WO2023234237A1 - Composite resin material and molded article - Google Patents
Composite resin material and molded article Download PDFInfo
- Publication number
- WO2023234237A1 WO2023234237A1 PCT/JP2023/019850 JP2023019850W WO2023234237A1 WO 2023234237 A1 WO2023234237 A1 WO 2023234237A1 JP 2023019850 W JP2023019850 W JP 2023019850W WO 2023234237 A1 WO2023234237 A1 WO 2023234237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- plant
- regenerated cellulose
- resin composition
- resin material
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
Definitions
- the present invention relates to composite resin materials and molded products.
- Patent Document 1 proposes a speaker member in which a plant-derived material such as waste rice is combined with a polypropylene resin or the like.
- This phenomenon is caused by, for example, the flow pattern of petroleum-derived resin filled with inorganic filler such as glass fiber being linear, and the flow pattern of petroleum-derived resin filled with inorganic filler such as glass fiber being different from that of the main material, which flows in a curved mold shape. As a result, the flowing pattern of the inorganic filler stands out and appears white, which is considered to be one of the reasons.
- an object of the present invention is to provide a composite resin material that can provide a molded product with excellent mechanical strength and a good appearance, and a molded product of the composite resin material.
- the inventors of the present application surprisingly found that by combining a material containing plant components with a resin composition containing regenerated cellulose fibers, a composite resin material that can solve all of the above problems can be obtained.
- This discovery led to the completion of the present invention. That is, the present invention has the following aspects.
- Resin composition (A-1) containing plant-derived filler (a-1) and thermoplastic resin (a-2), thermoplastic resin (A-2) containing monomer units derived from plant raw materials , and at least one plant component-containing material (A) selected from the group consisting of thermoplastic starch (A-3); A composite resin material comprising a thermoplastic resin (b-1) and a resin composition (B) containing regenerated cellulose fibers (b-2).
- the total content of the thermoplastic resin in the composite resin material is 30 to 90% by mass, and the content of the regenerated cellulose fiber (b-2) is 10 to 40% by mass, [ 1].
- Composite resin material described in . [9] The composite resin material according to any one of [1] to [8], wherein the regenerated cellulose fiber (b-2) contains viscose rayon. [10]
- the composite resin material is a mixture of pellets (I) containing the plant component-containing material (A) and pellets (II) containing the resin composition (B), [1] to [9] ]
- the composite resin material according to any one of. [11] The composite resin material according to any one of [1] to [10], which is for injection molding. [12] A molded article of the composite resin material according to any one of [1] to [11].
- the present invention it is possible to provide a composite resin material that can provide a molded product that has excellent mechanical strength and a good appearance, and a molded product made of the composite resin material.
- the composite resin material according to the present embodiment includes a resin composition (A-1) containing a plant-derived filler (a-1) and a thermoplastic resin (a-2), a thermoplastic resin composition containing monomer units derived from plant raw materials, and At least one plant component-containing material (A) selected from the group consisting of a plastic resin (A-2) and a thermoplastic starch (A-3), a thermoplastic resin (b-1) and a regenerated cellulose fiber (b -2).
- the composite resin material according to this embodiment can provide a molded product with excellent mechanical strength and good appearance. Furthermore, the composite resin material according to the present embodiment can improve mechanical strength, particularly impact strength, without adding an inorganic filler such as glass fiber. Therefore, no incineration ash is generated when the molded product obtained from the composite resin material according to this embodiment is collected and thermally recycled.
- the composite resin material according to the present embodiment includes a resin composition (A-1) containing a plant-derived filler (a-1) and a thermoplastic resin (a-2), a thermoplastic resin composition containing monomer units derived from plant raw materials, and At least one plant component-containing material (A) selected from the group consisting of a plastic resin (A-2) and a thermoplastic starch (A-3) (hereinafter sometimes simply referred to as "material (A)”) )including.
- the material (A) according to this embodiment can include a resin composition (A-1).
- the resin composition (A-1) contains a plant-derived filler (a-1) and a thermoplastic resin (a-2).
- the plant-derived filler (a-1) (hereinafter sometimes simply referred to as "filler (a-1)") has the effect of the present invention if it is a filler composed of a plant-derived material.
- the filler (a-1) includes, for example, crushed plant products, plant fibers, and the like.
- Examples of pulverized plant products include pulverized plant leaves, stems, roots, seeds (including grains), etc., which are processed into particles or powder.
- the pulverized plant material may be a pulverized product of a specific part, or may be a mixture of pulverized products of a plurality of different parts.
- the filler (a-1) contains a crushed plant material, it preferably contains a crushed seed material.
- the pulverized seeds containing grains may include rice (waste rice) or barley derived from food waste, or pulverized coffee beans after extraction.
- Plant fibers are plant-derived fibers extracted from wood and/or non-wood materials, and are called "pulp.”
- the part from which the plant fibers are extracted is not particularly limited as long as it has the effects of the present invention, and may be any of the woody part, non-woody part, leaf part, stem part, root part, etc.
- the plant fibers may be fibers taken out from a specific part, or may be mixed fibers of fibers taken out from a plurality of different parts. Fibers extracted from plants may be used as plant fibers in combination with the thermoplastic resin (a-2), or may be used as plant fibers after being subjected to various processing.
- Processing methods include retting (including retting using microorganisms, retting using enzymes, etc.), boiling, steaming, heating, drying, cutting, beating, washing, and chemical treatment, and these methods cannot be performed alone. or a combination of two or more types.
- the plant species from which plant fibers are extracted are not limited, and include, for example, kenaf, jute hemp, manila hemp, sisal hemp, gampi, mitsumata, mulberry, banana, pineapple, coconut palm, corn, sugarcane, bagasse, palm, papyrus, reed, esparto, and sabai grass. , wheat, rice, bamboo, coniferous trees (cedar, cypress, etc.), broad-leaved trees, cotton, etc. These may be used alone or in combination of two or more.
- the plant fibers may include cellulose pulp. "Cellulose pulp" refers to fibers obtained from wood or non-wood plants.
- the cellulose raw material one type of the above-mentioned plant species can be used alone, or two or more types can be used in combination.
- the plant-derived filler (a-1) preferably does not contain regenerated cellulose fibers (b-2), which will be described later.
- the average fiber length of the vegetable fibers is preferably 0.5 to 500 ⁇ m from the viewpoint of fiber dispersibility and mechanical strength of the resulting molded product, More preferably, it is 1.0 to 100 ⁇ m.
- the filler (a-1) preferably contains at least one selected from crushed seeds and vegetable fibers, including crushed rice (including waste rice), cellulose pulp, and coffee. It is more preferable to include at least one selected from ground beans.
- the resin composition (A-1) contains a thermoplastic resin (a-2) (hereinafter sometimes simply referred to as "resin (a-2)").
- the thermoplastic resin (a-2) is not particularly limited as long as it has the effects of the present invention, and any thermoplastic resin can be used.
- the resin (a-2) olefin resin, vinyl alcohol resin, vinyl ester resin, styrene resin, (meth)acrylic resin, polyester resin, polycarbonate resin, polyamide resin, polysulfone resin, Examples include polyphenylene resin, polyacetal resin, thermoplastic elastomer, and the like.
- olefin resins include homopolymers or copolymers of olefins having 2 to 6 carbon atoms (ethylene resins such as polyethylene, ethylene-propylene copolymers; polypropylene, propylene-ethylene copolymers, propylene-butenes); Propylene resins such as copolymers; poly(methylpentene-1); propylene-methylpentene copolymers, etc.); copolymers of olefins having 2 to 6 carbon atoms and copolymerizable monomers (ethylene-( (meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, etc.); Cyclic olefin that may have a substituent such as an alkyl group or an ester group (especially a cyclic olefin condensed with a hydrocarbon ring) homopolymers or copolymers of cyclic olefins such as polybicyclopent
- an acid-modified polyolefin When using an olefin resin, an acid-modified polyolefin may be used in combination from the viewpoint of easy adhesion to the plant-derived filler (a-1).
- the acid-modified polyolefin maleic acid-modified polyolefin (more preferably maleic acid-modified polypropylene) and maleic anhydride-modified polyolefin (more preferably maleic anhydride-modified polypropylene) are preferred.
- Vinyl resins include polyvinyl alcohol, ethylene-vinyl alcohol copolymers, and the like. These may be used alone or in combination of two or more.
- Vinyl ester resins include, for example, homopolymers or copolymers of carboxylic acid vinyl ester monomers such as polyvinyl acetate; ethylene-vinyl acetate copolymers, vinyl acetate- Examples include copolymers of carboxylic acid vinyl ester monomers and copolymerizable monomers, such as (meth)acrylic acid ester copolymers. These may be used alone or in combination of two or more.
- Styrenic resins include, for example, homopolymers or copolymers of styrene monomers (polystyrene, styrene- ⁇ -methylstyrene copolymers, etc.); styrene monomers and other copolymerizable monomers. (styrene-acrylonitrile copolymer (AS resin), styrene-(meth)acrylate copolymer, styrene-maleic anhydride copolymer, etc.). These may be used alone or in combination of two or more.
- AS resin styrene-acrylonitrile copolymer
- styrene-(meth)acrylate copolymer styrene-maleic anhydride copolymer, etc.
- Examples of (meth)acrylic resins include poly(meth)acrylic esters such as polymethyl methacrylate, methyl methacrylate-(meth)acrylic acid copolymers, and methyl methacrylate-(meth)acrylic acid.
- Examples include ester copolymers, methyl methacrylate-(meth)acrylic ester-(meth)acrylic acid copolymers, and (meth)acrylic ester-styrene copolymers (MS resins, etc.). These may be used alone or in combination of two or more.
- polyester resins include homopolyesters or copolyesters (such as adipic acid having 6 carbon atoms such as adipic acid) having alkylene terephthalate (ethylene terephthalate, butylene terephthalate, etc.) or alkylene naphthalate (ethylene naphthalate, butylene naphthalate, etc.) as a repeating unit.
- adipic acid having 6 carbon atoms such as adipic acid
- alkylene terephthalate ethylene terephthalate, butylene terephthalate, etc.
- alkylene naphthalate ethylene naphthalate, butylene naphthalate, etc.
- Copolyesters containing asymmetric aromatic dicarboxylic acids such as ⁇ 12 aliphatic dicarboxylic acids, phthalic acid, and isophthalic acid, and alkylene glycols having 2 to 6 carbon atoms, polyoxyalkylene glycols, bisphenol A, etc.
- Aromatic polyesters polyarylate resins produced by the reaction of aromatic diols such as bisphenol A with aromatic dicarboxylic acids such as terephthalic acid, etc.
- Liquid crystalline polyesters Lactones ( ⁇ -caprolactone, etc.) alone or in combination Examples include polymers. These may be used alone or in combination of two or more.
- polycarbonate resins examples include polycarbonates obtained by reacting dihydroxy compounds (bisphenol compounds such as bisphenol A and bisphenol S) with phosgene or carbonic acid diesters (dialkyl carbonates such as diphenyl carbonate and dimethyl carbonate), and the like. It will be done. These may be used alone or in combination of two or more.
- dihydroxy compounds bisphenol compounds such as bisphenol A and bisphenol S
- phosgene or carbonic acid diesters dialkyl carbonates such as diphenyl carbonate and dimethyl carbonate
- polyamide resins include aliphatic polyamides and aromatic polyamides.
- aliphatic polyamide examples include polyamide 6, polyamide 66, polyamide 69, polyamide 610, polyamide 1010, polyamide 612, polyamide 46, polyamide 11, and polyamide 12. These may be used alone or in combination of two or more.
- aromatic polyamides include those obtained from aromatic dicarboxylic acids and aliphatic diamines, or from aliphatic dicarboxylic acids and aromatic diamines.
- polyamide MXD metaxylylene diamine and adipic acid
- polyamide 6T hexamethylene diamine and terephthalic acid
- polyamide 6I hexamethylene diamine and isophthalic acid
- polyamide 9T nonanediamine and terephthalic acid
- polyamide M5T methylpentadiamine and terephthalic acid
- polyamide 10T decamethylene diamine and terephthalic acid
- polysulfone-based resins examples include polysulfone, polyethersulfone, and the like. These may be used alone or in combination of two or more.
- polyphenylene resins include polyphenylene oxide resins [poly(2,5-dimethyl-1,4-phenylene) oxide, poly(2,6-dimethyl-1,4-phenylene) oxide, poly(2-methyl -6-ethyl-1,4-phenylene) oxide, poly(2,6-di-n-propyl-1,4-phenylene) oxide, poly(2-methyl-6-chloroethyl-1,4-phenylene) oxide homopolymers such as; modified polyphenylene oxide copolymers constructed based on polyphenylene oxide blocks; modified graft copolymers in which a styrene polymer is grafted to polyphenylene oxide or its copolymer, etc.]; polyphenylene sulfide-based Examples include resins (polyphenylene sulfide, polyphenylene sulfide ketone, polybiphenylene sulfide, polyphenylene sulfide sulfone
- polyacetal-based resins examples include polyacetal homopolymers containing only oxymethylene groups as constituent units, and polyacetal copolymers containing oxyethylene groups and the like as constituent units in addition to oxymethylene groups. These may be used alone or in combination of two or more.
- thermoplastic elastomer examples include hard thermoplastic elastomers such as polyolefin thermoplastic elastomers, polystyrene thermoplastic elastomers, polyvinyl chloride thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, and polyamide thermoplastic resin elastomers.
- hard thermoplastic elastomers such as polyolefin thermoplastic elastomers, polystyrene thermoplastic elastomers, polyvinyl chloride thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, and polyamide thermoplastic resin elastomers.
- thermoplastic elastomers that are composed of a phase and a soft phase. These may be used alone or in combination of two or more.
- resin (a-2) olefin resins, styrene resins, (meth)acrylic resins, polyester resins, polycarbonate
- thermoplastic resins one of the aforementioned thermoplastic resins may be used alone, or two or more types may be used in combination. Further, it may be modified (for example, rubber modified) as necessary.
- the resin (a-2) preferably includes an olefin resin or a polyacetal resin from the viewpoint of mechanical strength for use in the structure and process temperature that the regenerated cellulose fiber can withstand.
- the resin (a-2) contains an olefin resin, a homopolymer or copolymer of an olefin having 2 to 6 carbon atoms is preferable, and polypropylene is more preferable.
- the polypropylene may be a homopolymer of propylene (homopolypropylene), block polypropylene, random polypropylene, or a mixture thereof.
- the resin (a-2) contains a polyacetal resin
- a polyacetal homopolymer or a polyacetal copolymer is preferable, and a polyacetal copolymer is more preferable.
- the proportion of the plant-derived filler (a-1) to the total mass of the resin composition (A-1) is preferably 30 to 80% by mass, more preferably 40 to 80% by mass, and 50 to 80% by mass. 80% by mass is more preferred.
- the proportion of the filler (a-1) in the resin composition (A-1) is 30 to 80% by mass, the resulting molded product tends to have good mechanical strength.
- the resin composition (A-1) may contain any component other than the filler (a-1) and resin (a-2) described above.
- the optional components are not particularly limited as long as they have the effects of the present invention, and may include conventionally known additives that can be blended into thermoplastic resin compositions.
- a commercially available product may be used as the resin composition (A-1).
- Commercially available products include, for example, “Rice Resin (registered trademark)” manufactured by Biomass Resin Holdings Co., Ltd. and “Selbren” manufactured by Daicel Miraiz Co., Ltd.
- the method for obtaining the resin composition (A-1) is not particularly limited, and after blending the aforementioned filler (a-1), resin (a-2), and optional components as necessary, a conventionally known method may be used.
- the resin composition (A-1) can be obtained by melt-kneading using a single-screw or twin-screw extruder.
- the resin composition may be obtained in the form of pellets by cutting it into a predetermined length using a pelletizer.
- the material (A) can include a thermoplastic resin (A-2).
- the thermoplastic resin (A-2) is a thermoplastic resin containing monomer units derived from plant raw materials.
- the thermoplastic resin (A-2) is a thermoplastic resin containing a biomass component made from a plant as a monomer, for example, an olefin resin containing an olefin unit derived from a plant material, or an ethylene glycol unit derived from a plant material. , polyethylene terephthalate, polylactic acid containing lactic acid derived from plant materials as a monomer unit, and the like.
- thermoplastic resin (A-2) one type of these thermoplastic resins may be used alone, or two or more types may be used in combination.
- the thermoplastic resin (A-2) contains an olefin resin containing olefin units derived from plant materials. It is more preferable to include polyethylene containing ethylene units derived from raw materials.
- the thermoplastic resin (A-2) contains polyethylene containing ethylene units derived from plant materials, the polyethylene has a density of 0.91 to 0.96 g/cm 3 , more preferably 0.94 g/cm 3 .
- it is high density polyethylene (HDPE) with ⁇ 0.96 g/cm 3 .
- the proportion of monomer units derived from plant materials in the thermoplastic resin (A-2) is the total amount (100% by mass) of all monomer units constituting the thermoplastic resin (A-2). ), preferably 90% by mass or more, more preferably 95% by mass or more. Further, the thermoplastic resin (A-2) may be composed only of monomer units derived from plant materials.
- thermoplastic resin (A-2) can be prepared by polymerizing a monomer mixture containing monomers derived from plant materials by a conventionally known method, for example, a medium-low pressure method using a Ziegler-Nutter catalyst or the like.
- thermoplastic starch (A-3)) Material (A) can include thermoplastic starch (A-3).
- Thermoplastic starch refers to the temperature at which starch or a composition containing starch can be sufficiently processed, for example, when forming a homogeneous mixture and/or combining with the resin composition (B) described below to form a molded article. For example, it refers to a starch composition that can maintain fluidity when heated to temperatures above 180°C.
- the "starch” constituting the thermoplastic starch (A-3) is not particularly limited as long as it is derived from plant materials and has the effects of the present invention.
- corn starch, potato starch, sweet potato starch, wheat starch, sago starch, tapioca starch, rice starch, soybean starch, arrow root starch, bracken starch, lotus starch, cassava starch, waxy maize starch examples include high amylase corn starch. These may be used alone or in combination of two or more. Among these, corn is preferred from the viewpoint of production of a product that does not compete with food.
- thermoplastic starch (A-3) is preferably a modified starch derived from plant materials.
- the denaturation method is not particularly limited, and denaturation may be carried out by heating, enzymatic denaturation, chemical modification such as ethoxylation, chemical decomposition, or a combination thereof.
- the thermoplastic starch (A-3) may be a starch modified by the addition of a plasticizer.
- thermoplastic starch (A-3) can be prepared by modifying starch obtained from corn, rice, etc. by a conventionally known method, if necessary.
- thermoplastic starch A commercially available product may be used as the thermoplastic starch (A-3).
- examples of commercially available products include "SANKYO GOLDEN STARCH” manufactured by Sankyo Chemical Industry Co., Ltd.
- the material (A) may contain other components than the aforementioned resin composition (A-1), thermoplastic resin (A-2), and thermoplastic starch (A-3).
- Other ingredients include, for example, softeners, surface lubricants, leveling agents, antioxidants, surfactants, corrosion inhibitors, light stabilizers, ultraviolet absorbers, heat stabilizers, polymerization inhibitors, and silane coupling agents. , lubricants, plasticizers, crystallization promoters, hydrolysis inhibitors, inorganic fillers, organic fillers other than those derived from plants, metal powders, pigments, and the like. These may be used alone or in combination of two or more. When material (A) contains other components, the content can be 1% by mass or less based on the total mass of material (A).
- the proportion of material (A) in the composite resin material may be 30 to 90% by mass, or 40 to 80% by mass, based on the total mass of the composite resin material, It may be 50 to 80% by mass.
- the composite resin material according to this embodiment includes a resin composition (B) containing a thermoplastic resin (b-1) and regenerated cellulose fibers (b-2).
- a resin composition (B) containing a thermoplastic resin (b-1) and regenerated cellulose fibers (b-2).
- thermoplastic resin (b-1) the thermoplastic resin (b-1) (hereinafter sometimes simply referred to as "resin (b-1)") contained in the resin composition (B) is the thermoplastic resin ( The same example as a-2) can be given.
- the resin (b-1) includes an olefin resin, a polyamide resin, a styrene resin, a halogen-containing resin, a polycarbonate resin, a (meth)acrylic resin, a polyester resin, a polyacetal resin, and It may be at least one selected from polyphenylene resins. Moreover, it is more preferable that it is at least one selected from olefin resin, polyamide resin, and polyacetal resin.
- olefin resins that can be suitably used as the resin (b-1) include homopolymers or copolymers of olefins having 2 to 6 carbon atoms (ethylene resins such as polyethylene and ethylene-propylene copolymers; polypropylene , propylene-based resins such as propylene-ethylene copolymer, propylene-butene copolymer; poly(methylpentene-1); propylene-methylpentene copolymer, etc.); copolymers with polymers (ethylene-(meth)acrylic acid copolymers, ethylene-(meth)acrylic acid ester copolymers, etc.); cyclic polymers that may have substituents such as alkyl groups and ester groups; Homopolymers or copolymers of olefins (especially cyclic olefins condensed with hydrocarbon rings, bridged cyclic olefins, etc.) (for example, homopolymers of cyclo
- the polypropylene may be a homopolymer of propylene (homopolypropylene), block polypropylene, random polypropylene, or a mixture thereof.
- an acid-modified polyolefin may be used in combination from the viewpoint of easy adhesion to the regenerated cellulose fibers (b-2).
- an acid-modified polyolefin maleic acid-modified polyolefin (more preferably maleic acid-modified polypropylene) and maleic anhydride-modified polyolefin (more preferably maleic anhydride-modified polypropylene) are preferred.
- the amount of acid in the resin (b-1) is It is preferable to use acid-modified polyolefin in an average amount of 0.05 to 0.5% by mass in terms of maleic acid.
- Polyamide resins that can be suitably used as the resin (b-1) include aliphatic polyamides and aromatic polyamides.
- the aliphatic polyamide include polyamide 6, polyamide 66, polyamide 69, polyamide 610, polyamide 1010, polyamide 612, polyamide 46, polyamide 11, and polyamide 12. These may be used alone or in combination of two or more.
- aromatic polyamides include those obtained from aromatic dicarboxylic acids and aliphatic diamines, or from aliphatic dicarboxylic acids and aromatic diamines.
- polyamide MXD metaxylylene diamine and adipic acid
- polyamide 6T hexamethylene diamine and terephthalic acid
- polyamide 6I hexamethylene diamine and isophthalic acid
- polyamide 9T nonanediamine and terephthalic acid
- polyamide M5T methylpentadiamine and terephthalic acid
- polyamide 10T decamethylene diamine and terephthalic acid
- polyacetal resins that can be suitably used as the resin (b-1) include polyacetal homopolymers having only oxymethylene groups as a constituent unit, polyacetal copolymers having oxyethylene groups, etc. as constituent units in addition to oxymethylene groups, and the like. can be mentioned. These may be used alone or in combination of two or more. Among these, from the viewpoint of mechanical strength and processability, polyacetal homopolymers or polyacetal copolymers are preferred, and polyacetal copolymers are more preferred.
- the resin composition (B) contains regenerated cellulose fibers (b-2).
- "Regenerated cellulose fiber” refers to cellulose fiber that is artificially spun using natural cellulose fibers (cellulose fibers derived from higher plants, cellulose fibers derived from animals, cellulose fibers derived from bacteria).
- cellulose fibers derived from higher plants include wood fibers (wood pulp from softwood, hardwood, etc.), bamboo fibers, sugarcane fibers, seed hair fibers (cotton linters, bombax cotton, kapok, etc.), and gin bark fibers (e.g. Examples include natural cellulose fibers (pulp fibers) such as leaf fibers (for example, Manila hemp, New Zealand hemp, etc.); Examples of cellulose fibers derived from animals include ascidian cellulose. These natural cellulose fibers may be used alone or in combination of two or more.
- Examples of methods for obtaining regenerated cellulose fibers from the above-mentioned cellulose fibers include the viscose method, the copper ammonia method, and the solvent spinning method (a direct method in which cellulose is not once chemically converted).
- Examples of regenerated cellulose fibers obtained by the viscose method include viscose rayon, polynosic, modal, and the like.
- examples of the regenerated cellulose fiber obtained by the copper ammonia method include cupra and the like.
- examples of regenerated cellulose fibers obtained by a solvent spinning method include Lyocell and Tencel.
- the regenerated cellulose fiber (b-2) one type of these regenerated cellulose fibers may be used alone, or two or more types may be used in combination.
- the regenerated cellulose fibers (b-2) preferably include regenerated cellulose fibers obtained by a viscose method, and more preferably include viscose rayon.
- the regenerated cellulose fiber (b-2) contains regenerated cellulose fiber obtained by a viscose method, mechanical strength tends to be good.
- the average fiber diameter of the regenerated cellulose fibers (b-2) is preferably 5 to 30 ⁇ m, and the degree of X-ray orientation is preferably 86% or more. Having such an average fiber diameter and degree of X-ray orientation makes it easier for the thermoplastic resin (b-1) to impregnate the regenerated cellulose fiber (b-2). Moreover, the mechanical strength of the obtained molded product also tends to improve.
- the average fiber diameter is more preferably from 6 to 20 ⁇ m, even more preferably from 7 to 15 ⁇ m. Note that the average fiber diameter of the regenerated cellulose fibers (b-2) is the average value of the major diameters of the cross sections of a plurality of fibers observed using a SEM or the like.
- the degree of X-ray orientation is 90% or more. Further, the degree of X-ray orientation of the regenerated cellulose fiber (b-2) can be determined from the formula described in JP-A-9-31744 and JP-A-9-256216.
- the tensile modulus (Young's modulus) of the regenerated cellulose fiber (b-2) may be 10 GPa or more, 13 GPa or more, or 15 GPa or more.
- the tensile modulus of the regenerated cellulose fiber (b-2) is as described in paragraph number 0038 of JP-A No. 2013-91775, "After storage for 3 weeks in an air conditioner at 23 ° C. and 50 RH, distance between chucks 200 mm, tensile speed 200 mm. /min.
- the average fiber length of the regenerated cellulose fibers (b-2) in the resin composition (B) is preferably 6 to 30 mm, more preferably 6 to 15 mm, and more preferably 6 to 9 mm. It is more preferable that Regenerated cellulose fibers with an average fiber length of 6 to 30 mm are long fibers.
- the resin composition (B) is prepared by melting the above-mentioned thermoplastic resin (b-1) into a fiber bundle made by bundling regenerated cellulose fibers (b-2) aligned in the length direction. It may also contain a composite material of resin (b-1) and regenerated cellulose fiber (b-2) that is impregnated and integrated and then cut. That is, in the composite resin material according to the present embodiment, the resin composition (B) includes the thermoplastic resin (b-1) in a fiber bundle in which the regenerated cellulose fibers (b-2) are aligned in the length direction. The regenerated cellulose fiber bundle (B-1) impregnated with a thermoplastic resin may be included. The details of the thermoplastic resin-impregnated regenerated cellulose fiber bundle (B-1) will be described below.
- thermoplastic resin-impregnated regenerated cellulose fiber bundle (B-1) is a regenerated cellulose fiber (b-2) with a length This composite material is obtained by impregnating fiber bundles aligned in the same direction with the thermoplastic resin (b-1) and then cutting them.
- the average fiber length of the regenerated cellulose fibers (b-2) in the fiber bundle (B-1) may be 6 to 30 mm, or 6 to 15 mm.
- the number of fibers in the fiber bundle of regenerated cellulose fibers (b-2) is preferably 2,000 to 30,000, more preferably 3,000 to 25,000, and more preferably 5,000 to 25. ,000 pieces is more preferable.
- the thermoplastic resin (b-1) is likely to be impregnated into the center of the fiber bundle.
- the composite resin material according to this embodiment including the fiber bundle (B-1) is molded, a molded product with a better appearance and better mechanical strength can be easily obtained. Further, during production of the fiber bundle (B-1), manufacturing problems such as breakage of the fiber bundle are less likely to occur.
- the fiber bundle (B-1) can be manufactured by a well-known manufacturing method using a die. Specifically, the manufacturing methods described in JP-A-6-313050, JP-A-2007-176227, JP-A-6-2344, etc. can be applied.
- the ratio of the regenerated cellulose fibers (b-2) to the total mass of the fiber bundle (B-1) is preferably 10 to 50% by mass, more preferably 10 to 40% by mass, and 20 to 40% by mass. % is more preferred. If the ratio of the regenerated cellulose fibers (b-2) to the total mass of the fiber bundle (B-1) is within the above range, the balance between fluidity and mechanical strength in injection moldability tends to be good.
- the proportion of the fiber bundle (B-1) in the resin composition (B) may be 80% by mass or more, or may be 90% by mass or more. Further, the proportion of the fiber bundle (B-1) in the resin composition (B) may be 100% by mass. That is, the resin composition (B) may be composed only of the fiber bundle (B-1).
- the resin composition (B) contains known flame retardants and flame retardant aids, heat stabilizers, lubricants, light stabilizers, antioxidants, and colorants within the range that does not impede the effects of the present invention. , a mold release agent, an antistatic agent, and the like. These components may be contained in the fiber bundle (B-1) or separately from the fiber bundle (B-1).
- the proportion of the resin composition (B) in the composite resin material may be 10 to 90% by mass, or 20 to 80% by mass, based on the total mass of the composite resin material. It may be 30 to 80% by weight.
- the total amount of the aforementioned thermoplastic resin (the total amount of thermoplastic resin (a-2), thermoplastic resin (A-2), and thermoplastic resin (b-1)) in the composite resin material is preferably 30 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the composite resin material.
- the proportion of regenerated cellulose fibers (b-2) in the composite resin material is preferably 10 to 40% by mass, more preferably 20 to 40% by mass, based on the total mass of the composite resin material. If the total amount of thermoplastic resin and the proportion of regenerated cellulose fiber (b-2) in the composite resin material are within the above ranges, mechanical strength and fluidity during molding tend to be good.
- the composite resin material may be a mixture of pellets (I) containing the plant component-containing material (A) and pellets (II) containing the resin composition (B). That is, the composite resin material may be a mixture of the pellets (I) and the pellets (II) and packaged.
- the mixing ratio of pellets (I) and pellets (II) is such that the material (A) and resin composition (B) in the composite resin material are , can be arbitrarily adjusted within a range that satisfies the above-described preferred embodiments.
- the mass ratio of pellets (I) and pellets (II) ((I):(II)) may range from 4:1 to 1:4.
- the composite resin material according to this embodiment can contain arbitrary components other than the material (A) and the resin composition (B). That is, it may contain known resin additives depending on various uses.
- resin additives include stabilizers (e.g., antioxidants, ultraviolet absorbers, light stabilizers, etc.), colorants (dyes, pigments, etc.), antistatic agents, and flame retardants (phosphorus-based flame retardants, halogens, etc.).
- flame retardants inorganic flame retardants, etc.
- flame retardant aids include crosslinking agents, reinforcing materials, nucleating agents, coupling agents, dispersants, antifoaming agents, fluidizing agents, anti-dripping agents, antibacterial agents, preservatives , viscosity modifiers, thickeners, and the like. These may be used alone or in combination of two or more.
- the composite resin material according to this embodiment preferably does not contain an inorganic filler such as glass fiber or an inorganic filler.
- the composite resin material according to this embodiment can provide a molded product with excellent mechanical strength, especially impact strength, even without including the above-mentioned inorganic material as a reinforcing material. Moreover, by not containing these inorganic materials, incineration ash is not generated during thermal recycling, and a composite resin material with a smaller environmental load can be obtained.
- the composite resin material according to the present embodiment can be manufactured by a method including melt-mixing the above-described plant component-containing material (A) and the resin composition (B).
- pellets (I) containing the material (A) and pellets (II) containing the resin composition (B) are each put into an extruder equipped with a heating function and a mixing function, and are melt-mixed.
- a composite resin material may also be obtained.
- the heating temperature is higher than the melting point of the thermoplastic resin (a-2), thermoplastic resin (A-2), thermoplastic starch (A-3), and/or thermoplastic resin (b-1).
- pellets (I) and pellets (II) may be charged into an extruder and then heated and melted at a temperature of 180 to 230°C, more preferably 190 to 220°C.
- the molded product according to this embodiment is obtained by molding the above-mentioned composite resin material.
- the molded product according to this embodiment may be obtained by injection molding the above-mentioned composite resin material.
- the molded product according to this embodiment is obtained by molding the above-mentioned composite resin material, and therefore has excellent mechanical strength and a good appearance.
- the molded article obtained from the composite resin material according to this embodiment has excellent mechanical strength and good appearance, even though it contains a certain amount of plant-derived biomass component.
- Such molded products can be suitably used, for example, in case parts, vehicle door modules, and the like.
- Resin composition (A-1-3) A resin composition containing homopolypropylene and cellulose pulp. The proportion of cellulose pulp to the total mass of the resin composition was 40% by mass (manufactured by Daicel Millize Co., Ltd., product name "Celblen CP114").
- Resin composition (A-1-4) A resin composition containing a polyacetal copolymer and cellulose pulp. The proportion of cellulose pulp to the total mass of the resin composition was 30% by mass. (Adjustment of resin composition (A-1-4)) 30% by mass of cellulose pulp was blended with 70% by mass of the following polyacetal copolymer and melt-kneaded in a twin-screw extruder with a cylinder temperature of 200°C to obtain a resin composition (A-1-4).
- Polyacetal copolymer Polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt flow value (measured at 190°C and 2160g load according to ISO 1133): 9g /10min).
- High-density polyethylene (HDPE) containing plant-derived ethylene units (Thermoplastic resin (A-2-1)) High-density polyethylene (HDPE) containing plant-derived ethylene units.
- the ratio of plant-derived ethylene units to the total ethylene units (100% by mass) is 94% by mass (manufactured by Braskem S.A., product name "SHA7260").
- the proportion of viscose rayon to the total mass of the resin composition is 40% by mass (manufactured by Polyplastics Co., Ltd., product name "Plastron (registered trademark) LFT PP RF40-02").
- Resin composition (B2) A resin composition obtained by cutting a thermoplastic resin-impregnated fiber bundle made by impregnating a polyacetal copolymer into a fiber bundle of viscose rayon (average fiber diameter (major axis) of 18 ⁇ m) aligned in the length direction into a length of 7 mm. . The proportion of viscose rayon to the total mass of the resin composition was 30% by mass. (Adjustment of resin composition (B2)) While drawing continuous fibers of viscose rayon (average fiber diameter (length) 18 ⁇ m) through a crosshead die, the following polyacetal copolymer was supplied in a molten state to the crosshead die from an extruder set at 220°C.
- Resin composition (A'-1) inorganic filler-containing resin composition
- Resin composition (B'1) A resin composition obtained by cutting a glass fiber bundle impregnated with a thermoplastic resin into a length of 11 mm by impregnating a fiber bundle of glass fibers (average fiber diameter 17 ⁇ m) with homopolypropylene into a length of 11 mm. The ratio of glass fiber to the total mass of the resin composition is 40% by mass (manufactured by Polyplastics Co., Ltd., product name "Plastron (registered trademark) LFT PP GF40-02").
- Example 1 As the material (A), 75% by mass of the resin composition (A-1-1) and as the resin composition (B), 25% by mass of the resin composition (B1) were blended, and the mixture was pellet-blended before molding. Composite resin material 1 was obtained. The proportion of plant-derived components in the composite resin material 1 is 52.5% by mass, the proportion of regenerated cellulose fiber (b-2) is 10% by mass, and the total amount of thermoplastic resin is 37.5% by mass. there were.
- Examples 2 to 10 and Comparative Examples 1 to 6 A composite resin material was prepared under the same conditions as in Example 1, except that the types and amounts of the plant component-containing material (A) and resin composition (B) were as shown in Tables 1 and 2.
- a molded article was prepared from the obtained composite resin material under the same conditions as in Example 1. Furthermore, the obtained molded product was evaluated for mechanical strength, appearance evaluation, and presence or absence of incineration ash under the same conditions as in Example 1. The results are shown in Tables 1 and 2.
- the molded articles of Examples 1 to 10 obtained from composite resin materials satisfying the configuration of this embodiment had excellent mechanical strength and good appearance.
- material (A) and resin composition (B) the Charpy impact strength can be improved compared to when a resin composition containing glass fiber is combined with material (A). found. The reason for this is thought to be that the fibers contained in the molded article were more uniformly dispersed.
- the molded products obtained from the composite resin materials of Comparative Examples 1 to 4 in which the resin composition containing glass fiber was combined with the material (A) were the same as the material (A) and the resin composition containing glass fiber (B) at the time of molding. The appearance was poor because the flow patterns of the particles deviated from each other.
- incineration ash was also generated during the incineration.
- the molded products of Comparative Examples 5 and 6 obtained from composite resin materials in which naturally derived materials containing calcium carbonate, which is a natural inorganic filler, and polypropylene were combined with the resin composition (B) of the present embodiment were Although the mechanical strength and appearance were good, incineration ash was generated.
- the molded products molded using each material (A) alone were inferior in mechanical strength, particularly Charpy impact strength, to the molded products in the examples. I understand.
- thermoplastic starch could not be molded by itself.
- the composite resin material according to this embodiment can provide a molded product with excellent mechanical strength and good appearance.
- the mechanical strength of the molded product can be improved without adding inorganic fibers or fillers, incineration ash is also generated when the molded product obtained from the composite resin material according to this embodiment is collected and thermally recycled. do not.
- the composite resin material according to this embodiment can provide a molded product with excellent mechanical strength and good appearance.
- Such molded products can be suitably used, for example, in case parts, vehicle door modules, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、複合樹脂材料及び成形品に関する。 The present invention relates to composite resin materials and molded products.
持続可能な社会構築に向けて、石油由来の樹脂成分にバイオマス成分を配合した複合樹脂材料の活用が進んでいる。これらの複合樹脂材料として、例えば、特許文献1には、廃棄米等の植物由来材料に、ポリプロピレン樹脂等を組み合わせたスピーカー用部材が提案されている。 In order to build a sustainable society, the use of composite resin materials that combine petroleum-derived resin components with biomass components is progressing. As these composite resin materials, for example, Patent Document 1 proposes a speaker member in which a plant-derived material such as waste rice is combined with a polypropylene resin or the like.
このような複合樹脂材料においては、バイオマス成分を含むことにより弾性率の向上が期待できるが、一方で、機械的強度、特に衝撃強度は、石油由来樹脂成分のみの材料に比べて低下する場合がある。これに対して、ガラス繊維等の無機フィラーを配合して、衝撃強度を補強することも検討されている。 In such composite resin materials, inclusion of biomass components can be expected to improve the elastic modulus, but on the other hand, mechanical strength, especially impact strength, may be lower than that of materials containing only petroleum-derived resin components. be. On the other hand, it is also being considered to incorporate inorganic fillers such as glass fibers to reinforce the impact strength.
ところで、日用品や内装品等の人の目に触れる製品においては、茶色等の自然物由来の色や風合い、模様は、受容され、時には好まれる。しかしながら、不自然な色むら、例えば、全体的には茶色の製品であるが、一瞥して視認できる白色点や黒点は、異常点としての印象を与え、外観面で不良品となることが多い。前述の、ガラス繊維等の無機フィラーを配合して複合樹脂材料の衝撃強度を補強する方法は、成形品の外観不良を引き起こす問題がある。この現象は、例えば、湾曲の金型形状に対して流動する主材に対して、ガラス繊維等の無機フィラーを充填した石油由来樹脂の流動パターンが直線的であり、主材と流動パターンが異なる結果、無機フィラーの流動模様が目立ち、白化して視認されることが一因であると考えられる。 By the way, in products that are visible to people, such as daily necessities and interior goods, colors, textures, and patterns derived from natural substances, such as brown, are accepted and sometimes preferred. However, unnatural color irregularities, such as white spots or black spots that can be seen at a glance even though the product is brown overall, give the impression of an abnormality and often result in a defective product in terms of appearance. . The aforementioned method of reinforcing the impact strength of a composite resin material by blending an inorganic filler such as glass fiber has the problem of causing poor appearance of the molded product. This phenomenon is caused by, for example, the flow pattern of petroleum-derived resin filled with inorganic filler such as glass fiber being linear, and the flow pattern of petroleum-derived resin filled with inorganic filler such as glass fiber being different from that of the main material, which flows in a curved mold shape. As a result, the flowing pattern of the inorganic filler stands out and appears white, which is considered to be one of the reasons.
そこで本発明は、機械的強度に優れ、かつ外観も良好な成形品を提供できる複合樹脂材料と、前記複合樹脂材料の成形品を提供することを目的とする。 Therefore, an object of the present invention is to provide a composite resin material that can provide a molded product with excellent mechanical strength and a good appearance, and a molded product of the composite resin material.
本願発明者らは鋭意検討した結果、驚くべきことに、植物成分含有材料を、再生セルロース繊維を含む樹脂組成物と組み合わせることによって、上述の全ての課題を解決できる複合樹脂材料が得られることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下の態様を有する。
[1]植物由来充填材(a-1)及び熱可塑性樹脂(a-2)を含む樹脂組成物(A-1)、植物原料由来の単量体単位を含む熱可塑性樹脂(A-2)、及び熱可塑性デンプン(A-3)からなる群より選択される少なくとも1つの植物成分含有材料(A)と、
熱可塑性樹脂(b-1)及び再生セルロース繊維(b-2)を含む樹脂組成物(B)とを含む、複合樹脂材料。
[2]前記複合樹脂材料中の、前記熱可塑性樹脂の合計の含有量が30~90質量%であり、前記再生セルロース繊維(b-2)の含有量が10~40質量%である、[1]に記載の複合樹脂材料。
[3]前記樹脂組成物(B)が、前記再生セルロース繊維(b-2)を長さ方向に揃えた繊維束に、前記熱可塑性樹脂(b-1)が含侵した、熱可塑性樹脂含浸再生セルロース繊維束(B-1)を含む、[1]または[2]に記載の複合樹脂材料。
[4]前記樹脂組成物(B)中の、前記再生セルロース繊維(b-2)の平均繊維長さが6~30mmである、[1]から[3]のいずれかに記載の複合樹脂材料。
[5]前記植物由来充填材(a-1)が、種子の粉砕物、及び植物繊維から選択される少なくとも1つを含む、[1]から[4]のいずれかに記載の複合樹脂材料。
[6]前記樹脂組成物(A-1)の総質量に対する、前記植物由来充填材(a-1)の割合が、30~80質量%である、[1]から[5]のいずれかに記載の複合樹脂材料。
[7]前記熱可塑性樹脂(A-2)が、植物原料由来のエチレン単位を含む高密度ポリエチレンを含む、[1]から[6]のいずれかに記載の複合樹脂材料。
[8]前記樹脂組成物(B)が、前記再生セルロース繊維(b-2)を長さ方向に揃えた繊維束に、前記熱可塑性樹脂(b-1)が含侵した、熱可塑性樹脂含浸再生セルロース繊維束(B-1)を含み、
前記熱可塑性樹脂含浸再生セルロース繊維束(B-1)の総質量に対する、前記再生セルロース繊維(b-2)の割合が、10~50質量%である、[1]から[7]のいずれかに記載の複合樹脂材料。
[9]前記再生セルロース繊維(b-2)が、ビスコースレーヨンを含む、[1]から[8]のいずれかに記載の複合樹脂材料。
[10]前記複合樹脂材料が、前記植物成分含有材料(A)を含むペレット(I)と、前記樹脂組成物(B)を含むペレット(II)との混合物である、[1]から[9]のいずれかに記載の複合樹脂材料。
[11]射出成形用である、[1]から[10]のいずれかに記載の複合樹脂材料。
[12][1]から[11]のいずれかに記載の複合樹脂材料の、成形品。
As a result of intensive studies, the inventors of the present application surprisingly found that by combining a material containing plant components with a resin composition containing regenerated cellulose fibers, a composite resin material that can solve all of the above problems can be obtained. This discovery led to the completion of the present invention.
That is, the present invention has the following aspects.
[1] Resin composition (A-1) containing plant-derived filler (a-1) and thermoplastic resin (a-2), thermoplastic resin (A-2) containing monomer units derived from plant raw materials , and at least one plant component-containing material (A) selected from the group consisting of thermoplastic starch (A-3);
A composite resin material comprising a thermoplastic resin (b-1) and a resin composition (B) containing regenerated cellulose fibers (b-2).
[2] The total content of the thermoplastic resin in the composite resin material is 30 to 90% by mass, and the content of the regenerated cellulose fiber (b-2) is 10 to 40% by mass, [ 1].
[3] Thermoplastic resin impregnation in which the resin composition (B) impregnates a fiber bundle in which the regenerated cellulose fibers (b-2) are aligned in the length direction with the thermoplastic resin (b-1). The composite resin material according to [1] or [2], comprising the regenerated cellulose fiber bundle (B-1).
[4] The composite resin material according to any one of [1] to [3], wherein the regenerated cellulose fiber (b-2) in the resin composition (B) has an average fiber length of 6 to 30 mm. .
[5] The composite resin material according to any one of [1] to [4], wherein the plant-derived filler (a-1) contains at least one selected from crushed seeds and plant fibers.
[6] Any one of [1] to [5], wherein the proportion of the plant-derived filler (a-1) to the total mass of the resin composition (A-1) is 30 to 80% by mass. Composite resin material described.
[7] The composite resin material according to any one of [1] to [6], wherein the thermoplastic resin (A-2) contains high-density polyethylene containing ethylene units derived from plant materials.
[8] Thermoplastic resin impregnation in which the resin composition (B) impregnates a fiber bundle in which the regenerated cellulose fibers (b-2) are aligned in the length direction with the thermoplastic resin (b-1). Contains a regenerated cellulose fiber bundle (B-1),
Any one of [1] to [7], wherein the proportion of the regenerated cellulose fiber (b-2) to the total mass of the thermoplastic resin-impregnated regenerated cellulose fiber bundle (B-1) is 10 to 50% by mass. Composite resin material described in .
[9] The composite resin material according to any one of [1] to [8], wherein the regenerated cellulose fiber (b-2) contains viscose rayon.
[10] The composite resin material is a mixture of pellets (I) containing the plant component-containing material (A) and pellets (II) containing the resin composition (B), [1] to [9] ] The composite resin material according to any one of.
[11] The composite resin material according to any one of [1] to [10], which is for injection molding.
[12] A molded article of the composite resin material according to any one of [1] to [11].
本発明によれば、機械的強度に優れ、かつ外観も良好な成形品を提供できる複合樹脂材料と、前記複合樹脂材料の成形品を提供できる。 According to the present invention, it is possible to provide a composite resin material that can provide a molded product that has excellent mechanical strength and a good appearance, and a molded product made of the composite resin material.
以下、本発明の一実施形態について詳細に説明するが、本発明の範囲はここで説明する一実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができる。また、特定のパラメータについて、複数の上限値及び下限値が記載されている場合、これらの上限値及び下限値の内、任意の上限値と下限値とを組合せて好適な数値範囲とすることができる。また本明細書において「~」の記載は「以上以下」を意味する。例えば、「10~50質量%」は、「10質量%以上50質量%以下」を意味する。 Hereinafter, one embodiment of the present invention will be described in detail, but the scope of the present invention is not limited to the one embodiment described here, and various changes can be made without departing from the spirit of the present invention. Additionally, if multiple upper and lower limit values are listed for a specific parameter, any of these upper and lower limit values may be combined to form a suitable numerical range. can. Further, in this specification, the expression "-" means "more than or less than". For example, "10 to 50% by mass" means "10% by mass or more and 50% by mass or less".
[複合樹脂材料]
本実施形態に係る複合樹脂材料は、植物由来充填材(a-1)及び熱可塑性樹脂(a-2)を含む樹脂組成物(A-1)、植物原料由来の単量体単位を含む熱可塑性樹脂(A-2)、及び熱可塑性デンプン(A-3)からなる群より選択される少なくとも1つの植物成分含有材料(A)と、熱可塑性樹脂(b-1)及び再生セルロース繊維(b-2)を含む樹脂組成物(B)とを含む。本実施形態に係る複合樹脂材料は、機械的強度に優れ、かつ外観も良好な成形品を提供できる。また本実施形態に係る複合樹脂材料は、ガラス繊維等の無機フィラーを配合せずとも機械的強度、特に衝撃強度を改善できる。そのため、本実施形態に係る複合樹脂材料から得られる成形品を回収してサーマルリサイクルした際に焼却灰が発生しない。
[Composite resin material]
The composite resin material according to the present embodiment includes a resin composition (A-1) containing a plant-derived filler (a-1) and a thermoplastic resin (a-2), a thermoplastic resin composition containing monomer units derived from plant raw materials, and At least one plant component-containing material (A) selected from the group consisting of a plastic resin (A-2) and a thermoplastic starch (A-3), a thermoplastic resin (b-1) and a regenerated cellulose fiber (b -2). The composite resin material according to this embodiment can provide a molded product with excellent mechanical strength and good appearance. Furthermore, the composite resin material according to the present embodiment can improve mechanical strength, particularly impact strength, without adding an inorganic filler such as glass fiber. Therefore, no incineration ash is generated when the molded product obtained from the composite resin material according to this embodiment is collected and thermally recycled.
<植物成分含有材料(A)>
本実施形態に係る複合樹脂材料は、植物由来充填材(a-1)及び熱可塑性樹脂(a-2)を含む樹脂組成物(A-1)、植物原料由来の単量体単位を含む熱可塑性樹脂(A-2)、及び熱可塑性デンプン(A-3)からなる群より選択される少なくとも1つの植物成分含有材料(A)(以下、単に「材料(A)」と記載することもある)を含む。
<Plant component-containing material (A)>
The composite resin material according to the present embodiment includes a resin composition (A-1) containing a plant-derived filler (a-1) and a thermoplastic resin (a-2), a thermoplastic resin composition containing monomer units derived from plant raw materials, and At least one plant component-containing material (A) selected from the group consisting of a plastic resin (A-2) and a thermoplastic starch (A-3) (hereinafter sometimes simply referred to as "material (A)") )including.
(樹脂組成物(A-1))
本実施形態に係る材料(A)は、樹脂組成物(A-1)を含むことができる。樹脂組成物(A-1)は、植物由来充填材(a-1)及び熱可塑性樹脂(a-2)を含む。
(Resin composition (A-1))
The material (A) according to this embodiment can include a resin composition (A-1). The resin composition (A-1) contains a plant-derived filler (a-1) and a thermoplastic resin (a-2).
(植物由来充填材(a-1))
植物由来充填材(a-1)(以下、単に「充填材(a-1)」と記載することもある)は、植物由来の材料から構成されたフィラーであれば、本発明の効果を有する限り特に限定されない。一実施形態において、充填材(a-1)としては、例えば、植物の粉砕物や植物繊維等が挙げられる。
(Plant-derived filler (a-1))
The plant-derived filler (a-1) (hereinafter sometimes simply referred to as "filler (a-1)") has the effect of the present invention if it is a filler composed of a plant-derived material. There are no particular limitations. In one embodiment, the filler (a-1) includes, for example, crushed plant products, plant fibers, and the like.
植物の粉砕物としては、例えば、植物の葉部、茎部、根部、種子(穀物を含む)等の粉砕物であって、これらを粒子状、又は粉末状に加工したものが挙げられる。植物の粉砕物は、特定の部位の粉砕物であってもよく、複数の異なる部位の粉砕物を混合したものであってもよい。充填材(a-1)が植物の粉砕物を含む場合、種子の粉砕物を含むことが好ましい。一実施形態においては、生産量が多く、かつ廃棄物利用の観点から、穀物の粉砕物を含むことがより好ましく、米、麦、又はコーヒー豆の粉砕物を含むことがさらに好ましい。また、一実施形態において、穀物を含む種子の粉砕物は、食料廃棄物由来の米(廃棄米)や麦、抽出後コーヒー豆の粉砕物を含んでいてもよい。 Examples of pulverized plant products include pulverized plant leaves, stems, roots, seeds (including grains), etc., which are processed into particles or powder. The pulverized plant material may be a pulverized product of a specific part, or may be a mixture of pulverized products of a plurality of different parts. When the filler (a-1) contains a crushed plant material, it preferably contains a crushed seed material. In one embodiment, from the viewpoint of high production volume and waste utilization, it is more preferable to include pulverized grains, and even more preferably to include pulverized rice, wheat, or coffee beans. In one embodiment, the pulverized seeds containing grains may include rice (waste rice) or barley derived from food waste, or pulverized coffee beans after extraction.
植物繊維は、木材及び/又は非木材を原料として取り出される、植物に由来する繊維であり、「パルプ」と呼ばれるものである。植物繊維を取り出す部位は本発明の効果を有する限り特に限定されず、木質部、非木質部、葉部、茎部、及び根部等のいずれであってもよい。また、植物繊維は特定の部位から取り出された繊維であってもよく、複数の異なる部位から取り出された繊維の混合繊維であってもよい。
植物から取り出された繊維は、そのまま植物繊維として熱可塑性樹脂(a-2)と組み合わせてもよく、各種加工を施したうえで植物繊維として用いてもよい。加工方法としては、レッティング(微生物を利用したレッティング、酵素を利用したレッティング等を含む)、ボイル、蒸煮、加熱、乾燥、裁断、叩打、洗浄、薬品処理等が挙げられ、これらは単独で行われてもよく、2種以上を組み合わせてもよい。
Plant fibers are plant-derived fibers extracted from wood and/or non-wood materials, and are called "pulp." The part from which the plant fibers are extracted is not particularly limited as long as it has the effects of the present invention, and may be any of the woody part, non-woody part, leaf part, stem part, root part, etc. Further, the plant fibers may be fibers taken out from a specific part, or may be mixed fibers of fibers taken out from a plurality of different parts.
Fibers extracted from plants may be used as plant fibers in combination with the thermoplastic resin (a-2), or may be used as plant fibers after being subjected to various processing. Processing methods include retting (including retting using microorganisms, retting using enzymes, etc.), boiling, steaming, heating, drying, cutting, beating, washing, and chemical treatment, and these methods cannot be performed alone. or a combination of two or more types.
植物繊維を取り出す植物種は限定されず、例えば、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、針葉樹(杉、檜等)、広葉樹、綿花等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
一実施形態において、植物繊維はセルロースパルプを含んでいてもよい。「セルロースパルプ」とは、木材または非木材の植物から得られる繊維を指す。セルロース原料としては、上述の植物種を1種単独で、又は2種以上を併用することができる。なお、植物由来充填材(a-1)は、後述の再生セルロース繊維(b-2)を含まないことが好ましい。
The plant species from which plant fibers are extracted are not limited, and include, for example, kenaf, jute hemp, manila hemp, sisal hemp, gampi, mitsumata, mulberry, banana, pineapple, coconut palm, corn, sugarcane, bagasse, palm, papyrus, reed, esparto, and sabai grass. , wheat, rice, bamboo, coniferous trees (cedar, cypress, etc.), broad-leaved trees, cotton, etc. These may be used alone or in combination of two or more.
In one embodiment, the plant fibers may include cellulose pulp. "Cellulose pulp" refers to fibers obtained from wood or non-wood plants. As the cellulose raw material, one type of the above-mentioned plant species can be used alone, or two or more types can be used in combination. Note that the plant-derived filler (a-1) preferably does not contain regenerated cellulose fibers (b-2), which will be described later.
充填材(a-1)が植物繊維を含む場合、植物繊維の平均繊維長は、繊維の分散性と得られる成形品の機械的強度の観点から、0.5~500μmであることが好ましく、1.0~100μmであることがより好ましい。 When the filler (a-1) contains vegetable fibers, the average fiber length of the vegetable fibers is preferably 0.5 to 500 μm from the viewpoint of fiber dispersibility and mechanical strength of the resulting molded product, More preferably, it is 1.0 to 100 μm.
一実施形態においては、充填材(a-1)は、種子の粉砕物及び植物繊維から選択される少なくとも1つを含むことが好ましく、米(廃棄米含む)の粉砕物、セルロースパルプ、及びコーヒー豆の粉砕物から選択される少なくとも1つを含むことがより好ましい。 In one embodiment, the filler (a-1) preferably contains at least one selected from crushed seeds and vegetable fibers, including crushed rice (including waste rice), cellulose pulp, and coffee. It is more preferable to include at least one selected from ground beans.
(熱可塑性樹脂(a-2))
樹脂組成物(A-1)は熱可塑性樹脂(a-2)(以下、単に「樹脂(a-2)」と記載することもある)を含む。熱可塑性樹脂(a-2)としては、本発明の効果を有する限り特に限定されず、任意の熱可塑性樹脂を採用できる。樹脂(a-2)としては、オレフィン系樹脂、ビニルアルコール系樹脂、ビニルエステル系樹脂、スチレン系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリスルホン系樹脂、ポリフェニレン系樹脂、ポリアセタール系樹脂、熱可塑性エラストマー等が挙げられる。
(Thermoplastic resin (a-2))
The resin composition (A-1) contains a thermoplastic resin (a-2) (hereinafter sometimes simply referred to as "resin (a-2)"). The thermoplastic resin (a-2) is not particularly limited as long as it has the effects of the present invention, and any thermoplastic resin can be used. As the resin (a-2), olefin resin, vinyl alcohol resin, vinyl ester resin, styrene resin, (meth)acrylic resin, polyester resin, polycarbonate resin, polyamide resin, polysulfone resin, Examples include polyphenylene resin, polyacetal resin, thermoplastic elastomer, and the like.
オレフィン系樹脂としては、例えば、炭素数2~6のオレフィンの単独重合体又は共重合体(ポリエチレン、エチレン-プロピレン共重合体等のエチレン系樹脂;ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-ブテン共重合体等のプロピレン系樹脂;ポリ(メチルペンテン-1);プロピレン-メチルペンテン共重合体等);炭素数2~6のオレフィンと共重合性単量体との共重合体(エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体等);アルキル基やエステル基等の置換基を有していてもよい環状オレフィン(特に炭化水素環と縮合した環状オレフィン、橋架環式環状オレフィン等)の単独重合体又は共重合体(例えば、ポリビシクロペンタジエン、ポリノルボルネン等の環状オレフィンの単独重合体;ビシクロアルカジエン、トリシクロアルカジエン、ビシクロアルケン、及びトリシクロアルケンから選択される環状オレフィンと炭素数2~4のα-オレフィン(エチレン等)との共重合体等)等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of olefin resins include homopolymers or copolymers of olefins having 2 to 6 carbon atoms (ethylene resins such as polyethylene, ethylene-propylene copolymers; polypropylene, propylene-ethylene copolymers, propylene-butenes); Propylene resins such as copolymers; poly(methylpentene-1); propylene-methylpentene copolymers, etc.); copolymers of olefins having 2 to 6 carbon atoms and copolymerizable monomers (ethylene-( (meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, etc.); Cyclic olefin that may have a substituent such as an alkyl group or an ester group (especially a cyclic olefin condensed with a hydrocarbon ring) homopolymers or copolymers of cyclic olefins such as polybicyclopentadiene, polynorbornene; bicycloalkadienes, tricycloalkadienes, bicycloalkenes, and tricycloalkenes; Examples include copolymers of cyclic olefins selected from the following and α-olefins having 2 to 4 carbon atoms (ethylene, etc.). These may be used alone or in combination of two or more.
オレフィン系樹脂を用いる場合、植物由来充填材(a-1)に密着しやすい観点から、酸変性ポリオレフィンを併用してもよい。酸変性ポリオレフィンとしては、マレイン酸変性ポリオレフィン(より好ましくは、マレイン酸変性ポリプロピレン)、無水マレイン酸変性ポリオレフィン(より好ましくは、無水マレイン酸変性ポリプロピレン)が好ましい。 When using an olefin resin, an acid-modified polyolefin may be used in combination from the viewpoint of easy adhesion to the plant-derived filler (a-1). As the acid-modified polyolefin, maleic acid-modified polyolefin (more preferably maleic acid-modified polypropylene) and maleic anhydride-modified polyolefin (more preferably maleic anhydride-modified polypropylene) are preferred.
ビニル系樹脂としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等が含まれる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Vinyl resins include polyvinyl alcohol, ethylene-vinyl alcohol copolymers, and the like. These may be used alone or in combination of two or more.
ビニルエステル系樹脂(カルボン酸ビニルエステル系樹脂)としては、例えば、ポリ酢酸ビニル等のカルボン酸ビニルエステル系単量体の単独重合体又は共重合体;エチレン-酢酸ビニル共重合体、酢酸ビニル-(メタ)アクリル酸エステル共重合体等のカルボン酸ビニルエステル系単量体と共重合性単量体との共重合体等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Vinyl ester resins (carboxylic acid vinyl ester resins) include, for example, homopolymers or copolymers of carboxylic acid vinyl ester monomers such as polyvinyl acetate; ethylene-vinyl acetate copolymers, vinyl acetate- Examples include copolymers of carboxylic acid vinyl ester monomers and copolymerizable monomers, such as (meth)acrylic acid ester copolymers. These may be used alone or in combination of two or more.
スチレン系樹脂としては、例えば、スチレン系単量体の単独重合体又は共重合体(ポリスチレン、スチレン-α-メチルスチレン共重合体等);スチレン系単量体と他の共重合性単量体との共重合体(スチレン-アクリロニトリル共重合体(AS樹脂)、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-無水マレイン酸共重合体等)等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Styrenic resins include, for example, homopolymers or copolymers of styrene monomers (polystyrene, styrene-α-methylstyrene copolymers, etc.); styrene monomers and other copolymerizable monomers. (styrene-acrylonitrile copolymer (AS resin), styrene-(meth)acrylate copolymer, styrene-maleic anhydride copolymer, etc.). These may be used alone or in combination of two or more.
(メタ)アクリル系樹脂としては、例えば、ポリ(メタ)アクリル酸メチル等のポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル-スチレン共重合体(MS樹脂等)等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of (meth)acrylic resins include poly(meth)acrylic esters such as polymethyl methacrylate, methyl methacrylate-(meth)acrylic acid copolymers, and methyl methacrylate-(meth)acrylic acid. Examples include ester copolymers, methyl methacrylate-(meth)acrylic ester-(meth)acrylic acid copolymers, and (meth)acrylic ester-styrene copolymers (MS resins, etc.). These may be used alone or in combination of two or more.
ポリエステル系樹脂としては、例えば、アルキレンテレフタレート(エチレンテレフタレート、ブチレンテレフタレート等)やアルキレンナフタレート(エチレンナフタレート、ブチレンナフタレート等)を繰り返し単位とするホモポリエステル又はコポリエステル(アジピン酸等の炭素数6~12の脂肪族ジカルボン酸、フタル酸、イソフタル酸等の非対称型芳香族ジカルボン酸と、炭素数2~6のアルキレングリコール、ポリオキシアルキレングリコール、ビスフェノールA等を共重合成分とするコポリエステル等);芳香族ポリエステル(ビスフェノールA等の芳香族ジオールと、テレフタル酸等の芳香族ジカルボン酸との反応により生成するポリアリレート系樹脂等);液晶性ポリエステル;ラクトン(ε-カプロラクトン等)の単独又は共重合体等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of polyester resins include homopolyesters or copolyesters (such as adipic acid having 6 carbon atoms such as adipic acid) having alkylene terephthalate (ethylene terephthalate, butylene terephthalate, etc.) or alkylene naphthalate (ethylene naphthalate, butylene naphthalate, etc.) as a repeating unit. Copolyesters containing asymmetric aromatic dicarboxylic acids such as ~12 aliphatic dicarboxylic acids, phthalic acid, and isophthalic acid, and alkylene glycols having 2 to 6 carbon atoms, polyoxyalkylene glycols, bisphenol A, etc.) ; Aromatic polyesters (polyarylate resins produced by the reaction of aromatic diols such as bisphenol A with aromatic dicarboxylic acids such as terephthalic acid, etc.); Liquid crystalline polyesters; Lactones (ε-caprolactone, etc.) alone or in combination Examples include polymers. These may be used alone or in combination of two or more.
ポリカーボネート系樹脂としては、例えば、ジヒドロキシ化合物(ビスフェノールA、ビスフェノールS等のビスフェノール化合物等)と、ホスゲン又は炭酸ジエステル(ジフェニルカーボネート、ジメチルカーボネート等のジアルキルカーボネート等)との反応により得られるポリカーボネート等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of polycarbonate resins include polycarbonates obtained by reacting dihydroxy compounds (bisphenol compounds such as bisphenol A and bisphenol S) with phosgene or carbonic acid diesters (dialkyl carbonates such as diphenyl carbonate and dimethyl carbonate), and the like. It will be done. These may be used alone or in combination of two or more.
ポリアミド系樹脂としては、脂肪族ポリアミド、及び芳香族ポリアミドが挙げられる。
脂肪族ポリアミドとしては、例えば、ポリアミド6、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド1010、ポリアミド612、ポリアミド46、ポリアミド11、ポリアミド12等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
芳香族ポリアミドとしては、例えば、芳香族ジカルボン酸と脂肪族ジアミン、又は脂肪族ジカルボン酸と芳香族ジアミンから得られるものが挙げられる。具体的には、ポリアミドMXD(メタキシリレンジアミンとアジピン酸)、ポリアミド6T(ヘキサメチレンジアミンとテレフタル酸)、ポリアミド6I(ヘキサメチレンジアミンとイソフタル酸)、ポリアミド9T(ノナンジアミンとテレフタル酸)、ポリアミドM5T(メチルペンタジアミンとテレフタル酸)、ポリアミド10T(デカメチレンジアミンとテレフタル酸)を挙げることができる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
Examples of polyamide resins include aliphatic polyamides and aromatic polyamides.
Examples of the aliphatic polyamide include polyamide 6, polyamide 66, polyamide 69, polyamide 610, polyamide 1010, polyamide 612, polyamide 46, polyamide 11, and polyamide 12. These may be used alone or in combination of two or more.
Examples of aromatic polyamides include those obtained from aromatic dicarboxylic acids and aliphatic diamines, or from aliphatic dicarboxylic acids and aromatic diamines. Specifically, polyamide MXD (metaxylylene diamine and adipic acid), polyamide 6T (hexamethylene diamine and terephthalic acid), polyamide 6I (hexamethylene diamine and isophthalic acid), polyamide 9T (nonanediamine and terephthalic acid), polyamide M5T (methylpentadiamine and terephthalic acid) and polyamide 10T (decamethylene diamine and terephthalic acid). These may be used alone or in combination of two or more.
ポリスルホン系樹脂としては、例えば、ポリスルホン、ポリエーテルスルホン等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of polysulfone-based resins include polysulfone, polyethersulfone, and the like. These may be used alone or in combination of two or more.
ポリフェニレン系樹脂としては、例えば、ポリフェニレンオキシド系樹脂[ポリ(2,5-ジメチル-1,4-フェニレン)オキシド、ポリ(2,6-ジメチル-1,4-フェニレン)オキシド、ポリ(2-メチル-6-エチル-1,4-フェニレン)オキシド、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)オキシド、ポリ(2-メチル-6-クロロエチル-1,4-フェニレン)オキシド等の単独重合体;ポリフェニレンオキシドブロックをベースとして構成された変性ポリフェニレンオキシド共重合体;ポリフェニレンオキシド又はその共重合体にスチレン系重合体がグラフトしている変性グラフト共重合体等];ポリフェニレンスルフィド系樹脂(ポリフェニレンスルフィド、ポリフェニレンスルフィドケトン、ポリビフェニレンスルフィド、ポリフェニレンスルフィドスルホン等)等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of polyphenylene resins include polyphenylene oxide resins [poly(2,5-dimethyl-1,4-phenylene) oxide, poly(2,6-dimethyl-1,4-phenylene) oxide, poly(2-methyl -6-ethyl-1,4-phenylene) oxide, poly(2,6-di-n-propyl-1,4-phenylene) oxide, poly(2-methyl-6-chloroethyl-1,4-phenylene) oxide homopolymers such as; modified polyphenylene oxide copolymers constructed based on polyphenylene oxide blocks; modified graft copolymers in which a styrene polymer is grafted to polyphenylene oxide or its copolymer, etc.]; polyphenylene sulfide-based Examples include resins (polyphenylene sulfide, polyphenylene sulfide ketone, polybiphenylene sulfide, polyphenylene sulfide sulfone, etc.). These may be used alone or in combination of two or more.
ポリアセタール系樹脂としては、例えば、オキシメチレン基のみを構成単位とするポリアセタールホモポリマー、オキシメチレン基に加えてオキシエチレン基等を構成単位とするポリアセタールコポリマー等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。 Examples of polyacetal-based resins include polyacetal homopolymers containing only oxymethylene groups as constituent units, and polyacetal copolymers containing oxyethylene groups and the like as constituent units in addition to oxymethylene groups. These may be used alone or in combination of two or more.
前記熱可塑性エラストマーとしては、例えば、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性樹脂エラストマー等の硬質相と軟質相から構成される熱可塑性エラストマーが挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
これらのうち、樹脂(a-2)としては、オレフィン系樹脂、スチレン系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂が好ましい。
Examples of the thermoplastic elastomer include hard thermoplastic elastomers such as polyolefin thermoplastic elastomers, polystyrene thermoplastic elastomers, polyvinyl chloride thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, and polyamide thermoplastic resin elastomers. Examples include thermoplastic elastomers that are composed of a phase and a soft phase. These may be used alone or in combination of two or more.
Among these, as the resin (a-2), olefin resins, styrene resins, (meth)acrylic resins, polyester resins, polycarbonate resins, and polyacetal resins are preferable.
樹脂(a-2)は、前述の熱可塑性樹脂を1種単独で用いてもよく、2種以上を併用してもよい。また、必要に応じて、変性(例えば、ゴム変性)されていてもよい。 As the resin (a-2), one of the aforementioned thermoplastic resins may be used alone, or two or more types may be used in combination. Further, it may be modified (for example, rubber modified) as necessary.
一実施形態において、樹脂(a-2)としては、構造体に用いるための機械的強度、及び再生セルロース繊維が耐えうるプロセス温度の観点から、オレフィン系樹脂、ポリアセタール系樹脂を含むことが好ましい。
樹脂(a-2)がオレフィン系樹脂を含む場合、炭素数2~6のオレフィンの単独重合体又は共重合体が好ましく、ポリプロピレンがより好ましい。前記ポリプロピレンは、プロピレンのホモポリマー(ホモポリプロピレン)であってもよく、ブロックポリプロピレンであってもよく、ランダムポリプロピレンであってもよく、またはこれらの混合物であってもよい。
In one embodiment, the resin (a-2) preferably includes an olefin resin or a polyacetal resin from the viewpoint of mechanical strength for use in the structure and process temperature that the regenerated cellulose fiber can withstand.
When the resin (a-2) contains an olefin resin, a homopolymer or copolymer of an olefin having 2 to 6 carbon atoms is preferable, and polypropylene is more preferable. The polypropylene may be a homopolymer of propylene (homopolypropylene), block polypropylene, random polypropylene, or a mixture thereof.
樹脂(a-2)がポリアセタール系樹脂を含む場合、ポリアセタールホモポリマー、又はポリアセタールコポリマーが好ましく、ポリアセタールコポリマーがより好ましい。 When the resin (a-2) contains a polyacetal resin, a polyacetal homopolymer or a polyacetal copolymer is preferable, and a polyacetal copolymer is more preferable.
一実施形態において、樹脂組成物(A-1)の総質量に対する、植物由来充填材(a-1)の割合は、30~80質量%が好ましく、40~80質量%がより好ましく、50~80質量%がさらに好ましい。樹脂組成物(A-1)中の充填材(a-1)の割合が30~80質量%であれば、得られる成形品の機械的強度が良好となりやすい。 In one embodiment, the proportion of the plant-derived filler (a-1) to the total mass of the resin composition (A-1) is preferably 30 to 80% by mass, more preferably 40 to 80% by mass, and 50 to 80% by mass. 80% by mass is more preferred. When the proportion of the filler (a-1) in the resin composition (A-1) is 30 to 80% by mass, the resulting molded product tends to have good mechanical strength.
一実施形態において、樹脂組成物(A-1)には、前述の充填材(a-1)及び樹脂(a-2)以外の任意の成分が含まれていてもよい。任意の成分としては本発明の効果を有する限り特に限定されず、熱可塑性樹脂組成物に配合できる従来公知の添加剤が含まれていてもよい。 In one embodiment, the resin composition (A-1) may contain any component other than the filler (a-1) and resin (a-2) described above. The optional components are not particularly limited as long as they have the effects of the present invention, and may include conventionally known additives that can be blended into thermoplastic resin compositions.
樹脂組成物(A-1)としては市販品を用いてもよい。市販品としては、例えば、(株)バイオマスレジンホールディングス製の「Rice Resin(登録商標)」、ダイセルミライズ(株)製の「セルブレン」等が挙げられる。 A commercially available product may be used as the resin composition (A-1). Commercially available products include, for example, "Rice Resin (registered trademark)" manufactured by Biomass Resin Holdings Co., Ltd. and "Selbren" manufactured by Daicel Miraiz Co., Ltd.
樹脂組成物(A-1)を得る方法としては特に限定されず、前述の充填材(a-1)、樹脂(a-2)及び必要に応じて任意成分を配合したのち、従来公知の方法、例えば、1軸又は2軸押出機を用いて溶融混練処理して樹脂組成物(A-1)を得ることができる。また、ペレタイザーにより所定の長さに切断し、ペレット状の樹脂組成物として得てもよい。 The method for obtaining the resin composition (A-1) is not particularly limited, and after blending the aforementioned filler (a-1), resin (a-2), and optional components as necessary, a conventionally known method may be used. For example, the resin composition (A-1) can be obtained by melt-kneading using a single-screw or twin-screw extruder. Alternatively, the resin composition may be obtained in the form of pellets by cutting it into a predetermined length using a pelletizer.
(熱可塑性樹脂(A-2))
本実施形態において、材料(A)は熱可塑性樹脂(A-2)を含むことができる。熱可塑性樹脂(A-2)は、植物原料由来の単量体単位を含む熱可塑性樹脂である。熱可塑性樹脂(A-2)は、植物を原料とするバイオマス成分をモノマーとして含む熱可塑性樹脂であり、例えば、植物原料由来のオレフィン単位を含むオレフィン系樹脂、植物原料由来のエチレングリコール単位を含む、ポリエチレンテレフタレート、植物原料由来の乳酸を単量体単位として含むポリ乳酸等が挙げられる。熱可塑性樹脂(A-2)としては、これらの熱可塑性樹脂を1種単独で用いてもよく、2種以上を併用してもよい。このうち、機械的強度不足という課題を解消しやすく、かつリサイクルしやすい観点から、熱可塑性樹脂(A-2)としては、植物原料由来のオレフィン単位を含むオレフィン系樹脂を含むことが好ましく、植物原料由来のエチレン単位を含むポリエチレンを含むことがより好ましい。
一実施形態において、熱可塑性樹脂(A-2)が植物原料由来のエチレン単位を含むポリエチレンを含む場合、前記ポリエチレンは、密度が0.91~0.96g/cm3、より好ましくは0.94~0.96g/cm3の高密度ポリエチレン(HDPE)であることが好ましい。
(Thermoplastic resin (A-2))
In this embodiment, the material (A) can include a thermoplastic resin (A-2). The thermoplastic resin (A-2) is a thermoplastic resin containing monomer units derived from plant raw materials. The thermoplastic resin (A-2) is a thermoplastic resin containing a biomass component made from a plant as a monomer, for example, an olefin resin containing an olefin unit derived from a plant material, or an ethylene glycol unit derived from a plant material. , polyethylene terephthalate, polylactic acid containing lactic acid derived from plant materials as a monomer unit, and the like. As the thermoplastic resin (A-2), one type of these thermoplastic resins may be used alone, or two or more types may be used in combination. Among these, from the viewpoint of easily solving the problem of insufficient mechanical strength and easily recycling, it is preferable that the thermoplastic resin (A-2) contains an olefin resin containing olefin units derived from plant materials. It is more preferable to include polyethylene containing ethylene units derived from raw materials.
In one embodiment, when the thermoplastic resin (A-2) contains polyethylene containing ethylene units derived from plant materials, the polyethylene has a density of 0.91 to 0.96 g/cm 3 , more preferably 0.94 g/cm 3 . Preferably, it is high density polyethylene (HDPE) with ˜0.96 g/cm 3 .
一実施形態において、熱可塑性樹脂(A-2)中の植物原料由来の単量体単位の割合は、熱可塑性樹脂(A-2)を構成する全単量体単位の合計量(100質量%)に対して、90質量%以上が好ましく、95質量%以上がより好ましい。また、熱可塑性樹脂(A-2)は植物原料由来の単量体単位のみで構成されていてもよい。 In one embodiment, the proportion of monomer units derived from plant materials in the thermoplastic resin (A-2) is the total amount (100% by mass) of all monomer units constituting the thermoplastic resin (A-2). ), preferably 90% by mass or more, more preferably 95% by mass or more. Further, the thermoplastic resin (A-2) may be composed only of monomer units derived from plant materials.
熱可塑性樹脂(A-2)は、植物原料由来のモノマーを含むモノマー混合物を、従来公知の方法、例えば、チーグラー・ナッター触媒等を用いた中低圧法等で重合することによって調製できる。 The thermoplastic resin (A-2) can be prepared by polymerizing a monomer mixture containing monomers derived from plant materials by a conventionally known method, for example, a medium-low pressure method using a Ziegler-Nutter catalyst or the like.
(熱可塑性デンプン(A-3))
材料(A)は熱可塑性デンプン(A-3)を含むことができる。「熱可塑性デンプン」とは、デンプン又はデンプンを含む組成物が、例えば均質混合物の形成、及び/又は後述の樹脂組成物(B)と組み合わせて成形品とする際に、十分に加工できる温度(例えば、180℃以上)に加温して流動性を維持できるデンプン組成物を指す。
(Thermoplastic starch (A-3))
Material (A) can include thermoplastic starch (A-3). "Thermoplastic starch" refers to the temperature at which starch or a composition containing starch can be sufficiently processed, for example, when forming a homogeneous mixture and/or combining with the resin composition (B) described below to form a molded article. For example, it refers to a starch composition that can maintain fluidity when heated to temperatures above 180°C.
熱可塑性デンプン(A-3)を構成する「デンプン」は、植物原料由来のものであれば、本発明の効果を有する限り特に限定されない。例えば、トウモロコシデンプン、ジャガイモデンプン、サツマイモデンプン、小麦デンプン、サゴヤシデンプン、タピオカデンプン、米デンプン、大豆デンプン、アロー根(arrow root)デンプン、ワラビデンプン、ハスデンプン、キャッサバデンプン、ワキシートウモロコシ(waxy maize)デンプン、高アミラーゼトウモロコシデンプン等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。このうち、食物と競合しない製品の生産量の観点からは、トウモロコシが好ましい。 The "starch" constituting the thermoplastic starch (A-3) is not particularly limited as long as it is derived from plant materials and has the effects of the present invention. For example, corn starch, potato starch, sweet potato starch, wheat starch, sago starch, tapioca starch, rice starch, soybean starch, arrow root starch, bracken starch, lotus starch, cassava starch, waxy maize starch, Examples include high amylase corn starch. These may be used alone or in combination of two or more. Among these, corn is preferred from the viewpoint of production of a product that does not compete with food.
トウモロコシや米等から得られるデンプンは天然の高分子であり、通常、結晶性を有し、そのまま加熱しても熱可塑化しにくい。そのため、熱可塑性デンプン(A-3)は、植物原料由来のデンプンを変性したものであることが好ましい。変性方法としては特に限定されず、加熱、酵素変性、エトキシ化等の化学修飾、化学分解、及びこれらの組み合わせによって変性されていてもよい。一実施形態において、熱可塑性デンプン(A-3)は、可塑剤の添加により変性されたデンプンであってもよい。 Starch obtained from corn, rice, etc. is a natural polymer and usually has crystallinity, so it is difficult to thermoplasticize even when heated as is. Therefore, the thermoplastic starch (A-3) is preferably a modified starch derived from plant materials. The denaturation method is not particularly limited, and denaturation may be carried out by heating, enzymatic denaturation, chemical modification such as ethoxylation, chemical decomposition, or a combination thereof. In one embodiment, the thermoplastic starch (A-3) may be a starch modified by the addition of a plasticizer.
熱可塑性デンプン(A-3)は、前述の通り、トウモロコシや米などから得られたデンプンを、必要に応じて従来公知の方法で変性することにより調製できる。 As mentioned above, the thermoplastic starch (A-3) can be prepared by modifying starch obtained from corn, rice, etc. by a conventionally known method, if necessary.
熱可塑性デンプン(A-3)としては市販品を用いてもよい。市販品としては、例えば、三協化学工業(株)製の「SANKYO GOLDEN STARCH」等があげられる。 A commercially available product may be used as the thermoplastic starch (A-3). Examples of commercially available products include "SANKYO GOLDEN STARCH" manufactured by Sankyo Chemical Industry Co., Ltd.
一実施形態において、材料(A)は前述の樹脂組成物(A-1)、熱可塑性樹脂(A-2)及び熱可塑性デンプン(A-3)以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、軟化剤、表面潤滑剤、レベリング剤、酸化防止剤、界面活性剤、腐食防止剤、光安定剤、紫外線吸収剤、耐熱安定剤、重合禁止剤、シランカップリング剤、滑剤、可塑剤、結晶化促進剤、加水分解抑制剤、無機充填材、植物由来以外の有機充填剤、金属粉、顔料等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。材料(A)がその他の成分を含む場合、材料(A)の総質量に対して、1質量%以下とすることができる。 In one embodiment, the material (A) may contain other components than the aforementioned resin composition (A-1), thermoplastic resin (A-2), and thermoplastic starch (A-3). Other ingredients include, for example, softeners, surface lubricants, leveling agents, antioxidants, surfactants, corrosion inhibitors, light stabilizers, ultraviolet absorbers, heat stabilizers, polymerization inhibitors, and silane coupling agents. , lubricants, plasticizers, crystallization promoters, hydrolysis inhibitors, inorganic fillers, organic fillers other than those derived from plants, metal powders, pigments, and the like. These may be used alone or in combination of two or more. When material (A) contains other components, the content can be 1% by mass or less based on the total mass of material (A).
一実施形態において、複合樹脂材料中の材料(A)の割合は、複合樹脂材料の総質量に対して、30~90質量%であってもよく、40~80質量%であってもよく、50~80質量%であってもよい。 In one embodiment, the proportion of material (A) in the composite resin material may be 30 to 90% by mass, or 40 to 80% by mass, based on the total mass of the composite resin material, It may be 50 to 80% by mass.
<樹脂組成物(B)>
本実施形態に係る複合樹脂材料は、熱可塑性樹脂(b-1)及び再生セルロース繊維(b-2)を含む樹脂組成物(B)を含む。複合樹脂材料が樹脂組成物(B)を含むことにより、機械的強度に優れ、かつ外観も良好な成形品を提供できる。
<Resin composition (B)>
The composite resin material according to this embodiment includes a resin composition (B) containing a thermoplastic resin (b-1) and regenerated cellulose fibers (b-2). By including the resin composition (B) in the composite resin material, a molded article with excellent mechanical strength and good appearance can be provided.
(熱可塑性樹脂(b-1))
本実施形態において、樹脂組成物(B)に含まれる熱可塑性樹脂(b-1)(以下、単に「樹脂(b-1)」と記載することもある)としては、前述の熱可塑性樹脂(a-2)と同じものが例示できる。一実施形態において、樹脂(b-1)としては、オレフィン系樹脂、ポリアミド系樹脂、スチレン系樹脂、ハロゲン含有樹脂、ポリカーボネート系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、及びポリフェニレン系樹脂から選択される少なくとも1つであってもよい。また、オレフィン系樹脂、ポリアミド系樹脂、及びポリアセタール系樹脂から選択される少なくとも1つであることがより好ましい。
(Thermoplastic resin (b-1))
In this embodiment, the thermoplastic resin (b-1) (hereinafter sometimes simply referred to as "resin (b-1)") contained in the resin composition (B) is the thermoplastic resin ( The same example as a-2) can be given. In one embodiment, the resin (b-1) includes an olefin resin, a polyamide resin, a styrene resin, a halogen-containing resin, a polycarbonate resin, a (meth)acrylic resin, a polyester resin, a polyacetal resin, and It may be at least one selected from polyphenylene resins. Moreover, it is more preferable that it is at least one selected from olefin resin, polyamide resin, and polyacetal resin.
樹脂(b-1)として好適に利用できるオレフィン系樹脂としては、例えば、炭素数2~6のオレフィンの単独重合体又は共重合体(ポリエチレン、エチレン-プロピレン共重合体等のエチレン系樹脂;ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-ブテン共重合体等のプロピレン系樹脂;ポリ(メチルペンテン-1);プロピレン-メチルペンテン共重合体等);炭素数2~6のオレフィンと共重合性単量体との共重合体(エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体等);アルキル基やエステル基等の置換基を有していてもよい環状オレフィン(特に炭化水素環と縮合した環状オレフィン、橋架環式環状オレフィン等)の単独重合体又は共重合体(例えば、ポリビシクロペンタジエン、ポリノルボルネン等の環状オレフィンの単独重合体;ビシクロアルカジエン、トリシクロアルカジエン、ビシクロアルケン、及びトリシクロアルケンから選択される環状オレフィンと炭素数2~4のα-オレフィン(エチレン等)との共重合体等)等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。このうち、機械的強度や加工性の観点からは、炭素数2~6のオレフィンの単独重合体又は共重合体が好ましく、ポリプロピレンがより好ましい。前記ポリプロピレンは、プロピレンのホモポリマー(ホモポリプロピレン)であってもよく、ブロックポリプロピレンであってもよく、ランダムポリプロピレンであってもよく、またはこれらの混合物であってもよい。 Examples of olefin resins that can be suitably used as the resin (b-1) include homopolymers or copolymers of olefins having 2 to 6 carbon atoms (ethylene resins such as polyethylene and ethylene-propylene copolymers; polypropylene , propylene-based resins such as propylene-ethylene copolymer, propylene-butene copolymer; poly(methylpentene-1); propylene-methylpentene copolymer, etc.); copolymers with polymers (ethylene-(meth)acrylic acid copolymers, ethylene-(meth)acrylic acid ester copolymers, etc.); cyclic polymers that may have substituents such as alkyl groups and ester groups; Homopolymers or copolymers of olefins (especially cyclic olefins condensed with hydrocarbon rings, bridged cyclic olefins, etc.) (for example, homopolymers of cyclic olefins such as polybicyclopentadiene and polynorbornene; bicycloalkadienes, Examples include copolymers of cyclic olefins selected from cycloalkadienes, bicycloalkenes, and tricycloalkenes and α-olefins having 2 to 4 carbon atoms (ethylene, etc.). These may be used alone or in combination of two or more. Among these, from the viewpoint of mechanical strength and processability, homopolymers or copolymers of olefins having 2 to 6 carbon atoms are preferred, and polypropylene is more preferred. The polypropylene may be a homopolymer of propylene (homopolypropylene), block polypropylene, random polypropylene, or a mixture thereof.
樹脂(b-1)としてオレフィン系樹脂を用いる場合、再生セルロース繊維(b-2)に密着しやすい観点から、酸変性ポリオレフィンを併用してもよい。酸変性ポリオレフィンとしては、マレイン酸変性ポリオレフィン(より好ましくは、マレイン酸変性ポリプロピレン)、無水マレイン酸変性ポリオレフィン(より好ましくは、無水マレイン酸変性ポリプロピレン)が好ましい。
一実施形態において、樹脂(b-1)として、オレフィン系樹脂と酸変性ポリオレフィンを併用する場合、樹脂(b-1)中の酸量(酸変性ポリオレフィンに含まれる酸成分の量)が、無水マレイン酸換算で平均0.05~0.5質量%の範囲となるように、酸変性ポリオレフィンを併用することが好ましい。
When using an olefin resin as the resin (b-1), an acid-modified polyolefin may be used in combination from the viewpoint of easy adhesion to the regenerated cellulose fibers (b-2). As the acid-modified polyolefin, maleic acid-modified polyolefin (more preferably maleic acid-modified polypropylene) and maleic anhydride-modified polyolefin (more preferably maleic anhydride-modified polypropylene) are preferred.
In one embodiment, when an olefin resin and an acid-modified polyolefin are used together as the resin (b-1), the amount of acid in the resin (b-1) (the amount of acid components contained in the acid-modified polyolefin) is It is preferable to use acid-modified polyolefin in an average amount of 0.05 to 0.5% by mass in terms of maleic acid.
樹脂(b-1)として好適に利用できるポリアミド系樹脂としては、脂肪族ポリアミド、及び芳香族ポリアミドが挙げられる。
脂肪族ポリアミドとしては、例えば、ポリアミド6、ポリアミド66、ポリアミド69、ポリアミド610、ポリアミド1010、ポリアミド612、ポリアミド46、ポリアミド11、ポリアミド12等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
芳香族ポリアミドとしては、例えば、芳香族ジカルボン酸と脂肪族ジアミン、又は脂肪族ジカルボン酸と芳香族ジアミンから得られるものが挙げられる。具体的には、ポリアミドMXD(メタキシリレンジアミンとアジピン酸)、ポリアミド6T(ヘキサメチレンジアミンとテレフタル酸)、ポリアミド6I(ヘキサメチレンジアミンとイソフタル酸)、ポリアミド9T(ノナンジアミンとテレフタル酸)、ポリアミドM5T(メチルペンタジアミンとテレフタル酸)、ポリアミド10T(デカメチレンジアミンとテレフタル酸)を挙げることができる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
これらポリアミド系樹脂のうち、ポリアミド6、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12、ポリアミド1010等の脂肪族ポリアミドが、加工温度の観点からは好ましい。
Polyamide resins that can be suitably used as the resin (b-1) include aliphatic polyamides and aromatic polyamides.
Examples of the aliphatic polyamide include polyamide 6, polyamide 66, polyamide 69, polyamide 610, polyamide 1010, polyamide 612, polyamide 46, polyamide 11, and polyamide 12. These may be used alone or in combination of two or more.
Examples of aromatic polyamides include those obtained from aromatic dicarboxylic acids and aliphatic diamines, or from aliphatic dicarboxylic acids and aromatic diamines. Specifically, polyamide MXD (metaxylylene diamine and adipic acid), polyamide 6T (hexamethylene diamine and terephthalic acid), polyamide 6I (hexamethylene diamine and isophthalic acid), polyamide 9T (nonanediamine and terephthalic acid), polyamide M5T (methylpentadiamine and terephthalic acid) and polyamide 10T (decamethylene diamine and terephthalic acid). These may be used alone or in combination of two or more.
Among these polyamide resins, aliphatic polyamides such as polyamide 6, polyamide 69, polyamide 610, polyamide 612, polyamide 11, polyamide 12, and polyamide 1010 are preferred from the viewpoint of processing temperature.
樹脂(b-1)として好適に利用できるポリアセタール系樹脂としては、例えば、オキシメチレン基のみを構成単位とするポリアセタールホモポリマー、オキシメチレン基に加えてオキシエチレン基等を構成単位とするポリアセタールコポリマー等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
このうち、機械的強度や加工性の観点からは、ポリアセタールホモポリマー、又はポリアセタールコポリマーが好ましく、ポリアセタールコポリマーがより好ましい。
Examples of polyacetal resins that can be suitably used as the resin (b-1) include polyacetal homopolymers having only oxymethylene groups as a constituent unit, polyacetal copolymers having oxyethylene groups, etc. as constituent units in addition to oxymethylene groups, and the like. can be mentioned. These may be used alone or in combination of two or more.
Among these, from the viewpoint of mechanical strength and processability, polyacetal homopolymers or polyacetal copolymers are preferred, and polyacetal copolymers are more preferred.
(再生セルロース繊維(b-2))
本実施形態において、樹脂組成物(B)は再生セルロース繊維(b-2)を含む。「再生セルロース繊維」とは、天然セルロース繊維(高等植物由来のセルロース繊維、動物由来のセルロース繊維、バクテリア由来のセルロース繊維)を用いて人造で紡糸されたセルロース繊維を指す。
(Regenerated cellulose fiber (b-2))
In this embodiment, the resin composition (B) contains regenerated cellulose fibers (b-2). "Regenerated cellulose fiber" refers to cellulose fiber that is artificially spun using natural cellulose fibers (cellulose fibers derived from higher plants, cellulose fibers derived from animals, cellulose fibers derived from bacteria).
高等植物由来のセルロース繊維としては、例えば、木材繊維(針葉樹、広葉樹等の木材パルプ等)、竹繊維、サトウキビ繊維、種子毛繊維(コットンリンター、ボンバックス綿、カポック等)、ジン皮繊維(例えば、麻、コウゾ、ミツマタ等)、葉繊維(例えば、マニラ麻、ニュージーランド麻等)等の天然セルロース繊維(パルプ繊維)等が挙げられる。
動物由来のセルロース繊維としては、ホヤセルロース等が挙げられる。
これら天然セルロース繊維は、1種単独で用いられてもよく、2種以上を併用してもよい。
Examples of cellulose fibers derived from higher plants include wood fibers (wood pulp from softwood, hardwood, etc.), bamboo fibers, sugarcane fibers, seed hair fibers (cotton linters, bombax cotton, kapok, etc.), and gin bark fibers (e.g. Examples include natural cellulose fibers (pulp fibers) such as leaf fibers (for example, Manila hemp, New Zealand hemp, etc.);
Examples of cellulose fibers derived from animals include ascidian cellulose.
These natural cellulose fibers may be used alone or in combination of two or more.
上述のセルロース繊維から再生セルロース繊維を得る方法としては、例えば、ビスコース法、銅アンモニア法、溶剤紡糸法(セルロースを一旦化学的に変換することのない直接法)等が挙げられる。ビスコース法で得られた再生セルロース繊維としては、ビスコースレーヨン、ポリノジック、モダール等が挙げられる。また、銅アンモニア法で得られた再生セルロース繊維としては、キュプラ等が挙げられる。また、溶剤紡糸法で得られた再生セルロース繊維としては、リヨセル、テンセル等が挙げられる。再生セルロース繊維(b-2)としては、これらの再生セルロース繊維を1種単独で用いてもよく、2種以上を併用してもよい。一実施形態において、再生セルロース繊維(b-2)はビスコース法で得られた再生セルロース繊維を含むことが好ましく、ビスコースレーヨンを含むことがより好ましい。再生セルロース繊維(b-2)がビスコース法で得られた再生セルロース繊維を含むことで、機械的強度が良好となりやすい。 Examples of methods for obtaining regenerated cellulose fibers from the above-mentioned cellulose fibers include the viscose method, the copper ammonia method, and the solvent spinning method (a direct method in which cellulose is not once chemically converted). Examples of regenerated cellulose fibers obtained by the viscose method include viscose rayon, polynosic, modal, and the like. Moreover, examples of the regenerated cellulose fiber obtained by the copper ammonia method include cupra and the like. Further, examples of regenerated cellulose fibers obtained by a solvent spinning method include Lyocell and Tencel. As the regenerated cellulose fiber (b-2), one type of these regenerated cellulose fibers may be used alone, or two or more types may be used in combination. In one embodiment, the regenerated cellulose fibers (b-2) preferably include regenerated cellulose fibers obtained by a viscose method, and more preferably include viscose rayon. When the regenerated cellulose fiber (b-2) contains regenerated cellulose fiber obtained by a viscose method, mechanical strength tends to be good.
一実施形態において、再生セルロース繊維(b-2)の平均繊維径は、5~30μmであることが好ましく、X線配向度が86%以上であることが好ましい。このような平均繊維径及びX線配向度を有することで、再生セルロース繊維(b-2)に熱可塑性樹脂(b-1)が含侵しやすくなる。また、得られる成形品の機械的強度も向上しやすくなる。
前記平均繊維径は6~20μmであることがより好ましく、7~15μmであることがさらに好ましい。なお、再生セルロース繊維(b-2)の平均繊維径とは、SEM等にて複数本の繊維の断面を観察し、その長径の平均値である。
また前記X線配向度は90%以上であることがより好ましい。また再生セルロース繊維(b-2)のX線配向度は、特開平9-31744号公報や特開平9-256216号公報に記載の数式から求めることができる。
In one embodiment, the average fiber diameter of the regenerated cellulose fibers (b-2) is preferably 5 to 30 μm, and the degree of X-ray orientation is preferably 86% or more. Having such an average fiber diameter and degree of X-ray orientation makes it easier for the thermoplastic resin (b-1) to impregnate the regenerated cellulose fiber (b-2). Moreover, the mechanical strength of the obtained molded product also tends to improve.
The average fiber diameter is more preferably from 6 to 20 μm, even more preferably from 7 to 15 μm. Note that the average fiber diameter of the regenerated cellulose fibers (b-2) is the average value of the major diameters of the cross sections of a plurality of fibers observed using a SEM or the like.
Further, it is more preferable that the degree of X-ray orientation is 90% or more. Further, the degree of X-ray orientation of the regenerated cellulose fiber (b-2) can be determined from the formula described in JP-A-9-31744 and JP-A-9-256216.
一実施形態において、再生セルロース繊維(b-2)の引張弾性率(ヤング率)は、10GPa以上であってもよく、13GPa以上であってもよく、15GPa以上であってもよい。再生セルロース繊維(b-2)の引張弾性率は、特開2013-91775号公報の段落番号0038に記載の、「23℃、50RHの空調で3週間保管後、チャック間距離200mm、引張速度200mm/min.で測定」する方法で求めることができる。 In one embodiment, the tensile modulus (Young's modulus) of the regenerated cellulose fiber (b-2) may be 10 GPa or more, 13 GPa or more, or 15 GPa or more. The tensile modulus of the regenerated cellulose fiber (b-2) is as described in paragraph number 0038 of JP-A No. 2013-91775, "After storage for 3 weeks in an air conditioner at 23 ° C. and 50 RH, distance between chucks 200 mm, tensile speed 200 mm. /min.
一実施形態において、樹脂組成物(B)中の再生セルロース繊維(b-2)の平均繊維長さは、6~30mmであることが好ましく、6~15mmであることがより好ましく、6~9mmであることがさらに好ましい。平均繊維長さが6~30mmである再生セルロース繊維は長繊維となる。 In one embodiment, the average fiber length of the regenerated cellulose fibers (b-2) in the resin composition (B) is preferably 6 to 30 mm, more preferably 6 to 15 mm, and more preferably 6 to 9 mm. It is more preferable that Regenerated cellulose fibers with an average fiber length of 6 to 30 mm are long fibers.
一実施形態において、樹脂組成物(B)は、再生セルロース繊維(b-2)を長さ方向に揃えて束ねた繊維束に、前述の熱可塑性樹脂(b-1)を溶融させた状態で含浸させて一体化させた後にカッティングした、樹脂(b-1)と再生セルロース繊維(b-2)との複合材を含んでいてもよい。すなわち、本実施形態に係る複合樹脂材料において、樹脂組成物(B)は、前記再生セルロース繊維(b-2)を長さ方向に揃えた繊維束に、前記熱可塑性樹脂(b-1)が含浸した熱可塑性樹脂含浸再生セルロース繊維束(B-1)を含んでいてもよい。以下、熱可塑性樹脂含浸再生セルロース繊維束(B-1)の詳細について説明する。 In one embodiment, the resin composition (B) is prepared by melting the above-mentioned thermoplastic resin (b-1) into a fiber bundle made by bundling regenerated cellulose fibers (b-2) aligned in the length direction. It may also contain a composite material of resin (b-1) and regenerated cellulose fiber (b-2) that is impregnated and integrated and then cut. That is, in the composite resin material according to the present embodiment, the resin composition (B) includes the thermoplastic resin (b-1) in a fiber bundle in which the regenerated cellulose fibers (b-2) are aligned in the length direction. The regenerated cellulose fiber bundle (B-1) impregnated with a thermoplastic resin may be included. The details of the thermoplastic resin-impregnated regenerated cellulose fiber bundle (B-1) will be described below.
(熱可塑性樹脂含浸再生セルロース繊維束(B-1))
熱可塑性樹脂含浸再生セルロース繊維束(B-1)(以下、単に「繊維束(B-1)」と記載することもある)は、前述の通り、再生セルロース繊維(b-2)を長さ方向に揃えた繊維束に、前記熱可塑性樹脂(b-1)を含浸させた後にカッティングした複合材である。一実施形態において、繊維束(B-1)における再生セルロース繊維(b-2)の平均繊維長さは、6~30mmであってもよく、6~15mmであってもよい。
(Thermoplastic resin-impregnated regenerated cellulose fiber bundle (B-1))
As mentioned above, the thermoplastic resin-impregnated regenerated cellulose fiber bundle (B-1) (hereinafter sometimes simply referred to as "fiber bundle (B-1)") is a regenerated cellulose fiber (b-2) with a length This composite material is obtained by impregnating fiber bundles aligned in the same direction with the thermoplastic resin (b-1) and then cutting them. In one embodiment, the average fiber length of the regenerated cellulose fibers (b-2) in the fiber bundle (B-1) may be 6 to 30 mm, or 6 to 15 mm.
再生セルロース繊維(b-2)の繊維束における繊維の本数は2,000~30,000本であることが好ましく、3,000~25,000本であることがより好ましく、5,000~25,000本であることがさらに好ましい。繊維の本数が前記範囲内であれば、繊維束の中心部にまで熱可塑性樹脂(b-1)が含侵しやすくなる。その結果、繊維束(B-1)を含む本実施形態に係る複合樹脂材料を成形加工した際に、外観がより良好であり、かつ機械的強度により優れる成形品が得られやすくなる。また繊維束(B-1)の製造時に、繊維束が切れる等の製造上の問題が発生しにくい。 The number of fibers in the fiber bundle of regenerated cellulose fibers (b-2) is preferably 2,000 to 30,000, more preferably 3,000 to 25,000, and more preferably 5,000 to 25. ,000 pieces is more preferable. When the number of fibers is within the above range, the thermoplastic resin (b-1) is likely to be impregnated into the center of the fiber bundle. As a result, when the composite resin material according to this embodiment including the fiber bundle (B-1) is molded, a molded product with a better appearance and better mechanical strength can be easily obtained. Further, during production of the fiber bundle (B-1), manufacturing problems such as breakage of the fiber bundle are less likely to occur.
一実施形態において、繊維束(B-1)は、ダイスを用いた周知の製造方法により製造することができる。具体的には、特開平6-313050号公報、特開2007-176227号公報、特公平6-2344号公報等に記載の製造方法を適用することができる。 In one embodiment, the fiber bundle (B-1) can be manufactured by a well-known manufacturing method using a die. Specifically, the manufacturing methods described in JP-A-6-313050, JP-A-2007-176227, JP-A-6-2344, etc. can be applied.
一実施形態において、繊維束(B-1)の総質量に対する、再生セルロース繊維(b-2)の割合は、10~50質量%が好ましく、10~40質量%がより好ましく、20~40質量%がさらに好ましい。繊維束(B-1)の総質量に対する再生セルロース繊維(b-2)の割合が前記範囲内であれば、射出成形性における流動性と機械的強度のバランスが良好となりやすい。 In one embodiment, the ratio of the regenerated cellulose fibers (b-2) to the total mass of the fiber bundle (B-1) is preferably 10 to 50% by mass, more preferably 10 to 40% by mass, and 20 to 40% by mass. % is more preferred. If the ratio of the regenerated cellulose fibers (b-2) to the total mass of the fiber bundle (B-1) is within the above range, the balance between fluidity and mechanical strength in injection moldability tends to be good.
一実施形態において、樹脂組成物(B)中の繊維束(B-1)の割合は、80質量%以上であってもよく、90質量%以上であってもよい。また、樹脂組成物(B)中の繊維束(B-1)の割合は100質量%であってもよい。すなわち、樹脂組成物(B)は繊維束(B-1)のみで構成されていてもよい。 In one embodiment, the proportion of the fiber bundle (B-1) in the resin composition (B) may be 80% by mass or more, or may be 90% by mass or more. Further, the proportion of the fiber bundle (B-1) in the resin composition (B) may be 100% by mass. That is, the resin composition (B) may be composed only of the fiber bundle (B-1).
一実施形態において、樹脂組成物(B)は、本発明の効果を阻害しない範囲内で、公知の難燃剤及び難燃助剤、熱安定剤、滑剤、光安定剤、酸化防止剤、着色剤、離型剤、帯電防止剤等を含有することができる。これらの成分は、繊維束(B-1)に含有させてもよく繊維束(B-1)とは別に含有させてもよい。 In one embodiment, the resin composition (B) contains known flame retardants and flame retardant aids, heat stabilizers, lubricants, light stabilizers, antioxidants, and colorants within the range that does not impede the effects of the present invention. , a mold release agent, an antistatic agent, and the like. These components may be contained in the fiber bundle (B-1) or separately from the fiber bundle (B-1).
一実施形態において、複合樹脂材料中の樹脂組成物(B)の割合は、複合樹脂材料の総質量に対して、10~90質量%であってもよく、20~80質量%であってもよく、30~80質量%であってもよい。 In one embodiment, the proportion of the resin composition (B) in the composite resin material may be 10 to 90% by mass, or 20 to 80% by mass, based on the total mass of the composite resin material. It may be 30 to 80% by weight.
一実施形態において、複合樹脂材料中の、前述の熱可塑性樹脂の合計量(熱可塑性樹脂(a-2)、熱可塑性樹脂(A-2)及び熱可塑性樹脂(b-1)の合計量)は、複合樹脂材料の総質量に対して、30~90質量%が好ましく、30~70質量%がより好ましい。また、複合樹脂材料中の再生セルロース繊維(b-2)の割合は、複合樹脂材料の総質量に対して、10~40質量%が好ましく、20~40質量%がより好ましい。複合樹脂材料中の熱可塑性樹脂の合計量及び再生セルロース繊維(b-2)の割合が前記範囲内であれば、機械的強度と成形時の流動性が良好となりやすい。 In one embodiment, the total amount of the aforementioned thermoplastic resin (the total amount of thermoplastic resin (a-2), thermoplastic resin (A-2), and thermoplastic resin (b-1)) in the composite resin material. is preferably 30 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the composite resin material. Further, the proportion of regenerated cellulose fibers (b-2) in the composite resin material is preferably 10 to 40% by mass, more preferably 20 to 40% by mass, based on the total mass of the composite resin material. If the total amount of thermoplastic resin and the proportion of regenerated cellulose fiber (b-2) in the composite resin material are within the above ranges, mechanical strength and fluidity during molding tend to be good.
一実施形態において、複合樹脂材料は、植物成分含有材料(A)を含むペレット(I)と、樹脂組成物(B)を含むペレット(II)との混合物であってもよい。すなわち、複合樹脂材料は、前記ペレット(I)及び前記ペレット(II)を混合してパッケージングされたものであってもよい。複合樹脂材料がペレット(I)及びペレット(II)の混合物である場合、ペレット(I)及びペレット(II)の混合比率は、複合樹脂材料中の材料(A)及び樹脂組成物(B)が、前述の好ましい実施形態を満たす範囲で任意に調整することができる。一実施形態において、ペレット(I)及びペレット(II)の質量比((I):(II))は、4:1~1:4の範囲であってもよい。 In one embodiment, the composite resin material may be a mixture of pellets (I) containing the plant component-containing material (A) and pellets (II) containing the resin composition (B). That is, the composite resin material may be a mixture of the pellets (I) and the pellets (II) and packaged. When the composite resin material is a mixture of pellets (I) and pellets (II), the mixing ratio of pellets (I) and pellets (II) is such that the material (A) and resin composition (B) in the composite resin material are , can be arbitrarily adjusted within a range that satisfies the above-described preferred embodiments. In one embodiment, the mass ratio of pellets (I) and pellets (II) ((I):(II)) may range from 4:1 to 1:4.
本実施形態に係る複合樹脂材料は、材料(A)及び樹脂組成物(B)以外の任意成分を含むことができる。すなわち、各種用途に合わせて公知の樹脂添加剤を含んでいてもよい。
樹脂添加剤としては、例えば、安定化剤(例えば、酸化防止剤、紫外線吸収剤、耐光安定剤など)、着色剤(染料、顔料など)、帯電防止剤、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、架橋剤、補強材、核剤、カップリング剤、分散剤、消泡剤、流動化剤、ドリッピング防止剤、抗菌剤、防腐剤、粘度調整剤、増粘剤等が挙げられる。これらは1種単独で用いられてもよく、2種以上を併用してもよい。
The composite resin material according to this embodiment can contain arbitrary components other than the material (A) and the resin composition (B). That is, it may contain known resin additives depending on various uses.
Examples of resin additives include stabilizers (e.g., antioxidants, ultraviolet absorbers, light stabilizers, etc.), colorants (dyes, pigments, etc.), antistatic agents, and flame retardants (phosphorus-based flame retardants, halogens, etc.). flame retardants, inorganic flame retardants, etc.), flame retardant aids, crosslinking agents, reinforcing materials, nucleating agents, coupling agents, dispersants, antifoaming agents, fluidizing agents, anti-dripping agents, antibacterial agents, preservatives , viscosity modifiers, thickeners, and the like. These may be used alone or in combination of two or more.
本実施形態に係る複合樹脂材料は、ガラス繊維などの無機フィラーや、無機充填材を含まないことが好ましい。本実施形態に係る複合樹脂材料は、上述の無機材料を補強材として含まずとも、機械的強度、特に衝撃強度に優れる成形品を提供できる。また、これらの無機材料を含まないことにより、サーマルリサイクル時に焼却灰が発生せず、より環境負荷の小さな複合樹脂材料とすることができる。 The composite resin material according to this embodiment preferably does not contain an inorganic filler such as glass fiber or an inorganic filler. The composite resin material according to this embodiment can provide a molded product with excellent mechanical strength, especially impact strength, even without including the above-mentioned inorganic material as a reinforcing material. Moreover, by not containing these inorganic materials, incineration ash is not generated during thermal recycling, and a composite resin material with a smaller environmental load can be obtained.
<複合樹脂材料の製造方法>
本実施形態に係る複合樹脂材料は、前述の植物成分含有材料(A)と、樹脂組成物(B)とを溶融混合することを含む方法によって製造できる。
一実施形態においては、材料(A)を含むペレット(I)と、樹脂組成物(B)を含むペレット(II)とを、それぞれ加熱機能及び混合機能を備えた押出機に投入し、溶融混合して複合樹脂材料を得てもよい。加熱温度としては、熱可塑性樹脂(a-2)、熱可塑性樹脂(A-2)、熱可塑性デンプン(A-3)、及び/又は熱可塑性樹脂(b-1)の融点以上であれば特に限定されない。一実施形態においては、ペレット(I)及びペレット(II)を押出機に投入したのち、180~230℃の温度で、より好ましくは190~220℃で加熱溶融してもよい。
<Method for manufacturing composite resin material>
The composite resin material according to the present embodiment can be manufactured by a method including melt-mixing the above-described plant component-containing material (A) and the resin composition (B).
In one embodiment, pellets (I) containing the material (A) and pellets (II) containing the resin composition (B) are each put into an extruder equipped with a heating function and a mixing function, and are melt-mixed. A composite resin material may also be obtained. Especially, the heating temperature is higher than the melting point of the thermoplastic resin (a-2), thermoplastic resin (A-2), thermoplastic starch (A-3), and/or thermoplastic resin (b-1). Not limited. In one embodiment, pellets (I) and pellets (II) may be charged into an extruder and then heated and melted at a temperature of 180 to 230°C, more preferably 190 to 220°C.
[成形品及びその製造方法]
本実施形態に係る成形品は、前述の複合樹脂材料を成形して得られるものである。本実施形態に係る成形品は、前述の複合樹脂材料を射出成形して得られるものであってもよい。本実施形態に係る成形品は、前述の複合樹脂材料を成形して得られるものであるため、機械的強度に優れ、かつ外観も良好である。
[Molded product and its manufacturing method]
The molded product according to this embodiment is obtained by molding the above-mentioned composite resin material. The molded product according to this embodiment may be obtained by injection molding the above-mentioned composite resin material. The molded product according to this embodiment is obtained by molding the above-mentioned composite resin material, and therefore has excellent mechanical strength and a good appearance.
[用途]
本実施形態に係る複合樹脂材料から得られる成形品は、植物由来のバイオマス成分を一定量含むにもかかわらず、機械的強度に優れ、かつ外観も良好である。このような成形品は、例えば、ケース部品、車載ドアモジュール等の用途に好適に用いることができる。
[Application]
The molded article obtained from the composite resin material according to this embodiment has excellent mechanical strength and good appearance, even though it contains a certain amount of plant-derived biomass component. Such molded products can be suitably used, for example, in case parts, vehicle door modules, and the like.
以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following description.
<植物成分含有材料(A)>
(樹脂組成物(A-1-1))
ホモポリプロピレンと、米の粉末を含む樹脂組成物。樹脂組成物の総質量に対する、米粉末の割合は70質量%である((株)バイオマスレジンホールディングス製、製品名「Rice Resin R70J-1」)。
(樹脂組成物(A-1-2))
ホモポリプロピレンとセルロースパルプを含む樹脂組成物。樹脂組成物の総質量に対する、セルロースパルプの割合は54質量%である(ダイセルミライズ(株)製、製品名「セルブレン PBG150」)。
(樹脂組成物(A-1-3))
ホモポリプロピレンと、セルロースパルプを含む樹脂組成物。樹脂組成物の総質量に対する、セルロースパルプの割合は40質量%である(ダイセルミライズ(株)製、製品名「セルブレン CP114」)。
<Plant component-containing material (A)>
(Resin composition (A-1-1))
A resin composition containing homopolypropylene and rice powder. The ratio of rice powder to the total mass of the resin composition is 70% by mass (manufactured by Biomass Resin Holdings Co., Ltd., product name "Rice Resin R70J-1").
(Resin composition (A-1-2))
A resin composition containing homopolypropylene and cellulose pulp. The proportion of cellulose pulp with respect to the total mass of the resin composition was 54% by mass (manufactured by Daicel Millize Co., Ltd., product name "Celblane PBG150").
(Resin composition (A-1-3))
A resin composition containing homopolypropylene and cellulose pulp. The proportion of cellulose pulp to the total mass of the resin composition was 40% by mass (manufactured by Daicel Millize Co., Ltd., product name "Celblen CP114").
(樹脂組成物(A-1-4))
ポリアセタールコポリマーと、セルロースパルプを含む樹脂組成物。樹脂組成物の総質量に対する、セルロースパルプの割合は30質量%である。
(樹脂組成物(A-1-4)の調整)
下記ポリアセタールコポリマー70質量%に、セルロースパルプ30質量%を配合し、シリンダー温度200℃の2軸押出機で溶融混練して、樹脂組成物(A-1-4)を得た。
(ポリアセタールコポリマー)
トリオキサン96.7質量%と1,3-ジオキソラン3.3質量%とを共重合させて得られた、ポリアセタールコポリマー(メルトフロー値(ISO1133に準拠して、190℃、荷重2160gで測定):9g/10min)。
(Resin composition (A-1-4))
A resin composition containing a polyacetal copolymer and cellulose pulp. The proportion of cellulose pulp to the total mass of the resin composition was 30% by mass.
(Adjustment of resin composition (A-1-4))
30% by mass of cellulose pulp was blended with 70% by mass of the following polyacetal copolymer and melt-kneaded in a twin-screw extruder with a cylinder temperature of 200°C to obtain a resin composition (A-1-4).
(Polyacetal copolymer)
Polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt flow value (measured at 190°C and 2160g load according to ISO 1133): 9g /10min).
(熱可塑性樹脂(A-2-1))
植物由来のエチレン単位を含む高密度ポリエチレン(HDPE)。全エチレン単位(100質量%)に対する植物由来のエチレン単位の割合が94質量%である(Braskem S.A.社製、製品名「SHA7260」)。
(Thermoplastic resin (A-2-1))
High-density polyethylene (HDPE) containing plant-derived ethylene units. The ratio of plant-derived ethylene units to the total ethylene units (100% by mass) is 94% by mass (manufactured by Braskem S.A., product name "SHA7260").
(熱可塑性デンプン(A-3-1))
トウモロコシ、及びパームヤシ由来のデンプン(三協化学工業(株)製、製品名「SANKYO GOLDEN STARCH」)。
(Thermoplastic starch (A-3-1))
Starch derived from corn and palm palm (manufactured by Sankyo Chemical Industry Co., Ltd., product name "SANKYO GOLDEN STARCH").
<樹脂組成物(B)>
(樹脂組成物(B1))
ビスコースレーヨン(平均繊維径(長径)18μm)を長さ方向に揃えた繊維束に、ホモポリプロピレンを含浸させた熱可塑性樹脂含浸繊維束を7mmの長さに切断して得られた樹脂組成物。樹脂組成物の総質量に対するビスコースレーヨンの割合は40質量%である(ポリプラスチックス(株)製、製品名「プラストロン(登録商標)LFT PP RF40-02」)。
<Resin composition (B)>
(Resin composition (B1))
A resin composition obtained by cutting a thermoplastic resin-impregnated fiber bundle made by impregnating homopolypropylene into a fiber bundle of viscose rayon (average fiber diameter (major axis) 18 μm) aligned in the length direction into a length of 7 mm. . The proportion of viscose rayon to the total mass of the resin composition is 40% by mass (manufactured by Polyplastics Co., Ltd., product name "Plastron (registered trademark) LFT PP RF40-02").
(樹脂組成物(B2))
ビスコースレーヨン(平均繊維径(長径)18μm)を長さ方向に揃えた繊維束に、ポリアセタールコポリマーを含浸させた熱可塑性樹脂含浸繊維束を7mmの長さに切断して得られた樹脂組成物。樹脂組成物の総質量に対するビスコースレーヨンの割合は30質量%である。
(樹脂組成物(B2)の調整)
ビスコースレーヨン(平均繊維径(長径)18μm)の連続繊維を、クロスヘッドダイに通して引きながら、220℃に設定した押出機から下記ポリアセタールコポリマーを溶融状態で前記クロスヘッドダイに供給し、前記連続繊維に含侵させた。その後、賦形ダイを通してストランドを作成した。得られたストランドを冷却した後、引き抜き方向に対して垂直に切断して樹脂組成物(B2)を得た。
(ポリアセタールコポリマー)
トリオキサン96.7質量%と1,3-ジオキソラン3.3質量%とを共重合させて得られた、ポリアセタールコポリマー(メルトフロー値(ISO1133に準拠して、190℃、荷重2160gで測定):9g/10min)。
(Resin composition (B2))
A resin composition obtained by cutting a thermoplastic resin-impregnated fiber bundle made by impregnating a polyacetal copolymer into a fiber bundle of viscose rayon (average fiber diameter (major axis) of 18 μm) aligned in the length direction into a length of 7 mm. . The proportion of viscose rayon to the total mass of the resin composition was 30% by mass.
(Adjustment of resin composition (B2))
While drawing continuous fibers of viscose rayon (average fiber diameter (length) 18 μm) through a crosshead die, the following polyacetal copolymer was supplied in a molten state to the crosshead die from an extruder set at 220°C. Impregnated into continuous fibers. Thereafter, a strand was created through a shaping die. After cooling the obtained strand, it was cut perpendicularly to the drawing direction to obtain a resin composition (B2).
(Polyacetal copolymer)
Polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt flow value (measured at 190°C and 2160g load according to ISO 1133): 9g /10min).
<その他の材料>
(樹脂組成物(A’-1):無機フィラー含有樹脂組成物)
ホモポリプロピレンと炭酸カルシウム(粒子径0.5~13.5μm)を含む樹脂組成物。樹脂組成物の総質量に対する、炭酸カルシウムの割合は60質量%である((株)TBM製、製品名「LIMEX(登録商標) Pellet PP60-19M」)。
(樹脂組成物(B’1))
ガラス繊維(平均繊維径17μm)を長さ方向に揃えた繊維束に、ホモポリプロピレンを含浸させた熱可塑性樹脂含浸ガラス繊維束を11mmの長さに切断して得られた樹脂組成物。樹脂組成物の総質量に対するガラス繊維の割合は40質量%である(ポリプラスチックス(株)製、製品名「プラストロン(登録商標)LFT PP GF40-02」)。
<Other materials>
(Resin composition (A'-1): inorganic filler-containing resin composition)
A resin composition containing homopolypropylene and calcium carbonate (particle size 0.5 to 13.5 μm). The ratio of calcium carbonate to the total mass of the resin composition is 60% by mass (manufactured by TBM Co., Ltd., product name: "LIMEX (registered trademark) Pellet PP60-19M").
(Resin composition (B'1))
A resin composition obtained by cutting a glass fiber bundle impregnated with a thermoplastic resin into a length of 11 mm by impregnating a fiber bundle of glass fibers (average fiber diameter 17 μm) with homopolypropylene into a length of 11 mm. The ratio of glass fiber to the total mass of the resin composition is 40% by mass (manufactured by Polyplastics Co., Ltd., product name "Plastron (registered trademark) LFT PP GF40-02").
[実施例1]
材料(A)として、樹脂組成物(A-1-1)を75質量%、樹脂組成物(B)として、樹脂組成物(B1)を25質量%配合して、成形前に、ペレットブレンドし複合樹脂材料1を得た。複合樹脂材料1中の植物由来成分の割合は52.5質量%であり、再生セルロース繊維(b-2)の割合は10質量%であり、熱可塑性樹脂の合計量は37.5質量%であった。
[Example 1]
As the material (A), 75% by mass of the resin composition (A-1-1) and as the resin composition (B), 25% by mass of the resin composition (B1) were blended, and the mixture was pellet-blended before molding. Composite resin material 1 was obtained. The proportion of plant-derived components in the composite resin material 1 is 52.5% by mass, the proportion of regenerated cellulose fiber (b-2) is 10% by mass, and the total amount of thermoplastic resin is 37.5% by mass. there were.
次に、複合樹脂材料1を成形して成形品を得た。得られた成形品について、以下の条件で各種機械的強度を測定した。また以下の条件で外観を評価した。さらに、以下の条件で焼却灰の発生の有無を評価した。結果を表1に示す。
成形条件
成型機:芝浦機械(株)製、製品名「EC40」。
試験片:ISO引張試験片。ISO曲げ試験片とISOシャルピー衝撃試験片は、これから切り出して得た。
成形温度:200℃。
金型温度:60℃(実施例1~9、比較例1~6、参考例1~6)
90℃(実施例10、参考例7)
Next, the composite resin material 1 was molded to obtain a molded product. Various mechanical strengths of the obtained molded products were measured under the following conditions. The appearance was also evaluated under the following conditions. Furthermore, the presence or absence of generation of incineration ash was evaluated under the following conditions. The results are shown in Table 1.
Molding conditions Molding machine: Manufactured by Shibaura Machine Co., Ltd., product name "EC40".
Test piece: ISO tensile test piece. ISO bend test pieces and ISO Charpy impact test pieces were cut from this.
Molding temperature: 200℃.
Mold temperature: 60°C (Examples 1 to 9, Comparative Examples 1 to 6, Reference Examples 1 to 6)
90°C (Example 10, Reference Example 7)
<機械的強度の評価>
得られたISO引張試験片を用いて、ISO527-1,2に準拠して、引張強度(TS)、引張伸び(TE)を測定した。また、得られたISO曲げ試験片を用いて、ISO178に準拠して、曲げ強度(FS)、曲げ弾性率(FM)を測定した。さらに、得られたISOシャルピー衝撃試験片を用いて、ISO179・1eAに準拠して、シャルピー衝撃強度を測定した。
<Evaluation of mechanical strength>
Using the obtained ISO tensile test piece, tensile strength (TS) and tensile elongation (TE) were measured in accordance with ISO527-1, 2. Further, using the obtained ISO bending test piece, bending strength (FS) and bending modulus (FM) were measured in accordance with ISO178. Furthermore, using the obtained ISO Charpy impact test piece, Charpy impact strength was measured in accordance with ISO179.1eA.
<成形品の外観評価>
成形品の外観において、目視で異常点として認識される最大の特徴は色の濃淡である。そこで、成形品サンプルをスキャナーで画像取得後、画像解析ソフト(「Image J」)を用いて、画像解析した。その後、横15mm×縦3.5mmの領域における横方向の、グレースケールのplot profile機能により、グレースケール濃淡プロファイルを計算した。さらにprofileから標準偏差を算出し、輝度(濃淡)のバラつきを評価した。得られた標準偏差の値を以下の評価基準に沿って評価し、B評価以上を合格とした。
A:標準偏差が2.5以下であった。
B:標準偏差が2.5超5.0以下であった。
C:標準偏差が5.0超であった。
<Appearance evaluation of molded products>
The most visually recognized abnormality in the appearance of a molded product is the shade of color. Therefore, after acquiring an image of the molded product sample using a scanner, the image was analyzed using image analysis software ("Image J"). Thereafter, a gray scale density profile was calculated using the gray scale plot profile function in the horizontal direction in an area of 15 mm in width x 3.5 mm in height. Furthermore, the standard deviation was calculated from the profile, and the variation in brightness (shade) was evaluated. The obtained standard deviation value was evaluated according to the following evaluation criteria, and a score of B or higher was considered to be a pass.
A: Standard deviation was 2.5 or less.
B: Standard deviation was more than 2.5 and less than 5.0.
C: Standard deviation was over 5.0.
<焼却灰の発生の有無>
得られた成形品を酸素雰囲気下にて600℃の条件で焼却して、サーマルリサイクル時の焼却灰の発生の有無を評価した。焼却灰が全く発生しなかったものを「焼却灰無し」とし、焼却灰が発生したものを「焼却灰有り」とした。
<Whether or not incineration ash is generated>
The obtained molded product was incinerated at 600° C. in an oxygen atmosphere, and the presence or absence of generation of incineration ash during thermal recycling was evaluated. Cases in which no incinerated ash was generated were defined as "no incinerated ash", and cases in which incinerated ash was generated were defined as "included ash".
[実施例2~10及び比較例1~6]
植物成分含有材料(A)及び樹脂組成物(B)の種類及び配合量を表1~2の通りとした以外は、実施例1と同じ条件で複合樹脂材料を調製した。得られた複合樹脂材料から実施例1と同じ条件で成形品を調製した。また得られた成形品について、実施例1と同じ条件で、機械的強度、外観評価、及び焼却灰の発生の有無を評価した。結果を表1~2に示す。
[Examples 2 to 10 and Comparative Examples 1 to 6]
A composite resin material was prepared under the same conditions as in Example 1, except that the types and amounts of the plant component-containing material (A) and resin composition (B) were as shown in Tables 1 and 2. A molded article was prepared from the obtained composite resin material under the same conditions as in Example 1. Furthermore, the obtained molded product was evaluated for mechanical strength, appearance evaluation, and presence or absence of incineration ash under the same conditions as in Example 1. The results are shown in Tables 1 and 2.
[参考例1~7]
表3に示す通り、植物成分含有材料(A)100質量%の材料について、実施例1と同じ条件で成形品を調製した。また無機フィラー含有樹脂組成物についても同様に成形品を調製した。得られた各成形品について、実施例1と同じ条件で、機械的強度、外観評価、及び焼却灰の発生の有無を評価した。結果を表3に示す。
[Reference examples 1 to 7]
As shown in Table 3, a molded article was prepared under the same conditions as in Example 1 using 100% by mass of the plant component-containing material (A). Furthermore, molded articles were similarly prepared for the inorganic filler-containing resin composition. For each of the obtained molded products, mechanical strength, appearance evaluation, and presence or absence of incineration ash were evaluated under the same conditions as in Example 1. The results are shown in Table 3.
表1~2に示すように、本実施形態の構成を満たす複合樹脂材料から得られた実施例1~10の成形品は、機械的強度に優れ、かつ外観も良好であった。また驚くべきことに、材料(A)と樹脂組成物(B)とを組み合わせることで、ガラス繊維を含む樹脂組成物を材料(A)と組み合わせた場合よりも、シャルピー衝撃強度が向上することも判明した。この理由は、成形品に含まれる繊維がより均一に分散できたためであると考えられる。
ガラス繊維を含む樹脂組成物を材料(A)と組み合わせた比較例1~4の複合樹脂材料から得られた成形品は、成形時における材料(A)とガラス繊維を含む樹脂組成物(B)の流動パターンが乖離することから外観に劣っていた。さらに、焼却時に焼却灰も発生した。また、天然の無機フィラーである炭酸カルシウムと、ポリプロピレンとを含む天然由来材料を、本実施形態の樹脂組成物(B)と組み合わせた複合樹脂材料から得られた比較例5~6の成形品は、機械的強度と外観は良好であったものの、焼却灰が発生した。
また、表3に示す通り、各材料(A)単独で成形された成形品(参考例1~7)は、機械的強度、特にシャルピー衝撃強度が実施例の成形品よりも劣っていることが分かる。また熱可塑性デンプンは、単独では成形できなかった。
以上の結果より、本実施形態に係る複合樹脂材料は、機械的強度に優れ、かつ外観も良好な成形品を提供できることが分かった。また、無機繊維や無機フィラーを配合せずとも成形品の機械的強度を改善できるため、本実施形態に係る複合樹脂材料から得られる成形品を回収してサーマルリサイクルした際に、焼却灰も発生しない。
As shown in Tables 1 and 2, the molded articles of Examples 1 to 10 obtained from composite resin materials satisfying the configuration of this embodiment had excellent mechanical strength and good appearance. Surprisingly, by combining material (A) and resin composition (B), the Charpy impact strength can be improved compared to when a resin composition containing glass fiber is combined with material (A). found. The reason for this is thought to be that the fibers contained in the molded article were more uniformly dispersed.
The molded products obtained from the composite resin materials of Comparative Examples 1 to 4 in which the resin composition containing glass fiber was combined with the material (A) were the same as the material (A) and the resin composition containing glass fiber (B) at the time of molding. The appearance was poor because the flow patterns of the particles deviated from each other. Furthermore, incineration ash was also generated during the incineration. In addition, the molded products of Comparative Examples 5 and 6 obtained from composite resin materials in which naturally derived materials containing calcium carbonate, which is a natural inorganic filler, and polypropylene were combined with the resin composition (B) of the present embodiment were Although the mechanical strength and appearance were good, incineration ash was generated.
Furthermore, as shown in Table 3, the molded products molded using each material (A) alone (Reference Examples 1 to 7) were inferior in mechanical strength, particularly Charpy impact strength, to the molded products in the examples. I understand. Furthermore, thermoplastic starch could not be molded by itself.
From the above results, it was found that the composite resin material according to this embodiment can provide a molded product with excellent mechanical strength and good appearance. In addition, since the mechanical strength of the molded product can be improved without adding inorganic fibers or fillers, incineration ash is also generated when the molded product obtained from the composite resin material according to this embodiment is collected and thermally recycled. do not.
本実施形態に係る複合樹脂材料は、機械強度に優れ、かつ外観も良好な成形品を提供できる。このような成形品は、例えば、ケース部品、車載ドアモジュール等の用途に好適に用いることができる。 The composite resin material according to this embodiment can provide a molded product with excellent mechanical strength and good appearance. Such molded products can be suitably used, for example, in case parts, vehicle door modules, and the like.
Claims (12)
熱可塑性樹脂(b-1)及び再生セルロース繊維(b-2)を含む樹脂組成物(B)とを含む、複合樹脂材料。 A resin composition (A-1) containing a plant-derived filler (a-1) and a thermoplastic resin (a-2), a thermoplastic resin (A-2) containing monomer units derived from plant raw materials, and a thermoplastic resin at least one plant component-containing material (A) selected from the group consisting of plastic starch (A-3);
A composite resin material comprising a thermoplastic resin (b-1) and a resin composition (B) containing regenerated cellulose fibers (b-2).
前記熱可塑性樹脂含浸再生セルロース繊維束(B-1)の総質量に対する、前記再生セルロース繊維(b-2)の割合が、10~50質量%である、請求項1または2に記載の複合樹脂材料。 The resin composition (B) is a thermoplastic resin-impregnated regenerated cellulose fiber in which the thermoplastic resin (b-1) impregnates a fiber bundle in which the regenerated cellulose fibers (b-2) are aligned in the length direction. including bundle (B-1);
The composite resin according to claim 1 or 2, wherein the proportion of the regenerated cellulose fiber (b-2) to the total mass of the thermoplastic resin-impregnated regenerated cellulose fiber bundle (B-1) is 10 to 50% by mass. material.
A molded article made of the composite resin material according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024524839A JPWO2023234237A1 (en) | 2022-06-01 | 2023-05-29 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022089443 | 2022-06-01 | ||
JP2022-089443 | 2022-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023234237A1 true WO2023234237A1 (en) | 2023-12-07 |
Family
ID=89025087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/019850 WO2023234237A1 (en) | 2022-06-01 | 2023-05-29 | Composite resin material and molded article |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023234237A1 (en) |
WO (1) | WO2023234237A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009138022A (en) * | 2007-12-03 | 2009-06-25 | Toyobo Co Ltd | Thermoplastic composite material composition |
JP2016191183A (en) * | 2015-03-31 | 2016-11-10 | ダイワボウホールディングス株式会社 | Composite molding substrate, composite molded body and method for producing the same |
-
2023
- 2023-05-29 JP JP2024524839A patent/JPWO2023234237A1/ja active Pending
- 2023-05-29 WO PCT/JP2023/019850 patent/WO2023234237A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009138022A (en) * | 2007-12-03 | 2009-06-25 | Toyobo Co Ltd | Thermoplastic composite material composition |
JP2016191183A (en) * | 2015-03-31 | 2016-11-10 | ダイワボウホールディングス株式会社 | Composite molding substrate, composite molded body and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023234237A1 (en) | 2023-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Malkapuram et al. | Recent development in natural fiber reinforced polypropylene composites | |
Bogoeva‐Gaceva et al. | Natural fiber eco‐composites | |
US8883885B2 (en) | Polyamide resin composition and method for producing polyamide resin composition | |
CA2924867C (en) | Hybrid sustainable composites and methods of making and using thereof | |
Guna et al. | Hybrid biocomposites | |
AU2013328401B2 (en) | Plant fiber-reinforced thermoplastic resin composition | |
US20030124937A1 (en) | Composite structures | |
CN105504363A (en) | Starch and plant fiber composite biodegradable polyester film-blowing grade resin and preparation method | |
US11780975B2 (en) | Method for preparing a composite material made from natural lignocellulosic fibers having improved rheological properties and reduced emissions of odors and volatile organic compounds | |
US9650728B2 (en) | Processing method for fiber material used to form biocomposite component | |
JP2022527644A (en) | Composite materials containing polybutylene succinate and poly (butylene succinate-co-adipate) and compostable articles containing the composite materials. | |
US10087291B2 (en) | Process to incorporate wet natural fiber and starch into thermoplastics | |
Mahmud et al. | Synthesis and applications of natural fiber‐reinforced epoxy composites: A comprehensive review | |
Arjmandi et al. | Rice husk and kenaf fiber reinforced polypropylene biocomposites | |
Jakab et al. | Agricultural by-product filled poly (lactic acid) biocomposites with enhanced biodegradability: The effect of flax seed meal and rapeseed straw | |
Babu et al. | Analyzing the mechanical and thermal property of hybrid natural fibers through reinforced polylactic acid composites | |
WO2023234237A1 (en) | Composite resin material and molded article | |
US20230250244A1 (en) | Kenaf-polyolefin composites and methods of making | |
Bae et al. | Effects of Wood Flour and MA-EPDM on the Properties of Fused Deposition Modeling 3D-printed Poly Lactic Acid Composites. | |
CN111704790A (en) | Preparation method of polylactic acid-based composite wire for 3D printing | |
Tanjung et al. | Thermoplastic polymer/wool composites | |
Mettu et al. | Optimization and mechanical characterization of casein and seaweed resin with hemp reinforcement: a review | |
US20240400773A1 (en) | Cellulosic composite | |
US20240400772A1 (en) | Cellulosic composite | |
Lendvai et al. | Effect of Maleated compatibilizer on the mechanical properties of PLA/mustard waste biocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23815994 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024524839 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23815994 Country of ref document: EP Kind code of ref document: A1 |