[go: up one dir, main page]

WO2023232034A1 - 液压系统及作业机械 - Google Patents

液压系统及作业机械 Download PDF

Info

Publication number
WO2023232034A1
WO2023232034A1 PCT/CN2023/097151 CN2023097151W WO2023232034A1 WO 2023232034 A1 WO2023232034 A1 WO 2023232034A1 CN 2023097151 W CN2023097151 W CN 2023097151W WO 2023232034 A1 WO2023232034 A1 WO 2023232034A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
valve
pressure
hydraulic
control
Prior art date
Application number
PCT/CN2023/097151
Other languages
English (en)
French (fr)
Inventor
郭文博
刘启明
方锡彬
崔永俊
张立更
Original Assignee
三一重机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210602859.4A external-priority patent/CN114992175A/zh
Priority claimed from CN202310484523.7A external-priority patent/CN116770925A/zh
Application filed by 三一重机有限公司 filed Critical 三一重机有限公司
Publication of WO2023232034A1 publication Critical patent/WO2023232034A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor

Definitions

  • the present application relates to the technical field of working machinery, and in particular to a hydraulic system and working machinery.
  • This application provides a hydraulic system and working machinery to solve the problem in the prior art that because the two pumps of the excavator's double pump drive the breaker at the same time, it is easy to be damaged when working for a long time. Damage to one of the pumps will cause the entire main pump to fail. Use, resulting in defects in reduced service life.
  • the present application provides a hydraulic system for controlling a hydraulic actuator of a working machine, including a first hydraulic pump, a second hydraulic pump, a valve assembly and a control device, wherein,
  • the first hydraulic pump is connected to the hydraulic actuator through a first oil supply line
  • the second hydraulic pump is connected to the hydraulic actuator through a second oil supply line
  • the control device is configured to control the valve assembly so that the first oil supply oil path and the second oil supply oil path are alternately connected to the hydraulic actuator.
  • the hydraulic system further includes:
  • a timing module that records the oil supply time for the first hydraulic pump and/or the second hydraulic pump to supply oil to the hydraulic actuator
  • control device is communicatively connected with the timing module, and the control device is used to control the valve assembly according to the fuel supply duration recorded by the timing module.
  • control device includes:
  • a control unit is communicatively connected with the timing module and the control valve group, and the control unit controls the valve assembly through the control valve group based on the fuel supply duration recorded by the timing module.
  • the hydraulic system further includes:
  • Time input module used to set the preset duration
  • the control device is communicatively connected with the time input module, and the control device can control the valve assembly to switch the oil supply path when the oil supply duration recorded by the timing module reaches the preset duration.
  • the valve assembly includes:
  • the first valve controls the opening or closing of the first oil supply circuit
  • the second valve controls the opening or closing of the second oil supply circuit
  • control device controls the opening and closing of the first valve and the second valve.
  • the hydraulic system further includes a main valve, the first hydraulic pump is connected to a first bypass oil passage, the second hydraulic pump is connected to a second bypass oil passage, and the first hydraulic pump is connected to a second bypass oil passage.
  • the bypass oil passage and the second bypass oil passage are respectively connected and blocked through the main valve.
  • control device is configured to control the first bypass oil passage to be cut off when the first oil supply oil passage is turned on, and to control the third bypass oil passage to be turned off when the second oil supply oil passage is turned on.
  • the second bypass oil line is cut off.
  • the hydraulic system further includes a main valve, the first hydraulic pump is connected to a first bypass oil passage, the second hydraulic pump is connected to a second bypass oil passage, and the first hydraulic pump is connected to a second bypass oil passage.
  • the bypass oil circuit and the second bypass oil circuit are respectively connected and blocked through the main valve;
  • the pilot oil port of the main valve and the pilot oil port of the valve assembly are connected to the oil outlet of the control valve group.
  • the main valve includes a first signal cut-off valve and a second signal cut-off valve, wherein,
  • the first signal cut-off valve controls the conduction or cut-off of the first bypass oil passage
  • the second signal cut-off valve controls the conduction or cut-off of the second bypass oil passage
  • the control device controls opening and closing of the first signal cut-off valve and the second signal cut-off valve.
  • the valve assembly includes a switching valve, through which the first oil supply oil circuit and the second oil supply oil circuit are controlled to alternately communicate with the hydraulic actuator.
  • the hydraulic system includes:
  • the oil inlet circuit has one end connected to the first oil supply circuit and the second oil supply circuit, and the other end is used to connect the oil inlet of the hydraulic actuator;
  • the rebound pressure relief oil circuit has an oil inlet end connected to the oil inlet oil circuit and an oil outlet end connected to the return oil circuit of the hydraulic actuator;
  • the rebound pressure relief oil circuit When the pressure of the oil inlet does not meet the rebound pressure relief condition, the rebound pressure relief oil circuit is in a closed state.
  • the rebound pressure relief conditions at least include:
  • the pressure of the oil inlet is greater than the maximum oil inlet pressure of the hydraulic actuator
  • the pressure rising speed of the oil inlet is greater than the first preset value
  • the pressure change curve of the oil inlet conforms to the rebound curve.
  • the rebound pressure relief oil circuit is provided with a rebound pressure relief valve
  • the rebound pressure relief valve is provided with:
  • the first oil is connected to the oil inlet passage
  • the second oil port is connected to the oil return line
  • a pilot control part capable of controlling the movement of the valve core according to the pressure of the first oil port
  • the pilot control unit includes:
  • the first pilot control part is connected to the first oil port through the first pilot oil line, and is connected to the second oil port through the second pilot oil line;
  • the second pilot control part is connected to the first oil port through a third pilot oil path, and is connected to the second oil port through a fourth pilot oil path, and the third pilot oil path is equipped with a flow limiting valve;
  • the elastic member can control the valve core to be in the second working position under normal conditions.
  • the oil return path of the hydraulic actuator is provided with:
  • Oil diffuser is arranged in series at the outlet of the back pressure valve
  • Peak reduction oil line one end is connected to the outlet of the oil diffuser, and the other end is connected to the inlet of the back pressure valve;
  • the peak elimination oil path is in a connected state
  • the peak elimination oil circuit is in a closed state.
  • the oil return peak elimination conditions at least include:
  • the number of times the internal pressure of the oil tank or the internal pressure of the oil inlet pipe of the oil tank is greater than or equal to the maximum rated oil pressure of the oil tank is greater than the preset number of times;
  • the internal pressure of the oil tank or the internal pressure of the oil inlet pipe of the oil tank is greater than or equal to the maximum rated oil pressure of the oil tank;
  • the internal pressure of the oil tank or the internal pressure of the oil inlet pipe of the oil tank is greater than or equal to the maximum rated oil return pressure
  • the internal pressure of the oil dispersion or the increase rate of the internal pressure of the oil inlet pipe of the oil dispersion is greater than the second preset value
  • the pressure change curve of the internal pressure of the oil tank or the internal pressure of the oil inlet pipe of the oil tank conforms to the oil return pulsation curve.
  • the preset time is any value within the range of 1 second to 3 seconds;
  • the maximum rated oil pressure of the oil dispenser is any value within the range of 1.2MPa to 1.4MPa;
  • the preset number of times is any value within the range of 4 to 6.
  • an electronically controlled on-off valve is provided in the peak reduction oil circuit
  • the oil distributor is provided with a first pressure sensor for detecting the internal pressure of the oil distributor, and/or the oil inlet pipe of the oil distributor is provided with a first pressure sensor for detecting the internal pressure of the oil inlet pipe;
  • the first pressure sensor is signal-connected to the switching valve; or, both the first pressure sensor and the switching valve are signal-connected to the central controller.
  • This application also provides a working machine, including a hydraulic actuator and a hydraulic system as described in any one of the above.
  • the hydraulic actuator is a breaker hammer.
  • the hydraulic system and working machinery provided by this application can control the switching of the valve assembly through the control device, so that the first hydraulic pump and the second hydraulic pump can alternately supply oil to the hydraulic actuator, which can reduce the working time of a single pump in a single time period. , which is conducive to extending the service life of the first hydraulic pump and the second hydraulic pump, thereby conducive to increasing the service life of the main pump.
  • Figure 1 is a schematic structural diagram of a hydraulic system according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a hydraulic system provided according to another embodiment of the present application.
  • Figure 3 is a partial enlarged view of Figure 2.
  • Two signal cut-off valve 61-first valve; 62-second valve; 63-relief valve; 101-oil inlet; 102-oil return port; 901-first pilot oil circuit; 902-second pilot oil circuit ; 903-The third pilot oil circuit; 904-The fourth pilot oil circuit; 911-The first oil port; 912-The second oil port; 921-The first pilot control part; 922-The second pilot control part; 931-Limited Flow valve; L1-inlet oil circuit; L2-return oil circuit; L3-rebound pressure relief oil circuit; L4-peak elimination oil circuit.
  • the hydraulic system provided by this application is used to control the hydraulic actuator of a working machine.
  • This hydraulic system includes a first hydraulic pump 3, a second hydraulic pump 4, a valve assembly 6 and a control device.
  • the first hydraulic pump 3 is connected to the hydraulic actuator through a first oil supply oil line
  • the second hydraulic pump 4 is connected to the hydraulic actuator through a second oil supply oil line to supply oil to the hydraulic actuator.
  • the hydraulic actuator is a breaker hammer 2 .
  • the valve assembly 6 is used to control the first oil supply oil channel and the second oil supply oil channel. Specifically, the valve assembly 6 can control the first oil supply oil channel and the second oil supply oil channel to be on or off, so that the first oil supply oil channel One of the oil supply circuit and the second oil supply circuit is connected to the hydraulic actuator; or the valve assembly 6 controls one of the first oil supply circuit and the second oil supply circuit to switch to the position connected to the hydraulic actuator.
  • the connected oil inlet passage is connected, so that the first hydraulic pump 3 and the second hydraulic pump 4 can be controlled to supply oil to the hydraulic actuator separately.
  • the control device is used to control the valve assembly 6, thereby controlling the first hydraulic pump 3 and the second hydraulic pump 4 to alternately supply oil to the hydraulic actuator.
  • the first hydraulic pump 3 and the second hydraulic pump 4 can alternately supply oil to the hydraulic actuator by controlling the valve assembly 6 through the control device, which can reduce the working time of a single pump in a single time period and is beneficial to extending the first hydraulic pump. 3 and the service life of the second hydraulic pump 4, thereby improving the service life of the entire main pump.
  • the valve assembly 6 may include a first valve 61 and a second valve 62,
  • the first valve 61 is used to control the opening or closing of the first oil supply path
  • the second valve 62 is used to control the opening or closing of the second oil supply path.
  • the control device is used to control the opening and closing of the first valve 61 and the second valve 62, that is, the control device can respectively control the first oil supply oil path and the second oil supply oil path through the first valve 61 and the second valve 62. Pass or cut off.
  • the first hydraulic pump 3 and the second hydraulic pump 4 can alternately supply oil to the hydraulic actuator, thereby improving the efficiency of the first hydraulic pump 3 and the second hydraulic pump 4.
  • both the first valve 61 and the second valve 62 may be reversing valves.
  • the valve assembly 6 may include a 2-position 3-way directional valve, and the 2-position 3-way directional valve is used to connect with the first oil supply oil circuit and the second oil supply oil circuit, and the control device controls the two The conduction state of the three-way directional valve is used to control the conduction or cutoff of the first oil supply oil circuit and the second oil supply oil circuit, so as to realize that the first hydraulic pump 3 and the second hydraulic pump 4 alternately supply oil to the hydraulic actuator. .
  • the 2-position 3-way directional valve is a 2-in-1-out directional valve.
  • the first inlet of the 2-position 3-way directional valve is connected to the first oil supply oil path, and the second inlet is connected to the second oil supply oil path.
  • the oil outlet of the two-position three-way directional valve is used to connect with the hydraulic actuator.
  • the valve assembly 6 may also include a relief valve 63.
  • the oil inlet of the relief valve 63 is connected to the oil outlets of the first valve 61 and the second valve 62, and the outlet of the relief valve 63 is connected to the oil outlet of the first valve 61 and the second valve 62.
  • the oil port is connected to the oil tank 1. In this way, the overflow valve 63 can prevent the hydraulic actuator from excessive pressure, thereby protecting the hydraulic actuator, thereby conducive to increasing the service life of the hydraulic actuator.
  • the relief valve 63 may be provided on the crushing pipeline between the oil outlets of the first valve 61 and the second valve 62 and the hydraulic actuator.
  • the hydraulic system may further include a timing module, which is used to record the oil supply time of the first hydraulic pump 3 and/or the second hydraulic pump 4 to the hydraulic actuator.
  • control device can be connected through communication with the timing module, and the control device is used to control the valve assembly 6 to switch the oil supply path according to the oil supply duration recorded by the timing module, so that the first oil supply path and the second oil supply path are alternately guided. Pass.
  • the first hydraulic pump 3 and the second hydraulic pump 4 can work alternately after working for a certain period of time, thereby reducing the working time of a single pump in a single time period.
  • the timing module can record the opening time of the first valve 61 and the second valve 62 to determine the first hydraulic pump 3 and the second hydraulic pump 4 by recording the opening time of the first valve 61 and the second valve 62 It is the oil supply time of the hydraulic actuator.
  • the hydraulic system provided by the present application may also include a time input module.
  • the time input module is used to set the preset duration
  • the control device is communicatively connected with the time input module.
  • the control device can control the supply time recorded by the timing module.
  • the control valve assembly 6 switches to conduction, so that the first oil supply oil path and the second oil supply oil path are alternately conducted. Pass. In this way, the first hydraulic pump 3 and the second hydraulic pump 4 can work alternately after a preset working time, thereby reducing the working time of a single pump in a single time period.
  • the timing module can be a timer, and the time input module can be a mechanical keyboard or keys.
  • control device may include a control valve group 7 and a control unit.
  • the control valve group 7 is used to control the valve assembly 6.
  • the control unit is communicatively connected with the timing module and the control valve group 7, and the control unit can be based on timing.
  • the oil supply duration recorded by the module controls the control valve group 7 so that the control valve group 7 controls the valve assembly 6 to switch conduction.
  • the time input module can be communicatively connected with the control unit, and the control unit can include a comparison module, which is used to compare the fuel supply duration recorded by the timing module with the preset duration, and can send the comparison result to the control unit.
  • the control unit Based on the comparison result, the control valve group 7 is controlled to send a control signal to control the valve assembly 6 .
  • control unit can be a controller or a control circuit board.
  • the controller can be a PLC controller or a single-chip microcomputer controller, or other devices or equipment that can realize automatic control.
  • the control unit is not specifically limited here. The details can be set according to actual needs.
  • the hydraulic system provided by this application further includes a main valve 5, the first hydraulic pump 3 is connected to a first bypass oil line, the second hydraulic pump 4 is connected to a second bypass oil line, and the first hydraulic pump 3 is connected to a first bypass oil line.
  • the bypass oil path and the second bypass oil path are respectively controlled on and off through the main valve 5.
  • the oil supply of the first hydraulic pump 3 and the second hydraulic pump 4 can be respectively through the first bypass oil path and the second bypass oil path. Return to the oil tank 1, or the first hydraulic pump 3 and the second hydraulic pump 4 supply oil to other oil-using equipment through the first bypass oil passage and the second bypass oil passage respectively, thereby ensuring the normal operation of other oil-using equipment.
  • the main valve 5 may include a first signal cut-off valve 51 and a second signal cut-off valve 52.
  • the first signal cut-off valve 51 is used to control the conduction or cut-off of the first bypass oil circuit
  • the second signal cut-off valve 52 is used to control the second The bypass oil circuit is on or off.
  • control device is used to control the opening and closing of the first signal cut-off valve 51 and the second signal cut-off valve 52, thereby controlling the opening or closing of the first bypass oil passage and the second bypass oil passage.
  • control valve group 7 can control the first signal cut-off valve 51 so that the first signal cut-off valve 51 controls the first bypass oil passage to cut off, so that the oil provided by the first hydraulic pump 3 cannot return to the oil tank 1 or to Other oil equipment supplies oil, so that the oil provided by the first hydraulic pump 3 can supply oil to the hydraulic actuator through the first oil supply oil line;
  • the control valve group 7 can control the second signal cut-off valve 52 so that the second signal The cut-off valve 52 controls the second bypass oil circuit to be cut off, so that the oil in the second hydraulic pump 4 cannot return to the oil tank 1 or supply oil to other oil-using equipment, so that the oil provided by the second hydraulic pump 4 can pass through the second hydraulic pump 4.
  • the oil supply circuit supplies oil to the hydraulic actuator.
  • the main valve 5 may include a first valve block and a second valve block, wherein the first bypass oil path is connected and blocked through the first valve block, and the second bypass oil path is connected and blocked through the second valve block, so that , when the first valve block is connected to the first bypass oil path, the oil supply from the first hydraulic pump 3 supplies oil to other oil-using equipment through the first bypass oil path or returns to the oil tank 1, and the second valve block is connected to the second When the oil circuit is bypassed, the oil supplied by the second hydraulic pump 4 supplies oil to other oil-using equipment or returns to the oil tank 1 through the second bypass oil circuit.
  • the first signal cut-off valve 51 can cut off the first valve block, so that the first valve block is not conductive, thereby blocking the first bypass oil passage;
  • the second signal cut-off valve 52 can cut off the second valve block, so that the second The valve block is non-conducting, thus blocking the second bypass oil line.
  • the control device controls the first valve 61 to be turned on, the first oil supply oil path is turned on, allowing the first hydraulic pump 3 to supply oil to the breaker hammer 2.
  • the control device controls the first signal cut-off valve 51 so that the first signal cut-off valve 51 cuts off the first valve block, thereby blocking the first bypass oil path, so that the first hydraulic pump 3 can only supply oil to the hydraulic actuator; or,
  • the control device controls the second valve 62 to be turned on, the second oil supply oil path is turned on, allowing the second hydraulic pump 4 to supply oil to the breaker 2.
  • the control device controls the second signal cut-off valve 52 to make the second signal
  • the cut-off valve 52 cuts off the second valve block, thereby blocking the second bypass oil passage, so that the second hydraulic pump 4 can only supply oil to the hydraulic actuator. That is to say, the control device is configured to control the first bypass oil passage to be cut off when the first oil supply oil passage is turned on, and to control the second bypass oil passage to be cut off when the second oil supply oil passage is turned on.
  • the crushing joint oil port of the main valve 5 is a closed oil port. In this way, when the first hydraulic pump 3 or the second hydraulic pump 4 supplies oil to the main valve 5, the crushing oil port will not be supplied through the main valve 5. Hammer 2 supplies oil.
  • the control unit controls the control valve group 7 to control the valve assembly 6 so that the first oil supply oil circuit is turned on, causing the first hydraulic pump 3 to start supplying oil to the hydraulic actuator.
  • the timing module records the conduction time of the first oil supply circuit (that is, the opening time of the first valve 61); when the timing module records
  • the control unit controls the control valve group 7 so that the control valve group 7 controls the valve assembly 6 to switch to conduction, so that the second oil supply line is conductive, so that the second hydraulic pump 4 starts to Hydraulic actuator oil supply.
  • the control unit when the control unit receives the start signal of the hydraulic actuator, the control unit controls the control valve group 7 to control the valve assembly 6 to conduct the second oil supply path, so that the second hydraulic pump 4 starts to supply oil to the hydraulic actuator.
  • the timing module records the conduction time of the second oil supply circuit (that is, the opening time of the second valve 62).
  • the control valve group 7 controls the valve The component 6 switches to conduction, causing the first hydraulic pump 3 to start supplying oil to the hydraulic actuator. In this way, the alternate operation of the first hydraulic pump 3 and the second hydraulic pump 4 can be achieved.
  • the timing module starts to re-time to ensure that the oil supply time of the first hydraulic pump 3 and the second hydraulic pump 4 is the same, thereby improving the efficiency of the first hydraulic pump 3 and the second hydraulic pump 4.
  • the control unit when the control unit does not receive the start signal of the hydraulic actuator, that is, when the hydraulic actuator is not working, the control unit controls the control valve group 7 to control the valve core of the valve assembly 6 to lock, that is, it can control Both the first valve 61 and the second valve 62 are in a closed state, so that neither the first hydraulic pump 3 nor the second hydraulic pump 4 can supply oil to the hydraulic actuator through the valve assembly 6 .
  • the pilot oil port of the main valve 5 and the pilot oil port of the valve assembly 6 are both connected to the oil outlet of the control valve group 7 .
  • control valve group 7 may include a first control valve and a second control valve, and the oil outlet of the first control valve may be connected to the second control valve.
  • the pilot oil port of a valve 61 is connected to the pilot oil port of the first signal cut-off valve 51.
  • the first control valve supplies hydraulic oil (i.e. pilot oil) to the first valve 61 and the first signal cut-off valve 51 to control the first valve 61 and the first signal cut-off valve 51.
  • a valve 61 and a first signal cut-off valve 51 are controlled so that the first valve 61 controls the conduction of the first oil supply oil path, and the first signal cut-off valve 51 controls the blocking of the first bypass oil path.
  • the oil outlet of the second control valve can be connected with the pilot oil port of the second valve 62 and the pilot oil port of the second signal cut-off valve 52.
  • the second valve 62 and the second signal cut-off valve 52 are connected through the second control valve. Hydraulic oil is supplied to regulate the second valve 62 and the second signal cut-off valve 52, so that the second valve 62 controls the conduction of the second oil supply oil passage, and the second signal cut-off valve 52 controls the second bypass oil passage to cut off.
  • both the first control valve and the second control valve are communicatively connected with the control unit, and both the first control valve and the second control valve may be solenoid valves.
  • the control valve group 7 can be a two-link solenoid valve group, that is, the first control valve and the second control valve are combined to form a two-link solenoid valve group.
  • the two solenoid valves of the two-link solenoid valve group are interlocked, which is beneficial to improving control.
  • the control accuracy of the valve group 7 is improved and the safety factor of the control valve group 7 and the valve assembly 6 is improved.
  • both the first oil supply oil line and the second oil supply oil line may be provided with one-way valves, and the conduction directions of the two one-way valves are respectively connected with the first hydraulic pump 3 to the first valve 61.
  • the direction is consistent with the direction from the second hydraulic pump 4 to the second valve 62, so that oil backflow can be avoided.
  • An oil inlet stop valve 8 can also be provided on the crushing pipeline of the breaker hammer 2, and an oil return stop valve 11 and a filter 10 can be provided on the oil return pipeline of the breaker hammer 2.
  • the oil return pipeline of the breaker hammer 2 is connected to the oil tank 1 .
  • the control unit can obtain the start signal of the breaker hammer 2, that is, when the excavator switches to the crushing mode; the control unit controls the two-link solenoid valve group to send the first working signal DC1 to the valve assembly 6 and control The two-link solenoid valve group sends a signal to the first signal cut-off valve 51, and the first signal cut-off valve 51 makes the first valve block non-conductive; based on the received first working signal DC1, the first valve 61 of the valve assembly 6 opens, The first oil supply line is opened, so that the first hydraulic pump 3 supplies oil to the breaker 2; at the same time, the timing module starts to record the opening time of the first valve 61 to record the supply of the first hydraulic pump 3 to the hydraulic actuator.
  • the control unit controls the two-link solenoid valve group to send the second working signal DC2 to the valve assembly 6 and controls the two-link solenoid valve group to send a signal to the second signal cut-off valve 52,
  • the second signal cut-off valve 52 makes the second valve block non-conducting; based on the received second working signal DC2, the second valve 62 of the valve assembly 6 opens, causing the second oil supply oil path to conduct, allowing the second hydraulic pump to 4 supplies oil to the breaker 2; at the same time, the timing module re-times to record the oil supply time of the second hydraulic pump 4 to the hydraulic actuator until the working time recorded by the timing module is equal to the preset time t2.
  • the control unit again controls the two-link solenoid valve group to send the first working signal DC1 to the valve assembly 6, and controls the valve assembly 6 to change direction again to realize the alternate operation of
  • the timing module When the control unit obtains the start signal of breaker 2 (such as the signal to restart after power failure), the timing module records When the oil supply time of the hydraulic pump (such as the first hydraulic pump 3) to the hydraulic actuator is less than the preset time, the control unit controls the two-link solenoid valve group to send the working signal corresponding to the hydraulic pump to the valve assembly 6, so that the valve The valve corresponding to the hydraulic pump of component 6 is opened (for example, the first valve 61 of valve component 6 is opened).
  • the hydraulic pump such as the first hydraulic pump 3
  • the control unit controls the two-link solenoid valve group to valve component 6 Send a working signal corresponding to another hydraulic pump, and control the valve assembly 6 to open the valve corresponding to the other hydraulic pump (for example, the second valve 62 of the valve assembly 6 is opened), so that the other hydraulic pump supplies oil to the breaker 2, This will help ensure that the two hydraulic pumps supply oil to the hydraulic actuator for the same length of time, thereby increasing the service life of the two hydraulic pumps.
  • the first hydraulic pump 3 is connected to the first oil supply line L5, the second hydraulic pump 4 is connected to the second oil supply line L6, and the first oil supply line L5 and the second oil supply line L5 are connected to each other.
  • the oil supply circuit L6 is connected to the oil inlet circuit L1 of the hydraulic actuator through the valve assembly 6.
  • the control device can control the valve assembly 6 so that the valve assembly 6 switches one of the first oil supply oil path L5 and the second oil supply oil path L6 to communicate with the hydraulic actuator, thereby controlling the first hydraulic pump 3 and The second hydraulic pump 4 supplies oil to the hydraulic actuator alternately.
  • the hydraulic system provided by this embodiment has a dual-pump switching function for crushing.
  • the valve assembly 6 is a switching valve used to switch the first hydraulic pump 3 and the second hydraulic pump 4 to supply oil to the breaker 2. It mainly consists of two parts: the main spool stage and the electro-hydraulic pilot. class.
  • the control signal of the electro-hydraulic pilot stage can be controlled by the central controller (ECU) 25, that is, the control device is the central controller (ECU) 25.
  • timing switching that is, whenever After a pump has worked for a certain period of time (for example: 500 hours), the controller switching condition is triggered to realize switching between the first hydraulic pump 3 and the second hydraulic pump 4; another example is to set a touch button on the central display screen in the excavator cab.
  • control button or any one or more combinations of touch button/control button 23/control foot pedal 24, and the driver can manually trigger the switch according to actual needs.
  • the hydraulic system also includes a control valve 21 , which is used to control the opening and closing of the inlet oil path L1 .
  • the control valve 21 can be controlled by a central controller (ECU) 25 .
  • the control valve 21 is connected to the pilot pump 22 and the central controller (ECU) 25 through the crushing pilot solenoid valve 26.
  • the central controller (ECU) 25 can control the control valve 21 by controlling the crushing pilot solenoid valve 26.
  • the hydraulic system also includes a bypass oil path (the oil path to the system in Figure 2).
  • a bypass oil path the oil path to the system in Figure 2).
  • one of the first hydraulic pump 3 and the second hydraulic pump 4 can be used.
  • the other one supplies oil to the system through the bypass oil line.
  • the control valve 21 can be used to control the opening and closing of the inlet oil path L1 and the bypass oil path.
  • the hydraulic system includes an inlet oil circuit L1, a return oil circuit L2, and a rebound pressure relief oil circuit L3.
  • One end of the oil inlet line L1 is used to connect to the first oil supply line L5 and the second oil supply line L6, and the other end is used to connect the oil inlet 101 of the excavator breaker 2;
  • the return oil line L2 is used to Connect the oil return port 102 of the breaker 2;
  • the oil inlet end of the rebound pressure relief oil circuit L3 is connected to the inlet oil circuit L1, and the oil outlet is connected to the return oil circuit L2, that is, the rebound pressure relief oil circuit L3 is connected in parallel with the breaker hammer 2.
  • the rebound pressure relief oil circuit L3 When the pressure in the oil inlet 101 meets the rebound pressure relief condition, the rebound pressure relief oil circuit L3 is in a connected state, thereby serving as a bypass oil circuit for the breaker 2 to realize pressure relief, that is, to discharge the instantaneous high pressure caused by rebound.
  • the rebound pressure relief oil circuit L3 When the pressure in the oil inlet 101 does not meet the rebound pressure relief conditions, the rebound pressure relief oil circuit L3 is in a closed state, and the breaker 2 operates normally.
  • the rebound pressure relief condition mentioned in this article refers to any judgment condition that can determine whether the breaker hammer rebounds.
  • the rebound pressure relief condition can be:
  • the pressure rising speed (i.e., the pressure increasing speed) of the breaker oil inlet 101 is greater than the first preset value
  • the pressure change curve of the breaker oil inlet 101 conforms to the rebound curve (the "rebound curve” refers to the pressure formed when the rebound occurs and the pressure of the breaker oil inlet 101 changes over time within a period of time.
  • the pressure change curve is generally preset in the controller.
  • the oil inlet is determined.
  • the pressure at port 101 meets the rebound pressure relief conditions, rebound occurs, and the rebound pressure relief oil circuit L3 is opened for pressure relief);
  • any other reference factors that can be used as a basis for determining the occurrence of rebound (at this time, instantaneous high pressure will generally appear at the oil inlet of the breaker).
  • the breaker hydraulic control system provided by the embodiment of the present application can prevent the abnormality caused by the rebound through the rebound pressure relief oil circuit L3 when the breaker 2 encounters a hard rock (or other hard material) and rebounds.
  • the release of instantaneous high pressure (or high pressure peak) can greatly improve the load condition of the hydraulic system and improve system reliability.
  • the rebound pressure relief oil passage L3 is provided with a rebound pressure relief valve 9 .
  • the rebound pressure relief valve 9 When the rebound pressure relief valve 9 is opened and its valve core is in the first working position (see the right communication position in Figure 3), the internal oil path between the first oil port 911 and the second oil port 912 is connected, so that The rebound pressure relief oil circuit L3 is in a connected state; when the rebound pressure relief valve 9 is closed and its valve core is in the second working position (see the left closed position in Figure 3), the first oil port 911 and the second oil port The internal oil circuit between 9 and 12 is closed, so the rebound pressure relief oil circuit L3 is in a closed state.
  • the rebound pressure relief valve 9 is provided with a first oil port 911, a second oil port 912 and a pilot control part. Among them: the first oil port 911 is connected to the oil inlet passage L1; the second oil port 912 is connected to the return oil passage L2; the movement of the spool can be controlled according to the pressure of the first oil port 911 through the pilot control part.
  • the pilot control part includes a first pilot control part 921, a second pilot control part 922, and an elastic member (eg, a spring).
  • the first pilot control part 921 is connected to the first oil port 911 through the first pilot oil passage 901, and is connected to the second oil port 912 through the second pilot oil passage 902;
  • the second pilot control part 922 is connected through the third pilot oil
  • the passage 903 is connected to the first oil port 911, and is connected to the second oil port 912 through the fourth pilot oil passage 904.
  • the third pilot oil passage 903 is provided with a flow limiting valve 931 (or called a damping valve); it can be controlled by the elastic member
  • the valve core is in the second working position (i.e., the closed position) under normal conditions. That is to say, after the first pilot control part 921 drives the valve core to move to the first working position; if the oil pressure on both sides of the valve core is equal, the elastic member The restoring force can control the valve core to return to the second working position.
  • the pressure in the oil inlet 101 must meet the rebound pressure relief conditions. At this time, an abnormality occurs on the upper side of the rebound pressure relief valve 9 (i.e., the first oil port 911). Instantaneous high pressure is transmitted to both sides of the rebound pressure relief valve 9 simultaneously. At this time, the pressure of the oil inlet 101 is greater than the pressure of the oil return port 102, so the pressure of the first oil port 911 is greater than the pressure of the second oil port 912.
  • both the first pilot control part 921 and the second pilot control part 922 are connected to the first oil port 911, under the action of the flow limiting valve 931, the pressure exerted by the first pilot control part 921 on the valve core is greater than that of the second pilot control part 921.
  • the pressure of the control part 922 acts on the valve core. Therefore, the first pilot control part 921 can overcome the spring force to push the valve core to move forward (specifically, the valve core in Figure 3 moves to the left), thereby rebounding and releasing pressure.
  • the valve core of the valve 9 moves to the first working position on the right side in Figure 3.
  • the internal oil path between the first oil port 911 and the second oil port 912 is connected, that is, the rebound pressure relief valve 9 is in an open state. Therefore, the rebound pressure relief oil circuit L3 is in a connected state.
  • the rebound pressure relief oil circuit L3 serves as the bypass oil circuit of the breaker 2 and can discharge the instantaneous high pressure caused by rebound.
  • the pressure of the oil inlet 101 When rebound does not occur, the pressure of the oil inlet 101 must not meet the rebound pressure relief conditions. For example, after the instantaneous high pressure caused by the rebound is removed, the pressure of the first oil port 911 is not greater than the pressure of the second oil port 912. At this time, since the first pilot control part 921 and the second pilot control part 922 are connected to the second oil port 912 through the second pilot oil passage 902 and the fourth pilot oil passage 904 respectively, the first pilot control part 921 acts on the valve. The pressure on the core is equal to the pressure exerted by the second pilot control part 922 on the valve core. Under the restoring force of the elastic member, the valve core moves in the reverse direction (specifically, the valve core in Figure 3 moves to the right).
  • radiator such as Aluminum radiator
  • An embodiment provides a hydraulic system in which a back pressure valve 20, an oil diffuser 19 and a peak reduction oil path L4 are provided in the return oil path L2.
  • the oil diffuser 19 is arranged in series at the outlet of the back pressure valve 20; one end of the peak reduction oil line L4 is connected to the outlet of the oil diffuser 19, and the other end is connected to the inlet of the back pressure valve 20.
  • the peak elimination oil path L4 When the internal pressure of the oil dispersion 19 or the internal pressure of the oil inlet pipe of the oil dispersion 19 meets the conditions for oil return and peak elimination, the peak elimination oil path L4 is in a connected state. At this time, the peak elimination oil path L4 is equivalent to a bypass pipeline.
  • the peak-pressure oil flows back to the oil tank 1 through the peak-reducing oil line L4, basically not passing through the oil dispersion 19, thereby achieving the purpose of eliminating the high-pressure pulsation in the return oil line L2. , effectively improve the stress of the oil disperser 19, protect the oil disperser 19, and avoid the problem of fatigue cracking failure of the oil disperser caused by high pressure pulsation.
  • the peak reduction oil circuit L4 When the internal pressure of the oil dispersion 19 or the internal pressure of the oil inlet pipe of the oil dispersion 19 does not meet the oil return peak reduction conditions, the peak reduction oil circuit L4 is in a closed state, the oil return oil circuit L2 resumes normal operation, and the return oil passes through the back pressure valve 20 After the oil is dispersed 19, it returns to the fuel tank 1.
  • the above-mentioned oil return peak elimination conditions for controlling the opening and closing of the peak elimination oil circuit L4 refer to any judgment conditions that can determine whether oil return pulsation occurs in the return oil circuit.
  • the oil return peak elimination conditions can be : Within the preset time, the number of times the internal pressure of the oil tank or the internal pressure of the oil tank inlet pipe is greater than or equal to the maximum rated oil pressure of the oil tank is greater than the preset number of times.
  • the above-mentioned preset time is any value in the range of 1 second to 3 seconds (for example, 2 seconds); the maximum rated oil pressure of oil dispersion is any value in the range of 1.2MPa to 1.4MPa (for example, 1.3MPa); and the number of preset times is 4 to any value in the range of 6 (e.g. 5 times).
  • oil return peak elimination conditions can also be set as:
  • the internal pressure of the oil tank 19 or the internal pressure of the oil inlet pipe of the oil tank 19 is greater than or equal to the maximum pressure inside the oil tank when the breaker 2 is working normally and the oil return line L2 returns oil normally, that is, the maximum rated oil pressure of the oil tank;
  • the internal pressure of the oil tank 19 or the internal pressure of the oil inlet pipe of the oil tank 19 is greater than or equal to the maximum pressure in the return oil line L2 when the breaker 2 is working normally and the return oil line L2 returns oil normally, that is, the maximum rated Return oil pressure;
  • the internal pressure of the oil dispersion 19 or the rising speed of the internal pressure of the oil inlet pipe of the oil dispersion 19 i.e., the pressure increase speed
  • the second preset value the internal pressure of the oil dispersion 19 or the rising speed of the internal pressure of the oil inlet pipe of the oil dispersion 19
  • the pressure change curve of the internal pressure of the oil tank 19 or the internal pressure of the oil inlet pipe of the oil tank 19 conforms to the oil return pulsation curve (the "oil return pulsation curve” means that when oil return pulsation occurs, the return oil line L2, especially It is a pressure change curve formed when the pressure at the position of the oil dispersion 19 changes with time within a period of time. It is generally preset in the controller.
  • any other reference factor that can be used as a basis for determining the occurrence of oil return pulsation (at this time, the oil pressure change in the oil return oil line L2, especially the position where the oil diffuser 19 is located, appears in the form of a pulse).
  • a switching valve 29 is provided in the peak reduction oil line L4, and the switching valve 29 may be an electronically controlled switching valve; the oil tank 19 is provided with a first pressure sensor 16 for detecting the internal pressure of the oil tank, and/or the oil tank The oil inlet pipe 19 is provided with a first pressure sensor 16 for detecting the internal pressure of the oil inlet pipe. Furthermore, the first pressure sensor 16 is connected to the switching valve 29 with signals, or both the first pressure sensor 16 and the switching valve 29 are connected with the central controller 25 with signals. When the pressure detected by the first pressure sensor 16 meets the oil return peak elimination condition, the switch valve 29 is opened, and the peak elimination oil path L4 is in a connected state, which can eliminate the peak of the high-pressure pulsation phenomenon in the return oil path L2. .
  • the switching valve 29 is an electronically controlled high-speed switching bypass valve, and its control signal is controlled by the central controller (ECU) 25.
  • the central controller (ECU) 25 When the first pressure sensor 16 senses abnormal pressure pulsation (for example, when the oil dispersion pressure is greater than 1.3 MPa, trigger a 2-second timer and count the number of times the pressure is greater than 1.3MPa. Within 2 seconds, if the number is greater than 5 times, it is considered that abnormal pressure pulsation has occurred), and then passes the central controller (ECU) 25 calculation, based on the above abnormal pressure conditions, a switching command is output to the switching valve 29 to release the pulsating peak pressure at high speed, effectively protecting the oil diffuser 19 from failure due to pressure fatigue cracking.
  • abnormal pressure pulsation for example, when the oil dispersion pressure is greater than 1.3 MPa, trigger a 2-second timer and count the number of times the pressure is greater than 1.3MPa. Within 2 seconds, if the number is greater than 5 times, it is considered that abnormal
  • the hydraulic system provided by this embodiment has the function of reducing the pulsation peak of the crushing oil return, which can release the peak value of the pulsation of the breaker oil return and protect the oil from scattering.
  • the oil inlet line L1 there are two switching pumps (the first hydraulic pump 3 and the second hydraulic pump 4), a valve assembly 6, a control valve 21, a high-pressure accumulator 12, and an oil inlet stop valve arranged in series along the oil inlet direction. 8;
  • oil return line L2 there are oil return stop valve 11, low pressure accumulator 28, broken pipeline filter 27, back pressure valve 20, oil diffuser 19, oil return filter 18, and oil tank arranged in series along the oil return direction. 1; and is also provided with the above-mentioned on-off valve 29 for oil return peak reduction;
  • the oil diffuser 19 is provided with a first pressure sensor 16
  • the broken pipeline filter 27 is provided with a second pressure sensor 15, and the return oil filter
  • the device 18 is provided with a third pressure sensor 17;
  • crushing overload valve 14 There are also a crushing overload valve 14, a crushing relief valve 13 (preferably an electronically controlled proportional relief valve) and a rebound pressure relief valve 9 between the inlet oil line L1 and the return oil line L2;
  • the main valve 21 is connected to the pilot pump 22 and the central controller (ECU) 25 through the crushing pilot solenoid valve 26.
  • the central controller (ECU) 25 is connected with a control button 23 and a control pedal 24.
  • A, B, C in Figure 1 They are used to control the switch valve 29, the crushing relief valve 13 and the valve assembly 6 respectively.
  • the hydraulic system provided by the embodiment of the present application has the function of switching between double crushing pumps, the function of crushing rebound pressure relief, and the function of crushing oil return pulsation peak reduction, which can greatly improve system reliability and effectively solve market pain points.
  • This application provides a working machine, which includes a hydraulic actuator and a hydraulic system as described in any of the above embodiments.
  • the hydraulic actuator may be a breaker, or of course other mechanisms actuated by hydraulic pressure.
  • operating machinery may be an excavator, a pump truck, or other engineering machinery equipped with a hydraulic actuator.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

提供一种液压系统及作业机械,用于控制作业机械的液压执行机构,包括第一液压泵、第二液压泵、阀组件和控制装置,第一液压泵通过第一供油油路与液压执行机构相连,第二液压泵通过第二供油油路与液压执行机构相连;控制装置设置为控制阀组件,使第一供油油路和第二供油油路交替地与所述液压执行机构导通。通过控制装置控制阀组件可以使第一液压泵和第二液压泵交替为液压执行机构供油,减少单个时间段内单个泵的工作时长,有利于延长整个液压泵的使用寿命。

Description

液压系统及作业机械 技术领域
本申请涉及作业机械技术领域,尤其涉及一种液压系统及作业机械。
背景技术
目前,越来越多的挖掘机被不断运用在各个领域。在拆除老旧建筑、水泥路面、矿山开采等工况载破碎锤的应用越来越多,相较于挖斗工况,挖掘机在破碎工况下工作时主泵压力在高压与低压之间切换更加频繁,且压力幅值更高,长期处在破碎工况下工作对主泵危害很大,由于现有大型挖掘机的主泵采用双联泵,双联泵的两个泵同时驱动破碎锤工作,双联泵的两个泵在破碎工况下工作时压力在高压与低压之间频繁切换,长时间工作容易损坏,若当其中一个泵损坏后则致使整个主泵将无法使用,从而致使主泵的使用寿命降低。
发明内容
本申请提供一种液压系统及作业机械,用以解决现有技术中由于挖掘机双联泵的两个泵同时驱动破碎锤工作,长时间工作容易损坏,其中一泵损坏则致使整个主泵无法使用,从而致使的使用寿命降低的缺陷。
本申请提供一种液压系统,用于控制作业机械的液压执行机构,包括第一液压泵、第二液压泵、阀组件和控制装置,其中,
所述第一液压泵通过第一供油油路与所述液压执行机构相连,所述第二液压泵通过第二供油油路与所述液压执行机构相连;
所述控制装置设置为控制所述阀组件,使所述第一供油油路和所述第二供油油路交替地与所述液压执行机构导通。
在一种实施例中,所述液压系统还包括:
计时模块,记录所述第一液压泵和/或所述第二液压泵为所述液压执行机构供油的供油时长;
其中,所述控制装置与所述计时模块通信连接,所述控制装置用于根据所述计时模块所记录的供油时长控制所述阀组件。
在一种实施例中,所述控制装置包括:
控制阀组;
控制单元,与所述计时模块和所述控制阀组通信连接,所述控制单元基于所述计时模块所记录的供油时长通过所述控制阀组控制所述阀组件。
在一种实施例中,所述液压系统还包括:
时间输入模块,用于设置预设时长;
所述控制装置与所述时间输入模块通信连接,所述控制装置能够在所述计时模块所记录的供油时长达到所述预设时长时控制所述阀组件切换供油油路。
在一种实施例中,所述阀组件包括:
第一阀门,控制所述第一供油油路导通或截止;
第二阀门,控制所述第二供油油路导通或截止;
其中,所述控制装置控制所述第一阀门和所述第二阀门的启闭。
在一种实施例中,所述液压系统还包括主阀,所述第一液压泵连接有第一旁通油路,所述第二液压泵连接有第二旁通油路,所述第一旁通油路和所述第二旁通油路分别通过所述主阀导通和截止。
在一种实施例中,所述控制装置设置为控制所述第一供油油路导通时所述第一旁通油路截止,控制所述第二供油油路导通时所述第二旁通油路截止。
在一种实施例中,所述液压系统还包括主阀,所述第一液压泵连接有第一旁通油路,所述第二液压泵连接有第二旁通油路,所述第一旁通油路和所述第二旁通油路分别通过所述主阀导通和截止;
所述主阀的先导油口和所述阀组件的先导油口与所述控制阀组的出油口连接。
在一种实施例中,所述主阀包括第一信号切断阀和第二信号切断阀,其中,
所述第一信号切断阀控制所述第一旁通油路导通或截止,所述第二信号切断阀控制所述第二旁通油路导通或截止;
所述控制装置控制所述第一信号切断阀和所述第二信号切断阀的启闭。
在一种实施例中,所述阀组件包括切换阀,通过所述切换阀控制所述第一供油油路和所述第二供油油路交替地与所述液压执行机构导通。
在一种实施例中,所述液压系统包括:
进油油路,一端与所述第一供油油路和所述第二供油油路连接,另一端用于连接所述液压执行机构的进油口;
反弹泄压油路,其进油端连接所述进油油路,出油端连接所述液压执行机构的回油油路;
当所述进油口的压力满足反弹泄压条件时,所述反弹泄压油路处于连通状态;
当所述进油口的压力不满足所述反弹泄压条件时,所述反弹泄压油路处于封闭状态。
在一种实施例中,所述反弹泄压条件至少包括:
所述进油口的压力大于所述液压执行机构的最大进油压力;
和/或,所述进油口的压力升高速度大于第一预设值;
和/或,所述进油口的压力变化曲线符合反弹曲线。
在一种实施例中,所述反弹泄压油路设置有反弹泄压阀;
所述反弹泄压阀的阀芯处于第一工作位置时,所述反弹泄压油路处于连通状态;
所述反弹泄压阀的阀芯处于第二工作位置时,所述反弹泄压油路处于封闭状态。
在一种实施例中,所述反弹泄压阀设置有:
第一油,连接至所述进油油路;
第二油口,连接至所述回油油路;
先导控制部,能够根据所述第一油口的压力控制所述阀芯移动;
所述阀芯移动至所述第一工作位置时,所述第一油口和所述第二油口之间的内部油路连通;所述阀芯移动至所述第二工作位置时,所述第一油口和所述第二油口之间的内部油路封闭。
在一种实施例中,所述先导控制部包括:
第一先导控制部,通过第一先导油路与所述第一油口连通,通过第二先导油路与所述第二油口连通;
第二先导控制部,通过第三先导油路与所述第一油口连通,通过第四先导油路与所述第二油口连通,所述第三先导油路设置有限流阀;
弹性件,能够控制所述阀芯在常态下位于所述第二工作位置。
在一种实施例中,所述液压执行机构的回油油路中设置有:
背压阀;
油散,串联设置在所述背压阀的出口处;
消峰油路,一端连接至所述油散的出口,另一端连接至所述背压阀的进口;
当所述油散的内部压力或所述油散的进油管内部压力满足回油消峰条件时,所述消峰油路处于连通状态;
当所述油散的内部压力或所述油散的进油管内部压力不满足所述回油消峰条件时,所述消峰油路处于封闭状态。
在一种实施例中,所述回油消峰条件至少包括:
预设时间内,所述油散的内部压力或所述油散的进油管内部压力大于或等于所述油散最大额定油压的次数大于预设次数;
和/或,所述油散的内部压力或所述油散的进油管内部压力大于或等于油散最大额定油压;
和/或,所述油散的内部压力或所述油散的进油管内部压力大于或等于最大额定回油压力;
和/或,所述油散的内部压力或所述油散的进油管内部压力的升高速度大于第二预设值;
和/或,所述油散的内部压力或所述油散的进油管内部压力的压力变化曲线符合回油脉动曲线。
在一种实施例中,所述预设时间为1秒至3秒范围内任意值;
所述油散最大额定油压为1.2MPa至1.4MPa范围内任意值;
所述预设次数为4至6范围内任意值。
在一种实施例中,所述消峰油路中设置有电控的开关阀;
所述油散设置有用于检测油散内部压力的第一压力传感器,和/或,所述油散的进油管设置有用于检测进油管内部压力的第一压力传感器;
所述第一压力传感器与所述开关阀信号连接;或者,所述第一压力传感器和所述开关阀均与中央控制器信号连接。
本申请还提供一种作业机械,包括液压执行机构和如上述任一项所述的液压系统。
根据本申请提供的一种作业机械,所述液压执行机构为破碎锤。
本申请提供的液压系统及作业机械,通过控制装置控制阀组件切换导通,可以使第一液压泵和第二液压泵交替为液压执行机构供油,可以减少单个时间段内单个泵的工作时长,有利于延长第一液压泵和第二液压泵的使用寿命,从而有利于提高主泵的使用寿命。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本申请的一个实施例提供的液压系统结构示意图;
图2为根据本申请的另一实施例中提供的液压系统的结构示意图;
图3为图2中的局部放大图。
附图标记:
1-油箱;2-破碎锤;3-第一液压泵;4-第二液压泵;5-主阀;6-阀组件;7-控制阀组;
8-进油截止阀;9-反弹泄压阀;10-过滤器;11-回油截止阀;12-高压蓄能器;13-破碎溢流阀;14-破碎过载阀;15-第二压力传感器;16-第一压力传感器;17-第三压力传感器;18-回油过滤器;19-油散;20-背压阀;21-控制阀;22-先导泵;23-控制按钮;24-控制脚踏;25-中央控制器;26-破碎先导电磁阀;27-破碎管路过滤器;28-低压蓄能器;29-开关阀;51-第一信号切断阀;52-第二信号切断阀;61-第一阀门;62-第二阀门;63-溢流阀;101-进油口;102-回油口;901-第一先导油路;902-第二先导油路;903-第三先导油路;904-第四先导油路;911-第一油口;912-第二油口;921-第一先导控制部;922-第二先导控制部;931-限流阀;L1-进油油路;L2-回油油路;L3-反弹泄压油路;L4-消峰油路。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图描述本申请的液压系统及作业机械。
如图1和图2所示,本申请提供的液压系统,用于控制作业机械的液压执行机构,本液压系统包括第一液压泵3、第二液压泵4、阀组件6和控制装置。
其中,第一液压泵3通过第一供油油路与液压执行机构相连,第二液压泵4通过第二供油油路与液压执行机构相连,以为液压执行机构供油。在一种实施例中,液压执行机构为破碎锤2。
阀组件6用于控制第一供油油路和第二供油油路,具体地,阀组件6可以控制第一供油油路和第二供油油路导通或截止,使得第一供油油路和第二供油油路中的一者与液压执行机构导通;或者阀组件6控制第一供油油路和第二供油油路中的一者切换至与液压执行机构所连接的进油油路导通,这样,可以控制第一液压泵3和第二液压泵4分别单独为液压执行机构供油。并且控制装置用于控制阀组件6,从而控制第一液压泵3和第二液压泵4交替为液压执行机构供油。
如此设置,通过控制装置控制阀组件6可以使第一液压泵3和第二液压泵4交替为液压执行机构供油,可以减少单个时间段内单个泵的工作时长,有利于延长第一液压泵3和第二液压泵4的使用寿命,从而提高整个主泵的使用寿命。
在本申请的一种实施例中,如图1所示,阀组件6可以包括第一阀门61和第二阀门62, 第一阀门61用于控制第一供油油路导通或截止,第二阀门62用于控制第二供油油路导通或截止。并且,控制装置用于控制第一阀门61和第二阀门62的启闭,即控制装置能够通过第一阀门61和第二阀门62分别控制第一供油油路和第二供油油路导通或截止。
这样,通过控制装置调控第一阀门61和第二阀门62的启闭状态,可以实现第一液压泵3和第二液压泵4交替为液压执行机构供油,从而能够提高第一液压泵3和第二液压泵4的使用寿命。
在本实施例中,第一阀门61和第二阀门62均可以为换向阀。
在其他实施例中,阀组件6可以包括二位三通换向阀,并且二位三通换向阀用于与第一供油油路和第二供油油路连接,控制装置通过控制二位三通换向阀的导通状态来控制第一供油油路和第二供油油路导通或截止,以实现第一液压泵3和第二液压泵4交替为液压执行机构供油。
这里,二位三通换向阀为二进一出式换向阀,二位三通换向阀的第一进口与第一供油油路连通、第二进口与第二供油油路连通,二位三通换向阀的出油口用于与液压执行机构连接。
在可选的实施例中,阀组件6还可以包括溢流阀63,溢流阀63的进油口与第一阀门61和第二阀门62的出油口连通,并且溢流阀63的出油口与油箱1连通。这样,通过溢流阀63能够避免液压执行机构的压力过大,以对液压执行机构起到保护作用,从而有利于提高液压执行机构的使用寿命。
这里,溢流阀63可以设置在第一阀门61和第二阀门62的出油口与液压执行机构的破碎管路上。
一种实施例中,液压系统还可以包括计时模块,计时模块用于记录第一液压泵3和/或第二液压泵4为液压执行机构的供油时长。
其中,控制装置可以与计时模块通信连接,控制装置用于根据计时模块所记录的供油时长控制阀组件6切换供油油路,使第一供油油路和第二供油油路交替导通。这样,可以实现第一液压泵3和第二液压泵4在工作一定时间后交替工作,从而可以减少单个时间段内单个泵的工作时长。
需要说明的是,计时模块可以记录第一阀门61和第二阀门62的开启时间,以通过记录第一阀门61和第二阀门62的开启时间来确定第一液压泵3和第二液压泵4为液压执行机构的供油时长。
在一种实施例中,本申请提供的液压系统还可以包括时间输入模块,时间输入模块用于设置预设时长,并且控制装置与时间输入模块通信连接,控制装置能够在计时模块所记录的供油时长达到预设时长时控制阀组件6切换导通,以使第一供油油路和第二供油油路交替导 通。这样,可以实现第一液压泵3和第二液压泵4在工作预设时长后交替工作,从而可以减少单个时间段内单个泵的工作时长。
这里,计时模块可以为计时器,时间输入模块可以为机械键盘或按键。
在可选的实施例中,控制装置可以包括控制阀组7和控制单元,控制阀组7用于控制阀组件6,控制单元与计时模块和控制阀组7通信连接,并且控制单元能够基于计时模块所记录的供油时长控制所述控制阀组7,以使控制阀组7控制阀组件6切换导通。
这里,时间输入模块可以与控制单元通信连接,并且控制单元可以包括比较模块,比较模块用于比较计时模块所记录的供油时长和预设时长、并能够将比较结果发送给控制单元,控制单元基于比较结果控制控制阀组7发送控制信号来控制阀组件6。
需要说明的是,控制单元可以为控制器或控制电路板,具体地,控制器可以为PLC控制器或单片机控制器,或其他能够实现自动控制的装置或设备,这里不对控制单元作具体限定,具体可以根据实际需要设定。
在一种实施例中,本申请提供的液压系统还包括主阀5,,第一液压泵3连接有第一旁通油路,第二液压泵4连接有第二旁通油路,第一旁通油路和第二旁通油路分别通过主阀5控制通断,第一液压泵3和第二液压泵4的供油可以分别通过第一旁通油路和第二旁通油路回到油箱1,或者第一液压泵3和第二液压泵4分别通过第一旁通油路和第二旁通油路为其他用油设备供油,从而保证其他用油设备正常工作。
主阀5可以包括第一信号切断阀51和第二信号切断阀52,第一信号切断阀51用于控制第一旁通油路导通或截止,第二信号切断阀52用于控制第二旁通油路导通或截止。
并且,控制装置用于控制第一信号切断阀51和第二信号切断阀52的启闭,从而控制第一旁通油路和第二旁通油路导通或截止。
具体地,控制阀组7能够控制第一信号切断阀51,以使第一信号切断阀51控制第一旁通油路截止,使第一液压泵3提供的油液不能回到油箱1或者为其它用油设备供油,这样第一液压泵3提供的油液可以通过第一供油油路为液压执行机构供油;控制阀组7能够控制第二信号切断阀52,以使第二信号切断阀52控制第二旁通油路截止,使第二液压泵4中的油液不能回到油箱1或者为其它用油设备供油,这样第二液压泵4提供的油液可以通过第二供油油路为液压执行机构供油。
这里,主阀5可以包括第一阀块、第二阀块,其中,第一旁通油路通过第一阀块连通和截止,第二旁通油路通过第二阀块连通和截止,这样,在第一阀块连通第一旁通油路时,第一液压泵3的供油通过第一旁通油路为其它用油设备供油或者回到油箱1,第二阀块连通第二旁通油路时,第二液压泵4的供油通过第二旁通油路为其它用油设备供油或者回到油箱1。 其中,第一信号切断阀51可以切断第一阀块,使第一阀块不导通,从而使第一旁通油路截止;第二信号切断阀52可以切断第二阀块,使第二阀块不导通,从而使第二旁通油路截止。
在本实施例中,当作业机械处于破碎工况下,控制装置控制第一阀门61导通时,第一供油油路导通,使第一液压泵3为破碎锤2供油,此时,控制装置控制第一信号切断阀51,使第一信号切断阀51切断第一阀块,从而第一旁通油路截止,使第一液压泵3只能为液压执行机构供油;或者,控制装置控制第二阀门62导通时,第二供油油路导通,使第二液压泵4为破碎锤2供油,此时,控制装置控制第二信号切断阀52,使第二信号切断阀52切断第二阀块,从而第二旁通油路截止,使第二液压泵4只能为液压执行机构供油。也就是说,所述控制装置设置为控制第一供油油路导通时控制第一旁通油路截止,控制第二供油油路导通时控制第二旁通油路截止。
在可选的实施例中,主阀5的破碎联油口为封闭油口,这样,第一液压泵3或第二液压泵4为主阀5供油时,不会通过主阀5为破碎锤2供油。
在一些实施例中,控制单元在接收到液压执行机构的启动信号后,比如控制单元接收到破碎锤2的启动信号后,控制单元控制控制阀组7控制阀组件6,使第一供油油路导通,使第一液压泵3开始为液压执行机构供油,此时,计时模块记录第一供油油路的导通时长(即第一阀门61的开启时间);当计时模块所记录的工作时长大于或等于预设时长时,控制单元控制控制阀组7,使控制阀组7控制阀组件6切换导通,使第二供油油路导通,使第二液压泵4开始为液压执行机构供油。或者,当控制单元接收到液压执行机构的启动信号后,控制单元控制控制阀组7控制阀组件6,使第二供油油路导通,使第二液压泵4开始为液压执行机构供油,此时,计时模块记录第二供油油路的导通时长(即第二阀门62的开启时间),当计时模块所记录的工作时长大于或等于预设时长时,控制阀组7控制阀组件6切换导通,使第一液压泵3开始为液压执行机构供油。如此,可以实现第一液压泵3和第二液压泵4的交替工作。
这里,当控制阀组7控制阀组件6换向时,计时模块开始重新计时,以保证第一液压泵3和第二液压泵4的供油时长相同,从而提高第一液压泵3和第二液压泵4的使用寿命。
并且,在本实施例中,控制单元在没有接收到液压执行机构的启动信号时,即液压执行机构不工作时,控制单元控制控制阀组7控制阀组件6的阀芯锁闭,即可以控制第一阀门61和第二阀门62均处于关闭状态,使第一液压泵3和第二液压泵4均不能通过阀组件6为液压执行机构供油。
上述主阀5的先导油口和阀组件6的先导油口均与控制阀组7的出油口连接。
具体地,控制阀组7可以包括第一控制阀和第二控制阀,第一控制阀的出油口可以与第 一阀门61的先导油口和第一信号切断阀51的先导油口连接,这样,通过第一控制阀为第一阀门61和第一信号切断阀51供给液压油(即先导油)来对第一阀门61和第一信号切断阀51进行调控,使第一阀门61控制第一供油油路导通,第一信号切断阀51控制第一旁通油路截止。第二控制阀的出油口可以与第二阀门62的先导油口和第二信号切断阀52的先导油口连接,这样,通过第二控制阀为第二阀门62和第二信号切断阀52供给液压油来对第二阀门62和第二信号切断阀52进行调控,使第二阀门62控制第二供油油路导通,第二信号切断阀52控制第二旁通油路截止。
这里,第一控制阀和第二控制阀均与控制单元通信连接,并且第一控制阀和第二控制阀均可以为电磁阀。
控制阀组7可以为两联电磁阀组,即将第一控制阀和第二控制阀进行组合使其形成两联电磁阀组,两联电磁阀组的两个电磁阀互锁,有利于提高控制阀组7控制的精确性和提高控制阀组7和阀组件6的安全系数。
在一种实施例中,第一供油油路和第二供油油路上均可以设置有单向阀,两个单向阀的导通方向分别与第一液压泵3至第一阀门61的方向和第二液压泵4至第二阀门62的方向一致,这样,能够避免油液回流。
在破碎锤2的破碎管路上还可以设置有进油截止阀8,破碎锤2的回油管路上设置有回油截止阀11和过滤器10,这里,破碎锤2的回油管路与油箱1连通。
本申请提供的液压系统,控制单元可以在获取破碎锤2的启动信号后,即挖掘机切换到破碎工况时;控制单元控制两联电磁阀组向阀组件6发送第一工作信号DC1以及控制两联电磁阀组向第一信号切断阀51发送信号,第一信号切断阀51使第一阀块不导通;基于接收到的第一工作信号DC1,阀组件6的第一阀门61开启,使第一供油油路导通,使第一液压泵3为破碎锤2供油;同时,计时模块开始记录第一阀门61的开启时间,以记录第一液压泵3为液压执行机构的供油时间t1,直至计时模块所记录的工作时长等于预设时长t2。当计时模块所记录的工作时长等于预设时长t2时,控制单元控制两联电磁阀组向阀组件6发送第二工作信号DC2以及控制两联电磁阀组向第二信号切断阀52发送信号,第二信号切断阀52使第二阀块不导通;基于接收到的第二工作信号DC2,阀组件6的第二阀门62开启,使第二供油油路导通,使第二液压泵4为破碎锤2供油;同时,计时模块重新计时,以记录第二液压泵4为液压执行机构的供油时长,直至计时模块所记录的工作时长等于预设时长t2。控制单元再次控制两联电磁阀组向阀组件6发送第一工作信号DC1,控制阀组件6再次换向,实现第一液压泵3和第二液压泵4的交替工作。
当控制单元获取破碎锤2的启动信号(比如断电后重新启动的信号)后,计时模块所记 录液压泵(比如第一液压泵3)为液压执行机构的供油时长小于预设时长时,控制单元控制两联电磁阀组向阀组件6发送与该液压泵所对应的工作信号,使阀组件6与该液压泵相对应的阀门开启(比如阀组件6的第一阀门61开启),直至计时模块所记录的工作时长达到预设时长时,控制单元控制两联电磁阀组向阀组件6发送另一个液压泵所对应的工作信号,控制阀组件6与另一个液压泵相对应的阀门开启(比如阀组件6的第二阀门62开启),使另一个液压泵为破碎锤2供油,从而有利于保证两个液压泵为液压执行机构的供油时长相一致,从而提高两个液压泵的使用寿命。
在另一实施例中,请参阅图2,第一液压泵3连接第一供油油路L5,第二液压泵4连接第二供油油路L6,第一供油油路L5和第二供油油路L6均通过阀组件6与液压执行机构的进油油路L1相连。其中,控制装置可以控制阀组件6,使得阀组件6将第一供油油路L5和第二供油油路L6中的一者切换至与液压执行机构连通,从而控制第一液压泵3和第二液压泵4交替地向液压执行机构供油。可见,该实施例提供的液压系统具备破碎双泵切换功能,保证原单泵打破碎的前提下,还能够实现两个单泵(即第一液压泵3和第二液压泵4)的切换,从而均衡了两个液压泵的寿命,可大幅延长液压泵工作时间,提升整机寿命。
具体地,请参见图2,阀组件6是用于切换第一液压泵3和第二液压泵4向破碎锤2供油的切换阀,主要由两部分构成:主阀芯级和电液先导级。电液先导级的控制信号可以由中央控制器(ECU)25控制,即控制装置为中央控制器(ECU)25,可以按照实际需要,实现丰富多样的控制方式:例如定时切换,即每当其中一个泵累计工作一定时间后(例如:500小时),触发控制器切换条件,实现第一液压泵3和第二液压泵4之间的切换;再比如挖掘机驾驶室内的中央显示屏上设置触控按钮(或触控按钮/控制按钮23/控制脚踏24中的任一种或多种组合),由驾驶员按照实际需求进行手动触发切换。
在一种实施例中,该液压系统还包括控制阀21,控制阀21用于控制进油油路L1的通断,该控制阀21可由中央控制器(ECU)25控制。具体的,控制阀21通过破碎先导电磁阀26连接至先导泵22和中央控制器(ECU)25,中央控制器(ECU)25可以通过控制破碎先导电磁阀26,从而控制所述控制阀21。
可选地,该液压系统还包括旁通油路(图2中的至系统的油路),通过切换阀组件6,可以使得第一液压泵3和第二液压泵4中的一者用于为液压执行机构(图中的破碎锤2)供油时,另一者则通过旁通油路为系统供油。控制阀21可以用于控制进油油路L1和旁通油路的导通和截止。
在一实施例中,该液压系统包括进油油路L1、回油油路L2、反弹泄压油路L3。其中: 进油油路L1的一端用于与第一供油油路L5和第二供油油路L6连接,另一端用于连接挖掘机破碎锤2的进油口101;回油油路L2用于连接破碎锤2的回油口102;反弹泄压油路L3的进油端连接进油油路L1,出油端连接回油油路L2,即反弹泄压油路L3与破碎锤2并联。
当进油口101的压力满足反弹泄压条件时,反弹泄压油路L3处于连通状态,从而作为破碎锤2的旁通油路,实现泄压,即将反弹形成的瞬时高压泄掉。
当进油口101的压力不满足反弹泄压条件时,反弹泄压油路L3处于封闭状态,破碎锤2正常工作。
其中,本文中所说的反弹泄压条件是指能够判断破碎锤是否出现反弹的任意判断条件,例如,反弹泄压条件可以是:
检测到破碎锤进油口101的压力大于破碎锤正常工作时的最大进油压力;
和/或,检测到破碎锤进油口101的压力升高速度(即升压速度)大于第一预设值;
和/或,检测到破碎锤进油口101的压力变化曲线符合反弹曲线(该“反弹曲线”是指发生反弹时,破碎锤进油口101的压力在一段时间内随时间发生变化时形成的压力变化曲线,一般预设在控制器中,当检测到破碎锤进油口101的压力随时间发生变化时实际形成的压力变化曲线与控制器中预存的反弹曲线基本吻合时,则判定进油口101的压力满足反弹泄压条件,发生了反弹,并打开反弹泄压油路L3进行泄压);
或其他能够作为判定出现反弹(此时破碎锤进油口一般会出现瞬时高压)的依据的任意参考因素。
可见,本申请实施例提供的破碎锤液压控制系统,能够在破碎锤2遇到坚硬打不动的岩石(或其他硬质材料)发生反弹时,通过反弹泄压油路L3将反弹形成的异常瞬时高压(或称为高压峰值)泄掉,可以大大改善液压系统的受载情况,提升系统可靠性。
具体地,上述反弹泄压油路L3设置有反弹泄压阀9。反弹泄压阀9打开时,其阀芯处于第一工作位置(可参见图3中的右侧连通位)时,第一油口911和第二油口912之间的内部油路连通,从而反弹泄压油路L3处于连通状态;反弹泄压阀9关闭时,其阀芯处于第二工作位置(可参见图3中的左侧关闭位)时,第一油口911和第二油口912之间的内部油路关闭,从而反弹泄压油路L3处于封闭状态。
具体实施时,请参见图3,反弹泄压阀9设置有第一油口911、第二油口912和先导控制部。其中:第一油口911连接至进油油路L1;第二油口912连接至回油油路L2;通过先导控制部能够根据第一油口911的压力控制阀芯移动。阀芯移动至第一工作位置(即图3中的右侧连通位)时,第一油口911和第二油口912之间的内部油路连通,反弹泄压阀9打开,反弹泄压油路L3处于连通状态;阀芯移动至第二工作位置(即图3中的左侧关闭位)时, 第一油口911和第二油口912之间的内部油路封闭,反弹泄压阀9关闭,反弹泄压油路L3处于封闭状态。
具体地,先导控制部包括第一先导控制部921、第二先导控制部922和弹性件(例如弹簧)。其中:第一先导控制部921通过第一先导油路901与第一油口911连通,且通过第二先导油路902与第二油口912连通;第二先导控制部922通过第三先导油路903与第一油口911连通,且通过第四先导油路904与第二油口912连通,第三先导油路903设置有限流阀931(或称为阻尼阀);通过弹性件能够控制阀芯在常态下位于第二工作位置(即关闭位),也就是说,第一先导控制部921驱动阀芯移动至第一工作位置后;若阀芯两侧油压相等,则通过弹性件的恢复力能够控制阀芯复位至第二工作位置。
当破碎锤遇到坚硬打不动的岩石发生反弹后,进油口101的压力必然满足反弹泄压条件,此时在反弹泄压阀9的上侧(即第一油口911处)出现异常瞬时高压,并同步向反弹泄压阀9的两侧传递。此时,进油口101的压力大于回油口102的压力,从而第一油口911的压力大于第二油口912的压力。虽然第一先导控制部921和第二先导控制部922均与第一油口911连接,但是在限流阀931的作用下,第一先导控制部921作用到阀芯上的压力大于第二先导控制部922作用到阀芯上的压力,因此,通过第一先导控制部921能够克服弹簧力推动阀芯正向移动(具体是指图3中的阀芯向左移动),从而,反弹泄压阀9的阀芯移动至图3中位于右侧的第一工作位置,此时第一油口911和第二油口912之间的内部油路连通,即反弹泄压阀9处于打开状态,从而反弹泄压油路L3处于连通状态,反弹泄压油路L3作为破碎锤2的旁通油路,能够将反弹形成的瞬时高压泄掉。
当没有发生反弹时,进油口101的压力必然不满足反弹泄压条件,例如上述反弹形成的瞬时高压卸掉后,第一油口911的压力不大于第二油口912的压力。此时,由于第一先导控制部921、第二先导控制部922分别通过第二先导油路902、第四先导油路904与第二油口912连通,因此第一先导控制部921作用到阀芯上的压力和第二先导控制部922作用到阀芯上的压力相等,在弹性件的恢复力作用下阀芯反向移动(具体是指图3中的阀芯向右移动),从而,反弹泄压阀9的阀芯移动至图3中位于左侧的第二工作位置,此时第一油口911和第二油口912之间的内部油路封闭,即反弹泄压阀9处于关闭状态,从而反弹泄压油路L3处于封闭状态,破碎锤2正常工作。
此外,以挖掘机破碎系统为例,在设备的应用过程中,由于破碎锤的工作特点是频繁锤击,导致液压系统回油压力会产生高压脉动,而此高压脉动极易引起散热器(例如铝制散热器)发生疲劳开裂失效的问题,若能将此脉动峰值消除,可有效改善油散的受力情况,降低 散热器疲劳开裂失效的故障。
基于此,请参见图2,一个实施例提供的液压系统的回油油路L2中设置有背压阀20、油散19和消峰油路L4。其中:油散19串联设置在背压阀20的出口处;消峰油路L4的一端连接至油散19的出口,另一端连接至背压阀20的进口。
当油散19的内部压力或油散19的进油管内部压力满足回油消峰条件时,消峰油路L4处于连通状态,此时的消峰油路L4相当于一段旁通管道。当回油油路L2中产生高压脉动时,其高压油液通过消峰油路L4回流至油箱1,基本不经过油散19,从而达到对回油油路L2内的高压脉动进行消除的目的,有效改善油散19的受力情况,对油散19起到保护作用,避免高压脉动导致油散疲劳开裂失效的问题。
当油散19的内部压力或油散19的进油管内部压力不满足回油消峰条件时,消峰油路L4处于封闭状态,回油油路L2恢复常规工作,回油经过背压阀20和油散19后再回流至油箱1。
需要说明的是,上述用于控制消峰油路L4开闭的回油消峰条件,是指能够判断回油油路是否出现回油脉动的任意判断条件,例如,回油消峰条件可以是:在预设时间内,油散内部压力或油散进油管内部压力大于或等于油散最大额定油压的次数大于预设次数。
优选地,上述预设时间为1秒至3秒范围内任意值(例如2秒);油散最大额定油压为1.2MPa至1.4MPa范围内任意值(例如1.3MPa);预设次数为4至6范围内任意值(例如5次)。
或者,在其他具体实施例中,回油消峰条件也可以设定为:
油散19的内部压力或油散19的进油管内部压力大于或等于破碎锤2正常工作、回油油路L2正常回油时油散内部的最大压力,即油散最大额定油压;
和/或,油散19的内部压力或油散19的进油管内部压力大于或等于破碎锤2正常工作、回油油路L2正常回油时回油油路L2内的最大压力,即最大额定回油压力;
和/或,油散19的内部压力或油散19的进油管内部压力的升高速度(即升压速度)大于第二预设值;
和/或,油散19的内部压力或油散19的进油管内部压力的压力变化曲线符合回油脉动曲线(该“回油脉动曲线”是指发生回油脉动时,回油油路L2尤其是油散19所在位置的压力在一段时间内随时间发生变化时形成的压力变化曲线,一般预设在控制器中,当检测到油散19的内部压力或油散19的进油管内部压力的压力随时间发生变化时实际形成的压力变化曲线与控制器中预存的反弹曲线基本吻合时,则判定油散19的内部压力或油散19的进油管内 部压力满足回油消峰条件,发生了回油脉动,并打开回油消峰油路L4实现消峰);
或其他能够作为判定出现回油脉动(此时回油油路L2尤其是油散19所在位置的油压变化呈现脉冲形式)的依据的任意参考因素。
具体地,消峰油路L4中设置有开关阀29,该开关阀29可以是电控开关阀;油散19设置有用于检测油散内部压力的第一压力传感器16,和/或,油散19的进油管设置有用于检测进油管内部压力的第一压力传感器16。而且,第一压力传感器16与开关阀29信号连接,或者,第一压力传感器16和开关阀29均与中央控制器25信号连接。当第一压力传感器16检测到的压力满足回油消峰条件时,开关阀29打开,消峰油路L4处于连通状态,能够对回油油路L2中的高压脉动现象起到消峰的功能。
优选实施例中,开关阀29为电控高速开关旁通阀,其控制信号受中央控制器(ECU)25控制,当第一压力传感器16感知到异常压力脉动(例如,当油散压力大于1.3MPa的时候,触发一个2秒钟计时,并对压力大于1.3MPa的次数进行计数,在2秒内,该次数大于5次,则认为发生了异常压力脉动)后,通过中央控制器(ECU)25计算,根据上述压力异常条件,向开关阀29输出开关指令,对脉动峰值压力进行高速释放,有效保护油散19不受压力疲劳开裂而失效。
可见,该实施例提供的液压系统具备破碎回油脉动消峰功能,能够实现对破碎锤回油脉动峰值的释放,保护油散。
在一个具体实施例中,请参见图2,该液压系统中:
进油油路L1中,沿进油方向依次串联设置有切换双泵(第一液压泵3和第二液压泵4)、阀组件6、控制阀21、高压蓄能器12、进油截止阀8;
回油油路L2中,沿回油方向依次串联设置有回油截止阀11、低压蓄能器28、破碎管路过滤器27、背压阀20、油散19、回油过滤器18、油箱1;而且还设置有上文中所述的用于回油消峰的开关阀29;油散19设置有第一压力传感器16,破碎管路过滤器27设置有第二压力传感器15,回油过滤器18设置有第三压力传感器17;
进油油路L1和回油油路L2之间还设置有破碎过载阀14、破碎溢流阀13(优选为电控比例溢流阀)和反弹泄压阀9;
主阀21通过破碎先导电磁阀26连接至先导泵22和中央控制器(ECU)25,中央控制器(ECU)25连接设置有控制按钮23和控制脚踏24,图1中A、B、C分别用于控制开关阀29、破碎溢流阀13、阀组件6。
综上可见,本申请实施例提供的液压系统具有破碎双泵切换功能、破碎反弹泄压功能、破碎回油脉动消峰功能,能够大幅提升系统可靠性,有效解决市场痛点问题。
下面对本申请提供的作业机械进行描述,下文描述的作业机械与上文描述的液压系统可相互对应参照。
本申请提供的一种作业机械,包括液压执行机构和如上述任意一项实施例所述的液压系统。
本申请提供的作业机械所达到的有益效果与本申请提供的液压系统所达到的有益效果相一致,则这里不再赘述。
在本申请的可选实施例中,上述液压执行机构可以为破碎锤,当然也可以是通过液压执行的其它机构。
需要说明的是,上述作业机械可以为挖掘机,或泵车,或其他设置有液压执行机构的工程机械。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种液压系统,其特征在于,用于控制作业机械的液压执行机构,包括第一液压泵(3)、第二液压泵(4)、阀组件(6)和控制装置,其中,
    所述第一液压泵通过第一供油油路与所述液压执行机构相连,所述第二液压泵通过第二供油油路与所述液压执行机构相连;
    所述控制装置设置为控制所述阀组件(6),使所述第一供油油路和所述第二供油油路交替地与所述液压执行机构导通。
  2. 根据权利要求1所述的液压系统,其特征在于,还包括:
    计时模块,记录所述第一液压泵(3)和/或所述第二液压泵(4)为所述液压执行机构供油的供油时长;
    其中,所述控制装置与所述计时模块通信连接,所述控制装置用于根据所述计时模块所记录的供油时长控制所述阀组件(6)。
  3. 根据权利要求2所述的液压系统,其特征在于,所述控制装置包括:
    控制阀组(7);
    控制单元,与所述计时模块和所述控制阀组(7)通信连接,所述控制单元基于所述计时模块所记录的供油时长通过所述控制阀组(7)控制所述阀组件(6)。
  4. 根据权利要求2所述的液压系统,其特征在于,还包括:
    时间输入模块,用于设置预设时长;
    所述控制装置与所述时间输入模块通信连接,所述控制装置能够在所述计时模块所记录的供油时长达到所述预设时长时控制所述阀组件(6)切换供油油路。
  5. 根据权利要求1所述的液压系统,其特征在于,所述阀组件包括:
    第一阀门(61),控制所述第一供油油路导通或截止;
    第二阀门(62),控制所述第二供油油路导通或截止;
    其中,所述控制装置控制所述第一阀门(61)和所述第二阀门(62)的启闭。
  6. 根据权利要求1所述的液压系统,其特征在于,还包括主阀(5),所述第一液压泵(3)连接有第一旁通油路,所述第二液压泵(4)连接有第二旁通油路,所述第一旁通油路和所述第二旁通油路分别通过所述主阀(5)导通和截止。
  7. 根据权利要求6所述的液压系统,其特征在于,所述控制装置设置为控制所述第一供油油路导通时所述第一旁通油路截止,控制所述第二供油油路导通时所述第二旁通油路截止。
  8. 根据权利要求3所述的液压系统,其特征在于,还包括主阀(5),所述第一液压泵连接有第一旁通油路,所述第二液压泵连接有第二旁通油路,所述第一旁通油路和所述第二旁通油路分别通过所述主阀(5)导通和截止;
    所述主阀(5)的先导油口和所述阀组件(6)的先导油口与所述控制阀组的出油口连接。
  9. 根据权利要求6所述的液压系统,其特征在于,所述主阀包括第一信号切断阀(51)和第二信号切断阀(52),其中,
    所述第一信号切断阀(51)控制所述第一旁通油路导通或截止,所述第二信号切断阀(52)控制所述第二旁通油路导通或截止;
    所述控制装置控制所述第一信号切断阀(51)和所述第二信号切断阀(52)的启闭。
  10. 根据权利要求1所述的液压系统,其特征在于,所述阀组件(6)包括切换阀,通过所述切换阀控制所述第一供油油路和所述第二供油油路交替地与所述液压执行机构导通。
  11. 根据权利要求1-10中任意一项所述的液压系统,其特征在于,包括:
    进油油路(L1),一端与所述第一供油油路和所述第二供油油路连接,另一端用于连接所述液压执行机构的进油口(101);
    反弹泄压油路(L3),其进油端连接所述进油油路(L1),出油端连接所述液压执行机构的回油油路(L2);
    当所述进油口(101)的压力满足反弹泄压条件时,所述反弹泄压油路(L3)处于连通状态;
    当所述进油口(101)的压力不满足所述反弹泄压条件时,所述反弹泄压油路(L3)处于封闭状态。
  12. 根据权利要求11所述的液压系统,其特征在于,所述反弹泄压条件至少包括:
    所述进油口(101)的压力大于所述液压执行机构的最大进油压力;
    和/或,所述进油口(101)的压力升高速度大于第一预设值;
    和/或,所述进油口(101)的压力变化曲线符合反弹曲线。
  13. 根据权利要求11所述的液压系统,其特征在于,所述反弹泄压油路(L3)设置有反弹泄压阀(9);
    所述反弹泄压阀(9)的阀芯处于第一工作位置时,所述反弹泄压油路(L3)处于连通状态;
    所述反弹泄压阀(9)的阀芯处于第二工作位置时,所述反弹泄压油路(L3)处于封闭状态。
  14. 根据权利要求13所述的液压系统,其特征在于,所述反弹泄压阀(9)设置有:
    第一油口(911),连接至所述进油油路(L1);
    第二油口(912),连接至所述回油油路(L2);
    先导控制部,能够根据所述第一油口(911)的压力控制所述阀芯移动;
    所述阀芯移动至所述第一工作位置时,所述第一油口(911)和所述第二油口(912)之间的内部油路连通;所述阀芯移动至所述第二工作位置时,所述第一油口(911)和所述第二油口(912)之间的内部油路封闭。
  15. 根据权利要求14所述的液压系统,其特征在于,所述先导控制部包括:
    第一先导控制部(921),通过第一先导油路(901)与所述第一油口(911)连通,通过第二先导油路(902)与所述第二油口(912)连通;
    第二先导控制部(922),通过第三先导油路(903)与所述第一油口(911)连通,通过第四先导油路(904)与所述第二油口(912)连通,所述第三先导油路(903)设置有限流阀(931);
    弹性件,能够控制所述阀芯在常态下位于所述第二工作位置。
  16. 根据权利要求1-15中任一项所述的液压系统,其特征在于,所述液压执行机构的回油油路(L2)中设置有:
    背压阀(20);
    油散(19),串联设置在所述背压阀(20)的出口处;
    消峰油路(L4),一端连接至所述油散(19)的出口,另一端连接至所述背压阀(20)的进口;
    当所述油散(19)的内部压力或所述油散(19)的进油管内部压力满足回油消峰条件时,所述消峰油路(L4)处于连通状态;
    当所述油散(19)的内部压力或所述油散(19)的进油管内部压力不满足所述回油消峰条件时,所述消峰油路(L4)处于封闭状态。
  17. 根据权利要求16所述的液压系统,其特征在于,所述回油消峰条件至少包括:
    预设时间内,所述油散(19)的内部压力或所述油散(19)的进油管内部压力大于或等于所述油散最大额定油压的次数大于预设次数;
    和/或,所述油散(19)的内部压力或所述油散(19)的进油管内部压力大于或等于油散最大额定油压;
    和/或,所述油散(19)的内部压力或所述油散(19)的进油管内部压力大于或等于最大额定回油压力;
    和/或,所述油散(19)的内部压力或所述油散(19)的进油管内部压力的升高速度大 于第二预设值;
    和/或,所述油散(19)的内部压力或所述油散(19)的进油管内部压力的压力变化曲线符合回油脉动曲线。
  18. 根据权利要求17所述的液压系统,其特征在于,所述预设时间为1秒至3秒范围内任意值;
    所述油散最大额定油压为1.2MPa至1.4MPa范围内任意值;
    所述预设次数为4至6范围内任意值。
  19. 根据权利要求16所述的液压系统,其特征在于,所述消峰油路(L4)中设置有电控的开关阀(29);
    所述油散(19)设置有用于检测油散内部压力的第一压力传感器(16),和/或,所述油散(19)的进油管设置有用于检测进油管内部压力的第一压力传感器(16);
    所述第一压力传感器(16)与所述开关阀(29)信号连接;或者,所述第一压力传感器(16)和所述开关阀(29)均与中央控制器(25)信号连接。
  20. 一种作业机械,其特征在于,包括液压执行机构和如权利要求1-19中任意一项所述的液压系统。
PCT/CN2023/097151 2022-05-30 2023-05-30 液压系统及作业机械 WO2023232034A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210602859.4 2022-05-30
CN202210602859.4A CN114992175A (zh) 2022-05-30 2022-05-30 液压系统及作业机械
CN202310484523.7A CN116770925A (zh) 2023-04-28 2023-04-28 一种破碎锤液压控制系统和工程机械
CN202310484523.7 2023-04-28

Publications (1)

Publication Number Publication Date
WO2023232034A1 true WO2023232034A1 (zh) 2023-12-07

Family

ID=89026950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097151 WO2023232034A1 (zh) 2022-05-30 2023-05-30 液压系统及作业机械

Country Status (1)

Country Link
WO (1) WO2023232034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117450126A (zh) * 2023-12-20 2024-01-26 中联重科土方机械有限公司 一种液压系统、回油控制方法及相关设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115902A (ja) * 1986-10-30 1988-05-20 Nissei Plastics Ind Co 射出成形機の制御装置
JP2015175360A (ja) * 2014-03-18 2015-10-05 日立建機株式会社 作業機械の油圧ポンプ制御装置
CN105299065A (zh) * 2015-11-13 2016-02-03 国网新疆电力公司阿勒泰供电公司 卧式水轮发电机外置自回流油冷却装置
CN105317067A (zh) * 2015-11-30 2016-02-10 周驰军 一种适用于挖掘机破碎锤的双泵阀外合流系统
CN111706570A (zh) * 2020-06-23 2020-09-25 南京安臣流体科技有限公司 一种高效双泵液压智慧泵站
CN113090596A (zh) * 2021-03-15 2021-07-09 中国科学院工程热物理研究所 一种具有热冗余备份供油的油动机系统及其控制方法
CN213952359U (zh) * 2020-11-03 2021-08-13 山东临工工程机械有限公司 挖掘机液压系统和挖掘机
CN114992175A (zh) * 2022-05-30 2022-09-02 三一重机有限公司 液压系统及作业机械

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115902A (ja) * 1986-10-30 1988-05-20 Nissei Plastics Ind Co 射出成形機の制御装置
JP2015175360A (ja) * 2014-03-18 2015-10-05 日立建機株式会社 作業機械の油圧ポンプ制御装置
CN105299065A (zh) * 2015-11-13 2016-02-03 国网新疆电力公司阿勒泰供电公司 卧式水轮发电机外置自回流油冷却装置
CN105317067A (zh) * 2015-11-30 2016-02-10 周驰军 一种适用于挖掘机破碎锤的双泵阀外合流系统
CN111706570A (zh) * 2020-06-23 2020-09-25 南京安臣流体科技有限公司 一种高效双泵液压智慧泵站
CN213952359U (zh) * 2020-11-03 2021-08-13 山东临工工程机械有限公司 挖掘机液压系统和挖掘机
CN113090596A (zh) * 2021-03-15 2021-07-09 中国科学院工程热物理研究所 一种具有热冗余备份供油的油动机系统及其控制方法
CN114992175A (zh) * 2022-05-30 2022-09-02 三一重机有限公司 液压系统及作业机械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117450126A (zh) * 2023-12-20 2024-01-26 中联重科土方机械有限公司 一种液压系统、回油控制方法及相关设备
CN117450126B (zh) * 2023-12-20 2024-03-15 中联重科土方机械有限公司 一种液压系统、回油控制方法及相关设备

Similar Documents

Publication Publication Date Title
US6378301B2 (en) Pressurized fluid recovery/reutilization system
EP2597211B1 (en) Hydraulic excavator
US20150377264A1 (en) Hydraulic system for construction machinery
CN103620233B (zh) 用于施工机械的液压控制阀
KR101032731B1 (ko) 해머장치를 구비한 굴삭기용 유압시스템
US10041228B2 (en) Construction machine
CN105229242A (zh) 用于作业机器液压回路的阀装置
WO2023232034A1 (zh) 液压系统及作业机械
KR100934945B1 (ko) 건설중장비용 유압 회로
KR102514523B1 (ko) 건설기계의 유압 제어 장치 및 유압 제어 방법
EP1143151A1 (en) Pipe breakage control valve device
WO1990000650A1 (en) An arrangement in implement holders for assemblies which include a side-dumping excavating and loading bucket
US11214941B2 (en) Construction machine
US10377028B2 (en) Hammer protection system and method
CN210829934U (zh) 液压组合阀
CN114992175A (zh) 液压系统及作业机械
CN109183892A (zh) 工作装置驱动油路及挖掘机
CN109356218B (zh) 装载机用分配阀及装载机液压系统
JP3457798B2 (ja) 油圧機械の再生回路
CN214063412U (zh) 一种泵送液压系统及混凝土泵送设备
KR102141511B1 (ko) 건설장비에서의 유압펌프 유량 제어 시스템
JP3163308B2 (ja) 再生回路用弁装置
JP2002294759A (ja) 建設機械の作業アタッチメント制御装置
CN219865692U (zh) 一种高稳定性的破碎阀组
CN217233440U (zh) 一种开口动力钳安全门保护装置及其液压传动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815213

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024025071

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2024138754

Country of ref document: RU