WO2023208951A1 - Vehicule autonome sous-marin et procede de guidage correspondant - Google Patents
Vehicule autonome sous-marin et procede de guidage correspondant Download PDFInfo
- Publication number
- WO2023208951A1 WO2023208951A1 PCT/EP2023/060840 EP2023060840W WO2023208951A1 WO 2023208951 A1 WO2023208951 A1 WO 2023208951A1 EP 2023060840 W EP2023060840 W EP 2023060840W WO 2023208951 A1 WO2023208951 A1 WO 2023208951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- waves
- acoustic
- seismic
- sensors
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 30
- 238000005259 measurement Methods 0.000 claims abstract description 38
- 238000012545 processing Methods 0.000 claims abstract description 35
- 230000033001 locomotion Effects 0.000 claims abstract description 29
- 230000001133 acceleration Effects 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 238000011084 recovery Methods 0.000 claims description 25
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 239000002689 soil Substances 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
- G01V1/181—Geophones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/802—Systems for determining direction or deviation from predetermined direction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3817—Positioning of seismic devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3843—Deployment of seismic devices, e.g. of streamers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/001—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
- B63G2008/002—Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
Definitions
- the present invention generally relates to the field of autonomous underwater vehicles or AUVs (for “Autonomous Underwater Vehicle” in English), used as sea bottom seismic sensors or OBNs (for “Ocean Bottom seismic Nodes” in English). ).
- AUVs autonomous Underwater Vehicle
- OBNs sea bottom seismic sensors
- Autonomous underwater vehicles, or AUVs are experiencing increasing use, and can in particular follow individualized movement according to different technologies, as for example described in patents or patent applications US8600592, US2004/065247 or US9688371.
- One of the guidance solutions is the acoustic guidance of autonomous underwater vehicles using USBL technology (for “Ultra Short Baseline” which literally translates into French as ultra short baseline) or “phase array” (phase array in French).
- This solution consists of the regular emission, from the recovery base, of an acoustic signal which is received by an acoustic sensor of the vehicle.
- USBL or "phase array” type acoustic sensors capable of providing the information necessary to guide an underwater vehicle are expensive and bulky, so that the resulting vehicle is also expensive and of imposing size, which goes to going against the habits of seismic prospectors.
- the choice of location on the vehicle of an acoustic sensor, sensitive to acoustic waves, is usually a complex compromise between the acoustic viewing angle of the vehicle to detect the acoustic waves wherever the base is positioned, and the hydrodynamic drag of the machine.
- the seabed seismic vehicle includes an arcuate floating body coupled to a metal plate with a substantially flat bottom.
- US2019256181 describes an autonomous underwater vehicle, AUV, for recording seismic signals on the ocean floor during a marine seismic survey.
- the AUV includes a propulsion system configured to propel and steer the AUV and seismic sensors configured to record seismic signals while the AUV rests on the ocean floor.
- Document US2012020185 describes a probe, usually called a glider, which is towed to a seismic vessel via a towing cable.
- a cable guide is used to reduce the risk of entanglement by guiding the tow cable through the water a distance away from seismic propagation.
- the probe is adjustable to move the probe and the towing cable away from seismic propagation.
- the present invention aims to propose a new autonomous underwater vehicle and a corresponding guidance method making it possible to overcome all or part of the problems set out above.
- the subject of the invention is an autonomous underwater vehicle, said vehicle comprising a housing which includes: - a vehicle movement and steering system allowing the vehicle to be moved and steered in the water; - a navigation system making it possible to control the movement training and steering system of the vehicle to control the movement of the vehicle towards a recovery base which includes an acoustic transmitter; - a measurement system comprising three acceleration or speed sensors along axes different from each other, making it possible to receive seismic waves to generate corresponding seismic data; - a processing unit configured to operate in a seismic acquisition mode in which the processing unit generates seismic data from the seismic waves received; - a seismic data storage system; characterized in that at least two of said sensors of said measuring system which are capable of receiving seismic waves, are also capable of receiving acoustic guide waves emitted by the acoustic transmitter of the base; And the processing unit is also configured to, when the vehicle is decoupled from the ground of the seabed, be able to operate in a movement guidance mode according to which the processing
- the same measuring system is used at one time for seismic acquisition and another time to determine the direction in which the base is located relative to the vehicle. This allows a reduction in cost, an increase in reliability, a saving in weight, and ease of vehicle integration.
- the object which includes sensors associated with a seismic vessel, is very different from an autonomous underwater vehicle used to carry out seismic measurements.
- the weight in the water of such a “glider” is less than a kilogram, for example of the order of 300 grams in the water, or is even floating depending on its flight phase, whereas an autonomous underwater vehicle (AUV) used for seismic has a weight in the water of several kilograms to ensure good coupling of the vehicle to the seabed.
- UUV autonomous underwater vehicle
- the sensors used in “gliders” present a significant level of electrical noise, usually of the order of several hundred ng/ ⁇ Hz, which is adapted to the fact that the measurement carried out is an acoustic measurement in the water column and that the object to which they are coupled (the glider) is light.
- Such sensors cannot be used efficiently (or reliably) with autonomous underwater vehicles (AUV), whose high weight means that a seismic measurement, in the coupled state of the vehicle to the seabed, with such high noise level sensors would generate poor quality seismic measurements.
- UUV autonomous underwater vehicles
- the performance of a vector acoustic measurement from an underwater vehicle depends on its weight in the water.
- a heavy machine in water requires the use of low-noise sensors to obtain good acoustic measurement performance.
- the significant noise level of the sensors used in “gliders” means that these sensors cannot be used in heavy autonomous underwater vehicles (AUVs) to efficiently (or reliably) determine the directions. of acoustic waves received by said autonomous underwater vehicles (AUV).
- AUVs autonomous underwater vehicles
- the vehicle may also include one or more of the following characteristics taken in any technically admissible combination.
- the autonomous underwater vehicle has a weight in the water of several kilograms, for example greater than 5 kg.
- the three acceleration or speed sensors of the measuring system have a noise level lower than 50 ng/ ⁇ Hz, for example a noise level of 15 ng/ ⁇ Hz.
- the three acceleration or speed sensors of the measuring system which are capable of receiving seismic waves, are also capable of receiving acoustic guidance waves emitted by the acoustic transmitter of the base, and, in movement guidance mode, the processing unit is configured to determine the direction of the acoustic guidance waves emitted by the acoustic transmitter of the base which are received by the three sensors of said measurement system.
- the three acceleration or speed sensors of the measuring system which are able to receive seismic waves, are also able to receive acoustic guidance waves emitted by the acoustic transmitter of the base, makes it possible to guide the vehicle in three dimensions, particularly up-down and left-right.
- the housing comprises a wall capable of coming into contact with the ground, said measuring system making it possible to receive seismic waves in the coupled state of the vehicle with the ground of the seabed.
- the three acceleration or speed sensors of the measuring system can thus receive S-type seismic waves, also called shear waves, when the vehicle is coupled to the seabed.
- S-type seismic waves also called shear waves
- the three acceleration or speed sensors of the measuring system can be implemented as a 3-axis accelerometer system.
- the probe acquires P waves (pressure waves) in the water column, but the probe is neither used nor designed to acquire S-type seismic waves by being coupled to the seabed.
- the probe of document US2012020185 is what those skilled in the art usually call a “glider” which is configured to remain in the water column.
- the processing unit for determining the direction of acoustic waves received by the vehicle, in the decoupled state of the vehicle relative to the seabed, is configured to determine said direction by comparison of the energy levels measured on the different axes, i.e. by comparing the energy levels received by the different acceleration or speed sensors.
- the measuring system is coupled to the wall of the housing capable of coming into contact with the ground, so as to be able to receive the seismic waves when the vehicle is coupled to the ground of the seabed to carry out a seismic acquisition operation.
- said acceleration or speed sensors of the measuring system are accelerometers formed by an electromechanical microsystem.
- the measuring system also includes a hydrophone.
- the vehicle includes a single hydrophone which is used to determine whether the received wave comes from port or starboard.
- a single hydrophone which is used to determine whether the received wave comes from port or starboard.
- the measuring system and the processing unit are located on the same electronic card included in the vehicle housing.
- the processing unit comprises an operating mode selection module making it possible to switch: - the seismic acquisition mode, which can preferably be activated when the vehicle is coupled with the seabed, to allow a seismic acquisition operation to be carried out, - to movement guidance mode.
- the invention also relates to an assembly comprising a vehicle according to any of the preceding embodiments, and a recovery base which comprises an acoustic transmitter.
- the acoustic transmitter of the recovery base is configured to emit acoustic guidance waves with a frequency between 50 to 800 Hz.
- the invention also relates to a method for guiding an autonomous underwater vehicle conforming to any of the preceding embodiments, the method comprising the following steps: - positioning of the vehicle in relation to the seabed; - execution of a seismic data acquisition operation from the seismic waves received by the measuring system; - where applicable, decoupling of the vehicle from the seabed, - reception by said measuring system of acoustic guidance waves emitted by the transmitter of the recovery base; - determination of the direction of the received acoustic guidance waves; - controlling the movement of the vehicle towards the recovery base, depending on the determined direction of the acoustic guidance waves received.
- the determination of the direction of the acoustic waves received by the measurement system and emitted by the base transmitter is carried out by: - an arc-tangent method; - an intensity method measured on each axis of said at least two sensors of the measuring system; Or - a beam forming method.
- the positioning of the vehicle relative to the ground of the seabed is achieved by coupling a wall of the vehicle housing with the ground.
- FIG. 1 there is a schematic view of an autonomous underwater vehicle according to one embodiment of the invention, the vehicle being coupled to the ground of a seabed, for a seismic acquisition operation carried out with a measuring system included in the vehicle which receives seismic waves reflected by a layer of the subsoil;
- FIG. 1 there is a schematic view of an autonomous underwater vehicle according to one embodiment of the invention, the vehicle being decoupled from the ground of the seabed, and the measuring system receiving acoustic guidance waves emitted into the water by a recovery basis;
- an autonomous underwater vehicle usable for seismic acquisition on the seabed is shown.
- the life cycle of such an autonomous underwater vehicle used for seismic acquisition usually includes three main phases: - a phase of deployment of the vehicle to position it at a given location on the ground of a seabed; - a seismic data acquisition phase in the coupled state of the vehicle with the seabed; - a vehicle recovery phase to be able to recover the seismic data recorded in the vehicle.
- the deployment phase of the vehicle can be carried out by positioning the vehicle in the water at a distance from the ground of the seabed, and the seismic data acquisition phase can be carried out in the decoupled state of the vehicle with the seabed soil.
- the deployment and recovery phases are phases in which the vehicle is moving in and relative to the water column.
- the movement of the vehicle can be vertical and/or horizontal.
- the acquisition phase is carried out in the absence of movement of the vehicle, when the vehicle is coupled to the ground.
- the vehicle rests fixedly on the ground, that is to say without any degree of freedom in relation to the surrounding environment.
- the measurement system includes several acceleration or speed sensors along different axes, for example three sensors each making it possible to detect an acceleration or speed along an axis different from that of the other sensors.
- the detection axes can be perpendicular to each other.
- These sensors also called seismic sensors, are used during a seismic acquisition phase where the vehicle is, according to one embodiment, coupled to the seabed, to receive seismic waves and make it possible to generate seismic data.
- the same measuring system is used to implement, at separate times, the seismic acquisition operation and the guidance operation.
- seismic measuring system is meant the fact that the sensors of the measuring system which are used for guiding the vehicle with a view to its recovery are sensors of the measuring system which are also used for seismic acquisition, and not not separate additional sensors as is the case in the state of the art.
- the autonomous underwater vehicle includes a system 11 for driving movement and steering the vehicle, making it possible to move and direct the vehicle in the water.
- the movement training function of the system 11 can be achieved with flotation means, load shedding, and/or a propulsion system.
- the steering function of system 11 can be achieved for example with a system of fins or steerable wings.
- the autonomous underwater vehicle also includes a navigation system 12 which makes it possible to control the vehicle movement and steering system 11 to control the movement of the vehicle in a given direction towards a recovery base 2.
- the autonomous underwater vehicle comprises a measurement system 13 which includes acceleration or speed sensors making it possible to receive seismic waves S1 to generate corresponding seismic data.
- the sensors are able to receive seismic waves which are reflected by the ground and/or the subsoil layers in reaction to an earth vibration or a wave emitted by a source.
- the autonomous underwater vehicle comprises a processing unit 100 which makes it possible to process the signals generated by the sensors which receive the seismic waves S1, to generate seismic data which are stored in a system 14 for storing seismic data, such as a data memory.
- part of the processing unit 100 is included in the measurement system 13.
- the vehicle has a housing 10 which forms the body of the vehicle and in which the measuring system 13 is housed.
- the measurement system 13 comprises three sensors 131, 132, 133 of acceleration or speed along axes different from each other (preferably orthogonal to each other), which allow, for example in the coupled state of the vehicle 1 with the ground of the seabed FM1, to receive seismic waves S1 to generate corresponding seismic data.
- the sensors can thus be called seismic sensors, and the set of three seismic sensors (single-axis) can be considered as a 3-axis seismic sensor.
- said acceleration or speed sensors 131, 132, 133 of the measurement system 13 are accelerometers formed by an electromechanical microsystem, also called MEMS (for Micro Electro-Mechanical System in English).
- the electromechanical microsystem which forms the three accelerometers can be considered as a 3-axis accelerometer.
- the measurement system 13 used is a digital MEMS sensor referenced QuietSeisTM available from the company SERCEL.
- the sensors of the sensor system comprise three geophones (speed sensors) oriented along three different detection axes, preferably orthogonal to each other. Acceleration can be obtained by differentiating velocity versus time.
- the measuring system 13 is housed inside the housing 10 which forms the body of the vehicle by being coupled to said housing, preferably secured to a wall which is intended to come into contact with the ground at the bottom sea FM1 in the state coupled to the seabed ground, for carrying out a seismic acquisition operation.
- the wall of the housing 10 on which the measuring system 13 is fixed is a wall whose exterior face forms the underside of the housing in the state coupled to the ground.
- said sensors 131, 132, 133 of acceleration or speed of the measurement system 13 are thus considered as single-axis seismic sensors, and all of these acceleration or speed sensors of the system 13 of measurement can be considered as a multi-axis seismic sensor.
- the exterior of the housing 10 is in contact with the water so that, in the decoupled state of the vehicle relative to the ground of the seabed FM1 (in other words, when the vehicle is surrounded by water and is not resting on the seabed), the housing 10 forms an acoustic membrane through which the measuring system 13 is capable of acquiring the acoustic guidance waves emitted by the base 2.
- the entire housing 10 of the vehicle and the measuring system 13 form a vector sensor.
- seismic sensors of the MEMS accelerometer type have performance and sensitivity adapted to, in the decoupled state of the vehicle relative to the seabed, processing signals corresponding to the acoustic waves emitted into the water by the transmitter of the recovery base in order to determine the angles of arrival of said acoustic waves.
- the angles of arrival of said acoustic waves are determined at least in two dimensions, preferably in three dimensions, so as to be able to guide the vehicle towards the base emitting said acoustic waves.
- the processing unit uses the acoustic waves received by two of the acceleration or speed sensors of the measuring system to determine the angles of arrival of acoustic waves in two dimensions, or the acoustic waves received by the three acceleration or speed sensors of the measuring system to determine the angles of arrival of acoustic waves in three dimensions.
- the analysis and processing of the signals corresponding to the acoustic guidance waves emitted by the base are only carried out when the underwater vehicle is in its navigation phase, that is to say when the underwater vehicle is not is not coupled to the seafloor soil.
- the vehicle can be kept decoupled from the ground, that is to say away from the ground, by the system 11 for driving movement and steering the vehicle, which can include a flotation or shedding system, and/or a propulsion device.
- the system 11 for driving movement and steering the vehicle which can include a flotation or shedding system, and/or a propulsion device.
- the fact that the vehicle is in the water at a distance from the ground makes it more sensitive to the acoustic guidance waves emitted in the water which can then be detected effectively by the acceleration or speed sensors of the system 13. measurement through the wall of the housing 10 of the vehicle which serves as an acoustic membrane between the water and the measuring system.
- the beamforming method is used because this method provides good angle determination accuracy in a marine environment.
- the measurement system 13 also includes a hydrophone.
- a hydrophone makes it possible to remove uncertainty regarding the left-right direction of movement of the vehicle. This option also allows the use of other arrival trajectory calculation processing by combining the hydrophone signal with the measurement channels of the measurement system (MEMS).
- MEMS measurement system
- the recovery base 2 includes an acoustic transmitter 20.
- the acoustic transmitter of the recovery base 2 is configured to emit acoustic guidance waves S2 with a frequency between 50 to 750 or 800 Hz.
- the vehicle It is thus possible to guide the vehicle to a recovery base located more than 1km away from the vehicle.
- the measurement system is MEMS type
- the reception range is improved due to the low frequency of the acoustic guidance signals, unlike conventional USBL technology.
- the processing unit is for example in the form of a processor and a data memory in which computer instructions executable by said processor are stored, or even in the form of a microcontroller.
- the functions and steps described can be implemented as a computer program or via hardware components (e.g. programmable gate arrays).
- the functions and steps carried out by the processing unit, and/or by the navigation system can be carried out by sets of instructions or computer modules implemented in a processor or controller or be carried out by dedicated electronic components or FPGA or ASIC type components. It is also possible to combine computer parts and electronic parts.
- the processing unit is thus an electronic and/or computer unit.
- said unit is configured to carry out a given operation, this means that the unit comprises computer instructions and the corresponding execution means which make it possible to carry out said operation and/or that the unit comprises electronic components correspondents.
- the measurement system 13 and the processing unit 100 are located on the same electronic card included in the housing 10 of the vehicle.
- a single electronic card includes all the functions associated with the measurement system (or unit of measurement) and the transmission of information to the navigation system.
- step 510 the vehicle 1 is coupled with the ground of the seabed FM1.
- coupled is meant the fact that the vehicle is in contact with the ground of the seabed and fixed so as to allow the measurement system to detect, through the wall of the housing in contact with the ground, seismic waves reflected by one or more layers. from the basement of the seabed.
- the coupling can be carried out by positioning the vehicle on the ground of the seabed so that the wall of the housing 10 of the vehicle to which the measuring system 13 is fixed inside the housing, is in contact with the ground of the seabed.
- the vehicle 1 is not coupled with the ground of the seabed FM1.
- the vehicle is positioned in the water at a distance from the ground of the seabed, and the measuring system 13 makes it possible to detect the seismic waves transmitted in the water.
- the processing unit 100 triggers a seismic data acquisition operation.
- the measuring system 13 receives seismic waves S1.
- the sensors 131, 132, 133 of the measuring system detect the amplitudes of the seismic waves along three different axes.
- the signals generated by the sensors corresponding to the seismic waves S1 received are processed by the processing unit 100 to generate seismic data.
- the seismic data is stored in a storage system 14 such as a data memory.
- the vehicle finds itself in a state decoupled from the ground (step 530) (or alternatively the vehicle remains in a state decoupled from the ground).
- the processing unit 100 receives an order, for example from a vehicle control member, to switch to guidance mode, or that the processing unit 100 is configured to detect that the vehicle 1 is moving or away from the ground of the seabed FM1, and that, following detection of decoupled state or end of seismic acquisition, the processing unit 100 then switches to guidance mode.
- the processing unit 100 may be configured to, after a seismic acquisition phase in the state coupled to the ground of the vehicle, control the spacing of the vehicle relative to the ground, by shedding or activation of a propulsion device, to cause its decoupling, then directly switch to guidance mode for processing the signals corresponding to the acoustic guidance waves received by the measurement system and emitted by the transmitter 20 of the base 2.
- step 540 the transmitter 20 of the base 2 emits acoustic guidance waves. It can be planned that the base 2 is configured to emit the acoustic guidance waves only when the seismic acquisition phase(s) are completed.
- the or at least part of the sensors of the measuring system 13 which were used to receive the seismic waves S1 and generate seismic data, are then also used to receive (step 550 ) the acoustic guidance waves S2 emitted by the transmitter 20 of the recovery base 2.
- step 560 the processing unit 100 then processes the signals corresponding to the acoustic guidance waves received by the sensors of the measurement system 13, and determines the angles of arrival of the corresponding acoustic waves.
- the processing unit 100 can deduce from determined angles the direction D2 in which the base 2 is located and can then provide, in step 570, guidance data to the navigation system 12.
- the direction D2 of the acoustic guidance waves S2 received can be determined for example with an arc-tangent type method, or using an intensity method measured on each sensor detection axis or a beamforming method.
- the navigation system 12 converts this guidance data into a control instruction so as to control the vehicle movement and steering system 11, in order to guide the vehicle movement towards the base. Steps 540 to 570 can be repeated until the vehicle arrives at the base (step 580).
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Acoustics & Sound (AREA)
- Geophysics (AREA)
- Oceanography (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
- un système d’entrainement en déplacement et de direction du véhicule permettant de déplacer et diriger le véhicule dans l’eau ;
- un système de navigation permettant de commander le système d’entrainement en déplacement et de direction du véhicule pour commander le déplacement du véhicule vers une base de récupération qui comprend un émetteur acoustique ;
- un système de mesure comprenant trois capteurs d’accélération ou de vitesse selon des axes différents les uns des autres, permettant de recevoir des ondes sismiques pour générer des données sismiques correspondantes ;
- une unité de traitement configurée pour opérer dans un mode d’acquisition sismique dans lequel l’unité de traitement génère des données sismiques à partir des ondes sismiques reçues ;
- un système de stockage des données sismiques ;
caractérisé en ce que au moins deux desdits capteurs dudit système de mesure qui sont aptes à recevoir des ondes sismiques, sont aussi aptes à recevoir des ondes acoustiques de guidage émises par l’émetteur acoustique de la base; et
l’unité de traitement est aussi configurée pour, lorsque le véhicule est découplé par rapport au sol du fond marin, pouvoir opérer dans un mode guidage de déplacement selon lequel l’unité de traitement est configurée pour :
- déterminer la direction des ondes acoustiques de guidage émises par l’émetteur acoustique de la base qui sont reçues par lesdits au moins deux capteurs dudit système de mesure ;
- générer et transmettre au système de navigation, des données de guidage relatives à la direction déterminée des ondes acoustiques reçues,
le système de navigation étant configuré pour commander le système d’entrainement en déplacement et de direction du véhicule en fonction des données de guidage pour guider le déplacement du véhicule vers la base.
- du mode d’acquisition sismique, qui est activable de préférence lorsque le véhicule est couplé avec le sol du fond marin, pour permettre de réaliser une opération d’acquisition sismique,
- vers le mode de guidage de déplacement.
- positionnement du véhicule par rapport au sol du fond marin ;
- exécution d’une opération d’acquisition de données sismiques à partir des ondes sismiques reçues par le système de mesure ;
- le cas échéant, découplage du véhicule par rapport au sol du fond marin,
- réception par ledit système de mesure, d’ondes acoustiques de guidage émises par l’émetteur de la base de récupération ;
- détermination de la direction des ondes acoustiques de guidage reçues ;
- pilotage du déplacement du véhicule vers la base de récupération, en fonction de la direction déterminée des ondes acoustiques de guidage reçues.
- une méthode de type arc-tangente ;
- une méthode d’intensité mesurée sur chaque axe desdits au moins deux capteurs du système de mesure ; ou
- une méthode de formation de faisceau.
- une phase de déploiement du véhicule pour le positionner à un endroit donné sur le sol d’un fond marin ;
- une phase d’acquisition de données sismiques à l’état couplé du véhicule avec le sol du fond marin ;
- une phase de récupération du véhicule pour pouvoir récupérer les données sismiques enregistrées dans le véhicule.
- une méthode de type arc-tangente,
- une méthode basée sur l’intensité mesurée sur chaque canal du capteur vectoriel, c'est-à-dire sur chaque axe des capteurs d’accélération ou de vitesse du système de mesure,
- ou une méthode de formation de faisceau ("beamforming" en anglais).
Claims (15)
- Véhicule (1) autonome sous-marin, ledit véhicule comprenant un boîtier (10) qui inclut :
- un système (11) d’entrainement en déplacement et de direction du véhicule permettant de déplacer et diriger le véhicule dans l’eau ;
- un système (12) de navigation permettant de commander le système d’entrainement en déplacement et de direction du véhicule pour commander le déplacement du véhicule vers une base (2) de récupération qui comprend un émetteur acoustique (20) ;
- un système (13) de mesure comprenant trois capteurs (131, 132, 133) d’accélération ou de vitesse selon des axes différents les uns des autres, permettant de recevoir des ondes sismiques (S1) pour générer des données sismiques correspondantes ;
- une unité de traitement (100) configurée pour opérer dans un mode d’acquisition sismique dans lequel l’unité de traitement (100) génère des données sismiques à partir des ondes sismiques (S1) reçues ;
- un système (14) de stockage des données sismiques ;
caractérisé en ce que au moins deux desdits capteurs (131, 132, 133) dudit système (13) de mesure qui sont aptes à recevoir des ondes sismiques (S0), sont aussi aptes à recevoir des ondes acoustiques (S2) de guidage émises par l’émetteur acoustique (20) de la base (2) ; et
l’unité de traitement (100) est aussi configurée pour, lorsque le véhicule est découplé par rapport au sol du fond marin (FM1), pouvoir opérer dans un mode guidage de déplacement selon lequel l’unité de traitement (100) est configurée pour :
- déterminer la direction (D2) des ondes acoustiques (S2) de guidage émises par l’émetteur acoustique (20) de la base (2) qui sont reçues par lesdits au moins deux capteurs (131, 132, 133) dudit système (13) de mesure ;
- générer et transmettre au système (12) de navigation, des données de guidage relatives à la direction (D2) déterminée des ondes acoustiques (S2) reçues,
le système (12) de navigation étant configuré pour commander le système (11) d’entrainement en déplacement et de direction du véhicule en fonction des données de guidage pour guider le déplacement (D1) du véhicule vers la base (2). - Véhicule (1) selon la revendication 1, dans lequel le véhicule autonome sous-marin présente un poids dans l’eau de plusieurs kilogrammes, par exemple supérieur à 5 Kg.
- Véhicule (1) selon la revendication 1 ou 2, dans lequel les trois capteurs d’accélération ou de vitesse du système de mesure présentent un niveau de bruit inférieur à 50 ng /√Hz, par exemple un niveau de bruit de 15 ng /√Hz.
- Véhicule (1) selon l’une quelconque des revendications précédentes, dans lequel, les trois capteurs (131, 132, 133) d’accélération ou de vitesse du système (13) de mesure qui sont aptes à recevoir des ondes sismiques (S0), sont aussi aptes à recevoir des ondes acoustiques (S2) de guidage émises par l’émetteur acoustique (20) de la base (2), et, en mode guidage de déplacement, l’unité de traitement (100) est configurée pour déterminer la direction (D2) des ondes acoustiques de guidage émises par l’émetteur acoustique (20) de la base (2) qui sont reçues par les trois capteurs (131, 132, 133) dudit système (13) de mesure.
- Véhicule (1) selon l’une quelconque des revendications précédentes, dans lequel le boîtier (10) comprend une paroi apte à venir en contact avec le sol, ledit système de mesure (13) permettant de recevoir des ondes sismiques à l’état couplé du véhicule avec le sol du fond marin (FM1).
- Véhicule (1) selon l’une quelconque des revendications précédentes, dans lequel le système (13) de mesure est couplé à la paroi du boîtier (10) apte à venir en contact avec le sol, de façon à pouvoir recevoir les ondes sismiques (S1) lorsque le véhicule est couplé au sol du fond marin pour effectuer une opération d’acquisition sismique.
- Véhicule (1) selon l'une quelconque des revendications précédentes, dans lequel lesdits capteurs (131, 132, 133) d’accélération ou de vitesse du système (13) de mesure sont des accéléromètres formés par un microsystème électromécanique.
- Véhicule (1) selon l'une quelconque des revendications précédentes, dans lequel le système (13) de mesure comprend aussi un hydrophone.
- Véhicule (1) selon l'une quelconque des revendications précédentes, dans lequel le système (13) de mesure et l’unité de traitement (100) sont situés sur une même carte électronique inclue dans le boîtier (10) du véhicule.
- Véhicule (1) selon l'une quelconque des revendications précédentes, dans lequel l’unité de traitement (100) comprend un module de sélection de mode de fonctionnement permettant de basculer :
- du mode d’acquisition sismique, qui est activable de préférence lorsque le véhicule (1) est couplé avec le sol du fond marin (FM1), pour permettre de réaliser une opération d’acquisition sismique,
- vers le mode de guidage de déplacement. - Ensemble comprenant un véhicule (1) selon l'une quelconque des revendications précédentes, et une base (2) de récupération qui comprend un émetteur acoustique (20).
- Ensemble selon la revendication 11, dans lequel l’émetteur (20) acoustique de la base (2) de récupération est configuré pour émettre des ondes acoustiques de guidage (S2) d’une fréquence comprise entre 50 à 800 Hz.
- Procédé de guidage d’un véhicule (1) autonome sous-marin conforme à l’une quelconque des revendications 1 à 10, le procédé comprenant les étapes suivantes :
- positionnement du véhicule (1) par rapport au sol du fond marin (FM1) ;
- exécution d’une opération d’acquisition de données sismiques à partir des ondes sismiques (S1) reçues par le système (13) de mesure ;
- le cas échéant, découplage du véhicule (1) par rapport au sol du fond marin (FM1),
- réception par ledit système (13) de mesure, d’ondes acoustiques de guidage (S2) émises par l’émetteur (20) de la base (2) de récupération ;
- détermination de la direction (D2) des ondes acoustiques de guidage (S2) reçues ;
- pilotage du déplacement (D1) du véhicule (1) vers la base (2) de récupération, en fonction de la direction (D2) déterminée des ondes acoustiques de guidage (S2) reçues. - Procédé selon la revendication 13, dans lequel la détermination de la direction (D2) des ondes acoustiques (S2) reçues par le système (13) de mesure et émises par l’émetteur (20) de la base (2) est réalisée par :
- une méthode de type arc-tangente ;
- une méthode d’intensité mesurée sur chaque axe desdits au moins deux capteurs du système de mesure ; ou
- une méthode de formation de faisceau.
- Procédé selon l’une des revendications 13 ou 14 dans lequel le positionnement du véhicule par rapport au sol du fond marin (FM1) est réalisé par le couplage d’une paroi du boîtier (10) du véhicule avec le sol.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2023260623A AU2023260623A1 (en) | 2022-04-26 | 2023-04-25 | Autonomous underwater vehicle and corresponding guidance method |
GB2414608.6A GB2631893A (en) | 2022-04-26 | 2023-04-25 | Autonomous underwater vehicle and corresponding guidance method |
MX2024012239A MX2024012239A (es) | 2022-04-26 | 2024-10-03 | Vehiculo submarino autonomo y metodo de guiado correspondiente |
NO20241065A NO20241065A1 (en) | 2022-04-26 | 2024-10-24 | Autonomous underwater vehicle and corresponding guidance method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2203859A FR3134899B1 (fr) | 2022-04-26 | 2022-04-26 | Vehicule autonome sous-marin et procede de guidage correspondant |
FRFR2203859 | 2022-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023208951A1 true WO2023208951A1 (fr) | 2023-11-02 |
Family
ID=83188931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/060840 WO2023208951A1 (fr) | 2022-04-26 | 2023-04-25 | Vehicule autonome sous-marin et procede de guidage correspondant |
Country Status (6)
Country | Link |
---|---|
AU (1) | AU2023260623A1 (fr) |
FR (1) | FR3134899B1 (fr) |
GB (1) | GB2631893A (fr) |
MX (1) | MX2024012239A (fr) |
NO (1) | NO20241065A1 (fr) |
WO (1) | WO2023208951A1 (fr) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040065247A1 (en) | 2002-10-08 | 2004-04-08 | Horton Duane M. | Unmanned underwater vehicle for tracking and homing in on submarines |
WO2008156502A1 (fr) | 2006-12-13 | 2008-12-24 | Schlumberger Canada Limited | Appareil, systèmes et procédés d'acquisition de données sur le plancher océanique |
US20120020185A1 (en) | 2009-05-28 | 2012-01-26 | Welker Kenneth E | Collision Avoidance for Instrumented Probes Deployed From a Seismic Vessel |
WO2013092747A1 (fr) | 2011-12-21 | 2013-06-27 | Cggveritas Services Sa | Nœud sous-marin couplé à l'eau pour études sismiques |
US20130231802A1 (en) * | 2012-03-02 | 2013-09-05 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence | Homing system and method for an autonomous underwater vehicle |
WO2016066719A1 (fr) | 2014-10-29 | 2016-05-06 | Seabed Geosolutions B.V. | Déploiement et récupération de véhicules sous-marins autonomes sismiques |
US9688371B1 (en) | 2015-09-28 | 2017-06-27 | The United States Of America As Represented By The Secretary Of The Navy | Vehicle based vector sensor |
US20190256181A1 (en) | 2015-10-16 | 2019-08-22 | Seabed Geosolutions B.V. | Seismic autonomous underwater vehicle |
US20190283848A1 (en) * | 2018-03-14 | 2019-09-19 | Cgg Services Sas | Method and system for launching and recovering underwater vehicles with an autonomous base |
US20190353815A1 (en) | 2018-05-17 | 2019-11-21 | Seabed Geosolutions B.V. | Cathedral body structure for an ocean bottom seismic node |
US20210173110A1 (en) | 2018-05-23 | 2021-06-10 | Blue Ocean Seismic Services Limited | Autonomous data acquisition system and method |
-
2022
- 2022-04-26 FR FR2203859A patent/FR3134899B1/fr active Active
-
2023
- 2023-04-25 WO PCT/EP2023/060840 patent/WO2023208951A1/fr active Application Filing
- 2023-04-25 GB GB2414608.6A patent/GB2631893A/en active Pending
- 2023-04-25 AU AU2023260623A patent/AU2023260623A1/en active Pending
-
2024
- 2024-10-03 MX MX2024012239A patent/MX2024012239A/es unknown
- 2024-10-24 NO NO20241065A patent/NO20241065A1/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040065247A1 (en) | 2002-10-08 | 2004-04-08 | Horton Duane M. | Unmanned underwater vehicle for tracking and homing in on submarines |
WO2008156502A1 (fr) | 2006-12-13 | 2008-12-24 | Schlumberger Canada Limited | Appareil, systèmes et procédés d'acquisition de données sur le plancher océanique |
US20120020185A1 (en) | 2009-05-28 | 2012-01-26 | Welker Kenneth E | Collision Avoidance for Instrumented Probes Deployed From a Seismic Vessel |
WO2013092747A1 (fr) | 2011-12-21 | 2013-06-27 | Cggveritas Services Sa | Nœud sous-marin couplé à l'eau pour études sismiques |
US20130231802A1 (en) * | 2012-03-02 | 2013-09-05 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence | Homing system and method for an autonomous underwater vehicle |
US8600592B2 (en) | 2012-03-02 | 2013-12-03 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence | Homing system and method for an autonomous underwater vehicle |
WO2016066719A1 (fr) | 2014-10-29 | 2016-05-06 | Seabed Geosolutions B.V. | Déploiement et récupération de véhicules sous-marins autonomes sismiques |
US9688371B1 (en) | 2015-09-28 | 2017-06-27 | The United States Of America As Represented By The Secretary Of The Navy | Vehicle based vector sensor |
US20190256181A1 (en) | 2015-10-16 | 2019-08-22 | Seabed Geosolutions B.V. | Seismic autonomous underwater vehicle |
US20190283848A1 (en) * | 2018-03-14 | 2019-09-19 | Cgg Services Sas | Method and system for launching and recovering underwater vehicles with an autonomous base |
US20190353815A1 (en) | 2018-05-17 | 2019-11-21 | Seabed Geosolutions B.V. | Cathedral body structure for an ocean bottom seismic node |
US20210173110A1 (en) | 2018-05-23 | 2021-06-10 | Blue Ocean Seismic Services Limited | Autonomous data acquisition system and method |
Also Published As
Publication number | Publication date |
---|---|
FR3134899A1 (fr) | 2023-10-27 |
GB2631893A (en) | 2025-01-15 |
GB202414608D0 (en) | 2024-11-20 |
FR3134899B1 (fr) | 2024-07-12 |
AU2023260623A1 (en) | 2024-11-07 |
MX2024012239A (es) | 2024-11-08 |
NO20241065A1 (en) | 2024-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2811492C (fr) | Systemes et procedes de releves sismiques marins utilisant des vehicules autonomes ou telecommandes | |
FR3000225A1 (fr) | Acoustic modem-based guiding method for autonomous underwater vehicle for marine seismic surveys | |
FR2975782A1 (fr) | Systeme et procede pour positionner par doppler des capteurs sismiques | |
EP0187103B1 (fr) | Flute marine verticale | |
FR2886741A1 (fr) | Appareil et procede de determination de l'orientation d'un dispositif de guidage de flute marine | |
FR2985039A1 (fr) | Noeud sous-marin couple avec l'eau pour des etudes sismiques | |
US10120087B2 (en) | Method and system with low-frequency seismic source | |
WO2011154545A2 (fr) | Procede de deploiement, procede et dispositif de prospection sismique en milieu aquatique | |
FR3075974A1 (fr) | Drone marin de surface et procede de caracterisation d'un milieu subaquatique mis en œuvre par un tel drone | |
FR3101325A1 (fr) | Système d’exploration sous-marine comprenant une flotte de drones | |
WO2020023082A2 (fr) | Procédé et système de sonar à géométrie variable | |
CN105940322A (zh) | 多维地震传感器阵列 | |
US20180052247A1 (en) | Flush design of an autonomous underwater vehicle with negative buoyancy for marine seismic surveys | |
EP3117237B1 (fr) | Sonar a antenne synthetique et procede de formation de voies d'antenne synthetique | |
WO2023208951A1 (fr) | Vehicule autonome sous-marin et procede de guidage correspondant | |
EP1695115B1 (fr) | Dispositif d' evitement d'obstacles pour navires multicoques rapides | |
EP3732095B1 (fr) | Engin sous-marin | |
EP1691214B1 (fr) | Système de détérmination de la position absolue d'un engin sous-marin remorqué ou autopropulsé | |
EP4069580A1 (fr) | Système de détection d'un ou plusieurs mammifères marins et procédé de détection correspondant | |
CA3152867A1 (fr) | Systeme d'exploration sous-marine comprenant une flotte de drones | |
FR3076278B1 (fr) | Vehicule sous-marin et procede de commande | |
FR3101326A1 (fr) | Système d’exploration sous-marine comprenant une flotte de drones | |
FR3003359A1 (fr) | Aile pour le remorquage large de sources de recherche geophysique | |
US11333778B2 (en) | Marine seismic acquisition system | |
FR2902194A1 (fr) | Dispositif et procedes associes de mesure de la signature magnetique d'un bateau |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23721929 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/012239 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 202414608 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20230425 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024020483 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2023260623 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2023260623 Country of ref document: AU Date of ref document: 20230425 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112024020483 Country of ref document: BR Kind code of ref document: A2 Effective date: 20241002 |