[go: up one dir, main page]

WO2023273708A1 - 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 - Google Patents

用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 Download PDF

Info

Publication number
WO2023273708A1
WO2023273708A1 PCT/CN2022/094980 CN2022094980W WO2023273708A1 WO 2023273708 A1 WO2023273708 A1 WO 2023273708A1 CN 2022094980 W CN2022094980 W CN 2022094980W WO 2023273708 A1 WO2023273708 A1 WO 2023273708A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
bypass
compressor
pipeline
refrigerating
Prior art date
Application number
PCT/CN2022/094980
Other languages
English (en)
French (fr)
Inventor
姬立胜
陈建全
朱小兵
邢飞
崔展鹏
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023273708A1 publication Critical patent/WO2023273708A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Definitions

  • the present invention relates to refrigeration, and in particular to a refrigeration system for a refrigerator-freezer and a refrigerator-freezer.
  • Refrigerating and freezing devices such as refrigerators, freezers and freezers, etc.
  • the evaporator of the evaporator is easy to frost due to the low surface temperature during cooling.
  • Some refrigerating and freezing devices in the prior art use defrosting heating wires to heat the evaporator to defrost.
  • the inventors realized that the above defrosting method not only has a slow defrosting rate and a long defrosting period, but also causes a significant temperature rise in the storage compartment. If the refrigerant from the compressor is introduced into the evaporator, and the evaporator is switched to a condenser, the evaporator can be quickly defrosted. On this basis, the inventor also realized that if only the defrosting method of the evaporator is changed, although the defrosting rate can be improved, but the cooling of the evaporator is stopped when the evaporator is defrosting, which will still cause the storage compartment to produce significant temperature fluctuations. And when the evaporator is defrosting, if the mechanical work of the compressor cannot be fully utilized, the energy efficiency of the refrigeration and freezing device will be low.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide a refrigeration system for a refrigerating and freezing device and a refrigerating and freezing device.
  • a further object of the present invention is to improve the refrigerating system used in the refrigerating and freezing device so that it can effectively prevent significant temperature fluctuations in the storage compartment while increasing the defrosting rate.
  • Another further object of the present invention is to realize the organic combination of the defrosting function and the cooling function, effectively utilize the mechanical power of the compressor, and improve the energy efficiency of the refrigeration system and the refrigerating and freezing device.
  • a further object of the present invention is to flexibly adjust the working states of the two evaporators connected in series.
  • a further object of the present invention is to simplify the structure of the refrigeration system and reduce the manufacturing cost.
  • a refrigeration system for a refrigerating and freezing device comprising: a refrigeration assembly having a compressor, a first evaporator, and a second evaporator sequentially connected in series to form a refrigeration circuit; Wherein the inside of the second evaporator is formed with a first circulation pipe for circulating refrigerant; and a first bypass cooling pipeline, connected to the refrigeration circuit, and communicating with the outlet of the first evaporator and the first circulation pipe; the first A bypass throttling device is provided on the bypass cooling pipeline, and the first bypass cooling pipeline is used to control the flow out of the first evaporator by using the bypass throttling device when the first evaporator uses the refrigerant from the compressor to defrost. An evaporator and the refrigerant flowing to the first flow pipe is throttled.
  • a second circulation pipe for circulating refrigerant is also formed inside the second evaporator; and the refrigeration assembly further includes a refrigeration connection pipe section, which is arranged in the refrigeration circuit and connects the outlet of the first evaporator with the second circulation pipe.
  • the pipe is used to guide the refrigerant flowing out of the first evaporator to the second circulation pipe when the first evaporator and the second evaporator are cooled by refrigerant from the compressor.
  • the refrigeration system further includes a first switching valve connected to the outlet of the first evaporator, and having a valve port connected to the second flow pipe and a valve port connected to the inlet of the first bypass cooling pipeline; And the first switching valve is used to open the valve port communicating with the second circulation pipe when the first evaporator and the second evaporator provide cooling capacity at the same time, and open the valve port communicating with the first bypass cooling pipe when the first evaporator is defrosting road valve.
  • a first switching valve connected to the outlet of the first evaporator, and having a valve port connected to the second flow pipe and a valve port connected to the inlet of the first bypass cooling pipeline;
  • the first switching valve is used to open the valve port communicating with the second circulation pipe when the first evaporator and the second evaporator provide cooling capacity at the same time, and open the valve port communicating with the first bypass cooling pipe when the first evaporator is defrosting road valve.
  • the refrigerating system further includes: a first bypass defrosting pipeline, connected to the inlet of the first evaporator, and used to pass refrigerant flowing out of the compressor into the first evaporator, so as to defrost the first evaporator and a second bypass defrosting pipeline, connected to the inlet of the first flow pipe of the second evaporator, and used to feed the refrigerant flowing out of the compressor to the second evaporator, so as to defrost the second evaporator.
  • a first bypass defrosting pipeline connected to the inlet of the first evaporator, and used to pass refrigerant flowing out of the compressor into the first evaporator, so as to defrost the first evaporator
  • a second bypass defrosting pipeline connected to the inlet of the first flow pipe of the second evaporator, and used to feed the refrigerant flowing out of the compressor to the second evaporator, so as to defrost the second evaporator.
  • the refrigerating assembly further includes a condenser, which is arranged in the refrigerating circuit and between the compressor and the first evaporator; and the first bypass defrosting pipeline and the second bypass defrosting pipeline are respectively connected to the The exhaust port of the compressor or the outlet of the condenser, so that the refrigerant flowing out of the compressor can be passed in and out.
  • a condenser which is arranged in the refrigerating circuit and between the compressor and the first evaporator; and the first bypass defrosting pipeline and the second bypass defrosting pipeline are respectively connected to the The exhaust port of the compressor or the outlet of the condenser, so that the refrigerant flowing out of the compressor can be passed in and out.
  • the refrigeration assembly further includes: a third switching valve, connected to the exhaust port of the compressor, and having a valve port connected to the condenser, a valve port connected to the first bypass defrosting pipeline, and a valve port connected to the second bypass defrosting pipeline.
  • the valve port of the defrosting pipeline; and the third switch valve is used to open the valve port of the first bypass defrosting pipeline when the first evaporator is defrosting, and open the valve port of the second bypass defrosting pipeline when the second evaporator is defrosting.
  • the valve port of the frost pipeline is opened to communicate with the condenser when the first evaporator and the second evaporator supply cooling at the same time.
  • the refrigerating assembly further includes a refrigerating throttling device, which is arranged in the refrigerating circuit and located between the compressor and the first evaporator, for throttling the refrigerant flowing to the first evaporator; and the refrigerating system further includes The second bypass cooling pipeline is connected to the outlet of the first circulation pipe of the second evaporator and the inlet of the refrigeration throttling device, and is used to divert the refrigerant flowing through the second evaporator when the second evaporator defrosts Leads to refrigeration throttling to cool the first evaporator.
  • the refrigeration system further includes: a second switching valve, connected to the outlet of the first flow pipe of the second evaporator, and having a valve port for communicating with the suction port of the compressor, and for communicating with the second The valve port of the bypass cooling pipeline; and the second switching valve is used to open the valve port used to communicate with the compressor when the second evaporator provides cooling capacity, and open to communicate with the second bypass valve when the second evaporator defrosts.
  • the valve port of the cooling pipeline is used to open the valve port used to communicate with the compressor when the second evaporator provides cooling capacity, and open to communicate with the second bypass valve when the second evaporator defrosts.
  • the refrigeration system further includes: a bypass air return line, one end of which is connected to the outlet of the first evaporator, and the other end is used to communicate with the suction port of the compressor; and the first switching valve is also formed with a bypass return air line and the first switching valve is used to open the valve port communicating with the bypass return air line when the second evaporator defrosts.
  • a refrigerating and freezing device including: a box with a storage compartment formed inside; and a refrigeration system for a refrigerating and freezing device according to any one of the above; wherein the first The evaporator and the second evaporator are used to provide cooling to the storage compartment.
  • the refrigerating system for refrigerating and freezing devices and the refrigerating and freezing device of the present invention can communicate with the outlet of the first evaporator and the first flow pipe of the second evaporator by using the first bypass cooling pipeline, and the first bypass A bypass throttling device is provided on the cooling pipeline, so that the refrigerant flowing through the first evaporator can flow through the first bypass cooling pipeline and be throttled to pass into the first flow pipe of the second evaporator,
  • the refrigerant absorbs heat and evaporates inside the second evaporator, so that the second evaporator realizes cooling when the first evaporator defrosts.
  • the invention improves the structure of the refrigeration system so that it can effectively prevent obvious temperature fluctuations in the storage compartment while increasing the defrosting rate.
  • the refrigeration system and refrigeration-freezing device of the present invention when one evaporator defrosts, since the refrigerant flowing through the defrosting evaporator can be guided and throttled, it can be supplied to another evaporator so that the evaporator provides cooling, and the two evaporators complement each other, realizing the organic combination of the defrosting function and the cooling function, which enables the refrigeration system of the present invention to effectively utilize the mechanical work of the compressor, which is beneficial to improve the refrigeration system. and energy efficiency of refrigerators and freezers.
  • the refrigeration system for refrigeration and freezing devices of the present invention and the refrigeration and freezing device because the second evaporator has a first flow pipe and a second flow pipe, is a specially designed double-input and double-out structure.
  • the connection structure of the refrigeration system Through the special design of the connection structure of the refrigeration system, the refrigerant flow path through the second evaporator can be flexibly adjusted, so that the second evaporator connected in series downstream of the first evaporator not only has a good cooling effect, but also Functions can be interchanged with the first evaporator to achieve defrosting without temperature rise.
  • the refrigeration system for refrigeration and freezing equipment and the refrigeration and freezing equipment of the present invention improve the pipeline structure of the second evaporator, and use bypass cooling pipelines, bypass defrosting pipelines and switching valves Improving the connection structure of the refrigeration system can enable the evaporators connected in series to defrost without temperature rise in turn, and improve the fresh-keeping performance of the refrigeration and freezing device, which is conducive to simplifying the structure of the refrigeration system and reducing manufacturing costs.
  • FIG. 1 is a schematic block diagram of a refrigeration system for a refrigeration freezer according to one embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a refrigeration system for a refrigerator-freezer according to an embodiment of the present invention
  • Fig. 3 is a schematic block diagram of a refrigerating and freezing device according to one embodiment of the present invention.
  • Fig. 4 is a schematic perspective view of a refrigerator-freezer according to one embodiment of the present invention.
  • Fig. 1 is a schematic block diagram of a refrigeration system 200 for a refrigerator-freezer 10 according to an embodiment of the present invention.
  • the refrigeration system 200 may generally include a refrigeration assembly 210 and a bypass assembly (eg, the bypass cooling circuit and/or the bypass defrosting circuit described below).
  • the refrigeration assembly 210 is used to form a refrigeration circuit.
  • the refrigeration system 200 utilizes a refrigeration circuit to supply cooling to the evaporator.
  • the bypass assembly is connected to the refrigeration circuit, for example may be attached to the refrigeration circuit to form a bypass branch. Refrigerant can flow through both the refrigeration circuit and the bypass branch.
  • the refrigeration system 200 adjusts the working state of the evaporator by adjusting the flow path of the refrigerant in the refrigeration circuit and the bypass branch.
  • the working state of the evaporator includes cooling state and defrosting state.
  • Fig. 2 is a schematic structural diagram of a refrigeration system 200 for a refrigeration and freezing device 10 according to an embodiment of the present invention.
  • the cooling assembly 210 has a compressor 211, a first evaporator 212a and a second evaporator 212b which are sequentially connected in series to form a cooling circuit. That is, the first evaporator 212a is connected in series upstream of the second evaporator 212b.
  • the directional words such as "upstream” and "downstream” are relative to the flow path of the refrigerant.
  • the first evaporator 212a is located upstream of the second evaporator 212b.
  • the first evaporator 212a flows first, and then the second evaporator 212b flows.
  • the first evaporator 212 a and the second evaporator 212 b are used to provide cold energy to the storage compartment 110 of the refrigerating and freezing device 10 .
  • a first circulation pipe for circulating refrigerant is formed inside the second evaporator 212b.
  • the refrigerant flowing through the second evaporator 212b may pass through the second evaporator 212b through the first flow pipe.
  • the bypass assembly includes a first bypass cooling pipeline 230a.
  • the first bypass cooling pipeline 230a is connected to the refrigeration circuit, and communicates with the outlet of the first evaporator 212a and the first flow pipe. That is to say, the first bypass cooling pipeline 230a is equivalent to the "connecting channel" between the first evaporator 212a and the first flow pipe, and can flow through the first evaporator 212a when the first evaporator 212a defrosts.
  • the refrigerant at 212a is directed to the second evaporator 212b.
  • the first bypass cooling pipeline 230a is provided with a bypass throttling device 270, and the first bypass cooling pipeline 230a is used for defrosting the first evaporator 212a using the refrigerant from the compressor 211,
  • the bypass throttling device 270 throttles the refrigerant flowing out of the first evaporator 212a and flowing to the first flow pipe. That is to say, the first bypass cooling pipeline 230a can also use the bypass throttling device 270 to throttle the refrigerant while guiding the refrigerant, so that the throttled refrigerant flows through the second evaporator 212b
  • the first flow pipe can evaporate and absorb heat, so that the second evaporator 212b provides cooling.
  • the outlet of the first evaporator 212a and the first flow pipe of the second evaporator 212b can be connected by using the first bypass cooling pipeline 230a, and the first bypass cooling pipeline 230a
  • a bypass throttling device 270 is provided on the upper side, so that the refrigerant flowing through the first evaporator 212a can flow through the first bypass cooling pipeline 230a and be throttled to pass into the first flow pipe of the second evaporator 212b , the refrigerant absorbs heat and evaporates inside the second evaporator 212b, so that the second evaporator 212b realizes cooling when the first evaporator 212a defrosts.
  • the structure of the refrigeration system 200 is improved so that it can effectively prevent the obvious temperature fluctuation of the storage compartment 110 while increasing the defrosting rate.
  • the inside of the second evaporator 212b may further form a second flow pipe for circulating refrigerant.
  • Each flow tube has its own inlet and outlet respectively. That is, two passages through which the refrigerant flows are formed inside the second evaporator 212b.
  • the second evaporator 212b is a specially designed double-tube embedded structure, that is, a double-input and double-outlet structure.
  • the first flow tube and the second flow tube may share fins.
  • the first evaporator 212a may be a tube-fin heat exchanger.
  • the refrigeration assembly 210 also includes a refrigeration connection pipe section 216, which is arranged in the refrigeration circuit and connects the outlet of the first evaporator 212a with the second flow pipe, for using the compressor 211 in the first evaporator 212a and the second evaporator 212b When the refrigerant is used for cooling, the refrigerant flowing out of the first evaporator 212a is guided to the second flow pipe.
  • a refrigeration connection pipe section 216 which is arranged in the refrigeration circuit and connects the outlet of the first evaporator 212a with the second flow pipe, for using the compressor 211 in the first evaporator 212a and the second evaporator 212b
  • the refrigerant flowing out of the first evaporator 212a is guided to the second flow pipe.
  • the refrigeration assembly 210 utilizes the refrigeration connection pipe section 216 to realize the series connection between the two evaporators, and the refrigerant that flows through the first evaporator 212a and is used to cool the first evaporator 212a can flow in through the refrigeration connection pipe section 216 The second flow pipe of the second evaporator 212b.
  • No throttling device may be provided on the refrigeration connection pipe section 216, and the refrigeration connection pipe section 216 is only used for connection, and will not be throttled again for the refrigerant flowing to the second flow pipe.
  • the structure of the refrigeration connection pipe section 216 may be the same as that of the connection pipeline between various components in the refrigeration circuit, as long as it can realize the function of guiding the refrigerant.
  • the refrigeration system 200 of this embodiment may further include a first switching valve 240 connected to the outlet of the first evaporator 212a.
  • the connection of the first switching valve 240 to the outlet of the first evaporator 212a means that the inlet of the first switching valve 240 is connected to the outlet of the first evaporator 212a, and the valve port in this embodiment and the following embodiments refers to the outlet of the switching valve. Export.
  • the first switching valve 240 has a valve port connected to the second flow pipe and a valve port connected to the inlet of the first bypass cooling pipeline 230a. That is, for the refrigerant flowing from the outlet of the first evaporator 212a to the second evaporator 212b, there are two flow paths, one is to flow into the second evaporator 212b through the refrigeration connecting pipe section 216, and the other is to flow into the second evaporator 212b through the first
  • the bypass cooling pipeline 230a flows into the second evaporator 212b.
  • the first switching valve 240 can adjust the flow path of the refrigerant flowing to the second evaporator 212b by opening and closing the valve port, thereby adjusting the working state of the second evaporator 212b.
  • the first switching valve 240 may be disposed in the storage compartment 110 .
  • the first switching valve 240 is used to open the valve port communicating with the second flow pipe when the first evaporator 212a and the second evaporator 212b provide cold energy at the same time, so as to allow flow through the first evaporator 212a and to make the first evaporator
  • the refrigerant supplied by 212a directly flows into the second evaporator 212b, so that the second evaporator 212b can exert a good cooling effect.
  • the first switching valve 240 is also used to open the valve port communicating with the first bypass cooling pipeline 230a when the first evaporator 212a defrosts, so as to allow flow through the first evaporator 212a and to defrost the first evaporator 212a
  • the frosted refrigerant is first throttled and then passed into the second evaporator 212b, so that the second evaporator 212b can perform a cooling function.
  • the working state of the evaporator can be switched easily, with a simple method and a simple structure.
  • the bypass assembly may further include a bypass defrosting pipeline, which is connected to the refrigeration circuit and is used to feed the refrigerant from the compressor 211 into the evaporator to defrost the evaporator.
  • a bypass defrosting pipeline which is connected to the refrigeration circuit and is used to feed the refrigerant from the compressor 211 into the evaporator to defrost the evaporator.
  • the bypass defrosting pipeline may include a first bypass defrosting pipeline 220a corresponding to the first evaporator 212a and a second bypass defrosting pipeline 220b corresponding to the second evaporator 212b.
  • the first bypass defrosting pipeline 220a is connected to the inlet of the first evaporator 212a, and is used to pass the refrigerant flowing out of the compressor 211 into the first evaporator 212a, so as to defrost the first evaporator 212a.
  • the second bypass defrosting pipeline 220b is connected to the inlet of the first flow pipe of the second evaporator 212b, and is used to pass the refrigerant flowing out of the compressor 211 into the second evaporator 212b, so as to defrost the second evaporator 212b .
  • each bypass defrosting line is also connected to the discharge port of the compressor 211 , so that the high-pressure refrigerant flowing out of the compressor 211 can pass into each evaporator through each bypass defrosting line.
  • the configuration of the bypass defrosting pipeline may be the same as that of the connecting pipelines between various components in the refrigeration circuit.
  • the refrigerating system 200 is configured to use another evaporator to provide cooling capacity when using a bypass defrosting line to defrost one evaporator, so as to prevent the temperature fluctuation of the storage compartment 110 . That is, the refrigeration system 200 prevents the two bypass defrosting pipelines from being connected at the same time, so that the two evaporators cannot defrost at the same time, and as long as one evaporator defrosts, the other evaporator will provide cooling.
  • the refrigeration system 200 can use the bypass defrosting pipeline to directly introduce the refrigerant from the compressor 211 to the evaporator to defrost the evaporator, and the evaporator relies on the heat generated by itself to defrost "from the inside out", which is beneficial to improve
  • the defrosting rate of the evaporator shortens the defrosting cycle, and since the refrigeration system 200 is configured to use the other evaporator to provide cooling capacity when one evaporator defrosts, it is beneficial to prevent the storage compartment 110 from being damaged due to the evaporator defrosting. An obvious temperature rise is generated, which helps to improve the fresh-keeping performance of the refrigerating and freezing device 10 .
  • the refrigeration assembly 210 may further include a refrigeration throttling device 214, which is arranged in the refrigeration circuit and located between the compressor 211 and the first evaporator 212a, for example, may be located between the outlet of the condenser 213 and the first evaporator 212a, used to throttle the refrigerant flowing to the first evaporator 212a.
  • the refrigeration throttle device 214 is used to throttle the refrigerant flowing into the first evaporator 212a, and the throttled refrigerant can absorb heat and evaporate in the first evaporator 212a, so that the first evaporator 212a can provide cooling.
  • the bypass assembly can further include a second bypass cooling pipeline 230b, which communicates with the outlet of the first flow pipe of the second evaporator 212b, and the inlet of the refrigeration throttling device 214, which is used for cooling in the second evaporator 212b.
  • a second bypass cooling pipeline 230b which communicates with the outlet of the first flow pipe of the second evaporator 212b, and the inlet of the refrigeration throttling device 214, which is used for cooling in the second evaporator 212b.
  • the refrigerant flowing through the second evaporator 212b is guided to the refrigeration throttling device 214, so that the first evaporator 212a provides cooling.
  • the second bypass cooling pipeline 230b is equivalent to the "connecting channel" between the second evaporator 212b and the first evaporator 212a, and the second bypass cooling pipeline 230b and the refrigeration throttling device 214
  • the refrigerant flowing through the second evaporator 212b may be guided to the first evaporator 212a when the second evaporator 212b defrosts, so that the first evaporator 212a provides cooling.
  • the refrigerant flowing through the defrosting evaporator can be guided and throttled, so that the evaporator can provide cooling.
  • the evaporators complement each other and realize the organic combination of the defrosting function and the cooling function, which enables the refrigeration system 200 of this embodiment to effectively use the mechanical work of the compressor 211, which is conducive to improving the energy efficiency of the refrigeration system 200 and the refrigerating and freezing device 10 .
  • the second evaporator 212b Since the second evaporator 212b has a first flow pipe and a second flow pipe, it is a specially designed double-input and double-outlet structure. On this basis, through a special design of the connection structure of the refrigeration system 200, the flow through The refrigerant flow path of the second evaporator 212b makes the second evaporator 212b connected in series downstream of the first evaporator 212a not only have a good cooling effect, but also can exchange functions with the first evaporator 212a to achieve temperature-free cooling. Lift the ground to defrost.
  • the refrigeration system 200 may further include a second switching valve 250 connected to the outlet of the first flow pipe of the second evaporator 212b, that is, the inlet of the second switching valve 250 communicates with the outlet of the first flow pipe.
  • the second switching valve 250 has a valve port for communicating with the suction port of the compressor 211 , that is, the refrigerant flowing out of the valve port can flow to the suction port of the compressor 211 .
  • the second switching valve 250 also has a valve port for communicating with the second bypass cooling pipeline 230b, that is, the refrigerant flowing out of the valve port can flow into the second bypass cooling pipeline 230b.
  • the second switching valve 250 may be a three-way valve, such as a three-way solenoid valve. In some embodiments, the second switching valve 250 may be disposed in the storage compartment 110 .
  • the two valve ports of the second switching valve 250 do not open simultaneously.
  • the second switching valve 250 is used to open the valve port used to communicate with the compressor 211 when the second evaporator 212b provides cold energy, so that the refrigerant returns to the suction port of the compressor 211, and the second evaporator 212b When frost occurs, the valve port communicating with the second bypass cooling pipeline 230b is opened, so that the refrigerant flows through the first evaporator 212a and absorbs heat to evaporate.
  • the bypass assembly may further include a bypass air return line 280 , one end of which communicates with the outlet of the first evaporator 212 a and the other end communicates with the suction port of the compressor 211 . That is, the bypass return air line 280 can be used as a connecting channel between the outlet of the first evaporator 212a and the suction port of the compressor 211, and the refrigerant flowing out of the first evaporator 212a can directly pass through the bypass return air line 280 Return to compressor 211.
  • the first switching valve 240 since the first switching valve 240 is connected to the outlet of the first evaporator 212a, the first switching valve 240 can further be formed with a valve port communicating with the bypass return pipeline 280. That is to say, the first switching valve 240 in this embodiment may have three valve ports, for example, may be a four-way solenoid valve. The first switching valve 240 is also used to open the valve port communicating with the bypass return air pipeline 280 when the second evaporator 212b defrosts.
  • the first switching valve 240 is used to connect the outlet of the first evaporator 212a with the bypass return pipeline 280, and the flow out of the first evaporator 212a can be directly
  • the refrigerant in the evaporator 212a is guided to the compressor 211, thereby completing a refrigeration-defrosting cycle.
  • the refrigeration assembly 210 may further include a condenser 213, which is disposed in the refrigeration circuit and located between the compressor 211 and the first evaporator 212a, for example, may be located between the exhaust port of the compressor 211 and the refrigeration throttling device 214 .
  • the first bypass defrosting pipeline 220 a and the second bypass defrosting pipeline 220 b are also respectively connected to the exhaust port of the compressor 211 or the outlet of the condenser 213 , so as to facilitate the flow of refrigerant into and out of the compressor 211 .
  • each bypass defrosting pipeline can be connected to the exhaust port of compressor 211, and the refrigerant flowing out of compressor 211 can directly pass into the defrosting evaporator through the bypass defrosting pipeline, which is beneficial to further improve The defrost rate of the evaporator.
  • the refrigeration system 200 may further include a third switching valve 260 connected to the discharge port of the compressor 211 , that is, the inlet of the third switching valve 260 communicates with the discharge port of the compressor 211 . And it has a valve port communicating with the condenser 213, a valve port communicating with the first bypass defrosting pipeline 220a, and a valve port communicating with the second bypass defrosting pipeline 220b. That is, one valve port of the third switching valve 260 is connected to the outlet of the condenser 213 , and the other two valve ports are respectively connected to a bypass defrosting pipeline.
  • the third switching valve 260 may be a four-way valve, such as a four-way solenoid valve.
  • the third switching valve 260 may be disposed in the press compartment of the refrigerating and freezing device 10 .
  • the third switching valve 260 is used to open the valve port communicating with the first bypass defrosting pipeline 220a when the first evaporator 212a is defrosting, so as to allow the refrigerant flowing out of the compressor 211 to directly flow into the first evaporator 212a, so that The first evaporator 212a uses high-pressure refrigerant to defrost.
  • the third switching valve 260 is also used to open the valve port communicating with the second bypass defrosting pipeline 220b when the second evaporator 212b is defrosting, so as to allow the refrigerant flowing out of the compressor 211 to directly flow into the second evaporator 212b, thereby The second evaporator 212b is defrosted using high-pressure refrigerant.
  • the third switching valve 260 is also used to open the valve port communicating with the condenser 213 when the first evaporator 212a and the second evaporator 212b provide cooling at the same time, so as to allow the refrigerant flowing out of the compressor 211 to flow through the condenser 213, refrigeration Throttle device 214, first evaporator 212a and second evaporator 212b.
  • the control process of the refrigeration system 200 will be described in detail below by taking the defrosting of the first evaporator 212a as an example.
  • the third switching valve 260 opens the valve port that communicates with the first bypass defrosting pipeline 220a, and closes the other valve ports
  • the first switching valve 240 opens and communicates with the first bypass cooling pipeline.
  • the second switching valve 250 opens the valve port used to communicate with the suction port of the compressor 211, and closes the other valve ports, so that the refrigerant flowing through is returned to the compressor 211, thereby completing The entire refrigeration-defrosting cycle.
  • the third switching valve 260 opens the valve port that communicates with the second bypass defrosting pipeline 220b, and closes the other valve ports
  • the second switching valve 250 opens and communicates with the second bypass cooling pipeline 230b, and close the other valve ports
  • the first switching valve 240 opens the valve port connected to the bypass return pipeline 280, and closes the other valve ports, so that the refrigerant flowing through is returned to the compressor 211, thereby completing the entire cooling process.
  • the pipeline structure of the second evaporator 212b is improved, and the connection structure of the refrigeration system 200 is improved by using the bypass cooling pipeline, the bypass defrosting pipeline and the switching valve, so that The evaporators connected in series realize defrosting without temperature rise in turn, and improve the freshness preservation performance of the refrigerating and freezing device 10 , which is beneficial to simplify the structure of the refrigerating system 200 and reduce manufacturing costs.
  • the refrigeration assembly 210 can further include a liquid storage bag 215, which is arranged in the refrigeration circuit, for example, it can be arranged between the outlet of the second evaporator 212b and the suction port of the compressor 211, for adjusting The amount of refrigerant required by each component of the refrigeration assembly 210 .
  • Fig. 3 is a schematic block diagram of a refrigerating and freezing device 10 according to an embodiment of the present invention.
  • the refrigerating and freezing device 10 may generally include a cabinet 100 and the refrigerating system 200 of any of the above-mentioned embodiments.
  • a storage compartment 110 is formed inside the box body 100 .
  • the first evaporator 212 a and the second evaporator 212 b of the refrigeration system 200 are used to provide cold energy to the storage compartment 110 .
  • the temperature zone of the storage compartment 110 can be set according to actual needs, for example, the storage compartment 110 can be any one of a refrigerated compartment, a freezer compartment, a cryogenic compartment or a variable temperature compartment.
  • the first evaporator 212 a and the second evaporator 212 b are used to provide cold energy to the storage compartment 110 .
  • Fig. 4 is a schematic perspective view of a refrigerator-freezer 10 according to one embodiment of the present invention.
  • there may be multiple storage compartments 110 such as two.
  • the cold energy provided by the two evaporators of the refrigeration system 200 can be supplied to the same storage compartment 110, such as a freezer compartment.
  • the cooling capacity provided by the two evaporators of the refrigeration system 200 can also be transported to other storage compartments through the air supply duct.
  • the compartment 110 such as a refrigerated compartment, is used to share cooling capacity between multiple storage compartments 110.
  • each evaporator corresponds to a storage compartment 110, and the two evaporators can supply cooling to the corresponding storage compartment 110, or when one evaporator defrosts, Cooling is simultaneously supplied to the two storage compartments 110 using another evaporator.
  • an installation space 120 for installing an evaporator is formed inside the box body 100 .
  • the installation space 120 may be located at one side of the storage compartment 110 , such as the lower side or the rear side.
  • the refrigerating and freezing device 10 may further include a thermal insulation partition 130 disposed in the installation space 120 and separating the installation space 120 into two sub-spaces.
  • the subspaces can be arranged in a left-right or one-up-down manner, so that the evaporators can be arranged side by side or stacked up and down, which can save the installation space 120 of the evaporators, improve space utilization, and improve aesthetics.
  • Each subspace is used to install an evaporator, so as to reduce the heat exchange between the evaporators, which can prevent the heat generated by the defrosting evaporator from affecting the cooling effect of the other evaporator.
  • Each air supply duct is formed in the box body 100 , corresponding to the evaporators one by one, and each air supply duct is used to transport the cold energy provided by the corresponding evaporator to the storage compartment 110 .
  • Each air supply duct is set independently of each other, which can avoid turbulent air flow, ensure the efficiency of cooling delivery, and improve the freshness preservation effect of the storage compartment 110 .
  • the refrigerating and freezing device 10 may further include two fans 150, which are provided in one-to-one correspondence with the evaporators, and are used to promote the formation of air flowing through the corresponding air supply duct and the storage compartment 110 when the corresponding evaporator provides cooling capacity. heat exchange airflow.
  • the fan 150 can only be turned on when the corresponding evaporator is cooling. And the fan 150 can prevent the heat generated by the evaporator from entering the storage compartment 110 by using the fan 150 shielding means.
  • the number of fan 150 can also be changed to one, and it is set on the common flow path between the two air supply ducts and the storage compartment 110, so that the fan 150 can serve as two air supply channels at the same time.
  • the air flow actuating device of the air duct is conducive to further simplifying the structure of the refrigerating and freezing device 10 .
  • the refrigerating system 200 used in the refrigerating-freezing device 10 of this embodiment and the refrigerating-freezing device 10 can communicate with the outlet of the first evaporator 212a and the first flow of the second evaporator 212b by using the first bypass cooling pipeline 230a.
  • the first bypass cooling pipeline 230a is provided with a bypass throttling device 270, so that the refrigerant flowing through the first evaporator 212a can flow through the first bypass cooling pipeline 230a and be throttled
  • the first flow pipe leading to the second evaporator 212b, the refrigerant absorbs heat and evaporates inside the second evaporator 212b, so that the second evaporator 212b realizes cooling when the first evaporator 212a defrosts.
  • the present invention improves the structure of the refrigeration system 200 so that it can effectively prevent the obvious temperature fluctuation of the storage compartment 110 while increasing the defrosting rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置。制冷系统包括:制冷组件,其具有依次串接形成制冷回路的压缩机、第一蒸发器和第二蒸发器;其中第二蒸发器的内部形成有用于流通制冷剂的第一流通管;和第一旁通供冷管路,连接至制冷回路,且连通第一蒸发器的出口与第一流通管;第一旁通供冷管路上设置有旁通节流装置,且第一旁通供冷管路用于在第一蒸发器利用来自压缩机的制冷剂化霜时,利用旁通节流装置对流出第一蒸发器且流向第一流通管的制冷剂进行节流。通过对制冷系统进行结构改进,使其在提高化霜速率的同时,能够有效防止储物间室产生明显的温度波动。

Description

用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 技术领域
本发明涉及制冷,特别是涉及用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置。
背景技术
冷藏冷冻装置,例如冰箱、冰柜及冷藏柜等,其蒸发器由于供冷时的表面温度较低,很容易结霜。现有技术中的部分冷藏冷冻装置采用化霜加热丝加热蒸发器的方式进行化霜。
发明人认识到,上述化霜方式不但化霜速率缓慢,化霜周期长,而且会导致储物间室产生明显的温升。若将来自压缩机的制冷剂导入蒸发器,并使蒸发器切换为冷凝器,可以使蒸发器快速化霜。在此基础上,发明人还认识到,若仅仅改变蒸发器的化霜方式,虽然能起到提高化霜速率的作用,但是由于蒸发器化霜时停止供冷,仍然会导致储物间室产生明显的温度波动。并且在蒸发器化霜时,若无法充分利用压缩机的机械功,则会导致冷藏冷冻装置的能效较低。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置。
本发明一个进一步的目的是要改进用于冷藏冷冻装置的制冷系统,使其在提高化霜速率的同时,有效防止储物间室产生明显的温度波动。
本发明另一个进一步的目的是要实现化霜功能和供冷功能的有机结合,有效地利用压缩机的机械功,提高制冷系统及冷藏冷冻装置的能效。
本发明再一个进一步的目的是要灵活地调节相互串接的两个蒸发器的工作状态。
本发明又一个进一步的目的是要简化制冷系统的结构,降低制造成本。
特别地,根据本发明的一方面,提供了一种用于冷藏冷冻装置的制冷系统,包括:制冷组件,其具有依次串接形成制冷回路的压缩机、第一蒸发器和第二蒸发器;其中第二蒸发器的内部形成有用于流通制冷剂的第一流通管;和第一旁通供冷管路,连接至制冷回路,且连通第一蒸发器的出口与第 一流通管;第一旁通供冷管路上设置有旁通节流装置,且第一旁通供冷管路用于在第一蒸发器利用来自压缩机的制冷剂化霜时,利用旁通节流装置对流出第一蒸发器且流向第一流通管的制冷剂进行节流。
可选地,第二蒸发器的内部还形成有用于流通制冷剂的第二流通管;且制冷组件还包括制冷连接管段,设置于制冷回路内,且连接第一蒸发器的出口与第二流通管,用于在第一蒸发器和第二蒸发器利用来自压缩机的制冷剂供冷时,将流出第一蒸发器的制冷剂导引至第二流通管。
可选地,制冷系统还包括第一切换阀,连接至第一蒸发器的出口,且其具有连通第二流通管的阀口、以及连通第一旁通供冷管路的入口的阀口;且第一切换阀用于在第一蒸发器和第二蒸发器同时提供冷量时打开连通第二流通管的阀口,并在第一蒸发器化霜时打开连通第一旁通供冷管路的阀口。
可选地,制冷系统还包括:第一旁通化霜管路,连接至第一蒸发器的入口,并用于向第一蒸发器通入流出压缩机的制冷剂,以使第一蒸发器化霜;和第二旁通化霜管路,连接至第二蒸发器的第一流通管的入口,并用于向第二蒸发器通入流出压缩机的制冷剂,以使第二蒸发器化霜。
可选地,制冷组件还包括冷凝器,设置于制冷回路内,并位于压缩机与第一蒸发器之间;且第一旁通化霜管路和第二旁通化霜管路还分别连接至压缩机的排气口或者冷凝器的出口,以便于通入流出压缩机的制冷剂。
可选地,制冷组件还包括:第三切换阀,连接至压缩机的排气口,且其具有连通冷凝器的阀口、连通第一旁通化霜管路的阀口、以及连通第二旁通化霜管路的阀口;且第三切换阀用于在第一蒸发器化霜时打开连通第一旁通化霜管路的阀口,在第二蒸发器化霜时打开连通第二旁通化霜管路的阀口,在第一蒸发器和第二蒸发器同时供冷时打开连通冷凝器的阀口。
可选地,制冷组件还包括制冷节流装置,设置于制冷回路内,且位于压缩机与第一蒸发器之间,用于对流向第一蒸发器的制冷剂节流;且制冷系统还包括第二旁通供冷管路,连通第二蒸发器的第一流通管的出口、以及制冷节流装置的入口,用于在第二蒸发器化霜时将流经第二蒸发器的制冷剂导引至制冷节流装置,以使第一蒸发器供冷。
可选地,制冷系统还包括:第二切换阀,连接至第二蒸发器的第一流通管的出口,且其具有用于连通压缩机的吸气口的阀口、以及用于连通第二旁通供冷管路的阀口;且第二切换阀用于在第二蒸发器提供冷量时打开用于连 通压缩机的阀口,并在第二蒸发器化霜时打开连通第二旁通供冷管路的阀口。
可选地,制冷系统还包括:旁通回气管路,其一端连通第一蒸发器的出口,另一端用于连通压缩机的吸气口;且第一切换阀还形成有连通旁通回气管路的阀口;且第一切换阀用于在第二蒸发器化霜时打开连通旁通回气管路的阀口。
根据本发明的另一方面,还提供了一种冷藏冷冻装置,包括:箱体,其内部形成有储物间室;以及如上述任一项的用于冷藏冷冻装置的制冷系统;其中第一蒸发器和第二蒸发器用于向储物间室提供冷量。
本发明的用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置,由于利用第一旁通供冷管路可以连通第一蒸发器的出口与第二蒸发器的第一流通管,且第一旁通供冷管路上设置有旁通节流装置,使得流经第一蒸发器的制冷剂可以流经第一旁通供冷管路且被节流后通入第二蒸发器的第一流通管,制冷剂在第二蒸发器内部吸热蒸发,从而使得第二蒸发器在第一蒸发器化霜时实现供冷。本发明通过对制冷系统进行结构改进,使其在提高化霜速率的同时,能够有效防止储物间室产生明显的温度波动。
进一步地,本发明的用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置,在一蒸发器化霜时,由于可以将流经化霜蒸发器的制冷剂导引并节流后供给另一蒸发器,以使该蒸发器供冷,两个蒸发器相辅相成,实现了化霜功能和供冷功能的有机结合,这使得本发明的制冷系统能够有效地利用压缩机的机械功,有利于提高制冷系统及冷藏冷冻装置的能效。
进一步地,本发明的用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置,由于第二蒸发器具有第一流通管和第二流通管,为特殊设计的双入双出结构,在此基础上,通过对制冷系统的连接结构进行特殊设计,可以灵活地调节流经第二蒸发器的制冷剂流动路径,使得串接于第一蒸发器下游的第二蒸发器既具备良好的供冷效果,又可以与第一蒸发器互换功能,实现无温升地化霜。
更进一步地,本发明的用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置,通过对第二蒸发器的管路结构进行改进,并利用旁通供冷管路、旁通化霜管路以及切换阀改进制冷系统的连接结构,即可使串接的蒸发器轮流地实现无温升地化霜,提升冷藏冷冻装置的保鲜性能,这有利于简化制冷系统的结 构,降低制造成本。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的用于冷藏冷冻装置的制冷系统的示意性框图;
图2是根据本发明一个实施例的用于冷藏冷冻装置的制冷系统的示意性结构图;
图3是根据本发明一个实施例的冷藏冷冻装置的示意性框图;
图4是根据本发明一个实施例的冷藏冷冻装置的示意性透视图。
具体实施方式
图1是根据本发明一个实施例的用于冷藏冷冻装置10的制冷系统200的示意性框图。制冷系统200一般性地可包括制冷组件210和旁通组件(例如下述旁通供冷管路和/或旁通化霜管路)。
其中,制冷组件210用于形成制冷回路。在无蒸发器化霜的情况下,制冷系统200利用制冷回路使蒸发器供冷。旁通组件连接至制冷回路,例如可以附接至制冷回路,以形成旁通支路。制冷回路和旁通支路均可以流通制冷剂。制冷系统200通过调节制冷剂在制冷回路和旁通支路中的流动路径来调节蒸发器的工作状态。蒸发器的工作状态包括供冷状态和化霜状态。
图2是根据本发明一个实施例的用于冷藏冷冻装置10的制冷系统200的示意性结构图。制冷组件210具有依次串接形成制冷回路的压缩机211、第一蒸发器212a和第二蒸发器212b。即,第一蒸发器212a串接于第二蒸发器212b的上游。其中“上游”“下游”等方向性词语是相对于制冷剂的流动路径而言的,例如,第一蒸发器212a位于第二蒸发器212b的上游是指,当制冷剂在制冷回路中流动并使两个蒸发器供冷时,先流经第一蒸发器212a,再流经第二蒸发器212b。第一蒸发器212a和第二蒸发器212b用于向冷藏冷冻装置10的储物间室110提供冷量。
第二蒸发器212b的内部形成有用于流通制冷剂的第一流通管。流经第二蒸发器212b的制冷剂可以经由第一流通管通过第二蒸发器212b。
旁通组件包括第一旁通供冷管路230a。第一旁通供冷管路230a连接至制冷回路,且连通第一蒸发器212a的出口与第一流通管。也就是说,第一旁通供冷管路230a相当于第一蒸发器212a与第一流通管之间的“连接通道”,可以在第一蒸发器212a化霜时将流经第一蒸发器212a的制冷剂导引至第二蒸发器212b。
第一旁通供冷管路230a上设置有旁通节流装置270,且第一旁通供冷管路230a用于在第一蒸发器212a利用来自压缩机211的制冷剂化霜时,利用旁通节流装置270对流出第一蒸发器212a且流向第一流通管的制冷剂进行节流。也就是说,第一旁通供冷管路230a在导引制冷剂的同时还能利用旁通节流装置270对制冷剂进行节流,使得被节流的制冷剂流经第二蒸发器212b的第一流通管时能够蒸发吸热,从而使得第二蒸发器212b供冷。
本实施例的制冷系统200,由于利用第一旁通供冷管路230a可以连通第一蒸发器212a的出口与第二蒸发器212b的第一流通管,且第一旁通供冷管路230a上设置有旁通节流装置270,使得流经第一蒸发器212a的制冷剂可以流经第一旁通供冷管路230a且被节流后通入第二蒸发器212b的第一流通管,制冷剂在第二蒸发器212b内部吸热蒸发,从而使得第二蒸发器212b在第一蒸发器212a化霜时实现供冷。本实施例通过对制冷系统200进行结构改进,使其在提高化霜速率的同时,能够有效防止储物间室110产生明显的温度波动。
除了第一流通管外,第二蒸发器212b的内部还可以进一步地形成有用于流通制冷剂的第二流通管。每一流通管分别具有各自的入口和出口。即,第二蒸发器212b的内部形成有用于流通制冷剂的两条通路。该第二蒸发器212b为特殊设计的双管嵌入结构,即,双入双出结构。第一流通管和第二流通管可以共用翅片。第一蒸发器212a可以为管翅式换热器。
制冷组件210还包括制冷连接管段216,设置于制冷回路内,且连接第一蒸发器212a的出口与第二流通管,用于在第一蒸发器212a和第二蒸发器212b利用来自压缩机211的制冷剂供冷时,将流出第一蒸发器212a的制冷剂导引至第二流通管。也就是说,制冷组件210利用制冷连接管段216实现两个蒸发器之间的串联,流经第一蒸发器212a且用于使第一蒸发器212a供 冷的制冷剂可以经由制冷连接管段216流入第二蒸发器212b的第二流通管。
制冷连接管段216上可以不设置任何节流装置,该制冷连接管段216仅起连接作用,不会针对流向第二流通管的制冷剂再次节流。制冷连接管段216的构造可以与制冷回路内的各个部件之间的连接管路的构造相同,只要能够实现导引制冷剂的功能即可。
通过将双入双出结构的第二蒸发器212b串接于第一蒸发器212a的下游,并利用制冷连接管段216连接第一蒸发器212a的出口与第二蒸发器212b的第二流通管,还利用第一旁通供冷管路230a连接第一蒸发器212a的出口与第二蒸发器212b的第一流通管,可使第二蒸发器212b在第一蒸发器212a处于各种工作状态时均能保持良好的供冷效果,既可以与第一蒸发器212a同时供冷,也可以在第一蒸发器212a化霜时独自供冷。
本实施例的制冷系统200还可以进一步地包括第一切换阀240,连接至第一蒸发器212a的出口。其中,第一切换阀240连接至第一蒸发器212a的出口是指,第一切换阀240的入口连通第一蒸发器212a的出口,本实施例以及以下实施例的阀口是指切换阀的出口。
第一切换阀240具有连通第二流通管的阀口、以及连通第一旁通供冷管路230a的入口的阀口。即,对于自第一蒸发器212a的出口流向第二蒸发器212b的制冷剂而言,具有两条流动路径,其一是经由制冷连接管段216流入第二蒸发器212b,其二是经由第一旁通供冷管路230a流入第二蒸发器212b。第一切换阀240可以通过开闭阀口调节流向第二蒸发器212b的制冷剂的流动路径,从而调节第二蒸发器212b的工作状态。第一切换阀240可以设置于储物间室110内。
第一切换阀240用于在第一蒸发器212a和第二蒸发器212b同时提供冷量时打开连通第二流通管的阀口,以允许流经第一蒸发器212a并用于使第一蒸发器212a供冷的制冷剂直接地流入第二蒸发器212b,从而使得第二蒸发器212b发挥良好的供冷效果。第一切换阀240还用于在第一蒸发器212a化霜时打开连通第一旁通供冷管路230a的阀口,以允许流经第一蒸发器212a并用于使第一蒸发器212a化霜的制冷剂先被节流再通入第二蒸发器212b,从而使得第二蒸发器212b能够发挥供冷功能。
通过在制冷系统200中布置切换阀并利用切换阀调节流向蒸发器的制冷剂的流动路径,可以简便地切换蒸发器的工作状态,方法简便,结构简单。
旁通组件还可以进一步地包括旁通化霜管路,连接至制冷回路,并用于向蒸发器通入来自压缩机211的制冷剂,以使蒸发器化霜。
旁通化霜管路可以包括与第一蒸发器212a对应的第一旁通化霜管路220a和与第二蒸发器212b对应的第二旁通化霜管路220b。其中,第一旁通化霜管路220a连接至第一蒸发器212a的入口,并用于向第一蒸发器212a通入流出压缩机211的制冷剂,以使第一蒸发器212a化霜。第二旁通化霜管路220b连接至第二蒸发器212b的第一流通管的入口,并用于向第二蒸发器212b通入流出压缩机211的制冷剂,以使第二蒸发器212b化霜。例如,每一旁通化霜管路还连接至压缩机211的排气口,使得流出压缩机211的高压的制冷剂可以经由每一旁通化霜管路通入每一蒸发器。旁通化霜管路的构造可以与制冷回路内的各个部件之间的连接管路的构造相同。
制冷系统200配置成在利用一旁通化霜管路使得一蒸发器化霜时,利用另一蒸发器提供冷量,以防储物间室110的温度波动。即,制冷系统200使得两个旁通化霜管路不会同时地连通,使得两个蒸发器不会同时地化霜,且只要有一个蒸发器化霜,就会有另外一个蒸发器供冷。
由于制冷系统200能够利用旁通化霜管路向蒸发器直接导入来自压缩机211的制冷剂以使蒸发器化霜,蒸发器依靠自身产生的热量“由内而外”地化霜,这有利于提高蒸发器化霜速率,缩短化霜周期,并且由于制冷系统200配置成在一蒸发器化霜时利用另一蒸发器提供冷量,这有利于防止因蒸发器化霜而导致储物间室110产生明显的温升,有助于提高冷藏冷冻装置10的保鲜性能。
制冷组件210还可以进一步地包括制冷节流装置214,设置于制冷回路内,且位于压缩机211与第一蒸发器212a之间,例如,可以位于下述冷凝器213的出口与第一蒸发器212a之间,用于对流向第一蒸发器212a的制冷剂进行节流。利用制冷节流装置214对流入第一蒸发器212a的制冷剂进行节流,节流后的制冷剂可以在第一蒸发器212a内吸热蒸发,从而可使第一蒸发器212a供冷。
旁通组件还可以进一步地包括第二旁通供冷管路230b,连通第二蒸发器212b的第一流通管的出口、以及制冷节流装置214的入口,用于在第二蒸发器212b化霜时将流经第二蒸发器212b的制冷剂导引至制冷节流装置214,以使第一蒸发器212a供冷。也就是说,第二旁通供冷管路230b相当于第二 蒸发器212b与第一蒸发器212a之间的“连接通道”,利用第二旁通供冷管路230b和制冷节流装置214相结合,可以在第二蒸发器212b化霜时将流经第二蒸发器212b的制冷剂导引至第一蒸发器212a,以使第一蒸发器212a供冷。
本实施例的制冷系统200,在一蒸发器化霜时,由于可以将流经化霜蒸发器的制冷剂导引并节流后供给另一蒸发器,以使该蒸发器供冷,两个蒸发器相辅相成,实现了化霜功能和供冷功能的有机结合,这使得本实施例的制冷系统200能够有效地利用压缩机211的机械功,有利于提高制冷系统200及冷藏冷冻装置10的能效。
由于第二蒸发器212b具有第一流通管和第二流通管,为特殊设计的双入双出结构,在此基础上,通过对制冷系统200的连接结构进行特殊设计,可以灵活地调节流经第二蒸发器212b的制冷剂流动路径,使得串接于第一蒸发器212a下游的第二蒸发器212b既具备良好的供冷效果,又可以与第一蒸发器212a互换功能,实现无温升地化霜。
制冷系统200可以进一步地包括第二切换阀250,连接至第二蒸发器212b的第一流通管的出口,即,第二切换阀250的入口连通第一流通管的出口。第二切换阀250具有用于连通压缩机211的吸气口的阀口,即,从该阀口流出的制冷剂可以流向压缩机211的吸气口。第二切换阀250还具有用于连通第二旁通供冷管路230b的阀口,即,从该阀口流出的制冷剂可以流至第二旁通供冷管路230b内。第二切换阀250可以为三通阀,例如三通电磁阀。在一些实施例中,第二切换阀250可以设置于储物间室110内。
第二切换阀250的两个阀口不同时地打开。第二切换阀250用于在第二蒸发器212b提供冷量时打开用于连通压缩机211的阀口,以使制冷剂回流至压缩机211的吸气口,并在第二蒸发器212b化霜时打开连通第二旁通供冷管路230b的阀口,以使制冷剂流经第一蒸发器212a并吸热蒸发。
旁通组件还可以进一步地包括旁通回气管路280,其一端连通第一蒸发器212a的出口,另一端用于连通压缩机211的吸气口。即,旁通回气管路280可以作为第一蒸发器212a的出口与压缩机211的吸气口之间的连接通道,流出第一蒸发器212a的制冷剂可以直接地经由旁通回气管路280回流至压缩机211。
相应地,由于第一切换阀240连接至第一蒸发器212a的出口,第一切 换阀240还可以进一步地形成有连通旁通回气管路280的阀口。也就是说,本实施例的第一切换阀240可以具有三个阀口,例如可以为四通电磁阀。第一切换阀240还用于在第二蒸发器212b化霜时打开连通旁通回气管路280的阀口。由于第二蒸发器212b化霜时,第一蒸发器212a处于供冷状态,此时利用第一切换阀240连通第一蒸发器212a的出口与旁通回气管路280,可以直接将流出第一蒸发器212a的制冷剂导引至压缩机211,从而完成制冷-化霜循环。
制冷组件210还可以进一步地包括冷凝器213,设置于制冷回路内,并位于压缩机211与第一蒸发器212a之间,例如可以位于压缩机211的排气口与制冷节流装置214之间。上述第一旁通化霜管路220a和第二旁通化霜管路220b还分别连接至压缩机211的排气口或者冷凝器213的出口,以便于通入流出压缩机211的制冷剂。例如,每一旁通化霜管路可以连接至压缩机211的排气口,流出压缩机211的制冷剂可以经由旁通化霜管路直接地通入化霜的蒸发器内,这有利于进一步地提高蒸发器的化霜速率。
制冷系统200还可以进一步地包括第三切换阀260,连接至压缩机211的排气口,即,第三切换阀260的入口连通压缩机211的排气口。且其具有连通冷凝器213的阀口、连通第一旁通化霜管路220a的阀口、以及连通第二旁通化霜管路220b的阀口。即,第三切换阀260的其中一个阀口连通冷凝器213的出口,另外两个阀口分别连通一个旁通化霜管路。第三切换阀260可以为四通阀,例如四通电磁阀。第三切换阀260可以设置于冷藏冷冻装置10的压机仓内。
第三切换阀260用于在第一蒸发器212a化霜时打开连通第一旁通化霜管路220a的阀口,以允许流出压缩机211的制冷剂直接地流入第一蒸发器212a,从而使第一蒸发器212a利用高压的制冷剂化霜。第三切换阀260还用于在第二蒸发器212b化霜时打开连通第二旁通化霜管路220b的阀口,以允许流出压缩机211的制冷剂直接地流入第二蒸发器212b,从而使第二蒸发器212b利用高压的制冷剂化霜。第三切换阀260还用于在第一蒸发器212a和第二蒸发器212b同时供冷时打开连通冷凝器213的阀口,以允许流出压缩机211的制冷剂依次流经冷凝器213、制冷节流装置214、第一蒸发器212a和第二蒸发器212b。
通过在每一蒸发器的出口布置旁通供冷管路,并利用第一切换阀240、 第二切换阀250和第三切换阀260调节流入和流出每一蒸发器的制冷剂流动路径,可以实现“化霜、供冷两不误”,且同时可以有效利用压缩机211的机械功,具备结构精巧的优点。
下面以第一蒸发器212a化霜的情况为例,对制冷系统200的控制过程进行详细介绍。在第一蒸发器212a化霜时,第三切换阀260打开连通第一旁通化霜管路220a的阀口,且关闭其他阀口,第一切换阀240打开连通第一旁通供冷管路230a的阀口,且关闭其他阀口,第二切换阀250打开用于连通压缩机211吸气口的阀口,且关闭其他阀口,使得流经的制冷剂回流至压缩机211,从而完成整个制冷-化霜循环。
在第二蒸发器212b化霜时,第三切换阀260打开连通第二旁通化霜管路220b的阀口,且关闭其他阀口,第二切换阀250打开连通第二旁通供冷管路230b的阀口,且关闭其他阀口,第一切换阀240打开连通旁通回气管路280的阀口,且关闭其他阀口,使得流经的制冷剂回流至压缩机211,从而完成整个制冷-化霜循环。
本实施例的制冷系统200,通过对第二蒸发器212b的管路结构进行改进,并利用旁通供冷管路、旁通化霜管路以及切换阀改进制冷系统200的连接结构,即可使串接的蒸发器轮流地实现无温升地化霜,提升冷藏冷冻装置10的保鲜性能,这有利于简化制冷系统200的结构,降低制造成本。
本实施例中,制冷组件210还可以进一步地包括储液包215,设置于制冷回路内,例如,可以设置于第二蒸发器212b的出口与压缩机211的吸气口之间,用于调节制冷组件210的各个部件所需的制冷剂的量。
图3是根据本发明一个实施例的冷藏冷冻装置10的示意性框图。冷藏冷冻装置10一般性地可包括箱体100和上述任一实施例的制冷系统200。
箱体100的内部形成有储物间室110。制冷系统200的第一蒸发器212a和第二蒸发器212b用于向储物间室110提供冷量。储物间室110可以为一个。该储物间室110的温区可以根据实际需要进行设置,例如该储物间室110可以为冷藏间室、冷冻间室、深冷间室或者变温间室中的任意一个。第一蒸发器212a和第二蒸发器212b用于向该储物间室110提供冷量。
图4是根据本发明一个实施例的冷藏冷冻装置10的示意性透视图。
在一些可选的实施例中,储物间室110也可以为多个,例如两个。上述制冷系统200的两个蒸发器所提供的冷量可以供给同一储物间室110,例如 冷冻间室。在一些可选的实施例中,在向同一储物间室110供冷的情况下,上述制冷系统200的两个蒸发器所提供的冷量还可以通过送风风道输送至其他储物间室110,例如冷藏间室,以实现多个储物间室110之间的冷量共享。在又一些可选的实施例中,每个蒸发器对应一个储物间室110,两个蒸发器既可以向各自对应的储物间室110供冷,也可以在一个蒸发器化霜时,利用另一蒸发器同时向两个储物间室110供冷。
在一些可选的实施例中,箱体100的内部还形成有用于安装蒸发器的安装空间120。该安装空间120可以位于储物间室110的一侧,例如下侧或者后侧。冷藏冷冻装置10还可以进一步地包括保温隔板130,设置于安装空间120内,并将安装空间120分隔出两个子空间。子空间可以按照一左一右或者一上一下的方式布置,使得蒸发器可以并列布置或者上下叠置,这可以节约蒸发器的安装空间120,提高空间利用率,且提高美观度。
每个子空间分别用于安装一个蒸发器,以减少蒸发器之间的热交换,这可以避免化霜的蒸发器所产生的热量影响另一蒸发器的供冷效果。
箱体100内形成有两个送风风道,与蒸发器一一对应,每一送风风道用于将对应蒸发器所提供的冷量输送至储物间室110。每个送风风道相互独立设置,这可以避免气流乱流,保证冷量输送效率,提高储物间室110的保鲜效果。且
相应地,冷藏冷冻装置10还可以进一步地包括两个风机150,与蒸发器一一对应设置,用于在对应蒸发器提供冷量时促使形成流经对应送风风道以及储物间室110的换热气流。风机150可以仅在对应蒸发器供冷时开启。且风机150可以采用风机150遮蔽手段防止蒸发器化霜时产生的热量进入储物间室110。在一些可选的实施例中,风机150的数量也可以变换为一个,设置于两个送风风道与储物间室110之间的公共流路上,使得该风机150可以同时作为两个送风风道的气流促动装置,这有利于进一步简化冷藏冷冻装置10的结构。
本实施例的用于冷藏冷冻装置10的制冷系统200以及冷藏冷冻装置10,由于利用第一旁通供冷管路230a可以连通第一蒸发器212a的出口与第二蒸发器212b的第一流通管,且第一旁通供冷管路230a上设置有旁通节流装置270,使得流经第一蒸发器212a的制冷剂可以流经第一旁通供冷管路230a且被节流后通入第二蒸发器212b的第一流通管,制冷剂在第二蒸发器212b 内部吸热蒸发,从而使得第二蒸发器212b在第一蒸发器212a化霜时实现供冷。本发明通过对制冷系统200进行结构改进,使其在提高化霜速率的同时,能够有效防止储物间室110产生明显的温度波动。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于冷藏冷冻装置的制冷系统,包括:
    制冷组件,其具有依次串接形成制冷回路的压缩机、第一蒸发器和第二蒸发器;其中所述第二蒸发器的内部形成有用于流通制冷剂的第一流通管;和
    第一旁通供冷管路,连接至所述制冷回路,且连通所述第一蒸发器的出口与所述第一流通管;所述第一旁通供冷管路上设置有旁通节流装置,且所述第一旁通供冷管路用于在所述第一蒸发器利用来自所述压缩机的制冷剂化霜时,利用所述旁通节流装置对流出所述第一蒸发器且流向所述第一流通管的制冷剂进行节流。
  2. 根据权利要求1所述的制冷系统,其中,
    所述第二蒸发器的内部还形成有用于流通制冷剂的第二流通管;且
    所述制冷组件还包括制冷连接管段,设置于所述制冷回路内,且连接所述第一蒸发器的出口与所述第二流通管,用于在所述第一蒸发器和所述第二蒸发器利用来自所述压缩机的制冷剂供冷时,将流出所述第一蒸发器的制冷剂导引至所述第二流通管。
  3. 根据权利要求2所述的制冷系统,还包括:
    第一切换阀,连接至所述第一蒸发器的出口,且其具有连通所述第二流通管的阀口、以及连通所述第一旁通供冷管路的入口的阀口;且
    所述第一切换阀用于在所述第一蒸发器和所述第二蒸发器同时提供冷量时打开连通所述第二流通管的阀口,并在所述第一蒸发器化霜时打开连通所述第一旁通供冷管路的阀口。
  4. 根据权利要求1-3中任一项所述的制冷系统,还包括:
    第一旁通化霜管路,连接至所述第一蒸发器的入口,并用于向所述第一蒸发器通入流出所述压缩机的制冷剂,以使所述第一蒸发器化霜;和
    第二旁通化霜管路,连接至所述第二蒸发器的所述第一流通管的入口,并用于向所述第二蒸发器通入流出所述压缩机的制冷剂,以使所述第二蒸发器化霜。
  5. 根据权利要求4所述的制冷系统,其中,
    所述制冷组件还包括冷凝器,设置于所述制冷回路内,并位于所述压缩机与所述第一蒸发器之间;且
    所述第一旁通化霜管路和所述第二旁通化霜管路还分别连接至所述压缩机的排气口或者所述冷凝器的出口,以便于通入流出所述压缩机的制冷剂。
  6. 根据权利要求5所述的制冷系统,还包括:
    第三切换阀,连接至所述压缩机的排气口,且其具有连通所述冷凝器的阀口、连通所述第一旁通化霜管路的阀口、以及连通所述第二旁通化霜管路的阀口;且
    所述第三切换阀用于在所述第一蒸发器化霜时打开连通所述第一旁通化霜管路的阀口,在所述第二蒸发器化霜时打开连通所述第二旁通化霜管路的阀口,在所述第一蒸发器和所述第二蒸发器同时供冷时打开连通所述冷凝器的阀口。
  7. 根据权利要求1-3中任一项所述的制冷系统,其中,
    所述制冷组件还包括制冷节流装置,设置于所述制冷回路内,且位于所述压缩机与所述第一蒸发器之间,用于对流向所述第一蒸发器的制冷剂节流;且
    所述制冷系统还包括第二旁通供冷管路,连通所述第二蒸发器的所述第一流通管的出口、以及所述制冷节流装置的入口,用于在所述第二蒸发器化霜时将流经所述第二蒸发器的制冷剂导引至所述制冷节流装置,以使所述第一蒸发器供冷。
  8. 根据权利要求7所述的制冷系统,还包括:
    第二切换阀,连接至所述第二蒸发器的所述第一流通管的出口,且其具有用于连通所述压缩机的吸气口的阀口、以及用于连通所述第二旁通供冷管路的阀口;且
    所述第二切换阀用于在所述第二蒸发器提供冷量时打开用于连通所述压缩机的阀口,并在所述第二蒸发器化霜时打开连通所述第二旁通供冷管路 的阀口。
  9. 根据权利要求3所述的制冷系统,还包括:
    旁通回气管路,其一端连通所述第一蒸发器的出口,另一端用于连通所述压缩机的吸气口;且
    所述第一切换阀还形成有连通所述旁通回气管路的阀口;且所述第一切换阀用于在所述第二蒸发器化霜时打开连通所述旁通回气管路的阀口。
  10. 一种冷藏冷冻装置,包括:
    箱体,其内部形成有储物间室;以及
    如权利要求1-9中任一项所述的用于冷藏冷冻装置的制冷系统;其中所述第一蒸发器和所述第二蒸发器用于向所述储物间室提供冷量。
PCT/CN2022/094980 2021-06-29 2022-05-25 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 WO2023273708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110730137.2 2021-06-29
CN202110730137.2A CN115540406B (zh) 2021-06-29 2021-06-29 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2023273708A1 true WO2023273708A1 (zh) 2023-01-05

Family

ID=84692492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094980 WO2023273708A1 (zh) 2021-06-29 2022-05-25 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN115540406B (zh)
WO (1) WO2023273708A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1395083A (en) * 1972-07-22 1975-05-21 Naniwa Sangyo Co Ltd Combination type refrigerator
JP2002031459A (ja) * 2000-07-14 2002-01-31 Toshiba Corp 冷蔵庫
CN104613688A (zh) * 2015-01-23 2015-05-13 西安交通大学 一种冰箱的热气除霜系统及其控制方法
CN110285595A (zh) * 2019-06-12 2019-09-27 合肥美的电冰箱有限公司 制冷系统及具有其的制冷设备
CN209623140U (zh) * 2019-03-22 2019-11-12 合肥华凌股份有限公司 制冷装置和制冷设备
CN111207534A (zh) * 2020-01-09 2020-05-29 珠海格力电器股份有限公司 制冷系统、制冷设备以及制冷系统的控制方法
CN111520956A (zh) * 2020-05-11 2020-08-11 珠海格力电器股份有限公司 一种双系统冰箱及其化霜控制方法
CN112460903A (zh) * 2020-12-14 2021-03-09 珠海格力电器股份有限公司 制冷化霜系统及制冷设备
CN215892861U (zh) * 2021-06-29 2022-02-22 青岛海尔电冰箱有限公司 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1395083A (en) * 1972-07-22 1975-05-21 Naniwa Sangyo Co Ltd Combination type refrigerator
JP2002031459A (ja) * 2000-07-14 2002-01-31 Toshiba Corp 冷蔵庫
CN104613688A (zh) * 2015-01-23 2015-05-13 西安交通大学 一种冰箱的热气除霜系统及其控制方法
CN209623140U (zh) * 2019-03-22 2019-11-12 合肥华凌股份有限公司 制冷装置和制冷设备
CN110285595A (zh) * 2019-06-12 2019-09-27 合肥美的电冰箱有限公司 制冷系统及具有其的制冷设备
CN111207534A (zh) * 2020-01-09 2020-05-29 珠海格力电器股份有限公司 制冷系统、制冷设备以及制冷系统的控制方法
CN111520956A (zh) * 2020-05-11 2020-08-11 珠海格力电器股份有限公司 一种双系统冰箱及其化霜控制方法
CN112460903A (zh) * 2020-12-14 2021-03-09 珠海格力电器股份有限公司 制冷化霜系统及制冷设备
CN215892861U (zh) * 2021-06-29 2022-02-22 青岛海尔电冰箱有限公司 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置

Also Published As

Publication number Publication date
CN115540406B (zh) 2024-03-19
CN115540406A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN216409376U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN215892902U (zh) 冷藏冷冻装置
WO2018040441A1 (zh) 冰箱
CN215892861U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
WO2025097956A1 (zh) 制冷系统及其控制方法、控制装置和制冷设备
CN215864171U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN215892860U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN215892862U (zh) 用于冷藏冷冻装置的制冷系统及冷藏冷冻装置
CN215892903U (zh) 冷藏冷冻装置
WO2025097953A1 (zh) 制冷系统及其控制方法、控制装置和制冷设备
WO2023273708A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN210374250U (zh) 冷藏冷冻装置
CN216011388U (zh) 一种冰箱
CN216409420U (zh) 冷藏冷冻装置
WO2023273709A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
WO2023273706A1 (zh) 冷藏冷冻装置
WO2023273707A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
WO2023273710A1 (zh) 冷藏冷冻装置
WO2023029777A1 (zh) 用于冷藏冷冻装置的制冷系统及具有其的冷藏冷冻装置
WO2023273705A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN114688795A (zh) 冰箱
CN106802048A (zh) 冰箱
WO2023273711A1 (zh) 冷藏冷冻装置
CN113739485A (zh) 冰箱
CN115479436B (zh) 风道组件、冰箱及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831531

Country of ref document: EP

Kind code of ref document: A1