedure was carried out in the same manner as in Example 20, except that the tamarind seed gum was changed to cationized guar gum.
  • Example 23 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> 250 mL of acetone was added to 50 g of CM-BCNF sol, and after stirring until uniform dispersion, 4.5 g of CA (containing 37 wt % plasticizer) was added and stirred until CA was completely dissolved to obtain a mixture.
  • the mixed dried product was kneaded to obtain mixed pellets having a total amount of CM and BCNF of 10 wt %.
  • 1.2 g of the pellets and 2.8 g of CA were further kneaded to obtain pellets having a total amount of CM and BCNF of 3 wt %.
  • ⁇ Melt spinning> A die with a hole diameter of ⁇ 700 ⁇ m was attached to a melt spinning device (manufactured by Imoto Seisakusho: IMC-6721 type), 8 g of pellets with a total amount of CM and BCNF of 3 wt% were put in, and the conditions were 180 to 190 ° C and a hydraulic cylinder of 2 MPa (gauge pressure). A yarn was obtained by melt spinning (FIG. 15, left).
  • ⁇ Tensile test> A tensile test was performed on the prepared yarn using a tensile tester (EZ-SX 200N, manufactured by Shimadzu Corporation) at a speed of 5 mm/min.
  • ⁇ Tensile test> A tensile test was performed on the prepared yarn using a tensile tester (EZ-SX 200N, manufactured by Shimadzu Corporation) at a speed of 5 mm/min.
  • Table 16 shows the spinning temperature of the produced yarn, the average fiber diameter of the spun yarn, and the results of the tensile test.
  • Example 25 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> 250 mL of acetone was added to 15 g of HP-BCNF sol (total amount of HP and BCNF: 0.15 g), and after stirring until uniform dispersion, 4.85 g of CA was added and stirred until CA was completely dissolved to obtain a mixture.
  • ⁇ Melt spinning> A die with a hole diameter of ⁇ 700 ⁇ m is attached to a melt spinning device (manufactured by Imoto Seisakusho: IMC-6721 type), 15 to 20 g of pellets with a total amount of HP and BCNF of 3 wt% are put, and the spinning temperature (170 ° C., 175 ° C., 180 ° C., 185 ° C. , or 190° C.) for 15 to 20 minutes, and then melt-spun under conditions of a hydraulic cylinder of 2 MPa (gauge pressure) to obtain yarn.
  • a melt spinning device manufactured by Imoto Seisakusho: IMC-6721 type
  • the spinning temperature (170 ° C., 175 ° C., 180 ° C., 185 ° C. , or 190° C.
  • ⁇ Tensile test> A tensile test was performed on the prepared yarn using a tensile tester (EZ-SX 200N, manufactured by Shimadzu Corporation) at a speed of 5 mm/min.
  • Table 17 shows the water-soluble solvent used, the ratio of water and water-soluble solvent, the spinning temperature of the produced yarn, the average fiber diameter of the spun yarn, and the results of the tensile test.
  • Example 26 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> To 15 g of HP-BCNF sol (total amount of HP and BCNF: 0.15 g), 1,4-dioxane was added in the following amounts, stirred until uniformly dispersed, and then 4.85 g of CA was added until CA was completely dissolved. Stir to obtain a mixture.
  • ⁇ Melt spinning> A die with a hole diameter of ⁇ 700 ⁇ m is attached to a melt spinning device (manufactured by Imoto Seisakusho: IMC-6721 type), 15 to 20 g of pellets with a total amount of HP and BCNF of 3 wt% are put, and the spinning temperature is (180 ° C., 190 ° C., or 200 ° C.). After warming the resin for 15 to 20 minutes, it was melt-spun under the conditions of a hydraulic cylinder of 2 MPa (gauge pressure) to obtain a yarn.
  • a melt spinning device manufactured by Imoto Seisakusho: IMC-6721 type
  • ⁇ Tensile test> A tensile test was performed on the prepared yarn using a tensile tester (EZ-SX 200N, manufactured by Shimadzu Corporation) at a speed of 5 mm/min.
  • Table 17 shows the water-soluble solvent used, the ratio of water and water-soluble solvent, the spinning temperature of the produced yarn, the average fiber diameter of the spun yarn, and the results of the tensile test.
  • Example 27 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> 250 mL of acetone was added to 15 g of CM-BCNF sol (total amount of CM and BCNF: 0.15 g), and after stirring until uniform dispersion, 4.85 g of CA was added and stirred until CA was completely dissolved to obtain a mixture.
  • ⁇ Melt spinning> A die with a hole diameter of ⁇ 700 ⁇ m was attached to a melt spinning device (manufactured by Imoto Seisakusho: IMC-6721 type), 15 to 20 g of pellets with a total amount of CM and BCNF of 3 wt% were put, and the spinning temperature was set to 170 ° C., 175 ° C., 180 ° C., 185 ° C. , or 190° C.) for 15 to 20 minutes, and then melt-spun under conditions of a hydraulic cylinder of 2 MPa (gauge pressure) to obtain yarn.
  • a melt spinning device manufactured by Imoto Seisakusho: IMC-6721 type
  • the spinning temperature was set to 170 ° C., 175 ° C., 180 ° C., 185 ° C. , or 190° C.
  • ⁇ Tensile test> A tensile test was performed on the prepared yarn using a tensile tester (EZ-SX 200N, manufactured by Shimadzu Corporation) at a speed of 5 mm/min.
  • Table 18 shows the water-soluble solvent used, the ratio of water and water-soluble solvent, the spinning temperature of the produced yarn, the average fiber diameter of the spun yarn, and the results of the tensile test.
  • Example 28 ⁇ Preparation of cellulose acetate solution (mixture) in which BCNF is dispersed> To 15 g of CM-BCNF sol (0.15 g of CM and BCNF total), 1,4-dioxane was added in the following amounts, stirred until uniformly dispersed, and then 4.85 g of CA was added until CA was completely dissolved. Stir to obtain a mixture.
  • ⁇ Melt spinning> A die with a hole diameter of ⁇ 700 ⁇ m was attached to a melt spinning device (manufactured by Imoto Seisakusho: IMC-6721 type), 15 to 20 g of pellets with a total amount of CM and BCNF of 3 wt% were put, and spinning was performed at a spinning temperature (180 ° C., 190 ° C., or 200 ° C.). After warming the resin for 15 to 20 minutes, it was melt-spun under the conditions of a hydraulic cylinder of 2 MPa (gauge pressure) to obtain a yarn.
  • ⁇ Tensile test> A tensile test was performed on the prepared yarn using a tensile tester (EZ-SX 200N, manufactured by Shimadzu Corporation) at a speed of 5 mm/min.
  • Table 18 shows the water-soluble solvent used, the ratio of water and water-soluble solvent, the spinning temperature of the produced yarn, the average fiber diameter of the spun yarn, and the results of the tensile test.
  • Example 29 ⁇ Preparation of tamarind seed gum aqueous solution (mixture) in which BCNF is dispersed> Distilled water was added to the HP-BCNF sol, and after stirring until uniform dispersion, glycerin was added, tamarind seed gum was added, and the mixture was stirred until the tamarind seed gum was completely dissolved to obtain a mixture.
  • Table 19 shows the weight of each raw material used.
  • Sample no. without HP-BCNF sol. 1, 4, and 5 correspond to comparative examples, and the others correspond to examples.
  • ⁇ Deaeration of solution> Each mixture was placed in a vacuum dryer and dried at 70° C. and ⁇ 90 kPa (gauge pressure) or less for 30 seconds to 1 minute and 30 seconds to deaerate the solution.
  • Table 19 shows the results of the tensile test and the contact angle test.
  • a preferred range can be defined by arbitrarily combining the upper and lower limits of the numerical range
  • a preferred range can be defined by arbitrarily combining the upper limits of the numerical range
  • the lower limit of the numerical range Any combination of values can be used to define a preferred range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示の目的は、多糖類ナノファイバーによって機械物性が強化された多糖類ナノファイバー配合多糖類組成物を得ることができ、且つ簡便に実施可能な、多糖類ナノファイバー配合多糖類組成物の製造方法を提供することである。 本実施形態の一態様は、多糖類ナノファイバー(A)を含むゾルと、多糖類(B)と、前記多糖類(B)を溶解可能な溶媒(C)とを混合し、混合物を得る工程と、前記混合物を乾燥し、乾燥混合物を得る工程を有する、多糖類ナノファイバー配合多糖類組成物の製造方法である。

Description

多糖類ナノファイバー配合多糖類組成物の製造方法
 本開示は、多糖類ナノファイバー配合多糖類組成物の製造方法に関する。
 樹脂の物性を向上させるため、ガラス繊維、炭素繊維等の繊維と樹脂とを複合化して、繊維強化樹脂とすることが従来から行われており、様々な検討が行われている。
 樹脂と複合化する繊維として、セルロースナノファイバー、キトサンナノファイバー、キチンナノファイバー等の多糖類ナノファイバーを用いた例が既に提案されている(例えば特許文献1参照)。
 例えばセルロースナノファイバー(CNF)は、比表面積が大きく、補強効果に優れることが知られている。一方で多糖類ナノファイバーはその表面に親水基であるヒドロキシ基があり、ヒドロキシ基が変性されたエステル基、エーテル基が存在すると疎水性が向上し、さらに立体的な嵩高さが増すことから、凝集を抑制することが知られているが、未変性のヒドロキシ基は水素結合により、凝集しやすいという問題があった。
 特許文献1では、多糖類ナノファイバーを樹脂に対して均一に分散させるために、樹脂の前段階であるモノマーと多糖類ナノファイバーと分散媒とを含む分散体を得た後に、モノマーを重合させることが提案されている。
 また、別の技術として、セルロースナノファイバーの水酸基の一部がカルボキシル基を有する置換基で変性された変性セルロールナノファイバー(A)、及び樹脂(B)を含む樹脂組成物が提案されている(例えば、特許文献2参照)。特許文献2では、変性セルロールナノファイバー(A)を得るために、セルロースナノファイバー(CNF)のアセトンスラリーにN-メチル-2-ピロリドン(NMP)を加え、CNFをNMP中に分散させた後に無水多塩基酸と反応させた後複数回の精製を行うことが開示されていた。また、特許文献2では、樹脂(B)が有するエポキシ基、水酸基、アミノ基等と、変性セルロール(A)が有するカルボキシル基とを反応させることも開示されているが、特許文献2に記載されている技術は非常に多くの工程を有しており、手間のかかる方法であった。
特開2016-153470号公報 特開2012-229350号公報
 多糖類ナノファイバーを、樹脂に対して均一に分散するために、従来から様々な検討が行われていた。しかしながら、従来提案されているある方法では、多糖類ナノファイバーが凝集することにより、樹脂への分散が上手くいかず、十分に物性が向上しない場合があった。また、従来提案されている別の方法では、樹脂への分散は可能だが、複雑な工程を要するため、手間やコストの観点から改善が望まれている場合があった。
 本発明者らは、多糖類ナノファイバーを容易に分散させることが可能な方法を、多糖類ナノファイバーを分散させる対象である樹脂(母材)の種類、分散方法等の様々な観点から、検討を行い、前記母材を、多糖類ナノファイバーと分子構造や、繰り返し単位の構造が近似する多糖類とし、特定の分散方法を採用することにより、容易に多糖類ナノファイバーを母材に分散させることができると考えた。
 つまり、本開示の目的は、多糖類ナノファイバーによって機械物性が強化された多糖類ナノファイバー配合多糖類組成物を得ることができ、且つ簡便に実施可能な、多糖類ナノファイバー配合多糖類組成物の製造方法を提供することである。
 本発明者らは、上記課題を解決するために鋭意研究を行ったところ、特定の方法で製造された多糖類ナノファイバー配合多糖類組成物は、機械物性が強化されており、しかも該方法は簡便に実行可能な方法であることを見出し、本開示に至った。
 本実施形態の態様例は、以下の通りに記載される。
 (1) 多糖類ナノファイバー(A)を含むゾルと、
 多糖類(B)と、
 前記多糖類(B)を溶解可能な溶媒(C)とを混合し、混合物を得る工程と、
 前記混合物を乾燥し、乾燥混合物を得る工程を有する、
 多糖類ナノファイバー配合多糖類組成物の製造方法。
 (2) 前記多糖類ナノファイバー(A)が、バクテリアセルロースナノファイバー、植物由来セルロースナノファイバー、キトサンナノファイバー、及びキチンナノファイバーから選択される少なくとも1種の多糖類ナノファイバーである、(1)に記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
 (3) 前記多糖類(B)が、セルロース誘導体、キトサン、キチン、デンプン、デンプン誘導体、タマリンドガム、キサンタンガム、グァーガム、グァーガム誘導体、及びジェランガムから選択される少なくとも1種の多糖類である、(1)又は(2)に記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
 (4) 前記溶媒(C)が、水及び水溶性溶媒から選択される少なくとも1種の溶媒である、(1)~(3)のいずれか1つに記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
 (5) 前記多糖類ナノファイバー配合多糖類組成物100質量%中に、前記多糖類ナノファイバー(A)を0.1~60質量%含む、(1)~(4)のいずれか1つに記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
 (6) 前記多糖類ナノファイバー(A)を含むゾルが、水溶性セルロースを含む、(1)~(5)のいずれか1つに記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
 (7) (1)~(6)のいずれか1つに記載の製造方法で得られる多糖類ナノファイバー配合多糖類組成物を含む、成形体。
 (8) 形状がフィルム、ペレット、粉末、板、糸、又は容器状である、(7)に記載の成形体。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2021-110253号の開示内容を包含する。
 本開示により、多糖類ナノファイバーによって機械物性が強化された多糖類ナノファイバー配合多糖類組成物を得ることができ、且つ簡便に実施可能な、多糖類ナノファイバー配合多糖類組成物の製造方法を提供することができる。
実施例、比較例で得たダンベル型試験片の形状を示す図である。 実施例1、2、比較例1の引張試験の結果を示す。 実施例1、比較例1~3の引張試験の結果を示す。 実施例1、3~5、比較例1の引張試験の結果を示す。 実施例6及び7、比較例1の引張試験の結果を示す。 実施例8、比較例4の引張試験の結果を示す。 実施例9、比較例5の引張試験の結果を示す。 実施例10、比較例6の引張試験の結果を示す。 実施例11~13、比較例7の引張試験の結果を示す。 実施例8、14~18、比較例4の引張試験の結果を示す。 実施例19、比較例8の引張試験の結果を示す。 実施例20、比較例9の引張試験の結果を示す。 実施例21、比較例10の引張試験の結果を示す。 実施例22、比較例11の引張試験の結果を示す。 実施例23で作製した糸(図15左)及び比較例12で作製した糸(図15右)の写真である。 実施例23、比較例12の引張試験の結果を示す。 実施例24で作製したコップ状の成形体の写真である。 実施例24で作製した皿状の成形体の写真である。
 本実施形態の一態様は、多糖類ナノファイバー(A)を含むゾルと、多糖類(B)と、前記多糖類(B)を溶解可能な溶媒(C)とを混合し、混合物を得る工程と、前記混合物を乾燥し、乾燥混合物を得る工程を有する、多糖類ナノファイバー配合多糖類組成物の製造方法である。なお、本実施形態に係る多糖類ナノファイバー配合多糖類組成物の製造方法を、「本実施形態の製造方法」、又は単に「製造方法」とも記す。
 以下、本実施形態について、詳細に説明する。
(多糖類ナノファイバー(A)を含むゾル)
 本実施形態の多糖類ナノファイバー配合多糖類組成物の製造方法では、多糖類ナノファイバー(A)を含むゾルが用いられる。すなわち、本実施形態の製造方法は、多糖類ナノファイバー(A)を含むゾルを調製する工程を有するとも言える。
 多糖類ナノファイバー(A)を含むゾルは、多糖類ナノファイバー(A)を0.2~30wt%含むゾルであることが好ましく、0.5~20wt%含むゾルであることがより好ましく、0.7~10wt%含むゾルであることが更に好ましい。なお、ゾル全体を100wt%とする。
 多糖類ナノファイバー(A)を含むゾルは、ヒドロゾル及びオルガノゾルの少なくとも1種のゾルであることが好ましい。すなわち、ゾルとしては1種のゾルを用いても2種以上のゾルを用いてもよい。二種以上のゾルを用いる場合には、各ゾルに含まれる多糖類ナノファイバー(A)としては、同種の多糖類ナノファイバーであっても、別種の多糖類ナノファイバーであってもよい。多糖類ナノファイバー(A)を含むゾルとしては、ヒドロゾル又はオルガノゾルであることがより好ましく、ヒドロゾルであることが更に好ましい。
 オルガノゾルを構成する分散媒としては、特に限定されないが、例えばアルコール、エーテル、ケトン、エステル等の有機溶媒が挙げられる。分散媒の具体例としては、アセトン、メチルエチルケトン、テトラヒドロフラン、酢酸メチル、酢酸エチル、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、メチルグリコールアセテート、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジアセトンアルコール、ギ酸メチル、乳酸エチル、アセトニトリル、メチルグリコール、ジオキサン、ジオキソラン等が挙げられ、アセトン、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジオキサン、及びジオキソランが好ましい。分散媒は1種単独で用いても、2種以上を用いてもよい。なお、ジオキサンとしては1,4-ジオキサンが好ましい態様の一つである。
 多糖類ナノファイバー(A)としては、未変性多糖類ナノファイバーであっても、変性多糖類ナノファイバーであってもよい。未変性多糖類ナノファイバーとは、多糖類が有するヒドロキシ基(OH基)が変性されていないナノファイバーを意味し、変性多糖類ナノファイバーとは、多糖類が有するヒドロキシ基の少なくとも一部が変性されたナノファイバーを意味する。変性多糖類ナノファイバーとしては、疎水性変性(エステル化、エーテル化、シアノ化等)、カチオン変性、アニオン変性(TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル)酸化等)等の化学修飾したナノファイバーが挙げられる。変性多糖類ナノファイバーは、未変性多糖類ナノファイバーと比べて、ヒドロキシ基の少なくとも一部がエステル基等に変性されているため、極性が低減されており、一般的な樹脂へ分散させる際には好適であるが、本実施形態の製造方法は、未変性多糖類ナノファイバーであっても、容易に分散可能である。
 多糖類ナノファイバー(A)としては、バクテリアセルロースナノファイバー、植物由来セルロースナノファイバー、キトサンナノファイバー、及びキチンナノファイバーから選択される少なくとも1種の多糖類ナノファイバーであることが好ましい。多糖類ナノファイバー(A)としては1種単独で用いても、2種以上を用いてもよい。なお、バクテリアセルロースナノファイバーをBCNFとも記す。
 植物由来セルロースナノファイバーとしては、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物等に由来するセルロースナノファイバーが挙げられる。植物由来セルロースナノファイバーとしては、竹由来セルロースナノファイバー、木材由来セルロースナノファイバーが好ましく、解繊のし易さの観点から竹由来セルロースナノファイバーがより好ましい。
 バクテリアセルロースナノファイバーとは、バクテリアセルロース生産菌が生産したセルロースに由来するナノファイバーであればよく、バクテリアセルロース生産菌の種類や、バクテリアセルロース生産菌の培養条件には特に制限はなく、例えば従来公知のバクテリアセルロース生産菌、バクテリアセルロースの培養条件を採用することができる。
 多糖類ナノファイバー(A)を含むゾルは、多糖類ナノファイバー(A)及び分散媒以外の成分を含んでいてもよい。多糖類ナノファイバー(A)及び分散媒以外の成分としては、水溶性セルロースが挙げられる。多糖類ナノファイバー(A)を含むゾルは、多糖類ナノファイバーの分散性を向上させるために、水溶性セルロースを含んでいることが好ましい態様の一つである。水溶性セルロースとしては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びヒドロキシプロピルセルロースから選択される少なくとも1種の水溶性セルロースが挙げられる。すなわち、多糖類ナノファイバー(A)を含むゾルが、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びヒドロキシプロピルセルロースから選択される少なくとも1種の水溶性セルロースを含むことが好ましい態様の一つである。多糖類ナノファイバー(A)を含むゾルが、水溶性セルロースを含む場合には、多糖類ナノファイバー(A)及び、水溶性セルロースの合計100wt%中に、水溶性セルロースを、1~70wt%含むことが好ましく、5~50wt%含むことがより好ましく、10~30wt%含むことが特に好ましい。
 水溶性セルロースは、多糖類ナノファイバーの分散剤として作用することができ、多糖類ナノファイバー(A)と、水溶性セルロースとが相互作用した状態でゾルに含まれていることが好ましい。通常は多糖類ナノファイバー(A)と、水溶性セルロースとは、水素結合、ファンデルワールス力等の分子間力で、相互作用していると考えられる。
 多糖類ナノファイバー(A)を含むゾルが、水溶性セルロースを含む場合には、水溶性セルロースを含まないゾルに、水溶性セルロースを添加することにより得てもよいが、水溶性セルロース存在下で、多糖類ナノファイバー(A)を製造することにより、多糖類ナノファイバー(A)及び水溶性セルロースを含むゾルを調製してもよい。多糖類ナノファイバー(A)が、バクテリアセルロースナノファイバーである場合には、例えば、以下の方法でバクテリアセルロースナノファイバー及び水溶性セルロースを含むゾルを調製することができる。
 バクテリアセルロースナノファイバー及び水溶性セルロースを含むゾルは、例えば、バクテリアセルロース生産菌を、水溶性セルロースを添加した培地で撹拌培養や通気培養し、得られた培養液から菌体成分を除去してバクテリアセルロースナノファイバーを精製することにより得ることができる。水溶性セルロースとしては、市販のものを用いることができる。培地への水溶性セルロースの添加量は、例えば、培地における終濃度が0.5~5%(w/v)等とすることができるが、バクテリアセルロースナノファイバーへの所望の水溶性セルロース結合量(相互作用する水溶性セルロースの量)に応じて適宜設定することができる。
 バクテリアセルロース生産菌としては、バクテリアセルロースを生産することができる公知の細菌を用いることができ、具体的には、例えば、Gluconacetobacter xylinus ATCC53582株、Gluconacetobacter hansenii ATCC23769株、Gluconacetobacter xylinus ATCC700178(BPR2001)株、Gluconacetobacter swingsii BPR3001E株、Acetobacter xylinum JCM10150株、Enterobacter sp.CJF-002株、Gluconacetobacter intermedius SIID9587株(受託番号NITE BP-01495)等を用いることができる。
 バクテリアセルロース生産菌の培養条件は、上述の細菌の培養に用いられる公知の培養条件とすることができ、例えば、通気量1~10L/分、回転数100~800rpm、温度20~40℃、培養期間1~7日間の培養条件を挙げることができる。また、培地もヘストリン-シュラム(Hestrin-Schramm)標準培地(HS培地)等、上述の細菌の培養に用いられる公知のものを用いることができる。
 培養液からのバクテリアセルロースナノファイバーの精製は、まず、培養液に水酸化ナトリウム(NaOH)水溶液を加えて60℃程度に加温しながら数時間振とうすることにより菌体を溶解する。これを遠心分離に供し、上清を除去することにより菌体成分を除去して、沈殿物を回収する。続いて、沈殿物に水を加えて遠心分離を行った後、上清を除去する操作を、沈殿物のpHが7以下となるまで繰り返し行えばよい。これにより、水溶性セルロースが結合(相互作用)したバクテリアセルロースナノファイバーが水に分散したゾルを得ることができる。
 多糖類ナノファイバー(A)の平均繊維径は、多糖類ナノファイバー(A)による物性向上効果を十分に得る観点から、好ましくは2~1000nmである。セルロースナノファイバー数平均繊維径は、より好ましくは2~500nm、更に好ましくは2~450nm、特に好ましくは2~400nmである。平均繊維径は、透過型電子顕微鏡(TEM)を用いて観察した20本の繊維の直径(幅)の平均値とすることができる。
 多糖類ナノファイバー(A)の平均繊維長は、特に制限はないが、好ましくは0.5~20μmであり、より好ましくは1~15μmである。平均繊維長が前記範囲内であると、多糖類ナノファイバー配合多糖類組成物の機械物性が、特に優れる傾向があるため好ましい。平均繊維長は、電子顕微鏡を用いて観察した20本の繊維の長さの平均値とすることができる。
 多糖類ナノファイバー(A)の平均L/D(平均繊維長/平均繊維径)は、多糖類ナノファイバー配合多糖類組成物の機械物性を少量の多糖類ナノファイバー(A)で十分に向上させる観点から、好ましくは、50以上、又は80以上、又は100以上、又は120以上、又は150以上である。上限は特に限定されないが、取扱い性の観点から好ましくは10000以下である。
 多糖類ナノファイバー(A)を含むゾルとしては、市販品を用いてもよく、例えば、バクテリアセルロースナノファイバーを含むゾルである、Fibnano(登録商標) CM-NFBC、HE-NFBC、HP-NFBC(草野作工製)、植物由来セルロースナノファイバーを含むゾルである、木材由来 nanoforest、竹由来 nanoforest(中越パルプ工業製)、キトサンナノファイバーを含むゾルである、BiNFi-s キトサンナノファイバー(スギノマシン製)、キチンナノファイバーを含むゾルである、BiNFi-s キチンナノファイバー(スギノマシン製)が挙げられる。
 なお、Fibnano(登録商標) CM-NFBC、HE-NFBC、HP-NFBCは、バクテリアセルロースナノファイバー及び水溶性セルロースを含むゾルである。なお、CM-NFBCは、水溶性セルロースとして、カルボキシメチルセルロース(CM)を含み、HE-NFBCは、水溶性セルロースとして、ヒドロキシエチルセルロース(HE)を含み、HP-NFBCは、水溶性セルロースとして、ヒドロキシプロピルセルロース(HP)を含む。
(多糖類(B))
 本実施形態の多糖類ナノファイバー配合多糖類組成物の製造方法では、多糖類(B)が用いられる。多糖類(B)としては、特に制限はないが、通常は多糖類ナノファイバー(A)によって機械物性を向上させることが望まれる多糖類である。多糖類(B)としては、1種単独で用いても、2種以上を用いてもよい。
 多糖類(B)とは、ナノファイバーではない多糖類であり、すなわち、多糖類ナノファイバー(A)以外の多糖類である。多糖類ナノファイバー(A)は、通常は水や水溶性溶媒に対して溶解することはなく、水や水溶性溶媒に対して分散、好ましくは単分散するのに対して、多糖類(B)は、通常水や水溶性溶媒に対して、溶解可能である。
 多糖類(B)としては、セルロース、キトサン、キチン、デンプン、グリコーゲン、アガロース、カラギーナン、ヘパリン、ヒアルロン酸、キサンタンガム、タマリンドガム(タマリンドシードガムとも記す。)、ジェランガム、グァーガム、ローカストビンガム、寒天、カラギーナン、アルギン酸類、ペクチン、スクシノグリカン、グルコナンマン、サイトリウムシードガム、プルラン、アラビアガム、カラヤガム及びそれらの誘導体から選択される少なくとも1種の多糖類であることが好ましい。誘導体としては、疎水性変性(エステル化、エーテル化、シアノ化等)、カチオン変性、アニオン変性(TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル)酸化等)等の化学修飾した多糖類が挙げられる。多糖類(B)としては、セルロース誘導体、キトサン、キチン、デンプン、デンプン誘導体、タマリンドシードガム、キサンタンガム、グァーガム、グァーガム誘導体、及びジェランガムから選択される少なくとも1種の多糖類であることがより好ましく、セルロースエステル、キトサン、キチン、デンプン、エーテル化デンプン(例えばヒドロキシプロピルデンプン)、タマリンドシードガム、キサンタンガム、グァーガム、カチオン化グァーガム誘導体、及びジェランガムから選択される少なくとも1種の多糖類であることが更に好ましく、セルロースエステル、キトサン、キチン、デンプン、及びヒドロキシプロピルデンプンから選択される少なくとも1種の多糖類であることが特に好ましく、セルロースエステル、デンプン及びヒドロキシプロピルデンプンから選択される少なくとも1種の多糖類であることがとりわけ好ましい。
 セルロースエステルとしては、酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、イソ酪酸セルロース、酢酸酪酸セルロース、アセト酪酸セルロース、酢酸プロピオン酸セルロース、及びアセトプロピオン酸セルロースから選択される少なくとも1種のセルロースエステルが挙げられ、酢酸セルロース、及びプロピオン酸セルロースから選択される少なくとも1種のセルロースエステルが好ましい。セルロースエステルの置換度としては、0.05~2.95が好ましく、0.5~2.7がより好ましい。なお、置換度とは、セルロースは、セルロースを構成するグルコース単位1つ当たり、3つのヒドロキシ基を有するが、該ヒドロキシ基の置換された割合を意味する。例えば、置換度2.5のセルロースとは、グルコース単位1つ当たり、平均2.5個のヒドロキシ基が置換されたセルロースを意味する。
 また、エーテル化デンプンの置換度としては、0.05~2.95が好ましく、0.07~2.7がより好ましい。
 多糖類(B)としては、市販品を用いてもよく、例えば、セルロースエステルとして、Acros製のCellulose Acetate(酢酸セルロース)、Scientific Polymer製のCellulose Propyonate(プロピオン酸セルロース)が挙げられる。また、例えば、エーテル化デンプンとしては、日本食品化工製のクリアテクスト B-3(ヒドロキシプロピル化リン酸架橋デンプン)が挙げられる。
 多糖類(B)として市販品を用いる場合等には、多糖類(B)は、他の成分を含む組成物として用いてもよい。他の成分としては、添加剤として、可塑剤、抗菌剤、防カビ剤、防腐(静菌)剤、殺菌剤、抗ウィルス剤、消臭剤、熱可塑剤、酸化防止剤、耐候剤、耐光剤、耐熱剤、熱安定化剤、難燃剤、帯電防止剤、放熱材、蓄熱材、相溶化剤、架橋剤、耐加水分解剤、消泡剤、繊維状強化材、及び板状強化材等が挙げられる。他の成分としては1種単独でも、2種以上を用いてもよい。繊維状強化材としては、ガラス繊維、炭素繊維、石墨繊維、スチール繊維、チタン酸カリウム繊維、アラミド繊維、ビニロン繊維、ポリエステル繊維等の合成繊維、ケナフ繊維、麻繊維、木綿、竹繊維等の天然繊維が挙げられる。板状強化材としては、マイカ、タルク、クレー、ガラスフレーク等が挙げられる。多糖類(B)を含む組成物として用いる場合には、例えば多糖類(B)を0.3~70wt%含むことが好ましく、0.5~50wt%含むことがより好ましく、1~40wt%含むことが特に好ましい。なお、多糖類(B)を含む組成物全体を100wt%とする。
(溶媒(C))
 本実施形態の多糖類ナノファイバー配合多糖類組成物の製造方法では、多糖類(B)を溶解可能な溶媒(C)が用いられる。なお、多糖類(B)を溶解可能な溶媒(C)を、単に溶媒(C)とも記す。溶媒(C)としては、多糖類(B)を溶解可能であればよく、特に制限はない。溶媒(C)としては、1種単独で用いても、2種以上を用いてもよい。
 溶媒(C)としては、水及び水溶性溶媒から選択される少なくとも1種の溶媒であることが好ましく、水溶性溶媒であることがより好ましい。
 水溶性溶媒としては、アセトン、メチルエチルケトン、テトラヒドロフラン、酢酸メチル、酢酸エチル、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、メチルグリコールアセテート、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジアセトンアルコール、ギ酸メチル、乳酸エチル、アセトニトリル、メチルグリコール、ジオキサン、ジオキソラン等から選択される少なくとも1種の溶媒が好ましく、アセトン、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジオキサン、及びジオキソランから選択される少なくとも1種の溶媒であることがより好ましい。溶媒(C)が、水、アセトン、メチルエチルケトン、テトラヒドロフラン、酢酸メチル、酢酸エチル、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、エチレングリコール、プロピレングリコール、メチルグリコールアセテート、N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジアセトンアルコール、ギ酸メチル、乳酸エチル、アセトニトリル、メチルグリコール、ジオキサン、及びジオキソランから選択される少なくとも1種の溶媒であることが好ましい態様の一つであり、アセトン、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジオキサン、及びジオキソランから選択される少なくとも1種の溶媒であることがより好ましい態様の一つである。なお、ジオキサンとしては1,4-ジオキサンが好ましい態様の一つである。
(混合物を得る工程)
 多糖類ナノファイバー配合多糖類組成物の製造方法は、多糖類ナノファイバー(A)を含むゾルと、多糖類(B)と、多糖類(B)を溶解可能な溶媒(C)とを混合し、混合物を得る工程を有する。
 多糖類ナノファイバー(A)を含むゾルと、多糖類(B)と、溶媒(C)とを混合する方法としては、特に制限はなく、例えば多糖類ナノファイバー(A)を含むゾルに、多糖類(B)と、溶媒(C)とを個別に加え、混合する方法、多糖類(B)を溶媒(C)に溶解し溶液を調製し、多糖類ナノファイバー(A)を含むゾルに溶液を加え、混合する方法、多糖類(B)を溶媒(C)に溶解し溶液を調製し、該溶液に多糖類ナノファイバー(A)を含むゾルを加え、混合する方法が挙げられる。なお、多糖類ナノファイバー(A)を含むゾルに、多糖類(B)と、溶媒(C)とを個別に加え、混合する方法としては、例えば多糖類ナノファイバー(A)を含むゾルに、多糖類(B)と、溶媒(C)とを同時に加え、混合する方法、多糖類ナノファイバー(A)を含むゾルに、多糖類(B)を加え混合し、次いで溶媒(C)を加え混合する方法、多糖類ナノファイバー(A)を含むゾルに、溶媒(C)を加え混合し、次いで多糖類(B)を加え混合する方法が挙げられる。
 混合物を得る工程としては、多糖類ナノファイバー(A)を含むゾル、多糖類(B)及び、溶媒(C)以外の成分を同時に混合してもよい。多糖類ナノファイバー(A)を含むゾル、多糖類(B)及び、溶媒(C)以外の成分(その他の成分)としては、可塑剤、抗菌剤、防カビ剤、防腐(静菌)剤、殺菌剤、抗ウィルス剤、消臭剤、熱可塑剤、酸化防止剤、耐候剤、耐光剤、耐熱剤、熱安定化剤、難燃剤、帯電防止剤、放熱材、蓄熱材、相溶化剤、架橋剤、耐加水分解剤、消泡剤、繊維状強化材、及び板状強化材等が挙げられる。他の成分としては1種単独でも、2種以上を用いてもよい。繊維状強化材としては、ガラス繊維、炭素繊維、石墨繊維、スチール繊維、チタン酸カリウム繊維、アラミド繊維、ビニロン繊維、ポリエステル繊維等の合成繊維、ケナフ繊維、麻繊維、木綿、竹繊維等の天然繊維が挙げられる。板状強化材としては、マイカ、タルク、クレー、ガラスフレーク等が挙げられる。可塑剤としては、グリセリン、トリアセチン、ジアセチン、モノアセチン、ソルビトール、クエン酸メチル、クエン酸エチル、フタル酸エステル、リン酸エステル等が挙げられる。多糖類ナノファイバー(A)を含むゾル、多糖類(B)及び、溶媒(C)以外の成分を同時に混合することにより、当該成分を多糖類ナノファイバー配合多糖類組成物に含有させることができる。その他の成分としては、前記ゾル、多糖類、溶媒中に含まれている成分であってもよく、別の成分(例えば添加剤)として混合物を得る工程で用いてもよい。例えば、多糖類(B)がセルロースエステル、タマリンドシードガム、グァーガム、及びキサンタンガムから選択される少なくとも1種の多糖類である場合には、前記混合物が可塑剤を有することが好ましい態様の一つである。可塑剤を含むことにより、強度及び柔軟性に優れ、且つ撥水性、撥油性にも優れる多糖類ナノファイバー配合多糖類組成物を得ることができる。
 混合する際の温度としては、通常は4~80℃が好ましく、10~30℃がより好ましい。また、混合する際の圧力としては、常圧下で行っても、減圧下で行っても、加圧下で行ってもよいが、コストの観点から、常圧下で行うことが好ましい。
 混合する時間としては、通常は0.1~24時間が好ましく、0.1~3時間がより好ましい。前記範囲では、多糖類ナノファイバー(A)が、均一に分散する傾向があるため好ましい。
 混合物を得る工程に用いる多糖類ナノファイバー(A)を含むゾルの量としては、多糖類ナノファイバー配合多糖類組成物100質量%中に、多糖類ナノファイバー(A)を、通常は0.1~60質量%、好ましくは0.3~55質量%、より好ましくは0.3~50質量%含む量であればよい。
 混合物を得る工程に用いる多糖類(B)の量としては、多糖類ナノファイバー配合多糖類組成物100質量%中に、多糖類(B)を、通常は40~99.7質量%、好ましくは45~99.5質量%、より好ましくは50~99質量%含む量であればよい。
 その他の成分を用いる場合には、その他の成分の種類によっても異なるが、多糖類ナノファイバー配合多糖類組成物100質量%中に、その他の成分を、通常は0.5~50質量%、好ましくは1~40質量%含む量であればよい。
 多糖類ナノファイバー(A)を含むゾルがヒドロゾル、すなわち水を分散媒としており、且つ溶媒(C)が水溶性溶媒である場合には、両者の量比(水:水溶性溶媒(モル比))としては例えば、1.5:8.5~5.5:4.5であることが好ましい態様の一つである。また、水と、水溶性溶媒とを均一に除去する観点から、乾燥混合物を得る工程において、水と、水溶性溶媒とが共沸する量とすることが好ましい態様の一つである。例えば、乾燥混合物を得る工程において-60kPa(ゲージ圧)の減圧下で乾燥を行う場合であり、且つ水溶性溶媒が1,4-ジオキサンである場合には、水:1,4-ジオキサン(モル比)が、3.8:6.2~4.2:5.8であることが好ましい態様の一つである。
(乾燥混合物を得る工程)
 多糖類ナノファイバー配合多糖類組成物の製造方法は、混合物を得る工程により得られた混合物を乾燥し、乾燥混合物を得る工程を有する。
 乾燥混合物を得る工程は、多糖類ナノファイバー(A)を含むゾルを構成する分散媒と、溶媒(C)とを除去することを目的として行われる。なお、乾燥混合物を得る工程では、分散媒及び溶媒(C)の95質量%以上を除去することが好ましく、98質量%以上を除去することがより好ましい。最も好ましくは、分散媒及び溶媒(C)を実質的に100質量%除去することが好ましい。なお、実質的に100質量%除去するとは、乾燥混合物から、分散媒及び溶媒(C)を99質量%以上除去することを意味する。
 多糖類ナノファイバー配合多糖類組成物の製造方法は、後述のように乾燥混合物を混練し、多糖類ナノファイバー配合多糖類組成物を得る工程を有していてもよいが、該混練する工程を行わずに、乾燥混合物を、多糖類ナノファイバー配合多糖類組成物としてもよい。具体例としては、混合物を得る工程により得られた混合物をパレット等に広げた状態で乾燥することにより、フィルム状の乾燥混合物を得て、該フィルム状の乾燥混合物を、多糖類ナノファイバー配合多糖類組成物としてもよい。
 乾燥混合物を得る工程を実施する際の温度は、ゾルを構成する分散媒及び溶媒(C)の沸点、乾燥工程を常圧下で行うか、減圧下で行うか等によっても異なるが、例えば20~90℃、好ましくは30~80℃で行われる。常圧下で行うことが、コストの観点から好ましく、減圧下で行うことが、低温で乾燥を実施することができる観点から好ましい。また、減圧下での乾燥(真空乾燥)と、常圧下での乾燥を組み合わせて行ってもよい。
 乾燥する時間としては、通常は3~120時間が好ましく、1~48時間がより好ましい。
 減圧下で乾燥を行う場合の圧力としては、-10~-100kPa(ゲージ圧)が好ましく、-50~-100kPa(ゲージ圧)がより好ましく、-60~-80kPa(ゲージ圧)が特に好ましい。
 乾燥は、例えば、真空乾燥機、エバポレーターを用いた溶媒留去、減圧蒸留による溶媒の留去により行うことができる。
(任意工程)
 多糖類ナノファイバー配合多糖類組成物の製造方法は、混合物を得る工程、乾燥混合物を得る工程以外の工程を、任意工程として有していてもよい。
 任意工程としては、例えば乾燥混合物を混練し、多糖類ナノファイバー配合多糖類組成物を得る工程が挙げられる。多糖類ナノファイバー配合多糖類組成物は、混練した後に、ペレットとして得てもよく、所望の形状を有する成形体として得てもよく、ペレットを得た後、二次成形し所望の形状を有する成形体を得てもよい。
 混練することにより、多糖類ナノファイバー(A)が、より均一に多糖類(B)中に分散する傾向があるため好ましい。混練の条件としては、特に制限はないが、混練時間を長くしたり、混練速度を高めたりすると、多糖類ナノファイバー(A)がより分散する傾向がある。
 混練を行う際の温度としては、例えば170~220℃、好ましくは170~210℃が挙げられる。混練を行う時間としては、例えば3分~30分、好ましくは5分~20分が挙げられる。
 また、多糖類ナノファイバー配合多糖類組成物の成形体として糸を得る場合には、紡糸温度としては、例えば170~220℃、好ましくは180~215℃、より好ましくは190~210℃、更に好ましくは195℃~205℃である。紡糸温度が200℃近傍では、紡糸される糸の繊維径と、口金の径が同程度となり、得られる糸の機械的強度に優れる傾向があるため好ましい。
 本実施形態の多糖類ナノファイバー配合多糖類組成物の製造方法で得られる多糖類ナノファイバー配合多糖類組成物は、従来公知の方法で得られた多糖類ナノファイバーを含む組成物と比べて、機械物性が優れる傾向がある。
 本発明者らは、本実施形態の製造方法で得られる多糖類ナノファイバー配合多糖類組成物が機械物性に優れる理由を、溶媒(C)と共に、多糖類(B)、多糖類ナノファイバー(A)を含むゾルを混合することにより、従来公知の方法と比べ、多糖類ナノファイバー(A)が均一に多糖類(B)に分散するためであると、推測した。
 本実施形態の多糖類ナノファイバー配合多糖類組成物の製造方法で得られる多糖類ナノファイバー配合多糖類組成物の形状としては特に制限はなく、所望の形状を有する成形体とすることができる。多糖類ナノファイバー配合多糖類組成物を含む成形体としては、多糖類ナノファイバー配合多糖類組成物を所望の形状となる条件で製造することにより得てもよく、多糖類ナノファイバー配合多糖類組成物を二次成形することにより得てもよい。成形体の形状としては、例えばフィルム、ペレット、粉末、板、糸、又は容器状であることが好ましい。容器としては、例えばコップ、皿、碗、箱等が挙げられる。
 以下、実施例を挙げて本実施形態を説明するが、本開示はこれらの例によって限定されるものではない。
 実施例、比較例では以下の成分を使用した。
CM-BCNFゾル:カルボキシメチルセルロース(CM)と、バクテリアセルロースナノファイバー(BCNF)とを合計1wt%含むヒドロゾル(CMとBCNFとの合計100wt%中の、CM含量13.7wt%、BCNF含量86.3wt%)(草野作工製:Fibnano(登録商標) CM-NFBC)
HE-BCNFゾル:ヒドロキシエチルセルロース(HE)と、バクテリアセルロースナノファイバー(BCNF)とを合計1wt%含むヒドロゾル(HEとBCNFとの合計100wt%中の、HE含量22.5wt%、BCNF含量77.5wt%)(草野作工製:Fibnano(登録商標) HE-NFBC)
HP-BCNFゾル:ヒドロキシプロピルセルロース(HP)と、バクテリアセルロースナノファイバー(BCNF)とを合計1wt%含むヒドロゾル(HPとBCNFとの合計100wt%中の、HP含量26.0wt%、BCNF含量74.0wt%)(草野作工製:Fibnano(登録商標) HP-NFBC)
竹CNFゾル:竹由来セルロースナノファイバーを1.7wt%含むヒドロゾル(中越パルプ工業製:竹由来 nanoforest)
キチンNFゾル:キチンナノファイバーを5wt%含むヒドロゾル(スギノマシン製:BiNFi-s キチンナノファイバー)
キトサンNFゾル:キトサンナノファイバーを5wt%含むヒドロゾル(スギノマシン製:BiNFi-s キトサンナノファイバー)
CA:可塑剤22wt%含有酢酸セルロース(酢酸セルロースの置換度は2.5(アセチル基2.5、ヒドロキシ基0.5))
CA(可塑剤無):酢酸セルロース(Acros製:Cellulose Acetate、重量平均分子量Mw.100,000、酢酸セルロースの置換度は2.5(アセチル基2.5、ヒドロキシ基0.5))
CP:プロピオン酸セルロース(Scientific Polymer製:Cellulose Propyonate、プロピオン酸セルロースの置換度は2.5(プロピオニル基2.5、ヒドロキシ基0.5))
HPデンプン:ヒドロキシプロピルデンプン(日本食品化工製:クリアテクスト B-3、ヒドロキシプロピル化リン酸架橋デンプンの置換度は0.11)
タマリンドシードガム:タマリンドシードガム(住友ファーマフード&ケミカル製:グリロイド6C)(実施例19、比較例8で使用)
タマリンドシードガム:タマリンドシードガム(住友ファーマフード&ケミカル製:タマリンドシードガム(精製品))(実施例29で使用)
キサンタンガム:キサンタンガム(住友ファーマフード&ケミカル製:ケルデント)
グァーガム:グァーガム(住友ファーマフード&ケミカル製:グァパックPF-20)
カチオン化グァーガム:カチオン化グァーガム(住友ファーマフード&ケミカル製:ラボールガムCG-M)
CA(可塑剤37wt%含):可塑剤37wt%含有酢酸セルロース(酢酸セルロースの置換度は2.5(アセチル基2.5、ヒドロキシ基0.5))
[実施例1]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 CM-BCNFゾル50g(CM、BCNF合計量0.5g)に、アセトン250mLを加え、均一分散するまで撹拌後、CA4.5gを加え、CAが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、80℃のホットプレートにステンレスバットを乗せ、5時間ほど乾燥を行ない、溶媒を留去し、乾燥混合物(キャストフィルム)(CM、BCNF合計量10wt%)を得た。
<混練>
 キャストフィルムを細かく粉砕後、溶融混練装置(DSM社製、Xplore MC5)を用いて、190~200℃の条件下、スクリュー回転数60rpmで5~10分混練を行った。混練により得たストランドを切断し、ペレット(BCNF含有酢酸セルロースペレット)を得た。
<フィルム作製>
 ペレットを1.0~2.0gを計量し、熱プレス機(井元製作所製、180C型)で加圧せずに200℃で6分間加熱し、樹脂を溶解させた後、200℃で1.56MPaに加圧した状態を4分間維持し、その後、20kgの荷重を掛けた状態でゆっくりと室温まで冷やしてフィルムを作製した。
<引張試験片作製>
 作製したフィルムを型抜き(井元製作所製、IMC-1948-B型)を用いて、ダンベル型試験片(図1)(JIS K7139に準拠)状に型抜きをした。
<引張試験>
 作製したダンベル型試験片に対して、引張試験機(島津製作所製、EZ-SX 200N)を用いて、5mm/minの速度で引張試験を行なった。
[比較例1]
 実施例1のペレットを、CAのペレットに変更した以外は、実施例1のフィルム作製の項に従い、フィルムを作製し、該フィルムから実施例1と同様の方法でダンベル型試験片を製造し、引張試験を行った。
[実施例2]
 500mLビーカーにCM-BCNFゾル50g(CM、BCNF合計量0.5g)を加えた。ビーカーにアセトン250mLを加え、撹拌した(総量約300mL)。
 吸引ろ過器にグラスフィルター付きガラス濾過器を設置し、グラスフィルター上に孔径0.45μmのPTFE製メンブレンフィルターを設置した。
 ビーカー内の溶液をゆっくりとガラス濾過器に注いだ。ガラス濾過器にBCNFを含む分散液を約50mL残し、約250mLの液体を吸引ろ過で吸引瓶に落とした。
 ガラス濾過器にアセトン250mLを加え、ガラス棒で軽くかきまぜた(総量約300mL)(操作A)。
 ガラス濾過器にBCNFを含む分散液を約50mL残し、約250mLの液体を吸引ろ過で吸引瓶に落とした(操作B)。
 操作A及び操作Bを合計3回行うことにより、ヒドロゾルを構成する水をアセトンで置換した。
 ガラス濾過器に残った約50mLのアセトン置換したゾルを500mLビーカーに移し替え、CM-BCNFゾル(オルガノゾル)を得た。
 CM-BCNFゾルを、CM-BCNFゾル(オルガノゾル)に変更した以外は、実施例1と同様に行い、混合物、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例1、2、比較例1の引張試験の結果を、表1及び図2に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1、実施例1及び実施例2より、本実施形態の製造方法で得られた多糖類ナノファイバー配合多糖類組成物では、多糖類ナノファイバーを含まない材料(比較例1)と比べた際の、強度の向上(機械物性の強化)が確認された。多糖類ナノファイバー(A)を含むゾルとしては、ヒドロゾル、オルガノゾルの何れであっても有用であることが示唆された。
[比較例2]
 CM-BCNFゾルを凍結乾燥し、CM-BCNF(CMとBCNFとの混合物)を得た。CM-BCNF0.5gを細かく粉砕し、CA4.5gとよく混ぜた後、実施例1の混練の項に記載の条件で混練し、ペレット(CM、BCNF合計量10wt%)を得た。得られたペレットを用い、実施例1に記載の方法で、フィルム、ダンベル型試験片を製造し、引張試験を行った。
[比較例3]
 CM-BCNFゾルを凍結乾燥し、CM-BCNF(CMとBCNFとの混合物)を得た。CM-BCNF1.0gを細かく粉砕し、CA4.0gをよく混ぜた後、実施例1の混練の項に記載の条件で混練を行なうことでマスターバッチ(CM、BCNF合計量20wt%)を作製した。
 マスターバッチ2.5gとCA2.5gをよく混ぜた後、実施例1の混練の項に記載の条件で混練し、ペレット(CM、BCNF合計量10wt%)を得た。得られたペレットを用い、実施例1に記載の方法で、フィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例1、比較例1~3の引張試験の結果を、表2及び図3に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例1~3、実施例1より、本実施形態の製造方法で得られた多糖類ナノファイバー配合多糖類組成物では、多糖類ナノファイバーを含まない材料(比較例1)と比べた際の、強度の向上(機械物性の強化)が確認された。また、凍結乾燥した後、多糖類ナノファイバーと、多糖類とを混合した材料(比較例2、3)では、十分な強度の向上(機械物性の強化)が確認されなかった。このため、本実施形態の製造方法が、他の製造方法と比べて、得られる組成物の機械物性の観点から、優位性を有することが示唆された。
[実施例3]
 実施例1における混合物の乾燥を、下記操作に変更した以外は、実施例1と同様に行い、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットにステンレス板を載せて蓋をし、ドラフト内に静置し、室温(20~25℃)、湿度50~60%の条件下で約3~5日放置し、乾燥混合物(キャストフィルム)(CM、BCNF合計量10wt%)を得た。
[実施例4]
 実施例1における混合物の乾燥を、下記操作に変更した以外は、実施例1と同様に行い、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットに埃除けのアルミ箔を載せ、ドラフト内に静置し、室温(20~25℃)、湿度50~60%の条件下で約2~3日放置し、乾燥混合物(キャストフィルム)(CM、BCNF合計量10wt%)を得た。
[実施例5]
 実施例1における混合物の乾燥を、下記操作に変更した以外は、実施例1と同様に行い、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットを真空乾燥機に設置し、室温(20~25℃)、-60kPa(ゲージ圧)の条件下で1日かけて乾燥し、乾燥混合物(キャストフィルム)(CM、BCNF合計量10wt%)を得た。
 実施例1、3~5、比較例1の引張試験の結果を、表3及び図4に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例1、実施例1、3~5より、本実施形態の製造方法で得られた多糖類ナノファイバー配合多糖類組成物では、乾燥方法の種類を問わず、多糖類ナノファイバーを含まない材料(比較例1)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例6]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 CM-BCNFゾルに、蒸留水と、アセトン250mLとを加え、均一分散するまで撹拌後、CAを加え、CAが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットに埃除けのアルミ箔を載せ、ドラフト内に静置し、室温(20~25℃)、湿度50~60%の条件下で約2~3日放置し、乾燥混合物(キャストフィルム)(CM、BCNF合計量1wt%、3wt%、5wt%又は10wt%)を得た。
 混練以降の操作を実施例1と同様に行い、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
[実施例7]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 CM-BCNFゾルに、蒸留水と、アセトン250mLとを加え、均一分散するまで撹拌後、CAを加え、CAが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、80℃のホットプレートにステンレスバットを乗せ、3~5時間ほど乾燥を行ない、溶媒を留去し、乾燥混合物(キャストフィルム)(CM、BCNF合計量1wt%、3wt%、5wt%又は10wt%)を得た。
 混練以降の操作を実施例1と同様に行い、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例6及び実施例7において、各CM、BCNF合計量に応じた、前記BCNFが分散した酢酸セルロース溶液(混合物)の調製の項における、CM-BCNFゾル、蒸留水、及びCAの量(g)を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例6及び実施例7、比較例1の引張試験の結果を、表5及び図5に示す。
Figure JPOXMLDOC01-appb-T000005
 比較例1、実施例6及び実施例7より、本実施形態の製造方法で得られた、様々な量の多糖類ナノファイバーを含む多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例1)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例8]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 CM-BCNFゾル50gに、アセトン250mLを加え、均一分散するまで撹拌後、CA4.5gを加え、CAが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットを真空乾燥機に設置し、室温(20~25℃)、-60kPa(ゲージ圧)の条件下で15時間かけて乾燥し、乾燥混合物(キャストフィルム)(CM、BCNF合計量10wt%)を得た。
 混練以降の操作を実施例1と同様に行い、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
[比較例4]
 CM-BCNFゾル50gを、CA(可塑剤無)0.5g及び蒸留水50gに変更した以外は、実施例8と同様に行い、混合物、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例8、比較例4の引張試験の結果を、表6及び図6に示す。
Figure JPOXMLDOC01-appb-T000006
 比較例4、実施例8より、本実施形態の製造方法において、溶媒(C)としてアセトン使用し、真空乾燥機を用いて乾燥を行なった場合においても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例4)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例9]
 アセトンを、テトラヒドロフラン(THF)に変更を用意した以外は、実施例8と同様に行い、混合物、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
[比較例5]
 CM-BCNFゾル50gを、CA(可塑剤無)0.5g及び蒸留水50gに変更した以外は、実施例9と同様に行い、混合物、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例9、比較例5の引張試験の結果を、表7及び図7に示す。
Figure JPOXMLDOC01-appb-T000007
 比較例5、実施例9より、本実施形態の製造方法において、溶媒(C)としてアセトンではなく、THFを使用した場合であっても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例5)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例10]
 CAを、CPに変更した以外は、実施例8と同様に行い、混合物、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
[比較例6]
 実施例8における混合物を、蒸留水50gとアセトン250mLを混合した水溶性溶液に、CP5.0gを加え、CPが完全溶解するまで撹拌することにより得た混合物に変更した以外は、実施例8と同様に行い、混合物、乾燥混合物(キャストフィルム)、ペレット、フィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例10、比較例6の引張試験の結果を、表8及び図8に示す。
Figure JPOXMLDOC01-appb-T000008
 比較例6、実施例10より、本実施形態の製造方法において、多糖類(B)として酢酸セルロースではなく、プロピオン酸セルロースを使用した場合であっても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例6)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例11]
<BCNFが分散した多糖溶液の調整>
 HPデンプンを0.5gに対して、水10gを加え、90℃で1時間加熱しHPデンプンを溶解させた。そこにCM-BCNFゾル50gを加え、均一分散するまで撹拌し、混合物(HPデンプン:CM、BCNF合計量(質量比)=50:50)を得た。
<混合物の乾燥(キャストフィルムの作製)>
 混合物をステンレスバットに注ぎ、真空乾燥機に静置し、70℃で-10kPa(ゲージ圧)で空気を循環させながら3時間ほど真空乾燥を行なうことで脱泡をしながら合計質量が10g程度になるまで水分を除去後、室温に戻し、2日間ほど自然乾燥を行ない乾燥混合物(キャストフィルム)を得た。
<引張試験片作製>
 作製したフィルムを型抜き(井元製作所製、IMC-1948-B型)を用いて、ダンベル型試験片(図1)(JIS K7139に準拠)状に型抜きをした。
 実施例1と同様の方法で引張試験を行った。
[実施例12]
 HPデンプンの量及びCM-BCNFゾルの量を変更し、混合物(HPデンプン:CM、BCNF合計量(質量比)=67:33)を得た以外は実施例11と同様に行い、乾燥混合物(キャストフィルム)、ダンベル型試験片を製造し、引張試験を行った。
[実施例13]
 HPデンプンの量及びCM-BCNFゾルの量を変更し、混合物(HPデンプン:CM、BCNF合計量(質量比)=89:11)を得た以外は実施例11と同様に行い、乾燥混合物(キャストフィルム)、ダンベル型試験片を製造し、引張試験を行った。
[比較例7]
 CM-BCNFゾルを使用しなかった以外は、実施例11と同様に行い、キャストフィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例11~13、比較例7の引張試験の結果を、表9及び図9に示す。
Figure JPOXMLDOC01-appb-T000009
 比較例7、実施例11~13より、本実施形態の製造方法において、多糖類(B)として酢酸セルロースではなく、HPデンプンを使用し、溶媒(C)として水を使用した場合であっても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例7)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例14]
 CM-BCNFゾルを、HE-BCNFゾルに変更した以外は実施例8と同様に行った。
[実施例15]
 CM-BCNFゾルを、HP-BCNFゾルに変更した以外は実施例8と同様に行った。
[実施例16]
 竹CNFゾル(竹由来セルロースナノファイバー(竹CNF)を1.7wt%含むヒドロゾル)29.4g(竹CNF0.5g)に蒸留水20.6gを加え、竹由来セルロースナノファイバーを1wt%含むヒドロゾル(1wt%竹CNFゾル)を調製した。
 CM-BCNFゾルを、1wt%竹CNFゾルに変更した以外は実施例8と同様に行った。
[実施例17]
 キチンNFゾル(キチンナノファイバー(キチンNF)を5wt%含むヒドロゾル)10g(キチンNF0.5g)に蒸留水40gを加え、キチンナノファイバーを1wt%含むヒドロゾル(1wt%キチンNFゾル)を調製した。
 CM-BCNFゾルを、1wt%キチンNFゾルに変更した以外は実施例8と同様に行った。
[実施例18]
 キトサンNFゾル(キトサンナノファイバー(キトサンNF)を5wt%含むヒドロゾル)10g(キトサンNF0.5g)に蒸留水40gを加え、キトサンナノファイバーを1wt%含むヒドロゾル(1wt%キトサンNFゾル)を調製した。
 CM-BCNFゾルを、1wt%キトサンNFゾルに変更した以外は実施例8と同様に行った。
 実施例8、14~18、比較例4の引張試験の結果を、表10及び図10に示す。
Figure JPOXMLDOC01-appb-T000010
 比較例4、実施例8、14~18より、本実施形態の製造方法において、多糖類ナノファイバー(A)を含むゾルとして、様々な種類の多糖類ナノファイバーを含むゾルを用いた場合でも、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例4)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例19]
<BCNFが分散したタマリンドシードガム水溶液(混合物)の調製>
 CM-BCNFゾル7gに、蒸留水56mLを加え、均一分散するまで撹拌後、タマリンドシードガム0.63gを加え、タマリンドシードガムが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をポリプロピレン製バットに注ぎ、常温で湿度40~60%条件下、2~3日間静置乾燥し、乾燥混合物(キャストフィルム)(CM、BCNF合計量10wt%)を得た。
<引張試験片作製>
 作製したフィルムを型抜き(井元製作所製、IMC-1948-B型)を用いて、ダンベル型試験片(図1)(JIS K7139に準拠)状に型抜きをした。
 作製したダンベル型試験片に対して、実施例1と同様の方法で引張試験を行った。
[比較例8]
 CM-BCNFゾルを使用しなかった以外は、実施例19と同様に行い、キャストフィルム、ダンベル型試験片を製造し、引張試験を行った。
 実施例19、比較例8の引張試験の結果を、表11及び図11に示す。
Figure JPOXMLDOC01-appb-T000011
 比較例8、実施例19より、本実施形態の製造方法において、多糖類(B)としてタマリンドシードガムを使用し、溶媒(C)として水を使用した場合であっても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例8)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例20]
 タマリンドシードガムを、キサンタンガムに変更した以外は実施例19と同様に行った。
[比較例9]
 タマリンドシードガムを、キサンタンガムに変更した以外は比較例8と同様に行った。
 実施例20、比較例9の引張試験の結果を、表12及び図12に示す。
Figure JPOXMLDOC01-appb-T000012
 比較例9、実施例20より、本実施形態の製造方法において、多糖類(B)としてキサンタンガムを使用し、溶媒(C)として水を使用した場合であっても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例9)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例21]
 タマリンドシードガムを、グァーガムに変更した以外は実施例19と同様に行った。
[比較例10]
 タマリンドシードガムを、グァーガムに変更した以外は比較例8と同様に行った。
 実施例21、比較例10の引張試験の結果を、表13及び図13に示す。
Figure JPOXMLDOC01-appb-T000013
 比較例10、実施例21より、本実施形態の製造方法において、多糖類(B)としてグァーガムを使用し、溶媒(C)として水を使用した場合であっても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例10)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例22]
 タマリンドシードガムを、カチオン化グァーガムに変更した以外は実施例20と同様に行った。
[比較例11]
 タマリンドシードガムを、カチオン化グァーガムに変更した以外は比較例8と同様に行った。
 実施例22、比較例11の引張試験の結果を、表14及び図14に示す。
Figure JPOXMLDOC01-appb-T000014
 比較例11、実施例22より、本実施形態の製造方法において、多糖類(B)としてカチオン化グァーガムを使用し、溶媒(C)として水を使用した場合であっても、得られる多糖類ナノファイバー配合多糖類組成物において、多糖類ナノファイバーを含まない材料(比較例11)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例23]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 CM-BCNFゾル50gに、アセトン250mLを加え、均一分散するまで撹拌後、CA(可塑剤37wt%含)4.5gを加え、CAが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットを真空乾燥機に設置し、室温(20~25℃)、-60kPa(ゲージ圧)の条件下で15時間かけて乾燥し、乾燥混合物(キャストフィルム)(CM、BCNF合計量10wt%)を得た。
<乾燥物内のBCNF濃度の調整>
 混合乾燥物を混練し、CM、BCNF合計量10wt%の混合ペレットを得た。そのペレット1.2gとCA2.8gをさらに混練し、CM、BCNF合計量3wt%のペレットを得た。
<溶融紡糸>
 溶融紡糸装置(井元製作所製:IMC―6721型)に孔径φ700μmのダイを取り付け、CM、BCNF合計量3wt%のペレット8gを入れ、180~190℃、油圧シリンダー2MPa(ゲージ圧)の条件下で溶融紡糸し、糸を得た(図15左)。
<引張試験>
 作製した糸に対して、引張試験機(島津製作所製、EZ-SX 200N)を用いて、5mm/minの速度で引張試験を行なった。
[比較例12]
 実施例23と同様に溶融紡糸装置に孔径φ700μmのダイを取り付け、8gのCA(可塑剤37wt%含)のペレットを入れ、180-190℃、ゲージ圧2MPaの条件下で溶融紡糸し、糸を得た(図15右)。
 実施例23、比較例12の引張試験の結果を、表15及び図16に示す。
Figure JPOXMLDOC01-appb-T000015
 比較例12、実施例23より、本実施形態の製造方法で得られた多糖類ナノファイバー配合多糖類組成物では、形状に問わず、多糖類ナノファイバーを含まない材料(比較例12)と比べた際の、強度の向上(機械物性の強化)が確認された。
[実施例24]
<BCNFが分散した多糖溶液の調整>
 HPデンプンを4.5gに対して、水90gを加え、90℃で1.5時間加熱し、HPデンプンを溶解させた。そこにCM-BCNFゾル50gを加え、均一分散するまで撹拌し、混合物(HPデンプン:CM、BCNF合計量(質量比)=90:10)を得た。
<混合物の脱泡処理>
 混合物をステンレスバットに注ぎ、真空乾燥機に静置し、70℃で-80kPa(ゲージ圧)で空気を循環させながら3~5分間脱泡を行なった。
 <成形物の作製>
 成形物の型となるコップを混合物の分散液に浸し、液だれしないように水分を切ってから、真空乾燥機に静置し、70℃で-80kPa(ゲージ圧)で乾燥させた。この操作を8回繰り返すことで、混合物が積層したコップ状の成形体を得た(図17)。成形物の型を皿に変更し、同様の手法で皿状の成形体を得た(図18)。なお、分散液に浸す代わりに、刷毛等で混合物を塗布して成形体を製造することもできる。
[比較例13]
<溶融紡糸>
 溶融紡糸装置(井元製作所製:IMC―6721型)に孔径φ700μmのダイ(口金)を取り付け、CA(可塑剤37wt%含)のペレット15~20gを入れ、紡糸温度(170℃、175℃、180℃、185℃、又は190℃)で樹脂を15~20分間温めた後、油圧シリンダー2MPa(ゲージ圧)の条件下で溶融紡糸し、糸を得た。
<引張試験>
 作製した糸に対して、引張試験機(島津製作所製、EZ-SX 200N)を用いて、5mm/minの速度で引張試験を行なった。
 作製した糸の紡糸温度、紡糸された糸の平均繊維径、引張試験の結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 比較例13より、紡糸温度が高くなるにつれ、平均繊維径が口金の孔径700μmに近似し、機械的強度が向上することが示唆された。
[実施例25]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 HP-BCNFゾル15g(HP、BCNF合計量0.15g)に、アセトン250mLを加え、均一分散するまで撹拌後、CA4.85gを加え、CAが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットを真空乾燥機に設置し、50℃、-60kPa(ゲージ圧)の条件下で1日かけて乾燥し、乾燥混合物(キャストフィルム)(HP、BCNF合計量3wt%)を得た。
<混練>
 キャストフィルムを細かく粉砕後、溶融混練装置(DSM社製、Xplore MC5)を用いて、170~200℃の条件下、スクリュー回転数60rpmで5~10分混練を行った。混練により得たストランドを切断し、ペレット(BCNF含有酢酸セルロースペレット)を得た。
<溶融紡糸>
 溶融紡糸装置(井元製作所製:IMC―6721型)に孔径φ700μmのダイを取り付け、HP、BCNF合計量3wt%のペレット15~20gを入れ、紡糸温度(170℃、175℃、180℃、185℃、又は190℃)で樹脂を15~20分間温めた後、油圧シリンダー2MPa(ゲージ圧)の条件下で溶融紡糸し、糸を得た。
<引張試験>
 作製した糸に対して、引張試験機(島津製作所製、EZ-SX 200N)を用いて、5mm/minの速度で引張試験を行なった。
 使用した水溶性溶媒、水と水溶性溶媒との比率、作製した糸の紡糸温度、紡糸された糸の平均繊維径、引張試験の結果を表17に示す。
[実施例26]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 HP-BCNFゾル15g(HP、BCNF合計量0.15g)に、下記分量となるように1,4-ジオキサンを加え、均一分散するまで撹拌後、CA4.85gを加え、CAが完全溶解するまで撹拌し、混合物を得た。
水:1,4-ジオキサン=5:5(mol/mol)(1,4―ジオキサン70.4ml(72.7g))
水:1,4-ジオキサン=4:6(mol/mol)(1,4―ジオキサン105.6ml(109.0g))
水:1,4-ジオキサン=3:7(mol/mol)(1,4―ジオキサン164.2mL(169.6g))
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットを真空乾燥機に設置し、50℃、-60kPa(ゲージ圧)の条件下で1日かけて乾燥し、乾燥混合物(キャストフィルム)(HP、BCNF合計量3wt%)を得た。
<混練>
 キャストフィルムを細かく粉砕後、溶融混練装置(DSM社製、Xplore MC5)を用いて、170~200℃の条件下、スクリュー回転数60rpmで5~10分混練を行った。混練により得たストランドを切断し、ペレット(BCNF含有酢酸セルロースペレット)を得た。
<溶融紡糸>
 溶融紡糸装置(井元製作所製:IMC―6721型)に孔径φ700μmのダイを取り付け、HP、BCNF合計量3wt%のペレット15~20gを入れ、紡糸温度(180℃、190℃、又は200℃)で樹脂を15~20分間温めた後、油圧シリンダー2MPa(ゲージ圧)の条件下で溶融紡糸し、糸を得た。
<引張試験>
 作製した糸に対して、引張試験機(島津製作所製、EZ-SX 200N)を用いて、5mm/minの速度で引張試験を行なった。
 使用した水溶性溶媒、水と水溶性溶媒との比率、作製した糸の紡糸温度、紡糸された糸の平均繊維径、引張試験の結果を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 実施例25、26においても、紡糸温度が高くなるにつれ、平均繊維径が口金の孔径700μmに近似し、機械的強度が向上することが示唆された。比較例13と比べるとHP―BCNFを添加することによる機械的強度の向上が確認された。また、実施例26より、水溶性溶媒として1,4-ジオキサンを使用した際には、水:1,4-ジオキサン=4:6(モル比)において特に優れた強度であった。
[実施例27]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 CM-BCNFゾル15g(CM、BCNF合計量0.15g)に、アセトン250mLを加え、均一分散するまで撹拌後、CA4.85gを加え、CAが完全溶解するまで撹拌し、混合物を得た。
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットを真空乾燥機に設置し、50℃、-60kPa(ゲージ圧)の条件下で1日かけて乾燥し、乾燥混合物(キャストフィルム)(CM、BCNF合計量3wt%)を得た。
<混練>
 キャストフィルムを細かく粉砕後、溶融混練装置(DSM社製、Xplore MC5)を用いて、170~200℃の条件下、スクリュー回転数60rpmで5~10分混練を行った。混練により得たストランドを切断し、ペレット(BCNF含有酢酸セルロースペレット)を得た。
<溶融紡糸>
 溶融紡糸装置(井元製作所製:IMC―6721型)に孔径φ700μmのダイを取り付け、CM、BCNF合計量3wt%のペレット15~20gを入れ、紡糸温度(170℃、175℃、180℃、185℃、又は190℃)で樹脂を15~20分間温めた後、油圧シリンダー2MPa(ゲージ圧)の条件下で溶融紡糸し、糸を得た。
<引張試験>
 作製した糸に対して、引張試験機(島津製作所製、EZ-SX 200N)を用いて、5mm/minの速度で引張試験を行なった。
 使用した水溶性溶媒、水と水溶性溶媒との比率、作製した糸の紡糸温度、紡糸された糸の平均繊維径、引張試験の結果を表18に示す。
[実施例28]
<BCNFが分散した酢酸セルロース溶液(混合物)の調製>
 CM-BCNFゾル15g(CM、BCNF合計量0.15g)に、下記分量となるように1,4-ジオキサンを加え、均一分散するまで撹拌後、CA4.85gを加え、CAが完全溶解するまで撹拌し、混合物を得た。
水:1,4-ジオキサン=5:5(mol/mol)(1,4―ジオキサン70.ml(72.7g))
水:1,4-ジオキサン=4:6(mol/mol)(1,4―ジオキサン105.6ml(109.0g))
水:1,4-ジオキサン=3:7(mol/mol)(1,4―ジオキサン164.2mL(169.6g))
<混合物の乾燥>
 混合物をステンレスバットに注ぎ、ステンレスバットを真空乾燥機に設置し、50℃、-60kPa(ゲージ圧)の条件下で1日かけて乾燥し、乾燥混合物(キャストフィルム)(CM、BCNF合計量3wt%)を得た。
<混練>
 キャストフィルムを細かく粉砕後、溶融混練装置(DSM社製、Xplore MC5)を用いて、170~200℃の条件下、スクリュー回転数60rpmで5~10分混練を行った。混練により得たストランドを切断し、ペレット(BCNF含有酢酸セルロースペレット)を得た。
<溶融紡糸>
 溶融紡糸装置(井元製作所製:IMC―6721型)に孔径φ700μmのダイを取り付け、CM、BCNF合計量3wt%のペレット15~20gを入れ、紡糸温度(180℃、190℃、又は200℃)で樹脂を15~20分間温めた後、油圧シリンダー2MPa(ゲージ圧)の条件下で溶融紡糸し、糸を得た。
<引張試験>
 作製した糸に対して、引張試験機(島津製作所製、EZ-SX 200N)を用いて、5mm/minの速度で引張試験を行なった。
 使用した水溶性溶媒、水と水溶性溶媒との比率、作製した糸の紡糸温度、紡糸された糸の平均繊維径、引張試験の結果を表18に示す。
Figure JPOXMLDOC01-appb-T000018
 実施例27、28においても、紡糸温度が高くなるにつれ、平均繊維径が口金の孔径700μmに近似し、機械的強度が向上することが示唆された。比較例13と比べるとCM―BCNFを添加することによる機械的強度の向上が確認された。
[実施例29、比較例14]
<BCNFが分散したタマリンドシードガム水溶液(混合物)の調製>
 HP-BCNFゾルに、蒸留水を加え、均一分散するまで撹拌後、グリセリンを加え、タマリンドシードガムを加え、タマリンドシードガムが完全溶解するまで撹拌し、混合物を得た。使用した各原料の重量を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 HP-BCNFゾルを用いていないサンプルNo.1、4、及び5は比較例、それ以外は実施例に相当する。
<溶液の脱気>
 各混合物を真空乾燥機に設置し、70℃、-90kPa(ゲージ圧)以下の条件下で30秒~1分30秒間乾燥し、溶液を脱気した。
<混合物の乾燥>
 混合物をポリプロピレン製バットに注ぎ、バットを真空乾燥機に設置し、50℃、-5kPa(ゲージ圧)の条件下で1日かけて乾燥し、乾燥混合物(キャストフィルム)を得た。
<引張試験片作製>
 作製したフィルムを型抜き(井元製作所製、IMC-1948-B型)を用いて、ダンベル型試験片(図1)(JIS K7139に準拠)状に型抜きをした。
 作製したダンベル型試験片に対して、実施例1と同様の方法で引張試験を行った。
<水の接触角試験>
 作製したフィルムをプレパラートに乗せ、接触角計(エキシマ社製:SImage Entry6)に設置し、シリンジ針先の水5μLの液滴をフィルムに滴下し、ATANθ/2法で評価を行なった(JIS R3265に準拠)。
<油の接触角試験>
 水5μLの液滴をキャノーラ油5μLの液滴に変更した以外は、水の接触角試験と同様の手順で評価を行なった。
 引張試験の結果及び接触角試験の結果を表19に示す。
Figure JPOXMLDOC01-appb-T000020
 表19及び20より、HP-BCNFを添加することによる機械的強度の向上、水及び油の接触角の向上が確認された。グリセリンを添加することで、伸びが向上し、水の接触角の低下、油の接触角の向上が確認された。HP-BCNF及びグリセリンを添加することで、機械的強度を保ちながら、伸びにも優れ、水及び油の接触角が向上した成形体を得ることができた。
 上記実施例25~29、比較例13~14に関する研究は、国立研究開発法人 科学技術振興機構(JST)の、「共創の場形成支援プログラム(COI―NEXT)共創分野本格型」に基づく助成を受けたものである。
 本明細書中に記載した数値範囲の上限値及び/又は下限値は、それぞれ任意に組み合わせて好ましい範囲を規定することができる。例えば、数値範囲の上限値及び下限値を任意に組み合わせて好ましい範囲を規定することができ、数値範囲の上限値同士を任意に組み合わせて好ましい範囲を規定することができ、また、数値範囲の下限値同士を任意に組み合わせて好ましい範囲を規定することができる。
 以上、本実施形態を詳述したが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更があっても、それらは本開示に含まれるものである。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (8)

  1.  多糖類ナノファイバー(A)を含むゾルと、
     多糖類(B)と、
     前記多糖類(B)を溶解可能な溶媒(C)とを混合し、混合物を得る工程と、
     前記混合物を乾燥し、乾燥混合物を得る工程を有する、
     多糖類ナノファイバー配合多糖類組成物の製造方法。
  2.  前記多糖類ナノファイバー(A)が、バクテリアセルロースナノファイバー、植物由来セルロースナノファイバー、キトサンナノファイバー、及びキチンナノファイバーから選択される少なくとも1種の多糖類ナノファイバーである、請求項1に記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
  3.  前記多糖類(B)が、セルロース誘導体、キトサン、キチン、デンプン、デンプン誘導体、タマリンドガム、キサンタンガム、グァーガム、グァーガム誘導体、及びジェランガムから選択される少なくとも1種の多糖類である、請求項1又は2に記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
  4.  前記溶媒(C)が、水及び水溶性溶媒から選択される少なくとも1種の溶媒である、請求項1~3のいずれか1項に記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
  5.  前記多糖類ナノファイバー配合多糖類組成物100質量%中に、前記多糖類ナノファイバー(A)を0.1~60質量%含む、請求項1~4のいずれか1項に記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
  6.  前記多糖類ナノファイバー(A)を含むゾルが、水溶性セルロースを含む、請求項1~5のいずれか1項に記載の多糖類ナノファイバー配合多糖類組成物の製造方法。
  7.  請求項1~6のいずれか1項に記載の製造方法で得られる多糖類ナノファイバー配合多糖類組成物を含む、成形体。
  8.  形状がフィルム、ペレット、粉末、板、糸、又は容器状である、請求項7に記載の成形体。
PCT/JP2022/026299 2021-07-01 2022-06-30 多糖類ナノファイバー配合多糖類組成物の製造方法 WO2023277145A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/575,045 US20240352234A1 (en) 2021-07-01 2022-06-30 Polysaccharide nanofiber-blended polysaccharide composition production method
EP22833291.2A EP4365227A1 (en) 2021-07-01 2022-06-30 Polysaccharide nanofiber-blended polysaccharide composition production method
JP2023532064A JPWO2023277145A1 (ja) 2021-07-01 2022-06-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021110253 2021-07-01
JP2021-110253 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023277145A1 true WO2023277145A1 (ja) 2023-01-05

Family

ID=84692784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026299 WO2023277145A1 (ja) 2021-07-01 2022-06-30 多糖類ナノファイバー配合多糖類組成物の製造方法

Country Status (4)

Country Link
US (1) US20240352234A1 (ja)
EP (1) EP4365227A1 (ja)
JP (1) JPWO2023277145A1 (ja)
WO (1) WO2023277145A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108414A1 (ja) * 2010-03-05 2011-09-09 コニカミノルタオプト株式会社 複合樹脂フィルムとその製造方法
JP2012229350A (ja) 2011-04-27 2012-11-22 Kyoto Univ 樹脂組成物
JP2016153470A (ja) 2015-02-12 2016-08-25 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
JP2019156882A (ja) * 2018-03-07 2019-09-19 日本製紙株式会社 高アミロース澱粉とセルロースナノファイバーを含有する組成物
JP2020158700A (ja) * 2019-03-27 2020-10-01 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
JP2021021063A (ja) * 2019-07-26 2021-02-18 国立大学法人大阪大学 機能性膜状体、およびその製造方法
JP2021110253A (ja) 2020-01-07 2021-08-02 トヨタ自動車株式会社 エアフロメータの異常診断装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108414A1 (ja) * 2010-03-05 2011-09-09 コニカミノルタオプト株式会社 複合樹脂フィルムとその製造方法
JP2012229350A (ja) 2011-04-27 2012-11-22 Kyoto Univ 樹脂組成物
JP2016153470A (ja) 2015-02-12 2016-08-25 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
JP2019156882A (ja) * 2018-03-07 2019-09-19 日本製紙株式会社 高アミロース澱粉とセルロースナノファイバーを含有する組成物
JP2020158700A (ja) * 2019-03-27 2020-10-01 大王製紙株式会社 繊維状セルロース複合樹脂及びその製造方法、並びに樹脂の補強材
JP2021021063A (ja) * 2019-07-26 2021-02-18 国立大学法人大阪大学 機能性膜状体、およびその製造方法
JP2021110253A (ja) 2020-01-07 2021-08-02 トヨタ自動車株式会社 エアフロメータの異常診断装置

Also Published As

Publication number Publication date
JPWO2023277145A1 (ja) 2023-01-05
US20240352234A1 (en) 2024-10-24
EP4365227A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
Patel et al. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification
Ma et al. Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films
Börjesson et al. Crystalline nanocellulose—preparation, modification, and properties
Mincea et al. Preparation, modification, and applications of chitin nanowhiskers: a review
George et al. Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles
Huang et al. Introduction to nanocellulose
US20120283363A1 (en) Composite material
Shi et al. Preparation of cellulose nanocrystal from tobacco-stem and its application in ethyl cellulose film as a reinforcing agent
Oksman et al. Novel bionanocomposites: processing, properties and potential applications
Indriyati et al. Development of bacterial cellulose/chitosan films: structural, physicochemical and antimicrobial properties
Chen et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment
JP2014015512A (ja) セルロース繊維含有樹脂組成物
JP6225760B2 (ja) 微細繊維状セルロースコンポジットシートの製造方法
Jadhav et al. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: A comprehensive review
Cheng et al. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films
Ghalia et al. Synthesis and utilization of natural fiber-reinforced poly (lactic acid) bionanocomposites
JP6871079B2 (ja) 解繊セルロース繊維の製造方法、及び樹脂組成物の製造方法
Liao et al. Semitransparent films from low-substituted carboxymethylated cellulose fibers
Punia et al. Nanocellulose as reinforcement materials for polymer matrix composites
Lamaming et al. Bio-nanocomposite films reinforced with various types of cellulose nanocrystals isolated from oil palm biomass waste
WO2023277145A1 (ja) 多糖類ナノファイバー配合多糖類組成物の製造方法
JP7604107B2 (ja) バイオマス樹脂組成物
Mohamed et al. Sustainable cellulose nanocrystal reinforced chitosan/HPMC bio-nanocomposite films containing menthol oil as packaging materials
CN113292831B (zh) 一种聚乳酸复合材料及其制备方法
Pracella et al. Preparation and characterization of PLA nanocomposites with nanocellulose filled PVAC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833291

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18575045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022833291

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833291

Country of ref document: EP

Effective date: 20240201