WO2023241252A1 - 显示面板、显示装置、三维微结构器件及其制备方法 - Google Patents
显示面板、显示装置、三维微结构器件及其制备方法 Download PDFInfo
- Publication number
- WO2023241252A1 WO2023241252A1 PCT/CN2023/092106 CN2023092106W WO2023241252A1 WO 2023241252 A1 WO2023241252 A1 WO 2023241252A1 CN 2023092106 W CN2023092106 W CN 2023092106W WO 2023241252 A1 WO2023241252 A1 WO 2023241252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- thin film
- film actuator
- functional layer
- area
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00134—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00134—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
- B81C1/00166—Electrodes
Definitions
- the present application relates to the technical field of micro-electromechanical systems, and in particular to a display panel, a display device, a three-dimensional microstructure device and a preparation method thereof.
- Micro Electro Mechanical System focuses on ultra-precision machining and refers to independent devices with dimensions on the micron or even nanometer scale. MEMS is developed on the basis of semiconductor manufacturing technology, integrating photolithography, etching, thin film, LIGA (Lithographie, Galvanoformung, Abformung, that is, photolithography, electroforming and injection molding), silicon micromachining, non-silicon micromachining and precision machinery High-tech electronic mechanical devices produced by processing and other technologies.
- the present disclosure provides a display panel, a display device, a three-dimensional microstructure device and a preparation method thereof.
- a method for preparing a three-dimensional microstructure device includes:
- the thin film actuator being located between the functional layer and the device layer;
- the device layer or the functional layer is processed to prepare the three-dimensional microstructure device.
- the material of the thin film actuator is one of thermally responsive shape memory material, photo-induced shape memory material, pH-induced shape memory material, electro-induced shape memory material, and magnetic-induced shape memory material;
- the setting process is a corresponding process associated with the material of the membrane actuator.
- the corresponding process includes a heating process, an illumination process, a pH value adjustment process, an electric field application process and/or a magnetic field application process.
- the thermally responsive shape memory material is one of polyethylene-vinyl acetate, polyurethane, polycaprolactone and their copolymers.
- the execution setting process expands the thin film actuator to move the functional layer away from the device layer, including:
- Executing the setting process causes the thin film actuator to expand, push the contact area of the device layer away from the functional layer, and make the contact area and the surrounding area tend to be on the same plane;
- the contact area is the area where the device layer is in contact with the thin film actuator
- the peripheral area is the area where the device layer is connected to the contact area
- the preparation of functional layers, thin film actuators and device layers includes:
- the device layer is formed on the functional layer on which the thin film actuator is formed.
- the three-dimensional microstructure device is the bottom electrode in the display panel
- Preparing the functional layer and detecting the recessed area in the functional layer includes: providing a first substrate and forming a dielectric layer on the first substrate;
- the forming the device layer on the functional layer on which the thin film actuator is formed includes:
- an electrode material layer as the device layer on the functional layer on which the thin film actuator is formed, and forming a photoresist layer on the electrode material layer;
- the execution of the setting process causes the thin film actuator to expand, push the contact area of the device layer away from the functional layer, and make the contact area and the surrounding area tend to the same plane, including:
- the first base substrate is pre-baked to cause the thin film actuator to expand and deform when heated, push the electrode material layer on the thin film actuator away from the functional layer, and cause the thin film actuator to The electrode material layer on the top and the electrode material layer on the peripheral area tend to be on the same plane;
- Processing the device layer or the functional layer while the functional layer is away from the device layer to prepare the three-dimensional microstructure device includes:
- the photoresist layer is exposed, developed, and post-baked, and the electrode material layer is etched to obtain the bottom electrode.
- the preparation of functional layers, thin film actuators and device layers includes:
- the membrane actuator is formed on the lower side of the step area.
- the device layer is formed on the step area where the thin film actuator is formed.
- the three-dimensional microstructure device is a cantilever beam in the display panel
- Preparing the functional layer and determining the step area in the functional layer includes:
- a second base substrate is provided, and an organic film layer is prepared in a set area of the second base substrate, and the second base substrate and the organic film layer are the functional layers; wherein, the organic film The area where the layer interfaces with the second base substrate is the step area;
- the forming the device layer on the step area where the thin film actuator is formed includes:
- a cantilever material layer as the device layer on the step area where the thin film actuator is formed, and forming a photoresist layer on the cantilever material layer;
- the execution of the setting process causes the thin film actuator to expand, push the contact area of the device layer away from the functional layer, and make the contact area and the surrounding area tend to the same plane, including:
- the second substrate is pre-baked to cause the thin film actuator to expand and deform when heated, push the cantilever beam material layer on the thin film actuator away from the functional layer, and cause the thin film actuator to expand and deform.
- the cantilever beam material layer on the actuator and the cantilever beam material layer on the higher side of the step area tend to be on the same plane;
- Processing the device layer or the functional layer while the functional layer is away from the device layer to prepare the three-dimensional microstructure device includes:
- the photoresist layer is exposed, developed, and post-baked, and the cantilever beam material layer is etched to obtain the cantilever beam.
- the execution setting process expands the thin film actuator to move the functional layer away from the device layer, including:
- Performing the setting process causes the thin film actuator to expand to isolate the functional layer from the device layer.
- the three-dimensional microstructure device is a suspended film bridge in the display panel
- the preparation of functional layers, thin film actuators and device layers includes:
- a third base substrate form an anchor mechanism and a sacrificial layer in the display area of the third base substrate, and the third base substrate and the sacrificial layer are the functional layers;
- the execution of the setting process to expand the thin film actuator to isolate the functional layer from the device layer includes:
- Processing the device layer or the functional layer while the functional layer is away from the device layer to prepare the three-dimensional microstructure device includes:
- the sacrificial layer is released so that the membrane bridge layer and the anchor point mechanism form the suspended membrane bridge.
- the thermally responsive shape memory material is polyacrylic acid-b-polyN-isopropylacrylamide, polymethacrylic acid-b-polyN-isopropylacrylamide, or polymethacryl alcohol- b-poly-N-isopropylacrylamide.
- the photoinduced shape memory material includes: acrylate copolymer, acrylate copolymer or polyurethane grafted with cinnamic acid groups, carbon nanotube-filled thermoplastic elastomer, or gold nanorods introduced into polyurethane.
- acrylate copolymer acrylate copolymer or polyurethane grafted with cinnamic acid groups, carbon nanotube-filled thermoplastic elastomer, or gold nanorods introduced into polyurethane.
- Tert-butyl acrylate or polyamino acid ester Tert-butyl acrylate or polyamino acid ester.
- the pH-induced shape memory material includes: cellulose nanofibril polyurethane, polyacrylamide with added dansulfonamide groups, or phosphorylation-modified cellulose nanofibril composite polyurethane.
- the electro-induced shape memory material includes: carbon black filled shape memory thermosetting polystyrene composite, carbon nanotube filled shape memory polyurethane composite, or carbon nanotube filled shape memory thermosetting polyurethane composite.
- the magnetic shape memory material includes: polylactic acid, polycaprolactone, and polyurethane added with magnetic particles, wherein the magnetic particles include ⁇ -Fe 2 O 3 , Fe 3 O 4 or NdFeB.
- a three-dimensional microstructure device including: a base body, a thin film actuator and a three-dimensional microstructure;
- the thin film actuator is located between the base and the three-dimensional microstructure, or within the three-dimensional microstructure;
- the thin film actuator expands during the formation of the three-dimensional microstructured device.
- a third aspect provides a display panel, which includes the three-dimensional microstructure device provided in the second aspect.
- a fourth aspect provides a display device, including the display panel provided in the third aspect.
- Figure 1 shows a schematic flow chart of a method for preparing a three-dimensional microstructure device provided by an embodiment of the present disclosure
- Figure 2A shows a schematic diagram of a recessed area on a dielectric layer in the related art
- Figure 2B shows a schematic cross-sectional view of BB' in Figure 2A;
- Figure 2C shows a schematic flow diagram of the preparation method of Example 1 of the present disclosure
- 2D shows a schematic diagram of forming a thin film actuator between the recessed area of the dielectric layer and the electrode material layer according to Embodiment 1 of the present disclosure
- Figure 2E shows a schematic diagram of the membrane actuator according to Embodiment 1 of the present disclosure after expansion and deformation
- Figure 3A shows a schematic diagram of a cantilever beam structure in the related art
- Figure 3B shows a schematic cross-sectional view of BB' in Figure 3A;
- Figure 3C shows a schematic flow diagram of the preparation method of Embodiment 2 of the present disclosure
- Figure 3D shows a schematic diagram of forming a thin film actuator on the lower side of the step area according to Embodiment 2 of the present disclosure
- Figure 3E shows a schematic diagram of the membrane actuator according to Embodiment 2 of the present disclosure after expansion and deformation
- Figure 4A shows a schematic diagram of a suspended membrane bridge in the related art
- Figure 4B shows a schematic cross-sectional view of BB' in Figure 4A;
- Figure 4C shows a schematic flow diagram of the preparation method of Embodiment 3 of the present disclosure
- 4D shows a schematic diagram of forming a thin film actuator between a sacrificial layer and a membrane bridge layer according to Embodiment 3 of the present disclosure.
- Figure 4E shows a schematic diagram of the membrane actuator according to Embodiment 3 of the present disclosure after expansion and deformation
- Three-dimensional micromechanical structures usually have the characteristics of small size, light weight and high functional integration. They have wide applications in the fields of microsensing, optical fiber communication, micromechanical structures, micropower and microenergy, microanalysis and microactuators.
- This complex three-dimensional microstructure can be realized through multiple glue coating and then exposure methods, gray tone mask (JP2017/038919) photolithography method or bonding process.
- the multiple glue application and re-exposure process involves the alignment of the upper and lower layers, and factors such as photoresist miscibility must also be considered;
- the gray tone mask process has higher production costs and technical difficulties, and usually requires thick glue coating, making the process complex. ;
- the bonding process cannot correspond to the multi-layer film-type three-dimensional micro-mechanical structure.
- the above three types of processes are all limited by the limited uniformity of film formation, the light source intensity distribution of the exposure machine, and the inability to locally adjust the exposure focal length, which affects the process accuracy of the three-dimensional micromechanical structure.
- the preparation of micromechanical structures mainly uses semiconductor thin film processing technology, including patterning using photolithography and etching on the basis of thin film deposition.
- Some movable micromechanical structures also involve the use of corrosion and other technologies from the front. Or release the corresponding structural unit on the back. Due to the uniformity and stability of thin film deposition processes such as magnetron sputtering, chemical vapor deposition, sol-gel method and pulsed laser deposition, the uniformity of film formation is limited. After each photolithography coating, the photoresist changes with the When the shape is unfolded, there will be nano-level or even micron-level nuances on its surface.
- micron-level fine structures especially patterns with complex three-dimensional structures, are difficult to achieve a single exposure. Molding requires high aspect ratio processing or body processing, which significantly increases the process cost.
- the present disclosure provides a method for preparing a three-dimensional microstructure device.
- the overall idea includes steps S1 to S3, as follows:
- S1 Prepare a functional layer, a thin film actuator and a device layer, and the thin film actuator is located between the functional layer and the device layer.
- the functional layer in this embodiment can be interpreted as the base part in the three-dimensional microstructure device.
- the functional layer can be a substrate, such as a silicon substrate; it can be a substrate, such as a transparent glass substrate; it can also include a substrate formed on the substrate. Or an insulating layer, dielectric layer, organic material layer or sacrificial layer on the substrate, etc., which are not specifically limited.
- the device layer can be explained as the key material layer that forms the three-dimensional microstructure.
- the source-drain metal layer may be the device layer of a thin film transistor
- the electrode material layer may be the device layer of the bottom electrode in the display panel
- the cantilever material layer may be the device layer of the cantilever beam in the display panel, and so on.
- Thin film actuators are microactuators, which are microstructures that can convert other forms of energy, such as light energy, thermal energy, and electromagnetic energy into mechanical energy. When heated or loaded with electric or magnetic fields, mechanical energy can be output through expansion and deformation. Therefore, thin film actuators are mechanisms formed by thin film materials with shape memory effects. Different types of shape memory materials, such as thermally responsive shape memory materials, photoinduced shape memory materials, pH induced shape memory materials, electroinduced shape memory materials, Magnetic shape memory materials can be used to form the thin film actuator required in this embodiment.
- Thin film actuators can be single-layer or double-layer organic films or other films with shape memory effects.
- thermally responsive shape memory materials a better choice is a semi-crystalline polymer with a reversible shape memory effect, including: polyethylene-vinyl acetate, polyurethane, polycaprolactone and their copolymers. Specifically: polyacrylic acid-b-polyN-isopropylacrylamide, polymethacrylic acid-b-polyN-isopropylacrylamide, polymethacryl alcohol-b-polyN-isopropylacrylamide, etc. Polymer material.
- Thermal-responsive thin-film actuators can be prepared through semiconductor film-forming processes, such as spin coating or atomic layer deposition.
- photoinduced shape memory materials they can be divided into photochemical reaction types and photothermal effect types.
- Optional materials include: acrylate copolymers grafted with cinnamic acid groups, acrylate copolymers or polyurethanes, and carbon nanotubes. Filled with thermoplastic elastomer, gold nanorods are introduced into polytert-butyl acrylate or polyamino acid ester, etc.
- optional materials include: cellulose nanofibril polyurethane, polyacrylamide with added dansulfonamide groups, phosphorylated modified cellulose nanofibril composite polyurethane, etc.
- optional materials include: carbon black-filled shape memory thermosetting polystyrene composites, carbon nanotube-filled shape memory polyurethane composites, carbon nanotube-filled shape memory thermosetting polyurethane composites, etc.
- optional materials include: adding magnetic particles, such as ⁇ -Fe 2 O 3 , Fe 3 O 4 , NdFeB polylactic acid, polycaprolactone, polyurethane, etc.
- the corresponding process is heating.
- the pre-baking and post-baking steps in the photolithography process can be used as the corresponding process, so that the thin-film actuator can be used in the pre-baking and post-baking steps.
- a small expansion deformation is produced under the induction of thermal stimulation; for the light-responsive thin film actuator, the corresponding process is to turn on the light, so that the thin film actuator produces a small expansion deformation under a specific light intensity; for the pH-responsive thin film actuator, the corresponding process The process is to adjust the pH value of the environment so that the film actuator produces tiny expansion deformations within a specific pH value range; for the electrically responsive film actuator, the corresponding process is to apply an electric field so that the film actuator produces tiny expansion deformations under a specific electric field intensity. Expansion deformation; for magnetically responsive thin film actuators, the corresponding process is to apply a magnetic field, causing the thin film actuator to produce slight expansion deformation under a specific magnetic field intensity.
- the functional layer is far away from the device layer, which can be implemented by the thin film actuator pushing the functional layer away from the device layer, that is, the moving body is the functional layer, or the thin film actuator pushing the device layer away from the functional layer, that is, the moving body is The device layer; on the other hand, some areas of the functional layer can be far away from the device layer, or the entire area of the functional layer can be far away from the device layer, and there is no specific limitation on this.
- Types of functional layers located far away from device layers include but are not limited to:
- Type 1 Alignment of device layers with different heights in different areas. By aligning the device layers through the expansion of the actuator film, the problem of uneven light intensity distribution of the exposure machine can be overcome, or defects caused by uneven MEMS film formation can be repaired, thereby improving exposure uniformity and ensuring the performance of three-dimensional microstructure devices or Yield rate; it can also overcome the problem that the exposure focus of the exposure machine cannot be locally adjusted, reduce the number of exposure moldings during the preparation process of three-dimensional microstructure devices and compensate for the exposure focus, improving exposure quality.
- Type 2 Spatial isolation of the device layer and the functional layer, specifically: executing the setting process to expand the thin film actuator to isolate the functional layer from the device layer.
- the expansion of the actuator film improves the isolation quality of the device layer and the functional layer, avoids adhesion between the device layer and the isolation layer, and affects the performance of the three-dimensional microstructure device.
- type 1 it includes but is not limited to: exposure uniformity compensation and exposure focal plane compensation.
- step S1 is specifically:
- a functional layer is prepared, and a recessed area in the functional layer is detected; a thin film actuator is formed in the recessed area; and a device layer is formed on the functional layer on which the thin film actuator is formed.
- step S1 is specifically:
- a functional layer is prepared, and a step area in the functional layer is determined; a thin film actuator is formed on a lower side of the step area; and a device layer is formed on the step area where the thin film actuator is formed.
- Step S2 in the above two situations corresponds as follows:
- tending to the same plane means that the contact area of the device layer and the surrounding area are aligned as much as possible, or the height difference between the two is less than the set threshold.
- This embodiment provides a method for preparing a three-dimensional microstructure device by forming a thin film actuator between the functional layer and the device layer, and then causing the thin film actuator to expand and micro-deform through a set process to move the functional layer away from the device. layer, so that when the functional layer or device layer is subsequently processed to prepare a three-dimensional microstructure device, the expanded film actuator can be initiated to repair the film formation uniformity of the functional layer and compensate for exposure Intensity distribution and exposure focal plane, or improving the isolation effect between the device layer and the functional layer, thereby improving the process accuracy of the three-dimensional micromechanical structure and ensuring the product performance and yield rate of the microelectromechanical system preparation.
- Example 1 Preparation of bottom electrode in display panel.
- a dielectric layer 12: SiO is first deposited on the substrate with a thickness of about several hundred nanometers, and then an electrode material layer 31: Ti/Al/Ti is deposited.
- an electrode material layer 31: Ti/Al/Ti is deposited.
- multiple defects will be generated on the surface of the dielectric layer 12, which are manifested as depressed areas, as shown in the elliptical area in Figure 2A and the cross-section of the elliptical area in Figure 2B. If not repaired, the photoresist will flow with the shape after the glue is applied, and defects will occur after curing. The defects may even be amplified during the electrode metal deposition process, which will have a negative impact on subsequent processes.
- Figure 2C which includes the following steps:
- S111 Provide the first base substrate 11, form the dielectric layer 12 on the first base substrate 11; detect the recessed area of the dielectric layer 12; the first base substrate 11 and the dielectric layer 12 are the functional layer 1;
- the first substrate 11 can be a glass substrate, and then a layer of 800nm SiO can be deposited on the first substrate 11 by plasma enhanced chemical vapor deposition (PEVCD), and then Use film thickness measuring instruments, microscopes and other measuring tools to detect defects on the surface and determine the depressed area as shown in Figure 2A.
- PEVCD plasma enhanced chemical vapor deposition
- the thin film actuator 2 is patterned in the recessed area.
- the thin film formation method can be made by spin coating (Spin-coating) or atomic layer deposition (Atomic Layer Deposition, referred to as ALD).
- ALD atomic layer deposition
- the membrane actuator 2 in this embodiment is a thermally responsive type, and its material is polyacrylic acid-b-polyN-isopropylacrylamide.
- the film thickness can be adjusted according to the defect situation, such as 2nm ⁇ 900nm.
- S113 Form an electrode material layer 31 as the device layer 3 on the functional layer 1 on which the thin film actuator 2 is formed, and form a photoresist layer 4 on the electrode material layer 31;
- the deposition method of the electrode material layer 31 can be Sputter magnetron sputtering or evaporation deposition.
- the deposition material is Ti/Al/Ti, and an example thickness is 50nm/700nm/50nm.
- photoresist is coated on the electrode material layer 31 to form the photoresist layer 4 .
- Slot coating slot die or spin coating methods can be used, with an example thickness of 1.5 ⁇ m.
- S21 Pre-baking the first base substrate 11 to cause the thin film actuator 2 to expand and deform when heated, push the electrode material layer 31 on the thin film actuator 2 away from the functional layer 1, and make the electrode material on the thin film actuator 2
- the layer 31 and the electrode material layer 31 on the peripheral area tend to be on the same plane
- the pre-baking temperature adopts the current pre-baking temperature of 110°C for display panels and lasts for 150 seconds.
- the thin film actuator 2 undergoes rapid expansion and deformation when heated, and the deformation amount is about a few nanometers to hundreds of nanometers, causing the electrode material layer 31 and the photoresist layer 4 in the recessed area to become aligned with the surrounding normal area, as shown in Figure 2E . Due to the slow thermal response recovery speed of polyacrylic acid-b-poly-N-isopropylacrylamide, the film has not completely returned to its original shape after the substrate is cooled.
- Exposure is performed first, and the thin film actuator 2 is maintained in an expanded state at this time to provide certain compensation for the focal plane of the recessed area, so that the recessed area of the electrode material layer 31 and the surrounding normal area are in the same focal plane, ensuring the exposure effect.
- the post-baking process can keep the thin film actuator 2 in a state of thermal expansion to ensure that the pattern is consistent with the exposure process.
- etching is performed to obtain a patterned metal electrode, that is, the bottom electrode.
- the thermally responsive thin film actuator 2 in this embodiment expands and deforms slightly when heated, and compensates for the uniformity of local exposure of the glue-coated substrate, so that the device layer 3 and the photoresist layer 4 at different positions during the exposure process are kept in one place. plane to eliminate the adverse effects of the recessed area and improve the exposure effect.
- This embodiment is suitable for thin film actuators 2 with small deformation ( ⁇ 10 ⁇ m).
- Example 2 Preparation of cantilever beams in display panels.
- Figure 3C which includes the following steps:
- S121 Provide a second base substrate 13, and prepare an organic film layer 14 in a set area of the second base substrate 13.
- the second base substrate 13 and the organic film layer 14 are the functional layer 1; wherein, the organic film layer 14
- the area bordering the second base substrate 13 is a step area;
- the second base substrate 13 can be a glass substrate, and an organic film layer 14 is formed in the AA area (display area) of the substrate.
- the material is a photosensitive resin film (Overcoat, OC) or polyimide (PI), etc. .
- S122 Form the thin film actuator 2 on the lower side of the step area
- the junction between the organic film layer 14 and the second base substrate 13 is regarded as a step area, where the organic film layer 14 is the higher side of the step, and the second base substrate at the interface with the organic film layer 14
- the area 13 is the lower side of the step.
- the corresponding membrane actuator 2 is patterned on the lower side. Its type is thermally responsive and the optional material is polymethacrylic acid-b-polyN-isopropylacrylamide.
- the preparation method can be spin-coating or atomic layer deposition (ALD), and the film thickness can be adjusted according to the defect situation, such as 1-10 ⁇ m.
- S123 Form a cantilever beam material layer 32 as the device layer 3 on the step area where the thin film actuator 2 is formed, and form a photoresist layer 4 on the cantilever beam material layer 32;
- the cantilever beam material is deposited in the step area (including the higher side and the lower side where the thin film actuator 2 is formed) to form the device layer 3.
- the optional material is aluminum Al, and the deposition thickness is hundreds of nanometers, such as 700nm.
- Device layer 3 is deposited and coated with photoresist, either slot die or spin coating, with a thickness of 1.5 ⁇ m.
- S22 Pre-baking the second substrate 13 to cause the thin film actuator 2 to expand and deform when heated, push the cantilever material layer 32 on the thin film actuator 2 away from the functional layer 1, and make the cantilever on the thin film actuator 2
- the beam material layer 32 and the cantilever beam material layer 32 on the higher side of the step area tend to be on the same plane;
- pre-baking is performed at a temperature of 110°C for 200 seconds, and the membrane actuator 2 is heated to produce fast Rapid expansion deformation, the deformation amount is about several microns to tens of microns, causing the cantilever beam material layer 32 on the lower side of the step (at the substrate) and the cantilever beam material layer 32 on the higher side of the step (at the organic film layer 14) to converge on the same plane, as shown in Figure 3E. Due to the slow thermal response recovery speed of polymethacrylic acid-b-poly-N-isopropylacrylamide, the film has not completely returned to its original shape after the substrate is cooled.
- Exposure is performed first, and the film actuator 2 remains in an expanded state at this time, thereby performing focal plane compensation for the cantilever beam pattern on the lower side of the step area, ensuring the exposure effect.
- the patterned cantilever beam is obtained by etching.
- the exposure process is a planar process, so some graphics will be out of focus and become blurred.
- the film actuator 2 in this embodiment compensates the exposure focal plane through micro-deformation due to heat, so that the graphics exposed at the same time are in the same focal plane, ensuring the exposure effect.
- due to the thin film thickness of the device layer even if there is thickness unevenness caused by the expansion of the thin film actuator 2 at the junction of the higher side and the lower side of the step area, it will not significantly affect the structure of the cantilever beam. performance.
- This embodiment is suitable for membrane actuators 2 with large deformation (10 ⁇ m to 100 ⁇ m).
- Example 3 Preparation of suspended membrane bridges in display panels.
- the suspended membrane bridge structure in the display panel mainly includes anchor points, sacrificial support layers and membrane bridges, as shown in Figure 4A and Figure 4B.
- a sacrificial layer 16 needs to be formed and then released.
- the release process includes wet etching or dry etching.
- wet etching due to the existence of liquid capillary force and mechanical stirring, the suspended structure is easy to adhere to the substrate, which may even cause device failure; while dry etching often uses oxygen plasma, HF or XeF 2 gas, which is harmful to the substrate.
- the equipment requirements are high, the co-directional etching efficiency is low, and it is easy to cause damage to the upper metal film layer.
- Figure 4C which includes the following steps:
- S131 Provide a third base substrate 15, form the anchor point mechanism 17 and the sacrificial layer 16 in the display area of the third base substrate 15, and the third base substrate 15 and the sacrificial layer 16 are the functional layer 1;
- the third substrate 15 can be a glass substrate, and the material of the sacrificial layer 16 can be silicon oxide, photoresist or borophosphosilicate glass PSG. Si, Ge, polysilicon, etc. can also be used.
- This embodiment uses photoresist as an example for description.
- the thin film actuator 2 in this embodiment is a thermal response type, and its material can be polymethacryl alcohol-b-poly N-isopropylene acrylamide; the formation method can be spin-coating or atomic layer deposition (ALD), and the thickness can be adjusted according to the actual height of the sacrificial layer 16, such as 1-10 ⁇ m.
- ALD atomic layer deposition
- S133 Form the membrane bridge layer 33 as the device layer 3 on the membrane actuator 2 and the anchor point mechanism 17;
- aluminum Al can be deposited as the device layer 3 of the film bridge with a thickness of several hundred nanometers, such as 300 nm.
- the sacrificial layer 16 can be released by a wet or dry method.
- the key to the release of the sacrificial layer 16 lies in the selection ratio (corrosion rate ratio) of the release material and the structural layer material and the subsequent drying of the free structure.
- the thin film actuator 2 due to the existence of the thin film actuator 2 above the sacrificial layer 16, during the heating release process, the thin film actuator 2 expands due to heat, which weakens the interface contact between the sacrificial layer 16 and the device layer 3, making it easier to release cleanly. , as shown in Figure 4E.
- step S23 can also be considered as a prerequisite operation of step S33.
- the thin film actuator 2 is fabricated on the surface of the sacrificial layer 16 supporting material. Compared with only growing the sacrificial layer 16, the adhesion between the sacrificial layer 16 and the film bridge can be reduced, making it easier to release cleanly without adversely affecting the performance of the original device.
- RF MEMS switch flexible radio frequency micro-electro-mechanical system
- Its core device structure is a movable three-dimensional microstructure, and the dimensions of the key device structures are uniform. To the micron level. Limited by the exposure capabilities of existing exposure machines, several key dimensions of its core device structure cannot be accurately patterned at the same time. By adding a thin film actuator layer, local exposure compensation can be performed at several positions of its critical dimensions, ensuring that the critical dimensions of its core devices can be achieved.
- the implementation principle of this embodiment is the same as that of Embodiment 2, and will not be described again here.
- the thin film actuator involved in the above embodiments is a single-layer or double-layer organic film.
- the organic film usually serves as an insulating layer to store charges and act as an insulating medium between conductive metal lines.
- the thickness of the insulation layer is usually about 1 micron, so the presence of the thin film actuator will not have a major impact on the device thickness and product performance.
- the methods provided by the above embodiments are compatible with semiconductor processing processes and are helpful in realizing the preparation of three-dimensional fine structures. They are suitable for applications including but not limited to: cantilever beams, resonant beams, membrane bridge structures, comb structures, movable suspended structures, and MEMS. Defect repair or auxiliary focusing of complex three-dimensional microstructure devices such as radio frequency switches can improve the overall resolution of exposure patterns, simplify the bonding process, and improve product yields.
- a three-dimensional microstructure device including: a base body, a thin film actuator and a three-dimensional microstructure; the thin film actuator is located on the base body and the three-dimensional microstructure. between microstructures, or within the three-dimensional microstructure; and the thin film actuator expands during the formation process of the three-dimensional microstructure device.
- a display panel is provided, the display panel including the three-dimensional microstructure device in the foregoing embodiments.
- a display device including the display panel in the foregoing embodiments.
- the present disclosure provides a display panel, a display device, a three-dimensional microstructure device and a preparation method thereof; the preparation method includes forming a thin film actuator between a functional layer and a device layer, and then causing the thin film actuator to expand through a setting process Micro deformation, making the functional layer away from the device layer, so that in the subsequent When processing functional layers or device layers to prepare three-dimensional microstructure devices, the expanded film actuator can repair the film formation uniformity of the functional layer, compensate for the exposure intensity distribution and exposure focal plane, and improve the isolation effect between the device layer and the functional layer. and other functions, thus improving the process accuracy of three-dimensional micro-mechanical structures and ensuring the performance and yield rate of three-dimensional micro-structure devices and products manufactured through micro-electromechanical systems.
- modules in the devices in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment.
- the modules or units or components in the embodiments may be combined into one module or unit or component, and furthermore they may be divided into a plurality of sub-modules or sub-units or sub-components.
- All features disclosed in this specification including accompanying claims, abstract and drawings) and any method so disclosed may be employed in any combination, except that at least some of such features and/or processes or units are mutually exclusive. All processes or units of the equipment are combined.
- Each feature disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
- any reference signs placed between parentheses shall not be construed as limiting the claim.
- the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
- the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
- the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
- the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Micromachines (AREA)
Abstract
显示面板、显示装置、三维微结构器件及其制备方法,涉及微机电系统技术领域。制备方法包括:制备功能层(1)、薄膜执行器(2)和器件层(3),所述薄膜执行器(2)位于所述功能层(1)和所述器件层(3)之间(S1);执行设定工艺使所述薄膜执行器(2)膨胀,以使所述功能层(1)远离所述器件层(3)(S2);在所述功能层(1)远离所述器件层(3)的状态下,加工所述器件层(3)或所述功能层(1),以制备所述三维微结构器件(S3)。
Description
相关申请的交叉引用
本公开要求在2022年06月14日提交中国专利局、申请号为202210673143.3、名称为“显示面板、显示装置、三维微结构器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本申请涉及微机电系统技术领域,尤其涉及一种显示面板、显示装置、三维微结构器件及其制备方法。
微机电系统(Micro Electro Mechanical System,MEMS),侧重于超精密机械加工,是指尺寸在微米甚至纳米量级的独立器件。MEMS是在半导体制造技术基础上发展起来的,融合了光刻、腐蚀、薄膜、LIGA(Lithographie,Galvanoformung,Abformung,即光刻、电铸和注塑)、硅微加工、非硅微加工和精密机械加工等技术制作的高科技电子机械器件。
概述
本公开提供了一种显示面板、显示装置、三维微结构器件及其制备方法。
第一方面,提供了一种三维微结构器件的制备方法,所述制备方法包括:
制备功能层、薄膜执行器和器件层,所述薄膜执行器位于所述功能层和所述器件层之间;
执行设定工艺使所述薄膜执行器膨胀,以使所述功能层远离所述器件层;以及
在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件。
可选地,所述薄膜执行器的材质为热响应型形状记忆材料、光致形状记忆材料、pH致形状记忆材料、电致形状记忆材料、磁致形状记忆材料中的其中一种;
所述设定工艺是与所述薄膜执行器的材质关联的对应工艺;并且
所述对应工艺包括加热工艺、光照工艺、pH值调整工艺、施加电场工艺和/或施加磁场工艺。
可选地,所述热响应型形状记忆材料为聚乙烯-醋酸乙烯酯、聚氨酯、聚己内脂及其共聚物中的其中一种。
可选地,所述执行设定工艺使所述薄膜执行器膨胀,以使所述功能层远离所述器件层,包括:
执行所述设定工艺使所述薄膜执行器膨胀,推动所述器件层的接触区域远离所述功能层,并使所述接触区域与周边区域趋于同一平面;
其中,所述接触区域为所述器件层与所述薄膜执行器接触的区域,所述周边区域为所述器件层与所述接触区域相连的区域。
可选地,所述制备功能层、薄膜执行器和器件层,包括:
制备所述功能层,并检测所述功能层中的凹陷区;
在所述凹陷区内形成所述薄膜执行器;以及
在形成有所述薄膜执行器的所述功能层上形成所述器件层。
可选地,所述三维微结构器件为显示面板中的底电极;
所述制备所述功能层,并检测所述功能层中的凹陷区,包括:提供第一衬底基板,在所述第一衬底基板上形成介质层;
检测所述介质层的凹陷区;其中所述第一衬底基板和所述介质层为所述功能层;
所述在形成有所述薄膜执行器的所述功能层上形成所述器件层,包括:
在形成有所述薄膜执行器的所述功能层上形成电极材料层作为所述器件层,并在所述电极材料层上形成光刻胶层;
所述执行所述设定工艺使所述薄膜执行器膨胀,推动所述器件层的接触区域远离所述功能层,并使所述接触区域与周边区域趋于同一平面,包括:
对所述第一衬底基板进行前烘,以使所述薄膜执行器受热产生膨胀形变,推动所述薄膜执行器上的所述电极材料层远离所述功能层,并使所述薄膜执行器上的所述电极材料层与所述周边区域上的电极材料层趋于同一平面;并且
所述在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件,包括:
对所述光刻胶层进行曝光、显影、后烘,以及刻蚀所述电极材料层,获得所述底电极。
可选地,所述制备功能层、薄膜执行器和器件层,包括:
制备所述功能层,并确定所述功能层中的台阶区;
在所述台阶区的较低侧形成所述薄膜执行器;以及
在形成有所述薄膜执行器的所述台阶区上形成所述器件层。
可选地,所述三维微结构器件为显示面板中的悬臂梁;
所述制备所述功能层,并确定所述功能层中的台阶区,包括:
提供第二衬底基板,在所述第二衬底基板的设定区域内制备有机膜层,所述第二衬底基板和所述有机膜层为所述功能层;其中,所述有机膜层与所述第二衬底基板交界的区域为所述台阶区;
所述在形成有所述薄膜执行器的所述台阶区上形成所述器件层,包括:
在形成有所述薄膜执行器的所述台阶区上形成悬臂梁材料层作为所述器件层,并在所述悬臂梁材料层上形成光刻胶层;
所述执行所述设定工艺使所述薄膜执行器膨胀,推动所述器件层的接触区域远离所述功能层,并使所述接触区域与周边区域趋于同一平面,包括:
对所述第二衬底基板进行前烘,以使所述薄膜执行器受热产生膨胀形变,推动所述薄膜执行器上的所述悬臂梁材料层远离所述功能层,并使所述薄膜
执行器上的所述悬臂梁材料层与所述台阶区的较高侧的悬臂梁材料层趋于同一平面;并且
所述在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件,包括:
对所述光刻胶层进行曝光、显影、后烘,以及刻蚀所述悬臂梁材料层,获得所述悬臂梁。
可选地,所述执行设定工艺使所述薄膜执行器膨胀,以使所述功能层远离所述器件层,包括:
执行所述设定工艺使所述薄膜执行器膨胀,以使所述功能层与所述器件层隔离。
可选地,所述三维微结构器件为显示面板中的悬空膜桥;
所述制备功能层、薄膜执行器和器件层,包括:
提供第三衬底基板,在所述第三衬底基板的显示区形成锚点机构和牺牲层,所述第三衬底基板和所述牺牲层为所述功能层;
在所述牺牲层上形成薄膜执行器;以及
在所述薄膜执行器和所述锚点机构上形成膜桥层作为所述器件层;
所述执行所述设定工艺使所述薄膜执行器膨胀,以使所述功能层与所述器件层隔离,包括:
加热所述第三衬底基板,以使所述薄膜执行器受热产生膨胀形变,使所述牺牲层与所述膜桥层隔离;并且
所述在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件,包括:
释放所述牺牲层,以使所述膜桥层和所述锚点机构形成所述悬空膜桥。
可选地,所述热响应型形状记忆材料为聚丙烯酸-b-聚N-异丙基丙烯酰胺、聚甲基丙烯酸-b-聚N-异丙基丙烯酰胺、或者聚甲基丙烯醇-b-聚N-异丙基丙烯酰胺。
可选地,所述光致形状记忆材料包括:接枝有肉桂酸基团的烯酸酯类共聚物、丙烯酸酯类共聚物或聚氨酯、碳纳米管填充热塑性弹性体、或者金纳米棒引入聚丙烯酸叔丁酯或聚氨基酸酯。
可选地,所述pH致形状记忆材料包括:纤维素纳米纤丝聚氨酯、加入丹磺酰胺基团的聚丙烯酰胺、或者磷酸化改性的纤维素纳米纤丝复合聚氨酯。
可选地,所述电致形状记忆材料包括:碳黑填充的形状记忆热固性聚苯乙烯复合物、碳纳米管填充的形状记忆聚氨酯复合物、或者碳纳米管填充的形状记忆热固性聚氨酯复合物。
可选地,所述磁致形状记忆材料包括:加入磁性粒子的聚乳酸、聚己内酯、聚氨酯,其中所述磁性粒子包括γ-Fe2O3、Fe3O4或者NdFeB。
基于相同的发明构思,第二方面,提供了一种三维微结构器件,包括:基体、薄膜执行器和三维微结构;
所述薄膜执行器位于所述基体和所述三维微结构之间,或位于所述三维微结构的内部;并且
所述薄膜执行器在所述三维微结构器件的形成过程中发生膨胀。
基于相同的发明构思,第三方面,提供了一种显示面板,所述显示面板包括第二方面提供的三维微结构器件。
基于相同的发明构思,第四方面,提供了一种显示装置,包括第三方面提供的显示面板。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
通过阅读下文可选择的实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选择的实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本公开实施例提供的三维微结构器件的制备方法流程示意图;
图2A示出了相关技术中的介质层上的凹陷区示意图;
图2B示出了图2A中的BB’剖面示意图;
图2C示出了本公开实施例1的制备方法流程示意图;
图2D示出了本公开实施例1的在介质层的凹陷区和电极材料层之间形成薄膜执行器的示意图;
图2E示出了本公开实施例1的薄膜执行器膨胀形变后的示意图;
图3A示出了相关技术中的悬臂梁结构示意图;
图3B示出了图3A中的BB’剖面示意图;
图3C示出了本公开实施例2的制备方法流程示意图;
图3D示出了本公开实施例2的在台阶区的较低侧形成薄膜执行器的示意图;
图3E示出了本公开实施例2的薄膜执行器膨胀形变后的示意图;
图4A示出了相关技术中的悬空膜桥示意图;
图4B示出了图4A中的BB’剖面示意图;
图4C示出了本公开实施例3的制备方法流程示意图;
图4D示出了本公开实施例3的在牺牲层与膜桥层之间形成薄膜执行器的示意图;并且
图4E示出了本公开实施例3的薄膜执行器膨胀形变后的示意图;
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公
开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
三维微机械结构通常具有体积小、重量轻和功能集成度高等特点,其在微传感、光纤通信、微机械结构、微电源微能源、微量分析和微执行器等领域具有广泛的应用。这种复杂的三维微结构可以通过多次涂胶再曝光方法,灰色调掩膜(gray tone mask,JP2017/038919)光刻方法或者键合工艺实现。但是多次涂胶再曝光工艺涉及到上下层对位,同时还要考虑光刻胶互溶等因素;gray tone mask工艺的制作成本较高,技术难度大,且通常需要涂厚胶对应,工艺复杂;而键合工艺则无法对应多层薄膜型的三维微机械结构。总的来说,上述三类工艺均受到成膜均匀性有限、曝光机光源强度分布及曝光焦距无法局部调节的限制,影响了三维微机械结构的工艺精度。
目前微机械结构的制备主要是利用半导体薄膜加工工艺,包括在薄膜沉积的基础上,利用光刻、刻蚀进行图案化处理,有的可动微机械结构还会涉及到利用腐蚀等技术从正面或者背面释放对应结构单元。由于薄膜沉积工艺比如磁控溅射、化学气相沉积、溶胶凝胶法和脉冲激光沉积等制程自身的均匀性和稳定性,成膜均一性有限,在每一道光刻涂胶后光刻胶随形展开,其表面也会有纳米级甚至微米级细微差别,同时又因为曝光机光源强度分布及曝光焦距无法局部调节等情况,微米级精细结构尤其是具有复杂立体结构的图案很难实现一次曝光成型,需要经过高深宽比加工工艺或者是体加工,如此显著增加了工艺成本。
因此,为了解决上述问题,提高三维微机构的工艺精度,如图1所示,本公开提供了一种三维微结构器件的制备方法,其整体思路包括步骤S1~S3,具体如下:
S1:制备功能层、薄膜执行器和器件层,所述薄膜执行器位于所述功能层和所述器件层之间。
具体地,本实施例中的功能层可以解释为三维微结构器件中的基体部分,功能层可以是衬底,如硅衬底;可以是基板,如透明玻璃基板;还可以包括形成在衬底或基板上的绝缘层,介质层,有机材料层或牺牲层等,对此不作具体限定。
器件层可以解释为形成三维微结构的关键材料层。例如,源漏金属层可以是薄膜晶体管的器件层,电极材料层可以是显示面板中的底电极的器件层,悬臂梁材料层可以是显示面板中的悬臂梁的器件层,等等。
薄膜执行器属于微执行器,是一种能够将其它形式的能量,如光能、热能、电磁能转换为机械能的微结构,在受到与之类型相关的工艺处理,如光
照,加热或加载电场、磁场时,可通过膨胀形变的方式输出机械能。故而,薄膜执行器是具有形状记忆效应的薄膜材料形成的机构,不同类型的形状记忆材料,如热响应型形状记忆材料、光致形状记忆材料、pH致形状记忆材料、电致形状记忆材料、磁致形状记忆材料,都可以用于形成本实施例所需的薄膜执行器。
薄膜执行器可以是单层或双层的有机薄膜或其它具有形状记忆效应的薄膜。例如,对于热响应型形状记忆材料,较佳的选择为具有可逆形状记忆效应的半晶性聚合物,包括:聚乙烯-醋酸乙烯酯、聚氨酯、聚己内脂及其共聚物。具体有:聚丙烯酸-b-聚N-异丙基丙烯酰胺、聚甲基丙烯酸-b-聚N-异丙基丙烯酰胺、聚甲基丙烯醇-b-聚N-异丙基丙烯酰胺等聚合物材料。热响应型薄膜执行器可以通过半导体成膜工艺,如旋涂或原子层沉积的方式制备得到。
对于光致形状记忆材料,其又可分为光化学反应型和光热效应型,可选材质包括:接枝有肉桂酸基团的烯酸酯类共聚物,丙烯酸酯类共聚物或聚氨酯,碳纳米管填充热塑性弹性体,金纳米棒引入聚丙烯酸叔丁酯或聚氨基酸酯等
对于pH致形状记忆材料,可选材质包括:纤维素纳米纤丝聚氨酯,加入丹磺酰胺基团的聚丙烯酰胺,磷酸化改性的纤维素纳米纤丝复合聚氨酯等。
对于电致形状记忆材料,可选材质包括:碳黑填充的形状记忆热固性聚苯乙烯复合物,碳纳米管填充的形状记忆聚氨酯复合物,碳纳米管填充的形状记忆热固性聚氨酯复合物等。
对于磁致形状记忆材料,可选的材质包括:加入磁性粒子,如γ-Fe2O3,Fe3O4,NdFeB的聚乳酸、聚己内酯、聚氨酯等。
S2:执行设定工艺使所述薄膜执行器膨胀,以使所述功能层远离所述器件层。
具有形状记忆效应的薄膜执行器在受到与其形状记忆类型相对应的设定工艺时,产生膨胀形变,该形变使功能层远离器件层。
例如,对于热响应型薄膜执行器,其对应工艺为加热,如在制备显示面板时,光刻过程中的前烘和后烘阶可作为对应工艺,使薄膜执行器在前烘和后烘的热刺激诱导下产生微小的膨胀形变;对于光响应型薄膜执行器,其对应工艺为开启光照,使薄膜执行器在特定光照强度下产生微小的膨胀形变;对于pH响应型薄膜执行器,其对应工艺为调整环境pH值,使薄膜执行器在特定pH值范围内产生微小的膨胀形变;对于电响应型薄膜执行器,其对应工艺为施加电场,使薄膜执行器在特定电场强度下产生微小的膨胀形变;对于磁响应型薄膜执行器,其对应工艺为施加磁场,使薄膜执行器在特定磁场强度下产生微小的膨胀形变。
需要说明的是,功能层远离器件层,其实现方式可以是薄膜执行器推动功能层远离器件层,即运动主体为功能层,也可以是薄膜执行器推动器件层远离功能层,即运动主体为器件层;另一方面,可以是功能层中的部分区域远离器件层,也可以功能层的全部区域远离器件层,对此不作具体限定。
功能层远离器件层的类型包括但不限于:
类型1:不同区域高低不同的器件层的对齐。通过执行器薄膜的膨胀使器件层对齐,可以克服曝光机光源强度分布不均的问题,或者修复因MEMS成膜不均匀所产生的缺陷,从而提高曝光均匀度,保证三维微结构器件的性能或良品率;也可以克服曝光机的曝光焦距无法局部调节的问题,减少三维微结构器件在制备过程中的曝光成型次数并补偿曝光焦距,提高曝光质量。
类型2:器件层与功能层的空间隔离,具体为:执行所述设定工艺使所述薄膜执行器膨胀,以使所述功能层与所述器件层隔离。通过执行器薄膜的膨胀提高器件层与功能层的隔离质量,避免器件层与隔离层之间出现粘连,影响三维微结构器件的性能。
对于类型1,其包括但不限于:曝光均匀度补偿和曝光焦面补偿两种情形。
对于情形1:曝光均匀度补偿,步骤S1具体为:
制备功能层,并检测功能层中的凹陷区;在凹陷区内形成薄膜执行器;以及在形成有薄膜执行器的功能层上形成器件层。
具体地,受限于成膜工艺均匀性及曝光机光源强度分布,一些精细的三微机械结构在光刻胶涂覆后就会存在局部高低起伏,如此就会导致局部区域曝光不足,而局部区域存在过曝。为了解决这一问题,本情形在功能层的凹陷区内形成薄膜执行器。
对于情形2:曝光焦面补偿,步骤S1具体为:
制备功能层,并确定功能层中的台阶区;在台阶区的较低侧形成薄膜执行器;以及在形成有薄膜执行器的台阶区上形成器件层。
具体地,由于目前的曝光工艺均为平面工艺,而一些复杂的三维微机械结构通常需要在不同高度的膜层上同时曝光,而曝光机的曝光焦距无法局部调节,因此此时部分图形就会失焦变得模糊不清,即产生AutoFocus Error问题。为了解决这一问题,本情形在台阶区的较低侧制备薄膜执行器,通过薄膜执行器的膨胀变形进行对焦面高度的补偿。
上述两种情形的步骤S2对应如下:
执行设定工艺使薄膜执行器膨胀,推动器件层的接触区域远离功能层,并使接触区域与周边区域趋于同一平面;其中,接触区域为器件层与薄膜执行器接触的区域,周边区域为器件层与接触区域相连的区域。
其中,趋于同一平面,是指器件层的接触区域与周边区域尽可能的对齐,或者两者之间的高度差小于设定阈值。
S3:在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件。
使功能层和器件层保持远离的状态,可以是持续执行设定工艺,也可以是在设定工艺完成后,快速执行后续工艺,在薄膜执行器的膨胀变形回复前完成三维微结构器件的制备。
本实施例提供了一种三维微结构器件的制备方法,通过在功能层和器件层之间形成薄膜执行器,然后通过设定工艺使薄膜执行器产生膨胀微形变,使功能层远离所述器件层,如此在后续加工功能层或器件层以制备三维微结构器件时,膨胀的薄膜执行器能够发起到修复功能层成膜均匀性,补偿曝光
强度分布和曝光焦面,或者提高器件层与功能层之间的隔离效果等作用,从而提高了三维微机械结构的工艺精度,保证了微机电系统制备的产品性能和良品率。
为了更充分的说明上述方案,接下来结合本公开方案在显示面板领域的具体应用场景进行说明:
实施例1:制备显示面板中的底电极。
显示面板中的阵列基板在制备底电极前,会先在基板上沉积一层介质层12:SiO,厚度约为数百纳米,然后再沉积电极材料层31:Ti/Al/Ti。在目前的技术中由于成膜工艺的限制会在介质层12表面产生多处缺陷,表现为凹陷区,如图2A中的椭圆区域和图2B中对椭圆区域的剖面所示。若不予以修复,则在涂胶后光刻胶随形流动,固化后产生缺陷,在电极金属沉积过程中缺陷甚至有可能放大,对后续工艺产生不良影响。
为了解决这个问题,本实施例采用的具体方案如图2C所示,包括如下步骤:
S111:提供第一衬底基板11,在第一衬底基板11上形成介质层12;检测介质层12的凹陷区;第一衬底基板11和介质层12为功能层1;
具体地,第一衬底基板11可以选择玻璃基板,然后在第一衬底基板11上可通过等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,简称PEVCD)沉积一层800nm的SiO,再使用膜厚测量仪、显微镜等测量工具对其表面进行缺陷检测,确定如图2A所示的凹陷区。
S112:在凹陷区内形成薄膜执行器2;
如图2D所示,在凹陷区内图形化薄膜执行器2,薄膜成膜的方法可以采用旋涂(Spin-coating)或者原子层沉积(Atomic Layer Deposition,简称ALD)制得。本实施例的薄膜执行器2为热响应型,其材质为聚丙烯酸-b-聚N-异丙基丙烯酰胺。薄膜厚度可以根据缺陷情况进行调节,如2nm~900nm。
S113:在形成有薄膜执行器2的功能层1上形成电极材料层31作为器件层3,并在电极材料层31上形成光刻胶层4;
具体地,电极材料层31的沉积方法可以是Sputter磁控溅射或者蒸镀沉积,沉积材料为Ti/Al/Ti,一种示例厚度为50nm/700nm/50nm。然后在电极材料层31上涂布光刻胶形成光刻胶层4。可采用狭缝式涂布slot die或者旋涂方法,其示例厚度为1.5μm。
S21:对第一衬底基板11进行前烘,以使薄膜执行器2受热产生膨胀形变,推动薄膜执行器2上的电极材料层31远离功能层1,并使薄膜执行器2上的电极材料层31与周边区域上的电极材料层31趋于同一平面;
具体地,前烘温度采用目前显示面板的前烘110℃,持续150s。薄膜执行器2受热发生快速膨胀变形,其变形量约为几纳米到几百纳米,使凹陷区的电极材料层31以及光刻胶层4与周边正常区域趋于同一平面,如图2E所示。得益于聚丙烯酸-b-聚N-异丙基丙烯酰胺的热响应回复速度较慢,因此在基板降温后薄膜还未完全恢复原状。
S31:对光刻胶层4进行曝光、显影、后烘,以及刻蚀电极材料层31,获
得底电极。
首先进行曝光,薄膜执行器2此时保持在膨胀状态,为凹陷区的焦面提供一定补偿,使电极材料层31的凹陷区与周边正常区处于同一焦面,保证了曝光效果。
接下来进行显影,洗去曝光过的光刻胶;然后进行120℃,持续120s的后烘。由于显影后光刻胶还未完全固化,存在一定流动性,故而后烘工艺能够使薄膜执行器2保持受热膨胀的状态,保证图形与曝光过程一致。
接下来再进行刻蚀,得到图形化金属电极,即底电极。
本实施例中的热响应型薄膜执行器2通过受热发生膨胀微变形,对涂胶基板进行局部曝光均匀性的补偿,使曝光过程中不同位置的器件层3和光刻胶层4保持在一个平面,消除凹陷区的不利影响,提升曝光效果,本实施例适用于变形量较小(<10μm)的薄膜执行器2。
实施例2:制备显示面板中的悬臂梁。
在显示面板上的阵列基板制备悬臂梁时,需要现在基板上制备有机膜层14,然后在有机膜层14和基板相交的位置做出悬臂梁,如图3A所示。目前由于有机膜厚度约为几十微米,如图3B所示,其超出了曝光机曝光焦距范围,容易导致图案曝虚,无法得到完整的悬臂梁图形。
为解决这个问题,本实施例采用的方案如图3C所示,包括如下步骤:
S121:提供第二衬底基板13,在第二衬底基板13的设定区域内制备有机膜层14,第二衬底基板13和有机膜层14为功能层1;其中,有机膜层14与第二衬底基板13交界的区域为台阶区;
第二衬底基板13可以是玻璃基板,在基板的AA区(显示区)内涂布形成有机膜层14,其材质为感光性树脂薄膜(Overcoat,OC)或聚酰亚胺(PI)等。
S122:在台阶区的较低侧形成薄膜执行器2;
如图3D所示,将有机膜层14和第二衬底基板13的交界处视为台阶区,其中有机膜层14为台阶的较高侧,与有机膜层14交界的第二衬底基板13的区域为台阶的较低侧,在较低侧图形化对应的薄膜执行器2,其类型为热响应型,可选材质为聚甲基丙烯酸-b-聚N-异丙基丙烯酰胺,制备方法可以是旋涂(Spin-coating)或者原子层沉积(ALD)制备,薄膜厚度可以根据缺陷情况进行调节,比如1-10μm。
S123:在形成有薄膜执行器2的台阶区上形成悬臂梁材料层32作为器件层3,并在悬臂梁材料层32上形成光刻胶层4;
如图3D所示,在台阶区(包括较高侧和形成有薄膜执行器2的较低侧)沉积悬臂梁材料形成器件层3,可选材质为铝Al,沉积厚度为数百纳米,如700nm。器件层3沉积完成涂布光刻胶,采用slot die或者旋涂均可,厚度1.5μm。
S22:对第二衬底基板13进行前烘,以使薄膜执行器2受热产生膨胀形变,推动薄膜执行器2上的悬臂梁材料层32远离功能层1,并使薄膜执行器2上的悬臂梁材料层32与台阶区的较高侧的悬臂梁材料层32趋于同一平面;
具体地,进行前烘,温度为110℃,持续200s,薄膜执行器2受热产生快
速膨胀变形,其变形量约为几微米到几十微米,使台阶较低侧(基板处)的悬臂梁材料层32与台阶较高侧(有机膜层14处)的悬臂梁材料层32趋于同一平面,如图3E所示。得益于聚甲基丙烯酸-b-聚N-异丙基丙烯酰胺的热响应回复速度较慢,因此在基板降温后薄膜还未完全恢复原状。
S32:对光刻胶层4进行曝光、显影、后烘,以及刻蚀悬臂梁材料层32,获得悬臂梁。
首先进行曝光,薄膜执行器2此时保持膨胀状态,从而为台阶区较低侧的悬臂梁图形进行焦面补偿,保证了曝光效果。
接着进行显影,洗去曝光过的光刻胶层4,然后进行后烘,温度为120℃,持续200s。由于显影后光刻胶还未完全固化,存在一定流动性,因此后烘使薄膜执行器2保持在受热膨胀状态,保证图形与曝光过程中一致。
接着刻蚀得到图形化的悬臂梁。
综上,一些复杂的微机械结构通常会在不同高度的膜层上同时曝光,而曝光工艺为平面工艺,因此部分图形就会失焦变得模糊不清。而本实施例中的薄膜执行器2通过受热微变形补偿曝光焦面,使同时曝光的图形处于同一焦面,保证曝光效果。另外,由于器件层的成膜厚度较薄,即使在台阶区的较高侧和较低侧的交界处存在因为薄膜执行器2膨胀所造成的厚度不均,也不会明显影响悬臂梁的结构性能。
本实施例适用于变形量较大(10μm~100μm)的薄膜执行器2。
实施例3:制备显示面板中的悬空膜桥。
显示面板中的悬空膜桥结构主要包括锚点、牺牲支撑层和膜桥,如图4A和图4B所示。悬空膜桥在制备过程中需要形成牺牲层16然后释放,释放工艺有湿法腐蚀或干法腐蚀。其中,湿法腐蚀工艺由于液体毛细作用力的存在及机械搅拌,悬空结构容易与衬底粘连,严重甚至会引起器件失效;而干法腐蚀常采用氧等离子体、HF或者XeF2气体,其对设备要求较高,同向刻蚀效率较低,容易对上层金属膜层造成损伤。
为了解决上述问题,本实施例采用的方案如图4C所示,包括如下步骤:
S131:提供第三衬底基板15,在第三衬底基板15的显示区形成锚点机构17和牺牲层16,第三衬底基板15和牺牲层16为功能层1;
同理,第三衬底基板15可以是玻璃基板,牺牲层16材质可以是氧化硅,光刻胶或硼磷硅玻璃PSG,还可以使用Si、Ge、多晶硅等。本实施例以光刻胶为例进行说明。
S132:在牺牲层16上形成薄膜执行器2;
在牺牲层16上图形化对应的薄膜执行器2,如图4D所示;本实施例的薄膜执行器2为热响应型,其材质可以是聚甲基丙烯醇-b-聚N-异丙基丙烯酰胺;形成方法可以是旋涂(Spin-coating)或者原子层沉积(ALD),厚度可以根据实际牺牲层16高度进行调节,如1-10μm。
S133:在薄膜执行器2和锚点机构17上形成膜桥层33作为器件层3;
具体地,可沉积铝Al作为膜桥的器件层3,沉积厚度为数百纳米,如300nm。
S23:加热第三衬底基板15,以使薄膜执行器2受热产生膨胀形变,使牺
牲层16与膜桥层33隔离;
S33:释放牺牲层16,以使膜桥层33和锚点机构17形成悬空膜桥。
牺牲层16的释放可以采用湿法或干法。其中,牺牲层16释放的关键在于释放材料和结构层材料的选择比(腐蚀速率比)及随后自由结构的干燥。在本实施例中,由于牺牲层16上方薄膜执行器2的存在,在加热释放过程中,薄膜执行器2受热膨胀使得牺牲层16与器件层3之间界面接触变弱,从而更容易释放干净,如图4E所示。
需要说明的是,无论是湿法还是干法均包括加热操作,有助于加快反应速率,因此步骤S23也可以认为是步骤S33的前序操作。
本实施例通过在牺牲层16支撑材料的表面制作薄膜执行器2。相较于仅生长牺牲层16,能够使牺牲层16与膜桥之间粘连减轻,更容易释放干净,且对原器件性能不会产生不利影响。
实施例4:制备柔性射频微机电系统开关
柔性射频微机电系统开关(Radio Frequency Micro-Electro-Mechanical System,简称RF MEMS开关)技术研究旨在柔性衬底上制备射频开关,其核心器件结构为可动三维微结构,关键器件结构的尺寸均为微米级。受限于现有曝光机曝光能力,其核心器件结构的几处关键尺寸无法同时准确图案化。而通过添加薄膜执行器层可以对其关键尺寸的若干位置进行局部曝光补偿,可保证其核心器件的关键尺寸均可达成,本实施例的实施原理与实施例2相同,在此不做赘述。
总的来说,上述实施例涉及的薄膜执行器为单层或双层有机薄膜,在半导体工艺中,有机薄膜通常作为绝缘层,起到存储电荷和导电金属线之间的绝缘介质作用,在生产实际中绝缘层厚度通常为1微米左右,因此薄膜执行器的存在不会对器件厚度以及产品性能造成较大的影响。
上述实施例提供的方法兼容于半导体加工工艺制程,有助于实现三维精细结构的制备,适用于包括但不限于:悬臂梁、谐振梁、膜桥结构、梳状结构、可动悬空结构、MEMS射频开关等复杂三维微结构器件的缺陷修复或辅助对焦,可以提高曝光图形整体分辨率,简化键合工艺,提升产品良率。
基于相同的发明构思,在另一些可选的实施例中,提供了一种三维微结构器件,包括:基体、薄膜执行器和三维微结构;所述薄膜执行器位于所述基体和所述三维微结构之间,或位于所述三维微结构的内部;并且所述薄膜执行器在所述三维微结构器件的形成过程中发生膨胀。
基于相同的发明构思,在又一些可选的实施例中,提供了一种显示面板,所述显示面板包括前述实施例中的三维微结构器件。
基于相同的发明构思,在又一些可选的实施例中,提供了一种显示装置,包括前述实施例中的显示面板。
综上所述,本公开实施例提供的方案具有以下有益效果或者优点:
本公开提供了一种显示面板、显示装置、三维微结构器件及其制备方法;其中的制备方法通过在功能层和器件层之间形成薄膜执行器,然后通过设定工艺使薄膜执行器产生膨胀微形变,使功能层远离所述器件层,如此在后续
加工功能层或器件层以制备三维微结构器件时,膨胀的薄膜执行器能够起到修复功能层成膜均匀性,补偿曝光强度分布和曝光焦面,提高器件层与功能层之间的隔离效果等作用,从而提高了三维微机械结构的工艺精度,保证了三维微结构器件以及通过微机电系统制造的产品的性能和良品率。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本公开的示例性实施例的描述中,本公开的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本公开要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本公开的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的装置中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个装置中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本公开进行说明而不是对本公开进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。本公开可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全
指同一个实施例。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
Claims (18)
- 一种三维微结构器件的制备方法,其中,所述制备方法包括:制备功能层、薄膜执行器和器件层,所述薄膜执行器位于所述功能层和所述器件层之间;执行设定工艺使所述薄膜执行器膨胀,以使所述功能层远离所述器件层;以及在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件。
- 如权利要求1所述的制备方法,其中,所述薄膜执行器的材质为热响应型形状记忆材料、光致形状记忆材料、pH致形状记忆材料、电致形状记忆材料、磁致形状记忆材料中的其中一种;所述设定工艺是与所述薄膜执行器的材质关联的对应工艺;并且所述对应工艺包括加热工艺、光照工艺、pH值调整工艺、施加电场工艺和/或施加磁场工艺。
- 如权利要求2所述的制备方法,其中,所述热响应型形状记忆材料为聚乙烯-醋酸乙烯酯、聚氨酯、聚己内脂及其共聚物中的其中一种。
- 如权利要求1所述的制备方法,其中,所述执行设定工艺使所述薄膜执行器膨胀,以使所述功能层远离所述器件层,包括:执行所述设定工艺使所述薄膜执行器膨胀,推动所述器件层的接触区域远离所述功能层,并使所述接触区域与周边区域趋于同一平面;其中,所述接触区域为所述器件层与所述薄膜执行器接触的区域,所述周边区域为所述器件层与所述接触区域相连的区域。
- 如权利要求4所述的制备方法,其中,所述制备功能层、薄膜执行器和器件层,包括:制备所述功能层,并检测所述功能层中的凹陷区;在所述凹陷区内形成所述薄膜执行器;以及在形成有所述薄膜执行器的所述功能层上形成所述器件层。
- 如权利要求5所述的制备方法,其中,所述三维微结构器件为显示面板中的底电极;所述制备所述功能层,并检测所述功能层中的凹陷区,包括:提供第一衬底基板,在所述第一衬底基板上形成介质层;检测所述介质层的凹陷区;其中所述第一衬底基板和所述介质层为所述功能层;所述在形成有所述薄膜执行器的所述功能层上形成所述器件层,包括:在形成有所述薄膜执行器的所述功能层上形成电极材料层作为所述器件层,并在所述电极材料层上形成光刻胶层;所述执行所述设定工艺使所述薄膜执行器膨胀,推动所述器件层的接触区域远离所述功能层,并使所述接触区域与周边区域趋于同一平面,包括:对所述第一衬底基板进行前烘,以使所述薄膜执行器受热产生膨胀形变, 推动所述薄膜执行器上的所述电极材料层远离所述功能层,并使所述薄膜执行器上的所述电极材料层与所述周边区域上的电极材料层趋于同一平面;并且所述在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件,包括:对所述光刻胶层进行曝光、显影、后烘,以及刻蚀所述电极材料层,获得所述底电极。
- 如权利要求4所述的制备方法,其中,所述制备功能层、薄膜执行器和器件层,包括:制备所述功能层,并确定所述功能层中的台阶区;在所述台阶区的较低侧形成所述薄膜执行器;以及在形成有所述薄膜执行器的所述台阶区上形成所述器件层。
- 如权利要求7所述的制备方法,其中,所述三维微结构器件为显示面板中的悬臂梁;所述制备所述功能层,并确定所述功能层中的台阶区,包括:提供第二衬底基板,在所述第二衬底基板的设定区域内制备有机膜层,所述第二衬底基板和所述有机膜层为所述功能层;其中,所述有机膜层与所述第二衬底基板交界的区域为所述台阶区;所述在形成有所述薄膜执行器的所述台阶区上形成所述器件层,包括:在形成有所述薄膜执行器的所述台阶区上形成悬臂梁材料层作为所述器件层,并在所述悬臂梁材料层上形成光刻胶层;所述执行所述设定工艺使所述薄膜执行器膨胀,推动所述器件层的接触区域远离所述功能层,并使所述接触区域与周边区域趋于同一平面,包括:对所述第二衬底基板进行前烘,以使所述薄膜执行器受热产生膨胀形变,推动所述薄膜执行器上的所述悬臂梁材料层远离所述功能层,并使所述薄膜执行器上的所述悬臂梁材料层与所述台阶区的较高侧的悬臂梁材料层趋于同一平面;并且所述在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件,包括:对所述光刻胶层进行曝光、显影、后烘,以及刻蚀所述悬臂梁材料层,获得所述悬臂梁。
- 如权利要求1所述的制备方法,其中,所述执行设定工艺使所述薄膜执行器膨胀,以使所述功能层远离所述器件层,包括:执行所述设定工艺使所述薄膜执行器膨胀,以使所述功能层与所述器件层隔离。
- 如权利要求9所述的制备方法,其中,所述三维微结构器件为显示面板中的悬空膜桥;所述制备功能层、薄膜执行器和器件层,包括:提供第三衬底基板,在所述第三衬底基板的显示区形成锚点机构和牺牲层,所述第三衬底基板和所述牺牲层为所述功能层;在所述牺牲层上形成薄膜执行器;以及在所述薄膜执行器和所述锚点机构上形成膜桥层作为所述器件层;所述执行所述设定工艺使所述薄膜执行器膨胀,以使所述功能层与所述器件层隔离,包括:加热所述第三衬底基板,以使所述薄膜执行器受热产生膨胀形变,使所述牺牲层与所述膜桥层隔离;并且所述在所述功能层远离所述器件层的状态下,加工所述器件层或所述功能层,以制备所述三维微结构器件,包括:释放所述牺牲层,以使所述膜桥层和所述锚点机构形成所述悬空膜桥。
- 如权利要求3所述的制备方法,其中,所述热响应型形状记忆材料为聚丙烯酸-b-聚N-异丙基丙烯酰胺、聚甲基丙烯酸-b-聚N-异丙基丙烯酰胺、或者聚甲基丙烯醇-b-聚N-异丙基丙烯酰胺。
- 如权利要求2所述的制备方法,其中,所述光致形状记忆材料包括:接枝有肉桂酸基团的烯酸酯类共聚物、丙烯酸酯类共聚物或聚氨酯、碳纳米管填充热塑性弹性体、或者金纳米棒引入聚丙烯酸叔丁酯或聚氨基酸酯。
- 如权利要求2所述的制备方法,其中,所述pH致形状记忆材料包括:纤维素纳米纤丝聚氨酯、加入丹磺酰胺基团的聚丙烯酰胺、或者磷酸化改性的纤维素纳米纤丝复合聚氨酯。
- 如权利要求2所述的制备方法,其中,所述电致形状记忆材料包括:碳黑填充的形状记忆热固性聚苯乙烯复合物、碳纳米管填充的形状记忆聚氨酯复合物、或者碳纳米管填充的形状记忆热固性聚氨酯复合物。
- 如权利要求2所述的制备方法,其中,所述磁致形状记忆材料包括:加入磁性粒子的聚乳酸、聚己内酯、聚氨酯,其中所述磁性粒子包括γ-Fe2O3、Fe3O4或者NdFeB。
- 一种三维微结构器件,包括:基体、薄膜执行器和三维微结构;所述薄膜执行器位于所述基体和所述三维微结构之间,或位于所述三维微结构的内部;并且所述薄膜执行器在所述三维微结构器件的形成过程中发生膨胀。
- 一种显示面板,其中,所述显示面板包括如权利要求16所述的三维微结构器件。
- 一种显示装置,其中,包括如权利要求17所述的显示面板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210673143.3A CN115072653A (zh) | 2022-06-14 | 2022-06-14 | 显示面板、显示装置、三维微结构器件及其制备方法 |
CN202210673143.3 | 2022-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023241252A1 true WO2023241252A1 (zh) | 2023-12-21 |
Family
ID=83251083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/092106 WO2023241252A1 (zh) | 2022-06-14 | 2023-05-04 | 显示面板、显示装置、三维微结构器件及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115072653A (zh) |
WO (1) | WO2023241252A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115072653A (zh) * | 2022-06-14 | 2022-09-20 | 北京京东方技术开发有限公司 | 显示面板、显示装置、三维微结构器件及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1572715A (zh) * | 2003-06-10 | 2005-02-02 | 索尼株式会社 | 微电机的制造方法 |
DE102008001005A1 (de) * | 2008-04-04 | 2009-10-22 | Forschungszentrum Karlsruhe Gmbh | Verfahren zur Herstellung eines Schichtverbundes mit epitaktisch gewachsenen Schichten aus einem magnetischen Formgedächtnis-Material und Schichtverbund mit epitaktischen Schichten aus einem magnetischen Formgedächtnis-Material sowie deren Verwendung |
CN107111015A (zh) * | 2014-12-02 | 2017-08-29 | 卡尔蔡司Smt有限责任公司 | 涂覆的反射光学元件上的表面校正 |
CN112582569A (zh) * | 2020-12-10 | 2021-03-30 | 合肥京东方光电科技有限公司 | 一种显示基板的制备方法、显示基板及显示装置 |
CN115072653A (zh) * | 2022-06-14 | 2022-09-20 | 北京京东方技术开发有限公司 | 显示面板、显示装置、三维微结构器件及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103280480A (zh) * | 2013-05-31 | 2013-09-04 | 浙江正泰太阳能科技有限公司 | 薄膜太阳能电池基板、薄膜太阳能电池及其制备方法 |
-
2022
- 2022-06-14 CN CN202210673143.3A patent/CN115072653A/zh active Pending
-
2023
- 2023-05-04 WO PCT/CN2023/092106 patent/WO2023241252A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1572715A (zh) * | 2003-06-10 | 2005-02-02 | 索尼株式会社 | 微电机的制造方法 |
DE102008001005A1 (de) * | 2008-04-04 | 2009-10-22 | Forschungszentrum Karlsruhe Gmbh | Verfahren zur Herstellung eines Schichtverbundes mit epitaktisch gewachsenen Schichten aus einem magnetischen Formgedächtnis-Material und Schichtverbund mit epitaktischen Schichten aus einem magnetischen Formgedächtnis-Material sowie deren Verwendung |
CN107111015A (zh) * | 2014-12-02 | 2017-08-29 | 卡尔蔡司Smt有限责任公司 | 涂覆的反射光学元件上的表面校正 |
CN112582569A (zh) * | 2020-12-10 | 2021-03-30 | 合肥京东方光电科技有限公司 | 一种显示基板的制备方法、显示基板及显示装置 |
CN115072653A (zh) * | 2022-06-14 | 2022-09-20 | 北京京东方技术开发有限公司 | 显示面板、显示装置、三维微结构器件及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115072653A (zh) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3723431B2 (ja) | マイクロ電気機械光学デバイス | |
JP2020094973A (ja) | 金属・誘電体・金属の3層構造を有する光変調構造体、その製造方法及び用途 | |
JP2002521890A (ja) | 容量性超音波変換器を製造する方法 | |
Sameoto et al. | Polymer MEMS processing for multi-user applications | |
WO2023241252A1 (zh) | 显示面板、显示装置、三维微结构器件及其制备方法 | |
JP2005520220A (ja) | 電界を使用して光硬化可能な組成物内にナノスケール・パターンを作製するための方法およびシステム | |
US20150076632A9 (en) | Method and apparatus for release-assisted microcontact printing of mems | |
CN112113988A (zh) | 一种电子显微镜原位力学性能测试芯片及其制作方法 | |
CN111220821A (zh) | 一种金刚石afm探针系统及制作方法 | |
CN105858591B (zh) | 一种金属微结构及其制作方法 | |
US20040055151A1 (en) | Micro systems | |
Zhang et al. | AlScN-based quasi-static multi-degree-of-freedom piezoelectric MEMS micromirror with large mirror plate and high fill factor | |
CN104199252B (zh) | 一种实现光刻胶微结构的方法 | |
CN103325674B (zh) | 一种复杂三维多级微纳结构的约束刻蚀加工方法 | |
CN112694061A (zh) | 一种基于mems技术的无磁电加热器的加工方法 | |
US6531332B1 (en) | Surface micromachining using a thick release process | |
US7139110B2 (en) | Micro-structure gap control technology and structure formed therefrom | |
CN101067719A (zh) | 一种构筑亚10纳米间隙及其阵列的方法 | |
JPH0883789A (ja) | 微細加工方法 | |
US8298457B2 (en) | Method of producing a movable lens structure for a light shaping unit | |
CN114967107A (zh) | 一种微镜结构及其制备方法 | |
Park | Development of a low voltage and large stroke MEMS-based lorentz force continuous deformable polymer mirror system | |
CN1184498C (zh) | 一种静电驱动的可调谐微型光学器件及其制作 | |
CN103197414B (zh) | 一种基于电镀工艺的静电驱动式微型扭转器件及其制备方法 | |
Murarka et al. | Micro-contact printed MEMS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23822823 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/03/2025) |