[go: up one dir, main page]

WO2023238755A1 - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
WO2023238755A1
WO2023238755A1 PCT/JP2023/020309 JP2023020309W WO2023238755A1 WO 2023238755 A1 WO2023238755 A1 WO 2023238755A1 JP 2023020309 W JP2023020309 W JP 2023020309W WO 2023238755 A1 WO2023238755 A1 WO 2023238755A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type
trench
region
effect transistor
Prior art date
Application number
PCT/JP2023/020309
Other languages
French (fr)
Japanese (ja)
Inventor
高 三井田
宙志 名倉
公平 佐々木
Original Assignee
株式会社ノベルクリスタルテクノロジー
株式会社イオンテクノセンター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノベルクリスタルテクノロジー, 株式会社イオンテクノセンター filed Critical 株式会社ノベルクリスタルテクノロジー
Publication of WO2023238755A1 publication Critical patent/WO2023238755A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation

Definitions

  • the present invention relates to field effect transistors.
  • Patent Document 1 a field effect transistor having a trench gate structure and using ⁇ -Ga 2 O 3 and Si as a semiconductor layer is known (see Patent Document 1).
  • the bottom of the trench where the electric field is concentrated is provided in the ⁇ -Ga 2 O 3 layer with high dielectric breakdown electric field strength, so that dielectric breakdown of the semiconductor layer can be suppressed. can.
  • Non-Patent Document 1 a field effect transistor having a trench gate structure in which a p-type region overlapping a gate oxide film region is provided in a semiconductor layer made of SiC.
  • concentration of the electric field at the bottom of the trench can be alleviated by the p-type region overlapping the gate oxide film region.
  • a p-type region overlapping the gate oxide film region described in Non-Patent Document 1 is applied to the field effect transistor described in Patent Document 1
  • a p-type region overlapping the gate oxide film region described in Non-Patent Document 1 is applied to the field effect transistor described in Patent Document 1.
  • the concentration of the electric field should be alleviated. In this case, not only the dielectric breakdown of the semiconductor layer around the bottom of the trench but also the dielectric breakdown of the gate insulating film is suppressed, and further improvement in the reliability of the field effect transistor can be expected.
  • An object of the present invention is to provide a field effect transistor having a trench gate structure and having higher reliability.
  • an n-type region provided at least in a part of the third trench side, and the inter-trench region.
  • a field effect transistor comprising a source electrode and a drain electrode connected to the first semiconductor layer.
  • FIG. 1 is a vertical cross-sectional view of a field effect transistor 1 according to an embodiment of the invention.
  • the field effect transistor 1 is a vertical field effect transistor having a trench gate structure.
  • a first semiconductor layer is formed in an n-type region 111 provided at least in a part of the third trench 14 side, and in a region between the first semiconductor layer 10 and the n-type region 111 in the inter-trench region. 10 and an n-type region 111, a source electrode 17 connected to the n-type region 111, and a drain electrode 18 connected to the first semiconductor layer 10.
  • the gate electrode 16 on the left side shown in FIG. 1 is used for a field effect transistor adjacent to the left side of the field effect transistor 1.
  • the layer 101 of the first semiconductor layer 10 is typically made of a gallium oxide semiconductor substrate.
  • the substrate in this case is, for example, a bulk gallium oxide single crystal grown by a melt growth method such as the FZ (Floating Zone) method or the EFG (Edge Defined Film Fed Growth) method, sliced, and the surface polished. formed by.
  • the layer 102 of the first semiconductor layer 10 is typically an epitaxial film formed using the upper surface of the layer 101 as a base surface.
  • the second semiconductor layer 11 is a layer made of single crystal Si.
  • the n-type region 111 and the p-type region 112 formed in the second semiconductor layer 11 are formed, for example, by implanting donor impurities and acceptor impurities into the second semiconductor layer 11.
  • the n-type region 111 formed in the second semiconductor layer 11 is the source of the field effect transistor 1.
  • the n-type region 111 contains a donor impurity such as arsenic, and has a high donor concentration of, for example, 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less in order to ohmically connect the source electrode 17.
  • the thickness D1 of the second semiconductor layer 11 is, for example, 0.6 ⁇ m or more and 1.2 ⁇ m or less.
  • the method for forming the second semiconductor layer 11 is not particularly limited.
  • a Si single crystal may be epitaxially grown using the upper surface of the first semiconductor layer 10 as a base surface.
  • a Si substrate is bonded to the first semiconductor layer 10 using a substrate bonding technique such as a surface activated bonding method, and the Si substrate thinned by a thinning technique such as a smart cut method is bonded to a second semiconductor layer 10.
  • Layer 11 is preferred.
  • a field effect transistor having a trench gate structure for its operation, it is necessary for an n-type semiconductor layer and a p-type semiconductor layer to form a pn junction.
  • the semiconductor layer is composed of a layer made of a gallium oxide-based semiconductor and a layer made of Si, it is difficult to form a pn junction between them, which are different materials.
  • a layer of SiGa or Ga metal is formed at the interface between an n-type semiconductor layer and a p-type semiconductor layer, or because Si acts as a donor in a gallium oxide semiconductor, Si is removed from the p-type semiconductor layer.
  • a pn junction may not be obtained due to the formation of a layer with extremely high donor concentration near the interface of the n-type semiconductor layer due to diffusion.
  • a second n-type region 113 is provided in the region between the n-type first semiconductor layer 10 and the p-type region 112 in the inter-trench region of the second semiconductor layer 11. It is preferable that the p-n junction is not between the first semiconductor layer 10 made of a gallium oxide semiconductor and the p-type region 112 made of Si, but between the second n-type region 113 and the p-type region 112, both made of Si. Therefore, it is only necessary to form an interface that makes ohmic contact, and the interface does not need to be flat or steep. That is, a pn junction can be easily formed.
  • the second n-type region 113 contains a donor impurity such as phosphorus, and has a donor concentration of, for example, 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less.
  • a second p-type region 114 is provided in a region between the n-type region 111 and the second trench 12b in the surface layer of the inter-trench region of the second semiconductor layer 11. It is preferable that the bulk of the field effect transistor 1 in the p-type region 112 in the inter-trench region can be fixed to the ground potential together with the source potential using the second p-type region 114.
  • Second p-type region 114 contains an acceptor impurity such as boron.
  • the acceptor concentration of the second p-type region 114 is higher than that of the p-type region 112, for example, 1 ⁇ 10 18 cm ⁇ 3 or more and 1 ⁇ 10 21 cm ⁇ 3 or less.
  • the first trench 12a and the second trench 12b reach from the upper surface of the second semiconductor layer 11 (the surface opposite to the first semiconductor layer 10) to the first semiconductor layer 10. That is, the bottoms of the first trench 12a, the second trench 12b, and the first p-type semiconductor part 13a and the second p-type semiconductor part 13b buried therein are located above the upper surface of the first semiconductor layer 10 (the second trench 12b). (the surface on the semiconductor layer 11 side).
  • the first p-type semiconductor section 13a and the second p-type semiconductor section 13b are made of p-type semiconductors such as NiO, CuO, and Cu2O , which do not easily react with the gallium oxide semiconductor that constitutes the first semiconductor layer 10. It is preferable that it is made of a p-type oxide semiconductor such as.
  • NiO is used as the material for the first p-type semiconductor section 13a and the second p-type semiconductor section 13b
  • a high breakdown voltage can be obtained due to the large band gap of 3.7 eV that NiO has.
  • CuO or Cu 2 O is used, the breakdown voltage is lower than that of NiO, but the material cost can be reduced compared to NiO.
  • these materials may be amorphous, polycrystalline, or single crystal, or may be a composite of two or more of these materials.
  • the semiconductor layer 10 is formed by electric field concentration. dielectric breakdown is suppressed, and the withstand voltage of the field effect transistor 1 is increased.
  • the material of the second semiconductor layer 11 in which the channel is formed is changed.
  • Si which has a lower dielectric breakdown field strength and higher electron mobility than a gallium oxide-based semiconductor, can be used to reduce the channel resistance and the on-resistance of the device.
  • Ga 2 O 3 and Si are cheaper than SiC, and Ga 2 O 3 has lower loss performance that exceeds that of SiC.
  • one side surface and a part of the bottom surface of the third trench 14 are formed by the first p-type semiconductor part 13a, and the gate electrode 16 covered with the gate insulating film 15 in the third trench 14 is formed by the first p-type semiconductor part 13a.
  • a portion of the bottom surface, for example, about half of the cross section shown in FIG. 1, is covered by the first p-type semiconductor portion 13a. Therefore, the electric field can be concentrated at the bottom of the first p-type semiconductor section 13a, and the electric field at the bottom of the third trench 14 can be reduced. Thereby, dielectric breakdown of the first semiconductor layer 10 and the gate insulating film 15 around the bottom of the third trench 14 can be suppressed, and the reliability of the field effect transistor 1 can be improved. Note that it is not preferable that the entire bottom surface of the gate electrode 16 covered with the gate insulating film 15 be covered with the first p-type semiconductor portion 13a, since there is a concern that the resistance will increase due to a phenomenon called parasitic JFET.
  • the distance between the first p-type semiconductor part 13a and the second p-type semiconductor part 13b is set to 1. It is preferably .2 ⁇ m or more and 2.0 ⁇ m or less.
  • the depth D7 of the first trench 12a from the interface between the first semiconductor layer 10 and the second semiconductor layer 11 is set to be 1.6 ⁇ m or more. , preferably 3.0 ⁇ m or less.
  • the horizontal distance D14 between the second trench 12b and the third trench 14 is set to 0.8 ⁇ m or more and 1.2 ⁇ m or less. It is preferable that
  • the gate electrode 16 is made of, for example, polycrystalline Si to which a donor is added at a high concentration, tungsten, or tungsten silicide, which is a compound of tungsten and Si.
  • the gate electrode 16 has its side and bottom surfaces covered with a gate insulating film 15 and its top surface covered with an insulating film 19 .
  • the gate insulating film 15 insulates the gate electrode 16 from the first semiconductor layer 10 and the second semiconductor layer 11, and the insulating film 19 insulates the gate electrode 16 from the source electrode 17.
  • the gate insulating film 15 and the insulating film 19 are made of, for example, HfO 2 , Al 2 O 3 , or SiO 2 .
  • the thickness of the gate insulating film 15 is, for example, 30 nm or more and 100 nm or less.
  • the thickness of the insulating film 19 is, for example, 30 nm or more and 100 nm or less.
  • the source electrode 17 is made of a metal such as aluminum, and is ohmically connected to the n-type region 111 of the second semiconductor layer 11. Further, the drain electrode 18 is made of a metal such as titanium or aluminum, and is ohmically connected to the first semiconductor layer 10 .
  • the horizontal pattern of the first p-type semiconductor part 13a and the second p-type semiconductor part 13b (that is, the horizontal pattern of the first trench 12a and the second trench 12b), the gate insulating film 15, and the gate electrode 16
  • the horizontal pattern (that is, the horizontal pattern of the third trench 14) and the horizontal pattern of the n-type region 111 and the second p-type region 114 are not particularly limited.
  • the first trench 12a and the second trench 12b may be connected at a portion that does not appear in the vertical cross section of FIG.
  • FIGS. 2A to 2C and FIGS. 3A to 3C are vertical cross-sectional views showing an example of the manufacturing process of the field effect transistor 1. The manufacturing steps shown in FIGS. 2A to 2C and 3A to 3C will be described below.
  • the dose of hydrogen ions implanted to form the ion implantation region 21 is, for example, 2 ⁇ 10 16 to 8 ⁇ 10 16 /cm 2 .
  • the implantation energy of ion implantation is determined by the depth of the ion implantation region 21 from the junction surface. For example, when forming the ion implantation region 21 at a depth of about 950 nm from the junction surface, the energy of approximately 110 keV is determined. ion implantation of hydrogen ions.
  • the first semiconductor layer 10 is planarized by a planarization process such as CMP (chemical mechanical polishing) in an ultra-high vacuum chamber under a pressure of about 5 ⁇ 10 ⁇ 6 Pa, for example.
  • CMP chemical mechanical polishing
  • the outermost surfaces of the bonding surfaces of the substrate and the Si substrate 20 are removed by irradiation with an Ar atom beam accelerated with an energy of 1.5 keV, and the newly exposed surfaces are brought into contact and bonded.
  • the heat treatment in Smart Cut is performed, for example, in an N 2 or Ar atmosphere for 1 to 10 minutes. Note that the heat treatment may be performed in a vacuum chamber under reduced pressure, or may be performed in a furnace other than the vacuum chamber. After the smart cut, heat treatment is performed again to recover the damage to the second semiconductor layer 11 caused by the ion implantation and the smart cut. Thereafter, the surface of the second semiconductor layer 11 may be subjected to a planarization process such as CMP.
  • the material of the first semiconductor layer 10 is Ga 2 O 3
  • the material of the first p-type semiconductor part 13a and the second p-type semiconductor part 13b is NiO
  • the material of the gate electrode 16 is polycrystalline Si
  • the gate insulation material is The material of the film 15 was SiO 2 .
  • the thickness of the gate insulating film 15 is 50 nm
  • the thickness of the first semiconductor layer 10 is 5 ⁇ m
  • the interface trap level density between the first semiconductor layer 10 and the second semiconductor layer 11 is 2 ⁇ 10 12 cm ⁇ 2 /eV
  • Table 2 below shows the donor concentration or acceptor concentration of each part of the field effect transistor 1 used in this simulation.
  • FIG. 4B is a graph showing the gate characteristics of the field effect transistor 1.
  • the graph in FIG. 4B shows the change in drain current when the drain voltage applied to the drain electrode 18 is fixed at 1V and the gate voltage applied to the gate electrode 16 is changed.
  • FIG. 4B shows that the gate threshold voltage is approximately 2V.

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention provides a field effect transistor 1 which is provided with: an n-type first semiconductor layer 10 that is formed of a gallium oxide semiconductor; a second semiconductor layer 11 that is formed of Si and is arranged on the first semiconductor layer 10; first and second p-type semiconductor parts 13a, 13b that are respectively buried in first and second trenches 12a, 12b; a gate electrode 16 that is covered by a gate insulating film 15 and is buried in a third trench 14 which is configured such that one lateral surface and a part of the bottom surface thereof are formed of the first p-type semiconductor part 13a; an n-type region 111 that is provided on at least a part of the surface layer of the second semiconductor layer 11 in a region between trenches, the part being on the third trench 14 side; and a p-type region 112 that is provided in a region between the n-type region 111 and the first semiconductor layer 10 in the region between trenches.

Description

電界効果トランジスタfield effect transistor

 本発明は、電界効果トランジスタに関する。 The present invention relates to field effect transistors.

 従来、トレンチゲート構造を有する電界効果トランジスタであって、β-GaとSiを半導体層として用いたものが知られている(特許文献1を参照)。特許文献1に記載の電界効果トランジスタにおいては、電界が集中するトレンチの底部が絶縁破壊電界強度の高いβ-Gaの層に設けられているため、半導体層の絶縁破壊を抑えることができる。 Conventionally, a field effect transistor having a trench gate structure and using β-Ga 2 O 3 and Si as a semiconductor layer is known (see Patent Document 1). In the field effect transistor described in Patent Document 1, the bottom of the trench where the electric field is concentrated is provided in the β-Ga 2 O 3 layer with high dielectric breakdown electric field strength, so that dielectric breakdown of the semiconductor layer can be suppressed. can.

 また、従来、トレンチゲート構造を有する電界効果トランジスタであって、SiCからなる半導体層にゲート酸化膜領域に重なるp型領域が設けられたものが知られている(非特許文献1を参照)。非特許文献1に記載の電界効果トランジスタにおいては、ゲート酸化膜領域に重なるp型領域によりトレンチの底部への電界の集中を緩和することができる。 Also, conventionally, a field effect transistor having a trench gate structure is known in which a p-type region overlapping a gate oxide film region is provided in a semiconductor layer made of SiC (see Non-Patent Document 1). In the field effect transistor described in Non-Patent Document 1, concentration of the electric field at the bottom of the trench can be alleviated by the p-type region overlapping the gate oxide film region.

特許第6873516号公報Patent No. 6873516

D. Peters et, al., “CoolSiC Trench MOSFET Combining SiC Performance with Silicon Ruggedness”, Issue 3 Power electronics Europe 2017.D. Peters et, al., “CoolSiC Trench MOSFET Combining SiC Performance with Silicon Ruggedness”, Issue 3 Power electronics Europe 2017.

 特に信頼性に優れる電界効果トランジスタを得るためには、特許文献1に記載の電界効果トランジスタに非特許文献1に記載のゲート酸化膜領域に重なるp型領域を適用して、トレンチの底部への電界の集中を緩和することが理想的である。この場合、トレンチの底部周辺の半導体層の絶縁破壊のみならずゲート絶縁膜の絶縁破壊まで抑制し、電界効果トランジスタの信頼性のさらなる向上が期待できる。 In order to obtain a field effect transistor with particularly excellent reliability, a p-type region overlapping the gate oxide film region described in Non-Patent Document 1 is applied to the field effect transistor described in Patent Document 1, and a p-type region overlapping the gate oxide film region described in Non-Patent Document 1 is applied to the field effect transistor described in Patent Document 1. Ideally, the concentration of the electric field should be alleviated. In this case, not only the dielectric breakdown of the semiconductor layer around the bottom of the trench but also the dielectric breakdown of the gate insulating film is suppressed, and further improvement in the reliability of the field effect transistor can be expected.

 しかしながら、良好な導電性を有するp型のβ-Gaは存在しないため、非特許文献1に記載の電界効果トランジスタにおけるSiC中のp型領域のように、特許文献1に記載の電界効果トランジスタにおけるβ-Gaの一部をp型化してp型領域を形成することはできない。このため、特許文献1に記載の電界効果トランジスタに非特許文献1に記載のゲート酸化膜領域に重なるp型領域を適用することはできない。 However, since p-type β-Ga 2 O 3 with good conductivity does not exist, the electric field described in Patent Document 1, like the p-type region in SiC in the field effect transistor described in Non-Patent Document 1, A p-type region cannot be formed by converting a part of β-Ga 2 O 3 in an effect transistor into a p-type. Therefore, the p-type region overlapping the gate oxide film region described in Non-Patent Document 1 cannot be applied to the field effect transistor described in Patent Document 1.

 本発明の目的は、トレンチゲート構造を有する電界効果トランジスタであって、より信頼性の高い電界効果トランジスタを提供することにある。 An object of the present invention is to provide a field effect transistor having a trench gate structure and having higher reliability.

 本発明の一態様は、上記目的を達成するために、下記[1]~[5]の電界効果トランジスタを提供する。 In order to achieve the above object, one embodiment of the present invention provides the following field effect transistors [1] to [5].

[1]酸化ガリウム系半導体からなるn型の第1の半導体層と、前記第1の半導体層上に設けられた、Siからなる第2の半導体層と、前記第2の半導体層の上面から前記第1の半導体層まで達する第1及び第2のトレンチ中にそれぞれ埋め込まれた第1及び第2のp型半導体部と、一方の側面と底面の一部とが前記第1のp型半導体部により形成されるように設けられた、前記第2の半導体層の上面から前記第1の半導体層まで達する第3のトレンチ中に、ゲート絶縁膜に覆われて埋め込まれたゲート電極と、前記第2の半導体層の前記第2のトレンチと前記第3のトレンチの間のトレンチ間領域の表層において、少なくとも前記第3のトレンチ側の一部に設けられたn型領域と、前記トレンチ間領域の前記第1の半導体層と前記n型領域の間の領域に、前記第1の半導体層と前記n型領域を隔離するように設けられたp型領域と、前記n型領域に接続されたソース電極と、前記第1の半導体層に接続されたドレイン電極と、を備えた、電界効果トランジスタ。
[2]前記トレンチ間領域の前記第1の半導体層と前記p型領域の間の領域に、第2のn型領域が設けられた、上記[1]に記載の電界効果トランジスタ。
[3]前記トレンチ間領域の表層の、前記n型領域と前記第2のトレンチとの間の領域に、第2のp型領域が設けられた、上記[1]に記載の電界効果トランジスタ。
[4]前記p型半導体部がp型の酸化物半導体からなる、上記[1]~[3]のいずれか1項に記載の電界効果トランジスタ。
[5]前記p型の酸化物半導体がp型のNiO、CuO、又はCuOである、上記[4]に記載の電界効果トランジスタ。
[1] An n-type first semiconductor layer made of a gallium oxide-based semiconductor, a second semiconductor layer made of Si provided on the first semiconductor layer, and a top surface of the second semiconductor layer. First and second p-type semiconductor parts embedded in the first and second trenches reaching the first semiconductor layer, respectively, and one side surface and a part of the bottom surface of the first p-type semiconductor a gate electrode covered with a gate insulating film and buried in a third trench extending from the upper surface of the second semiconductor layer to the first semiconductor layer; In the surface layer of the inter-trench region between the second trench and the third trench of the second semiconductor layer, an n-type region provided at least in a part of the third trench side, and the inter-trench region. a p-type region provided in a region between the first semiconductor layer and the n-type region so as to isolate the first semiconductor layer and the n-type region; and a p-type region connected to the n-type region. A field effect transistor comprising a source electrode and a drain electrode connected to the first semiconductor layer.
[2] The field effect transistor according to [1] above, wherein a second n-type region is provided in a region between the first semiconductor layer and the p-type region in the inter-trench region.
[3] The field effect transistor according to [1] above, wherein a second p-type region is provided in a region between the n-type region and the second trench in a surface layer of the inter-trench region.
[4] The field effect transistor according to any one of [1] to [3] above, wherein the p-type semiconductor portion is made of a p-type oxide semiconductor.
[5] The field effect transistor according to [4] above, wherein the p-type oxide semiconductor is p-type NiO, CuO, or Cu 2 O.

 本発明によれば、トレンチゲート構造を有する電界効果トランジスタであって、より信頼性の高い電界効果トランジスタを提供することができる。 According to the present invention, it is possible to provide a field effect transistor having a trench gate structure and having higher reliability.

図1は、本発明の実施の形態に係る電界効果トランジスタの垂直断面図である。FIG. 1 is a vertical cross-sectional view of a field effect transistor according to an embodiment of the invention. 図2Aは、電界効果トランジスタの製造工程の一例を示す垂直断面図である。FIG. 2A is a vertical cross-sectional view showing an example of a manufacturing process of a field effect transistor. 図2Bは、電界効果トランジスタの製造工程の一例を示す垂直断面図である。FIG. 2B is a vertical cross-sectional view showing an example of the manufacturing process of a field effect transistor. 図2Cは、電界効果トランジスタの製造工程の一例を示す垂直断面図である。FIG. 2C is a vertical cross-sectional view showing an example of a manufacturing process of a field effect transistor. 図3Aは、電界効果トランジスタの製造工程の一例を示す垂直断面図である。FIG. 3A is a vertical cross-sectional view showing an example of a manufacturing process of a field effect transistor. 図3Bは、電界効果トランジスタの製造工程の一例を示す垂直断面図である。FIG. 3B is a vertical cross-sectional view showing an example of the manufacturing process of a field effect transistor. 図3Cは、電界効果トランジスタの製造工程の一例を示す垂直断面図である。FIG. 3C is a vertical cross-sectional view showing an example of the manufacturing process of a field effect transistor. 図4Aは、電界効果トランジスタのオフ耐圧特性を示すグラフである。FIG. 4A is a graph showing off-breakdown voltage characteristics of a field effect transistor. 図4Bは、電界効果トランジスタのゲート特性を示すグラフである。FIG. 4B is a graph showing gate characteristics of a field effect transistor. 図4Cは、電界効果トランジスタのオン特性を示すグラフである。FIG. 4C is a graph showing the on-characteristics of a field effect transistor.

(電界効果トランジスタの構成)
 図1は、本発明の実施の形態に係る電界効果トランジスタ1の垂直断面図である。電界効果トランジスタ1は、トレンチゲート構造を有する縦型の電界効果トランジスタである。
(Configuration of field effect transistor)
FIG. 1 is a vertical cross-sectional view of a field effect transistor 1 according to an embodiment of the invention. The field effect transistor 1 is a vertical field effect transistor having a trench gate structure.

 電界効果トランジスタ1は、酸化ガリウム系半導体からなるn型の第1の半導体層10と、第1の半導体層10上に設けられた、Siからなる第2の半導体層11と、第2の半導体層11の上面から第1の半導体層10まで達する第1のトレンチ12a及び第2のトレンチ12b中にそれぞれ埋め込まれた第1のp型半導体部13a及び第2のp型半導体部13bと、一方の側面と底面の一部とが第1のp型半導体部13aにより形成されるように設けられた、第2の半導体層11の上面から第1の半導体層10まで達する第3のトレンチ14中に、ゲート絶縁膜15に覆われて埋め込まれたゲート電極16と、第2の半導体層11の第2のトレンチ12bと第3のトレンチ14の間の領域(以下、トレンチ間領域と呼ぶ)の表層において、少なくとも第3のトレンチ14側の一部に設けられたn型領域111と、上記トレンチ間領域の第1の半導体層10とn型領域111の間の領域に、第1の半導体層10とn型領域111を隔離するように設けられたp型領域112と、n型領域111に接続されたソース電極17と、第1の半導体層10に接続されたドレイン電極18とを備える。なお、図1に示される左側のゲート電極16は、電界効果トランジスタ1の左側に隣接する電界効果トランジスタに用いられるものである。 The field effect transistor 1 includes an n-type first semiconductor layer 10 made of a gallium oxide-based semiconductor, a second semiconductor layer 11 made of Si provided on the first semiconductor layer 10, and a second semiconductor layer 11 made of Si. A first p-type semiconductor section 13a and a second p-type semiconductor section 13b are respectively embedded in a first trench 12a and a second trench 12b reaching from the upper surface of the layer 11 to the first semiconductor layer 10; In the third trench 14 extending from the upper surface of the second semiconductor layer 11 to the first semiconductor layer 10, the side surface and part of the bottom surface are formed by the first p-type semiconductor part 13a. , the gate electrode 16 covered and buried in the gate insulating film 15 and the region between the second trench 12b and the third trench 14 of the second semiconductor layer 11 (hereinafter referred to as the inter-trench region). In the surface layer, a first semiconductor layer is formed in an n-type region 111 provided at least in a part of the third trench 14 side, and in a region between the first semiconductor layer 10 and the n-type region 111 in the inter-trench region. 10 and an n-type region 111, a source electrode 17 connected to the n-type region 111, and a drain electrode 18 connected to the first semiconductor layer 10. Note that the gate electrode 16 on the left side shown in FIG. 1 is used for a field effect transistor adjacent to the left side of the field effect transistor 1.

 電界効果トランジスタ1は、ノーマリーオフ型でもノーマリーオン型でもよいが、パワーデバイスとして用いられる場合には、安全性の観点から、通常、ノーマリーオフ型に製造される。ゲート回路の断線等によりゲートが制御不能になった時にソース電極17とドレイン電極18が導通することを防ぐためである。 The field effect transistor 1 may be of a normally-off type or a normally-on type, but when used as a power device, it is usually manufactured as a normally-off type from the viewpoint of safety. This is to prevent conduction between the source electrode 17 and the drain electrode 18 when the gate becomes uncontrollable due to disconnection of the gate circuit or the like.

 ノーマリーオフ型の電界効果トランジスタ1においては、ゲート電極16とソース電極17との間にゲート閾値電圧以上の電圧を印加することにより、トレンチ間領域におけるp型領域112のゲート絶縁膜15側の領域に縦方向のチャネルが形成され、ソース電極17とドレイン電極18との間に電流を流すことができる。 In the normally-off field effect transistor 1, by applying a voltage equal to or higher than the gate threshold voltage between the gate electrode 16 and the source electrode 17, the gate insulating film 15 side of the p-type region 112 in the inter-trench region is A vertical channel is formed in the region, allowing current to flow between the source electrode 17 and the drain electrode 18.

 第1の半導体層10は、β型の結晶構造を有する酸化ガリウム系半導体の単結晶からなる。ここで、酸化ガリウム系半導体とは、Ga、又は、Al、Inなどの元素が添加されたGaをいう。例えば、酸化ガリウム系半導体は、(GaAlIn(1-x-y)(0<x≦1、0≦y≦1、0<x+y≦1)で表される組成を有する。GaにAlを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。また、n型である第1の半導体層10は、Si、Snなどのドナー不純物を含む。 The first semiconductor layer 10 is made of a single crystal of a gallium oxide semiconductor having a β-type crystal structure. Here, the gallium oxide semiconductor refers to Ga 2 O 3 or Ga 2 O 3 to which elements such as Al and In are added. For example, a gallium oxide semiconductor has a composition expressed as (Ga x Al y In (1-x-y) ) 2 O 3 (0<x≦1, 0≦y≦1, 0<x+y≦1). have When Al is added to Ga 2 O 3 , the band gap is widened, and when In is added, the band gap is narrowed. Furthermore, the first semiconductor layer 10, which is n-type, contains donor impurities such as Si and Sn.

 また、第1の半導体層10は、典型的には、図1に示されるように、ドレイン電極18をオーミック接続するためのドナー濃度の高い層101と、その上の層102を含む。例えば、層101は1×1018cm-3以上、1×1021cm-3以下のドナー濃度を有し、層102は1×1015cm-3以上、1×1017cm-3以下のドナー濃度を有する。また、例えば、層101の厚さは30μm以上、600μm以下であり、層102の厚さは5μm以上、50μm以下である。 Further, the first semiconductor layer 10 typically includes a layer 101 with a high donor concentration for ohmic connection to the drain electrode 18 and a layer 102 thereon, as shown in FIG. For example, layer 101 has a donor concentration of 1×10 18 cm −3 or more and 1×10 21 cm −3 or less, and layer 102 has a donor concentration of 1×10 15 cm −3 or more and 1×10 17 cm −3 or less. It has a donor concentration. Further, for example, the thickness of the layer 101 is 30 μm or more and 600 μm or less, and the thickness of the layer 102 is 5 μm or more and 50 μm or less.

 第1の半導体層10の層101は、典型的には、酸化ガリウム系半導体の基板からなる。この場合の基板は、例えば、FZ(Floating Zone)法やEFG(Edge Defined Film Fed Growth)法などの融液成長法により育成した酸化ガリウム系単結晶のバルク結晶をスライスし、表面を研磨することにより形成される。また、第1の半導体層10の層102は、典型的には、層101の上面を下地面として成膜されたエピタキシャル膜である。 The layer 101 of the first semiconductor layer 10 is typically made of a gallium oxide semiconductor substrate. The substrate in this case is, for example, a bulk gallium oxide single crystal grown by a melt growth method such as the FZ (Floating Zone) method or the EFG (Edge Defined Film Fed Growth) method, sliced, and the surface polished. formed by. Further, the layer 102 of the first semiconductor layer 10 is typically an epitaxial film formed using the upper surface of the layer 101 as a base surface.

 第2の半導体層11は、Siの単結晶からなる層である。第2の半導体層11中に形成されるn型領域111やp型領域112は、例えば、第2の半導体層11中にドナー不純物やアクセプター不純物を注入することにより形成される。 The second semiconductor layer 11 is a layer made of single crystal Si. The n-type region 111 and the p-type region 112 formed in the second semiconductor layer 11 are formed, for example, by implanting donor impurities and acceptor impurities into the second semiconductor layer 11.

 第2の半導体層11中に形成されるn型領域111は、電界効果トランジスタ1のソースである。n型領域111は、ヒ素などのドナー不純物を含み、ソース電極17をオーミック接続するために、例えば、1×1018cm-3以上、1×1021cm-3以下の高いドナー濃度を有する。 The n-type region 111 formed in the second semiconductor layer 11 is the source of the field effect transistor 1. The n-type region 111 contains a donor impurity such as arsenic, and has a high donor concentration of, for example, 1×10 18 cm −3 or more and 1×10 21 cm −3 or less in order to ohmically connect the source electrode 17.

 第2の半導体層11中に形成されるp型領域112は、ホウ素などのアクセプター不純物を含み、例えば、1×1018cm-3以上、1×1021cm-3以下のアクセプター濃度を有する。 The p-type region 112 formed in the second semiconductor layer 11 contains an acceptor impurity such as boron, and has an acceptor concentration of, for example, 1×10 18 cm −3 or more and 1×10 21 cm −3 or less.

 第2の半導体層11は、薄すぎるとn型領域111やp型領域112の形成が難しくなり、厚すぎると第1のトレンチ12a、第2のトレンチ12b、及び第3のトレンチ14を深く形成しなければならなくなる。このため、第2の半導体層11の厚さD1は、例えば、0.6μm以上、1.2μm以下であることが好ましい。 If the second semiconductor layer 11 is too thin, it becomes difficult to form the n-type region 111 and the p-type region 112, and if it is too thick, the first trench 12a, the second trench 12b, and the third trench 14 are formed deeply. I will have to. Therefore, it is preferable that the thickness D1 of the second semiconductor layer 11 is, for example, 0.6 μm or more and 1.2 μm or less.

 第2の半導体層11の形成方法は特に限定されず、例えば、第1の半導体層10の上面を下地面としてSi単結晶をエピタキシャル成長させてもよいが、結晶品質の高い第2の半導体層11を形成するためには、表面活性化接合法などの基板貼り合わせ技術によりSi基板を第1の半導体層10に貼り合わせ、スマートカット法などの薄膜化技術により薄くしたSi基板を第2の半導体層11とすることが好ましい。 The method for forming the second semiconductor layer 11 is not particularly limited. For example, a Si single crystal may be epitaxially grown using the upper surface of the first semiconductor layer 10 as a base surface. In order to form a silicon substrate, a Si substrate is bonded to the first semiconductor layer 10 using a substrate bonding technique such as a surface activated bonding method, and the Si substrate thinned by a thinning technique such as a smart cut method is bonded to a second semiconductor layer 10. Layer 11 is preferred.

 なお、トレンチゲート構造を有する電界効果トランジスタにおいては、その動作上、n型の半導体層とp型の半導体層がpn接合を形成することが必要であるが、電界効果トランジスタ1のように半導体層が酸化ガリウム系半導体からなる層とSiからなる層により構成される場合、異種材料であるそれらの間にpn接合を形成することは難しい。例えば、n型の半導体層とp型の半導体層の界面にSiGaやGaメタルなどの層が形成されたり、Siが酸化ガリウム系半導体中でドナーとして働くため、p型の半導体層からのSiの拡散によりn型の半導体層の界面近傍にドナー濃度が非常に高い層が形成されたりすることにより、pn接合が得られない場合がある。 Note that in a field effect transistor having a trench gate structure, for its operation, it is necessary for an n-type semiconductor layer and a p-type semiconductor layer to form a pn junction. When the semiconductor layer is composed of a layer made of a gallium oxide-based semiconductor and a layer made of Si, it is difficult to form a pn junction between them, which are different materials. For example, a layer of SiGa or Ga metal is formed at the interface between an n-type semiconductor layer and a p-type semiconductor layer, or because Si acts as a donor in a gallium oxide semiconductor, Si is removed from the p-type semiconductor layer. A pn junction may not be obtained due to the formation of a layer with extremely high donor concentration near the interface of the n-type semiconductor layer due to diffusion.

 そのため、図1に示されるように、第2の半導体層11のトレンチ間領域のn型の第1の半導体層10とp型領域112の間の領域に、第2のn型領域113が設けられていることが好ましい。この場合、pn接合は酸化ガリウム系半導体からなる第1の半導体層10とSiからなるp型領域112の間ではなく、ともにSiからなる第2のn型領域113とp型領域112の間に形成されるため、単にオーミック接触する界面が形成されればよく、その界面の平坦性や急峻性などを要求されない。すなわち、容易にpn接合を形成することができる。第2のn型領域113は、リンなどのドナー不純物を含み、例えば、1×1015cm-3以上、1×1017cm-3以下のドナー濃度を有する。 Therefore, as shown in FIG. 1, a second n-type region 113 is provided in the region between the n-type first semiconductor layer 10 and the p-type region 112 in the inter-trench region of the second semiconductor layer 11. It is preferable that the In this case, the p-n junction is not between the first semiconductor layer 10 made of a gallium oxide semiconductor and the p-type region 112 made of Si, but between the second n-type region 113 and the p-type region 112, both made of Si. Therefore, it is only necessary to form an interface that makes ohmic contact, and the interface does not need to be flat or steep. That is, a pn junction can be easily formed. The second n-type region 113 contains a donor impurity such as phosphorus, and has a donor concentration of, for example, 1×10 15 cm −3 or more and 1×10 17 cm −3 or less.

 また、図1に示されるように、第2の半導体層11のトレンチ間領域の表層の、n型領域111と第2のトレンチ12bとの間の領域に、第2のp型領域114が設けられていることが好ましい。これにより、第2のp型領域114を用いてトレンチ間領域のp型領域112の電界効果トランジスタ1のバルクをソース電位と共にグラウンド電位に固定できる。第2のp型領域114は、ホウ素などのアクセプター不純物を含む。第2のp型領域114のアクセプター濃度は、p型領域112のアクセプター濃度よりも高く、例えば、1×1018cm-3以上、1×1021cm-3以下である。 Further, as shown in FIG. 1, a second p-type region 114 is provided in a region between the n-type region 111 and the second trench 12b in the surface layer of the inter-trench region of the second semiconductor layer 11. It is preferable that the Thereby, the bulk of the field effect transistor 1 in the p-type region 112 in the inter-trench region can be fixed to the ground potential together with the source potential using the second p-type region 114. Second p-type region 114 contains an acceptor impurity such as boron. The acceptor concentration of the second p-type region 114 is higher than that of the p-type region 112, for example, 1×10 18 cm −3 or more and 1×10 21 cm −3 or less.

 第1のトレンチ12aと第2のトレンチ12bは、第2の半導体層11の上面(第1の半導体層10の反対側の面)から第1の半導体層10まで達する。すなわち、第1のトレンチ12aと第2のトレンチ12b及びこれらに埋め込まれる第1のp型半導体部13a及び第2のp型半導体部13bの底が、第1の半導体層10の上面(第2の半導体層11側の面)よりも下側に位置する。 The first trench 12a and the second trench 12b reach from the upper surface of the second semiconductor layer 11 (the surface opposite to the first semiconductor layer 10) to the first semiconductor layer 10. That is, the bottoms of the first trench 12a, the second trench 12b, and the first p-type semiconductor part 13a and the second p-type semiconductor part 13b buried therein are located above the upper surface of the first semiconductor layer 10 (the second trench 12b). (the surface on the semiconductor layer 11 side).

 第1のp型半導体部13a及び第2のp型半導体部13bは、p型の半導体からなり、第1の半導体層10を構成する酸化ガリウム系半導体と反応し難いNiO、CuO、CuOなどのp型の酸化物半導体からなることが好ましい。この第1のp型半導体部13a及び第2のp型半導体部13bの材料としてNiOを用いる場合、NiOの有する3.7eVという大きなバンドギャップにより、高い耐圧が得られる。CuOやCuOを用いた場合、耐圧はNiOより低くなるものの、NiOと比較して材料コストを低減することができる。なお、これらの材料はアモルファス、多結晶、単結晶のいずれであってもよく、また、それらのうちの2つ以上の複合体であってもよい。 The first p-type semiconductor section 13a and the second p-type semiconductor section 13b are made of p-type semiconductors such as NiO, CuO, and Cu2O , which do not easily react with the gallium oxide semiconductor that constitutes the first semiconductor layer 10. It is preferable that it is made of a p-type oxide semiconductor such as. When NiO is used as the material for the first p-type semiconductor section 13a and the second p-type semiconductor section 13b, a high breakdown voltage can be obtained due to the large band gap of 3.7 eV that NiO has. When CuO or Cu 2 O is used, the breakdown voltage is lower than that of NiO, but the material cost can be reduced compared to NiO. Note that these materials may be amorphous, polycrystalline, or single crystal, or may be a composite of two or more of these materials.

 第1のp型半導体部13a及び第2のp型半導体部13bを設けることにより、電界効果トランジスタ1のゲート電極16とソース電極17との間に逆バイアスを印加するとき(オフ時)に、第1のp型半導体部13a及び第2のp型半導体部13bの底に電界が集中する。第1のp型半導体部13a及び第2のp型半導体部13bの底は、絶縁破壊電界強度の高い酸化ガリウム系半導体からなる第1の半導体層10中に位置するため、電界集中による半導体層の絶縁破壊が抑えられ、電界効果トランジスタ1の耐圧が大きくなる。そして、第1のp型半導体部13a及び第2のp型半導体部13bを設けて第1の半導体層10中に電界を集中させることにより、チャネルが形成される第2の半導体層11の材料に酸化ガリウム系半導体よりも絶縁破壊電界強度が低い一方で電子の移動度が大きいSiを用いることができ、それによってチャネル抵抗を低減し、素子のオン抵抗を低減することができる。また、GaとSiはSiCと比較して安価であり、また、GaはSiCを超える低損失性能を有している。 By providing the first p-type semiconductor section 13a and the second p-type semiconductor section 13b, when applying a reverse bias between the gate electrode 16 and the source electrode 17 of the field effect transistor 1 (when off), The electric field is concentrated at the bottoms of the first p-type semiconductor section 13a and the second p-type semiconductor section 13b. Since the bottoms of the first p-type semiconductor part 13a and the second p-type semiconductor part 13b are located in the first semiconductor layer 10 made of a gallium oxide semiconductor with high dielectric breakdown field strength, the semiconductor layer 10 is formed by electric field concentration. dielectric breakdown is suppressed, and the withstand voltage of the field effect transistor 1 is increased. Then, by providing the first p-type semiconductor part 13a and the second p-type semiconductor part 13b and concentrating the electric field in the first semiconductor layer 10, the material of the second semiconductor layer 11 in which the channel is formed is changed. Si, which has a lower dielectric breakdown field strength and higher electron mobility than a gallium oxide-based semiconductor, can be used to reduce the channel resistance and the on-resistance of the device. Furthermore, Ga 2 O 3 and Si are cheaper than SiC, and Ga 2 O 3 has lower loss performance that exceeds that of SiC.

 さらに、第3のトレンチ14の一方の側面と底面の一部は第1のp型半導体部13aにより形成されており、第3のトレンチ14中のゲート絶縁膜15に覆われたゲート電極16の底面の一部、例えば図1に示される断面の半分程度、が第1のp型半導体部13aに覆われている。このため、第1のp型半導体部13aの底に電界を集中させて、第3のトレンチ14の底部の電界を低減することができる。これにより、第3のトレンチ14の底部周辺の第1の半導体層10及びゲート絶縁膜15の絶縁破壊を抑制し、電界効果トランジスタ1の信頼性を向上させることができる。なお、寄生JFETと呼ばれる現象による抵抗増加が懸念されるため、ゲート絶縁膜15に覆われたゲート電極16の底面の全部が第1のp型半導体部13aに覆われることは好ましくない。 Further, one side surface and a part of the bottom surface of the third trench 14 are formed by the first p-type semiconductor part 13a, and the gate electrode 16 covered with the gate insulating film 15 in the third trench 14 is formed by the first p-type semiconductor part 13a. A portion of the bottom surface, for example, about half of the cross section shown in FIG. 1, is covered by the first p-type semiconductor portion 13a. Therefore, the electric field can be concentrated at the bottom of the first p-type semiconductor section 13a, and the electric field at the bottom of the third trench 14 can be reduced. Thereby, dielectric breakdown of the first semiconductor layer 10 and the gate insulating film 15 around the bottom of the third trench 14 can be suppressed, and the reliability of the field effect transistor 1 can be improved. Note that it is not preferable that the entire bottom surface of the gate electrode 16 covered with the gate insulating film 15 be covered with the first p-type semiconductor portion 13a, since there is a concern that the resistance will increase due to a phenomenon called parasitic JFET.

 n型の層102を狭窄させる事により、電界の空間変調効果を起こすため、第1のp型半導体部13aと第2のp型半導体部13bの間隔、すなわちトレンチ間領域の幅D10は、1.2μm以上、2.0μm以下であることが好ましい。 In order to cause a spatial modulation effect of the electric field by narrowing the n-type layer 102, the distance between the first p-type semiconductor part 13a and the second p-type semiconductor part 13b, that is, the width D10 of the inter-trench region, is set to 1. It is preferably .2 μm or more and 2.0 μm or less.

 また、上記空間変調効果によるゲート電極端への電界を遮蔽するため、第1のトレンチ12aの第1の半導体層10と第2の半導体層11の界面からの深さD7は、1.6μm以上、3.0μm以下であることが好ましい。 Further, in order to shield the electric field to the end of the gate electrode due to the spatial modulation effect, the depth D7 of the first trench 12a from the interface between the first semiconductor layer 10 and the second semiconductor layer 11 is set to be 1.6 μm or more. , preferably 3.0 μm or less.

 また、n型の層102の更なる空間変調効果による電界緩和を達成するため、第2のトレンチ12bと第3のトレンチ14との水平方向の距離D14は、0.8μm以上、1.2μm以下であることが好ましい。 Further, in order to achieve electric field relaxation due to the further spatial modulation effect of the n-type layer 102, the horizontal distance D14 between the second trench 12b and the third trench 14 is set to 0.8 μm or more and 1.2 μm or less. It is preferable that

 ゲート電極16は、例えば、高濃度のドナーが添加された多結晶Siや、タングステン、タングステンとSiの化合物であるタングステンシリサイドなどからなる。ゲート電極16は、その側面及び底面がゲート絶縁膜15に覆われ、その上面が絶縁膜19に覆われている。 The gate electrode 16 is made of, for example, polycrystalline Si to which a donor is added at a high concentration, tungsten, or tungsten silicide, which is a compound of tungsten and Si. The gate electrode 16 has its side and bottom surfaces covered with a gate insulating film 15 and its top surface covered with an insulating film 19 .

 ゲート絶縁膜15はゲート電極16を第1の半導体層10及び第2の半導体層11から絶縁し、絶縁膜19はゲート電極16をソース電極17から絶縁する。ゲート絶縁膜15と絶縁膜19は、例えばHfOやAl、SiOからなる。ゲート絶縁膜15の厚さは、例えば30nm以上、100nm以下である。絶縁膜19の厚さは、例えば30nm以上、100nm以下である。 The gate insulating film 15 insulates the gate electrode 16 from the first semiconductor layer 10 and the second semiconductor layer 11, and the insulating film 19 insulates the gate electrode 16 from the source electrode 17. The gate insulating film 15 and the insulating film 19 are made of, for example, HfO 2 , Al 2 O 3 , or SiO 2 . The thickness of the gate insulating film 15 is, for example, 30 nm or more and 100 nm or less. The thickness of the insulating film 19 is, for example, 30 nm or more and 100 nm or less.

 ソース電極17は、例えば、アルミニウムなどの金属からなり、第2の半導体層11のn型領域111にオーミック接続されている。また、ドレイン電極18は、例えば、チタンやアルミニウムなどの金属からなり、第1の半導体層10にオーミック接続されている。 The source electrode 17 is made of a metal such as aluminum, and is ohmically connected to the n-type region 111 of the second semiconductor layer 11. Further, the drain electrode 18 is made of a metal such as titanium or aluminum, and is ohmically connected to the first semiconductor layer 10 .

 第1のp型半導体部13a及び第2のp型半導体部13bの水平方向のパターン(すなわち第1のトレンチ12a及び第2のトレンチ12bの水平方向のパターン)、ゲート絶縁膜15及びゲート電極16の水平方向のパターン(すなわち第3のトレンチ14の水平方向のパターン)、並びにn型領域111及び第2のp型領域114の水平方向のパターンは、特に限定されない。例えば、第1のトレンチ12aと第2のトレンチ12bは、図1の垂直断面に表れない部分でつながっていてもよい。 The horizontal pattern of the first p-type semiconductor part 13a and the second p-type semiconductor part 13b (that is, the horizontal pattern of the first trench 12a and the second trench 12b), the gate insulating film 15, and the gate electrode 16 The horizontal pattern (that is, the horizontal pattern of the third trench 14) and the horizontal pattern of the n-type region 111 and the second p-type region 114 are not particularly limited. For example, the first trench 12a and the second trench 12b may be connected at a portion that does not appear in the vertical cross section of FIG.

(電界効果トランジスタの製造)
 図2A~図2C、図3A~図3Cは、電界効果トランジスタ1の製造工程の一例を示す垂直断面図である。以下、図2A~図2C、図3A~図3Cに示される製造工程について説明する。
(Manufacture of field effect transistors)
2A to 2C and FIGS. 3A to 3C are vertical cross-sectional views showing an example of the manufacturing process of the field effect transistor 1. The manufacturing steps shown in FIGS. 2A to 2C and 3A to 3C will be described below.

 まず、図2Aに示されるように、酸化ガリウム系半導体からなる基板であるn型の第1の半導体層10と、リンなどのドナー不純物を含むn型のSi基板20を準備し、これらを表面活性化接合法により貼り合わせる。 First, as shown in FIG. 2A, an n-type first semiconductor layer 10, which is a substrate made of a gallium oxide semiconductor, and an n-type Si substrate 20 containing donor impurities such as phosphorus are prepared, and the surface Paste together using the activation bonding method.

 ここで、Si基板20には、第1の半導体層10との接合面から所定の深さの位置に、水素イオンのイオン注入により面状のイオン注入領域21が形成されている。後述するように、イオン注入領域21を分割面としてSi基板20を分割し、Si基板20から分離される膜が第2の半導体層11となるため、Si基板20の接合面からのイオン注入領域21の深さは、目的とする第2の半導体層11の厚さに応じて決定される。 Here, a planar ion implantation region 21 is formed in the Si substrate 20 at a predetermined depth from the junction surface with the first semiconductor layer 10 by ion implantation of hydrogen ions. As will be described later, the Si substrate 20 is divided using the ion implantation region 21 as a division plane, and the film separated from the Si substrate 20 becomes the second semiconductor layer 11. Therefore, the ion implantation region from the bonding surface of the Si substrate 20 The depth of 21 is determined depending on the desired thickness of the second semiconductor layer 11.

 イオン注入領域21の形成のためにイオン注入される水素イオンのドーズ量は、例えば、2×1016~8×1016/cmである。また、イオン注入の注入エネルギーは、イオン注入領域21の接合面からの深さによって決定され、例えば、接合面から950nm程度の深さにイオン注入領域21を形成する場合には、およそ110keVのエネルギーで水素イオンをイオン注入する。 The dose of hydrogen ions implanted to form the ion implantation region 21 is, for example, 2×10 16 to 8×10 16 /cm 2 . In addition, the implantation energy of ion implantation is determined by the depth of the ion implantation region 21 from the junction surface. For example, when forming the ion implantation region 21 at a depth of about 950 nm from the junction surface, the energy of approximately 110 keV is determined. ion implantation of hydrogen ions.

 表面活性化接合法では、例えば、5×10-6Pa程度の圧力下の超高真空中チャンバー内において、CMP(chemical mechanical polishing)などの平坦化処理により平坦化された第1の半導体層10とSi基板20の接合面の最表面を1.5keVのエネルギーで加速したAr原子ビームを照射することにより除去して、露出したそれらの新生面同士を接触させて接合する。 In the surface activated bonding method, the first semiconductor layer 10 is planarized by a planarization process such as CMP (chemical mechanical polishing) in an ultra-high vacuum chamber under a pressure of about 5×10 −6 Pa, for example. The outermost surfaces of the bonding surfaces of the substrate and the Si substrate 20 are removed by irradiation with an Ar atom beam accelerated with an energy of 1.5 keV, and the newly exposed surfaces are brought into contact and bonded.

 次に、図2Bに示されるように、貼り合わされた第1の半導体層10とSi基板20に熱処理を施し、イオン注入領域21において水素脆化を生じさせてSi基板20を分割し(スマートカット)、第1の半導体層10上に第2の半導体層11を残す。 Next, as shown in FIG. 2B, heat treatment is applied to the bonded first semiconductor layer 10 and Si substrate 20 to cause hydrogen embrittlement in the ion implantation region 21 and divide the Si substrate 20 (smart cut ), leaving the second semiconductor layer 11 on the first semiconductor layer 10.

 スマートカットにおける熱処理は、例えば、N又はAr雰囲気下で1~10分間行われる。なお、熱処理は、減圧下の真空チャンバー内で行われてもよいし、真空チャンバー以外の他の炉内で行われてもよい。スマートカットの後には、再度の熱処理を施すことにより、イオン注入やスマートカットにおいて生じた第2の半導体層11のダメージを回復する。その後、第2の半導体層11の表面にCMPなどの平坦化処理を施してもよい。 The heat treatment in Smart Cut is performed, for example, in an N 2 or Ar atmosphere for 1 to 10 minutes. Note that the heat treatment may be performed in a vacuum chamber under reduced pressure, or may be performed in a furnace other than the vacuum chamber. After the smart cut, heat treatment is performed again to recover the damage to the second semiconductor layer 11 caused by the ion implantation and the smart cut. Thereafter, the surface of the second semiconductor layer 11 may be subjected to a planarization process such as CMP.

 次に、図2Cに示されるように、第2の半導体層11にホウ素などのアクセプター不純物をイオン注入することによりp型領域112と第2のp型領域114を形成し、第2の半導体層11にヒ素などのドナー不純物をイオン注入することによりn型領域111を形成する。そして、n型の第2の半導体層11の不純物を注入しない領域を第2のn型領域113とする。 Next, as shown in FIG. 2C, an acceptor impurity such as boron is ion-implanted into the second semiconductor layer 11 to form a p-type region 112 and a second p-type region 114, and the second semiconductor layer An n-type region 111 is formed by ion-implanting a donor impurity such as arsenic into the region 11 . A region of the n-type second semiconductor layer 11 into which impurities are not implanted is defined as a second n-type region 113.

 次に、図3Aに示されるように、第1の半導体層10と第2の半導体層11の積層体に第1のトレンチ12a及び第2のトレンチ12bを形成し、第1のトレンチ12a、第2のトレンチ12b中にそれぞれ第1のp型半導体部13a、第2のp型半導体部13bを形成する。 Next, as shown in FIG. 3A, a first trench 12a and a second trench 12b are formed in the stacked body of the first semiconductor layer 10 and the second semiconductor layer 11, and the first trench 12a and the second trench 12b are A first p-type semiconductor section 13a and a second p-type semiconductor section 13b are formed in the two trenches 12b, respectively.

 第1のトレンチ12a及び第2のトレンチ12bは、例えば、フォトリソグラフィとドライエッチングにより形成される。第1のp型半導体部13a及び第2のp型半導体部13bは、例えば、CVD(Chemical Vapor Deposition)、真空蒸着、スパッタリングなどにより材料を第1のトレンチ12a及び第2のトレンチ12b中に堆積させて形成する。 The first trench 12a and the second trench 12b are formed by, for example, photolithography and dry etching. The first p-type semiconductor part 13a and the second p-type semiconductor part 13b are formed by depositing a material into the first trench 12a and the second trench 12b by, for example, CVD (Chemical Vapor Deposition), vacuum evaporation, sputtering, or the like. Let it form.

 次に、図3Bに示されるように、第1の半導体層10と第2の半導体層11の積層体に第3のトレンチ14を形成する。第3のトレンチ14は、一部が幅方向に第1のトレンチ12aと重なるように形成される。第3のトレンチ14は、例えば、フォトリソグラフィとドライエッチングにより形成される。 Next, as shown in FIG. 3B, a third trench 14 is formed in the stack of the first semiconductor layer 10 and the second semiconductor layer 11. The third trench 14 is formed so as to partially overlap the first trench 12a in the width direction. The third trench 14 is formed by, for example, photolithography and dry etching.

 次に、図3Cに示されるように、第3のトレンチ14中にゲート絶縁膜15及びゲート電極16を形成する。ゲート絶縁膜15及びゲート電極16は、例えば、CVD、真空蒸着、スパッタリングなどにより材料を第3のトレンチ14中に堆積させて形成する。 Next, as shown in FIG. 3C, a gate insulating film 15 and a gate electrode 16 are formed in the third trench 14. The gate insulating film 15 and the gate electrode 16 are formed by depositing a material in the third trench 14 by, for example, CVD, vacuum deposition, sputtering, or the like.

 その後、絶縁膜19、ソース電極17、及びドレイン電極18を形成して、電界効果トランジスタ1を得る。絶縁膜19は、例えば、CVD、真空蒸着、スパッタリングなどにより材料をゲート電極16上に堆積させて形成する。ソース電極17及びドレイン電極18は、例えば、スパッタリングなどにより第2の半導体層11の上面、第1の半導体層10の下面にそれぞれ材料を堆積させて形成する。 Thereafter, an insulating film 19, a source electrode 17, and a drain electrode 18 are formed to obtain a field effect transistor 1. The insulating film 19 is formed by depositing a material on the gate electrode 16 by, for example, CVD, vacuum deposition, sputtering, or the like. The source electrode 17 and the drain electrode 18 are formed by depositing materials on the upper surface of the second semiconductor layer 11 and the lower surface of the first semiconductor layer 10, respectively, by sputtering or the like, for example.

(電界効果トランジスタの特性)
 以下に、電界効果トランジスタ1のゲート電極16に逆バイアスを印加したとき(オフ時)の電界分布、オフ耐圧特性、ゲート特性、及びオン特性のシミュレーション結果について述べる。
(Characteristics of field effect transistor)
Below, simulation results of the electric field distribution, OFF breakdown voltage characteristics, gate characteristics, and ON characteristics when a reverse bias is applied to the gate electrode 16 of the field effect transistor 1 (when off) will be described.

 次の表1に、本シミュレーションに用いた電界効果トランジスタ1の各部の寸法D1~D18(図1を参照)を示す。 Table 1 below shows the dimensions D1 to D18 (see FIG. 1) of each part of the field effect transistor 1 used in this simulation.

 また、第1の半導体層10の材料をGa、第1のp型半導体部13a及び第2のp型半導体部13bの材料をNiO、ゲート電極16の材料を多結晶Si、ゲート絶縁膜15の材料をSiOとした。 Further, the material of the first semiconductor layer 10 is Ga 2 O 3 , the material of the first p-type semiconductor part 13a and the second p-type semiconductor part 13b is NiO, the material of the gate electrode 16 is polycrystalline Si, and the gate insulation material is The material of the film 15 was SiO 2 .

 また、ゲート絶縁膜15の厚さは50nm、第1の半導体層10の厚さは5μm、第1の半導体層10と第2の半導体層11の界面捕獲準位密度は2×1012cm-2/eV、図1の断面に表れている第1のトレンチ12a、第2のトレンチ12b、及び第3のトレンチ14の底部の両端のコーナーの曲率半径は0.3μm、絶縁膜19の比誘電率は3.9とした。 Further, the thickness of the gate insulating film 15 is 50 nm, the thickness of the first semiconductor layer 10 is 5 μm, and the interface trap level density between the first semiconductor layer 10 and the second semiconductor layer 11 is 2×10 12 cm − 2 /eV, the radius of curvature of the corners at both ends of the bottom of the first trench 12a, second trench 12b, and third trench 14 shown in the cross section of FIG. The rate was set at 3.9.

 次の表2に、本シミュレーションに用いた電界効果トランジスタ1の各部のドナー濃度又はアクセプター濃度を示す。 Table 2 below shows the donor concentration or acceptor concentration of each part of the field effect transistor 1 used in this simulation.

 上記の電界効果トランジスタ1のドレイン電極18に1400Vの電圧を印加したとき(ソース電極17は接地されている)の、点P1、P2、P3(図1を参照)における電界の強さは、それぞれおよそ6MV/cm、4MV/cm、0.3MV/cmであった。ここで、点P1は、第1のトレンチ12aの底部周辺の第1の半導体層10中の点であり、点P2は、第3のトレンチ14の底部周辺のゲート絶縁膜15中の点であり、点P3は、p型領域112と第2のn型領域113の界面上の点である。 When a voltage of 1400 V is applied to the drain electrode 18 of the above field effect transistor 1 (the source electrode 17 is grounded), the electric field strengths at points P1, P2, and P3 (see FIG. 1) are respectively They were approximately 6MV/cm, 4MV/cm, and 0.3MV/cm. Here, point P1 is a point in the first semiconductor layer 10 around the bottom of the first trench 12a, and point P2 is a point in the gate insulating film 15 around the bottom of the third trench 14. , point P3 is a point on the interface between p-type region 112 and second n-type region 113.

 点P1における電界は、電界効果トランジスタ1の内部で最も強く、また、点P2、P3における電界の強さは上述のように低く抑えられていた。このことから、電界効果トランジスタ1のゲート電極16に逆バイアスを印加すると、第1のp型半導体部13aの底部に電界が集中して、第3のトレンチ14の底部周辺や第1の半導体層10と第2の半導体層11の界面周辺の電界が緩和されていることが確認された。このため、通常電界の集中しやすい第3のトレンチ14の底部周辺の第1の半導体層10及びゲート絶縁膜15の絶縁破壊を抑制することができる。 The electric field at point P1 was the strongest inside the field effect transistor 1, and the electric field strength at points P2 and P3 was kept low as described above. From this, when a reverse bias is applied to the gate electrode 16 of the field effect transistor 1, the electric field is concentrated at the bottom of the first p-type semiconductor part 13a, and the electric field is concentrated around the bottom of the third trench 14 and the first semiconductor layer. It was confirmed that the electric field around the interface between the semiconductor layer 10 and the second semiconductor layer 11 was relaxed. Therefore, it is possible to suppress dielectric breakdown of the first semiconductor layer 10 and the gate insulating film 15 around the bottom of the third trench 14 where the electric field tends to concentrate.

 図4Aは、電界効果トランジスタ1のオフ耐圧特性を示すグラフである。図4Aのグラフは、ゲート電極16に印加するゲート電圧を-5Vに固定して、ドレイン電極18に印加するドレイン電圧を変化させたときのドレイン電流の変化を示している。図4Aは、ドレイン電圧がおよそ1400Vを超えるとアバランシェブレークダウンが生じることを示している。 FIG. 4A is a graph showing the off-breakdown voltage characteristics of the field effect transistor 1. The graph in FIG. 4A shows the change in drain current when the gate voltage applied to the gate electrode 16 is fixed at -5V and the drain voltage applied to the drain electrode 18 is changed. FIG. 4A shows that avalanche breakdown occurs when the drain voltage exceeds approximately 1400V.

 図4Bは、電界効果トランジスタ1のゲート特性を示すグラフである。図4Bのグラフは、ドレイン電極18に印加するドレイン電圧を1Vに固定して、ゲート電極16に印加するゲート電圧を変化させたときのドレイン電流の変化を示している。図4Bは、ゲート閾値電圧がおよそ2Vであることを示している。 FIG. 4B is a graph showing the gate characteristics of the field effect transistor 1. The graph in FIG. 4B shows the change in drain current when the drain voltage applied to the drain electrode 18 is fixed at 1V and the gate voltage applied to the gate electrode 16 is changed. FIG. 4B shows that the gate threshold voltage is approximately 2V.

 図4Cは、電界効果トランジスタ1のオン特性を示すグラフである。図4Cのグラフは、ゲート電極16に印加するゲート電圧を15Vに固定して、ドレイン電極18に印加するドレイン電圧を変化させたときのドレイン電流の変化を示している。図4Cによれば、例えば、ゲート電圧が15V、ドレイン電圧が1Vであるときのオン抵抗がおよそ3.2mΩcmである。 FIG. 4C is a graph showing the on-characteristics of the field effect transistor 1. The graph in FIG. 4C shows the change in drain current when the gate voltage applied to the gate electrode 16 is fixed at 15 V and the drain voltage applied to the drain electrode 18 is changed. According to FIG. 4C, for example, the on-resistance when the gate voltage is 15 V and the drain voltage is 1 V is approximately 3.2 mΩcm 2 .

(実施の形態の効果)
 上記本発明の実施の形態によれば、ゲート電極16が埋め込まれる第3のトレンチ14の底部を絶縁破壊電界強度の高い酸化ガリウム系半導体からなるn型の第1の半導体層10中に設置し、また、第1のp型半導体部13aにより第3のトレンチ14の底部周辺の電界を緩和することにより、第3のトレンチ14の底部周辺の第1の半導体層10やゲート絶縁膜15の絶縁破壊を抑制し、電界効果トランジスタ1の信頼性を高めることができる。
(Effects of embodiment)
According to the embodiment of the present invention, the bottom of the third trench 14 in which the gate electrode 16 is embedded is placed in the n-type first semiconductor layer 10 made of a gallium oxide semiconductor with high dielectric breakdown field strength. Furthermore, by relaxing the electric field around the bottom of the third trench 14 by the first p-type semiconductor part 13a, the insulation of the first semiconductor layer 10 and the gate insulating film 15 around the bottom of the third trench 14 is reduced. Destruction can be suppressed and reliability of the field effect transistor 1 can be improved.

 以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. Furthermore, the constituent elements of the embodiments described above can be arbitrarily combined without departing from the spirit of the invention.

 また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Furthermore, the embodiments described above do not limit the claimed invention. Furthermore, it should be noted that not all combinations of features described in the embodiments are essential for solving the problems of the invention.

 トレンチゲート構造を有する電界効果トランジスタであって、より信頼性の高い電界効果トランジスタを提供する。 A field effect transistor having a trench gate structure and having higher reliability is provided.

1…電界効果トランジスタ、 10…第1の半導体層、 11…第2の半導体層、 111…n型領域、 112…p型領域、 113…第2のn型領域、 114…第2のp型領域、 12a…第1のトレンチ、 12b…第2のトレンチ、 13a…第1のp型半導体部、 13b…第2のp型半導体部、 14…第3のトレンチ、 15…ゲート絶縁膜、 16…ゲート電極、 17…ソース電極、 18…ドレイン電極 DESCRIPTION OF SYMBOLS 1... Field effect transistor, 10... First semiconductor layer, 11... Second semiconductor layer, 111... N type region, 112... P type region, 113... Second n type region, 114... Second p type Region, 12a...first trench, 12b...second trench, 13a...first p-type semiconductor section, 13b...second p-type semiconductor section, 14...third trench, 15...gate insulating film, 16 ...gate electrode, 17...source electrode, 18...drain electrode

Claims (5)

 酸化ガリウム系半導体からなるn型の第1の半導体層と、
 前記第1の半導体層上に設けられた、Siからなる第2の半導体層と、
 前記第2の半導体層の上面から前記第1の半導体層まで達する第1及び第2のトレンチ中にそれぞれ埋め込まれた第1及び第2のp型半導体部と、
 一方の側面と底面の一部とが前記第1のp型半導体部により形成されるように設けられた、前記第2の半導体層の上面から前記第1の半導体層まで達する第3のトレンチ中に、ゲート絶縁膜に覆われて埋め込まれたゲート電極と、
 前記第2の半導体層の前記第2のトレンチと前記第3のトレンチの間のトレンチ間領域の表層において、少なくとも前記第3のトレンチ側の一部に設けられたn型領域と、
 前記トレンチ間領域の前記第1の半導体層と前記n型領域の間の領域に、前記第1の半導体層と前記n型領域を隔離するように設けられたp型領域と、
 前記n型領域に接続されたソース電極と、
 前記第1の半導体層に接続されたドレイン電極と、
 を備えた、電界効果トランジスタ。
an n-type first semiconductor layer made of a gallium oxide-based semiconductor;
a second semiconductor layer made of Si provided on the first semiconductor layer;
first and second p-type semiconductor parts respectively embedded in first and second trenches reaching from the top surface of the second semiconductor layer to the first semiconductor layer;
A third trench extending from the top surface of the second semiconductor layer to the first semiconductor layer, which is provided so that one side surface and a part of the bottom surface are formed by the first p-type semiconductor part. a gate electrode covered with a gate insulating film and buried;
an n-type region provided in at least a part of the third trench side in a surface layer of an inter-trench region between the second trench and the third trench of the second semiconductor layer;
a p-type region provided in a region between the first semiconductor layer and the n-type region in the inter-trench region so as to isolate the first semiconductor layer and the n-type region;
a source electrode connected to the n-type region;
a drain electrode connected to the first semiconductor layer;
A field effect transistor with.
 前記トレンチ間領域の前記第1の半導体層と前記p型領域の間の領域に、第2のn型領域が設けられた、
 請求項1に記載の電界効果トランジスタ。
a second n-type region is provided in a region between the first semiconductor layer and the p-type region in the inter-trench region;
A field effect transistor according to claim 1.
 前記トレンチ間領域の表層の、前記n型領域と前記第2のトレンチとの間の領域に、第2のp型領域が設けられた、
 請求項1に記載の電界効果トランジスタ。
a second p-type region is provided in a surface layer of the inter-trench region between the n-type region and the second trench;
A field effect transistor according to claim 1.
 前記p型半導体部がp型の酸化物半導体からなる、
 請求項1~3のいずれか1項に記載の電界効果トランジスタ。
The p-type semiconductor portion is made of a p-type oxide semiconductor,
The field effect transistor according to any one of claims 1 to 3.
 前記p型の酸化物半導体がp型のNiO、CuO、又はCuOである、
 請求項4に記載の電界効果トランジスタ。
the p-type oxide semiconductor is p-type NiO, CuO, or Cu 2 O;
The field effect transistor according to claim 4.
PCT/JP2023/020309 2022-06-07 2023-05-31 Field effect transistor WO2023238755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-092530 2022-06-07
JP2022092530A JP2023179286A (en) 2022-06-07 2022-06-07 field effect transistor

Publications (1)

Publication Number Publication Date
WO2023238755A1 true WO2023238755A1 (en) 2023-12-14

Family

ID=89118385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020309 WO2023238755A1 (en) 2022-06-07 2023-05-31 Field effect transistor

Country Status (2)

Country Link
JP (1) JP2023179286A (en)
WO (1) WO2023238755A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225600A1 (en) * 2017-06-06 2018-12-13 三菱電機株式会社 Semiconductor device and power conversion apparatus
JP6873516B1 (en) * 2020-06-05 2021-05-19 Eastwind合同会社 Power semiconductor devices and their manufacturing methods
JP2022007788A (en) * 2020-06-26 2022-01-13 富士電機株式会社 Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225600A1 (en) * 2017-06-06 2018-12-13 三菱電機株式会社 Semiconductor device and power conversion apparatus
JP6873516B1 (en) * 2020-06-05 2021-05-19 Eastwind合同会社 Power semiconductor devices and their manufacturing methods
JP2022007788A (en) * 2020-06-26 2022-01-13 富士電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2023179286A (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP7563526B2 (en) Method for manufacturing an insulated gate semiconductor device
US11342420B2 (en) Heterojunction devices and methods for fabricating the same
CN104011865B (en) The method and system of Floating Guard are manufactured in GaN material
CN101964357B (en) Semiconductor device and manufacturing method thereof
US8658503B2 (en) Semiconductor device and method of fabricating the same
US9318619B2 (en) Vertical gallium nitride JFET with gate and source electrodes on regrown gate
JP7139596B2 (en) Semiconductor device and its manufacturing method
WO2019239632A1 (en) Power semiconductor device and method of manufacturing same
WO2013001677A1 (en) Semiconductor device and method for manufacturing same
US10147813B2 (en) Tunneling field effect transistor
JP2017168506A (en) Semiconductor device and method for manufacturing the same
JP5802492B2 (en) Semiconductor device and manufacturing method thereof
JP2020025054A (en) Semiconductor device and manufacturing method thereof
WO2012105170A1 (en) Semiconductor device and manufacturing method thereof
CN112103335A (en) Semiconductor device and method for manufacturing wafer
JP5607947B2 (en) Semiconductor device and manufacturing method thereof
JP2008112774A (en) Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof
WO2015111177A1 (en) Semiconductor device, power module, power conversion device, and railway vehicle
US20230326960A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP5059989B1 (en) Semiconductor device and manufacturing method thereof
WO2023238755A1 (en) Field effect transistor
JP2024038838A (en) field effect transistor
WO2020203662A1 (en) Semiconductor device and production method for semiconductor device
JP2020077828A (en) Switching element manufacturing method
JP7120886B2 (en) Method for manufacturing switching element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23819735

Country of ref document: EP

Kind code of ref document: A1