WO2023221572A1 - 一种镀膜系统 - Google Patents
一种镀膜系统 Download PDFInfo
- Publication number
- WO2023221572A1 WO2023221572A1 PCT/CN2023/075391 CN2023075391W WO2023221572A1 WO 2023221572 A1 WO2023221572 A1 WO 2023221572A1 CN 2023075391 W CN2023075391 W CN 2023075391W WO 2023221572 A1 WO2023221572 A1 WO 2023221572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- turntable
- rotating
- transmission mechanism
- outer shaft
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
- C23C14/505—Substrate holders for rotation of the substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the field of coating technology, and in particular to a coating system.
- Magnetron sputtering is a widely used physical vapor deposition coating technology. Compared with the commonly used thermal evaporation coating, the coating rate of magnetron sputtering is stable, and the thickness of the film that can be plated in a single time is greater than that of thermal evaporation coating. Compared with ion beam sputtering coating technology, the structure of the magnetron sputtering cathode is relatively simple. Maintenance costs are low, so coating costs are lower than ion beam sputtering coating technology. Due to the technical characteristics of magnetron sputtering, it is widely used in the preparation of various metal films, semiconductor films, dielectric films, magnetron films, optical films, superconducting films, sensing films and various functional films with special needs.
- the magnetron sputtering coating method can be used to coat the surface of spherical components (or workpieces).
- spherical components or workpieces.
- rotating tooling In order to obtain high film thickness uniformity on the surface of spherical components, it is usually necessary to use rotating tooling to obtain a centrally symmetrical film thickness distribution, making rotating tooling widely used in coating equipment (or coating systems, coating machines).
- two rotation methods can realize the rotation of spherical samples and complete magnetron sputtering coating.
- the spherical element is located in the magnetron sputtering coating area and rotates at high speed around its symmetry center.
- multiple coated lenses can be installed on the existing planetary rotating tooling at the same time.
- only one target material can be coated with the rotating tooling, and the other target materials cannot be coated, making it difficult for the rotating tooling to rotate.
- all coated lenses installed on the rotating tooling can only be coated with the same kind of film, and different coated lenses cannot be coated with different films at the same time, which leads to the problem of low coating efficiency in existing coating equipment.
- Magnetron sputtering is a widely used physical vapor deposition coating technology. Compared with the commonly used thermal evaporation coating, the coating rate of magnetron sputtering is stable, and the thickness of the film that can be plated in a single time is greater than that of thermal evaporation coating. Compared with ion beam sputtering coating technology, the structure of the magnetron sputtering cathode is relatively simple. Maintenance costs are low, so coating costs are lower than ion beam sputtering coating technology. Due to the technical characteristics of magnetron sputtering, it is widely used in the preparation of various metal films, semiconductor films, dielectric films, magnetron films, optical films, superconducting films, sensing films and various functional films with special needs.
- the magnetron sputtering coating method can be used to coat the surface of spherical components (or workpieces).
- spherical components or workpieces.
- rotating tooling In order to obtain high film thickness uniformity on the surface of spherical components, it is usually necessary to use rotating tooling to obtain a centrally symmetrical film thickness distribution, making rotating tooling widely used in coating equipment (or coating systems, coating machines).
- two rotation methods can realize the rotation of spherical samples and complete magnetron sputtering coating.
- the spherical element is located in the magnetron sputtering coating area and rotates at high speed around its symmetry center.
- multiple coated lenses can be installed on the existing planetary rotating tooling at the same time.
- only one target material can be coated with the rotating tooling, and the other target materials cannot be coated, making it difficult for the rotating tooling to rotate.
- all coated lenses installed on the rotating tooling can only be coated with the same kind of film, and different coated lenses cannot be coated with different films at the same time, which leads to the problem of low coating efficiency in existing coating equipment.
- the purpose of the invention is to solve the problems of low material utilization, high cost and low coating efficiency in the coating process of existing magnetron sputtering coating equipment on the surface of spherical components. It provides a coating system that can significantly improve material utilization and Coating efficiency can not only be coated in batches, but also different films can be coated for different coated lenses.
- the main ideas are:
- a coating system includes a vacuum chamber and a rotating tool installed in the vacuum chamber.
- the rotating tool includes a frame, a rotating bracket, a rotary component rotatably installed on the frame, a first drive module, a second drive module and several functions.
- a coating turntable supporting the fixture and/or component wherein each coating turntable is rotatably connected to the rotating bracket and distributed along the circumferential direction of the rotation center of the rotating component, and each coating turntable is adapted to the rotating component respectively, and are respectively connected to the rotating parts in transmission;
- the rotating bracket is rotatably connected to the frame, and the rotation center of the rotating bracket coincides with the rotation center of the rotating part;
- the first driving module is drivingly connected to the rotating bracket, It is used to drive each coating turntable to revolve synchronously around the rotation center of the rotating component, and to synchronously drive each coating turntable to rotate;
- the second driving module is transmission connected with the rotating component and is used to drive each coating turntable to rotate.
- a coating turntable is provided to solve the problem of supporting fixtures and/or components during the coating process.
- the coating system can coat multiple components at the same time, which is beneficial to improving efficiency;
- the rotating bracket is rotatably connected to the frame, and the first driving module is drivingly connected to the rotating bracket, so that during the coating process, the first driving module can drive the rotating bracket to rotate to drive each coating turntable.
- the purpose of the coating turntable is to synchronously revolve and rotate around the rotation center of the rotating part, so that the components on each coating turntable can be cyclically rotated to the position suitable for the sputtering cathode, so that this coating system can not only process the components on multiple coating turntables at the same time Simultaneous coating can help improve efficiency, achieve batch coating, and improve the uniformity of coating; by setting up rotating parts and installing them rotatably, each coating turntable can be distributed along the circumferential direction of the rotation center of the rotating parts.
- each coating turntable is drive-connected to the rotating component respectively, and the second drive module is drive-connected to the rotating component, so that during the coating process, the second drive module can drive the rotation of each coating turntable by driving the rotating component to rotate, thereby driving each coating turntable.
- the first working mode During the coating process, only the second working mode is started.
- One drive module allows each coating turntable to be in a revolution and rotation state at the same time, allowing multiple components to be coated at the same time; the second working mode: during the coating process, the first drive module can be used to rotate the coating turntable to the appropriate sputtering position. position of the sputtering cathode, and then close the first drive module and start the second drive module, so that the coating turntable can rotate at a high speed at the predetermined position, and cooperate with the sputtering cathode for coating.
- this working method not only can continuous Coating the components on each coating turntable can significantly improve the coating efficiency of the components.
- the position of the coating turntable is adapted to the sputtering cathode.
- the sputtered target can directly act on the components on the coating turntable to avoid falling into the coating turntable. gaps between them, thereby effectively avoiding material contamination and waste, and significantly improving material utilization; in addition, since each coating turntable is individually matched with the sputtering cathode, in the same coating process, this coating system can Each element on the coating turntable is coated with films of different film layers, which can significantly improve the coating efficiency of differential coating, thereby effectively solving the problems existing in the existing technology.
- each coating turntable can be connected to the rotating part in transmission
- the rotating part and the coating turntable are respectively constructed with a number of teeth that are adapted to each other, and each coating turntable is driven by the rotating part through the meshing of the teeth with the teeth.
- the rotating component adopts an internal gear or an external gear
- the coating turntable is configured with an external gear adapted to the rotating component.
- the rotation center of the rotating bracket coincides with the rotation center of the rotating component
- it further includes an inner shaft that is rotatably installed and an outer shaft that is rotatably installed on the frame.
- the outer shaft is configured with a central hole and an outer shaft. The shaft is sleeved on the outside of the inner shaft through the central hole, and the rotation center of the inner shaft coincides with the rotation center of the outer shaft;
- the rotating bracket is connected to the inner shaft, and the inner shaft is drivingly connected to the first driving module, the rotating component is connected to the outer shaft, and the outer shaft is drivingly connected to the second driving module; or, the The rotating bracket is connected to the outer shaft, and the outer shaft is drivingly connected to the first driving module.
- the rotating component is connected to the inner shaft, and the inner shaft is drivingly connected to the second driving module.
- the inner shaft is connected to the outer shaft and/or the frame through a bearing set
- the outer shaft is connected to the frame through a bearing set
- the bearing set includes at least two bearings.
- the inner shaft adopts a stepped shaft
- the center hole of the outer shaft is configured to fit the stepped hole of the inner shaft
- the inner shaft is connected to the inner shaft through a bearing set.
- Step hole for outer shaft By constructing the inner shaft as a stepped shaft and the central hole as a stepped hole, it is convenient to use the steps at the steps to install and position the bearings, thereby making it easier to install the inner shaft on the outer shaft using the bearing set.
- the outer shaft is configured as a stepped shaft
- the frame is configured with a stepped hole adapted to the outer shaft
- the outer shaft is connected to the stepped shaft of the frame through a bearing set. hole.
- the bearing group includes at least one thrust bearing.
- Thrust bearings are used to withstand axial forces, such as the gravity of the inner shaft, the gravity of the outer shaft, etc., so that the thrust bearing can be used to support the inner shaft and the outer shaft more stably.
- the frame includes a support tube and a flange connected to the support tube, and the flange is configured with a plurality of mounting holes. To facilitate the installation and fixation of rotating tooling in this coating system.
- the first drive module includes a first transmission mechanism and a first motor, the first motor is drivingly connected to the first transmission mechanism, and the first transmission mechanism is connected to the inner shaft or external shaft transmission connection;
- the second driving module includes a second transmission mechanism and a second motor, the second motor is drivingly connected to the second transmission mechanism, and the second transmission mechanism is in transmission with the outer shaft or the inner shaft. connect.
- the first transmission mechanism is one or a combination of one or more of a gear transmission mechanism, a belt transmission mechanism, a chain transmission mechanism or a worm gear transmission mechanism;
- the second transmission mechanism is one or a combination of one or more of a gear transmission mechanism, a belt transmission mechanism, a chain transmission mechanism or a worm gear transmission mechanism.
- the rotating bracket includes a horizontally arranged rotating turntable, and the rotating turntable is connected to the inner shaft or the outer shaft. and located above or below the rotating component;
- the coating turntable is also configured with a mounting portion for setting fixtures and/or components.
- Each coating turntable is rotatably mounted on the rotating turntable, and the mounting portion constructed on the coating turntable and the teeth constructed on the coating turntable are located respectively. Turn the different sides of the dial. That is, when the coating turntable is installed on the rotating turntable, the coating turntable teeth are located below the rotating turntable, and the coating turntable mounting part is located above the rotating turntable, or the coating turntable teeth are located above the rotating turntable, and the coating turntable is configured such that the coating turntable teeth are located above the rotating turntable.
- the turntable installation part is located below the rotating turntable, and the sputtering cathode is installed at the position of the adapting installation part, and is located on the upper or lower side of the rotating turntable, so that during the coating process, the rotating turntable can isolate and protect the gear.
- the effect makes the target material less likely to be sputtered onto the teeth on the other side of the rotating turntable, which can effectively avoid the problem of reduced gear meshing accuracy due to the coating process and help extend the service life of the gear.
- the coating turntable is connected to the rotating turntable through bearings.
- bearings In order to use bearings to achieve separation of motion.
- the rotating turntable is constructed with a number of assembly holes, bearing seats are respectively provided in the assembly holes, and each coating turntable is connected to the bearing seats through bearings.
- the mounting portion is a constraint hole constructed in the coating turntable. to install the fixture.
- the coating turntable and the teeth are an integral structure.
- the sputtering cathode is arranged in the vacuum chamber and is located at a position adapted to the coating turntable, and the effective coating area of the sputtering cathode covers the revolution track of the coating turntable. part of the area. In order to cooperate with the coating turntable, it is convenient for coating.
- a controller is further included, and the controller is electrically connected to the first driving module and the second driving module respectively. In order to use the controller to accurately control the first driving module and the second driving module.
- the coating system provided by the present invention has a compact structure, reasonable design, and multiple working modes. It can realize the rotation of the coating turntable at a specific position, thereby significantly improving the material utilization rate and the coating of components. With high efficiency, it can not only conduct batch coating, but also achieve the plating of different film layers on different coating components.
- Figure 1 is a schematic diagram of a three-dimensional structure of a rotating tool in a coating system provided in Embodiment 1 of the present invention.
- Figure 2 is the second schematic diagram of the three-dimensional structure of a rotating tool in a coating system provided in Embodiment 1 of the present invention.
- Figure 3 is a front view of Figure 1.
- Figure 4 is a schematic structural diagram of a rotating component in a coating system provided in Embodiment 1 of the present invention.
- Figure 5 is a schematic structural diagram of a rotating bracket in a coating system provided in Embodiment 1 of the present invention.
- FIG. 6 is a partial cross-sectional view of FIG. 3 .
- FIG. 7 is a partial cross-sectional view of a coating turntable in a coating system provided in Embodiment 1 of the present invention.
- FIG. 8 is a schematic diagram of a three-dimensional structure of a coating system provided in Embodiment 2 of the present invention.
- Figure 9 is the second schematic diagram of the three-dimensional structure of a coating system provided in Embodiment 2 of the present invention.
- FIG. 10 is a partial cross-sectional view of FIG. 9 .
- Frame 100 support tube 101, stepped hole 102, flange 103, mounting hole 104
- Rotary component 200 teeth 201, outer shaft 202, center hole 203, second motor 204, driving gear 206, driven gear 207
- Bearing 500 thrust roller bearing 501, rolling bearing 502, bearing seat 503
- Vacuum chamber 800 first installation channel 801, second installation channel 802
- This embodiment provides a coating system, including a vacuum chamber 800, a sputtering cathode 600, a sputtering power supply connected to the sputtering cathode 600, a vacuum pump connected to the vacuum chamber 800, a rotating tooling, etc., wherein,
- the vacuum chamber 800 is mainly used to form a vacuum environment required for vacuum coating.
- the vacuum pump can be connected with the vacuum chamber 800 through a pipeline to adjust and maintain the vacuum degree in the vacuum chamber 800 .
- the rotating tooling includes a frame, a rotating component 200 rotatably mounted on the frame, a first drive module, a second drive module, and a number of supporting fixtures 701 and/or components 702 (i.e., components to be coated).
- Component 702) coating turntable 400 wherein,
- the rack 100 can be fixedly installed in the vacuum chamber 800, as shown in Figures 8 and 9, and mainly plays the role of bearing and supporting.
- the coating turntable 400 is mainly used to support and constrain the jig 701 and/or the component 702. As shown in Figures 1 and 7, each coating turntable 400 is rotatably connected to the rotating bracket 300, and rotates along the circumference of the rotation center of the rotating component 200.
- the coating turntable 400 is distributed in the direction, and each coating turntable 400 is adapted to the rotating component 200 and is connected to the rotating component 200 in transmission, so that the relative rotation of the rotating component 200 and the rotating bracket 300 can drive the coating turntable 400 to rotate; in this embodiment, by Constructing multiple coating turntables 400 allows the coating system to coat multiple components 702 at the same time, which is beneficial to improving efficiency;
- the rotating bracket 300 may be rotatably connected to the frame 100 so that the center of rotation of the rotating bracket 300 coincides with the center of rotation of the rotating component 200 to achieve concentric rotation; as an example, the rotating bracket 300 may be connected to the frame 100 through a bearing. Rack 100.
- the first driving module is drivingly connected to the rotating bracket 300.
- the first driving module can drive each coating turntable 400 to revolve around the rotation center of the rotating component 200. It revolves synchronously and drives each coating turntable to rotate 400 degrees simultaneously. That is, when the first driving module drives the rotating bracket 300 to rotate, it can not only drive each coating turntable 400 to rotate, but also drive each coating turntable 400 to rotate, so as to cyclically rotate the components 702 on each coating turntable 400 to the adapted sputtering cathode. 600, the coating system can not only coat the components 702 on multiple coating turntables 400 at the same time, which is conducive to improving efficiency and realizing batch coating, but also is conducive to improving the uniformity of the coating, thereby improving the coating quality.
- the second driving module is drivingly connected to the rotating component 200.
- the second driving module can drive each coating turntable 400 to rotate. That is to say, during the coating process, the second driving module can drive the rotation of the rotary component 200 to drive each coating turntable 400 to rotate, thereby driving the jig 701 and/or the component 702 on each coating turntable 400 to rotate at a high speed.
- At least the rotating bracket 300 and the coating turntable 400 need to be located in the vacuum chamber 800 to facilitate coating in a vacuum environment.
- the sputtering cathode is installed in the vacuum chamber and is located at a position adapted to the coating turntable 400, so that the effective coating area of the sputtering cathode can cover part of the revolution track of the coating turntable, that is, at least cover the revolution of the coating turntable 400.
- Some movement trajectories are in order to correspond to the coating turntable 400 and cooperate with the coating turntable to facilitate coating.
- the number of sputtering cathodes 600 can be determined according to actual conditions. Each sputtering cathode 600 can be disposed at different positions in the vacuum chamber, and each sputtering cathode 600 can be disposed with a different target material or the same target material.
- Each sputtering cathode 600 can work independently or simultaneously to coat different workpieces at the same time.
- the sputtering power supply is electrically connected to the sputtering cathode 600 and is mainly used to power the sputtering cathode 600 .
- the first working mode during the coating process, only the first drive can be started.
- the module allows each coating turntable 400 to be in a revolution and rotation state at the same time, so that the components 702 on each coating turntable 400 can be coated at the same time, thereby significantly improving the coating efficiency.
- the second working mode During the coating process, a certain coating turntable 400 can be rotated through the first drive module to a position suitable for the sputtering cathode 600 (or a predetermined position), and then the first drive module is turned off and started.
- the second driving module allows the coating turntable 400 to rotate at a high speed at a predetermined position and cooperates with the sputtering cathode 600 at this position to perform efficient coating.
- this working method not only can the components 702 on each coating turntable 400 be continuously coated, which is beneficial to improving efficiency, but the position of the coating turntable 400 is adapted to the sputtering cathode 600, and the sputtered target can directly act on the coating.
- the components 702 on the turntable 400 avoid falling into the gap between the coating turntables 400, thereby effectively avoiding material contamination and waste, and significantly improving the utilization rate of materials; in addition, since each coating turntable 400 can be independently connected to the sputtering cathode 600, in the same coating process, this coating system can achieve different coating layers for different coating components, which can significantly improve the coating efficiency of differential coating.
- the coating turntable 400 and the rotating component 200 can be drive-connected through a synchronous belt to facilitate synchronous rotation.
- the coating turntable 400 and the rotating component 200 can be connected through a chain drive, and can also rotate synchronously.
- the rotating component 200 and the coating turntable 400 are each configured with a number of teeth 201 that are adapted to each other. As shown in FIGS. 2 to 6 , each coating turntable 400 can be rotated through the meshing of the teeth 201 and the teeth 201 respectively. Transmission is performed with the rotating component 200 to form a planetary rotating structure.
- the teeth 201 may be straight teeth or helical teeth. That is, in this solution, by constructing several teeth 201 on the rotating component 200, constructing several matching teeth 201 on each coating turntable 400, and arranging each coating turntable 400 in the circumferential direction of the rotation center of the rotating component 200, through The meshing of the teeth 201 allows the coating turntable 400 and the rotating component 200 to form a gear mesh transmission, so that the rotation of the rotating component 200 can be used to drive each coating turntable 400 to rotate synchronously.
- the teeth 201 should form a circle along the circumferential direction of the rotating component 200 and the coating turntable 400, as shown in Figures 2 to 6, so that the rotating component 200 and the coating turntable 400 can rotate at any angle.
- the rotary component 200 can use an internal gear or an external gear, and the internal gear or the external gear can be mounted on the frame 100 through bearings, and the coating turntable 400 is configured with an external gear adapted to the rotary component 200; for example , in this embodiment, the rotating component 200 uses an external gear, and can mesh with the coating turntable 400 , and the external gear provided on the coating turntable 400 can either be installed on the coating turntable 400 , or can be integrated with the coating turntable 400 Molding, as shown in Figures 2 and 3, that is, the teeth 201 can be directly constructed on the coating turntable 400 and formed in a circle.
- the second driving module has various embodiments.
- the second driving module may include a gear adapted to the external gear and meshed with the rotating component 200 to drive the rotating component 200 to rotate; and
- the second driving module may include a first pulley and a transmission belt.
- the upper or lower end of the rotating component 200 is configured with a second pulley adapted to the first pulley.
- the transmission belt is tensioned between the first pulley and the second belt. wheel so as to drive the entire rotary component 200 to rotate through the transmission belt;
- the second drive module may include a first sprocket and a chain, and the upper or lower end of the rotary component 200 is configured with a second sprocket adapted to the first sprocket.
- the chain is tensioned between the first sprocket wheel and the second sprocket wheel so as to drive the entire rotating component 200 to rotate through the chain.
- the rotating tooling further includes an inner shaft 303 that is rotatably installed and a shaft that is rotatably installed on the frame 100.
- the outer shaft 202 as shown in Figures 1 to 6, is configured with a central hole 203 penetrating both ends, so that the outer shaft 202 is sleeved on the outside of the inner shaft 303 through the central hole 203, and the inner shaft 303
- the center of rotation coincides with the center of rotation of the outer shaft 202; correspondingly, as an example, the rotating bracket 300 can be connected to the inner shaft 303, and the inner shaft 303 is drivingly connected to the first driving module.
- the rotating component 200 Connected to the outer shaft 202, and the outer shaft 202 is drivingly connected to the second drive module, as shown in Figures 2 and 3. At this time, the rotating component 200 is located below the rotating bracket 300, and the inner shaft 303 and the outer shaft 202 can rotate relative to each other without affecting each other;
- the rotating bracket 300 can be connected to the outer shaft 202, and the outer shaft 202 is drivingly connected to the first driving module.
- the rotating component 200 is connected to the inner shaft 303, and the inner shaft 303 is drivingly connected to the second driving module.
- drive module at this time, the rotary component 200 is located above the rotating bracket 300, and the inner shaft 303 and the outer shaft 202 can rotate relative to each other without affecting each other; specifically, in this embodiment, by constructing the inner shaft 303 and the outer shaft 202, The shaft 202 only needs to make the rotation center of the inner shaft 303 coincide with the rotation center of the outer shaft 202 to ensure that the rotation center of the rotating bracket 300 coincides with the rotation center of the rotating component 200. This is not only easy to implement, but also helps to simplify the structure, so that The structure is more compact and easy to assemble.
- the inner shaft 303 may have a hollow structure. As shown in FIGS. 5 and 6 , the inner shaft 303 may have a cylindrical structure.
- the inner shaft 303 can be connected to the outer shaft 202 and/or the frame 100 through a bearing set, as shown in Figure 6, and the bearing set includes at least one bearing; in order to facilitate the inner shaft 303
- the inner shaft 303 can adopt a stepped shaft, as shown in Figure 6.
- the central hole 203 can be configured to fit all the requirements.
- the stepped hole 102 of the stepped shaft is as shown in Figure 6.
- the inner shaft 303 can be connected to the stepped hole 102 through the bearing set, and the steps at the step can be used to install and position the bearing, as shown in Figure 6, thereby facilitating the use
- the bearing set installs the inner shaft 303 on the outer shaft 202; in order to stably support the inner shaft 303, in a more optimized solution, the bearing set includes at least one thrust bearing so that the thrust bearing can bear the axial force, such as the inner shaft 303 gravity, etc., so that the thrust bearing can be used to support the inner shaft 303 more stably; as an example, the bearing group between the inner shaft 303 and the outer shaft 202 includes a thrust roller bearing 501 and a rolling bearing 502, as shown in Figure 6 , the thrust roller bearing 501 and the rolling bearing 502 are installed at the steps respectively, which is beneficial to the axial force bearing and the inner shaft 303 to stably maintain the vertical state.
- the outer shaft 202 can also be connected to the frame 100 through a bearing set, and the bearing set includes at least one bearing, as shown in Figure 6; in order to facilitate the installation and installation of the bearings between the outer shaft 202 and the frame 100
- the outer shaft 202 can be configured as a stepped shaft, as shown in Figure 6 .
- the frame 100 is configured with a stepped hole 102 adapted to the stepped shaft, as shown in Figure 6
- the outer shaft 202 can be connected to the stepped hole 102 through a bearing set, so that the steps at the steps can be used to install and position the bearing, thereby facilitating the installation of the outer shaft 202 on the frame 100 using the bearing set.
- the bearing group includes at least one thrust bearing, so that the thrust bearing can be used to bear the axial force, such as the gravity of the inner shaft 303 and the outer shaft 202, so that Thrust bearings can be used to provide more stable support and motion separation;
- the bearing group between the outer shaft 202 and the frame 100 includes a thrust roller bearing 501 and a rolling bearing 502.
- the thrust bearing The roller bearing 501 and the rolling bearing 502 are installed at the steps respectively, which is beneficial to the axial force bearing and the inner shaft 303 and the outer shaft 202 to maintain a stable vertical state.
- the frame 100 has various embodiments.
- the frame 100 includes a support tube 101 and a flange 103 connected to the support tube 101.
- the flange 103 is configured with several installations.
- Hole 104 is used to realize the detachable installation and fixation of the rotating tooling by using fasteners such as bolt pairs.
- the first driving module includes a first transmission mechanism and a first motor 304.
- the first motor 304 is drivingly connected to the first transmission mechanism, and the first transmission mechanism is connected to the inner shaft.
- 303 or the outer shaft 202 are transmission connected to drive the rotating bracket 300 to rotate through the inner shaft 303 or the outer shaft 202;
- the first motor 304 can preferably use a stepper motor or a servo motor, and the first transmission mechanism has multiple implementations.
- the first transmission mechanism may adopt one or a combination of gear transmission mechanism, belt transmission mechanism, chain transmission mechanism or worm gear transmission mechanism.
- the gear transmission mechanism, belt transmission mechanism, chain transmission mechanism and worm gear transmission mechanism are all The commonly used transmission mechanism has low cost, simple principle, convenient assembly, and is very convenient for later disassembly and maintenance.
- the first transmission mechanism adopts a gear transmission mechanism, as shown in Figures 1-3.
- the gear transmission mechanism includes a transmission shaft, a driving gear 206 provided on the transmission shaft and
- the driven gear 207 is provided on the inner shaft 303.
- the output shaft of the first motor 304 is connected to the transmission shaft.
- the driving gear 206 meshes with the driven gear 207, so that the first motor 304 can be used to drive the inner shaft.
- 303 rotates to achieve the purpose of driving the rotating bracket 300 to rotate.
- the second driving module includes a second transmission mechanism and a second motor 204.
- the second motor 204 is drivingly connected to the second transmission mechanism, and the second transmission mechanism is connected to the outer shaft 202 or the inner shaft 202.
- the shaft 303 is drivingly connected to drive the rotating component 200 to rotate through the outer shaft 202 or the inner shaft 303. It can be understood that when the first driving mechanism is drivingly connected to the inner shaft 303, the second driving mechanism is drivingly connected to the outer shaft 202; when the first driving mechanism is drivingly connected to the inner shaft 303, When the driving mechanism is drivingly connected to the outer shaft 202, the second driving mechanism is drivingly connected to the inner shaft 303.
- the second motor 204 may preferably be a stepper motor or a servo motor, and the second transmission mechanism may be one or a combination of gear transmission mechanism, belt transmission mechanism, chain transmission mechanism or worm gear transmission mechanism.
- the second transmission mechanism adopts a gear transmission mechanism, as shown in Figures 1-3.
- the gear transmission mechanism includes a transmission shaft, a driving gear 206 provided on the transmission shaft and The driven gear 207 is provided on the inner shaft 303.
- the output shaft of the second motor 204 is connected to the transmission shaft.
- the driving gear 206 meshes with the driven gear 207, so that the second motor 204 can be used to drive the outer shaft.
- 202 rotates to achieve the purpose of driving the rotating component 200 to rotate.
- the rotating bracket 300 includes a horizontally arranged rotating turntable 301, as shown in Figures 1-6
- the rotating turntable 301 can preferably adopt a plate-like structure.
- the rotating turntable 301 can be connected to the inner shaft 303 and located above the rotating component 200.
- the rotating turntable 301 can also be connected to on the outer shaft 202 and located below the rotating component 200;
- the coating turntable 400 is also configured with a mounting portion for setting the jig 701 and/or the component 702 so as to constrain the jig 701 and/or the component to be coated 702 through the mounting portion; each coating turntable 400 is configured separately.
- the rotating turntable 301 It is rotatably installed on the rotating turntable 301, and the mounting part constructed on the coating turntable 400 and the teeth constructed on the coating turntable 400 are respectively located on different sides of the rotating turntable 301, as shown in Figures 1-3 and 6, That is, when the coating turntable 400 is installed on the rotating turntable 301, the teeth of the coating turntable 400 are located below the rotating turntable 301, the mounting part of the coating turntable 400 is located above the rotating turntable 301, or the teeth of the coating turntable 400 are located above When rotating the turntable 301 above, the mounting part of the coating turntable 400 is located below the rotating turntable 301, and the sputtering cathode 600 is usually installed at a position that fits the mounting part and is located on the upper or lower side of the rotating turntable 301, so that During the coating process, the rotating turntable 301 can play the role of isolating and protecting the gears, so that the target material is not easily sputtered onto the teeth on the other side of the rotating turn
- the coating turntable 400 can be connected to the rotating turntable 301 through bearings, so that the coating turntable 400 rotates more smoothly; and to facilitate the installation of the bearings, the rotating turntable 301 is configured with a number of assembly holes 302, as shown in Figures 5 and 7 As shown, the adapter holes can be evenly distributed along the circumferential direction of the rotation center of the rotating turntable 301, and the assembly holes 302 are respectively provided with bearing seats 503.
- Each coating turntable 400 can be connected to the bearing seats 503 through bearings, and can use nuts 402 and stoppers. The push washer 403 is locked, as shown in Figure 5 and Figure 7 .
- the structure of the coating turntable 400 can be determined according to actual needs. As an example, as shown in Figures 5-7, in this embodiment, the coating turntable 400 adopts a rotary structure, and the installation portion can be constructed on the coating turntable.
- the constraint holes 401 at the upper or lower end of 400 are shown in Figures 5 to 7, so that the constraint holes 401 can be used to install the fixture 701 or the component 702.
- the constraint holes 401 can penetrate the upper and lower ends of the coating turntable 400, It is also possible to only form a groove on the coating turntable 400 without penetrating the coating turntable 400; of course, there are other embodiments of the installation part.
- the installation part can also be a buckle structure or a locking mechanism constructed on the coating turntable 400.
- the teeth on the coating turntable 400 can be integrated with the coating turntable 400, as shown in Figures 2, 3 and 7.
- the first motor 304 and the second motor 204 in the rotating tool can be arranged outside the vacuum chamber 800, as shown in Figures 8 and 9.
- Other components in the rotating tooling can be installed in the vacuum chamber 800.
- the bottom of the vacuum chamber 800 is configured with an installation channel, and the first motor 304 and the second motor 204 can be installed respectively.
- the transmission shaft can extend into the vacuum chamber 800 through the installation channel, and a flange and a sealing structure are provided at the installation channel to close the installation channel.
- the magnetic fluid flange 904 may be preferably used as the flange in order to achieve a better vacuum sealing effect.
- the sealing structure includes but is not limited to sealing rings, sealing gaskets, dynamic sealing structures, etc., which will not be explained one by one here.
- the coating system also includes a controller, which can be electrically connected to the sputtering power supply to control the start/stop of the sputtering power supply to achieve the purpose of controlling whether or not to supply power to the sputtering cathode 600; at the same time , the controller can also be electrically connected to the vacuum pump, so as to control the vacuum degree of the vacuum chamber 800 by controlling the vacuum pump; in addition, the controller is also electrically connected to the first drive module and the second drive module respectively (for example, the controller can be respectively connected to the first drive module and the second drive module).
- a controller which can be electrically connected to the sputtering power supply to control the start/stop of the sputtering power supply to achieve the purpose of controlling whether or not to supply power to the sputtering cathode 600; at the same time , the controller can also be electrically connected to the vacuum pump, so as to control the vacuum degree of the vacuum chamber 800 by controlling the vacuum pump; in addition, the controller is also electrically connected to the first drive
- the first motor 304 and the second motor 204 are electrically connected) and are used to control the rotation speed of the rotating bracket 300 and the rotating component 200 respectively, so that the coating system can operate accurately under the control of the controller: for example, in the first working mode :
- the second drive module can be turned off through the controller, the first drive module can be started, and the first drive module is used to drive the rotating bracket 300 to rotate relative to the rotating component 200, so that the coating turntable 400 rotates at a high speed while revolving around the rotation center of the rotating component 200.
- This working mode can be used for batch coating, thereby significantly improving the coating efficiency.
- the controller can first start the first driving module to use the first driving module to rotate the required coating turntable 400 from the initial position to the target position adapted to the sputtering cathode 600, and then the controller
- the first drive module can be turned off and the second drive module can be started to use the second drive module to drive the coating turntable 400 to rotate at a high speed at the target position so as to cooperate with the sputtering cathode 600 at the position for individual coating.
- This working mode can be effective To avoid contamination and waste of the target material, different films can also be plated at different locations at the same time, which can significantly improve material utilization and coating efficiency.
- the controller can give priority to PC, PLC, microcontroller, embedded chip, etc.
- the vacuum chamber is also configured with a sputtering gas inlet, etc., which will not be explained one by one here.
- the first driving module also It includes a first magnetic fluid sealing structure 901.
- the vacuum chamber 800 is configured with a first installation channel 801.
- the first installation channel 801 is connected with the inside of the vacuum chamber 800.
- the first magnetic fluid sealing structure 901 is fixed to the vacuum chamber 800. , and seal the first installation channel 801 so that the first magnetic fluid sealing structure 901 can be used to seal the vacuum chamber 800, and one end of the first magnetic fluid sealing structure 901 extends outside the vacuum chamber 800 and is driven by the first motor. connection; the other end extends into the vacuum chamber 800 and is drivingly connected with the first transmission mechanism, which not only facilitates transmission, but also can achieve a better sealing effect and is beneficial to maintaining the vacuum degree of the vacuum chamber.
- the first magnetic fluid sealing structure 901 includes a magnetic fluid seal 903 and a magnetic fluid flange 904.
- the magnetic fluid flange 904 can be tightened by fasteners such as bolts. It is connected to the vacuum chamber 800 and closes the first installation channel 801, and a sealing member 906 such as a sealing ring is provided between the magnetic fluid flange 904 and the side wall of the vacuum chamber 800 for sealing.
- the magnetic fluid seal 903 is rotatably connected to the magnetic fluid flange 904, and a sealing component 906 such as a sealing ring is provided between the magnetic fluid seal 903 and the magnetic fluid flange 904 to achieve a better sealing effect.
- the first transmission mechanism includes a driving gear 206 and a driven gear 207.
- the gear 206 is connected to the upper end of the magnetic fluid seal 903 through the expansion sleeve 905, and the driving gear 206 can be connected to the frame 100, the vacuum chamber 800 or the bearing seat through the bearing (the bearing seat can be fixed to the frame 100, the vacuum chamber 800 or the bearing seat).
- Magnetic fluid flange 904 as shown in Figure 10
- the other end (eg, lower end) of the magnetic fluid seal 903 is located outside the vacuum chamber 800, as shown in Figures 1, 2, and 10.
- the first motor 304 is fixed to the vacuum chamber 800, for example, as shown in Figure 10, the first motor 304 is fixed to the vacuum chamber 800.
- the motor 304 can be fixed to the magnetic fluid flange 904 through the connecting frame 908, and the output shaft of the first motor 304 is drivingly connected to the magnetic fluid seal 903.
- the output shaft of the first motor 304 can be connected through the coupling.
- the shaft 907 is connected to the lower end of the magnetic fluid seal 903 so that the first motor 304 is used to drive the magnetic fluid seal 903 to rotate.
- the second drive module also includes a second magnetic fluid sealing structure 902.
- the vacuum chamber 800 is configured with a second installation channel 802, and the second installation channel 802 is connected to the vacuum chamber.
- the interior of the chamber 800 is connected, the second magnetic fluid sealing structure 902 is fixed to the vacuum chamber 800, and seals the second installation channel 802, so that the second magnetic fluid sealing structure 902 can be used to seal the vacuum chamber 800, and the second magnetic fluid sealing structure 902 is used to seal the vacuum chamber 800.
- One end of the two magnetic fluid sealing structures 902 extends outside the vacuum chamber 800 and is drivingly connected to the second motor; the other end extends into the vacuum chamber 800 and is drivingly connected to the second transmission mechanism, which not only facilitates transmission, but also achieves better performance.
- the second magnetic fluid sealing structure 902 includes a magnetic fluid seal 903 and a magnetic fluid flange 904, wherein the magnetic fluid flange 904 can be connected to the vacuum chamber 800 through fasteners such as bolts. , and seals the second installation channel 802, and a sealing component 906 such as a sealing ring is provided between the magnetic fluid flange 904 and the side wall of the vacuum chamber 800 for sealing.
- the magnetic fluid seal 903 is rotatably connected to the magnetic fluid flange 904, and a sealing component 906 such as a sealing ring is provided between the magnetic fluid seal 903 and the magnetic fluid flange 904 to achieve a better sealing effect.
- One end (eg, upper end) of the magnetic fluid seal 903 extends into the vacuum chamber 800 via the magnetic fluid flange 904 and is drivingly connected to a second transmission mechanism.
- the second transmission mechanism includes a driving gear 206 and a driven gear 207.
- the gear 206 is connected to the upper end of the magnetic fluid seal 903 through the expansion sleeve 905.
- the driving gear 206 can be connected to the frame 100, the vacuum chamber 800 or the bearing seat through the bearing (the bearing seat can be fixed to the frame 100, the vacuum chamber 800 or the magnetic fluid seal 903).
- Fluid flange 904 as shown in Figure 10
- the other end (eg, lower end) of the magnetic fluid seal 903 is located outside the vacuum chamber 800, as shown in Figure 10.
- the second motor is fixed to the vacuum chamber 800.
- the second motor can pass through the connecting frame 908. It is fixed to the magnetic fluid flange 904, and the output shaft of the second motor is drivingly connected to the magnetic fluid seal 903.
- the output shaft of the second motor can be connected to the magnetic fluid seal 903 through a coupling 907.
- the lower end is connected so that the second motor is used to drive the magnetic fluid seal 903 to rotate.
- this sealing structure not only facilitates transmission and precise control, but also can achieve better sealing effects and is more conducive to maintaining the vacuum degree of the vacuum chamber.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种镀膜系统,包括真空室和设置于真空室的转动工装,转动工装包括可转动安装的回转部件、第一驱动模块、第二驱动模块以及若干镀膜转台;镀膜转台分别可转动的连接于旋转支架,镀膜转台分别适配回转部件,并与回转部件传动连接;旋转支架可转动的连接于机架;第一驱动模块与旋转支架传动连接,用于驱动各镀膜转台分别绕回转部件的回转中心同步公转,并同步带动各镀膜转台自转;所述第二驱动模块与所述回转部件传动连接,用于驱动各镀膜转台自转;本镀膜系统,具有多种工作模式,可以实现镀膜转台在特定位置的自转,显著提高元件的镀膜效率,不仅可以批量镀膜,而且可以对不同的镀膜元件实现不同膜层的镀制。
Description
本发明涉及镀膜技术领域,具体涉及一种镀膜系统。
磁控溅射是一种广泛使用的物理气相沉积镀膜技术。相对于常用的热蒸发镀膜,磁控溅射的镀膜速率稳定,同时单次可镀制的薄膜厚度大于热蒸发镀膜;相对于离子束溅射镀膜技术,磁控溅射阴极的结构相对简单,维护成本低,因此镀膜成本低于离子束溅射镀膜技术。由于磁控溅射的技术特征,其广泛应用于各种金属膜、半导体膜、介质膜、磁控膜、光学膜、超导膜、传感膜以及各种特殊需求的功能薄膜的制备。
利用磁控溅射镀膜方法,可实现球面元件(或称为工件)表面的镀膜。为了在球面元件表面获得高的薄膜厚度均匀性,通常需要利用转动工装才能获得中心对称分布的薄膜厚度分布,使得转动工装在镀膜设备(或称为镀膜系统、镀膜机)在应用广泛。目前,两种转动方式可实现球面样品的旋转并完成磁控溅射镀膜。第一种样品转动方式中,球面元件位于磁控溅射镀膜区域,并围绕其对称中心高速转动。利用这种转动方式实现球面样品表面的镀膜时,每次仅可以镀制一个球面样品;第二种转动方式中,球面元件安装在行星转动夹具上,元件不光围绕对称中心高速自转,同时沿着一个中心公转。利用该方式可以实现多个样品的镀膜,最大镀膜数目和行星转动的数目一致。然而,在这种镀膜过程中,由于镀膜镜片会在转动工装的驱动下绕转动轮公转,而相邻两镀膜镜片之间通常具有较大的空隙,导致很多靶材都会溅射到所述空隙中,造成材料的污染和浪费,材料利用率低、成本高,同时,使得镀制同样厚度的膜,需要耗费更多的时间,从而大大降低镀膜效率。此外、现有的行星转动工装上可以同时安装多个镀膜镜片,在镀膜过程中,只能有一种靶材与转动工装进行配合镀膜,而其余的靶材都不能镀膜,使得在转动工装转动的过程中,转动工装上所安装的所有镀膜镜片只能镀同一种膜,而不能同时为不同的镀膜镜片镀制不同的膜,导致现有镀膜设备存在镀膜效率低的问题。
磁控溅射是一种广泛使用的物理气相沉积镀膜技术。相对于常用的热蒸发镀膜,磁控溅射的镀膜速率稳定,同时单次可镀制的薄膜厚度大于热蒸发镀膜;相对于离子束溅射镀膜技术,磁控溅射阴极的结构相对简单,维护成本低,因此镀膜成本低于离子束溅射镀膜技术。由于磁控溅射的技术特征,其广泛应用于各种金属膜、半导体膜、介质膜、磁控膜、光学膜、超导膜、传感膜以及各种特殊需求的功能薄膜的制备。
利用磁控溅射镀膜方法,可实现球面元件(或称为工件)表面的镀膜。为了在球面元件表面获得高的薄膜厚度均匀性,通常需要利用转动工装才能获得中心对称分布的薄膜厚度分布,使得转动工装在镀膜设备(或称为镀膜系统、镀膜机)在应用广泛。目前,两种转动方式可实现球面样品的旋转并完成磁控溅射镀膜。第一种样品转动方式中,球面元件位于磁控溅射镀膜区域,并围绕其对称中心高速转动。利用这种转动方式实现球面样品表面的镀膜时,每次仅可以镀制一个球面样品;第二种转动方式中,球面元件安装在行星转动夹具上,元件不光围绕对称中心高速自转,同时沿着一个中心公转。利用该方式可以实现多个样品的镀膜,最大镀膜数目和行星转动的数目一致。然而,在这种镀膜过程中,由于镀膜镜片会在转动工装的驱动下绕转动轮公转,而相邻两镀膜镜片之间通常具有较大的空隙,导致很多靶材都会溅射到所述空隙中,造成材料的污染和浪费,材料利用率低、成本高,同时,使得镀制同样厚度的膜,需要耗费更多的时间,从而大大降低镀膜效率。此外、现有的行星转动工装上可以同时安装多个镀膜镜片,在镀膜过程中,只能有一种靶材与转动工装进行配合镀膜,而其余的靶材都不能镀膜,使得在转动工装转动的过程中,转动工装上所安装的所有镀膜镜片只能镀同一种膜,而不能同时为不同的镀膜镜片镀制不同的膜,导致现有镀膜设备存在镀膜效率低的问题。
本发明的目的在于解决现有磁控溅射镀膜设备在球面元件表面镀膜过程中存在材料利用率低、成本高、镀膜效率低的问题,提供了一种镀膜系统,可以显著提高材料利用率和镀膜效率,不仅可以批量镀膜,而且可以为不同的镀膜镜片镀制不同的膜,主要构思为:
一种镀膜系统,包括真空室和设置于真空室内的转动工装,所述转动工装包括机架、旋转支架、可转动安装于机架的回转部件、第一驱动模块、第二驱动模块以及若干用于支撑治具和/或元件的镀膜转台,其中,各所述镀膜转台分别可转动的连接于旋转支架,并沿回转部件回转中心的圆周方向分布,各镀膜转台分别适配所述回转部件,并分别与回转部件传动连接;所述旋转支架可转动的连接于所述机架,且旋转支架的回转中心与回转部件的回转中心重合;所述第一驱动模块与所述旋转支架传动连接,用于驱动各镀膜转台分别绕回转部件的回转中心同步公转,并同步带动各镀膜转台自转;所述第二驱动模块与所述回转部件传动连接,用于驱动各镀膜转台自转。本镀膜系统中,通过设置镀膜转台,解决镀膜过程中对治具和/或元件的支撑问题,通过构造多个镀膜转台,使得本镀膜系统可以同时为多个元件进行镀膜,有利于提高效率;通过将各镀膜转台安装于旋转支架,旋转支架可转动的连接于机架,且第一驱动模块与旋转支架传动连接,使得在镀膜过程中,第一驱动模块可以通过驱动旋转支架转动达到驱动各镀膜转台绕回转部件的回转中心同步公转并自转的目的,以便将各镀膜转台上的元件循环转动到适配溅射阴极的位置处,使得本镀膜系统不仅可以同时为多个镀膜转台上的元件同时镀膜,有利于提高效率,实现批量镀膜,而且有利于提高镀膜的均匀性;通过设置回转部件,并将回转部件进行可转动安装,使得各镀膜转台分别沿回转部件回转中心的圆周方向分布,同时将各镀膜转台分别与回转部件传动连接,第二驱动模块与回转部件传动连接,使得在镀膜过程中,第二驱动模块可以通过驱动回转部件转动达到驱动各镀膜转台自转,进而带动各镀膜转台上的治具和/或元件高速自转的目的,通过第一驱动模块与第二驱动模块的配合,可以实现两种工作模式,其中,第一种工作模式:在镀膜的过程中,仅启动第一驱动模块,使得各镀膜转台可以同时处于公转和自转状态,可以同时对多个元件进行镀膜;第二种工作模式:在镀膜过程中,可以通过第一驱动模块将镀膜转台转动到适配溅射阴极的位置处,而后关闭第一驱动模块并启动第二驱动模块,使得镀膜转台可以在所预定的位置处高速旋转,并配合溅射阴极进行镀膜,采用这样的工作方式,不仅可以连续不断的为各镀膜转台上的元件镀膜,可以显著提高元件的镀膜效率,而且镀膜转台的位置适配溅射阴极,溅射的靶材可以直接作用于镀膜转台上的元件,避免落入镀膜转台之间的间隙,从而可以有效避免材料被污染和浪费,可以显著提高材料的利用率;此外,由于各镀膜转台分别单独与溅射阴极相配合,使得在同一镀膜过程中,本镀膜系统可以为各镀膜转台上的各元件分别镀制不同膜层的膜,可以显著提高差异性镀膜的镀膜效率,从而可以有效解决现有技术存在的问题。
为解决各镀膜转台可以分别与回转部件传动连接的问题,进一步的,所述回转部件和镀膜转台分别构造有若干相互适配的齿,各镀膜转台分别通过齿与齿的啮合与回转部件进行传动。即,在本方案中,通过在回转部件构造若干齿,在各镀膜转台分别构造若干适配的齿,并将各镀膜转台布置于回转部件回转中心的圆周方向,通过齿与齿的啮合,使得镀膜转台与回转部件可以构成转动传动机构,从而可以利用回转部件的转动驱动各镀膜转台同步公转。
优选的,所述回转部件采用的是内齿轮或外齿轮,所述镀膜转台构造有适配回转部件的外齿轮。
为解决旋转支架的回转中心与回转部件的回转中心相重合的问题,进一步的,还包括可转动安装的内轴及可转动安装于机架的外轴,所述外轴构造有中心孔,外轴通过所述中心孔套设于内轴的外侧,且内轴的回转中心与外轴的回转中心重合;
所述旋转支架连接于所述内轴,且内轴传动连接所述第一驱动模块,所述回转部件连接于所述外轴,且外轴传动连接所述第二驱动模块;或,所述旋转支架连接于所述外轴,且外轴传动连接所述第一驱动模块,所述回转部件连接于所述内轴,且内轴传动连接所述第二驱动模块。采用这种结构,只需使得内轴的回转中心与外轴的回转中心重合,即可确保旋转支架的回转中心与回转部件的回转中心重合,不仅容易实现,而且有利于简化结构,使得结构更紧凑,且便于装配。
为实现可转动安装,优选的,所述内轴通过轴承组连接于所述外轴和/或机架,所述外轴通过轴承组连接于所述机架,所述轴承组包括至少两个轴承。
为解决轴承的安装和定位问题,进一步的,所述内轴采用的是阶梯轴,所述外轴的中心孔构造为适配所述内轴的阶梯孔,内轴通过轴承组连接于所述外轴的阶梯孔。通过将内轴构造为阶梯轴,并将中心孔构造为阶梯孔,便于利用阶梯处的台阶实现轴承的安装和定位,从而便于利用轴承组将内轴安装于外轴。
为解决轴承的安装和定位问题,进一步的,所述外轴构造为阶梯轴,所述机架构造有适配所述外轴的阶梯孔,外轴通过轴承组连接于所述机架的阶梯孔。以便利用阶梯处的台阶实现轴承的安装和定位,从而便于利用轴承组将外轴安装于机架。
为解决稳定支撑内轴和外轴的问题,进一步的,所述轴承组包括至少一个推力轴承。推力轴承用来承受轴向力,如内轴的重力、外轴的重力等,从而可以利用推力轴承更稳定的支撑内轴和外轴。
优选的,所述机架包括支撑筒和连接于支撑筒的法兰,所述法兰构造有若干安装孔。以便本镀膜系统中转动工装的安装和固定。
为解决传动的问题,优选的,所述第一驱动模块包括第一传动机构和第一电机,所述第一电机传动连接所述第一传动机构,且所述第一传动机构与所述内轴或外轴传动连接;
和/或,所述第二驱动模块包括第二传动机构和第二电机,所述第二电机传动连接所述第二传动机构,且所述第二传动机构与所述外轴或内轴传动连接。
进一步的,所述第一传动机构为齿轮传动机构、带传动机构、链传动机构或蜗轮蜗杆传动机构中的一种或多种的组合;
和/或,所述第二传动机构为齿轮传动机构、带传动机构、链传动机构或蜗轮蜗杆传动机构中的一种或多种的组合。
为解决溅射镀膜时,因镀膜工艺而造成齿轮啮合精度降低、齿轮使用寿命降低的问题,进一步的,所述旋转支架包括水平设置的转动转盘,所述转动转盘连接于内轴或外轴,并位于所述回转部件的上方或下方;
所述镀膜转台还构造有用于设置治具和/或元件的安装部,各镀膜转台分别可转动的安装于所述转动转盘,且构造于镀膜转台的安装部和构造于镀膜转台的齿分别位于转动转盘的不同侧。即,当镀膜转台安装于转动转盘后,构造于镀膜转台齿位于转动转盘的下方,构造于镀膜转台安装部位于转动转盘的上方,或,构造于镀膜转台齿位于转动转盘的上方,构造于镀膜转台安装部位于转动转盘的下方,而溅射阴极安装于适配安装部的位置处,并位于转动转盘的上侧或下侧,从而使得在镀膜过程中,转动转盘可以起到隔离保护齿轮的作用,使得靶材不容易溅射到转动转盘另一侧的齿上,可以有效避免因镀膜工艺而造成齿轮啮合精度降低的问题,有利于延长齿轮的使用寿命。
为解决镀膜转台的可转动安装问题,优选的,所述镀膜转台分别通过轴承连接所述转动转盘。以便利用轴承实现运动的分离。
优选的,所述转动转盘构造有若干装配孔,装配孔内分别设置有轴承座,各镀膜转台分别通过轴承连接所述轴承座。
优选的,所述安装部为构造于镀膜转台的约束孔。以便安装治具。
优选的,所述镀膜转台与齿为一体结构。
为解决镀膜的问题,进一步的,还包括溅射阴极,所述溅射阴极设置于所述真空室内,并位于适配镀膜转台的位置处,且溅射阴极的有效镀膜区域覆盖镀膜转台公转轨道的部分区域。以便与镀膜转台进行配合,从而便于进行镀膜。
为解决精确控制的问题,进一步的,还包括控制器,所述控制器分别与第一驱动模块和第二驱动模块电连接。以便利用控制器精确控制第一驱动模块和第二驱动模块。
与现有技术相比,使用本发明提供的一种镀膜系统,结构紧凑、设计合理,具有多种工作模式,可以实现镀膜转台在特定位置的自转,从而可以显著提高材料利用率和元件的镀膜效率,不仅可以批量镀膜,而且可以对不同的镀膜元件实现不同膜层的镀制。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例1提供的一种镀膜系统中,一种转动工装的三维结构示意图之一。
图2为本发明实施例1提供的一种镀膜系统中,一种转动工装的三维结构示意图之二。
图3为图1的主视图。
图4为本发明实施例1提供的一种镀膜系统中,一种回转部件的结构示意图。
图5为本发明实施例1提供的一种镀膜系统中,一种旋转支架的结构示意图。
图6为图3的局部剖视图。
图7为本发明实施例1提供的一种镀膜系统中,镀膜转台处的局部剖视图。
图8为本发明实施例2提供的一种镀膜系统的三维结构示意图之一。
图9为本发明实施例2提供的一种镀膜系统的三维结构示意图之二。
图10为图9的局部剖视图。
图中标记说明
机架100、支撑筒101、阶梯孔102、法兰103、安装孔104
回转部件200、齿201、外轴202、中心孔203、第二电机204、主动齿轮206、从动齿轮207
旋转支架300、转动转盘301、装配孔302、内轴303、第一电机304
镀膜转台400、约束孔401、螺母402、止推垫片403
轴承500、推力滚子轴承501、滚动轴承502、轴承座503
溅射阴极600
治具701、元件702
真空室800、第一安装通道801、第二安装通道802
第一磁流体密封结构901、第二磁流体密封结构902、磁流体密封件903、磁流体法兰904、胀紧套905、密封部件906、联轴器907、连接架908。
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例中提供了一种镀膜系统,包括真空室800、溅射阴极600、与溅射阴极600相连的溅射电源、与真空室800相连的真空泵以及转动工装等,其中,
在本实施例中,真空室800主要用于形成真空镀膜所需的真空环境,真空泵可以通过管道与真空室800相连通,以便调节和维持真空室800内的真空度。
在本实施例中,转动工装包括机架、可转动安装于机架的回转部件200、第一驱动模块、第二驱动模块以及若干用于支撑治具701和/或元件702(即待镀膜的元件702)的镀膜转台400,其中,
机架100可以固定安装于真空室800,如图8及图9所示,主要起到承载和支撑的作用。
镀膜转台400主要用于支撑和约束治具701和/或元件702,如图1及图7所示,各镀膜转台400分别可转动的连接于旋转支架300,并沿回转部件200回转中心的圆周方向分布,且各镀膜转台400分别适配回转部件200,并分别与回转部件200传动连接,以使回转部件200与旋转支架300的相对转动可以带动镀膜转台400转动;在本实施例中,通过构造多个镀膜转台400,使得本镀膜系统可以同时为多个元件702进行镀膜,有利于提高效率;
在实施时,旋转支架300可以可转动的连接于机架100,并使得旋转支架300的回转中心与回转部件200的回转中心重合,以便实现同心转动;作为举例,旋转支架300可以通过轴承连接于机架100。
在本实施例中,第一驱动模块与旋转支架300传动连接,如图3及图6所示,在镀膜的过程中,第一驱动模块可以驱动各镀膜转台400分别绕回转部件200的回转中心同步公转,并同步带动各镀膜转台400自转。即,当第一驱动模块驱动旋转支架300转动时,不仅可以带动各镀膜转台400公转,而且可以带动各镀膜转台400自转,以便将各镀膜转台400上的元件702循环转动到适配溅射阴极600的位置处,使得本镀膜系统不仅可以同时为多个镀膜转台400上的元件702同时镀膜,有利于提高效率,实现批量镀膜,而且有利于提高镀膜的均匀性,从而可以提高镀膜质量。
在本实施例中,第二驱动模块与回转部件200传动连接,如图3及图6所示,在镀膜的过程中,第二驱动模块可以驱动各镀膜转台400自转。也就是说,在镀膜过程中,第二驱动模块可以通过驱动回转部件200转动达到驱动各镀膜转台400自转,进而带动各镀膜转台400上的治具701和/或元件702高速自转的目的。
在本实施例中,当机架100固定安装于真空室800后,至少需要使旋转支架300和镀膜转台400位于真空室800内,以便在真空的环境下镀膜。
在本实施例中,溅射阴极设置于真空室内,并位于适配镀膜转台400的位置处,使得溅射阴极的有效镀膜区域可以覆盖镀膜转台公转轨道的部分区域,即至少覆盖镀膜转台400公转的部分运动轨迹,以便对应镀膜转台400,并与镀膜转台进行配合,以便镀膜。在实施时,溅射阴极600的数目可以根据实际而定,各溅射阴极600可以分别设置于真空室内的不同位置处,且各溅射阴极600处可以设置不同的靶材,也可以设置相同的靶材,各溅射阴极600可以单独工作,也可以同时工作,以便同时对不同的工件镀膜。此外,在本实施例中,溅射电源与溅射阴极600电连接,主要用于为溅射阴极600供电。
本镀膜系统在工作时,通过第一驱动模块与第二驱动模块的配合,可以实现至少两种主要的工作模式,其中,第一种工作模式:在镀膜的过程中,可以仅启动第一驱动模块,使得各镀膜转台400可以同时处于公转和自转状态,从而可以同时对各镀膜转台400上元件702进行镀膜,因而可以显著提高镀膜效率。
第二种工作模式:在镀膜过程中,可以通过第一驱动模块将某镀膜转台400转动到适配溅射阴极600的位置处(或所预定的位置处),而后关闭第一驱动模块并启动第二驱动模块,使得镀膜转台400可以在所预定的位置处高速旋转,并配合该位置处的溅射阴极600,以便进行高效镀膜。采用这样的工作方式,不仅可以连续不断的为各镀膜转台400上的元件702镀膜,有利于提高效率,而且镀膜转台400的位置适配溅射阴极600,溅射的靶材可以直接作用于镀膜转台400上的元件702,避免落入镀膜转台400之间的间隙,从而可以有效避免材料被污染和浪费,可以显著提高材料的利用率;此外,由于各镀膜转台400可以分别单独与溅射阴极600相配合,使得在同一镀膜过程中,本镀膜系统可以对不同的镀膜元件实现不同膜层的镀制,可以显著提高差异性镀膜的镀膜效率。
为使得镀膜转台400可以与回转部件200传动连接,具有多种实施方式,例如,镀膜转台400与回转部件200之间可以通过同步带传动连接,以便同步转动。又如,镀膜转台400与回转部件200之间可以通过链条传动连接,也能同步转动。而在更优选的实施方式中,回转部件200和镀膜转台400分别构造有若干相互适配的齿201,如图2-图6所示,各镀膜转台400可以分别通过齿201与齿201的啮合与回转部件200进行传动,以便形成行星转动结构。在实施时,所述齿201可以是直齿,也可以是斜齿。即,在本方案中,通过在回转部件200构造若干齿201,在各镀膜转台400分别构造若干相适配的齿201,并将各镀膜转台400布置于回转部件200回转中心的圆周方向,通过齿201与齿201的啮合,使得镀膜转台400与回转部件200可以构成齿轮啮合传动,从而可以利用回转部件200的转动驱动各镀膜转台400同步自转。
在实施时,所述齿201应该分别沿回转部件200和镀膜转台400的圆周方向围成一圈,如图2-图6所示,使得回转部件200和镀膜转台400可以旋转任意角度。为简化结构,所述回转部件200可以采用内齿轮或外齿轮,且内齿轮或外齿轮可以通过轴承安装于机架100,而所述镀膜转台400构造有适配回转部件200的外齿轮;例如,在本实施例中,回转部件200采用的是外齿轮,并可以与镀膜转台400相啮合,而设置于镀膜转台400的外齿轮,既可以安装于镀膜转台400,也可以与镀膜转台400一体成型,如图2及图3所示,即,所述齿201可以直接构造于镀膜转台400,并围成一圈。在这种实施方式中,第二驱动模块具有多种实施方式,例如,第二驱动模块可以包括适配所述外齿轮的齿轮,并与回转部件200相啮合,以便驱动回转部件200转动;又如,第二驱动模块可以包括第一带轮和传动带,回转部件200的上端或下端构造有适配所述第一带轮的第二带轮,传动带张紧于第一带轮和第二带轮,以便通过传动带驱动整个回转部件200转动;又如,第二驱动模块可以包括第一链轮和链条,回转部件200的上端或下端构造有适配所述第一链轮的第二链轮,链条张紧于第一链轮与第二链轮之间,以便通过链条驱动整个回转部件200转动。
为使得旋转支架300的回转中心与回转部件200的回转中心可以相互重合,在一种优选的实施方式中,所述转动工装还包括可转动安装的内轴303及可转动安装于机架100的外轴202,如图1-图6所示,所述外轴202构造有贯穿两端的中心孔203,使得外轴202通过所述中心孔203套设于内轴303的外侧,且内轴303的回转中心与外轴202的回转中心重合;相应的,作为一种举例,旋转支架300可以连接于所述内轴303,内轴303传动连接所述第一驱动模块,此时,回转部件200连接于所述外轴202,且外轴202传动连接所述第二驱动模块,如图2及图3所示,此时,回转部件200位于旋转支架300的下方,且内轴303、外轴202可以分别相对转动,互不影响;
作为另一种举例,旋转支架300可以连接于外轴202,外轴202传动连接第一驱动模块,此时,回转部件200连接于所述内轴303,且内轴303传动连接所述第二驱动模块,此时,回转部件200位于旋转支架300的上方,且内轴303、外轴202可以分别相对转动,互不影响;具体而言,在本实施例中,通过构造内轴303和外轴202,只需使得内轴303的回转中心与外轴202的回转中心重合,即可确保旋转支架300的回转中心与回转部件200的回转中心重合,不仅容易实现,而且有利于简化结构,使得结构更紧凑,且便于装配。
在实施时,为减轻重量,所述内轴303可以为空心结构,如图5及图6所示,所述内轴303可以为筒状结构。
更完善的,为实现可转动安装,内轴303可以通过轴承组连接于外轴202和/或机架100,如图6所示,且所述轴承组包括至少一个轴承;为便于内轴303与外轴202之间轴承的安装和定位,在更进一步的方案中,所述内轴303可以采用的阶梯轴,如图6所示,相应地,所述中心孔203可以构造为适配所述阶梯轴的阶梯孔102,如图6所示,内轴303可以通过轴承组连接于阶梯孔102,并可以利用阶梯处的台阶实现轴承的安装和定位,如图6所示,从而便于利用轴承组将内轴303安装于外轴202;而为稳定的支撑内轴303,在更优化的方案中,所述轴承组包括至少一个推力轴承,以便利用推力轴承承受轴向力,如内轴303的重力等,从而可以利用推力轴承更稳定的支撑内轴303;作为举例,内轴303与外轴202之间的轴承组包括一个推力滚子轴承501和一个滚动轴承502,如图6所示,推力滚子轴承501和滚动轴承502分别安装于阶梯处,既有利于轴向承力,又有利于内轴303稳定的保持竖直状态。
同理,外轴202也可以通过轴承组连接于所述机架100,且所述轴承组包括至少一个轴承,如图6所示;为便于外轴202与机架100之间轴承的安装和定位,在更进一步的方案中,所述外轴202可以构造为阶梯轴,如图6所示,相应地,所述机架100构造有适配所述阶梯轴的阶梯孔102,如图6所示,外轴202可以通过轴承组连接于所述阶梯孔102,以便利用阶梯处的台阶实现轴承的安装和定位,从而便于利用轴承组将外轴202安装于机架100。同理,为稳定的支撑外轴202,在更优化的方案中,所述轴承组包括至少一个推力轴承,以便利用推力轴承承受轴向力,如内轴303和外轴202的重力等,从而可以利用推力轴承更稳定的起到支撑和运动分离的作用;作为举例,外轴202与机架100之间的轴承组包括一个推力滚子轴承501和一个滚动轴承502,如图6所示,推力滚子轴承501和滚动轴承502分别安装于阶梯处,既有利于轴向承力,又有利于内轴303、外轴202稳定的保持竖直状态。
机架100具有多种实施方式,作为优选,所述机架100包括支撑筒101和连接于支撑筒101的法兰103,如图1-图3所示,所述法兰103构造有若干安装孔104,以便利用螺栓副等紧固件实现转动工装的可拆卸安装和固定。
在本实施例中,所述第一驱动模块包括第一传动机构和第一电机304,所述第一电机304传动连接所述第一传动机构,且所述第一传动机构与所述内轴303或外轴202传动连接,以便通过内轴303或外轴202驱动旋转支架300转动;第一电机304可以优先采用步进电机或伺服电机,第一传动机构具有多种实施方式,作为优选,第一传动机构可以采用齿轮传动机构、带传动机构、链传动机构或蜗轮蜗杆传动机构中的一种或多种的组合,齿轮传动机构、带传动机构、链传动机构以及蜗轮蜗杆传动机构均是常用的传动机构,成本低,原理简单,装配方便,非常便于后期拆卸、维护。例如,在本实施例中,所述第一传动机构采用的是齿轮传动机构,如图1-图3所示,所述齿轮传动机构包括传动轴、设置于所述传动轴的主动齿轮206以及设置于所述内轴303的从动齿轮207,所述第一电机304的输出轴与所述传动轴相连,主动齿轮206与从动齿轮207相啮合,从而可以利用第一电机304驱动内轴303转动,达到驱动旋转支架300转动的目的。
同理,所述第二驱动模块包括第二传动机构和第二电机204,所述第二电机204传动连接所述第二传动机构,且所述第二传动机构与所述外轴202或内轴303传动连接,以便通过外轴202或内轴303驱动回转部件200转动,可以理解,当第一驱动机构与内轴303传动连接时,第二驱动机构与外轴202传动连接;当第一驱动机构与外轴202传动连接时,第二驱动机构与内轴303传动连接。
同理,第二电机204可以优先采用步进电机或伺服电机,所述第二传动机构可以采用齿轮传动机构、带传动机构、链传动机构或蜗轮蜗杆传动机构中的一种或多种的组合。例如,在本实施例中,所述第二传动机构采用的是齿轮传动机构,如图1-图3所示,所述齿轮传动机构包括传动轴、设置于所述传动轴的主动齿轮206以及设置于所述内轴303的从动齿轮207,所述第二电机204的输出轴与所述传动轴相连,主动齿轮206与从动齿轮207相啮合,从而可以利用第二电机204驱动外轴202转动,达到驱动回转部件200转动的目的。
为解决溅射镀膜时,因镀膜工艺而造成齿轮啮合精度降低、齿轮使用寿命降低的问题,在更进一步的方案中,所述旋转支架300包括水平设置的转动转盘301,如图1-图6所示,转动转盘301可以优先采用板状结构,所述转动转盘301可以连接于内轴303,并位于所述回转部件200的上方,如图1-图3所示,转动转盘301也可以连接于外轴202并位于回转部件200的下方;
在本实施例中,所述镀膜转台400还构造有用于设置治具701和/或元件702的安装部,以便通过安装部约束治具701和/或待镀膜的元件702;各镀膜转台400分别可转动的安装于所述转动转盘301,且构造于镀膜转台400的安装部和构造于镀膜转台400的齿分别位于转动转盘301的不同侧,如图1-图3、及图6所示,即,当镀膜转台400安装于转动转盘301后,构造于镀膜转台400齿位于转动转盘301的下方时,构造于镀膜转台400安装部位于转动转盘301的上方,或者,构造于镀膜转台400齿位于转动转盘301的上方时,构造于镀膜转台400安装部位于转动转盘301的下方,而溅射阴极600通常安装于适配安装部的位置处,并位于转动转盘301的上侧或下侧,从而使得在镀膜过程中,转动转盘301可以起到隔离保护齿轮的作用,使得靶材不容易溅射到转动转盘301另一侧的齿上,可以有效避免因镀膜工艺而造成齿轮啮合精度降低的问题,更有利于延长齿轮的使用寿命。
在实施时,镀膜转台400可以通过轴承连接转动转盘301,使得镀膜转台400的转动更顺畅;而为便于轴承的安装,所述转动转盘301构造有若干装配孔302,如图5及图7所示,各转配孔可以沿转动转盘301回转中心的圆周方向均匀分布,装配孔302内分别设置有轴承座503,各镀膜转台400可以分别通过轴承连接轴承座503,并可以利用螺母402和止推垫片403锁紧,如图5及图7所示。
镀膜转台400的结构可以根据实际需求而定,作为举例,如图5-图7所示,在本实施例中,镀膜转台400采用的是回转体结构,所述安装部可以为构造于镀膜转台400上端或下端的约束孔401,如图5-图7所示,以便利用约束孔401安装治具701或元件702,在实施时,所述约束孔401可以贯穿镀膜转台400的上下两端,也可以不贯穿镀膜转台400,只在镀膜转台400上形成凹槽即可;当然,安装部还有其它实施方式,例如,安装部还可以是构造于镀膜转台400的卡扣结构、锁紧机构、外螺纹、内螺纹等,需要能约束或固定治具701和/或工件702即可。而镀膜转台400上的齿可以与镀膜转台400为一体结构,如图2、图3及图7所示。
为便于实现密封,以维持真空室的真空度,在更完善的方案中,转动工装中的第一电机304和第二电机204可以布置于真空室800外,如图8及图9所示,而转动工装中的其它部件可以设置于真空室800内,例如,如图8及图9所示,真空室800的底部构造有安装通道,所述第一电机304和第二电机204可以分别安装于真空室800外,且传动轴可以通过安装通道延伸进真空室800内,并在安装通道处设置法兰和密封结构,以封闭安装通道。所述法兰可以优先采用磁流体法兰904,以便实现更好的真空密封效果,所述密封结构包括但不限于密封圈、密封垫片、动密封结构等,这里不再一一举例说明。
在更完善的方案中,本镀膜系统还包括控制器,控制器可以与溅射电源电连接,以便控制溅射电源的启动/关闭,达到控制是/否向溅射阴极600供电的目的;同时,控制器也可以与真空泵电连接,以便通过控制真空泵达到控制真空室800真空度的目的;此外,控制器还分别与第一驱动模块和第二驱动模块电连接(例如,控制器可以分别与第一电机304和第二电机204电连接),用于分别控制旋转支架300和回转部件200的转速,使得本镀膜系统可以在控制器的控制下精确运行:例如,在第一种工作模式中:可以通过控制器关闭第二驱动模块、启动第一驱动模块,并利用第一驱动模块驱动旋转支架300相对于回转部件200转动,使得镀膜转台400在绕回转部件200回转中心公转的同时高速自转,以便配合溅射阴极600进行镀膜,这种工作模式可以批量镀膜,从而可以显著提高镀膜效率。
在第二种工作模式中:控制器可以先启动第一驱动模块,以利用第一驱动模块将所需的镀膜转台400从初始位置转动到适配溅射阴极600的目标位置处,然后控制器可以关闭第一驱动模块并启动第二驱动模块,以利用第二驱动模块驱动镀膜转台400在目标位置处高速旋转,以便配合该位置处的溅射阴极600进行单独镀膜,这种工作模式可以有效避免靶材被污染和浪费,也可以同时在不同的位置处镀制不同的膜,可以显著提高材料的利用率和镀膜效率。
在实施时,控制器可以优先采用PC机、PLC、单片机、嵌入式芯片等。
在更完善的方案中,所述真空室还构造有溅射气体入口等,这里不再一一举例说明。
为更好的实现真空室的密封效果,以维持真空室的真空度,本实施例2与上述实施例1的主要区别在于,本实施例所提供的镀膜系统中,所述第一驱动模块还包括第一磁流体密封结构901,所述真空室800构造有第一安装通道801,第一安装通道801与真空室800的内部相连通,所述第一磁流体密封结构901固定于真空室800,并封闭第一安装通道801,以便利用第一磁流体密封结构901起到密封真空室800的目的,且第一磁流体密封结构901的一端延伸到真空室800外,并与第一电机传动连接;另一端延伸到真空室800内,并与第一传动机构传动连接,既便于传动,又可以实现更好的密封效果,有利于维持真空室的真空度。
作为一种举例,如图1、图2及10所示,第一磁流体密封结构901包括磁流体密封件903、磁流体法兰904,其中,磁流体法兰904可以通过螺栓等紧固件连接于真空室800,并封闭所述第一安装通道801,且磁流体法兰904与真空室800的侧壁之间设置有密封圈等密封部件906,以便密封。磁流体密封件903可转动的连接于磁流体法兰904,且磁流体密封件903与磁流体法兰904之间设置有密封圈等密封部件906,以便实现更好的密封效果。磁流体密封件903的一端(如,上端)经由磁流体法兰904延伸进真空室800,并与第一传动机构传动连接,例如,第一传动机构包括主动齿轮206和从动齿轮207,主动齿轮206通过胀紧套905连接于磁流体密封件903的上端,且主动齿轮206可以通过轴承连接于机架100、真空室800或轴承座(轴承座可以固定于机架100、真空室800或磁流体法兰904,如图10所示),使得磁流体密封件903的转动可以带动主动齿轮206转动。磁流体密封件903的另一端(如,下端)位于真空室800外,如图1、图2及10所示,第一电机304固定于真空室800,例如,如图10所示,第一电机304可以通过连接架908固定于磁流体法兰904,且第一电机304的输出轴与磁流体密封件903传动连接,例如,如图10所示,第一电机304的输出轴可以通过联轴器907与磁流体密封件903的下端相连,以便利用第一电机304驱动磁流体密封件903转动。
同理,所述第二驱动模块还包括第二磁流体密封结构902,如图1、图2及10所示,所述真空室800构造有第二安装通道802,第二安装通道802与真空室800的内部相连通,所述第二磁流体密封结构902固定于真空室800,并封闭第二安装通道802,以便利用第二磁流体密封结构902起到密封真空室800的目的,且第二磁流体密封结构902的一端延伸到真空室800外,并与第二电机传动连接;另一端延伸到真空室800内,并与第二传动机构传动连接,既便于传动,又可以实现更好的密封效果,有利于维持真空室的真空度。作为一种举例,如图10所示,第二磁流体密封结构902包括磁流体密封件903、磁流体法兰904,其中,磁流体法兰904可以通过螺栓等紧固件连接于真空室800,并封闭所述第二安装通道802,且磁流体法兰904与真空室800的侧壁之间设置有密封圈等密封部件906,以便密封。磁流体密封件903可转动的连接于磁流体法兰904,且磁流体密封件903与磁流体法兰904之间设置有密封圈等密封部件906,以便实现更好的密封效果。磁流体密封件903的一端(如,上端)经由磁流体法兰904延伸进真空室800,并与第二传动机构传动连接,例如,第二传动机构包括主动齿轮206和从动齿轮207,主动齿轮206通过胀紧套905连接于磁流体密封件903的上端,主动齿轮206可以通过轴承连接于机架100、真空室800或轴承座(轴承座可以固定于机架100、真空室800或磁流体法兰904,如图10所示),使得磁流体密封件903的转动可以带动主动齿轮206转动。磁流体密封件903的另一端(如,下端)位于真空室800外,如图10所示,第二电机固定于真空室800,例如,如图10所示,第二电机可以通过连接架908固定于磁流体法兰904,且第二电机的输出轴与磁流体密封件903传动连接,例如,如图10所示,第二电机的输出轴可以通过联轴器907与磁流体密封件903的下端相连,以便利用第二电机驱动磁流体密封件903转动。
采用这种密封结构,不仅便于传动和精确控制,而且可以实现更好的密封效果,更有利于维持真空室的真空度。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
Claims (10)
- 一种镀膜系统,包括真空室和设置于真空室内的转动工装,其特征在于,所述转动工装包括固定于真空室的机架、旋转支架、可转动安装于机架的回转部件、第一驱动模块、若干用于支撑治具和/或元件的镀膜转台、及第二驱动模块,其中,各所述镀膜转台分别可转动的连接于旋转支架,并沿回转部件回转中心的圆周方向分布,各镀膜转台分别适配所述回转部件,并分别与回转部件传动连接;所述旋转支架可转动的连接于所述机架,且旋转支架的回转中心与回转部件的回转中心重合;所述第一驱动模块与所述旋转支架传动连接,用于驱动各镀膜转台分别绕回转部件的回转中心同步公转,并同步带动各镀膜转台自转;所述第二驱动模块与所述回转部件传动连接,用于驱动各镀膜转台自转。
- 根据权利要求1所述的镀膜系统,其特征在于,所述回转部件和镀膜转台分别构造有若干相互适配的齿,各镀膜转台分别通过齿与齿的啮合与回转部件进行传动。
- 根据权利要求2所述的镀膜系统,其特征在于,所述回转部件采用的是内齿轮或外齿轮,所述镀膜转台构造有适配回转部件的外齿轮;和/或,所述机架包括支撑筒和连接于支撑筒的法兰,所述法兰构造有若干安装孔。
- 根据权利要求2所述的镀膜系统,其特征在于,还包括可转动安装的内轴及可转动安装于机架的外轴,所述外轴构造有贯穿两端的中心孔,外轴通过所述中心孔套设于内轴的外侧,且内轴的回转中心与外轴的回转中心重合;所述旋转支架连接于所述内轴,且内轴传动连接所述第一驱动模块,所述回转部件连接于所述外轴,且外轴传动连接所述第二驱动模块;或,所述旋转支架连接于所述外轴,且外轴传动连接所述第一驱动模块,所述回转部件连接于所述内轴,且内轴传动连接所述第二驱动模块。
- 根据权利要求4所述的镀膜系统,其特征在于,所述内轴通过轴承组连接于所述外轴,所述外轴通过轴承组连接于所述机架,所述轴承组包括至少两个轴承。
- 根据权利要求5所述的镀膜系统,其特征在于,所述内轴采用的是阶梯轴,外轴的中心孔构造为适配内轴的阶梯孔,内轴通过轴承组连接于所述外轴的阶梯孔;和/或,所述外轴构造为阶梯轴,所述机架构造有适配所述外轴的阶梯孔,外轴通过轴承组连接于机架的阶梯孔;和/或,所述轴承组包括至少一个推力轴承。
- 根据权利要求4-6任一所述的镀膜系统,其特征在于,所述第一驱动模块包括第一传动机构和第一电机,所述第一电机传动连接所述第一传动机构,且所述第一传动机构与所述内轴或外轴传动连接;和/或,所述第二驱动模块包括第二传动机构和第二电机,所述第二电机传动连接所述第二传动机构,且所述第二传动机构与所述外轴或内轴传动连接。
- 根据权利要求7所述的镀膜系统,其特征在于,所述第一传动机构为齿轮传动机构、带传动机构、链传动机构或蜗轮蜗杆传动机构中的一种或多种的组合;和/或,所述第二传动机构为齿轮传动机构、带传动机构、链传动机构或蜗轮蜗杆传动机构中的一种或多种的组合。
- 根据权利要求4-6任一所述的镀膜系统,其特征在于,所述旋转支架包括水平设置的转动转盘,所述转动转盘连接于内轴或外轴,并位于所述回转部件的上方或下方;所述镀膜转台还构造有用于设置治具和/或元件的安装部,各镀膜转台分别可转动的安装于所述转动转盘,且构造于镀膜转台的安装部和构造于镀膜转台的齿分别位于转动转盘的不同侧。
- 根据权利要求1-6任一所述的镀膜系统,其特征在于,还包括溅射阴极,所述溅射阴极设置于所述真空室内,并位于适配镀膜转台的位置处,且溅射阴极的有效镀膜区域覆盖镀膜转台公转轨道的部分区域;和/或,还包括控制器,所述控制器分别与第一驱动模块和第二驱动模块电连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210556982.7A CN115161611B (zh) | 2022-05-20 | 2022-05-20 | 一种镀膜系统 |
CN202210556982.7 | 2022-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023221572A1 true WO2023221572A1 (zh) | 2023-11-23 |
Family
ID=83483885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/075391 WO2023221572A1 (zh) | 2022-05-20 | 2023-02-10 | 一种镀膜系统 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN115161611B (zh) |
WO (1) | WO2023221572A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117737680A (zh) * | 2024-02-18 | 2024-03-22 | 菲特晶(南京)电子有限公司 | 一种石英晶片镀膜的装置 |
CN118028753A (zh) * | 2024-02-27 | 2024-05-14 | 芜湖新航薄膜科技有限公司 | 一种透明的导电型薄膜材料的制备装置及制备方法 |
CN118621293A (zh) * | 2024-08-13 | 2024-09-10 | 蒙城繁枫真空科技有限公司 | 一种双端多室真空镀膜装置 |
CN119930168A (zh) * | 2025-04-10 | 2025-05-06 | 安徽银东光学科技有限公司 | 一种ag防眩光玻璃镀膜装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115161611B (zh) * | 2022-05-20 | 2024-11-08 | 成都中科卓尔智能科技集团有限公司 | 一种镀膜系统 |
CN116005115A (zh) * | 2023-01-18 | 2023-04-25 | 深圳市矩阵多元科技有限公司 | 扫描式靶座装置以及脉冲激光沉积设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05314540A (ja) * | 1992-05-08 | 1993-11-26 | Kuraray Co Ltd | スパッタリング装置 |
CN111809160A (zh) * | 2020-07-29 | 2020-10-23 | 北航歌尔(潍坊)智能机器人有限公司 | 工件架旋转系统以及真空镀膜设备 |
CN212388106U (zh) * | 2020-07-29 | 2021-01-22 | 北航歌尔(潍坊)智能机器人有限公司 | 工件架旋转系统以及真空镀膜设备 |
CN214032679U (zh) * | 2020-11-23 | 2021-08-24 | 北航歌尔(潍坊)智能机器人有限公司 | 工件架旋转系统以及真空镀膜设备 |
CN217265994U (zh) * | 2022-05-20 | 2022-08-23 | 成都中科卓尔智能科技集团有限公司 | 一种行星镀膜系统 |
CN217265993U (zh) * | 2022-05-20 | 2022-08-23 | 成都中科卓尔智能科技集团有限公司 | 一种转动工装 |
CN115161611A (zh) * | 2022-05-20 | 2022-10-11 | 成都中科卓尔智能科技集团有限公司 | 一种镀膜系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121062A (ja) * | 2006-11-10 | 2008-05-29 | Ebara Corp | めっき装置及びめっき方法 |
KR101578280B1 (ko) * | 2011-07-06 | 2015-12-16 | 가부시키가이샤 고베 세이코쇼 | 진공 성막 장치 |
JP6000173B2 (ja) * | 2013-03-19 | 2016-09-28 | 株式会社神戸製鋼所 | Pvd処理装置及びpvd処理方法 |
CN203569179U (zh) * | 2013-12-02 | 2014-04-30 | 上海沃家真空设备科技有限公司 | 一种真空镀膜机的转架装置 |
CN106637140B (zh) * | 2016-11-30 | 2018-08-10 | 江苏菲沃泰纳米科技有限公司 | 一种纳米镀膜设备行星回转货架装置 |
CN112323037A (zh) * | 2020-11-09 | 2021-02-05 | 上海兆九光电技术有限公司 | 镀膜真空室工件旋转装置 |
CN215103522U (zh) * | 2021-06-28 | 2021-12-10 | 沈阳乐贝真空技术有限公司 | 一种应用在真空镀膜设备上的双驱动转盘系统 |
CN216107173U (zh) * | 2021-10-22 | 2022-03-22 | 广东鼎泰机器人科技有限公司 | 一种镀膜用工件装载装置及镀膜设备 |
-
2022
- 2022-05-20 CN CN202210556982.7A patent/CN115161611B/zh active Active
- 2022-05-20 CN CN202411531662.1A patent/CN119392190A/zh active Pending
-
2023
- 2023-02-10 WO PCT/CN2023/075391 patent/WO2023221572A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05314540A (ja) * | 1992-05-08 | 1993-11-26 | Kuraray Co Ltd | スパッタリング装置 |
CN111809160A (zh) * | 2020-07-29 | 2020-10-23 | 北航歌尔(潍坊)智能机器人有限公司 | 工件架旋转系统以及真空镀膜设备 |
CN212388106U (zh) * | 2020-07-29 | 2021-01-22 | 北航歌尔(潍坊)智能机器人有限公司 | 工件架旋转系统以及真空镀膜设备 |
CN214032679U (zh) * | 2020-11-23 | 2021-08-24 | 北航歌尔(潍坊)智能机器人有限公司 | 工件架旋转系统以及真空镀膜设备 |
CN217265994U (zh) * | 2022-05-20 | 2022-08-23 | 成都中科卓尔智能科技集团有限公司 | 一种行星镀膜系统 |
CN217265993U (zh) * | 2022-05-20 | 2022-08-23 | 成都中科卓尔智能科技集团有限公司 | 一种转动工装 |
CN115161611A (zh) * | 2022-05-20 | 2022-10-11 | 成都中科卓尔智能科技集团有限公司 | 一种镀膜系统 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117737680A (zh) * | 2024-02-18 | 2024-03-22 | 菲特晶(南京)电子有限公司 | 一种石英晶片镀膜的装置 |
CN117737680B (zh) * | 2024-02-18 | 2024-05-31 | 菲特晶(南京)电子有限公司 | 一种石英晶片镀膜的装置 |
CN118028753A (zh) * | 2024-02-27 | 2024-05-14 | 芜湖新航薄膜科技有限公司 | 一种透明的导电型薄膜材料的制备装置及制备方法 |
CN118621293A (zh) * | 2024-08-13 | 2024-09-10 | 蒙城繁枫真空科技有限公司 | 一种双端多室真空镀膜装置 |
CN118621293B (zh) * | 2024-08-13 | 2024-12-03 | 蒙城繁枫真空科技有限公司 | 一种双端多室真空镀膜装置 |
CN119930168A (zh) * | 2025-04-10 | 2025-05-06 | 安徽银东光学科技有限公司 | 一种ag防眩光玻璃镀膜装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115161611A (zh) | 2022-10-11 |
CN115161611B (zh) | 2024-11-08 |
CN119392190A (zh) | 2025-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023221572A1 (zh) | 一种镀膜系统 | |
JP6034830B2 (ja) | 回転可能なスパッタリングターゲットを支持する平面エンドブロック | |
TWI430325B (zh) | 一種磁控管致動器、一種電漿濺射室及一種用於一旋轉磁控管的引導裝置 | |
CN110760808B (zh) | 一种曲面屏磁控溅射组件 | |
CN217265994U (zh) | 一种行星镀膜系统 | |
CN113699500A (zh) | 一种真空镀膜单体机工件架 | |
CN112877668A (zh) | 一种大面积可变半径曲面薄膜基片架 | |
CN1718847A (zh) | 一种对靶孪生磁控溅射离子镀沉积装置 | |
CN118460990B (zh) | 控制晶圆沉积薄膜厚度均匀性的沉积设备及方法 | |
CN215103524U (zh) | 一种应用在真空工具镀膜设备上的三维转盘结构 | |
CN217265993U (zh) | 一种转动工装 | |
CN211734462U (zh) | 一种曲面屏磁控溅射组件 | |
CN221141856U (zh) | 一种镀膜修正板控制机构 | |
JP2000282234A (ja) | スパッタリング装置 | |
CN115261808B (zh) | 多维旋转工件架及具有该多维旋转工件架的真空镀膜机 | |
JPH0428860A (ja) | イオンプレーティング装置用回転テーブル | |
JPH0688229A (ja) | 二重円筒マグネトロンに於けるスパッタリングターゲットの磁場ゾーン回転の電気制御 | |
CN214782104U (zh) | 一种多弧离子真空镀膜机 | |
CN117051373A (zh) | 一种表面均匀镀膜的汽车车灯镀膜工艺及设备 | |
CN214655191U (zh) | 旋转喷涂装置 | |
CN215799864U (zh) | 一种真空镀膜单体机工件架 | |
CN221645054U (zh) | 一种样品位置转换组件 | |
CN218404380U (zh) | 公自转机构及真空镀膜机 | |
CN212199404U (zh) | 一种用于镀膜的公自转镀膜装置 | |
CN220364579U (zh) | 镀膜治具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23806534 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23806534 Country of ref document: EP Kind code of ref document: A1 |