[go: up one dir, main page]

WO2023199685A1 - Spatial floating video display system and spatial floating video processing system - Google Patents

Spatial floating video display system and spatial floating video processing system Download PDF

Info

Publication number
WO2023199685A1
WO2023199685A1 PCT/JP2023/009909 JP2023009909W WO2023199685A1 WO 2023199685 A1 WO2023199685 A1 WO 2023199685A1 JP 2023009909 W JP2023009909 W JP 2023009909W WO 2023199685 A1 WO2023199685 A1 WO 2023199685A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
floating
image
spatial
display system
Prior art date
Application number
PCT/JP2023/009909
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 平田
浩司 藤田
寿紀 杉山
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023199685A1 publication Critical patent/WO2023199685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • the present invention relates to a space floating video display system and a space floating video processing system.
  • An object of the present invention is to provide a technology capable of displaying a suitable image with high visibility (visual resolution and contrast) in a space floating image display system or a space floating image display device.
  • a space floating video display system as an example of the present application includes a display panel for displaying a video, a light source device for the display panel, a space floating video that reflects video light from the display panel, and creates a real space floating video in the air using the reflected light.
  • the retroreflective member has a first reflecting part and a second reflecting part, and has a space floating image floating in the center and a specific angle based on the space floating image floating in the center. The angle formed by the space-floating image formed at a distance is adjusted by the intersection angle of the first reflecting section and the second reflecting section.
  • a spatial floating image can be suitably displayed.
  • FIG. 2 is a diagram showing the configuration of a retroreflective member and the generation position of a spatially floating image according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram for explaining the mechanism of generation of ghost images due to extraordinary rays generated by retroreflection according to an embodiment of the present invention.
  • FIG. 7 is an explanatory diagram for explaining the generation mechanism of abnormal rays generated in a retroreflective member used in another spatially floating image display system.
  • FIG. 3 is an explanatory diagram for explaining a mechanism for erasing abnormal rays generated when external light is incident on a retroreflective member according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of a main part configuration and a retroreflection part configuration of a spatially floating video display system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a second embodiment of the configuration of main parts and the configuration of a retroreflection part of a floating image display system in space according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a third embodiment of the configuration of main parts and the configuration of a retroreflection part of a floating image display system according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of a main part configuration and a retroreflection part configuration of a spatially floating video display system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a second embodiment of the configuration of main parts and the configuration of a retroreflection part of a floating image display system in space according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a third embodiment of
  • FIG. 4 is a diagram illustrating a fourth embodiment of the configuration of main parts and the configuration of a retroreflection part of a floating image display system in accordance with an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the operating principle of an optical member that refracts image light used in the spatially floating image display system of the present invention.
  • FIG. 1 is an explanatory diagram showing the structure of a floating image display system using an optical member that refracts image light according to the present invention, and for explaining the principle thereof.
  • FIG. 3 is an explanatory diagram for explaining the structure of an optical member that refracts image light used in the spatially floating image display system of the present invention.
  • FIG. 1 is an explanatory diagram showing the structure of a floating image display system using an optical member that refracts image light according to the present invention, and for explaining the principle thereof.
  • FIG. 3 is an explanatory diagram for explaining the structure of an optical member that refracts image light used in the spatial
  • FIG. 2 is an explanatory diagram for explaining the arrangement of an optical member and a video source that prevents a viewer from directly viewing a displayed video of the video source used in the spatially floating video display system of the present invention.
  • FIG. 2 is a cross-sectional view showing the arrangement of members that block extraordinary rays generated in a retroreflection section according to an embodiment of the present invention.
  • 1 is a diagram showing the configuration of main parts of a first embodiment of a floating video display system according to an embodiment of the present invention
  • FIG. FIG. 2 is a diagram illustrating the appearance and main configuration of a second embodiment of a floating video display system according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating the external appearance and main configuration of a second embodiment of another spatially floating video display system according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining sensing means provided in the floating image display system according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a structural diagram showing another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a structural diagram showing another example of a specific configuration of a light source device of another type.
  • FIG. 7 is a diagram illustrating another example of a specific configuration of a light source device of another type. It is an enlarged view which shows the surface shape of the light guide diffuser part of another example of the specific structure of a light source device.
  • FIG. 2 is a cross-sectional view showing an example of a specific configuration of a light source device.
  • FIG. 2 is a structural diagram showing an example of a specific configuration of a light source device.
  • FIG. 3 is a perspective view, a top view, and a cross-sectional view showing an example of a specific configuration of a light source device.
  • FIG. 2 is a perspective view and a top view showing an example of a specific configuration of a light source device.
  • FIG. 3 is an explanatory diagram for explaining light source diffusion characteristics of a video display device.
  • FIG. 3 is an explanatory diagram for explaining light source diffusion characteristics of a video display device.
  • FIG. 3 is an explanatory diagram for explaining the diffusion characteristics of the video display device.
  • FIG. 3 is an explanatory diagram for explaining the diffusion characteristics of the video display device.
  • FIG. 3 is a diagram showing a coordinate system for measuring visual characteristics of a liquid crystal panel.
  • FIG. 3 is a diagram showing brightness angle characteristics (longitudinal direction) of a general liquid crystal panel.
  • FIG. 3 is a diagram showing the brightness angle characteristics (lateral direction) of a general liquid crystal panel.
  • FIG. 3 is a diagram showing the contrast angle characteristics (longitudinal direction) of a general liquid crystal panel.
  • FIG. 3 is a diagram showing the contrast angle characteristics (lateral direction) of a general liquid crystal panel.
  • FIG. 3 is an explanatory diagram for explaining the mechanism of generation of a plurality of spatially floating images generated by retroreflection according to an embodiment of the present invention.
  • FIG. 1 is an explanatory diagram for explaining the main configuration of a spatially floating image display system using a plurality of spatially floating images generated by retroreflection according to an embodiment of the present invention.
  • the present disclosure transmits an image of image light from a large-area image light source through a transparent member that partitions a space, such as the glass of a show window, and floats the image inside or outside of a store (space).
  • the present invention relates to a display system that can display images.
  • the present disclosure also relates to a large-scale digital signage system configured using a plurality of such display systems.
  • the following embodiments it is possible to display high-resolution images floating in space, for example, on the glass surface of a show window or on a light-transmitting board.
  • the divergence angle of the emitted image light small, that is, an acute angle, and aligning it with a specific polarization, it is possible to efficiently reflect only the regular reflected light to the retroreflection member. Therefore, the light utilization efficiency is high, and ghost images generated in addition to the main space floating image, which were a problem with conventional retroreflection methods, can be suppressed, and a clear space floating image can be obtained.
  • a device including the light source of the present disclosure it is possible to provide a novel and highly usable spatial floating video display system that can significantly reduce power consumption. Further, according to the technology of the present disclosure, it is possible to display a so-called unidirectional spatial floating image that is visible from outside the vehicle, for example, through the shield glass including the windshield, rear glass, and side glass of the vehicle.
  • a floating video display system for a vehicle can be provided.
  • an organic EL panel or a liquid crystal display panel (liquid crystal panel or display panel) is combined with a retroreflective member as a high-resolution color display image source.
  • the first retroreflective member 2 used in the conventional space-floating image display device since the image light is diffused over a wide angle, the first retroreflective member 2, which is the first embodiment composed of polyhedrons shown in FIG. As shown in FIG. 3, in addition to the reflected light that is reflected on the surface, since the shape used for the retroreflective member 2a is a hexahedron, ghost images shown as 3a and 3f are included due to the image light incident obliquely. Six ghost images were generated, impairing the quality of the floating images. Additionally, the ghost images floating in the same space could be viewed by people other than the viewers, which posed a major problem from a security perspective.
  • the first light control panel 221 and the second light control panel 222 each have a thickness.
  • Optical members 20 having a large number of band-shaped planar light reflecting portions arranged at a constant pitch are arranged perpendicularly to one side surface of constant transparent flat plates 18 and 17.
  • the light reflecting parts of the optical members 20 constituting the first light control panel 221 and the second light control panel 222 are arranged to intersect with each other (orthogonally in this embodiment) in plan view. .
  • the second retroreflective member 5 is generally arranged at an angle of 40 to 50 degrees with respect to the image display device 1.
  • the spatially floating image 3 is emitted from the second retroreflective member 5 at the same angle as the angle at which the image light is incident on the second retroreflective member 5.
  • the spatially floating image is formed at a symmetrical position separated by the same distance L1 between the image display device 1 and the second retroreflective member 5.
  • FIGS. 1 and 2 The image light emitted from the image display device 1 provided on one side of the second retroreflective member 5 is reflected by the planar light reflecting section C (reflecting surface of the light reflecting member 20) of the second light control panel 222. , Next, the space floating image 3 (real image) is reflected by the planar light reflecting portion C' (reflecting surface of the light reflecting member 20) of the first light control panel 221, and the space floating image 3 (real image) is reflected at the outer position of the second retroreflective member 5. (the space on the other side). That is, by using this second retroreflective member 5, a spatially floating video device is established, and the image of the video display device 1 can be displayed in space as a spatially floating image.
  • the intensity of external light is high and it enters from the top surface of the second retroreflective member 5, the interval between the reflective surfaces (300 ⁇ m or less) will shorten, causing optical interference, and rainbow-colored reflected light will be observed, which will be visible to the viewer. It has been found that there is a problem in that the presence of the retroreflective member is recognized. Therefore, in order to prevent the interference light generated by the pitch of the reflective surface of the retroreflective member 5 due to the incidence of external light from returning to the viewer, the area where the interference light is generated is determined by using the incident angle of external light as a parameter in the measurement environment shown in Fig. 4. Obtained experimentally. The obtained results are shown in FIG.
  • the ratio (H/P) between the pitch P of the light reflecting member 20 and the height H of the reflecting surface about 60% of the reflecting surface forms a spatially floating image due to retroreflection, and the remaining 40% forms a ghost image. It was found that the abnormal reflected light caused . In order to improve the resolution of floating images in the future, it will be essential to shorten the pitch of the reflective surfaces. In addition, in order to suppress the generation of ghost images, it is necessary to make the height of the reflecting surface higher than the current height, but due to manufacturing constraints of the second retroreflective member 5, the ratio of the pitch P and height H of the reflecting surface (H/P) should be selected in the range of 0.8 to 1.2 compared to the current 1.0.
  • FIG. 6 is a diagram illustrating an example of the form of a reflexive optical system used to realize the spatially floating image display system of the present disclosure.
  • FIG. 6 is a diagram illustrating the overall configuration of the spatial floating video display system in this embodiment.
  • this system the spatial floating display system of the present disclosure
  • the spatial floating video display system when the spatial floating video display system is placed on a desk for the viewer of the spatial floating video. In this case, the floating image will be viewed at an angle of ⁇ 6.
  • the image formation position (angle) of the spatially floating image is the sum of the angle ⁇ 2 between the display surface of the video display device 1 and the retroreflective member 5, and the angle ⁇ 1 between the retroreflective member 5 and the spatially floating image ( We have found that arranging so that ⁇ 2 + ⁇ 1) is approximately equal is the optimal arrangement for viewing spatially floating images.
  • the configuration of the spatial floating video display system of the present disclosure will be explained in more detail.
  • FIG. 6 it includes an image display device 1 that diverges image light of a specific polarization into a narrow angle, and a second retroreflective member 5.
  • the video display device 1 includes a liquid crystal display panel (hereinafter sometimes simply referred to as a liquid crystal panel) 11 and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics.
  • Image light of a specific polarization from the image display device 1 is transmitted to the device (not shown) of the second retroreflection member 5.
  • An absorption type polarizing sheet 101 having an anti-reflection film provided on the surface is provided on the surface in contact with the outside of the device (not shown).
  • the reflected light reflected on the surface of the second retroreflective member 5 is generated by selectively transmitting the image light of a specific polarization and absorbing the other polarization included in the external light. Prevent effects.
  • the absorption type polarizing sheet 101 that selectively transmits image light of a specific polarization has a property of transmitting image light of a specific polarization
  • the image light of a specific polarization passes through the absorption type polarization sheet 101.
  • a spatially floating image 3 is formed at a symmetrical position with respect to the retroreflective member 5 by the transmitted image light.
  • the light forming the floating image 3 is a collection of light rays that converge from the retroreflective member 5 to the optical image of the floating image 3, and these light rays continue to travel straight even after passing through the optical image of the floating image 3. do. Therefore, the floating image 3 is a highly directional image, unlike the diffused image light formed on a screen by a general projector or the like.
  • the floating image 3 when the user views the floating image 3 from the direction shown in the figure, the floating image 3 is viewed as a bright image, but when viewed by another person from the vertical direction and front/back direction of the page, the floating image 3 is viewed as a bright image. , the floating image 3 cannot be viewed as an image at all.
  • This characteristic is very suitable for use in a system that displays images that require high security or highly confidential images that should be kept secret from the person directly facing the user.
  • the polarization axes of the reflected image light may become uneven. In this case, some of the image light whose polarization axes are not aligned is absorbed by the above-mentioned absorptive polarizing sheet 101. Therefore, unnecessary reflected light is not generated in the retroreflective optical system, and deterioration in the image quality of the spatially floating image can be prevented or suppressed.
  • the display screen of the image display device 1 is shielded from light by the reflective surface of the retroreflective member 5. be done. Therefore, in this space-floating video display device, the displayed image of the video display device 1 is more difficult to view directly than when the video display device 1 and the retroreflective member face each other directly.
  • FIG. 7 is a diagram showing the main part configuration of another example of a retroreflective optical system for realizing a floating image display system according to an embodiment of the present invention.
  • This spatial floating image display system is suitable for viewers to observe spatial floating images from diagonally above.
  • the video display device 1 includes a liquid crystal display panel 11 as a video display element, and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics.
  • the liquid crystal display panel 11 is comprised of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size of over 80 inches. Image light from the liquid crystal display panel 11 is emitted toward a retroreflective member (retroreflector or retroreflector plate) 5 .
  • the spatially floating image 3 is formed at a symmetrical position of the image display device 1 with the retroreflective member 5 as a plane of symmetry.
  • an image light control sheet 334 whose structure is shown in FIG. 12(A) is provided on the output side of the liquid crystal panel 11 to prevent diffusion in unnecessary directions. It is better to control the characteristics.
  • a depolarization element 339 is provided that optically converts a part of the image light of a specific polarization into the other polarization and converts it into pseudo natural light. This allows viewers to see a good spatial floating image even if they are wearing polarized sunglasses. When these are optically bonded using the adhesive 338, no light reflecting surface is generated and the quality of the spatial floating image is not impaired.
  • depolarization elements include Cosmoshine SRF (manufactured by Toyobo Co., Ltd.) and depolarization adhesive (manufactured by Nagase Sangyo Co., Ltd.).
  • Cosmoshine SRF manufactured by Toyobo Co., Ltd.
  • depolarization adhesive manufactured by Nagase Sangyo Co., Ltd.
  • the retroreflective member 5 is arranged parallel to a horizontal plane in space, and the interspace floating image 3 can be displayed at an angle of ⁇ 1 with respect to the horizontal plane.
  • the display surface of the image display device 1 is tilted by ⁇ 1 to the side opposite to the space floating image 3 with respect to the horizontal plane.
  • the video display device 1 includes a light source device 13 that generates light of a specific polarization having a diffusion characteristic that is narrow to the liquid crystal display panel 11.
  • FIG. 8 is a diagram illustrating the configuration of another example showing the configuration of the main parts of a reflexive optical system for realizing a spatially floating image display system.
  • This spatial floating image display system is suitable for viewers to observe the spatial floating image from diagonally above the front.
  • the video display device 1 includes a liquid crystal display panel 11 as a video display element, and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics.
  • the liquid crystal display panel 11 is comprised of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size of over 80 inches.
  • Image light from the liquid crystal display panel 11 is emitted toward the retroreflective member 5.
  • Light from a light source device 13 with a narrow divergence angle, which will be described later, is incident on the liquid crystal panel 11 to generate an image light beam with a narrow divergence angle, which is incident on the retroreflective member 5 to obtain a spatial floating image 3.
  • the spatially floating image 3 is formed at a symmetrical position of the image display device 1 with the retroreflective member 5 as a plane of symmetry.
  • an image light control sheet 334 is provided on the output side of the liquid crystal panel 11 shown in FIG. 14(A) to control unnecessary directions. It is also possible to control the diffusion characteristics of
  • FIG. 14(B) by providing an image light control sheet 338 on the image exit surface of the retroreflective member 5, ghost images generated on both sides of the regular image of the spatially floating image 3 due to unnecessary light can be erased. It's okay.
  • the retroreflective sheet 5 By tilting ( ⁇ 2) the retroreflective sheet 5 with respect to the horizontal plane, the spatial floating image 3 can be generated at an angle of ⁇ 1 with respect to the horizontal plane. For this reason, for example, when the configuration shown in FIG. 8 is incorporated into the upper part of a KIOSK terminal to display a floating image in space as an avatar at the upper end of the terminal, the image light is directed toward the viewer's eyes, so high brightness is required. You can view images floating in space.
  • the inclination angle ⁇ 2 of the retroreflective member 5 the inclination angle ⁇ 3 of the image display device 1, and their respective positions are optimally designed. Just do it.
  • FIG. 9 is a diagram showing the main part configuration of another example of a retroreflective optical system for realizing a spatially floating image display system.
  • This spatial floating image display system is suitable for a viewer to observe a spatial floating image from diagonally above.
  • the video display device 1 includes a liquid crystal display panel 11 as a video display element, and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics.
  • the liquid crystal display panel 11 is comprised of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size of over 80 inches.
  • a linear Fresnel sheet 105 as shown in FIG. 10 is used as the image light control sheet 334 in the image display device 1. It is preferable to arrange it close to the image display surface of the liquid crystal panel 11 and refract the image light in a desired direction. At this time, generation of unnecessary light can be suppressed by providing a light shielding layer on the vertical surface of the linear Fresnel to block the incidence of image light from sources other than the Fresnel lens. Furthermore, by providing an anti-reflection film on the image light incident surface and output surface of the linear Fresnel sheet, it is possible to suppress the generation of unnecessary light and obtain good characteristics.
  • the image light control sheet 334 equipped with the above-mentioned linear Fresnel sheet 105 emits the light toward the retroreflective member 5.
  • the spatial floating image 3 is formed at a symmetrical position on the display surface of the video display device 1 with the retroreflective member 2 as the symmetrical surface.
  • the retroreflective member 2 and the video display device 1 are disposed in positions directly facing each other, when a viewer looks into the retroreflective member 5 of the spatially floating video display device, the liquid crystal panel 11 The displayed image overlaps with the floating image, significantly reducing the quality of the floating image.
  • an image light control sheet is provided on the image light output surface of the liquid crystal panel 11.
  • a viewing angle control film (VCF) manufactured by Shin-Etsu Polymer Co., Ltd. is suitable as this image light control sheet, and its structure consists of alternating transparent silicon and black silicon, and a synthetic resin on the light input/output surface. Since it has a sandwich structure, the same effects as the external light control film of this example can be expected.
  • the viewing angle control film (VFC) has transparent silicon and black silicon stretched in a predetermined direction arranged alternately.
  • the film By tilting the stretching direction of the transparent silicon and black silicon of the image light control sheet 334 ( ⁇ 10 in the figure) with respect to the image light control sheet 334, it is preferable to arrange the film so as to reduce moiré that occurs at the pitch between the pixels and the external light control film.
  • the retroreflective member 5 is arranged parallel to the bottom surface of the casing. As a result, external light enters the retroreflective member 5 and enters the inside of the casing, resulting in a deterioration in the image quality of the generated spatially floating image 3.
  • An image light control sheet 334 may be provided on the output side of the liquid crystal panel 11 to control the diffusion characteristics in unnecessary directions.
  • the Fresnel angle of the linear Fresnel sheet 105 shown in FIG. 10 is 20 degrees and the base material of the linear Fresnel sheet 105 is acrylic, the refractive index is 1.49, and the output angle ⁇ 9 of the linear Fresnel sheet is 30 degrees.
  • the emitted light flux from the video display device 1 is emitted perpendicularly to the display surface
  • the divergence angle of the light flux is ⁇ 20 degrees
  • the incident angle to the output surface is +40 degrees at maximum.
  • the angle of the light beam emitted from the linear Fresnel sheet 105 becomes +70 degrees at the maximum, which is 1.75 times as large.
  • the divergence angle is -20 degrees, the angle of incidence on the exit surface is 10 degrees, and the diffusion angle can be increased by 1.5 times from 20 degrees to 30 degrees.
  • the angle ⁇ 8 after refraction is calculated from the incident angle to the linear Fresnel sheet 105, the Fresnel angle, and the refractive index of the base material of the linear Fresnel sheet 105, and the output after refraction at the air interface
  • the angle ⁇ 9 can also be found uniquely.
  • the principal ray B1 of the image light vertically emitted from the liquid crystal display panel 11 constituting the image display device 1 is refracted in an oblique direction, enters the retroreflective member 5, and is reflected by two reflective surfaces.
  • a spatially floating image 3 is formed at a position symmetrical to the liquid crystal display panel 11.
  • the image light beam has a narrow divergence angle due to the light source device 13 of the present invention (included in the image display device 1 shown in FIG. 11) having narrow-angle diffusion characteristics as shown in FIG. 30, but the Fresnel lens Due to the action of the sheet 105, the diffusion angle ⁇ 11 of one light beam B11 with respect to the chief ray B1 is greatly expanded. Further, the other light B12 is diffused at a diffusion angle ⁇ 12 that is approximately equal to the original diffusion angle.
  • the housing in order to direct the floating image with maximum brightness in the viewing direction of the viewer, the housing is attached to the housing base 516, which serves as the base.
  • a hinge 513 is provided as a mechanism for holding the housing 511 and rotating it relative to the housing base 516 (see angle ⁇ 13 in FIG. 11), and the housing 511 is connected to the support arm 512 and one end thereof is connected to the hinge 513. do.
  • the casing 511 can be rotated and held with respect to the casing base 516, so that the viewer can view the spatial floating image 3 at maximum brightness.
  • the housing 511 when the space floating video display system is not in use, the housing 511 can be stored in the space provided by the housing cover 515 provided on the housing base 516 and the housing base 516.
  • a compact storage format can be realized.
  • a video display device 1 including a liquid crystal panel (not shown) and a light source (not shown) and a retroreflective member 5 are built-in.
  • the back cover 514 has a structure in which an inclined surface is provided in a portion near the hinge to prevent the back cover 514 of the casing 511 from coming into contact with the casing base 516 during storage.
  • the Fresnel lens shape has at least one boundary surface.
  • FIG. 12(A) the boundary surface between the inclined linear Fresnel sheet 517 and the inclined linear Fresnel sheet 518 is shown.
  • the image light flux from the image displayed on the flat display provided in the image display device 1 disposed on the lower side in FIG. 13 is refracted in the direction shown by the arrow in FIG. 12(A).
  • the linear Fresnel sheet is configured such that there are two interfaces, it is possible to emit light from the floating image 3 in three directions.
  • an eccentric Fresnel sheet 519 as shown in FIG. is emitted in a direction perpendicular to the Fresnel lens surface.
  • the image light flux from the image displayed on the flat display provided in the image display device 1 disposed on the lower side in FIG. 13 is refracted in the direction shown by the arrow in FIG. 12(B).
  • optimal design is performed using the eccentricity of the circular Fresnel sheet and the Fresnel angle as parameters. Further, by making the Fresnel angles of the above-mentioned linear Fresnel sheet and circular Fresnel sheet constant, it is possible to simultaneously control the emitted light and reduce the thickness of the optical system set.
  • FIG. 1 A first embodiment of a floating image display system using the four retroreflective optical systems described above is shown in FIG.
  • the retroreflective member 5 is fixed to the transparent sheet 100 with adhesive or adhesive.
  • FIG. 16 shows a first embodiment in which a floating image display device 202 is incorporated into a tablet terminal.
  • the floating image display device 202 and the flat display 200 are provided in the same housing 201.
  • the sensing unit 203 that covers all of the display image 204 of the flat display 200 and the spatially floating display 202 is placed on the same plane as the floating image 204 in a case in which both the flat display 200 and the spatially floating image display device 202 are located. It is provided at the end of the body 201.
  • the sensing unit 203 can sense both the sensing area of the flat display 200 and the sensing area of the spatially floating display 202 on the same plane, shown as a sensing area 226 in FIG. 16 .
  • sensing areas such as the sensing area of the flat display 200 and the sensing area of the spatially floating display 202
  • they may exist in parallel on a plane, or may exist above and below each other. It may exist either before or after. Moreover, they may exist on the same plane. In this case, the sensing unit 203 may be provided separately for each sensing area.
  • the floating image display device 202 and the flat display 200 may be installed in the same housing 201.
  • this sensing area is located at a higher position toward the rear from the front of the device and has a slope. This allows for an easy-to-enter layout.
  • the sensing unit will be described in detail later.
  • the wavelength of the light source light of the TOF system which is the ranging system of the sensing unit 203 used, is set to a long wavelength of 900 (nm) or more, it is less susceptible to the influence of external light.
  • the user creates an illusion that the spatial operation input performed on the displayed spatial floating image 204 can also be performed on the image display surface of the flat display 200. Therefore, spatial operation input can be performed without directly touching the display screen of the flat display 200.
  • the inventors determined that the distance between the flat display 200 and the sensing area 226 should be such that even if the operator performs spatial operations based on the screen displayed on the flat display 200, the finger will not touch the surface of the flat display 200. was determined by experiment. As a result of this experiment, it was found that by separating the image formation position of the spatially floating image 204 from the flat display 200 by 40 mm or more, the probability that the operator directly touches the screen of the flat display 200 can be reduced to 50% or less. Furthermore, by setting the distance of 50 mm or more, the operation does not directly touch the flat display 200.
  • FIG. 16 is not limited to the tablet terminal as described above, and may be incorporated into various display devices such as ATMs, automatic ticket vending machines, kiosk terminals, and stationary display devices.
  • FIG. 17 shows a second embodiment in which a floating image display device 202 is incorporated into a tablet terminal.
  • the spatially floating image display device 202 and the flat display 200 are provided in the same housing 201, and a first sensing area (sensing region) 226a that covers the imaging area of the spatially floating image 204 of the spatially floating image display device 202 is sensed.
  • a first sensing unit 203a and a second sensing unit 203b that senses a second sensing area 226b that covers the image display area of the flat display 200.
  • the first sensing area 226a and the second sensing area 226b are provided at the starting points of the floating image display device 202 and the flat display 200, respectively.
  • first sensing area 226a and the second sensing area 226b are arranged close to each other.
  • the first sensing area and the second sensing area exist in parallel or in front of each other on a plane.
  • the first sensing area and the second sensing area may be arranged on the same plane.
  • the floating image display device 202 and the flat display 200 may be installed in the same housing 201.
  • the present embodiment is described using the flat display 200, the present invention is not limited to a flat display, and any display may be used. In this embodiment, they are arranged substantially parallel to the image display surface of the flat display 200.
  • the sensing unit used here will also be described in detail later.
  • the spatial operation input performed by the user on the displayed spatial floating image 204 can be similarly performed on the image display surface of the flat display 200. create an illusion. Therefore, spatial operation input can be performed without directly touching the display screen of the flat display 200.
  • FIG. 17 is not limited to tablet terminals, and may be incorporated into various display devices such as ATMs, automatic ticket vending machines, kiosk terminals, and stationary display devices.
  • Sensing technology for pseudo-manipulating a space-floating image so that a viewer (operator) is bidirectionally connected to an information system via a space-floating image display device will be described below.
  • FIG. 18 is a principle diagram for explaining the sensing technology.
  • a distance measuring device 203 having a built-in TOF (Time of Flight) system compatible with spatial floating images is provided.
  • An optical element for controlling the divergence angle is provided on the light emitting side of the LED, and a pair of highly sensitive avalanche diodes with picosecond time resolution are arranged as light receiving elements in the horizontal direction so as to correspond to the area.
  • the LED that is the light source emits light in synchronization with the signal from the system, and the phase ⁇ t is shifted by the time it takes for the light to reflect on the object to be measured (the tip of the viewer's finger) and return to the light receiving unit. .
  • the distance to the object is calculated from this time difference ⁇ t, and the position and movement of the operator's finger is sensed as two-dimensional information by combining it with position information from a plurality of sensors arranged in parallel.
  • an image light control sheet 334 is provided on the output surface of the liquid crystal panel 13, as shown in FIG. 14(A). It is good to set up Further, an image light control sheet 334 is provided on the light exit surface, the light entrance surface, or both surfaces of the retroreflective member to absorb abnormal light that causes ghost images.
  • FIGS. 14(A) and 14(B) show a specific method of applying the image light control sheet 334 to a spatial image display device.
  • An image light control sheet 334 is provided on the output surface of a liquid crystal panel 335, which is an image display element.
  • the following steps (1) and (2) must be taken. Two methods are effective.
  • One pixel 339 of the liquid crystal panel is made up of pixels of three colors RGB arranged in parallel, and is generally square, so it is not possible to suppress the above-mentioned moiré over the entire screen. Therefore, the slope ⁇ 10 shown in (1) should be optimized within the range of 5 degrees to 25 degrees so that the moire generation position can be intentionally shifted to a place where the spatial floating image is not displayed. was determined experimentally. Although we have described how to reduce moire using a liquid crystal panel, the moire that occurs between the retroreflective member 5 and the image light control sheet 334 is caused by the fact that both are striated structures, as shown in FIG. By optimally tilting the image light control sheet with attention to the X-axis, it is possible to reduce large moiré patterns with low frequencies that are visible even with long-wavelength visual inspection.
  • FIG. 14(A) is a vertical sectional view of the video display device 1 of the present invention in which the video light control sheet 334 is arranged on the video light exit surface of the liquid crystal panel 335.
  • the image light control sheet 334 is configured by alternately arranging light transmitting portions 336 and light absorbing portions 337, and is adhesively fixed to the image light emitting surface of the liquid crystal panel 335 by an adhesive layer 338.
  • FIG. 14(B) is a vertical cross-sectional view of the retroreflective member of the present invention in which an image light control sheet 334 is arranged on the image light output surface of the retroreflective member 5.
  • the image light control sheet 334 is constructed by alternately arranging light transmitting portions 336 and light absorbing portions 337, and is arranged to be inclined at an inclination angle ⁇ 1 in accordance with the emission direction of the retroreflected light.
  • the above-mentioned image light control sheet 334 also prevents external light from entering the space floating image display device, leading to improved reliability of the component parts.
  • a viewing angle control film (VCF) manufactured by Shin-Etsu Polymer Co., Ltd. is suitable as this image light control sheet, and its structure is such that transparent silicon and black silicon are arranged alternately, and a synthetic resin is arranged on the light input/output surface. Since it has a sandwich structure, the same effects as the external light control film of this example can be expected.
  • ⁇ LCD panel performance> in a typical TFT (Thin Film Transister) liquid crystal panel, the brightness and contrast performance differ depending on the mutual characteristics of the liquid crystal and the polarizing plate depending on the direction in which light is emitted.
  • the characteristics of brightness and viewing angle in the transverse (up and down) direction of the panel were slightly different from the emission angle perpendicular to the panel surface (output angle 0 degrees), as shown in Figure 33.
  • the characteristics at a different angle (+5 degrees in this example) are excellent. The reason for this is that in the transverse (vertical) direction of the liquid crystal panel, the characteristic of twisting light does not become 0 degrees when the applied voltage is maximum.
  • the contrast performance in the transverse (up and down) direction of the panel is excellent in the range of -15 degrees to +15 degrees, as shown in Figure 35, and when combined with the brightness characteristics, the contrast performance in the panel width direction (up and down) is excellent in the range of -15 degrees to +15 degrees. The best properties will be obtained if used within this range.
  • the characteristics of brightness and viewing angle in the longitudinal (left and right) direction of the panel are excellent at the emission angle perpendicular to the panel surface (emission angle of 0 degrees).
  • the reason for this is that in the longitudinal direction (left and right direction) of the liquid crystal panel, the characteristic of twisting light becomes 0 degrees when the applied voltage is maximum.
  • the contrast performance in the longitudinal (left and right) direction of the panel is excellent in the range of -5 degrees to -10 degrees, as shown in Figure 34, and when combined with the brightness characteristics, the contrast performance in the longitudinal (left and right) direction of the panel is excellent in the range of -5 degrees to -10 degrees.
  • the best properties will be obtained if used within this range. Therefore, the emission angle of the image light emitted from the liquid crystal panel is changed from the direction in which the best characteristics can be obtained by the light flux direction conversion means (reflection surfaces 307, 314, etc.) provided on the light guide of the light source device 13 described above. Making light incident on the panel and modulating the light with a video signal improves the image quality and performance of the video display device 1.
  • the light source After being incident on the liquid crystal panel 11 at an incident angle that maximizes the characteristics of the liquid crystal panel 11, the device 13 emits an image beam whose brightness is modulated in accordance with the image signal toward the retroreflective member.
  • the device 13 In order to reduce the set volume of the spatially floating video display system, it is desired to increase the degree of freedom in the arrangement of the liquid crystal panel 11 and the retroreflective member.
  • the following technical means are used.
  • a transparent sheet made of optical components such as a linear Fresnel lens shown in FIGS. 10 and 12 is provided as a light direction conversion panel on the image display surface of the liquid crystal panel 11, and a transparent sheet made of optical components such as a linear Fresnel lens shown in FIGS.
  • the imaging position of the spatially floating image is determined by controlling the exit direction of the incident light flux. According to this configuration, the image light from the image display device 1 efficiently reaches the viewer with high directivity (straightness) like laser light, and as a result, high-quality floating images can be displayed with high quality. It is possible to display images with high resolution and to significantly reduce power consumption by the video display device 1 including the light source device 13.
  • FIG. 24 shows another example of a specific configuration of the video display device 1.
  • the light source device 13 in FIG. 24 is similar to the light source device in FIG. 25 and the like.
  • the light source device 13 is configured by housing an LED, a collimator, a synthetic diffusion block, a light guide, etc. in a case made of plastic, for example, and has a liquid crystal display panel 11 attached to its upper surface.
  • LED (Light Emitting Diode) elements 14a and 14b which are semiconductor light sources, and an LED board on which their control circuits are mounted are attached, and on the outer side of the LED board, A heat sink, which is a member for cooling the heat generated by the LED elements and the control circuit, is attached (not shown).
  • the liquid crystal display panel frame attached to the top surface of the case has a liquid crystal display panel 11 attached to the frame and an FPC (Flexible Printed Circuits) electrically connected to the liquid crystal display panel 11. ) (not shown), etc. are attached. That is, the liquid crystal display panel 11, which is a liquid crystal display element, together with the LED elements 14a and 14b, which are solid-state light sources, adjusts the intensity of transmitted light based on a control signal from a control circuit (not shown here) that constitutes an electronic device. A display image is generated by modulating the .
  • FPC Flexible Printed Circuits
  • each of the collimators 15 is made of a translucent resin such as acrylic.
  • this collimator 15 has an outer circumferential surface 156 with a conical convex shape obtained by rotating a parabolic cross section, and its center at the top (side in contact with the LED board). It has a concave portion 153 in which a convex portion (that is, a convex lens surface) 157 is formed.
  • the central part of the flat part (the side opposite to the above-mentioned top part) of the collimator 15 has a convex lens surface (or a concave lens surface concave inward) 154 that projects outward.
  • the paraboloid 156 forming the conical outer circumferential surface of the collimator 15 is set within an angle range that allows total reflection of the light emitted from the LEDs 14a and 14b in the peripheral direction, or, A reflective surface is formed.
  • the LEDs 14a and 14b are each placed at a predetermined position on the surface of the board 102, which is the circuit board.
  • This substrate 102 is arranged and fixed to the collimator 15 such that the LEDs 14a or 14b on the surface thereof are located at the center of the recess 153, respectively.
  • the outer shape of the collimator 15 is The two convex lens surfaces 157 and 154 converge the light into parallel light. Further, light emitted from other parts toward the periphery is reflected by the paraboloid that forms the conical outer peripheral surface of the collimator 15, and is similarly condensed into parallel light.
  • the collimator 15 having a convex lens in the center and a paraboloid in the periphery, it is possible to extract almost all of the light generated by the LED 14a or 14b as parallel light. , it becomes possible to improve the utilization efficiency of the generated light.
  • a polarization conversion element 21 is provided on the light output side of the collimator 15.
  • the polarization conversion element 21 may also be referred to as a polarization conversion member.
  • this polarization conversion element 21 consists of a columnar (hereinafter referred to as a parallelogram column) translucent member having a parallelogram cross section and a columnar member (hereinafter referred to as a parallelogram column) having a triangular cross section. , triangular prism), and are arranged in a plurality in an array parallel to a plane orthogonal to the optical axis of the parallel light from the collimator 15.
  • polarizing beam splitters (hereinafter abbreviated as "PBS films”) 211 and reflective films 212 are alternately provided at the interfaces between adjacent light-transmitting members arranged in an array. Further, a ⁇ /2 phase plate 213 is provided on the exit surface from which the light that has entered the polarization conversion element 21 and passed through the PBS film 211 exits.
  • the output surface of this polarization conversion element 21 is further provided with a rectangular synthetic diffusion block 16 as shown in FIG. 24(a). That is, the light emitted from the LED 14a or 14b becomes parallel light due to the action of the collimator 15, enters the composite diffusion block 16, is diffused by the texture 161 on the exit side, and then reaches the light guide 17.
  • the light guide 17 is a rod-shaped member with a substantially triangular cross section (see FIG. 24(b)) made of a translucent resin such as acrylic, and as is clear from FIG.
  • a light guide light emitting portion (surface) 173 is provided, which faces the liquid crystal display panel 11, which is a liquid crystal display element, through the plate 18b.
  • the light guide light reflecting portion (surface) 172 of the light guide 17 has a large number of reflecting surfaces 172a and connecting surfaces 172b arranged in an alternating sawtooth shape. It is formed.
  • the reflective surface 172a (line segment sloping upward to the right in the figure) forms ⁇ n (n: a natural number, for example, 1 to 130) with respect to the horizontal plane indicated by the dashed line in the figure.
  • ⁇ n is set to 43 degrees or less (however, 0 degrees or more).
  • the light guide entrance portion (surface) 171 is formed in a curved convex shape inclined toward the light source side. According to this, the parallel light from the output surface of the composite diffusion block 16 is diffused and incident through the first diffusion plate 18a, and as is clear from the figure, the light guide entrance part (surface) 171 As a result, the light is slightly bent (deflected) upward and reaches the light guide light reflecting portion (surface) 172, where it is reflected and reaches the liquid crystal display panel 11 provided on the emission surface in the upper part of the figure.
  • the video display device 1 it is possible to further improve the light utilization efficiency and its uniform illumination characteristics, and at the same time, it can be manufactured in a small size and at low cost, including a modular S-polarized light source device. It becomes possible.
  • the polarization conversion element 21 was explained as being attached after the collimator 15, but the present invention is not limited thereto, and the same effect can be obtained by providing it in the optical path leading to the liquid crystal display panel 11. ⁇ Effects can be obtained.
  • the light guide light reflecting portion (surface) 172 has a large number of reflecting surfaces 172a and connecting surfaces 172b alternately formed in a sawtooth shape, and the illumination light flux is totally reflected on each reflecting surface 172a. Furthermore, a narrow-angle diffuser plate is provided on the light guide light emitting part (surface) 173, and the light enters the light direction conversion panel 54 that adjusts the directivity characteristics as a substantially parallel diffused light flux, and from an oblique direction. The light enters the liquid crystal display panel 11. The direction of the light emitted from the video display device 1 is controlled by a light direction conversion panel 54 provided on the top surface of the light source device 13.
  • the light emitted from the liquid crystal display panel 11 is also controlled, and the direction of light diffusion of the spatially floating image obtained by the spatially floating image system using this image display device 1 is controlled.
  • the light direction conversion panel 54 is provided between the light guide output surface 173 and the liquid crystal display panel 11, but the same effect can be obtained even if it is provided on the output surface of the liquid crystal display panel 11.
  • the light emitted from the liquid crystal display panel 11 has, for example, the "conventional characteristic (X direction)" in FIG. 30(A) and the “conventional characteristic (Y direction)” in FIG. 30(B).
  • X direction the "conventional characteristic
  • Y direction the "conventional characteristic" in FIG. 30(B)
  • the screen horizontal direction display direction corresponding to the X-axis of the graph in FIG. 30(A)
  • the screen vertical direction display direction corresponding to the Y-axis of the graph in FIG. 30(B)
  • the diffusion characteristics of the emitted light flux from the liquid crystal display panel of this example are, for example, "Example 1 (X direction)" in FIG. 30(A) and “Example 1 (Y direction)” in FIG. 30(B).
  • the diffusion characteristics will be as shown in the plot curve of ⁇ direction)''.
  • the viewing angle is set to 13 degrees at which the brightness is 50% of the brightness when viewed from the front (angle of 0 degrees) (brightness reduced by about half), The angle is approximately 1/5 of the diffusion characteristic (angle of 62 degrees) of a device for TV use.
  • the upper viewing angle may be suppressed (narrowed) to about 1/3 of the lower viewing angle. , optimize the reflection angle of the reflective light guide, the area of the reflective surface, etc.
  • the amount of light in the image directed toward the user's viewing direction is significantly increased (significantly improved in terms of image brightness).
  • the brightness of such an image is 50 times or more.
  • the viewing angle is such that the brightness is 50% of the brightness of the image obtained when viewed from the front (angle of 0 degrees) (brightness reduced to approximately half). If it is set to be 5 degrees, the angle will be about 1/12 (narrow viewing angle) of the diffusion characteristic (angle of 62 degrees) of a typical home TV device.
  • reflective type Optimize the reflection angle of the light guide and the area of the reflection surface.
  • the brightness (amount of light) of images directed toward the viewing direction is significantly improved compared to conventional LCD TVs, and the brightness of such images is more than 100 times higher. .
  • the viewing angle a narrow angle
  • the amount of light directed toward the viewing direction can be concentrated, so the efficiency of light utilization is greatly improved.
  • the light diffusion characteristics of the light source device it is possible to achieve a significant increase in brightness with the same power consumption, making it possible to achieve brightness for bright outdoor displays. It can be a video display device compatible with the system.
  • FIG. 27 shows the long side of the liquid crystal display panel and the short side of the liquid crystal display panel when the distance L from the liquid crystal display panel to the viewer and the panel size of the video display device (screen ratio 16:10) are used as parameters.
  • the diagram shown at the top which shows the convergence angle of , is based on the assumption that the image is viewed with the screen of the liquid crystal display panel set vertically (hereinafter also referred to as "portrait"). In this case, the convergence angle may be set in accordance with the short side of the liquid crystal display panel (as appropriate, refer to the direction of arrow V in FIG. 27).
  • the convergence angle is set to 10 degrees.
  • image light from each corner (four corners) of the screen can be effectively projected or output toward the viewer.
  • the basic configuration is such that a light source device causes a light beam with a narrow directional characteristic to enter the liquid crystal display panel 11, and the brightness is modulated in accordance with the video signal.
  • An image displayed on a screen is reflected by a retroreflective member, and a floating image obtained in space is displayed outdoors or indoors via a transparent member 100.
  • FIG. 28 shows the convergence of the long side of the liquid crystal display panel and the short side of the liquid crystal display panel when the distance L from the liquid crystal display panel to the viewer and the panel size of the video display device (screen ratio 16:10) are used as parameters.
  • the angle is determined based on the positions of the left and right eyes.
  • the convergence angle in binocular vision between the left and right eyes is an important requirement. It is designed so that the image light is directed to the optimum viewing range of the system.
  • FIG. 19(a) and (b) are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 19(a) and (b) are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 19(a) and (b) are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 19(a) and (b) are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311.
  • FIG. 19 shows a state in which the LED 14 constituting the light source is attached to the substrate 102. These LEDs 14 and substrate 102 are attached to the reflector 15 at predetermined positions.
  • the LEDs 14 are arranged in a line in a direction parallel to the side (short side in this example) of the liquid crystal display panel 11 on which the reflector 300 is arranged.
  • a reflector 300 is arranged corresponding to the arrangement of the LEDs. Note that a plurality of reflectors 300 may be arranged.
  • the reflectors 300 are each formed from a plastic material.
  • the reflector 300 may be formed of a metal material or a glass material, but since a plastic material is easier to mold, a plastic material is used in this embodiment.
  • the inner surface of the reflector 300 (on the right side in the figure) is a reflecting surface in the shape of a paraboloid cut along the meridian plane (hereinafter sometimes referred to as a "paraboloid"). ) 305.
  • the reflector 300 converts the diverging light emitted from the LED 14 into substantially parallel light by reflecting it on the reflecting surface 305 (paraboloid), and the converted light enters the end surface of the light guide 311.
  • light guide 311 is a transmissive light guide.
  • the reflective surface of the reflector 300 has an asymmetric shape with respect to the optical axis of the light emitted from the LED 14. Further, the reflective surface 305 of the reflector 300 is a paraboloid as described above, and by arranging the LED at the focal point of the paraboloid, the reflected light beam is converted into substantially parallel light.
  • the LED 14 is a surface light source, the diverging light from the LED cannot be converted into completely parallel light even if it is placed at the focal point of a paraboloid, but this does not affect the performance of the light source of the present invention.
  • the LED 14 and the reflector 300 are a pair.
  • the number of LEDs mounted on the board should be no more than 10 at most, and if mass production is considered, it should be kept to about 5. Good.
  • the LED 14 and the reflector 300 are partially located close to each other, heat can be radiated to the space on the opening side of the reflector 300, so the temperature rise of the LED can be reduced. Therefore, the reflector 300 made of plastic molding can be used. As a result, according to this reflector 300, the shape precision of the reflecting surface can be improved by more than 10 times compared to a reflector made of glass material, so that the light utilization efficiency can be improved.
  • a reflective surface is provided on the bottom surface 303 of the light guide 311, and the light from the LED 14 is converted into a parallel beam by the reflector 300, then reflected by the reflective surface, and is placed opposite the light guide 311. The light is emitted toward the liquid crystal display panel 11.
  • the reflective surface provided on the bottom surface 303 may have a plurality of surfaces having different inclinations in the traveling direction of the parallel light beam from the reflector 300, as shown in FIG. Each of the plurality of surfaces having different inclinations may have a shape extending in a direction perpendicular to the traveling direction of the parallel light beam from the reflector 300.
  • the shape of the reflective surface provided on the bottom surface 303 may be a planar shape.
  • the refracting surface 314 provided on the surface of the light guide 311 facing the liquid crystal display panel 11 refracts the light reflected by the reflective surface provided on the bottom surface 303 of the light guide 311, so that the liquid crystal display panel 11 It is possible to adjust the amount of light and the direction of emission of the light beam toward the target with high precision. As a result, the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be controlled with high precision, so that a floating image can be displayed using a video display device using this light source. In the system, the direction and angle of diffusion of the image light of the spatially floating image can be set to desired values.
  • the refractive surface 314 may have a plurality of surfaces having different inclinations in the traveling direction of the parallel light beam from the reflector 300.
  • Each of the plurality of surfaces having different inclinations may have a shape extending in a direction perpendicular to the traveling direction of the parallel light beam from the reflector 300.
  • the inclinations of the plurality of surfaces cause the light reflected by the reflective surface provided on the bottom surface 303 of the light guide 311 to be refracted toward the liquid crystal display panel 11 .
  • the refraction surface 314 may be a transmission surface.
  • the diffuser plate 206 when the diffuser plate 206 is provided in front of the liquid crystal display panel 11, the light reflected by the reflective surface is refracted toward the diffuser plate 206 by the plurality of inclinations of the refracting surface 314. That is, the extending direction of the plurality of surfaces having different inclinations of the refractive surface 314 and the extending direction of the plurality of surfaces having different inclinations of the reflective surface provided on the bottom surface 303 are parallel. By making both stretching directions parallel, the angle of light can be adjusted more suitably.
  • the LED 14 is soldered to the metallic substrate 102. Therefore, the heat generated by the LED can be radiated into the air through the substrate.
  • the reflector 300 may be in contact with the substrate 102, but a space may be left open.
  • a space When opening a space, the reflector 300 is placed in a state where it is adhered to the casing.
  • the heat generated by the LED can be dissipated into the air, increasing the cooling effect.
  • the operating temperature of the LED can be reduced, making it possible to maintain luminous efficiency and extend the lifespan.
  • FIGS. 20A, 20B, 20C, and 20D show the configuration of an optical system for a light source device that uses polarization conversion to improve light utilization efficiency by 1.8 times compared to the light source device shown in FIG. 19. This will be explained in detail with reference to the following. Note that the illustration of the sub-reflector 308 is omitted in FIG. 20A.
  • FIG. 20A, FIG. 20B, and FIG. 20C show a state in which the LED 14 constituting the light source is attached to the substrate 102, and these are configured by a unit 312 having a plurality of blocks, including a reflector 300 and the LED 14 as a pair of blocks. .
  • the base material 320 shown in FIG. 20A(2) is the base material of the substrate 102.
  • the metallic substrate 102 has heat, so in order to insulate (insulate) the heat of the substrate 102, the base material 320 is preferably made of a plastic material or the like.
  • the material of the reflector 300 and the shape of the reflecting surface may be the same as those of the example of the light source device in FIG. 28 .
  • the reflective surface of the reflector 300 may have an asymmetric shape with respect to the optical axis of the light emitted from the LED 14. The reason for this will be explained with reference to FIG. 20A(2).
  • the reflective surface of the reflector 300 is a paraboloid, as in the example of FIG. 19, and the center of the light emitting surface of the LED, which is a surface light source, is placed at the focal point of the paraboloid.
  • the light emitted from the four corners of the light emitting surface also becomes a substantially parallel light beam, and the only difference is the emission direction. Therefore, even if the light emitting section has a large area, the amount of light incident on the polarization conversion element 21 and the conversion efficiency are hardly affected as long as the distance between the polarization conversion element disposed at the subsequent stage and the reflector 300 is short.
  • an optical system can be realized that can reduce the decrease in light conversion efficiency for the above-mentioned reasons. Furthermore, even if the mounting position of the LED 14 varies in the Z-axis direction, the converted parallel light beam only moves within the ZX plane, and the mounting accuracy of the LED, which is a surface light source, can be significantly reduced.
  • a reflector 300 having a reflecting surface formed by cutting out a part of a paraboloid in a meridian direction has been described, but an LED may be placed in a part of the entire paraboloid which is cut out as a reflecting surface.
  • the polarization conversion element 21 in the subsequent stage is The characteristic configuration is that the light is made incident on the end face and aligned to a specific polarization by the polarization conversion element 21. Due to this characteristic configuration, in this example, the light utilization efficiency is 1.8 times that of the example shown in FIG. 26 described above, and a highly efficient light source can be realized.
  • the substantially parallel light obtained by reflecting the diverging light from the LED 14 on the paraboloid 321 is not all uniform. Therefore, by adjusting the angular distribution of the reflected light using the reflective surfaces 307 having a plurality of inclinations, the reflected light can be directed toward the liquid crystal display panel 11 in a direction perpendicular to the liquid crystal display panel 11 .
  • the arrangement is such that the direction of light (principal ray) entering the reflector from the LED and the direction of light entering the liquid crystal display panel are approximately parallel.
  • This arrangement is easy to arrange in terms of design, and it is preferable to arrange the heat source under the light source device because air escapes upward and the temperature rise of the LED can be reduced.
  • the light flux that cannot be captured by the reflector 300 is reflected by the sub-reflector 308 provided on the light shielding plate 309 disposed above the reflector.
  • the light is reflected by the slope of the lower sub-reflector 310 and enters the effective area of the polarization conversion element 21 in the subsequent stage, further improving the light utilization efficiency. That is, in this embodiment, a part of the light reflected by the reflector 300 is reflected by the sub-reflector 308, and the light reflected by the sub-reflector 308 is reflected by the sub-reflector 310 in the direction toward the light guide 306.
  • a substantially parallel light beam aligned to a specific polarization by the polarization conversion element 21 is reflected by a reflection shape provided on the surface of the reflective light guide 306 toward the liquid crystal display panel 11 disposed opposite the light guide 306. Ru.
  • the light intensity distribution of the light beam incident on the liquid crystal display panel 11 is optimally designed based on the shape and arrangement of the reflector 300 described above, the shape of the reflective surface (cross-sectional shape) of the reflective light guide, the inclination of the reflective surface, and the surface roughness. be done.
  • the shape of the reflective surface provided on the surface of the light guide 306 a plurality of reflective surfaces are arranged facing the output surface of the polarization conversion element, and the inclination and area of the reflection surface are adjusted depending on the distance from the polarization conversion element 21. , height, and pitch, the light intensity distribution of the light flux incident on the liquid crystal display panel 11 can be set to a desired value, as described above.
  • the reflective surface 307 provided on the reflective light guide By configuring the reflective surface 307 provided on the reflective light guide so that one surface has multiple inclinations, as shown in FIG. 20B (2), it is possible to adjust the reflected light with higher precision.
  • the area used as the reflective surface may be a plurality of surfaces, a polysurface, or a curved surface.
  • the diffusion effect of the diffusion plate 206 realizes a more uniform light amount distribution. The light incident on the diffuser plate on the side closer to the LED achieves a uniform light intensity distribution by changing the inclination of the reflecting surface. As a result, the amount of light and the direction of emission of the light beam directed toward the liquid crystal display panel 11 can be adjusted with high precision.
  • the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be controlled with high precision, so that a floating image can be displayed using a video display device using this light source.
  • the direction and angle of diffusion of the image light of the spatially floating image can be set to desired values.
  • the base material of the reflective surface 307 is made of a plastic material such as heat-resistant polycarbonate. Further, the angle of the reflecting surface 307 immediately after the light is emitted from the ⁇ /2 plate 213 changes depending on the distance between the ⁇ /2 plate and the reflecting surface.
  • the LED 14 and the reflector 300 are partially located close to each other, heat can be radiated to the space on the opening side of the reflector 300, thereby reducing the temperature rise of the LED.
  • the substrate 102 and the reflector 300 may be arranged upside down as shown in FIGS. 20A, 20B, and 20C.
  • the substrate 102 if the substrate 102 is placed on top, the substrate 102 will be close to the liquid crystal display panel 11, which may make layout difficult. Therefore, as shown in the figure, if the substrate 102 is placed below the reflector 300 (on the side far from the liquid crystal display panel 11), the internal configuration of the device will be simpler.
  • a light shielding plate 410 may be provided on the light incidence surface of the polarization conversion element 21 to prevent unnecessary light from entering the subsequent optical system.
  • the polarizing plate provided on the light incident surface of the liquid crystal display panel 11 reduces the temperature rise by absorbing the uniformly polarized light beam of the present invention, but when it is reflected by the reflective light guide, the polarization direction rotates and some The light is absorbed by the polarizing plate on the incident side.
  • the temperature of the liquid crystal display panel 11 also rises due to absorption by the liquid crystal itself and temperature rise due to light incident on the electrode pattern, but if there is sufficient space between the reflective surface of the reflective light guide 306 and the liquid crystal display panel 11. Yes, natural cooling is possible.
  • FIG. 20D is a modification of the light source device in FIGS. 20B(1) and 20C.
  • FIG. 20D(1) shows a modified example of a part of the light source device of FIG. 20B(1).
  • the other configurations are the same as the light source device described above in FIG. 20B(1), so illustration and repeated description will be omitted.
  • the height of the recess 319 of the sub-reflector 310 is such that the principal ray of fluorescence outputted laterally (X-axis direction) from the phosphor 114 (X in FIG. 20D(1)) (see a straight line extending in a direction parallel to the axis) is adjusted to be at a position lower than the phosphor 114 so that it passes through the recess 319 of the sub-reflector 310.
  • the height of the light shielding plate 410 is adjusted to be low.
  • the reflective surface of the uneven convex portion on the top of the sub-reflector 310 reflects the light reflected by the sub-reflector 308 in order to guide the light reflected by the sub-reflector 308 to the light guide 306. Therefore, the height of the convex portion 318 of the sub-reflector 310 is adjusted so that the light reflected by the sub-reflector 308 is reflected and enters the effective area of the polarization conversion element 21 in the subsequent stage, thereby further improving the light utilization efficiency. can be improved.
  • the sub-reflector 310 is arranged to extend in one direction, and has an uneven shape. Further, on the top of the sub-reflector 310, irregularities having one or more recesses are periodically arranged in one direction. By forming such an uneven shape, it is possible to configure such that the chief ray of fluorescence outputted laterally from the phosphor 114 enters the effective area of the polarization conversion element 21.
  • the uneven shape of the sub-reflector 310 is arranged periodically at a pitch such that the recesses 319 are located at the positions where the LEDs 14 are located. That is, each of the phosphors 114 is arranged periodically along one direction corresponding to the arrangement pitch of the concave and convex portions of the sub-reflector 310. In addition, when the phosphor 114 is included in the LED 14, the phosphor 114 may be expressed as a light emitting part of a light source.
  • FIG. 20D(2) shows a modified example of a part of the light source device of FIG. 20C.
  • the other configurations are the same as those of the light source device in FIG. 20C, so illustration and repeated description will be omitted.
  • the sub-reflector 310 may not be provided, but as in FIG. 20D(1), the principal ray of fluorescence outputted laterally from the phosphor 114 is not blocked by the light shielding body 410.
  • the height of the light shielding plate 410 is adjusted to be lower in the Z-axis direction with respect to the position of the phosphor 114 so that the light enters the effective area of the polarization conversion element 21.
  • a side wall 400 may be provided to prevent stray light from entering, to prevent stray light from occurring outside the light source device, and to prevent stray light from entering from outside the light source device.
  • the side wall 400 is arranged so as to sandwich the space between the light guide 306 and the diffusion plate 206.
  • the light exit surface of the polarization conversion element 21 that emits the light polarization-converted by the polarization conversion element 21 faces the space surrounded by the side wall 400, the light guide 306, the diffuser plate 206, and the polarization conversion element 21.
  • a portion of the inner surface of the side wall 400 that covers from the side the space where light is output from the output surface of the polarization conversion element 21 (the space on the right side from the output surface of the polarization conversion element 21 in FIG. 20B(1))
  • a reflective surface having a reflective film or the like is used as the surface. That is, the surface of the side wall 400 facing the space includes a reflective region having a reflective film.
  • the surface that covers the polarization conversion element 21 from the side is a surface with low light reflectance (such as a black surface without a reflective film). This is because when reflected light occurs on the side surface of the polarization conversion element 21, light with an unexpected polarization state is generated, causing stray light.
  • the cooling effect may be improved by providing a hole in a part of the side wall 400 through which air passes.
  • the light source devices in FIGS. 20A, 20B, 20C, and 20D have been described on the assumption that the polarization conversion element 21 is used. However, the polarization conversion element 21 may be omitted from these light source devices. In this case, the light source device can be provided at a lower cost.
  • FIGS. 21A(1), (2), (3), and FIG. This will be explained in detail with reference to 21B.
  • FIG. 21A shows a state in which the LED 14 constituting the light source is mounted on the substrate 102, and the collimator 18 and the LED 14 form a pair of blocks, and the unit 328 has a plurality of blocks. Since the collimator 18 of this embodiment is close to the LED 14, a glass material is used in consideration of heat resistance. The shape of the collimator 18 is similar to the shape described for the collimator 15 in FIG. 20. Furthermore, by providing a light shielding plate 317 before entering the polarization conversion element 21, unnecessary light is prevented or suppressed from entering the optical system at the subsequent stage, and temperature rise due to the unnecessary light is reduced. .
  • the other configurations and effects of the light source shown in FIG. 21A are the same as those in FIGS. 20A, 20B, 20C, and 20D, so repeated explanations will be omitted.
  • the light source device in FIG. 21A may be provided with a side wall, similar to those described in FIGS. 20A, 20B, and 20C. The configuration and effects of the side walls have already been explained, so repeated explanations will be omitted.
  • FIG. 21B is a cross-sectional view of FIG. 21A(2).
  • the structure of the light source shown in FIG. 21B is common to a part of the structure of the light source shown in FIG. 20, and has already been explained in FIG. 18, so repeated explanation will be omitted.
  • the light source device of FIG. 25 is constituted by a unit 328 having a plurality of blocks in which the collimator 18 and the LED 14 used in the light source device shown in FIG. 21 form a pair of blocks.
  • the configuration of the optical system related to the light source device using the LEDs and the reflective light guide 504 arranged at both ends of the back surface of the liquid crystal display panel 11 will be explained in detail with reference to FIGS. 25(a), (b) and (c). explain.
  • FIG. 25 shows a state in which the LEDs 14 constituting the light source are mounted on a substrate 505, and these are constituted by a unit 503 having a plurality of blocks each including a collimator 18 and an LED 14 as a pair of blocks.
  • the units 503 are arranged at both ends of the back surface of the liquid crystal display panel 11 (in this embodiment, three units are arranged side by side in the short side direction).
  • the light output from the unit 503 is reflected by the reflective light guide 504 and is incident on the liquid crystal display panel 11 (shown in FIG. 25(c)) arranged opposite to each other.
  • the reflective light guide 504 is divided into two blocks corresponding to the units arranged at each end, and arranged so that the central part is the highest. Since the collimator 18 is close to the LED 14, a glass material is used in consideration of heat resistance to the heat emitted from the LED 14. The shape of the collimator 18 is the same as that described for the collimator 15 in FIG.
  • the light from the LED 14 enters the polarization conversion element 501 via the collimator 18.
  • the configuration is such that the shape of the optical element 81 adjusts the distribution of light incident on the reflective light guide 504 at the subsequent stage. That is, the light intensity distribution of the luminous flux incident on the liquid crystal display panel 11 depends on the shape of the collimator 18, the arrangement, the shape of the optical element 81, the diffusion characteristics, and the shape of the reflective surface (cross-sectional shape) of the reflective light guide.
  • Optimal design is achieved by adjusting the inclination of the reflective surface and the surface roughness of the reflective surface.
  • the shape of the reflective surface provided on the surface of the reflective light guide 504 is as shown in FIG. Optimize the tilt, area, height, and pitch of the reflective surface according to the distance.
  • the light intensity distribution of the light beam incident on the liquid crystal display panel 11 can be set to a desired value (optimal can be converted into Therefore, the amount of light and the direction of emission of the light beam toward the liquid crystal display panel 11 can be adjusted with high precision.
  • the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be controlled with high precision, so that a floating image can be displayed using a video display device using this light source.
  • the diffusion direction and diffusion angle of the image light of the spatially floating image can be set to desired values (see the four solid line arrows indicating "reflected light from the light guide" in FIG. 26).
  • the reflective surface provided on the reflective light guide has a configuration in which one surface (the area where light is reflected) has a shape with multiple inclinations (see FIG. In the example of No. 25, the reflected light can be adjusted with higher precision by dividing the XY plane into 14 parts and configuring them with different inclined surfaces.
  • a light shielding wall 507 is provided to prevent light from leaking in a direction other than the desired direction (direction toward the liquid crystal display panel 11). can be prevented from occurring.
  • the units 503 placed on the left and right sides of the reflective light guide 504 in FIG. 25 may be replaced with the light source device in FIG. 20. That is, a plurality of light source devices (substrate 102, reflector 300, LED 14, etc.) shown in FIG. 20 are prepared, and the plurality of light source devices are connected to each other as shown in FIGS. It is also possible to have a configuration in which they are placed at opposing positions.
  • FIG. 26(B) shows a light source device configured by arranging six units 503 shown in FIG. 26(A) in the upper part and six units in the lower part.
  • the light source device shown in FIG. 26(B) has a configuration in which a unit 503 in which five LEDs are arranged horizontally is arranged as described above, and a desired brightness is obtained by controlling the current with a single power source. Therefore, as a light source device for illuminating a liquid crystal panel, the light source brightness can be controlled for each area illuminated by each unit 503.
  • the configuration shown in FIG. 26 includes a reflective surface 222 and a reflective surface 502 different from the reflective surface 222.
  • the reflective surface 222 has a horizontal lattice-like shape or a band shape with a predetermined width.
  • the reflective surface 502 has a shape like a vertical and horizontal lattice.
  • the amount and direction of the light beam directed toward the liquid crystal display panel 11 can be adjusted with high precision.
  • the amount and direction of light incident on the liquid crystal display panel 11 and the light emitted from the liquid crystal display panel 11 can be controlled with high precision.
  • the diffusion direction and diffusion angle of image light of a spatially floating video can be set to desired values.
  • FIG. 22 is a cross-sectional view showing an example of the shape of the diffusion plate 206.
  • the diverging light output from the LED is converted into substantially parallel light by the reflector 300 or the collimator 18, converted into a specific polarized light by the polarization conversion element 21, and then reflected by the light guide. Then, the light beam reflected by the light guide passes through the flat part of the incident surface of the diffuser plate 206 and enters the liquid crystal display panel 11 (two lines indicating "reflected light from the light guide" in FIG. 22) (see solid arrow).
  • a diverging luminous flux is totally reflected on the slope of a protrusion having an inclined surface provided on the incident surface of the diffuser plate 206 and enters the liquid crystal display panel 11 .
  • the angle of the slope of the projection is changed based on the distance from the polarization conversion element 21.
  • a lenticular lens is provided between the light source device 13 and the liquid crystal display panel 11, or on the surface of the liquid crystal display panel 11, and the shape of the lens is optimized.
  • One example is to become That is, by optimizing the shape of the lenticular lens, the emission characteristics of the image light (hereinafter also referred to as "image light flux") emitted from the liquid crystal display panel 11 in one direction can be adjusted.
  • the microlens array may be arranged in a matrix on the surface of the liquid crystal display panel 11 (or between the light source device 13 and the liquid crystal display panel 11), and the mode of arrangement may be adjusted. That is, by adjusting the arrangement of the microlens array, it is possible to adjust the emission characteristics of the image light flux emitted from the image display device 1 in the X-axis and Y-axis directions, and as a result, desired diffusion characteristics can be obtained. It is possible to obtain a video display device having the following.
  • a combination of two lenticular lenses may be arranged at a position through which the image light emitted from the image display device 1 passes, or a microlens array may be arranged in a matrix to adjust the diffusion characteristics.
  • a sheet may also be provided.
  • the image light has a narrow diffusion angle (high straightness) and has only a specific polarization component, like image light from a surface-emitting laser image source, and the image display device according to the prior art It is possible to suppress the ghost image that would occur in the retroreflective member when using the retroreflection member, and to make adjustments so that the spatially floating image due to retroreflection can be efficiently delivered to the viewer's eyes.
  • the above-mentioned light source device allows the X-axis It is possible to provide a directional characteristic with a significantly narrow angle in both the direction and the Y-axis direction. In this embodiment, by providing such a narrow-angle directivity characteristic, it is possible to realize an image display device that emits a nearly parallel image light beam in a specific direction and emits light of a specific polarization. .
  • FIG. 30 shows an example of the characteristics of the lenticular lens employed in this example.
  • This example particularly shows the characteristics in the X direction (vertical direction) with respect to the Z axis, and the characteristic O is that the peak of the light emission direction is at an angle of around 30 degrees upward from the vertical direction (0 degrees). , and exhibits vertically symmetrical brightness characteristics.
  • the plot curves of characteristics A and B shown in the graph of FIG. 30 further show examples of characteristics in which the image light above the peak brightness is focused around 30 degrees to increase the brightness (relative brightness). There is.
  • the optical system including the above-mentioned lenticular lens when the image light flux from the image display device 1 is incident on the retroreflective member, the output angle and viewing angle of the image light aligned at an included angle by the light source device 13 are adjusted. can be adjusted, greatly increasing the degree of freedom in installing retroreflective sheets. As a result, the degree of freedom regarding the image formation position of the spatially floating image that is reflected or transmitted through the window glass and formed at a desired position can be greatly improved. As a result, it becomes possible to efficiently reach the eyes of a viewer outdoors or indoors as light with a narrow diffusion angle (high straightness) and only a specific polarization component.
  • the viewer can accurately recognize the image light and obtain information.
  • the output of the video display device 1 it is possible to realize a display system with low power consumption.
  • This embodiment is a system that can simultaneously display images from a plurality of specific directions, and can operate the display image with high precision in response to the plurality of displayed spatial images.
  • a retroreflective member 5 having a reflective surface as shown in FIG. 36 is used.
  • This retroreflective member 5 has a two-layer structure, upper and lower.
  • the above-mentioned light source device whose directional characteristics and diffusion characteristics can be controlled is used.
  • a display panel liquid crystal panel or liquid crystal display panel
  • image light of a specific polarization is used as an image source capable of high-resolution color display as an image display device. Effects unique to this embodiment can be obtained by allowing the image light from the liquid crystal display panel 1 having narrow-angle diffusion characteristics to be incident on the retroreflection member 5 used in the spatially floating image display device of this embodiment.
  • the specific technical means for imparting narrow-angle diffusion characteristics to the light source which is essential for realizing this embodiment, has been described above.
  • image light from the display panel 11 of the image display device 1 is transferred to the planar light reflecting section 220 of the light control panel 221 of the retroreflection member 5 and the light control panel.
  • the reflected light is reflected twice by the planar light reflecting section 220 of the light control panel 222, and the reflected light creates the first spatially floating image 3 as a normal real image in the air, and is reflected once by the planar light reflecting section 220 of the light control panel 222 on both sides.
  • a second space-floating image 3c caused by the light control panel 221 and a third space-floating image 3d caused by one reflection from the plane light reflecting section 220 of the light control panel 221 are displayed.
  • the space floating image includes a first space floating image and a plurality of space floating images formed at specific angles and distances with respect to the first space floating image.
  • the spatial floating images include a spatial floating image 3 floating in the center, and a specific angle left and right with respect to the spatial floating image 3 floating in the center.
  • the angle formed by the space floating image 3d is adjusted by the intersection angle between the light reflecting section 220 of the light control panel 221 of the retroreflection member 5 and the light reflecting section 220 of the light control panel 222. Further, the brightness of the spatially floating image floating in the center is about 50% of the brightness of the other spatially floating images.
  • the retroreflective member 5 used at this time consists of a first light control panel 221 and a second light control panel 222, as shown in FIG. , 17 are formed by arranging optical members 20 having a large number of band-shaped planar light reflecting portions 220 at a constant pitch perpendicularly to one side surface of the optical members 20 .
  • planar light reflecting section 220 of the optical member 20 constituting the first light control panel 221 and the planar light reflecting section 220 of the optical member 20 constituting the second light control panel 222 are arranged in a criss-cross manner.
  • the planar light reflecting portions 220 are arranged orthogonally.
  • the planar light reflection section 220 of the first light control panel 221 is referred to as a first reflection section
  • the planar light reflection section 220 of the second light control panel 222 is referred to as a second reflection section.
  • an absorbing polarizing sheet 101 may be placed on the surface of the retroreflective member 5 on the side of the spatially floating image 3, or an absorbing polarizing sheet 101 may be placed between the retroreflective member 5 and the display panel 11 in order to adjust the emission direction of the image light.
  • a polarizing sheet 101 may also be provided.
  • the retroreflective member 5 As shown in FIG. 36(B), the retroreflective member 5 is generally arranged at an angle of 40 to 50 degrees with respect to the image display device 1. At this time, the spatially floating image 3 is emitted from the retroreflective member 5 at the same angle as the angle at which the image light is incident on the retroreflective member 5. At this time, the spatially floating image is formed at a symmetrical position separated by the same distance L1 between the image display device 1 and the retroreflective member 5.
  • the image light emitted from the image display device 1 provided on one side of the retroreflective member 5 is reflected by the planar light reflecting portion C of the second light control panel 222, and then reflected by the planar light reflecting portion C of the first light control panel 221.
  • the space floating image 3 is imaged at a position outside the retroreflective member 5 (space on the other side). That is, by using this retroreflective member 5, the image of the video display device 1 can be displayed in space as a spatially floating image.
  • the retroreflective member 5 described above there are two reflecting parts as described above, so in addition to the space floating image 3, there are two space floating images due to one reflection. Images 3c and 3d are generated.
  • the spatial floating image to be generated in addition to the spatial floating image 3 is determined according to the number of light control panels and the intersecting angle of the planar light reflector 220.
  • the spatial floating images 3c and 3d obtained by this single reflection have twice the brightness compared to the spatial floating image 3 obtained after reflection from two reflective surfaces, and the floating images 3c and 3d obtained by the single reflection are twice as bright. Since the position of the image and the direction in which the image light diverges are different from those of the space floating image 3 described above, the viewing range in which the viewer can view the space floating image can be expanded.
  • FIG. 37(B) shows the positions of the floating images 3c and 3d formed on both sides of the above-mentioned floating image 3.
  • a space floating image 3 a space floating image 3c, and a space floating image 3d are displayed from the opening of the housing 800.
  • a person viewing the spatial floating image 3 is positioned in front of the spatial floating image 3 and views the spatial floating image 3 by directing the line of sight P.
  • the image light from the space floating image 3 is controlled by the narrow-angle diffusion characteristic of the light source device 13, and is set within a range of ⁇ 30° in the horizontal direction and ⁇ 15° in the vertical direction. Achieves high brightness.
  • the image light reflected into space after being reflected only once by the retroreflection member 5 forms a space floating image 3c and a space floating image 3d having twice the brightness of the space floating image 3.
  • These two spatially floating images can only be viewed from specific directions.
  • the spatially floating image 3c can be viewed only from the viewing direction Q, while the spatially floating image 3d can only be viewed from the viewing direction R. Therefore, in addition to the regular floating image 3, the floating images 3c and 3d can be viewed from two sides.
  • the viewing range of spatially floating images can be greatly expanded.
  • the diffusion angle of the three spatially floating images obtained can be controlled by the narrow-angle directivity characteristics and diffusion characteristics of the light source device included in the image display device described above.
  • the positions where the spatially floating images 3c and 3d formed by one-time reflection on both sides of the spatially floating image 3 are determined by the two light control panels 221 forming the retroreflective member 5 shown in FIG. 36(A). , 222 in a plan view shown in FIG. 36(B), the difference is made by changing the design using the intersecting angle and the distance between the two members as parameters.
  • the angle between the space floating image 3 and the space floating image 3c is ⁇ 10
  • the angle between the space floating image 3 and the space floating image 3d is ⁇ 11, as shown in FIG. 36(A).
  • the angle formed by the plane light reflection section 220 of the light control panel 221 and the plane light reflection section 220 of the light control panel 222 is defined as the intersection angle.
  • the intersection angle is increased with respect to 90 degrees, and on the other hand, in order to decrease the angles ⁇ 10 and ⁇ 11, the above-mentioned intersection angle is made smaller with respect to the reference 90 degrees.
  • this intersection angle is shifted by ⁇ 10 degrees or more from 90 degrees, the light utilization efficiency will decrease and the brightness of the spatially floating image will be lowered, so it is preferable to set the angle optimally depending on the application.
  • the distance between the two light control panels is increased beyond a predetermined distance, the sense of focus and brightness of the floating image will decrease, so it is best to select an optimal value.
  • the display panel that generates the image displayed as a floating image has been added with brightness gradation processing from the center of the screen to the periphery to create a pseudo three-dimensional image. becomes possible.
  • the images displayed on the display panel are adjusted so that the brightness of the peripheral parts of the spatially floating images 3, 3c, and 3d is lower than that of the center.
  • the light source that supplies light to the display panel may be adjusted so that the brightness of the peripheral part of the spatially floating image is lower than that of the center part.
  • a device may be provided to manipulate display images with high precision for the second spatially floating image 3c and the third spatially floating image 3d.
  • the slope of the brightness gradient can be understood as a function of the image display position with respect to the center of the screen, and changing it like a quadratic function gives a more three-dimensional effect than changing it like a linear function.
  • the three-dimensional effect it is recommended to apply a brightness gradient in the vertical direction as well, and in this case, as in the horizontal direction, it is good to reduce the brightness in the peripheral area relative to the center of the screen, and this brightness gradient is 10% relative to the center. If the peripheral area is made darker than above, the three-dimensional effect will be strong, and if it exceeds 35%, it will become too dark, so it is best to select within this range. Further, the slope of the brightness gradient can be understood as a function of the image display position with respect to the center of the screen, and changing it like a quadratic function gives a more three-dimensional effect than changing it like a linear function.
  • the second and third spatially floating images can be displayed with high brightness compared to the first spatially floating image using a spatial image display device that can provide sufficient brightness even when viewed from an oblique direction. realizable. Furthermore, it is possible to obtain a spatially floating image with a pseudo-stereoscopic viewing range expanded, and at the same time, it is possible to perform operation input without directly touching the display screen.
  • the present invention is not limited only to the embodiment (specific example) described above, and includes various modifications.
  • the entire system is explained in detail in order to explain the present invention in an easy-to-understand manner, and the system is not necessarily limited to having all the configurations described.
  • the light source device described above is not limited to a floating image display device, but can also be applied to display devices such as a HUD, a tablet, a digital signage, etc.
  • the user can, for example, operate the video without feeling anxious about contact transmission of an infectious disease. enable. If the technology according to this embodiment is used in a system used by an unspecified number of users, it will be possible to reduce the risk of contact transmission of infectious diseases and provide a contactless user interface that can be used without anxiety. . According to the present invention, which provides such a technology, it contributes to "Health and well-being for all" of the Sustainable Development Goals (SDGs) proposed by the United Nations.
  • SDGs Sustainable Development Goals
  • the technology according to the embodiment described above by reducing the divergence angle of the emitted image light and aligning it with a specific polarization, only the regular reflected light can be efficiently reflected by the retroreflective member. , it is possible to obtain bright and clear spatial floating images with high light utilization efficiency. According to the technology according to the present embodiment, it is possible to provide a contactless user interface with excellent usability and which can significantly reduce power consumption. According to the present invention, which provides such technology, the Sustainable Development Goals (SDGs) advocated by the United Nations, ⁇ 9 Create a foundation for industry and technological innovation,'' and ⁇ 11 Create sustainable cities,'' can be achieved. Contribute to SDGs (SDGs) advocated by the United Nations, ⁇ 9 Create a foundation for industry and technological innovation,'' and ⁇ 11 Create sustainable cities,'' can be achieved. Contribute to SDGs (SDGs) advocated by the United Nations, ⁇ 9 Create a foundation for industry and technological innovation,'' and ⁇ 11 Create sustainable cities,'
  • the technology according to the embodiments described above makes it possible to form a spatially floating image using highly directional (straight-progressing) image light.
  • the technology according to this embodiment even when displaying images that require high security such as at bank ATMs or ticket vending machines at stations, or when displaying highly confidential images that should be kept secret from the person directly facing the user, the technology can be used to display highly directional images.
  • the image light By displaying the image light, it is possible to provide a non-contact user interface in which there is little risk that the floating image will be looked into by anyone other than the user.
  • the present invention contributes to the Sustainable Development Goals (SDGs: Sustainable Development Goals 11) advocated by the United Nations.
  • SYMBOLS 1 Image display device, 2... First retroreflective member, 5... Second retroreflective member, 3... Spatial image (spatial floating image), 100... Transmissive plate, 13... Light source device, 54... Light direction conversion Panel, 105... Linear Fresnel sheet, 101... Absorption type polarizing sheet (absorption type polarizing plate), 200... Flat display, 201... Housing, 203... Sensing system, 226... Sensing area, 102... Substrate, 11, 335... Liquid crystal Display panel, 206... Diffusion plate, 21... Polarization conversion element, 300... Reflector, 213... ⁇ /2 plate, 306... Reflective light guide, 307... Reflective surface, 308, 310...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

The purpose of the present invention is to provide, with respect to a spatial floating video display system or a spatial floating video display device, a feature by which a suitable video can be displayed with high visibility (visual resolution and contrast). The spatial floating video display system of the present invention comprises: a display panel (11) that displays a video; a light source device (13) for the display panel; and a retroreflective member (5) that reflects video light from the display panel (11) and displays a spatial floating video of a real image in the air by using the reflected light. The retroreflective member (5) comprises a first reflecting portion and a second reflecting portion, and an angle formed between a spatial floating video (3) floating in the center and a spatial floating video (3C, 3d) formed at a specific angle and separated by a specific distance on the basis of the spatial floating video floating in the center is adjusted by an intersection angle between the first reflecting portion and the second reflecting portion.

Description

空間浮遊映像表示システムおよび空間浮遊映像処理システムSpace floating video display system and space floating video processing system

 本発明は、空間浮遊映像表示システムおよび空間浮遊映像処理システムに関する。 The present invention relates to a space floating video display system and a space floating video processing system.

 空間浮遊映像表示システムとして、直接外部に向かって映像を表示する映像表示装置と空間画面として表示される表示法は既に知られている。また、表示された空間像の操作面における操作に対する誤検知を低減する検知システムについても、例えば、特許文献1に開示されている。 As spatial floating image display systems, image display devices that display images directly to the outside and display methods that display images as a spatial screen are already known. Further, a detection system that reduces false detections caused by operations on the operation surface of the displayed spatial image is also disclosed in Patent Document 1, for example.

特開2019-128722号公報JP2019-128722A

 空間浮遊映像表示システムとして、直接外部に向かって映像を表示する映像表示装置と空間画面として表示される表示法は既に知られている。しかしながら、上述した従来技術の空間浮遊映像表示システムにおいて空間浮遊映像を表示させるため空間浮遊映像の映像源となる映像表示装置の光源を含む設計の最適化技術については考慮されていない。 As spatial floating image display systems, image display devices that display images directly to the outside and display methods that display images as a spatial screen are already known. However, in the above-mentioned prior art floating image display system, no consideration is given to optimization techniques for the design including the light source of the image display device that is the image source of the floating image in order to display the floating image.

 本発明の目的は、空間浮遊映像表示システムまたは空間浮遊映像表示装置において、視認性(見た目の解像度やコントラスト)が高く、好適な映像を表示することが可能な技術を提供することにある。 An object of the present invention is to provide a technology capable of displaying a suitable image with high visibility (visual resolution and contrast) in a space floating image display system or a space floating image display device.

 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例としての空間浮遊映像表示装置を以下に挙げる。本願の一例としての空間浮遊映像表示システムは、映像を表示する表示パネルと、表示パネルのための光源装置と、表示パネルからの映像光を反射させ、反射した光により空中に実像の空間浮遊映像を表示させる再帰反射部材と、再帰反射部材は、第1の反射部と第2の反射部とを有し、中央に浮遊する空間浮遊映像と中央に浮遊する空間浮遊映像を基準に特定の角度と距離を隔てて形成される空間浮遊映像との成す角度は、第1の反射部と第2の反射部との交差角により調整される。 In order to solve the above problem, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems, and a spatial floating video display device as an example thereof will be listed below. A space floating video display system as an example of the present application includes a display panel for displaying a video, a light source device for the display panel, a space floating video that reflects video light from the display panel, and creates a real space floating video in the air using the reflected light. The retroreflective member has a first reflecting part and a second reflecting part, and has a space floating image floating in the center and a specific angle based on the space floating image floating in the center. The angle formed by the space-floating image formed at a distance is adjusted by the intersection angle of the first reflecting section and the second reflecting section.

 本発明によれば、好適に空間浮遊映像を表示することができる。上記以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, a spatial floating image can be suitably displayed. Problems, configurations, and effects other than those described above will be made clear by the description of the embodiments below.

本発明の一実施例に係る再帰反射部材の構成と空間浮遊像の発生位置を示す図である。FIG. 2 is a diagram showing the configuration of a retroreflective member and the generation position of a spatially floating image according to an embodiment of the present invention. 本発明の一実施例に係る再帰反射で発生する異常光線によるゴースト像の発生メカニズムを説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the mechanism of generation of ghost images due to extraordinary rays generated by retroreflection according to an embodiment of the present invention. 他の空間浮遊映像表示システムにおいて使用する再帰反射部材で発生する異常光線の発生メカニズムを説明するための説明図である。FIG. 7 is an explanatory diagram for explaining the generation mechanism of abnormal rays generated in a retroreflective member used in another spatially floating image display system. 本発明の一実施例に係る再帰反射部材に外光が入射した場合に発生する異常光線を消し去るメカニズムを説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a mechanism for erasing abnormal rays generated when external light is incident on a retroreflective member according to an embodiment of the present invention. 本発明の一実施例に係る空間浮遊映像表示システムにおける再帰反射部材の最適使用条件を示す特性図である。FIG. 2 is a characteristic diagram showing optimal usage conditions of a retroreflective member in a floating image display system according to an embodiment of the present invention. 本発明の一実施例に係る空間浮遊映像表示システムの主要部構成と再帰反射部構成の一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating an example of a main part configuration and a retroreflection part configuration of a spatially floating video display system according to an embodiment of the present invention. 本発明の一実施例に係る空間浮遊映像表示システムの主要部構成と再帰反射部構成の第二実施例を示す図である。FIG. 2 is a diagram illustrating a second embodiment of the configuration of main parts and the configuration of a retroreflection part of a floating image display system in space according to an embodiment of the present invention. 本発明の一実施例に係る空間浮遊映像表示システムの主要部構成と再帰反射部構成の第三実施例を示す図である。FIG. 3 is a diagram illustrating a third embodiment of the configuration of main parts and the configuration of a retroreflection part of a floating image display system according to an embodiment of the present invention. 本発明の一実施例に係る空間浮遊映像表示システムの主要部構成と再帰反射部構成の第4実施例を示す図である。FIG. 4 is a diagram illustrating a fourth embodiment of the configuration of main parts and the configuration of a retroreflection part of a floating image display system in accordance with an embodiment of the present invention. 本発明の空間浮遊映像表示システムで用いる映像光を屈折させる光学部材の動作原理を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the operating principle of an optical member that refracts image light used in the spatially floating image display system of the present invention. 本発明の映像光を屈折させる光学部材を用いた空間浮遊映像表示システムの構造を示し原理を説明するための説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the structure of a floating image display system using an optical member that refracts image light according to the present invention, and for explaining the principle thereof. 本発明の空間浮遊映像表示システムで用いる映像光を屈折させる光学部材の構造を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the structure of an optical member that refracts image light used in the spatially floating image display system of the present invention. 本発明の空間浮遊映像表示システムで用いる映像源の表示映像を観視者が直接観視できないようにする光学部材と映像源との配置を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the arrangement of an optical member and a video source that prevents a viewer from directly viewing a displayed video of the video source used in the spatially floating video display system of the present invention. 本発明の一実施例に係る再帰反射部で発生する異常光線を遮る部材の配置を示す断面図である。FIG. 2 is a cross-sectional view showing the arrangement of members that block extraordinary rays generated in a retroreflection section according to an embodiment of the present invention. 本発明の一実施例に係る空間浮遊映像表示システムの第一実施例の主要部構成を示す図である。1 is a diagram showing the configuration of main parts of a first embodiment of a floating video display system according to an embodiment of the present invention; FIG. 本発明の一実施例に係る空間浮遊映像表示システムの第二実施例の外観と主要部構成を示す図である。FIG. 2 is a diagram illustrating the appearance and main configuration of a second embodiment of a floating video display system according to an embodiment of the present invention. 本発明の一実施例に係る他の空間浮遊映像表示システムの第二実施例の外観と主要部構成を示す図である。FIG. 6 is a diagram illustrating the external appearance and main configuration of a second embodiment of another spatially floating video display system according to an embodiment of the present invention. 本発明の実施例に係る空間浮遊映像表示システムに設けたセンシング手段を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining sensing means provided in the floating image display system according to the embodiment of the present invention. 別方式の光源装置の具体的な構成の別の例を示す図である。FIG. 7 is a diagram illustrating another example of a specific configuration of a light source device of another type. 別方式の光源装置の具体的な構成の別の例を示す構造図である。FIG. 7 is a structural diagram showing another example of a specific configuration of a light source device of another type. 別方式の光源装置の具体的な構成の別の例の一部を抜粋した図である。FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type. 別方式の光源装置の具体的な構成の別の例の一部を抜粋した図である。FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type. 別方式の光源装置の具体的な構成の別の例の一部を抜粋した図である。FIG. 7 is a diagram illustrating a part of another example of a specific configuration of a light source device of another type. 別方式の光源装置の具体的な構成の別の例を示す構造図である。FIG. 7 is a structural diagram showing another example of a specific configuration of a light source device of another type. 別方式の光源装置の具体的な構成の別の例を示す図である。FIG. 7 is a diagram illustrating another example of a specific configuration of a light source device of another type. 光源装置の具体的な構成の別の例の導光体拡散部の表面形状を示す拡大図である。It is an enlarged view which shows the surface shape of the light guide diffuser part of another example of the specific structure of a light source device. 光源装置の具体的な構成の例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a specific configuration of a light source device. 光源装置の具体的な構成の例を示す構造図である。FIG. 2 is a structural diagram showing an example of a specific configuration of a light source device. 光源装置の具体的な構成の例を示す斜視、上面および断面図である。FIG. 3 is a perspective view, a top view, and a cross-sectional view showing an example of a specific configuration of a light source device. 光源装置の具体的な構成の例を示す斜視および上面図である。FIG. 2 is a perspective view and a top view showing an example of a specific configuration of a light source device. 映像表示装置の光源拡散特性を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining light source diffusion characteristics of a video display device. 映像表示装置の光源拡散特性を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining light source diffusion characteristics of a video display device. 映像表示装置の拡散特性を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the diffusion characteristics of the video display device. 映像表示装置の拡散特性を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the diffusion characteristics of the video display device. 液晶パネルの視覚特性を測定する座標系を示す図である。FIG. 3 is a diagram showing a coordinate system for measuring visual characteristics of a liquid crystal panel. 一般的な液晶パネルの輝度角度特性(長手方向)を示す図である。FIG. 3 is a diagram showing brightness angle characteristics (longitudinal direction) of a general liquid crystal panel. 一般的な液晶パネルの輝度角度特性(短手方向)を示す図である。FIG. 3 is a diagram showing the brightness angle characteristics (lateral direction) of a general liquid crystal panel. 一般的な液晶パネルのコントラストの角度特性(長手方向)を示す図である。FIG. 3 is a diagram showing the contrast angle characteristics (longitudinal direction) of a general liquid crystal panel. 一般的な液晶パネルのコントラストの角度特性(短手方向)を示す図である。FIG. 3 is a diagram showing the contrast angle characteristics (lateral direction) of a general liquid crystal panel. 本発明の一実施例に係る再帰反射で発生する複数の空間浮遊像の発生メカニズムを説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the mechanism of generation of a plurality of spatially floating images generated by retroreflection according to an embodiment of the present invention. 本発明の一実施例に係る再帰反射で発生する複数の空間浮遊像を用いた空間浮遊映像表示システム主要部構成を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining the main configuration of a spatially floating image display system using a plurality of spatially floating images generated by retroreflection according to an embodiment of the present invention.

 以下、本発明の実施の形態を、図面を参照して詳細に説明する。なお、本発明は、以下に説明する実施形態(以下、「本開示」とも言う)の内容に限定されるものではない。本発明は、発明の精神ないし特許請求の範囲に記載された技術的思想の範囲またはその均等範囲物にも及ぶ。また、以下に説明する実施形態(実施例)の構成は、あくまで例示に過ぎないのであって、本明細書に開示される技術的思想の範囲において、当業者による様々な変更および修正が可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the content of the embodiments (hereinafter also referred to as "this disclosure") described below. The present invention extends to the spirit of the invention and the scope of the technical ideas described in the claims, or to equivalents thereof. Further, the configuration of the embodiment (example) described below is merely an example, and various changes and modifications can be made by those skilled in the art within the scope of the technical idea disclosed in this specification. be.

 また、本発明を説明するための図面において、同一または類似の機能を有するものには、同一の符号を付与し、適宜、異なる名称を使用する一方で、機能等の繰り返しの説明を省略する場合がある。なお、以下の実施形態の説明において、空間に浮遊する映像を「空間浮遊映像」という用語で表現している。この用語の代わりに、「空中像」、「空間像」、「空中浮遊映像」、「表示映像の空間浮遊光学像」、「表示映像の空中浮遊光学像」などと表現してもかまわない。実施形態の説明で主として用いる「空間浮遊映像」の用語は、これらの用語の代表例として用いている。 In addition, in the drawings for explaining the present invention, parts having the same or similar functions are given the same reference numerals, different names are used as appropriate, and repeated explanations of functions, etc. are omitted. There is. In the following description of the embodiment, an image floating in space is expressed using the term "space floating image." Instead of this terminology, expressions such as "aerial image", "aerial image", "aerial floating image", "aerial floating optical image of a display image", "aerial floating optical image of a display image", etc. may be used. The term "space floating image" mainly used in the description of the embodiments is used as a representative example of these terms.

 本開示は、例えば、大面積な映像発光源からの映像光による映像を、ショーウィンドのガラス等の空間を仕切る透明な部材を介して透過して、店舗(空間)の内部または外部に空間浮遊映像として表示することが可能な表示システムに関する。また、本開示は、かかる表示システムを複数用いて構成される大規模なデジタルサイネージシステムに関する。 The present disclosure, for example, transmits an image of image light from a large-area image light source through a transparent member that partitions a space, such as the glass of a show window, and floats the image inside or outside of a store (space). The present invention relates to a display system that can display images. The present disclosure also relates to a large-scale digital signage system configured using a plurality of such display systems.

 以下の実施形態によれば、例えば、ショーウィンドのガラス面や光透過性の板材上に高解像度な映像を空間浮遊した状態で表示可能となる。この時、出射する映像光の発散角を小さく、即ち鋭角とし、更に特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させることができる。このため、光の利用効率が高く、従来の再帰反射方式での課題となっていた主空間浮遊像の他に発生するゴースト像を抑えることができ、鮮明な空間浮遊映像を得ることができる。 According to the following embodiments, it is possible to display high-resolution images floating in space, for example, on the glass surface of a show window or on a light-transmitting board. At this time, by making the divergence angle of the emitted image light small, that is, an acute angle, and aligning it with a specific polarization, it is possible to efficiently reflect only the regular reflected light to the retroreflection member. Therefore, the light utilization efficiency is high, and ghost images generated in addition to the main space floating image, which were a problem with conventional retroreflection methods, can be suppressed, and a clear space floating image can be obtained.

 また、本開示の光源を含む装置により、消費電力を大幅に低減することが可能な、新規で利用性に優れた空間浮遊映像表示システムを提供することができる。また、本開示の技術によれば、例えば、車両のフロントガラスやリアガラスやサイドガラスを含むシールドガラスを介して、車両外部において視認可能である、いわゆる、一方向性の空間浮遊映像の表示が可能な車両用浮遊映像表示システムを提供することができる。 Further, by using a device including the light source of the present disclosure, it is possible to provide a novel and highly usable spatial floating video display system that can significantly reduce power consumption. Further, according to the technology of the present disclosure, it is possible to display a so-called unidirectional spatial floating image that is visible from outside the vehicle, for example, through the shield glass including the windshield, rear glass, and side glass of the vehicle. A floating video display system for a vehicle can be provided.

 一方、従来の空間浮遊映像表示システムでは、高解像度なカラー表示映像源として有機ELパネルや液晶表示パネル(液晶パネルまたは表示パネル)を、再帰反射部材と組み合わせる。従来技術による空間浮遊映像表示装置において使用される第一の再帰反射部材2では、映像光が広角で拡散するため、図3に示す多面体で構成した第一の実施例である再帰反射部材で正規に反射する反射光の他に、図3に示すように、再帰反射部材2aに用いられる形状は6面体であるために、斜めから入射する映像光によって、符号3aや3fに示すゴースト像を含む6個のゴースト像が発生し、空間浮遊映像の画質を損ねていた。また、観視者以外にもゴースト像である同一空間浮遊映像を観視されてしまい、セキュリティ上の観点からも、大きな課題があった。 On the other hand, in conventional spatial floating image display systems, an organic EL panel or a liquid crystal display panel (liquid crystal panel or display panel) is combined with a retroreflective member as a high-resolution color display image source. In the first retroreflective member 2 used in the conventional space-floating image display device, since the image light is diffused over a wide angle, the first retroreflective member 2, which is the first embodiment composed of polyhedrons shown in FIG. As shown in FIG. 3, in addition to the reflected light that is reflected on the surface, since the shape used for the retroreflective member 2a is a hexahedron, ghost images shown as 3a and 3f are included due to the image light incident obliquely. Six ghost images were generated, impairing the quality of the floating images. Additionally, the ghost images floating in the same space could be viewed by people other than the viewers, which posed a major problem from a security perspective.

 また、空間浮遊映像表示装置において使用される第二の再帰反射部材5は、図1(A)に示すように、第1の光制御パネル221、第2の光制御パネル222は、それぞれ厚みが一定な透明平板18、17の一方側の面に垂直に多数かつ帯状の平面光反射部を有する一定ピッチの光学部材20を並べて形成されている。ここで、第1の光制御パネル221、第2の光制御パネル222を構成する光学部材20の光反射部は、平面視して交差して(この実施例では直交状態で)配置されている。 Furthermore, in the second retroreflective member 5 used in the space floating image display device, as shown in FIG. 1(A), the first light control panel 221 and the second light control panel 222 each have a thickness. Optical members 20 having a large number of band-shaped planar light reflecting portions arranged at a constant pitch are arranged perpendicularly to one side surface of constant transparent flat plates 18 and 17. Here, the light reflecting parts of the optical members 20 constituting the first light control panel 221 and the second light control panel 222 are arranged to intersect with each other (orthogonally in this embodiment) in plan view. .

 続いて、空間浮遊映像表示装置において使用される第二の再帰反射部材の作用と具体的な空間浮遊映像表示装置の実施例について説明する。図1(B)に示すように、映像表示装置1に対して第二の再帰反射部材5は40~50度の角度を有して傾斜配置されるのが一般的である。この時、空間浮遊映像3は映像光が第二の再帰反射部材5に入射する角度と同一角度で第二の再帰反射部材5から出射する。この時、空間浮遊映像は映像表示装置1と第二の再帰反射部材5までの距離L1と同じ距離だけ離れた対称位置に形成される。 Next, the function of the second retroreflective member used in the space floating video display device and a specific example of the space floating video display device will be described. As shown in FIG. 1(B), the second retroreflective member 5 is generally arranged at an angle of 40 to 50 degrees with respect to the image display device 1. At this time, the spatially floating image 3 is emitted from the second retroreflective member 5 at the same angle as the angle at which the image light is incident on the second retroreflective member 5. At this time, the spatially floating image is formed at a symmetrical position separated by the same distance L1 between the image display device 1 and the second retroreflective member 5.

 以下、空間浮遊映像の結像のメカニズムについて図1および図2を用いて詳細に説明する。第二の再帰反射部材5の一方側に設けられた映像表示装置1から発した映像光は、第2の光制御パネル222の平面光反射部C(光反射部材20の反射面)で反射し、次に第1の光制御パネル221の平面光反射部C’(光反射部材20の反射面)で反射することで空間浮遊像3(実像)を、第二の再帰反射部材5の外側位置(他方側の空間)に結像する。即ち、この第二の再帰反射部材5を用いることで空間浮遊映像装置が成立し、空間に映像表示装置1の画像を空間浮遊像として表示できる。 Hereinafter, the mechanism of forming a spatially floating image will be explained in detail using FIGS. 1 and 2. The image light emitted from the image display device 1 provided on one side of the second retroreflective member 5 is reflected by the planar light reflecting section C (reflecting surface of the light reflecting member 20) of the second light control panel 222. , Next, the space floating image 3 (real image) is reflected by the planar light reflecting portion C' (reflecting surface of the light reflecting member 20) of the first light control panel 221, and the space floating image 3 (real image) is reflected at the outer position of the second retroreflective member 5. (the space on the other side). That is, by using this second retroreflective member 5, a spatially floating video device is established, and the image of the video display device 1 can be displayed in space as a spatially floating image.

 以上述べた第二の再帰反射部材5では上述したように2つの反射面が存在するため図2(A)(B)に示すように空間浮遊像3の他に反射面の数に応じた2つのゴースト像3a、3bが発生する。 In the second retroreflective member 5 described above, since there are two reflective surfaces as described above, in addition to the spatial floating image 3, as shown in FIGS. Two ghost images 3a and 3b are generated.

 更に、外光の強度が高いと第二の再帰反射部材5の上面から入射すると反射面の間隔(300μm以下)が短くなるため光干渉が発生し虹色の反射光が観察され観視者に再帰反射部材の存在が認識されると言う弊害があることが判った。そこで外光入射により再帰反射部材5の反射面のピッチによって発生する干渉光が観視者に戻らないように外光の入射角度をパラメータとして干渉光が発生する面積を図4に示す測定環境により実験的に求めた。得られた結果を図5に示す。反射面のピッチが300μmで反射面の高さが300μmとした場合には再帰反射部材の傾斜角θYZを35度以上傾けると干渉光が観視者側に戻らないことを見出した。 Furthermore, if the intensity of external light is high and it enters from the top surface of the second retroreflective member 5, the interval between the reflective surfaces (300 μm or less) will shorten, causing optical interference, and rainbow-colored reflected light will be observed, which will be visible to the viewer. It has been found that there is a problem in that the presence of the retroreflective member is recognized. Therefore, in order to prevent the interference light generated by the pitch of the reflective surface of the retroreflective member 5 due to the incidence of external light from returning to the viewer, the area where the interference light is generated is determined by using the incident angle of external light as a parameter in the measurement environment shown in Fig. 4. Obtained experimentally. The obtained results are shown in FIG. It has been found that when the pitch of the reflective surfaces is 300 μm and the height of the reflective surfaces is 300 μm, if the inclination angle θYZ of the retroreflective member is 35 degrees or more, the interference light does not return to the viewer side.

 他方、上述した光反射部材20のピッチPと反射面の高さHの比率(H/P)では反射面の60%程度が再帰反射による空間浮遊像を形成し、残りの40%がゴースト像を発生させる異常反射光となることが判った。今後空間浮遊映像の解像度向上のためには反射面のピッチの短縮が必須となる。加えてゴースト像の発生を抑えるためには反射面の高さを現状より高くする必要があるが第二の再帰反射部材5の製造上の制約により、反射面のピッチPと高さHの比(H/P)は現状の1.0に対して0.8から1.2の範囲を選択すると良い。 On the other hand, at the ratio (H/P) between the pitch P of the light reflecting member 20 and the height H of the reflecting surface, about 60% of the reflecting surface forms a spatially floating image due to retroreflection, and the remaining 40% forms a ghost image. It was found that the abnormal reflected light caused . In order to improve the resolution of floating images in the future, it will be essential to shorten the pitch of the reflective surfaces. In addition, in order to suppress the generation of ghost images, it is necessary to make the height of the reflecting surface higher than the current height, but due to manufacturing constraints of the second retroreflective member 5, the ratio of the pitch P and height H of the reflecting surface (H/P) should be selected in the range of 0.8 to 1.2 compared to the current 1.0.

 以上述べた検討の結果、発明者らはゴースト像の発生量が原理的に少ない第二の再帰反射部材を用いた空間浮遊映像表示システムにおいて得られる空間浮遊映像の高画質化を実現する再帰反射光学系について検討し、本願発明に至った。以下、本願発明を、図を用いて詳細に説明する。 As a result of the above-mentioned studies, the inventors have found that a retroreflective device that realizes high quality images of spatially floating images obtained in a spatially floating image display system using a second retroreflective member that generates fewer ghost images in principle. After studying the optical system, we arrived at the present invention. Hereinafter, the present invention will be explained in detail using the drawings.

 <空間浮遊映像表示システムを形成する第1の再帰反射光学系の構成例>
 図6は、本開示の空間浮遊映像表示システムを実現するために使用する再帰光学系の形態の一例を示す図である。
<Example of configuration of first retroreflective optical system forming spatial floating image display system>
FIG. 6 is a diagram illustrating an example of the form of a reflexive optical system used to realize the spatially floating image display system of the present disclosure.

 また、図6は、本実施形態における空間浮遊映像表示システムの全体構成を説明する図である。図6を参照すると、例えば、本開示の空間浮遊表示システム(以下、「本システム」とも言う)によれば、空間浮遊映像の観視者に対して空間浮遊映像表示システムを机上に配置した場合には空間浮遊映像を角度θ6で観下げることになる。この時、空間浮遊像の結像位置(角度)は、映像表示装置1の表示面と再帰反射部材5のなす角度θ2と、再帰反射部材5と空間浮遊像のなす角度θ1と、の合算(θ2+θ1)がほぼ等しくなるように配置することが、空間浮遊映像を観視する最適な配置となることを見出した。 Furthermore, FIG. 6 is a diagram illustrating the overall configuration of the spatial floating video display system in this embodiment. Referring to FIG. 6, for example, according to the spatial floating display system of the present disclosure (hereinafter also referred to as "this system"), when the spatial floating video display system is placed on a desk for the viewer of the spatial floating video. In this case, the floating image will be viewed at an angle of θ6. At this time, the image formation position (angle) of the spatially floating image is the sum of the angle θ2 between the display surface of the video display device 1 and the retroreflective member 5, and the angle θ1 between the retroreflective member 5 and the spatially floating image ( We have found that arranging so that θ2 + θ1) is approximately equal is the optimal arrangement for viewing spatially floating images.

 上述したように、空間浮遊映像は、第二の再帰反射部材5に対して映像表示装置1と対称位置に形成されるため、それぞれの配置で成す角度θ1とθ2とが等しくなる。このため、観視者が空間浮遊映像表示システムを覗き込む角度θ6が決まれば、再帰反射光学系において映像表示装置1と第二の再帰反射部材5を、角度θ2=θ6/2として配置すると良い。更に、映像表示装置1と第二の再帰反射部材5の間には映像表示装置1の冷却効率を高めるために所定の間隔L1が必要となる。更に前述した角度θ2を構造的に得るためにL1に対する間隔L2を定める必要がある。 As described above, since the spatially floating image is formed at a position symmetrical to the image display device 1 with respect to the second retroreflective member 5, the angles θ1 and θ2 formed by each arrangement are equal. Therefore, once the angle θ6 at which the viewer looks into the spatially floating image display system is determined, it is preferable to arrange the image display device 1 and the second retroreflective member 5 at an angle of θ2 = θ6/2 in the retroreflective optical system. . Furthermore, a predetermined distance L1 is required between the video display device 1 and the second retroreflective member 5 in order to improve the cooling efficiency of the video display device 1. Furthermore, in order to structurally obtain the above-mentioned angle θ2, it is necessary to determine the distance L2 with respect to L1.

 本開示の空間浮遊映像表示システムの構成をより具体的に説明する。図6に示すように、特定偏波の映像光を挟角に発散させる映像表示装置1と第二の再帰反射部材5を備える。映像表示装置1は、液晶表示パネル(以下、単に液晶パネルと称する場合がある)11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13と、を備えている。 The configuration of the spatial floating video display system of the present disclosure will be explained in more detail. As shown in FIG. 6, it includes an image display device 1 that diverges image light of a specific polarization into a narrow angle, and a second retroreflective member 5. The video display device 1 includes a liquid crystal display panel (hereinafter sometimes simply referred to as a liquid crystal panel) 11 and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics.

 映像表示装置1からの特定偏波の映像光は、第二の再帰反射部材5の装置(図示せず)外部に接した面には表面に反射防止膜を設けた吸収型偏光シート101を設け特定偏波の映像光を選択的に透過させ、外光に含まれる他方の偏波を吸収させることで得られる空間浮遊映像に対して第二の再帰反射部材5の表面で反射した反射光の影響を防止する。 Image light of a specific polarization from the image display device 1 is transmitted to the device (not shown) of the second retroreflection member 5. An absorption type polarizing sheet 101 having an anti-reflection film provided on the surface is provided on the surface in contact with the outside of the device (not shown). The reflected light reflected on the surface of the second retroreflective member 5 is generated by selectively transmitting the image light of a specific polarization and absorbing the other polarization included in the external light. Prevent effects.

 ここで、特定偏波の映像光を選択的に透過する吸収型偏光シート101は、特定偏波の映像光を透過する性質を有するので、特定偏波の映像光は、吸収型偏光シート101を透過する。透過した映像光により再帰反射部材5に対して対称位置に空間浮遊映像3を形成する。 Here, since the absorption type polarizing sheet 101 that selectively transmits image light of a specific polarization has a property of transmitting image light of a specific polarization, the image light of a specific polarization passes through the absorption type polarization sheet 101. To Penetrate. A spatially floating image 3 is formed at a symmetrical position with respect to the retroreflective member 5 by the transmitted image light.

 なお、空中浮遊映像3を形成する光は、再帰反射部材5から空中浮遊映像3の光学像へ収束する光線の集合であり、これらの光線は、空中浮遊映像3の光学像を通過後も直進する。よって、空中浮遊映像3は、一般的なプロジェクタなどでスクリーン上に形成される拡散映像光とは異なり、高い指向性を有する映像である。 Note that the light forming the floating image 3 is a collection of light rays that converge from the retroreflective member 5 to the optical image of the floating image 3, and these light rays continue to travel straight even after passing through the optical image of the floating image 3. do. Therefore, the floating image 3 is a highly directional image, unlike the diffused image light formed on a screen by a general projector or the like.

 よって、図6に示す構成では、図中に示す方向からユーザが視認する場合には空中浮遊映像3は明るい映像として視認されるが紙面の上下方向および前後方向から他の人物が視認する場合には、空中浮遊映像3は映像として一切視認することはできない。この特性は、高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示するシステムに採用する場合に、非常に好適である。 Therefore, in the configuration shown in FIG. 6, when the user views the floating image 3 from the direction shown in the figure, the floating image 3 is viewed as a bright image, but when viewed by another person from the vertical direction and front/back direction of the page, the floating image 3 is viewed as a bright image. , the floating image 3 cannot be viewed as an image at all. This characteristic is very suitable for use in a system that displays images that require high security or highly confidential images that should be kept secret from the person directly facing the user.

 なお、再帰反射部材5の性能によっては、反射後の映像光の偏光軸が不揃いになることがある。この場合、偏光軸が不揃いになった一部の映像光は、上述した吸収型偏光シート101で吸収される。このため再帰反射光学系で不要な反射光が発生せず、空間浮遊像の画質の低下を防止ないし抑制することができる。 Note that depending on the performance of the retroreflection member 5, the polarization axes of the reflected image light may become uneven. In this case, some of the image light whose polarization axes are not aligned is absorbed by the above-mentioned absorptive polarizing sheet 101. Therefore, unnecessary reflected light is not generated in the retroreflective optical system, and deterioration in the image quality of the spatially floating image can be prevented or suppressed.

 また、本開示の再帰反射光学システムを用いた空間浮遊映像表示装置では、観視者が空間浮遊映像を覗き込んだ場合にも映像表示装置1の表示画面が再帰反射部材5の反射面で遮光される。そのため、この空間浮遊映像表示装置では、映像表示装置1と再帰反射部材が正対した場合に比べて、映像表示装置1の表示画像は直接的には観難くなる。 Furthermore, in the spatially floating image display device using the retroreflective optical system of the present disclosure, even when the viewer looks into the spatially floating image, the display screen of the image display device 1 is shielded from light by the reflective surface of the retroreflective member 5. be done. Therefore, in this space-floating video display device, the displayed image of the video display device 1 is more difficult to view directly than when the video display device 1 and the retroreflective member face each other directly.

 <空間浮遊映像表示システムを形成する第2の再帰反射光学系の構成例>
 図7は、本発明の一実施例に係る空間浮遊映像表示システムを実現するための他の例の再帰光学系の主要部構成を示す図である。この空間浮遊映像表示システムは観視者が空間浮遊映像を斜め上方から観察するのに適したシステムである。映像表示装置1は、映像表示素子としての液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成される。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから、80インチを超える大型な液晶表示パネルで構成される。液晶表示パネル11からの映像光は、再帰反射部材(再帰反射部または再帰反射板)5に向けて出射する。
<Example of configuration of second retroreflective optical system forming spatial floating image display system>
FIG. 7 is a diagram showing the main part configuration of another example of a retroreflective optical system for realizing a floating image display system according to an embodiment of the present invention. This spatial floating image display system is suitable for viewers to observe spatial floating images from diagonally above. The video display device 1 includes a liquid crystal display panel 11 as a video display element, and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics. The liquid crystal display panel 11 is comprised of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size of over 80 inches. Image light from the liquid crystal display panel 11 is emitted toward a retroreflective member (retroreflector or retroreflector plate) 5 .

 液晶パネル11には後述する狭発散角な光源装置13からの光を入射させ狭発散角な映像光束を生成して再帰反射部材5に入射させ空間浮遊像3を得る。空間浮遊映像3は再帰反射部材5を対称面とした映像表示装置1の対称位置に形成される。この時発生するゴースト像を消去し高画質な空間浮遊映像3を得るために液晶パネル11の出射側には図12(A)に構造を示した映像光制御シート334を設け不要な方向の拡散特性を制御すると良い。 Light from a light source device 13 with a narrow divergence angle, which will be described later, is incident on the liquid crystal panel 11 to generate an image light beam with a narrow divergence angle, which is incident on the retroreflective member 5 to obtain a spatial floating image 3. The spatially floating image 3 is formed at a symmetrical position of the image display device 1 with the retroreflective member 5 as a plane of symmetry. In order to eliminate the ghost image that occurs at this time and obtain a high quality floating image 3, an image light control sheet 334 whose structure is shown in FIG. 12(A) is provided on the output side of the liquid crystal panel 11 to prevent diffusion in unnecessary directions. It is better to control the characteristics.

 更に、液晶パネル11からの映像光は再帰反射部材等の反射部材での反射率を原理的に高くできるのでS偏波を使用すると良いが、観視者が偏光サングラスを使用した場合に空中浮遊像が偏光サングラスで反射または吸収されるため、この対策として特定偏波の映像光の一部を光学的に他方の偏波に変換して疑似的に自然光に変換する偏光解消素子339を設けることで観視者が偏光サングラスを使用していても良好な空間浮遊映像を観視することができる。これらは粘着剤338によって光学的に接合されると光の反射面が発生せず空間浮遊像の画質を損なわない。 Furthermore, it is better to use S-polarized waves because the image light from the liquid crystal panel 11 can theoretically increase the reflectance on reflective members such as retroreflective members, but if the viewer wears polarized sunglasses, Since the image is reflected or absorbed by polarized sunglasses, as a countermeasure to this problem, a depolarization element 339 is provided that optically converts a part of the image light of a specific polarization into the other polarization and converts it into pseudo natural light. This allows viewers to see a good spatial floating image even if they are wearing polarized sunglasses. When these are optically bonded using the adhesive 338, no light reflecting surface is generated and the quality of the spatial floating image is not impaired.

 偏光解消素子の市販品としては、コスモシャインSRF(東洋紡社製)、偏光解消粘着剤(長瀬産業社製) が挙げられる。コスモシャインSRF(東洋紡社製)の場合、画像表示装置上に粘着剤を貼合することにより、界面の反射を低減して輝度を向上させることができる。 Commercially available depolarization elements include Cosmoshine SRF (manufactured by Toyobo Co., Ltd.) and depolarization adhesive (manufactured by Nagase Sangyo Co., Ltd.). In the case of Cosmoshine SRF (manufactured by Toyobo Co., Ltd.), by laminating an adhesive onto the image display device, reflection at the interface can be reduced and brightness can be improved.

 また、偏光解消粘着剤の場合、無色透明板と画像表示装置とを、偏光解消粘着剤を介して貼合することで使用される。再帰反射部材5の映像出射面にも映像光制御シート338を設け不要光により空間浮遊映像3の正規像の両側に発生するゴースト像を消去する。本実施例では再帰反射部材5を空間上の水平面に平行するように配置し、空間間浮遊映像3を水平面に対してθ1傾けて表示できる構成とした。このために映像表示装置1の表示面は水平面に対して空間浮遊映像3とは反対側にθ1傾けた構成とした。更に、本実施例では映像表示装置1は、液晶表示パネル11と挟角な拡散特性を有する特定偏波の光を生成する光源装置13を備えている。 In the case of a depolarizing adhesive, it is used by bonding a colorless transparent plate and an image display device via the depolarizing adhesive. An image light control sheet 338 is also provided on the image exit surface of the retroreflective member 5 to eliminate ghost images generated on both sides of the regular image of the space floating image 3 by unnecessary light. In this embodiment, the retroreflective member 5 is arranged parallel to a horizontal plane in space, and the interspace floating image 3 can be displayed at an angle of θ1 with respect to the horizontal plane. For this purpose, the display surface of the image display device 1 is tilted by θ1 to the side opposite to the space floating image 3 with respect to the horizontal plane. Further, in this embodiment, the video display device 1 includes a light source device 13 that generates light of a specific polarization having a diffusion characteristic that is narrow to the liquid crystal display panel 11.

 <空間浮遊映像表示システムを形成する第3の再帰反射光学系の構成例>
 図8は、空間浮遊映像表示システムを実現するための再帰光学系の主要部構成を示す他の例の構成を示す図である。この空間浮遊映像表示システムは観視者が空間浮遊映像を正面斜め上から観察するのに適したシステムである。映像表示装置1は、映像表示素子としての液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成される。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから、80インチを超える大型な液晶表示パネルで構成される。
<Example of configuration of third retroreflective optical system forming spatial floating image display system>
FIG. 8 is a diagram illustrating the configuration of another example showing the configuration of the main parts of a reflexive optical system for realizing a spatially floating image display system. This spatial floating image display system is suitable for viewers to observe the spatial floating image from diagonally above the front. The video display device 1 includes a liquid crystal display panel 11 as a video display element, and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics. The liquid crystal display panel 11 is comprised of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size of over 80 inches.

 液晶表示パネル11からの映像光は、再帰反射部材5に向けて出射する。液晶パネル11には後述する狭発散角な光源装置13からの光を入射させ狭発散角な映像光束を生成して再帰反射部材5に入射させ空間浮遊像3を得る。空間浮遊映像3は再帰反射部材5を対称面とした映像表示装置1の対称位置に形成される。 Image light from the liquid crystal display panel 11 is emitted toward the retroreflective member 5. Light from a light source device 13 with a narrow divergence angle, which will be described later, is incident on the liquid crystal panel 11 to generate an image light beam with a narrow divergence angle, which is incident on the retroreflective member 5 to obtain a spatial floating image 3. The spatially floating image 3 is formed at a symmetrical position of the image display device 1 with the retroreflective member 5 as a plane of symmetry.

 空間浮遊像3で発生するゴースト像を消去し高画質な空間浮遊映像3を得るために、図14(A)に示した液晶パネル11の出射側には映像光制御シート334を設け不要な方向の拡散特性を制御しても良い。他方、図14(B)に示すように再帰反射部材5の映像出射面にも映像光制御シート338を設けることで不要光により空間浮遊映像3の正規像の両側に発生するゴースト像を消去しても良い。再帰反射シート5は水平面に対して傾斜(θ2)させることで空間浮遊像3を水平面に対してθ1の角度で生成することができる。このため、例えばKIOSK(キオスク)端末の上部に図8の構成を組み込んで前記端末の上端部分にアバターとして空間浮遊映像を表示させる場合に、映像光が観視者の目に向かうので高輝度な空間浮遊映像を観視できる。 In order to eliminate ghost images generated in the spatial floating image 3 and obtain a high-quality spatial floating image 3, an image light control sheet 334 is provided on the output side of the liquid crystal panel 11 shown in FIG. 14(A) to control unnecessary directions. It is also possible to control the diffusion characteristics of On the other hand, as shown in FIG. 14(B), by providing an image light control sheet 338 on the image exit surface of the retroreflective member 5, ghost images generated on both sides of the regular image of the spatially floating image 3 due to unnecessary light can be erased. It's okay. By tilting (θ2) the retroreflective sheet 5 with respect to the horizontal plane, the spatial floating image 3 can be generated at an angle of θ1 with respect to the horizontal plane. For this reason, for example, when the configuration shown in FIG. 8 is incorporated into the upper part of a KIOSK terminal to display a floating image in space as an avatar at the upper end of the terminal, the image light is directed toward the viewer's eyes, so high brightness is required. You can view images floating in space.

 空間浮遊映像3を所望の仰角と位置に得るためには第1および第2の実施例同様に、再帰反射部材5の傾斜角θ2と映像表示装置1の傾斜角θ3とそれぞれの位置を最適設計すれば良い。 In order to obtain the spatially floating image 3 at a desired elevation angle and position, as in the first and second embodiments, the inclination angle θ2 of the retroreflective member 5, the inclination angle θ3 of the image display device 1, and their respective positions are optimally designed. Just do it.

 <空間浮遊映像表示システムを形成する第4の再帰反射系の構成例>
 図9は、空間浮遊映像表示システムを実現するための他の例の再帰光学系の主要部構成を示す図である。この空間浮遊映像表示システムは、観視者が空間浮遊映像を斜め上方から観察するのに適したシステムである。映像表示装置1は、映像表示素子としての液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成される。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから、80インチを超える大型な液晶表示パネルで構成される。
<Example of configuration of the fourth retroreflective system forming a spatially floating video display system>
FIG. 9 is a diagram showing the main part configuration of another example of a retroreflective optical system for realizing a spatially floating image display system. This spatial floating image display system is suitable for a viewer to observe a spatial floating image from diagonally above. The video display device 1 includes a liquid crystal display panel 11 as a video display element, and a light source device 13 that generates light of a specific polarization having narrow-angle diffusion characteristics. The liquid crystal display panel 11 is comprised of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size of over 80 inches.

 液晶表示パネル11からの映像光を正対した位置に配置した再帰反射部材5に斜めに入射させるために、映像光制御シート334として、図10に示すようなリニアフレネルシート105を映像表示装置1の液晶パネル11の映像表示面に近接配置し、映像光を所望の方向に屈折させると良い。この時、リニアフレネルの垂直面に遮光層を設けフレネルレンズ以外からの映像光の入射を遮ることで、不要光の発生を押さえることができる。更に、リニアフレネルシートの映像光入射面と出射面に反射防止膜を設けることで、不要光の発生を押さえ良好な特性を得ることができる。 In order to cause the image light from the liquid crystal display panel 11 to obliquely enter the retroreflective member 5 disposed at a position facing directly, a linear Fresnel sheet 105 as shown in FIG. 10 is used as the image light control sheet 334 in the image display device 1. It is preferable to arrange it close to the image display surface of the liquid crystal panel 11 and refract the image light in a desired direction. At this time, generation of unnecessary light can be suppressed by providing a light shielding layer on the vertical surface of the linear Fresnel to block the incidence of image light from sources other than the Fresnel lens. Furthermore, by providing an anti-reflection film on the image light incident surface and output surface of the linear Fresnel sheet, it is possible to suppress the generation of unnecessary light and obtain good characteristics.

 上述したリニアフレネルシート105を備えた映像光制御シート334により再帰反射部材5に向けて出射する。液晶パネル11には後述する狭発散角な光源装置13からの光を入射させ、狭発散角な映像光束を生成して再帰反射部材5に入射させて、空間浮遊像3を得る。空間浮遊像3は、再帰反射部材2を対称面とした映像表示装置1の表示面の対称位置に形成される。この実施例では、再帰反射部材2と映像表示装置1が正対した位置に配置されているため、観視者が空間浮遊映像表示装置の再帰反射部材5を覗き込んだ場合、液晶パネル11に表示した映像が空間浮遊映像に重なり、空間浮遊映像の画質を大幅に低下させる。 The image light control sheet 334 equipped with the above-mentioned linear Fresnel sheet 105 emits the light toward the retroreflective member 5. Light from a light source device 13 with a narrow divergence angle, which will be described later, is incident on the liquid crystal panel 11 to generate an image light beam with a narrow divergence angle, which is incident on the retroreflective member 5 to obtain a spatial floating image 3. The spatial floating image 3 is formed at a symmetrical position on the display surface of the video display device 1 with the retroreflective member 2 as the symmetrical surface. In this embodiment, since the retroreflective member 2 and the video display device 1 are disposed in positions directly facing each other, when a viewer looks into the retroreflective member 5 of the spatially floating video display device, the liquid crystal panel 11 The displayed image overlaps with the floating image, significantly reducing the quality of the floating image.

 上述した映像光が空間浮遊映像と重なることを防ぐために、液晶パネル11の映像光出射面に映像光制御シートを設ける。この映像光制御シートとして、例えば、信越ポリマー(株)の視野角制御フィルム(VCF)が適しており、その構造は透明シリコンと黒色シリコンを交互に配置し光入出射面に合成樹脂を配置してサンドウィッチ構造としているため、本実施例の外光制御フィルムと同様の効果が期待できる。この時、視野角制御フィルム(VFC)は、所定の方向に延伸する透明シリコンと黒色シリコンが交互に配列されているため、図13に示すように、液晶パネル11の画素の配列方向の上下方向に対して映像光制御シート334の透明シリコンと黒色シリコンの延伸方向を傾ける(図中θ10)ことで、画素と外光制御フィルムのピッチで発生するモアレを軽減するように配置すると良い。 In order to prevent the above-mentioned image light from overlapping with the spatially floating image, an image light control sheet is provided on the image light output surface of the liquid crystal panel 11. For example, a viewing angle control film (VCF) manufactured by Shin-Etsu Polymer Co., Ltd. is suitable as this image light control sheet, and its structure consists of alternating transparent silicon and black silicon, and a synthetic resin on the light input/output surface. Since it has a sandwich structure, the same effects as the external light control film of this example can be expected. At this time, the viewing angle control film (VFC) has transparent silicon and black silicon stretched in a predetermined direction arranged alternately. By tilting the stretching direction of the transparent silicon and black silicon of the image light control sheet 334 (θ10 in the figure) with respect to the image light control sheet 334, it is preferable to arrange the film so as to reduce moiré that occurs at the pitch between the pixels and the external light control film.

 第4の実施例では、再帰反射部材5を筐体の底面に対して平行に配置する。この結果、外光が再帰反射部材5に入射し筐体内部に侵入することで、発生する空間浮遊映像3の画質の低下を招くこととなる。空間浮遊像3で発生するゴースト像を消去し、高画質な空間浮遊映像3を得るために、第2および第3の実施例と同様、図14(A)および(B)に示すように、液晶パネル11の出射側には映像光制御シート334を設けて、不要な方向の拡散特性を制御しても良い。他方、再帰反射部材5の映像出射面にも映像光制御シート338を設けることで、不要光により空間浮遊映像3の正規像の両側に発生するゴースト像を消去しても良い。以上述べた構造物は、筐体の内部に配置することで、再帰反射部材5に外光が入射することを防ぎ、ゴースト像の発生を防止する。 In the fourth embodiment, the retroreflective member 5 is arranged parallel to the bottom surface of the casing. As a result, external light enters the retroreflective member 5 and enters the inside of the casing, resulting in a deterioration in the image quality of the generated spatially floating image 3. In order to eliminate the ghost image generated in the spatial floating image 3 and obtain a high-quality spatial floating image 3, as shown in FIGS. 14(A) and (B), as in the second and third embodiments, An image light control sheet 334 may be provided on the output side of the liquid crystal panel 11 to control the diffusion characteristics in unnecessary directions. On the other hand, by providing an image light control sheet 338 also on the image exit surface of the retroreflective member 5, ghost images generated on both sides of the regular image of the spatially floating image 3 due to unnecessary light may be erased. By arranging the above-described structure inside the casing, external light is prevented from entering the retroreflective member 5, thereby preventing the generation of ghost images.

 図10に示すリニアフレネルシート105のフレネル角度を20度とし、リニアフレネルシート105の基材をアクリルとすれば、屈折率は1.49であり、リニアフレネルシートの出射角θ9は、30度となる。映像表示装置1からの出射光束が表示面に垂直に出射した場合、光束の発散角が±20度とすれば、出射面への入射角は、最大で+40度となる。この結果、リニアフレネルシート105からの出射光線角度は、最大+70度と1.75倍となる。他方、発散角が-20度では出射面への入射角度が10度となり、拡散角を、20度から30度へと1.5倍にすることができる。 If the Fresnel angle of the linear Fresnel sheet 105 shown in FIG. 10 is 20 degrees and the base material of the linear Fresnel sheet 105 is acrylic, the refractive index is 1.49, and the output angle θ9 of the linear Fresnel sheet is 30 degrees. Become. When the emitted light flux from the video display device 1 is emitted perpendicularly to the display surface, if the divergence angle of the light flux is ±20 degrees, the incident angle to the output surface is +40 degrees at maximum. As a result, the angle of the light beam emitted from the linear Fresnel sheet 105 becomes +70 degrees at the maximum, which is 1.75 times as large. On the other hand, when the divergence angle is -20 degrees, the angle of incidence on the exit surface is 10 degrees, and the diffusion angle can be increased by 1.5 times from 20 degrees to 30 degrees.

 更に、図2(A)、(B)に示したような空間浮遊像3の他に生じるゴースト像3a、3bの強度を低減できること、即ち再帰反射部材5で反射した異常反射光の拡散角が大きくなるため、ゴースト像3a、3bの輝度を低下させることができることも見出した。以上、図10に示したリニアフレネルシート105を拡散角の拡大とゴースト像の低減を目的に、再帰反射部材5と映像表示装置1の間に配置した光学システムの構成と効果について述べた。 Furthermore, it is possible to reduce the intensity of ghost images 3a and 3b that occur in addition to the spatially floating images 3 as shown in FIGS. It has also been found that since the ghost images 3a and 3b become larger, the brightness of the ghost images 3a and 3b can be reduced. The configuration and effects of the optical system in which the linear Fresnel sheet 105 shown in FIG. 10 is arranged between the retroreflective member 5 and the image display device 1 for the purpose of expanding the diffusion angle and reducing ghost images have been described above.

 次に、空間浮遊映像表示装置にリニアフレネルシート105を用いた光学系を使用した筐体の実施例について、図11を用いて説明する。前述したように、リニアフレネルシート105の作用により映像光束を屈折させる。この時、光束の主光線(最も輝度が高い光線)が空間浮遊映像面3に対して所望の角度θ9が得られるように映像表示装置1からの出射光束の出射方向を制御する。この時、図10に示すように、リニアフレネルシート105への入射角度とフレネル角およびリニアフレネルシート105の基材の屈折率により屈折後の角度θ8が算出され、空気界面での屈折後の出射角θ9も一義的に求めることができる。 Next, an example of a casing using an optical system using a linear Fresnel sheet 105 in a spatially floating image display device will be described with reference to FIG. As described above, the action of the linear Fresnel sheet 105 refracts the image light flux. At this time, the direction of emission of the luminous flux from the image display device 1 is controlled so that the principal ray (the ray with the highest brightness) of the luminous flux forms a desired angle θ9 with respect to the spatially floating image plane 3. At this time, as shown in FIG. 10, the angle θ8 after refraction is calculated from the incident angle to the linear Fresnel sheet 105, the Fresnel angle, and the refractive index of the base material of the linear Fresnel sheet 105, and the output after refraction at the air interface The angle θ9 can also be found uniquely.

 この結果、映像表示装置1を構成する液晶表示パネル11から垂直に出射された映像光の主光線B1は、斜め方向に屈折して再帰反射部材5に入射し、2つの反射面で反射した後、液晶表示パネル11と対称位置に空間浮遊映像3を形成する。この時、図30に示すような狭角な拡散特性を有する本願発明の光源装置13(図11に示す映像表示装置1に含まれる)により映像光束は狭角な発散角を持つが、フレネルレンズシート105の作用により、主光線B1に対して一方の光B11の拡散角θ11は大幅に拡大される。また、他方の光B12はもともとの拡散角とほぼ等しい拡散角θ12で拡散される。 As a result, the principal ray B1 of the image light vertically emitted from the liquid crystal display panel 11 constituting the image display device 1 is refracted in an oblique direction, enters the retroreflective member 5, and is reflected by two reflective surfaces. , a spatially floating image 3 is formed at a position symmetrical to the liquid crystal display panel 11. At this time, the image light beam has a narrow divergence angle due to the light source device 13 of the present invention (included in the image display device 1 shown in FIG. 11) having narrow-angle diffusion characteristics as shown in FIG. 30, but the Fresnel lens Due to the action of the sheet 105, the diffusion angle θ11 of one light beam B11 with respect to the chief ray B1 is greatly expanded. Further, the other light B12 is diffused at a diffusion angle θ12 that is approximately equal to the original diffusion angle.

 このため、空間浮遊映像3を観察した場合に最も輝度が高いのは、主光線方向から映像を観た場合となる。このため、リニアフレネルシート105を備えた光学系を有する空間浮遊映像表示システムにおいては、観視者の観視方向に最大輝度の空間浮遊映像を向けるため、ベースとなる筐体ベース516に筐体511の保持と筐体ベース516に対しての回転(図11中の角度θ13を参照)機構としてヒンジ513を設け、筐体511をサポートアーム512に連結しその一端をヒンジ513と連結する構造とする。この結果、筐体ベース516に対して筐体511を回転保持することが可能となるため、観視者が空間浮遊映像3を最大輝度で観視できる。 Therefore, when observing the spatial floating image 3, the brightness is highest when the image is viewed from the principal ray direction. For this reason, in a floating image display system having an optical system equipped with the linear Fresnel sheet 105, in order to direct the floating image with maximum brightness in the viewing direction of the viewer, the housing is attached to the housing base 516, which serves as the base. A hinge 513 is provided as a mechanism for holding the housing 511 and rotating it relative to the housing base 516 (see angle θ13 in FIG. 11), and the housing 511 is connected to the support arm 512 and one end thereof is connected to the hinge 513. do. As a result, the casing 511 can be rotated and held with respect to the casing base 516, so that the viewer can view the spatial floating image 3 at maximum brightness.

 更に、上述した機構を備えることで、空間浮遊映像表示システムの未使用時には、筐体ベース516に設けた筐体カバー515と筐体ベース516により得られる空間に筐体511を収納することで、コンパクトな収納形態が実現できる。筐体511の内部には液晶パネル(図示せず)と光源(図示せず)を備えた映像表示装置1や再帰反射部材5が内蔵されている。またバックカバー514はヒンジに近い部分に傾斜面を設けることで収納時に筐体511のバックカバー514が筐体ベース516に接触するのを防ぐ構造となっている。 Furthermore, by providing the above-mentioned mechanism, when the space floating video display system is not in use, the housing 511 can be stored in the space provided by the housing cover 515 provided on the housing base 516 and the housing base 516. A compact storage format can be realized. Inside the housing 511, a video display device 1 including a liquid crystal panel (not shown) and a light source (not shown) and a retroreflective member 5 are built-in. Further, the back cover 514 has a structure in which an inclined surface is provided in a portion near the hinge to prevent the back cover 514 of the casing 511 from coming into contact with the casing base 516 during storage.

 リニアフレネルシートの形態としては、外形の一辺に平行な方向にフレネルレンズを形成する一般的なものに対して、本願発明の第一の実施例では、図12(A)に示したように、フレネルレンズ形状が少なくとも1つの境界面を有する形状とする。図12(A)では、傾斜リニアフレネルシート517と傾斜リニアフレネルシート518との境界面が示されている。この結果、図13中の下方側に配置された映像表示装置1に備えた平面ディスプレイに表示された映像からの映像光束は、図12(A)中に矢印で示す方向に屈折される。この結果、得られた空間浮遊映像3の光出射方向を2方向とすることが可能となる。更にこの界面が2面となるような構成のリニアフレネルシートとすれば、空間浮遊映像3の光出射方向を3方向とすることが可能となることは言うまでもない。 In contrast to the general form of a linear Fresnel sheet in which a Fresnel lens is formed in a direction parallel to one side of the outer shape, in the first embodiment of the present invention, as shown in FIG. 12(A), The Fresnel lens shape has at least one boundary surface. In FIG. 12(A), the boundary surface between the inclined linear Fresnel sheet 517 and the inclined linear Fresnel sheet 518 is shown. As a result, the image light flux from the image displayed on the flat display provided in the image display device 1 disposed on the lower side in FIG. 13 is refracted in the direction shown by the arrow in FIG. 12(A). As a result, it becomes possible to emit light in two directions for the obtained spatially floating image 3. Furthermore, it goes without saying that if the linear Fresnel sheet is configured such that there are two interfaces, it is possible to emit light from the floating image 3 in three directions.

 更に、本願発明の第二の実施例として図12(B)に示すような偏心フレネルシート519は、偏心サーキュラーフレネルシート構造とし、フレネル形状により得られるレンズ作用により、空間浮遊映像3からの出射光をフレネルレンズ面に直交する方向に出射させる。この結果、図13中の下方側に配置された映像表示装置1に備えた平面ディスプレイに表示された映像からの映像光束は、図12(B)中に矢印で示す方向に屈折される。ここで、空間浮遊映像3からの出射光を制御するためには、サーキュラーフレネルシートの偏心量とフレネル角をパラメータとして最適設計する。また、上述したリニアフレネルシートとサーキュラーフレネルシートのフレネル角を一定とすることにより、出射光の制御と光学系セットの薄型化との両立が可能となる。 Furthermore, as a second embodiment of the present invention, an eccentric Fresnel sheet 519 as shown in FIG. is emitted in a direction perpendicular to the Fresnel lens surface. As a result, the image light flux from the image displayed on the flat display provided in the image display device 1 disposed on the lower side in FIG. 13 is refracted in the direction shown by the arrow in FIG. 12(B). Here, in order to control the light emitted from the spatial floating image 3, optimal design is performed using the eccentricity of the circular Fresnel sheet and the Fresnel angle as parameters. Further, by making the Fresnel angles of the above-mentioned linear Fresnel sheet and circular Fresnel sheet constant, it is possible to simultaneously control the emitted light and reduce the thickness of the optical system set.

 以上、映像表示装置1からの映像光束の出射方向をフレネルレンズの作用により制御する技術手段について述べたが、電気的に屈折率や形状を変化させることで映像光束の出射方向を制御し空間浮遊映像からの光の出射方向と拡散角を制御しても同様の効果が得られることは言うまでもない。また、後述するが、光源装置13から液晶パネル11に入射する光源光束の出射方向を制御しても同様の効果が得られる。 Above, we have described the technical means for controlling the exit direction of the image light flux from the image display device 1 through the action of the Fresnel lens. It goes without saying that the same effect can be obtained by controlling the direction and diffusion angle of light from the image. Further, as will be described later, the same effect can be obtained by controlling the emission direction of the light source beam that enters the liquid crystal panel 11 from the light source device 13.

 <空間浮遊映像表示システムの第1の構成例>
 上述した4つの再帰反射光学システムを用いた空間浮遊映像表示システムの第1の実施例を図15に示す。透明シート100に再帰反射部材5を粘着固定または接着固定する。映像表示装置1と再帰反射部材5の距離を可変できる構造として、空間浮遊映像3の結像位置を可変できる構造とすることで、空間浮遊映像に動きを与えることができ、疑似的に3次元空間浮遊映像が表示できる映像表示装置を実現できる。
<First configuration example of spatial floating video display system>
A first embodiment of a floating image display system using the four retroreflective optical systems described above is shown in FIG. The retroreflective member 5 is fixed to the transparent sheet 100 with adhesive or adhesive. By adopting a structure in which the distance between the image display device 1 and the retroreflective member 5 can be varied and the imaging position of the spatially floating image 3 can be varied, it is possible to give motion to the spatially floating image, creating a pseudo three-dimensional image. It is possible to realize a video display device that can display floating images in space.

 <空間浮遊映像表示システムの第2の構成例>
 空間浮遊映像表示システムの第2の実施例について、図16を用いて説明する。図16は、空間浮遊映像表示装置202をタブレット端末に組み込んだ第一の実施例である。空間浮遊映像表示装置202と平面ディスプレイ200とは、同一の筐体201に設けられる。
<Second configuration example of spatial floating video display system>
A second embodiment of the spatial floating video display system will be described using FIG. 16. FIG. 16 shows a first embodiment in which a floating image display device 202 is incorporated into a tablet terminal. The floating image display device 202 and the flat display 200 are provided in the same housing 201.

 また、空中浮遊映像204と同一平面に、平面ディスプレイ200と空間浮遊ディスプレイ202の表示像204との全てをカバーするセンシングユニット203を、平面ディスプレイ200と空間浮遊映像表示装置202との両方がある筐体201の端部に設ける。センシングユニット203は、図16中にセンシングエリア226として示す同一平面で、平面ディスプレイ200のセンシングエリアと空間浮遊ディスプレイ202のセンシングエリアとの両方のエリアをセンシングすることができる。 Furthermore, the sensing unit 203 that covers all of the display image 204 of the flat display 200 and the spatially floating display 202 is placed on the same plane as the floating image 204 in a case in which both the flat display 200 and the spatially floating image display device 202 are located. It is provided at the end of the body 201. The sensing unit 203 can sense both the sensing area of the flat display 200 and the sensing area of the spatially floating display 202 on the same plane, shown as a sensing area 226 in FIG. 16 .

 なお、平面ディスプレイ200のセンシングエリアと空間浮遊ディスプレイ202のセンシングエリアとのように、センシングエリアを2つ以上設ける構成とする場合、それぞれ平面上に並行に存在しても良いし、上下に存在しても良いし、前後に存在しても良い。また同一平面上に存在しても良い。この場合、センシングユニット203は、センシングエリアごとに分割して設けても良い。空間浮遊映像表示装置202と平面ディスプレイ200を同一の筐体201に併設しても良い。 Note that when two or more sensing areas are provided, such as the sensing area of the flat display 200 and the sensing area of the spatially floating display 202, they may exist in parallel on a plane, or may exist above and below each other. It may exist either before or after. Moreover, they may exist on the same plane. In this case, the sensing unit 203 may be provided separately for each sensing area. The floating image display device 202 and the flat display 200 may be installed in the same housing 201.

 本実施形態では平面ディスプレイ200を用いて説明しているが、平面ディスプレイに限られずディスプレイであれば良い。第2の構成例ではこのセンシングエリアが装置前面から後方にいくほど高い位置にあり、勾配を有している。これにより、入力しやすい配置を実現している。センシングユニットについてはこの後詳細に記載する。 Although the present embodiment is described using the flat display 200, it is not limited to a flat display, and any display may be used. In the second configuration example, this sensing area is located at a higher position toward the rear from the front of the device and has a slope. This allows for an easy-to-enter layout. The sensing unit will be described in detail later.

 この映像表示システムにおいては、使用されるセンシングユニット203の測距システムであるTOFシステムの光源光の波長を900(nm)以上の長波長とすると、外光の影響が受けにくい。この時、使用者が表示されている空間浮遊映像204に対して行う空間操作入力を平面ディスプレイ200の映像表示面に対しても同様に行えるように錯覚する。このため、平面ディスプレイ200の表示画面に直接触れることなく空間操作入力を行うことができる。 In this image display system, if the wavelength of the light source light of the TOF system, which is the ranging system of the sensing unit 203 used, is set to a long wavelength of 900 (nm) or more, it is less susceptible to the influence of external light. At this time, the user creates an illusion that the spatial operation input performed on the displayed spatial floating image 204 can also be performed on the image display surface of the flat display 200. Therefore, spatial operation input can be performed without directly touching the display screen of the flat display 200.

 更に発明者らは、平面ディスプレイ200とセンシングエリア226がどの程度離れていれば、操作者が平面ディスプレイ200に表示した画面を基に空間操作を行っても平面ディスプレイ200の表面に指が触れないかを、実験により求めた。この実験の結果、空間浮遊映像204の結像位置を平面ディスプレイ200に対して40mm以上離すことで、操作者が直接平面ディスプレイ200の画面に触れる確率を50%以下にできることを見出した。更に、50mm以上離すことで操作が直接平面ディスプレイ200に触れることが無くなった。 Furthermore, the inventors determined that the distance between the flat display 200 and the sensing area 226 should be such that even if the operator performs spatial operations based on the screen displayed on the flat display 200, the finger will not touch the surface of the flat display 200. was determined by experiment. As a result of this experiment, it was found that by separating the image formation position of the spatially floating image 204 from the flat display 200 by 40 mm or more, the probability that the operator directly touches the screen of the flat display 200 can be reduced to 50% or less. Furthermore, by setting the distance of 50 mm or more, the operation does not directly touch the flat display 200.

 なお、図16で説明した構成は、上述したようなタブレット端末に限られず、他にも例えばATM、自動券売機、キオスク端末、据置き型表示装置等の各種表示装置に組み込んでも良い。 Note that the configuration described in FIG. 16 is not limited to the tablet terminal as described above, and may be incorporated into various display devices such as ATMs, automatic ticket vending machines, kiosk terminals, and stationary display devices.

 <空間浮遊映像表示システムの第3の構成例>
 空間浮遊映像表示システムの第3の実施例について図17を用いて説明する。図17は、空間浮遊映像表示装置202をタブレット端末に組み込んだ第二の実施例である。
<Third configuration example of spatial floating video display system>
A third embodiment of the spatial floating video display system will be described using FIG. 17. FIG. 17 shows a second embodiment in which a floating image display device 202 is incorporated into a tablet terminal.

 空間浮遊映像表示装置202と平面ディスプレイ200を同一の筐体201に設け、空間浮遊映像表示装置202の空間浮遊映像204の結像エリアをカバーする第1のセンシングエリア(センシング領域)226aをセンシングする第1のセンシングユニット203aと、平面ディスプレイ200の画像表示エリアをカバーする第2のセンシングエリア226bをセンシングする第2のセンシングユニット203bとがある。前記第1のセンシングエリア226aと前記第2のセンシングエリア226bとは空間浮遊映像表示装置202と平面ディスプレイ200との起点にそれぞれ設けられる。 The spatially floating image display device 202 and the flat display 200 are provided in the same housing 201, and a first sensing area (sensing region) 226a that covers the imaging area of the spatially floating image 204 of the spatially floating image display device 202 is sensed. There are a first sensing unit 203a and a second sensing unit 203b that senses a second sensing area 226b that covers the image display area of the flat display 200. The first sensing area 226a and the second sensing area 226b are provided at the starting points of the floating image display device 202 and the flat display 200, respectively.

 また、前記第1のセンシングエリア226aと前記第2のセンシングエリア226bとは近接配置される。前記第1のセンシングエリアと前記第2センシングエリアとが平面上に並行または前後に存在する。図15に示すように、前記第1のセンシングエリアと前記第2センシングエリアとが同一平面上に存在するような構成であっても良い。空間浮遊映像表示装置202と平面ディスプレイ200を同一の筐体201に併設しても良い。本実施形態では平面ディスプレイ200を用いて説明しているが、平面ディスプレイに限られずディスプレイであれば良い。本実施例では平面ディスプレイ200の画像表示面に略平行に配置している。ここで使用するセンシングユニットについてもこの後詳細に記載する。 Furthermore, the first sensing area 226a and the second sensing area 226b are arranged close to each other. The first sensing area and the second sensing area exist in parallel or in front of each other on a plane. As shown in FIG. 15, the first sensing area and the second sensing area may be arranged on the same plane. The floating image display device 202 and the flat display 200 may be installed in the same housing 201. Although the present embodiment is described using the flat display 200, the present invention is not limited to a flat display, and any display may be used. In this embodiment, they are arranged substantially parallel to the image display surface of the flat display 200. The sensing unit used here will also be described in detail later.

 以上述べた映像表示システムの第3の実施例においても、使用者が表示されている空間浮遊映像204に対して行う空間操作入力を平面ディスプレイ200の映像表示面に対しても同様に行えるように錯覚する。このため、平面ディスプレイ200の表示画面に直接触れることなく空間操作入力を行うことができる。 In the third embodiment of the image display system described above, the spatial operation input performed by the user on the displayed spatial floating image 204 can be similarly performed on the image display surface of the flat display 200. create an illusion. Therefore, spatial operation input can be performed without directly touching the display screen of the flat display 200.

 これに関し、試作品にて平面ディプレイ200への指の接触について実機を用いて評価した結果、空間浮遊映像204の結像位置を平面ディスプレイ200に対して50mm以上離すことで操作者は直接平面ディスプレイ200の画面に触れることなく、映像表示システムに対して空間操作入力を行うことができた。 Regarding this, as a result of evaluating the finger contact with the flat display 200 using a prototype using an actual device, it was found that by setting the imaging position of the spatially floating image 204 at least 50 mm away from the flat display 200, the operator can directly touch the flat display 200. It was possible to input spatial operations to the video display system without touching the screen of the display 200.

 なお、上述と同様に、図17で説明した構成は、タブレット端末に限られず、ATM、自動券売機、キオスク端末、据置き型表示装置等の各種表示装置に組み込んでも良い。 Note that, similarly to the above, the configuration described in FIG. 17 is not limited to tablet terminals, and may be incorporated into various display devices such as ATMs, automatic ticket vending machines, kiosk terminals, and stationary display devices.

 <空間映像をセンシングする技術手段>
 空間浮遊映像表示装置を介して観視(操作)者が情報システムに双方向で接続されるために、空間浮遊映像を疑似的に操作するためのセンシング技術について、以下に説明する。
<Technical means for sensing spatial images>
Sensing technology for pseudo-manipulating a space-floating image so that a viewer (operator) is bidirectionally connected to an information system via a space-floating image display device will be described below.

 空間浮遊映像表示システムにおいては、空間浮遊映像と併せてセンシング情報を後述する2次元センサにより読み取ることで、表示映像に対する画像操作を可能にする。 In a spatially floating image display system, image operations on the displayed image are made possible by reading sensing information together with the spatially floating image using a two-dimensional sensor, which will be described later.

 空間浮映像表示装置を介して観視(操作)者が情報システムに双方向で接続されるために、空間浮遊映像を疑似的に操作するためのセンシング技術について、以下に説明する。図18は、センシング技術を説明するための原理図である。空間浮遊映像に対応したTOF(Time of Flight)システムを内蔵した測距装置203を設ける。システムの信号に同期させ光源である近赤外線発光のLED(Light Emitting Diode)を発光させる。 Sensing technology for pseudo-manipulating a space-floating image will be described below, since the viewer (operator) is bidirectionally connected to the information system via the space-floating image display device. FIG. 18 is a principle diagram for explaining the sensing technology. A distance measuring device 203 having a built-in TOF (Time of Flight) system compatible with spatial floating images is provided. A near-infrared light emitting LED (Light Emitting Diode), which is a light source, is made to emit light in synchronization with the system signal.

 LEDの光線出射側には発散角を制御するための光学素子を設け受光素子としてピコ秒の時間分解能を持つ高感度なアバランシェダイオードを一対とし、エリアに対応するように横方向に整列配置する。システムからの信号に同期させて光源であるLEDが発光し、かかる光が測距すべき対象物(観視者の指の先端)に反射して受光部に戻るまでの時間だけ位相Δtがずれる。この時間差Δtから対象物の距離を算出し、並列配置された複数のセンサの位置情報と合わせて2次元情報として操作者の指の位置、動きを感知する。 An optical element for controlling the divergence angle is provided on the light emitting side of the LED, and a pair of highly sensitive avalanche diodes with picosecond time resolution are arranged as light receiving elements in the horizontal direction so as to correspond to the area. The LED that is the light source emits light in synchronization with the signal from the system, and the phase Δt is shifted by the time it takes for the light to reflect on the object to be measured (the tip of the viewer's finger) and return to the light receiving unit. . The distance to the object is calculated from this time difference Δt, and the position and movement of the operator's finger is sensed as two-dimensional information by combining it with position information from a plurality of sensors arranged in parallel.

 また、平面ディスプレイの表示画面と空間浮遊映像とに対して誤検知が少ないセンシング機能を有する空間浮遊映像表示システムまたは空間浮遊映像表示装置を実現できる。 Furthermore, it is possible to realize a spatial floating image display system or a spatial floating image display device that has a sensing function with fewer false detections for the display screen of a flat display and spatially floating images.

 <ゴースト像を低減する技術手段>
 空間浮遊映像表示装置としてゴースト像を低減した高画質な空間映像表示装置を実現するための技術手段について、図14を用いて説明する。映像表示素子としての液晶パネル13からの映像光の発散角と発散角を所望の方向に制御するために、図14(A)に示すように、液晶パネル13の出射面に映像光制御シート334を設けると良い。更に、再帰反射部材の光線出射面または光線入射面またはその両面に映像光制御シート334を設けてゴースト像を発生させる異常光を吸収する。
<Technical means to reduce ghost images>
Technical means for realizing a high-quality spatial video display device with reduced ghost images as a spatial floating video display device will be described with reference to FIG. In order to control the divergence angle of the image light from the liquid crystal panel 13 as an image display element in a desired direction, an image light control sheet 334 is provided on the output surface of the liquid crystal panel 13, as shown in FIG. 14(A). It is good to set up Further, an image light control sheet 334 is provided on the light exit surface, the light entrance surface, or both surfaces of the retroreflective member to absorb abnormal light that causes ghost images.

 図14(A)、(B)に、映像光制御シート334を空間映像表示装置に適用する具体的な方法を示す。映像光制御シート334を映像表示素子である液晶パネル335の出射面に設ける。この時、液晶パネル13の画素と映像光制御シート334の透過部336と光吸収部337のピッチによる干渉で発生するモアレを低減するためには、以下の(1)、(2)に示す2つの方法が有効である。 FIGS. 14(A) and 14(B) show a specific method of applying the image light control sheet 334 to a spatial image display device. An image light control sheet 334 is provided on the output surface of a liquid crystal panel 335, which is an image display element. At this time, in order to reduce moiré caused by interference due to the pitch between the pixels of the liquid crystal panel 13 and the transmitting section 336 and light absorbing section 337 of the image light control sheet 334, the following steps (1) and (2) must be taken. Two methods are effective.

 (1)映像光制御シート334の透過部と光吸収部により生じる縦縞と液晶パネル335(図15においては液晶パネル11で表記)の画素の配列に対して、図13に示すように、θ10だけ傾けて配置する。 (1) With respect to the vertical stripes caused by the transmitting part and the light absorbing part of the image light control sheet 334 and the pixel arrangement of the liquid crystal panel 335 (indicated by liquid crystal panel 11 in FIG. 15), as shown in FIG. Place it at an angle.

 (2)液晶パネル335の画素寸法をA(図14(A)中の両矢印Aを参照)とし、映像光制御シート334の縦縞のピッチをB(図14(A)中の両矢印Bを参照)とした場合、この比率(B/A)を整数倍から外して選択する。 (2) The pixel size of the liquid crystal panel 335 is A (see double arrow A in FIG. 14(A)), and the pitch of the vertical stripes on the image light control sheet 334 is B (see double arrow B in FIG. 14(A)). (see), select this ratio (B/A) by excluding it from integral multiples.

 液晶パネルの1画素339はRGBの3色の画素が並列してより成り、一般的には正方形であるため上述したモアレの発生を画面全体で抑えることはできない。このため、(1)に示した傾きθ10は、空間浮遊映像を表示させない場所にモアレの発生位置を意図的にずらして配置できるように、5度から25度の範囲で最適化すれば良いことを実験的に求めた。モアレを低減するために液晶パネルを題材に述べたが、再帰反射部材5と映像光制御シート334の間に発生するモアレは両者が線条の構造体であるため、図4に示すように、映像光制御シートをX軸に着目して最適に傾けることで、波長の長い目視でも視認できる周波数の低い大柄なモアレを低減できる。 One pixel 339 of the liquid crystal panel is made up of pixels of three colors RGB arranged in parallel, and is generally square, so it is not possible to suppress the above-mentioned moiré over the entire screen. Therefore, the slope θ10 shown in (1) should be optimized within the range of 5 degrees to 25 degrees so that the moire generation position can be intentionally shifted to a place where the spatial floating image is not displayed. was determined experimentally. Although we have described how to reduce moire using a liquid crystal panel, the moire that occurs between the retroreflective member 5 and the image light control sheet 334 is caused by the fact that both are striated structures, as shown in FIG. By optimally tilting the image light control sheet with attention to the X-axis, it is possible to reduce large moiré patterns with low frequencies that are visible even with long-wavelength visual inspection.

 図14(A)は、液晶パネル335の映像光出射面に映像光制御シート334を配置した本願発明の映像表示装置1の垂直断面図である。映像光制御シート334は、光透過部336と光吸収部337を交互に配置して構成し、粘着層338により液晶パネル335の映像光出射面に粘着固定される。 FIG. 14(A) is a vertical sectional view of the video display device 1 of the present invention in which the video light control sheet 334 is arranged on the video light exit surface of the liquid crystal panel 335. The image light control sheet 334 is configured by alternately arranging light transmitting portions 336 and light absorbing portions 337, and is adhesively fixed to the image light emitting surface of the liquid crystal panel 335 by an adhesive layer 338.

 また、前述したように、映像表示装置1として7インチのWUXGA(1920×1200画素)液晶表示パネルを用いる場合には、1画素(1トリプレット)(図14(A)中に示す両矢印Aの長さ)が約80μmであっても、例えば映像光制御シート334の透過部d2が300μmと光吸収部d1が40μmからなるピッチBが340μmであれば良い。このような構成とすることで、十分な透過特性を確保し、かつ、異常光の発生原因となる映像表示装置からの映像光の拡散特性を制御し、空間浮遊像の両側に発生するゴースト像を軽減することができる。更に、この場合に、映像制御シートの厚さをピッチBの2/3以上とするとゴースト低減効果が大幅に向上する。 In addition, as described above, when a 7-inch WUXGA (1920 x 1200 pixels) liquid crystal display panel is used as the video display device 1, one pixel (one triplet) (as indicated by the double arrow A in FIG. 14(A)) Even if the length (length) is approximately 80 μm, it is sufficient if the pitch B, where the transmitting portion d2 of the image light control sheet 334 is 300 μm and the light absorbing portion d1 is 40 μm, is 340 μm. This configuration ensures sufficient transmission characteristics, controls the diffusion characteristics of the image light from the image display device that causes abnormal light, and eliminates ghost images that occur on both sides of the spatially floating image. can be reduced. Furthermore, in this case, if the thickness of the image control sheet is set to ⅔ or more of the pitch B, the ghost reduction effect will be greatly improved.

 図14(B)は、再帰反射部材5の映像光出射面に映像光制御シート334を配置した本願発明の再帰反射部材の垂直断面図である。映像光制御シート334は光透過部336と光吸収部337を交互に配置して構成し再帰反射光の出射方向に合わせて傾斜角θ1を持って傾斜配置する。この結果、前述した再帰反射に伴い発生する異常光を吸収し他方、正常反射光は損失なく透過させることができる。 FIG. 14(B) is a vertical cross-sectional view of the retroreflective member of the present invention in which an image light control sheet 334 is arranged on the image light output surface of the retroreflective member 5. The image light control sheet 334 is constructed by alternately arranging light transmitting portions 336 and light absorbing portions 337, and is arranged to be inclined at an inclination angle θ1 in accordance with the emission direction of the retroreflected light. As a result, the abnormal light generated due to the above-mentioned retroreflection can be absorbed, while the normal reflected light can be transmitted without loss.

 7インチのWUXGA(1920×1200画素)液晶表示パネルを用いる場合には、1画素(1トリプレット)(図14(A)中の両矢印Aの長さ)が約80μmであっても、例えば再帰反射部の透過部d2が400μmと光吸収部d1が20μmからなるピッチBが420μmであれば十分な透過特性と再帰反射部材での異常光の発生原因となる映像表示装置からの映像光の拡散特性を制御し空間浮遊像の両側に発生するゴースト像を軽減する。 When using a 7-inch WUXGA (1920 x 1200 pixels) liquid crystal display panel, even if one pixel (one triplet) (the length of double arrow A in Fig. 14(A)) is approximately 80 μm, for example, recursive If the pitch B is 420 μm, where the transmitting portion d2 of the reflecting portion is 400 μm and the light absorbing portion d1 is 20 μm, sufficient transmission characteristics and diffusion of image light from the image display device, which causes abnormal light in the retroreflective member, can be achieved. The characteristics are controlled to reduce ghost images that occur on both sides of the spatial floating image.

 上述した映像光制御シート334は、他方外界からの外光が空間浮遊映像表示装置内部に侵入する妨げにもなるため、構成部品の信頼性向上にも繋がる。この映像光制御シートとして、例えば信越ポリマー(株)の視野角制御フィルム(VCF)が適しており、その構造は透明シリコンと黒色シリコンを交互に配置し光入出射面に合成樹脂を配置してサンドウィッチ構造としているため、本実施例の外光制御フィルムと同様の効果が期待できる。 On the other hand, the above-mentioned image light control sheet 334 also prevents external light from entering the space floating image display device, leading to improved reliability of the component parts. For example, a viewing angle control film (VCF) manufactured by Shin-Etsu Polymer Co., Ltd. is suitable as this image light control sheet, and its structure is such that transparent silicon and black silicon are arranged alternately, and a synthetic resin is arranged on the light input/output surface. Since it has a sandwich structure, the same effects as the external light control film of this example can be expected.

 <液晶パネルの性能>
 ところで、一般的なTFT(Thin Film Transister)液晶パネルは、光の出射方向によって液晶と偏光板相互の特性により輝度、コントラスト性能が異なる。図31に示した測定環境での評価では、パネル短手(上下)方向での輝度と視野角の特性は図33に示すようにパネル面に垂直(出射角度0度)な出射角より少しずれた角度での特性(本実施例では+5度)が優れている。この理由は、液晶パネルの短手(上下)方向では、光をねじる特性が印加電圧最大の時に0度とならないためである。
<LCD panel performance>
Incidentally, in a typical TFT (Thin Film Transister) liquid crystal panel, the brightness and contrast performance differ depending on the mutual characteristics of the liquid crystal and the polarizing plate depending on the direction in which light is emitted. In the evaluation in the measurement environment shown in Figure 31, the characteristics of brightness and viewing angle in the transverse (up and down) direction of the panel were slightly different from the emission angle perpendicular to the panel surface (output angle 0 degrees), as shown in Figure 33. The characteristics at a different angle (+5 degrees in this example) are excellent. The reason for this is that in the transverse (vertical) direction of the liquid crystal panel, the characteristic of twisting light does not become 0 degrees when the applied voltage is maximum.

 他方、パネル短手(上下)方向のコントラスト性能は、図35に示すように、-15度から+15度の範囲が優れており、輝度特性と合わせると、5度を中心にして±10度の範囲での使用が最も優れた特性を得ることとなる。 On the other hand, the contrast performance in the transverse (up and down) direction of the panel is excellent in the range of -15 degrees to +15 degrees, as shown in Figure 35, and when combined with the brightness characteristics, the contrast performance in the panel width direction (up and down) is excellent in the range of -15 degrees to +15 degrees. The best properties will be obtained if used within this range.

 また、パネル長手(左右)方向での輝度と視野角の特性は、図32に示すように、パネル面に垂直(出射角度0度)な出射角での特性が優れている。この理由は、液晶パネルの長手(左右方向)では光をねじる特性が印加電圧最大の時に0度となるためである。 Furthermore, as shown in FIG. 32, the characteristics of brightness and viewing angle in the longitudinal (left and right) direction of the panel are excellent at the emission angle perpendicular to the panel surface (emission angle of 0 degrees). The reason for this is that in the longitudinal direction (left and right direction) of the liquid crystal panel, the characteristic of twisting light becomes 0 degrees when the applied voltage is maximum.

 同様に、パネル長手(左右)方向のコントラスト性能は図34に示すように、-5度から-10度の範囲が優れており、輝度特性と合わせると-5度を中心にして±5度の範囲での使用が最も優れた特性を得ることとなる。このため、液晶パネルから出射する映像光の出射角度は、前述した光源装置13の導光体に設けた光束方向変換手段(反射面307、314等)により最も優れた特性が得られる方向から液晶パネルに光を入射させ、映像信号により光変調することが、映像表示装置1の画質と性能を向上させることになる。 Similarly, the contrast performance in the longitudinal (left and right) direction of the panel is excellent in the range of -5 degrees to -10 degrees, as shown in Figure 34, and when combined with the brightness characteristics, the contrast performance in the longitudinal (left and right) direction of the panel is excellent in the range of -5 degrees to -10 degrees. The best properties will be obtained if used within this range. Therefore, the emission angle of the image light emitted from the liquid crystal panel is changed from the direction in which the best characteristics can be obtained by the light flux direction conversion means (reflection surfaces 307, 314, etc.) provided on the light guide of the light source device 13 described above. Making light incident on the panel and modulating the light with a video signal improves the image quality and performance of the video display device 1.

 映像表示素子としての液晶パネルの輝度、コントラスト特性を最大限に生かすためには、光源からの液晶パネルへの入射光を上述した範囲に設定することで、空間浮遊映像の映像品位を向上することができる。 In order to make the most of the brightness and contrast characteristics of the liquid crystal panel as a video display element, it is necessary to set the incident light from the light source to the liquid crystal panel within the above-mentioned range to improve the image quality of the floating image. I can do it.

 <光源光の制御方法>
 本実施例では、光源装置13からの出射光束の利用効率を向上させ、消費電力を大幅に低減するために、光源装置13と液晶表示パネル11を含んで構成される映像表示装置1において、光源装置13からは液晶パネル11の特性が最大となるような入射角度で液晶パネル11に入射後、映像信号に合わせて輝度変調された映像光線を再帰反射部材に向けて出射させる。この時、空間浮遊映像表示システムのセット容積を小型化するために、液晶パネル11と再帰反射部材の配置の自由度を高めることが要望される。更に、再帰反射後、浮遊映像を所望の位置に形成し最適な指向性を確保するため、以下の技術手段を用いる。
<How to control light source light>
In this embodiment, in order to improve the utilization efficiency of the luminous flux emitted from the light source device 13 and significantly reduce power consumption, the light source After being incident on the liquid crystal panel 11 at an incident angle that maximizes the characteristics of the liquid crystal panel 11, the device 13 emits an image beam whose brightness is modulated in accordance with the image signal toward the retroreflective member. At this time, in order to reduce the set volume of the spatially floating video display system, it is desired to increase the degree of freedom in the arrangement of the liquid crystal panel 11 and the retroreflective member. Furthermore, in order to form a floating image at a desired position after retroreflection and ensure optimal directivity, the following technical means are used.

 液晶パネル11の映像表示面には、光方向変換パネルとして、図10、図12に示すリニアフレネルレンズ等の光学部品からなる透明シートを設け、高い指向性を付与したまま再帰反射光学部材への入射光束の出射方向を制御して空間浮遊映像の結像位置を決定する。この構成によれば、映像表示装置1からの映像光は、レーザ光のように観察者に対して高い指向性(直進性)で効率良く届くこととなり、その結果、高品位な浮遊映像を高解像度で表示すると共に、光源装置13を含む映像表示装置1による消費電力を大幅に低減することが可能となる。 A transparent sheet made of optical components such as a linear Fresnel lens shown in FIGS. 10 and 12 is provided as a light direction conversion panel on the image display surface of the liquid crystal panel 11, and a transparent sheet made of optical components such as a linear Fresnel lens shown in FIGS. The imaging position of the spatially floating image is determined by controlling the exit direction of the incident light flux. According to this configuration, the image light from the image display device 1 efficiently reaches the viewer with high directivity (straightness) like laser light, and as a result, high-quality floating images can be displayed with high quality. It is possible to display images with high resolution and to significantly reduce power consumption by the video display device 1 including the light source device 13.

 <映像表示装置の例1>
 図24には、映像表示装置1の具体的な構成の他の一例を示す。図24の光源装置13は、図25等の光源装置と同様である。この光源装置13は、例えばプラスチックなどのケース内にLED、コリメータ、合成拡散ブロック、導光体等を収納して構成されており、その上面には液晶表示パネル11が取り付けられている。また、光源装置13のケースのひとつの側面には、半導体光源であるLED(Light Emitting Diode)素子14a、14bや、その制御回路を実装したLED基板が取り付けられると共に、LED基板の外側面には、LED素子および制御回路で発生する熱を冷却するための部材であるヒートシンクが取り付けられる(図示せず)。
<Example 1 of video display device>
FIG. 24 shows another example of a specific configuration of the video display device 1. The light source device 13 in FIG. 24 is similar to the light source device in FIG. 25 and the like. The light source device 13 is configured by housing an LED, a collimator, a synthetic diffusion block, a light guide, etc. in a case made of plastic, for example, and has a liquid crystal display panel 11 attached to its upper surface. Further, on one side of the case of the light source device 13, LED (Light Emitting Diode) elements 14a and 14b, which are semiconductor light sources, and an LED board on which their control circuits are mounted are attached, and on the outer side of the LED board, A heat sink, which is a member for cooling the heat generated by the LED elements and the control circuit, is attached (not shown).

 また、ケースの上面に取り付けられた液晶表示パネルフレームには、当該フレームに取り付けられた液晶表示パネル11と、更に、液晶表示パネル11に電気的に接続されたFPC(Flexible Printed Circuits:フレキシブル配線基板)(図示せず)などが取り付けられて構成されている。即ち、液晶表示素子である液晶表示パネル11は、固体光源であるLED素子14a,14bと共に、電子装置を構成する制御回路(ここでは図示せず)からの制御信号に基づいて、透過光の強度を変調することによって、表示映像を生成する。 In addition, the liquid crystal display panel frame attached to the top surface of the case has a liquid crystal display panel 11 attached to the frame and an FPC (Flexible Printed Circuits) electrically connected to the liquid crystal display panel 11. ) (not shown), etc. are attached. That is, the liquid crystal display panel 11, which is a liquid crystal display element, together with the LED elements 14a and 14b, which are solid-state light sources, adjusts the intensity of transmitted light based on a control signal from a control circuit (not shown here) that constitutes an electronic device. A display image is generated by modulating the .

 <映像表示装置の例1の光源装置の例1>
 続いて、ケース内に収納されている光源装置等の光学系の構成について、図23と共に、図25(a)および(b)を参照しながら、詳細に説明する。図23および図24には、光源を構成するLED14a、14bが示されており、これらはコリメータ15に対して所定の位置に取り付けられている。なお、このコリメータ15は、各々、例えばアクリル等の透光性の樹脂により形成されている。そして、このコリメータ15は、図22(b)にも示すように、放物断面を回転して得られる円錐凸形状の外周面156を有すると共に、その頂部(LED基板に接する側)におけるその中央部に、凸部(即ち、凸レンズ面)157を形成した凹部153を有する。
<Example 1 of light source device of Example 1 of video display device>
Next, the configuration of the optical system such as the light source device housed in the case will be described in detail with reference to FIGS. 25(a) and 25(b) as well as FIG. 23. 23 and 24 show LEDs 14a and 14b constituting the light source, which are attached to predetermined positions relative to the collimator 15. Note that each of the collimators 15 is made of a translucent resin such as acrylic. As shown in FIG. 22(b), this collimator 15 has an outer circumferential surface 156 with a conical convex shape obtained by rotating a parabolic cross section, and its center at the top (side in contact with the LED board). It has a concave portion 153 in which a convex portion (that is, a convex lens surface) 157 is formed.

 また、コリメータ15の平面部(上記の頂部とは逆の側)の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)154を有している。なお、コリメータ15の円錐形状の外周面を形成する放物面156は、LED14a、14bから周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。 Further, the central part of the flat part (the side opposite to the above-mentioned top part) of the collimator 15 has a convex lens surface (or a concave lens surface concave inward) 154 that projects outward. Note that the paraboloid 156 forming the conical outer circumferential surface of the collimator 15 is set within an angle range that allows total reflection of the light emitted from the LEDs 14a and 14b in the peripheral direction, or, A reflective surface is formed.

 また、LED14a、14bは、その回路基板である、基板102の表面上の所定の位置にそれぞれ配置されている。この基板102は、コリメータ15に対して、その表面上のLED14aまたは14bが、それぞれ、その凹部153の中央部に位置するように配置されて固定される。 Further, the LEDs 14a and 14b are each placed at a predetermined position on the surface of the board 102, which is the circuit board. This substrate 102 is arranged and fixed to the collimator 15 such that the LEDs 14a or 14b on the surface thereof are located at the center of the recess 153, respectively.

 かかる構成によれば、上述したコリメータ15によって、LED14aまたは14bから放射される光のうち、特に、その中央部分から上方(図の右方向)に向かって放射される光は、コリメータ15の外形を形成する2つの凸レンズ面157、154により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、コリメータ15の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したコリメータ15によれば、LED14aまたは14bにより発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。 According to this configuration, among the light emitted from the LED 14a or 14b by the collimator 15 described above, especially the light emitted upward (to the right in the figure) from the central portion thereof, the outer shape of the collimator 15 is The two convex lens surfaces 157 and 154 converge the light into parallel light. Further, light emitted from other parts toward the periphery is reflected by the paraboloid that forms the conical outer peripheral surface of the collimator 15, and is similarly condensed into parallel light. In other words, with the collimator 15 having a convex lens in the center and a paraboloid in the periphery, it is possible to extract almost all of the light generated by the LED 14a or 14b as parallel light. , it becomes possible to improve the utilization efficiency of the generated light.

 なお、コリメータ15の光の出射側には、偏光変換素子21が設けられている。偏光変換素子21は、偏光変換部材と称しても良い。この偏光変換素子21は、図24(a)からも明らかなように、断面が平行四辺形である柱状(以下、平行四辺形柱)の透光性部材と、断面が三角形である柱状(以下、三角形柱)の透光性部材とを組み合わせ、コリメータ15からの平行光の光軸に対して直交する面に平行に、複数、アレイ状に配列して構成されている。更に、これらアレイ状に配列された隣接する透光性部材間の界面には、交互に、偏光ビームスプリッタ(以下、「PBS膜」と省略する)211と反射膜212とが設けられており、また、偏光変換素子21へ入射してPBS膜211を透過した光が出射する出射面には、λ/2位相板213が備えられている。 Note that a polarization conversion element 21 is provided on the light output side of the collimator 15. The polarization conversion element 21 may also be referred to as a polarization conversion member. As is clear from FIG. 24(a), this polarization conversion element 21 consists of a columnar (hereinafter referred to as a parallelogram column) translucent member having a parallelogram cross section and a columnar member (hereinafter referred to as a parallelogram column) having a triangular cross section. , triangular prism), and are arranged in a plurality in an array parallel to a plane orthogonal to the optical axis of the parallel light from the collimator 15. Further, polarizing beam splitters (hereinafter abbreviated as "PBS films") 211 and reflective films 212 are alternately provided at the interfaces between adjacent light-transmitting members arranged in an array. Further, a λ/2 phase plate 213 is provided on the exit surface from which the light that has entered the polarization conversion element 21 and passed through the PBS film 211 exits.

 この偏光変換素子21の出射面には、更に、図24(a)にも示す、矩形状の合成拡散ブロック16が設けられている。即ち、LED14aまたは14bから出射された光は、コリメータ15の働きにより平行光となって合成拡散ブロック16へ入射し、出射側のテクスチャー161により拡散された後、導光体17に到る。 The output surface of this polarization conversion element 21 is further provided with a rectangular synthetic diffusion block 16 as shown in FIG. 24(a). That is, the light emitted from the LED 14a or 14b becomes parallel light due to the action of the collimator 15, enters the composite diffusion block 16, is diffused by the texture 161 on the exit side, and then reaches the light guide 17.

 導光体17は、例えばアクリル等の透光性の樹脂により断面が略三角形(図24(b)参照)の棒状に形成された部材であり、そして、図25からも明らかなように、合成拡散ブロック16の出射面に第1の拡散板18aを介して対向する導光体光入射部(面)171と、斜面を形成する導光体光反射部(面)172と、第2の拡散板18bを介して、液晶表示素子である液晶表示パネル11と対向する導光体光出射部(面)173と、を備えている。 The light guide 17 is a rod-shaped member with a substantially triangular cross section (see FIG. 24(b)) made of a translucent resin such as acrylic, and as is clear from FIG. A light guide light incident part (surface) 171 facing the output surface of the diffusion block 16 via the first diffuser plate 18a, a light guide light reflection part (surface) 172 forming a slope, and a second diffuser. A light guide light emitting portion (surface) 173 is provided, which faces the liquid crystal display panel 11, which is a liquid crystal display element, through the plate 18b.

 この導光体17の導光体光反射部(面)172には、その一部拡大図である図23にも示すように、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されている。そして、反射面172a(図では右上がりの線分)は、図において一点鎖線で示す水平面に対してαn(n:自然数であり、本例では、例えば、1~130である)を形成しており、その一例として、ここでは、αnを43度以下(ただし、0度以上)に設定している。 As shown in FIG. 23, which is a partially enlarged view, the light guide light reflecting portion (surface) 172 of the light guide 17 has a large number of reflecting surfaces 172a and connecting surfaces 172b arranged in an alternating sawtooth shape. It is formed. The reflective surface 172a (line segment sloping upward to the right in the figure) forms αn (n: a natural number, for example, 1 to 130) with respect to the horizontal plane indicated by the dashed line in the figure. As an example, here αn is set to 43 degrees or less (however, 0 degrees or more).

 導光体入射部(面)171は、光源側に傾斜した湾曲の凸形状に形成されている。これによれば、合成拡散ブロック16の出射面からの平行光は、第1の拡散板18aを介して拡散されて入射し、図からも明らかなように、導光体入射部(面)171により上方に僅かに屈曲(偏向)しながら導光体光反射部(面)172に達し、ここで反射して図の上方の出射面に設けた液晶表示パネル11に到る。 The light guide entrance portion (surface) 171 is formed in a curved convex shape inclined toward the light source side. According to this, the parallel light from the output surface of the composite diffusion block 16 is diffused and incident through the first diffusion plate 18a, and as is clear from the figure, the light guide entrance part (surface) 171 As a result, the light is slightly bent (deflected) upward and reaches the light guide light reflecting portion (surface) 172, where it is reflected and reaches the liquid crystal display panel 11 provided on the emission surface in the upper part of the figure.

 以上に詳述した映像表示装置1によれば、光利用効率やその均一な照明特性をより向上すると同時に、モジュール化されたS偏光波の光源装置を含め、小型かつ低コストで製造することが可能となる。なお、上記の説明では、偏光変換素子21をコリメータ15の後に取り付けるものとして説明したが、本発明はそれに限定されることなく、液晶表示パネル11に到る光路中に設けることによっても同様の作用・効果が得られる。 According to the video display device 1 described in detail above, it is possible to further improve the light utilization efficiency and its uniform illumination characteristics, and at the same time, it can be manufactured in a small size and at low cost, including a modular S-polarized light source device. It becomes possible. In the above explanation, the polarization conversion element 21 was explained as being attached after the collimator 15, but the present invention is not limited thereto, and the same effect can be obtained by providing it in the optical path leading to the liquid crystal display panel 11.・Effects can be obtained.

 なお、導光体光反射部(面)172には、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されており、照明光束は、各々の反射面172a上で全反射されて上方に向かい、更には、導光体光出射部(面)173には挟角拡散板を設けて略平行な拡散光束として指向特性を調整する光方向変換パネル54に入射し、斜め方向から液晶表示パネル11へ入射する。この映像表示装置1の出射光は光源装置13の上面に設けた光方向変換パネル54により出射方向を制御される。その結果、液晶表示パネル11からの出射光も制御され、この映像表示装置1を用いた空間浮遊映像システムにより得られる空間浮遊映像の光拡散方向が制御される。本実施例では光方向変換パネル54を導光体出射面173と液晶表示パネル11の間に設けたが、液晶表示パネル11の出射面に設けても、同様の効果が得られる。 Note that the light guide light reflecting portion (surface) 172 has a large number of reflecting surfaces 172a and connecting surfaces 172b alternately formed in a sawtooth shape, and the illumination light flux is totally reflected on each reflecting surface 172a. Furthermore, a narrow-angle diffuser plate is provided on the light guide light emitting part (surface) 173, and the light enters the light direction conversion panel 54 that adjusts the directivity characteristics as a substantially parallel diffused light flux, and from an oblique direction. The light enters the liquid crystal display panel 11. The direction of the light emitted from the video display device 1 is controlled by a light direction conversion panel 54 provided on the top surface of the light source device 13. As a result, the light emitted from the liquid crystal display panel 11 is also controlled, and the direction of light diffusion of the spatially floating image obtained by the spatially floating image system using this image display device 1 is controlled. In this embodiment, the light direction conversion panel 54 is provided between the light guide output surface 173 and the liquid crystal display panel 11, but the same effect can be obtained even if it is provided on the output surface of the liquid crystal display panel 11.

 液晶表示パネル11からの出射光は、一般的なTV用途の装置では、例えば図30(A)中の「従来特性(X方向)」および図30(B)中の「従来特性(Y方向)」のプロット曲線に示すように、画面水平方向(図30(A)のグラフのX軸に対応した表示方向)と画面垂直方向(図30(B)のグラフのY軸に対応した表示方向)とで、互いに同様な拡散特性を有する。 In a typical TV device, the light emitted from the liquid crystal display panel 11 has, for example, the "conventional characteristic (X direction)" in FIG. 30(A) and the "conventional characteristic (Y direction)" in FIG. 30(B). '', the screen horizontal direction (display direction corresponding to the X-axis of the graph in FIG. 30(A)) and the screen vertical direction (display direction corresponding to the Y-axis of the graph in FIG. 30(B)) and have similar diffusion characteristics.

 これに対して、本実施例の液晶表示パネルからの出射光束の拡散特性は、例えば図30(A)中の「例1(X方向)」および図30(B)中の「例1(Y方向)」のプロット曲線に示すような拡散特性となる。 On the other hand, the diffusion characteristics of the emitted light flux from the liquid crystal display panel of this example are, for example, "Example 1 (X direction)" in FIG. 30(A) and "Example 1 (Y direction)" in FIG. 30(B). The diffusion characteristics will be as shown in the plot curve of ``direction)''.

 一具体例では、正面視(角度0度)の輝度に対して50%の輝度(約半分に低下する輝度)になる視野角が13度となるように設定した場合、一般的な家庭用のTV用途の装置の拡散特性(角度62度)に対して約1/5の角度となる。同様に、垂直方向の視野角を上側と下側とで不均等に設定する場合の一例では、上側の視野角を下側の視野角に対して1/3程度に抑える(狭くする)ように、反射型導光体の反射角度や反射面の面積等を最適化する。 In one specific example, if the viewing angle is set to 13 degrees at which the brightness is 50% of the brightness when viewed from the front (angle of 0 degrees) (brightness reduced by about half), The angle is approximately 1/5 of the diffusion characteristic (angle of 62 degrees) of a device for TV use. Similarly, in an example where the vertical viewing angle is set unevenly between the upper and lower sides, the upper viewing angle may be suppressed (narrowed) to about 1/3 of the lower viewing angle. , optimize the reflection angle of the reflective light guide, the area of the reflective surface, etc.

 上記のような視野角等の設定が行われることにより、従来の液晶TVに比べ、ユーザの観視方向に向かう映像の光量が格段に増加(映像の明るさの点で大幅に向上)し、かかる映像の輝度は50倍以上となる。 By setting the viewing angle, etc. as described above, compared to conventional LCD TVs, the amount of light in the image directed toward the user's viewing direction is significantly increased (significantly improved in terms of image brightness). The brightness of such an image is 50 times or more.

 更に、図30の「例2」に示す視野角特性とした場合、正面視(角度0度)で得られる映像の輝度に対して50%の輝度(約半分に低下する輝度)になる視野角が5度となるように設定した場合、一般的な家庭用のTV用途の装置の拡散特性(角度62度)に対して約1/12の角度(狭い視野角)となる。同様に、垂直方向の視野角を上側と下側とで均等に設定する場合の一例では、かかる垂直方向の視野角を従来に対して1/12程度に抑える(狭くする)ように、反射型導光体の反射角度と反射面の面積等を最適化する。 Furthermore, in the case of the viewing angle characteristics shown in "Example 2" in FIG. 30, the viewing angle is such that the brightness is 50% of the brightness of the image obtained when viewed from the front (angle of 0 degrees) (brightness reduced to approximately half). If it is set to be 5 degrees, the angle will be about 1/12 (narrow viewing angle) of the diffusion characteristic (angle of 62 degrees) of a typical home TV device. Similarly, in an example where the vertical viewing angle is set equally on the upper and lower sides, reflective type Optimize the reflection angle of the light guide and the area of the reflection surface.

 このような設定が行われることにより、従来の液晶TVに比べ、観視方向(ユーザの視線方向)に向かう映像の輝度(光量)が大幅に向上し、かかる映像の輝度は100倍以上となる。 By making these settings, the brightness (amount of light) of images directed toward the viewing direction (the direction of the user's line of sight) is significantly improved compared to conventional LCD TVs, and the brightness of such images is more than 100 times higher. .

 以上述べたように、視野角を挟角とすることで、観視方向に向かう光束量を集中できるので、光の利用効率が大幅に向上する。この結果、一般的なTV用途の液晶表示パネルを使用しても、光源装置の光拡散特性を調整することで同様な消費電力で大幅な輝度向上が実現可能で、明るい屋外に向けての表示システムに対応した映像表示装置とすることができる。 As described above, by making the viewing angle a narrow angle, the amount of light directed toward the viewing direction can be concentrated, so the efficiency of light utilization is greatly improved. As a result, even if a liquid crystal display panel for general TV use is used, by adjusting the light diffusion characteristics of the light source device, it is possible to achieve a significant increase in brightness with the same power consumption, making it possible to achieve brightness for bright outdoor displays. It can be a video display device compatible with the system.

 大型の液晶表示パネルを使用する場合には、画面周辺の光は画面中央を観視者が正対した場合に観視者の方向に向かうように内側に向けることで、画面明るさの全面性が向上する。図27は、液晶表示パネルから観視者までの距離Lと、映像表示装置のパネルサイズ(画面比16:10)と、をパラメータとしたときの液晶表示パネル長辺と液晶表示パネル短辺との収斂角度を求めたもので上側に示す図では、液晶表示パネルの画面を縦長(以下、「縦使い」とも称する)として映像を観視する場合を前提としている。この場合には、液晶表示パネルの短辺(適宜、図27中の矢印V方向を参照)に合わせて収斂角度を設定すれば良い。 When using a large LCD panel, the light around the screen is directed inward toward the viewer when the center of the screen is directly facing the viewer, thereby increasing the overall brightness of the screen. will improve. FIG. 27 shows the long side of the liquid crystal display panel and the short side of the liquid crystal display panel when the distance L from the liquid crystal display panel to the viewer and the panel size of the video display device (screen ratio 16:10) are used as parameters. The diagram shown at the top, which shows the convergence angle of , is based on the assumption that the image is viewed with the screen of the liquid crystal display panel set vertically (hereinafter also referred to as "portrait"). In this case, the convergence angle may be set in accordance with the short side of the liquid crystal display panel (as appropriate, refer to the direction of arrow V in FIG. 27).

 より具体的な例としては、図27中のプロットグラフに参照されるように、例えば、22”パネルの縦使いで観視距離が0.8mの場合には、収斂角度を10度に設定することにより、画面の各隅(4コーナー)からの映像光を、観視者に向けて効果的に投射ないし出力することができる。 As a more specific example, as shown in the plot graph in FIG. 27, for example, when a 22" panel is used vertically and the viewing distance is 0.8 m, the convergence angle is set to 10 degrees. As a result, image light from each corner (four corners) of the screen can be effectively projected or output toward the viewer.

 同様に、15”パネルの縦使いで観視する場合には観視距離が0.8mの場合には収斂角度を7度とすれば画面4コーナからの映像光を有効に観視者に向けることができる。以上述べたように、液晶表示パネルのサイズおよび縦使いか横使いかによって画面周辺の映像光を、画面中央を観視するのに最適な位置にいる観視者に向けることで、画面明るさの全面性を向上できる。 Similarly, when viewing a 15" panel vertically and the viewing distance is 0.8m, setting the convergence angle to 7 degrees will effectively direct the image light from the four corners of the screen toward the viewer. As mentioned above, depending on the size of the LCD panel and whether it is used vertically or horizontally, the image light around the screen can be directed to the viewer who is in the optimal position to view the center of the screen. , the overall screen brightness can be improved.

 基本構成としては、上述の図30などに示すように、光源装置により挟角な指向特性の光束を液晶表示パネル11に入射させ、映像信号に合わせて輝度変調することで、液晶表示パネル11の画面上に表示した映像を、再帰反射部材で反射させ得られた空間浮遊映像を、透明な部材100を介して室外または室内に表示する。 As shown in FIG. 30, the basic configuration is such that a light source device causes a light beam with a narrow directional characteristic to enter the liquid crystal display panel 11, and the brightness is modulated in accordance with the video signal. An image displayed on a screen is reflected by a retroreflective member, and a floating image obtained in space is displayed outdoors or indoors via a transparent member 100.

 以下、光源装置の別の例について複数の例を説明する。これらの光源装置の別の例は、いずれも上述した映像表示装置の例の光源装置に変えて採用しても良い。 Hereinafter, a plurality of other examples of the light source device will be described. Any of these other examples of the light source device may be employed in place of the light source device of the example of the video display device described above.

 大型の液晶表示パネルを使用する場合には上述したように、画面周辺の光は画面中央を観視者が正対した場合に観視者の方向に向かうように内側に向けることで、画面明るさの全面性が向上するが、他方、観視者の左右の目のどちらで視認するかにより両眼視差が発生する。図28は、液晶表示パネルから観視者までの距離Lと、映像表示装置のパネルサイズ(画面比16:10)をパラメータとしたときの液晶表示パネル長辺と液晶表示パネル短辺との収斂角度を左右の目の位置を基準として求めたものである。 When using a large LCD panel, as mentioned above, the brightness of the screen can be increased by directing the light around the screen inward toward the viewer when the center of the screen is directly facing the viewer. However, on the other hand, binocular parallax occurs depending on whether the viewer uses the left or right eye to view the image. FIG. 28 shows the convergence of the long side of the liquid crystal display panel and the short side of the liquid crystal display panel when the distance L from the liquid crystal display panel to the viewer and the panel size of the video display device (screen ratio 16:10) are used as parameters. The angle is determined based on the positions of the left and right eyes.

 パネルサイズが小型な程、観視距離が近いほど左右の目による両眼視での収斂角は大きくなる。特に7インチ以下の小型パネルを使用する場合には、両眼視差による収斂角度は重要な要件となるため、例えば7インチ以下の場合、図30に示した光源の光拡散特性を拡大するか指向特性を持たせて、システムの最適観視範囲に映像光が向くように設計する。 The smaller the panel size and the closer the viewing distance, the larger the convergence angle in binocular vision between the left and right eyes. Especially when using a small panel of 7 inches or less, the convergence angle due to binocular parallax is an important requirement. It is designed so that the image light is directed to the optimum viewing range of the system.

 更に、システムの要求仕様によっては、水平と垂直の指向特性、拡散特性を得るために、前述した光源装置13の導光体の反射面の形状、面粗さ、傾きなどを最適設計する必要がある。 Furthermore, depending on the required specifications of the system, it is necessary to optimally design the shape, surface roughness, inclination, etc. of the reflective surface of the light guide of the light source device 13 in order to obtain horizontal and vertical directivity characteristics and diffusion characteristics. be.

 <光源装置の例1>
 次に、図19を参照して、光源装置の別の例について説明する。図19(a)および(b)は、導光体311を説明するために、液晶表示パネル11と拡散板206の一部を省略した図である。
<Example 1 of light source device>
Next, another example of the light source device will be described with reference to FIG. 19. 19(a) and (b) are diagrams in which a portion of the liquid crystal display panel 11 and the diffusion plate 206 are omitted in order to explain the light guide 311. FIG.

 図19は、光源を構成するLED14が基板102に備え付けられた状態を示している。これらLED14および基板102は、リフレクタ15に対して所定の位置に取り付けられている。 FIG. 19 shows a state in which the LED 14 constituting the light source is attached to the substrate 102. These LEDs 14 and substrate 102 are attached to the reflector 15 at predetermined positions.

 図19(a)に示すように、LED14は、リフレクタ300が配置される側の液晶表示パネル11の辺(この例では短辺)と平行な方向に、一列に配置される。図示の例では、かかるLEDの配置と対応して、リフレクタ300が配置されている。なお、リフレクタ300は複数配置されても良い。 As shown in FIG. 19(a), the LEDs 14 are arranged in a line in a direction parallel to the side (short side in this example) of the liquid crystal display panel 11 on which the reflector 300 is arranged. In the illustrated example, a reflector 300 is arranged corresponding to the arrangement of the LEDs. Note that a plurality of reflectors 300 may be arranged.

 一具体例では、リフレクタ300は、各々、プラスチック材料により形成されている。他の例として、リフレクタ300は、金属材料やガラス材料で形成しても良いが、プラスチック材料の方が成型しやすいため、本実施例ではプラスチック材料のものを用いる。 In one embodiment, the reflectors 300 are each formed from a plastic material. As another example, the reflector 300 may be formed of a metal material or a glass material, but since a plastic material is easier to mold, a plastic material is used in this embodiment.

 図19(b)に示すように、リフレクタ300の内側(同図中の右側)の面は、放物面を子午面で切り取った形状の反射面(以下は「放物面」と称する場合がある)305を備える。リフレクタ300は、LED14から出射される発散光を、上記の反射面305(放物面)で反射させることにより、略平行な光に変換し、変換された光を導光体311の端面に入射させる。一具体例では、導光体311は、透過型導光体である。 As shown in FIG. 19(b), the inner surface of the reflector 300 (on the right side in the figure) is a reflecting surface in the shape of a paraboloid cut along the meridian plane (hereinafter sometimes referred to as a "paraboloid"). ) 305. The reflector 300 converts the diverging light emitted from the LED 14 into substantially parallel light by reflecting it on the reflecting surface 305 (paraboloid), and the converted light enters the end surface of the light guide 311. let In one specific example, light guide 311 is a transmissive light guide.

 リフレクタ300の反射面は、LED14の出射光の光軸に対して非対称な形状である。また、リフレクタ300の反射面305は、上述のように放物面であり、かかる放物面の焦点にLEDを配置することで、反射後の光束を略平行光に変換する。 The reflective surface of the reflector 300 has an asymmetric shape with respect to the optical axis of the light emitted from the LED 14. Further, the reflective surface 305 of the reflector 300 is a paraboloid as described above, and by arranging the LED at the focal point of the paraboloid, the reflected light beam is converted into substantially parallel light.

 LED14は面光源であるため放物面の焦点に配置してもLEDからの発散光を完全な平行光に変換することはできないが、本願発明の光源の性能を左右することはない。LED14とリフレクタ300は一対のペアである。また、LED14の基板102への取り付け精度±40μmにおいて所定の性能を確保するためには、LEDの基板の取り付けは最大10個以下とすべきであり、量産性を考慮すれば5個程度に抑えると良い。 Since the LED 14 is a surface light source, the diverging light from the LED cannot be converted into completely parallel light even if it is placed at the focal point of a paraboloid, but this does not affect the performance of the light source of the present invention. The LED 14 and the reflector 300 are a pair. In addition, in order to ensure the specified performance with the mounting accuracy of the LED 14 on the board 102 of ±40 μm, the number of LEDs mounted on the board should be no more than 10 at most, and if mass production is considered, it should be kept to about 5. Good.

 LED14とリフレクタ300は一部において近接されるがリフレクタ300の開口側の空間へ放熱できるためLEDの温度上昇が低減できる。このため、プラスチック成型品のリフレクタ300が使用可能となる。その結果、このリフレクタ300によれば、反射面の形状精度をガラス素材のリフレクタに比べ10倍以上向上できるので、光利用効率を向上させることができる。 Although the LED 14 and the reflector 300 are partially located close to each other, heat can be radiated to the space on the opening side of the reflector 300, so the temperature rise of the LED can be reduced. Therefore, the reflector 300 made of plastic molding can be used. As a result, according to this reflector 300, the shape precision of the reflecting surface can be improved by more than 10 times compared to a reflector made of glass material, so that the light utilization efficiency can be improved.

 一方、導光体311の底面303には反射面が設けられ、LED14からの光はリフレクタ300により平行光束に変換された後、当該反射面で反射し、導光体311に対向して配置された液晶表示パネル11に向け出射する。底面303に設けられた反射面には、図19に示したように、リフレクタ300からの平行光束の進行方向において、傾きの異なる複数の面があっても良い。傾きの異なる複数の面のそれぞれの面はリフレクタ300からの平行光束の進行方向に垂直な方向に延伸する形状を有しても良い。 On the other hand, a reflective surface is provided on the bottom surface 303 of the light guide 311, and the light from the LED 14 is converted into a parallel beam by the reflector 300, then reflected by the reflective surface, and is placed opposite the light guide 311. The light is emitted toward the liquid crystal display panel 11. The reflective surface provided on the bottom surface 303 may have a plurality of surfaces having different inclinations in the traveling direction of the parallel light beam from the reflector 300, as shown in FIG. Each of the plurality of surfaces having different inclinations may have a shape extending in a direction perpendicular to the traveling direction of the parallel light beam from the reflector 300.

 また、底面303に設けられた反射面の形状は平面形状でも良い。この時、液晶表示パネル11に対向した導光体311の面に設けた屈折面314により、導光体311の底面303に設けられた反射面で反射された光を屈折させて液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向も同様に高精度に制御できるため、この光源を用いた映像表示装置を用いた空間浮遊映像表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる。 Further, the shape of the reflective surface provided on the bottom surface 303 may be a planar shape. At this time, the refracting surface 314 provided on the surface of the light guide 311 facing the liquid crystal display panel 11 refracts the light reflected by the reflective surface provided on the bottom surface 303 of the light guide 311, so that the liquid crystal display panel 11 It is possible to adjust the amount of light and the direction of emission of the light beam toward the target with high precision. As a result, the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be controlled with high precision, so that a floating image can be displayed using a video display device using this light source. In the system, the direction and angle of diffusion of the image light of the spatially floating image can be set to desired values.

 屈折面314は、図19(a)、(b)に示したように、リフレクタ300からの平行光束の進行方向において、傾きの異なる複数の面があっても良い。傾きの異なる複数の面のそれぞれの面はリフレクタ300からの平行光束の進行方向に垂直な方向に延伸する形状を有しても良い。当該複数の面の傾きは、導光体311の底面303に設けられた反射面で反射された光を液晶表示パネル11に向かって屈折させる。また、屈折面314は、透過面としても良い。 As shown in FIGS. 19(a) and 19(b), the refractive surface 314 may have a plurality of surfaces having different inclinations in the traveling direction of the parallel light beam from the reflector 300. Each of the plurality of surfaces having different inclinations may have a shape extending in a direction perpendicular to the traveling direction of the parallel light beam from the reflector 300. The inclinations of the plurality of surfaces cause the light reflected by the reflective surface provided on the bottom surface 303 of the light guide 311 to be refracted toward the liquid crystal display panel 11 . Further, the refraction surface 314 may be a transmission surface.

 なお、液晶表示パネル11の前に拡散板206がある場合は、前記反射面で反射された光は、屈折面314の前記複数の傾きにより拡散板206に向かって屈折される。即ち、屈折面314が有する傾きが異なる複数の面の延伸方向と、底面303に設けられた反射面が有する傾きが異なる複数の面の延伸方向は平行である。両者の延伸方向を平行にすることにより、より好適に光の角度を調整することができる。他方、LED14は、金属性の基板102に半田付けする。このためLEDの発熱を、基板を介して空気中に放熱することができる。 Note that when the diffuser plate 206 is provided in front of the liquid crystal display panel 11, the light reflected by the reflective surface is refracted toward the diffuser plate 206 by the plurality of inclinations of the refracting surface 314. That is, the extending direction of the plurality of surfaces having different inclinations of the refractive surface 314 and the extending direction of the plurality of surfaces having different inclinations of the reflective surface provided on the bottom surface 303 are parallel. By making both stretching directions parallel, the angle of light can be adjusted more suitably. On the other hand, the LED 14 is soldered to the metallic substrate 102. Therefore, the heat generated by the LED can be radiated into the air through the substrate.

 また、基板102にリフレクタ300が接していても良いが、空間を開けておいても良い。空間を開ける場合、リフレクタ300は筐体に接着させて配置される。空間を開けておくことで、LEDの発熱を空気中に放熱でき、冷却効果が上がる。この結果、LEDの動作温度が低減できるので、発光効率の維持と長寿命化を実現することができる。 Further, the reflector 300 may be in contact with the substrate 102, but a space may be left open. When opening a space, the reflector 300 is placed in a state where it is adhered to the casing. By leaving the space open, the heat generated by the LED can be dissipated into the air, increasing the cooling effect. As a result, the operating temperature of the LED can be reduced, making it possible to maintain luminous efficiency and extend the lifespan.

 <光源装置の別の例2>
 続いて、図19に示した光源装置に対して、偏光変換を用いて光利用効率を1.8倍向上した光源装置に関する光学系の構成について、図20Aおよび図20Bおよび図20Cおよび図20Dを参照しながら詳細に説明する。なお、図20Aにおいてサブリフレクタ308の図示は省略している。
<Another example 2 of light source device>
Next, FIGS. 20A, 20B, 20C, and 20D show the configuration of an optical system for a light source device that uses polarization conversion to improve light utilization efficiency by 1.8 times compared to the light source device shown in FIG. 19. This will be explained in detail with reference to the following. Note that the illustration of the sub-reflector 308 is omitted in FIG. 20A.

 図20A、図20Bおよび図20Cは、光源を構成するLED14が基板102に備え付けられた状態を示しており、これらはリフレクタ300とLED14を一対のブロックとし、複数のブロックを有するユニット312で構成する。 20A, FIG. 20B, and FIG. 20C show a state in which the LED 14 constituting the light source is attached to the substrate 102, and these are configured by a unit 312 having a plurality of blocks, including a reflector 300 and the LED 14 as a pair of blocks. .

 このうち、図20A(2)に示した基材320は、基板102の基材である。一般に、金属性の基板102は熱を持っているため、かかる基板102の熱を絶縁(断熱)するために、基材320は、プラスチック材料などを用いると良い。リフレクタ300の材質と反射面の形状は、図28の光源装置の例と同じ材質および形状で良い。 Among these, the base material 320 shown in FIG. 20A(2) is the base material of the substrate 102. Generally, the metallic substrate 102 has heat, so in order to insulate (insulate) the heat of the substrate 102, the base material 320 is preferably made of a plastic material or the like. The material of the reflector 300 and the shape of the reflecting surface may be the same as those of the example of the light source device in FIG. 28 .

 また、リフレクタ300の反射面は、LED14の出射光の光軸に対して非対称な形状でも良い。この理由を、図20A(2)により説明する。本実施例では、図19の例と同様にリフレクタ300の反射面は放物面であり、放物面の焦点位置に面光源であるLEDの発光面の中心を配置する。 Furthermore, the reflective surface of the reflector 300 may have an asymmetric shape with respect to the optical axis of the light emitted from the LED 14. The reason for this will be explained with reference to FIG. 20A(2). In this embodiment, the reflective surface of the reflector 300 is a paraboloid, as in the example of FIG. 19, and the center of the light emitting surface of the LED, which is a surface light source, is placed at the focal point of the paraboloid.

 また、放物面の特性上、発光面の4隅からの発光も略平行光束となり、出射方向が異なるだけである。そのため、発光部が面積を持っていても、後段に配置された偏光変換素子とリフレクタ300の間隔が短ければ偏光変換素子21へ入射する光量と変換効率は、ほとんど影響を受けない。 Further, due to the characteristics of the paraboloid, the light emitted from the four corners of the light emitting surface also becomes a substantially parallel light beam, and the only difference is the emission direction. Therefore, even if the light emitting section has a large area, the amount of light incident on the polarization conversion element 21 and the conversion efficiency are hardly affected as long as the distance between the polarization conversion element disposed at the subsequent stage and the reflector 300 is short.

 また、LED14の取り付け位置が、対応するリフレクタ300の焦点に対してXY平面内でずれても上述した理由により光変換効率の低下を軽減できる光学系が実現できる。更に、LED14の取り付け位置がZ軸方向にばらついた場合であっても、変換された平行光束がZX平面内で移動するだけであり、面光源であるLEDの取り付け精度を大幅に軽減できる。本実施例においても放物面の一部を子午的に切り欠いた反射面を有するリフレクタ300について記載したが、放物面全面を反射面として切り欠いた一部分にLEDを配置しても良い。 Moreover, even if the mounting position of the LED 14 is shifted in the XY plane with respect to the focal point of the corresponding reflector 300, an optical system can be realized that can reduce the decrease in light conversion efficiency for the above-mentioned reasons. Furthermore, even if the mounting position of the LED 14 varies in the Z-axis direction, the converted parallel light beam only moves within the ZX plane, and the mounting accuracy of the LED, which is a surface light source, can be significantly reduced. In this embodiment as well, a reflector 300 having a reflecting surface formed by cutting out a part of a paraboloid in a meridian direction has been described, but an LED may be placed in a part of the entire paraboloid which is cut out as a reflecting surface.

 一方、本実施例では、図20B(1)、図20Cに示したように、LED14からの発散光を放物面321で反射させ略平行な光に変換した後、後段の偏光変換素子21の端面に入射させ、偏光変換素子21により特定の偏波に揃えることを特徴的な構成としている。この特徴的な構成により、本実施例では、光の利用効率が前述した図26の例に対して1.8倍となり、高効率な光源が実現できる。 On the other hand, in this embodiment, as shown in FIGS. 20B(1) and 20C, after the diverging light from the LED 14 is reflected by the paraboloid 321 and converted into substantially parallel light, the polarization conversion element 21 in the subsequent stage is The characteristic configuration is that the light is made incident on the end face and aligned to a specific polarization by the polarization conversion element 21. Due to this characteristic configuration, in this example, the light utilization efficiency is 1.8 times that of the example shown in FIG. 26 described above, and a highly efficient light source can be realized.

 なお、この時、LED14からの発散光を放物面321で反射させた略平行な光は、すべて均一というわけではない。よって、複数の傾きを持った反射面307により反射光の角度分布を調整することで液晶表示パネル11に向けて、液晶表示パネル11に対して垂直方向に入射可能としている。 Note that at this time, the substantially parallel light obtained by reflecting the diverging light from the LED 14 on the paraboloid 321 is not all uniform. Therefore, by adjusting the angular distribution of the reflected light using the reflective surfaces 307 having a plurality of inclinations, the reflected light can be directed toward the liquid crystal display panel 11 in a direction perpendicular to the liquid crystal display panel 11 .

 ここで、本図の例では、LEDからリフレクタに入る光(主光線)の向きと液晶表示パネルに入る光の向きが略平行になるように配置している。この配置は、設計上配置がしやすく、また、熱源を光源装置の下に配置する方が、空気が上に抜けるのでLEDの温度上昇を低減できるので好適である。 In the example shown in this figure, the arrangement is such that the direction of light (principal ray) entering the reflector from the LED and the direction of light entering the liquid crystal display panel are approximately parallel. This arrangement is easy to arrange in terms of design, and it is preferable to arrange the heat source under the light source device because air escapes upward and the temperature rise of the LED can be reduced.

 また、図20B(1)示したように、LED14からの発散光の捕捉率を向上させるために、リフレクタ300で捕捉できない光束をリフレクタ上部に配置した遮光板309に設けたサブリフレクタ308で反射させ、下部のサブリフレクタ310の斜面で反射させ後段の偏光変換素子21の有効領域に入射させ光の利用効率を更に向上させる。即ち、本実施例では、リフレクタ300で反射した光の一部をサブリフレクタ308で反射し、サブリフレクタ308で反射された光をサブリフレクタ310で導光体306に向かう方向に反射させる。 In addition, as shown in FIG. 20B (1), in order to improve the capture rate of the diverging light from the LED 14, the light flux that cannot be captured by the reflector 300 is reflected by the sub-reflector 308 provided on the light shielding plate 309 disposed above the reflector. The light is reflected by the slope of the lower sub-reflector 310 and enters the effective area of the polarization conversion element 21 in the subsequent stage, further improving the light utilization efficiency. That is, in this embodiment, a part of the light reflected by the reflector 300 is reflected by the sub-reflector 308, and the light reflected by the sub-reflector 308 is reflected by the sub-reflector 310 in the direction toward the light guide 306.

 偏光変換素子21により特定の偏波に揃えた略平行光束を反射型導光体306の表面に設けた反射形状によって導光体306に対向して配置された液晶表示パネル11に向けて反射される。この時、液晶表示パネル11に入射する光束の光量分布は、前述したリフレクタ300の形状と配置および反射型導光体の反射面形状(断面形状)と反射面の傾き、面粗さによって最適設計される。 A substantially parallel light beam aligned to a specific polarization by the polarization conversion element 21 is reflected by a reflection shape provided on the surface of the reflective light guide 306 toward the liquid crystal display panel 11 disposed opposite the light guide 306. Ru. At this time, the light intensity distribution of the light beam incident on the liquid crystal display panel 11 is optimally designed based on the shape and arrangement of the reflector 300 described above, the shape of the reflective surface (cross-sectional shape) of the reflective light guide, the inclination of the reflective surface, and the surface roughness. be done.

 導光体306の表面に設けた反射面形状としては、偏光変換素子の出射面に対向して複数の反射面を配置し、偏光変換素子21からの距離に応じて、反射面の傾き、面積、高さ、ピッチを最適化することで、前述したように、液晶表示パネル11に入射する光束の光量分布を所望の値とする。 As for the shape of the reflective surface provided on the surface of the light guide 306, a plurality of reflective surfaces are arranged facing the output surface of the polarization conversion element, and the inclination and area of the reflection surface are adjusted depending on the distance from the polarization conversion element 21. , height, and pitch, the light intensity distribution of the light flux incident on the liquid crystal display panel 11 can be set to a desired value, as described above.

 反射型導光体に設けた反射面307は、図20B(2)に示すように、1面に複数の傾きを持つような構成とすることで、より高精度に反射光の調整を実現できる。なお、反射面において、1面に複数の傾きを持つような構成としては、反射面として使用する領域が、複数面または多面または曲面でも良い。更に拡散板206の拡散作用により、より均一な光量分布を実現する。LEDに近い側の拡散板に入射する光は、反射面の傾きを変化させることで、均一な光量分布を実現する。この結果、液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向も同様に高精度に制御できるため、この光源を用いた映像表示装置を用いた空間浮遊映像表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる。 By configuring the reflective surface 307 provided on the reflective light guide so that one surface has multiple inclinations, as shown in FIG. 20B (2), it is possible to adjust the reflected light with higher precision. . In addition, in a structure in which the reflective surface has a plurality of inclinations on one surface, the area used as the reflective surface may be a plurality of surfaces, a polysurface, or a curved surface. Furthermore, the diffusion effect of the diffusion plate 206 realizes a more uniform light amount distribution. The light incident on the diffuser plate on the side closer to the LED achieves a uniform light intensity distribution by changing the inclination of the reflecting surface. As a result, the amount of light and the direction of emission of the light beam directed toward the liquid crystal display panel 11 can be adjusted with high precision. As a result, the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be controlled with high precision, so that a floating image can be displayed using a video display device using this light source. In the system, the direction and angle of diffusion of the image light of the spatially floating image can be set to desired values.

 本実施例では、反射面307の基材は、耐熱性ポリカーボネイトなどのプラスチック材料を用いる。また、λ/2板213の出射直後の反射面307の角度は、λ/2板と反射面の距離によって変化する。 In this embodiment, the base material of the reflective surface 307 is made of a plastic material such as heat-resistant polycarbonate. Further, the angle of the reflecting surface 307 immediately after the light is emitted from the λ/2 plate 213 changes depending on the distance between the λ/2 plate and the reflecting surface.

 本実施例においても、LED14とリフレクタ300は、一部において近接されるが、リフレクタ300の開口側の空間へ放熱できLEDの温度上昇を低減できる。また、基板102とリフレクタ300を図20A、図20B、図20Cと上下逆に配置しても良い。 In this embodiment as well, although the LED 14 and the reflector 300 are partially located close to each other, heat can be radiated to the space on the opening side of the reflector 300, thereby reducing the temperature rise of the LED. Further, the substrate 102 and the reflector 300 may be arranged upside down as shown in FIGS. 20A, 20B, and 20C.

 ただし、基板102を上に配置すると基板102が液晶表示パネル11と近くなるので、レイアウトが困難になる場合がある。よって、図示した通り、基板102をリフレクタ300の下側(液晶表示パネル11から遠い側)に配置する方が、装置内の構成がより簡素になる。 However, if the substrate 102 is placed on top, the substrate 102 will be close to the liquid crystal display panel 11, which may make layout difficult. Therefore, as shown in the figure, if the substrate 102 is placed below the reflector 300 (on the side far from the liquid crystal display panel 11), the internal configuration of the device will be simpler.

 偏光変換素子21の光入射面には、後段の光学系に不要な光が入射しないように、遮光板410を設けると良い。このような構成とすることで、温度上昇を抑えた光源装置が実現できる。液晶表示パネル11の光入射面に設けた偏光板では本願発明の偏光が揃った光束では吸収により温度上昇が低減させるが、反射型導光体で反射した際に偏光方向が回転し一部の光は入射側偏光板で吸収される。更に、液晶そのものでの吸収や電極パターンに入射した光による温度上昇で液晶表示パネル11の温度も上昇するが、反射型導光体306の反射面と液晶表示パネル11の間に十分な空間があり自然冷却が可能となる。 A light shielding plate 410 may be provided on the light incidence surface of the polarization conversion element 21 to prevent unnecessary light from entering the subsequent optical system. With such a configuration, a light source device that suppresses temperature rise can be realized. The polarizing plate provided on the light incident surface of the liquid crystal display panel 11 reduces the temperature rise by absorbing the uniformly polarized light beam of the present invention, but when it is reflected by the reflective light guide, the polarization direction rotates and some The light is absorbed by the polarizing plate on the incident side. Furthermore, the temperature of the liquid crystal display panel 11 also rises due to absorption by the liquid crystal itself and temperature rise due to light incident on the electrode pattern, but if there is sufficient space between the reflective surface of the reflective light guide 306 and the liquid crystal display panel 11. Yes, natural cooling is possible.

 図20Dは、図20B(1)および図20Cの光源装置の変形例である。図20D(1)は、図20B(1)の光源装置の一部を抜粋してその変形例を図示している。その他の構成については、図20B(1)で上述した光源装置と同じ構成であるため、図示および繰り返しの説明を省略する。 FIG. 20D is a modification of the light source device in FIGS. 20B(1) and 20C. FIG. 20D(1) shows a modified example of a part of the light source device of FIG. 20B(1). The other configurations are the same as the light source device described above in FIG. 20B(1), so illustration and repeated description will be omitted.

 まず、図20D(1)に示す例では、サブリフレクタ310の凹部319の高さは、蛍光体114から横向き(X軸方向)に出力される蛍光の主光線(図20D(1)中、X軸と平行な方向に伸びる直線を参照)が、サブリフレクタ310の凹部319から抜けるように、蛍光体114よりも低い位置となるように調整されている。更に、蛍光体114から横向きに出力される蛍光の主光線が遮光板410により遮られずに偏光変換素子21の有効領域に入射するように、蛍光体114の位置に対して、Z軸方向において遮光板410の高さが低くなるように調整されている。 First, in the example shown in FIG. 20D(1), the height of the recess 319 of the sub-reflector 310 is such that the principal ray of fluorescence outputted laterally (X-axis direction) from the phosphor 114 (X in FIG. 20D(1)) (see a straight line extending in a direction parallel to the axis) is adjusted to be at a position lower than the phosphor 114 so that it passes through the recess 319 of the sub-reflector 310. Furthermore, in the Z-axis direction with respect to the position of the phosphor 114, so that the principal ray of fluorescence outputted laterally from the phosphor 114 enters the effective area of the polarization conversion element 21 without being blocked by the light shielding plate 410. The height of the light shielding plate 410 is adjusted to be low.

 また、サブリフレクタ310の頂部の凹凸の凸部が有する反射面は、サブリフレクタ308で反射した光を導光体306に導くために、サブリフレクタ308で反射した光を反射する。よって、サブリフレクタ310の凸部318の高さは、サブリフレクタ308で反射した光を反射させ後段の偏光変換素子21の有効領域に入射するように調整されることで、光の利用効率を更に向上させることができる。 Further, the reflective surface of the uneven convex portion on the top of the sub-reflector 310 reflects the light reflected by the sub-reflector 308 in order to guide the light reflected by the sub-reflector 308 to the light guide 306. Therefore, the height of the convex portion 318 of the sub-reflector 310 is adjusted so that the light reflected by the sub-reflector 308 is reflected and enters the effective area of the polarization conversion element 21 in the subsequent stage, thereby further improving the light utilization efficiency. can be improved.

 なお、サブリフレクタ310は、図20A(2)に示すように一方方向に延伸して配置され、凹凸形状となっている。更に、サブリフレクタ310の頂部には、1つ以上の凹部を有する凹凸が周期的に一方向に沿って並んでいる。このような凹凸形状とすることにより、蛍光体114から横向きに出力される蛍光の主光線が偏光変換素子21の有効領域に入射するように構成できる。 Note that, as shown in FIG. 20A(2), the sub-reflector 310 is arranged to extend in one direction, and has an uneven shape. Further, on the top of the sub-reflector 310, irregularities having one or more recesses are periodically arranged in one direction. By forming such an uneven shape, it is possible to configure such that the chief ray of fluorescence outputted laterally from the phosphor 114 enters the effective area of the polarization conversion element 21.

 また、サブリフレクタ310の凹凸形状は、LED14がある位置に凹部319がくるピッチで周期的に配置されている。即ち、蛍光体114のそれぞれは、サブリフレクタ310の凹凸の凹部の配置のピッチに対応して一方向に沿って周期的に配置される。なお、蛍光体114がLED14に備えられている場合は、蛍光体114を光源の発光部と表現しても良い。 Further, the uneven shape of the sub-reflector 310 is arranged periodically at a pitch such that the recesses 319 are located at the positions where the LEDs 14 are located. That is, each of the phosphors 114 is arranged periodically along one direction corresponding to the arrangement pitch of the concave and convex portions of the sub-reflector 310. In addition, when the phosphor 114 is included in the LED 14, the phosphor 114 may be expressed as a light emitting part of a light source.

 また、図20D(2)は、図20Cの光源装置の一部を抜粋してその変形例を図示している。その他の構成については、図20Cの光源装置と同じ構成であるため、図示および繰り返しの説明を省略する。図20D(2)に示すように、サブリフレクタ310はなくても良いが、図20D(1)と同様に、蛍光体114から横向きに出力される蛍光の主光線が遮光体410により遮られずに偏光変換素子21の有効領域に入射するように、蛍光体114の位置に対して、Z軸方向において遮光板410の高さが低くなるように調整されている。 Further, FIG. 20D(2) shows a modified example of a part of the light source device of FIG. 20C. The other configurations are the same as those of the light source device in FIG. 20C, so illustration and repeated description will be omitted. As shown in FIG. 20D(2), the sub-reflector 310 may not be provided, but as in FIG. 20D(1), the principal ray of fluorescence outputted laterally from the phosphor 114 is not blocked by the light shielding body 410. The height of the light shielding plate 410 is adjusted to be lower in the Z-axis direction with respect to the position of the phosphor 114 so that the light enters the effective area of the polarization conversion element 21.

 なお、図20A、図20B、図20C、図20Dの光源装置について、図20A(1)に示したように、反射型導光体306の反射面と液晶表示パネル11の間の空間へのごみ入り込み防止、光源装置外部への迷光発生防止、および光源装置外部からの迷光侵入防止のために、側壁400を設けても良い。側壁400を設ける場合は、導光体306と拡散板206との空間を挟むように配置される。 Regarding the light source devices in FIGS. 20A, 20B, 20C, and 20D, as shown in FIG. A side wall 400 may be provided to prevent stray light from entering, to prevent stray light from occurring outside the light source device, and to prevent stray light from entering from outside the light source device. When the side wall 400 is provided, it is arranged so as to sandwich the space between the light guide 306 and the diffusion plate 206.

 当該偏光変換素子21によって偏光変換された光を出射する偏光変換素子21の光出射面は、側壁400と導光体306と拡散板206と偏光変換素子21とで囲まれた空間に面する。また、側壁400の内側の面のうち、偏光変換素子21の出射面から光が出力される空間(図20B(1)の偏光変換素子21の出射面から右側の空間)を側面から覆う部分の面は、反射膜などを有する反射面を用いる。即ち、上記空間に面する側壁400の面は、反射膜を有する反射領域を備える。側壁400の内側の面のうち当該部分を反射面とすることで、当該反射面で反射した光を光源光として再利用でき、光源装置の輝度を向上することができる。 The light exit surface of the polarization conversion element 21 that emits the light polarization-converted by the polarization conversion element 21 faces the space surrounded by the side wall 400, the light guide 306, the diffuser plate 206, and the polarization conversion element 21. In addition, a portion of the inner surface of the side wall 400 that covers from the side the space where light is output from the output surface of the polarization conversion element 21 (the space on the right side from the output surface of the polarization conversion element 21 in FIG. 20B(1)) A reflective surface having a reflective film or the like is used as the surface. That is, the surface of the side wall 400 facing the space includes a reflective region having a reflective film. By making the part of the inner surface of the side wall 400 a reflective surface, the light reflected by the reflective surface can be reused as light source light, and the brightness of the light source device can be improved.

 側壁400の内側の面のうち、偏光変換素子21を側面から覆う部分の面は、光反射率の低い面(反射膜のない黒色面など)とする。これは、偏光変換素子21の側面で反射光が生じると、想定外の偏光状態の光が生じ、迷光の原因となるためである。言い換えると、上記の面を光反射率の低い面とすることにより、映像の迷光および想定外の偏光状態の光の発生を防止ないし抑制することができる。また、側壁400の一部に空気が通る穴をあけておくことで冷却効果を向上させるように構成しても良い。 Of the inner surfaces of the side wall 400, the surface that covers the polarization conversion element 21 from the side is a surface with low light reflectance (such as a black surface without a reflective film). This is because when reflected light occurs on the side surface of the polarization conversion element 21, light with an unexpected polarization state is generated, causing stray light. In other words, by making the above-mentioned surface a surface with low light reflectance, it is possible to prevent or suppress the generation of stray light in an image and light with an unexpected polarization state. Further, the cooling effect may be improved by providing a hole in a part of the side wall 400 through which air passes.

 なお、図20A、図20B、図20C、図20Dの光源装置は、偏光変換素子21を用いる構成を前提として説明した。しかしながら、これらの光源装置から偏光変換素子21を省略して構成しても良い。この場合、より安価に光源装置を提供することができる。 Note that the light source devices in FIGS. 20A, 20B, 20C, and 20D have been described on the assumption that the polarization conversion element 21 is used. However, the polarization conversion element 21 may be omitted from these light source devices. In this case, the light source device can be provided at a lower cost.

 <光源装置の別の例3>
 続いて、光源装置の例1に示した光源装置を基に反射型導光体304を用いた光源装置に関する光学系の構成について、図21A(1)、(2)、(3) 、および図21Bを参照しながら詳細に説明する。
<Another example 3 of light source device>
Next, the configuration of an optical system related to a light source device using a reflective light guide 304 based on the light source device shown in Example 1 of the light source device is shown in FIGS. 21A(1), (2), (3), and FIG. This will be explained in detail with reference to 21B.

 図21Aは、光源を構成するLED14が基板102に備え付けられた状態を示しており、これらはコリメータ18とLED14が一対のブロックとし、複数のブロックを有するユニット328で構成する。本実施例のコリメータ18は、LED14と近接しているため、耐熱性を考慮してガラス材料を採用している。コリメータ18の形状は、図20のコリメータ15で説明した形状と同様である。また、偏光変換素子21へ入射する前段に遮光板317を設けることにより、不要な光が後段の光学系に入射するのを防止ないし抑制し、当該不要な光による温度の上昇を軽減している。 FIG. 21A shows a state in which the LED 14 constituting the light source is mounted on the substrate 102, and the collimator 18 and the LED 14 form a pair of blocks, and the unit 328 has a plurality of blocks. Since the collimator 18 of this embodiment is close to the LED 14, a glass material is used in consideration of heat resistance. The shape of the collimator 18 is similar to the shape described for the collimator 15 in FIG. 20. Furthermore, by providing a light shielding plate 317 before entering the polarization conversion element 21, unnecessary light is prevented or suppressed from entering the optical system at the subsequent stage, and temperature rise due to the unnecessary light is reduced. .

 図21Aに示す光源のその他の構成および効果については、図20A、図20B、図20C、図20Dと同様であるため、繰り返しの説明を省略する。図21Aの光源装置は、図20A、図20B、図20Cで説明したものと同様に、側壁を設けても良い。側壁の構成および効果については、既に説明した通りであることから、繰り返しの説明を省略する。 The other configurations and effects of the light source shown in FIG. 21A are the same as those in FIGS. 20A, 20B, 20C, and 20D, so repeated explanations will be omitted. The light source device in FIG. 21A may be provided with a side wall, similar to those described in FIGS. 20A, 20B, and 20C. The configuration and effects of the side walls have already been explained, so repeated explanations will be omitted.

 図21Bは、図21A(2)の断面図である。図21Bに示す光源の構成については、図20の光源の構造の一部と共通であり、図18において既に説明済みであるため、繰り返しの説明を省略する。 FIG. 21B is a cross-sectional view of FIG. 21A(2). The structure of the light source shown in FIG. 21B is common to a part of the structure of the light source shown in FIG. 20, and has already been explained in FIG. 18, so repeated explanation will be omitted.

 <光源装置の別の例4>
 続いて、図25の光源装置は、図21に示した光源装置に用いたコリメータ18とLED14が一対のブロックとして複数のブロックを有するユニット328で構成する。液晶表示パネル11の背面の両端部に配置したLEDと反射型導光体504を用いた光源装置に関する光学系の構成について、図25(a)(b)および(c)を参照しながら詳細に説明する。
<Another example 4 of light source device>
Next, the light source device of FIG. 25 is constituted by a unit 328 having a plurality of blocks in which the collimator 18 and the LED 14 used in the light source device shown in FIG. 21 form a pair of blocks. The configuration of the optical system related to the light source device using the LEDs and the reflective light guide 504 arranged at both ends of the back surface of the liquid crystal display panel 11 will be explained in detail with reference to FIGS. 25(a), (b) and (c). explain.

 図25は光源を構成するLED14が基板505に備え付けられた状態を示しており、これらはコリメータ18とLED14が一対のブロックとした複数のブロックを有するユニット503で構成する。ユニット503は液晶表示パネル11の背面の両端部に配置される(本実施例では短辺方向に3ユニットが並んで配置される)。ユニット503から出力された光は反射型導光体504で反射され、対向配置された液晶表示パネル11(図25(c)に図示)に入射する構成としている。 FIG. 25 shows a state in which the LEDs 14 constituting the light source are mounted on a substrate 505, and these are constituted by a unit 503 having a plurality of blocks each including a collimator 18 and an LED 14 as a pair of blocks. The units 503 are arranged at both ends of the back surface of the liquid crystal display panel 11 (in this embodiment, three units are arranged side by side in the short side direction). The light output from the unit 503 is reflected by the reflective light guide 504 and is incident on the liquid crystal display panel 11 (shown in FIG. 25(c)) arranged opposite to each other.

 反射型導光体504は、図25(c)に示すように、それぞれの端部に配置されたユニットに対応して2つのブロックに分割され中央部が最も高くなるように配置されている。コリメータ18は、LED14と近接しているため、LED14から発せられる熱への耐熱性を考慮して、ガラス材料を採用している。コリメータ18の形状は、図20のコリメータ15で説明した形状である。 As shown in FIG. 25(c), the reflective light guide 504 is divided into two blocks corresponding to the units arranged at each end, and arranged so that the central part is the highest. Since the collimator 18 is close to the LED 14, a glass material is used in consideration of heat resistance to the heat emitted from the LED 14. The shape of the collimator 18 is the same as that described for the collimator 15 in FIG.

 LED14からの光はコリメータ18を介して偏光変換素子501へ入射する。光学素子81の形状により後段の反射型導光体504に入射する光の分布を調整する構成としている。即ち、液晶表示パネル11に入射する光束の光量分布は、前述したコリメータ18の形状と、配置および光学素子81の形状と、拡散特性および反射型導光体の反射面形状(断面形状)と、反射面の傾き、反射面の面粗さと、を調整することによって最適設計される。 The light from the LED 14 enters the polarization conversion element 501 via the collimator 18. The configuration is such that the shape of the optical element 81 adjusts the distribution of light incident on the reflective light guide 504 at the subsequent stage. That is, the light intensity distribution of the luminous flux incident on the liquid crystal display panel 11 depends on the shape of the collimator 18, the arrangement, the shape of the optical element 81, the diffusion characteristics, and the shape of the reflective surface (cross-sectional shape) of the reflective light guide. Optimal design is achieved by adjusting the inclination of the reflective surface and the surface roughness of the reflective surface.

 反射型導光体504の表面に設けた反射面形状としては、図25(b)に示すように、偏光変換素子の出射面に対向して複数の反射面を配置し、偏光変換素子21からの距離に応じて、反射面の傾き、面積、高さ、ピッチを最適化する。 The shape of the reflective surface provided on the surface of the reflective light guide 504 is as shown in FIG. Optimize the tilt, area, height, and pitch of the reflective surface according to the distance.

 また、同一反射面となる領域(即ち、偏光変換素子に対向する面)を多面体に分割することで、前述したように液晶表示パネル11に入射する光束の光量分布を所望の値とする(最適化する)ことができる。このため、液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向も同様に高精度に制御できるため、この光源を用いた映像表示装置を用いた空間浮遊映像表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる(図26中の「導光体からの反射光」を示す4本の実線矢印を参照)。 In addition, by dividing the area serving as the same reflective surface (that is, the surface facing the polarization conversion element) into polyhedrons, the light intensity distribution of the light beam incident on the liquid crystal display panel 11 can be set to a desired value (optimal can be converted into Therefore, the amount of light and the direction of emission of the light beam toward the liquid crystal display panel 11 can be adjusted with high precision. As a result, the amount and direction of light incident on the liquid crystal display panel 11 and light emitted from the liquid crystal display panel 11 can be controlled with high precision, so that a floating image can be displayed using a video display device using this light source. In the system, the diffusion direction and diffusion angle of the image light of the spatially floating image can be set to desired values (see the four solid line arrows indicating "reflected light from the light guide" in FIG. 26).

 反射型導光体に設けた反射面は、図20Bで説明した反射型導光体と同様に、1面(光の反射させる領域)を、複数の傾きを持った形状を持たせる構成(図25の例ではXY平面内で14分割して異なった傾斜面で構成)とすることで、より高精度に反射光の調整を行うことができる。また、反射型導光体からの反射光が光源装置13の側面から漏れないようにするため、遮光壁507を設けることにより、所望の方向(液晶表示パネル11へ向かう方向)以外への漏れ光の発生を防止することができる。 Similar to the reflective light guide described in FIG. 20B, the reflective surface provided on the reflective light guide has a configuration in which one surface (the area where light is reflected) has a shape with multiple inclinations (see FIG. In the example of No. 25, the reflected light can be adjusted with higher precision by dividing the XY plane into 14 parts and configuring them with different inclined surfaces. In addition, in order to prevent the reflected light from the reflective light guide from leaking from the side surface of the light source device 13, a light shielding wall 507 is provided to prevent light from leaking in a direction other than the desired direction (direction toward the liquid crystal display panel 11). can be prevented from occurring.

 また、図25の反射型導光体504の左右に配置されるユニット503を、図20の光源装置に置き換えても良い。即ち、図20の光源装置(基板102、リフレクタ300、LED14等)を複数用意し、かかる複数の光源装置を、図25(a)、(b)、(c)に参照されるように、互いに対向する位置に配置した構成としても良い。 Furthermore, the units 503 placed on the left and right sides of the reflective light guide 504 in FIG. 25 may be replaced with the light source device in FIG. 20. That is, a plurality of light source devices (substrate 102, reflector 300, LED 14, etc.) shown in FIG. 20 are prepared, and the plurality of light source devices are connected to each other as shown in FIGS. It is also possible to have a configuration in which they are placed at opposing positions.

 図26(B)は、図26(A)に示したユニット503を、上部に6個、下部に6個配置して構成した光源装置である。図26(B)に示す光源装置は、5個のLEDを横に並べたユニット503を上記のように配置した構成であり、単一電源で電流制御して所望の輝度を得る。このため、液晶パネルを照明する光源装置としては、それぞれのユニット503が照射する領域ごとに光源輝度を制御することができる。 FIG. 26(B) shows a light source device configured by arranging six units 503 shown in FIG. 26(A) in the upper part and six units in the lower part. The light source device shown in FIG. 26(B) has a configuration in which a unit 503 in which five LEDs are arranged horizontally is arranged as described above, and a desired brightness is obtained by controlling the current with a single power source. Therefore, as a light source device for illuminating a liquid crystal panel, the light source brightness can be controlled for each area illuminated by each unit 503.

 図26に示す構成では、反射面222と、かかる反射面222とは異なる反射面502と、を備える。このうち、反射面222は、横格子のような形状、あるいは所定の幅を有する帯状である。一方、反射面502は、縦横の格子のような形状である。これらの微細な格子の形状および分割面の傾きを最適設計することで、所望の出射光分布(出射光の出射方向と拡散特性)を得る。 The configuration shown in FIG. 26 includes a reflective surface 222 and a reflective surface 502 different from the reflective surface 222. Of these, the reflective surface 222 has a horizontal lattice-like shape or a band shape with a predetermined width. On the other hand, the reflective surface 502 has a shape like a vertical and horizontal lattice. By optimally designing the shape of these fine gratings and the inclination of the dividing plane, a desired output light distribution (the output direction and diffusion characteristics of the output light) can be obtained.

 この結果、図16および図17に示す平面ディスプレイと空間浮遊映像表示装置に単一光源を使用しても、液晶表示パネル11に向かう光束の光量と出射方向を高精度に調整できる。この結果、上述した2つの実施例と同様に、液晶表示パネル11への入射光および液晶表示パネル11からの出射光の光量および出射方向を同様に高精度に制御できるため、この光源を用いた映像表示装置を用いた空間浮遊映像表示システムにおいては、空間浮遊映像の映像光の拡散方向と拡散角を所望の値に設定できる。 As a result, even if a single light source is used for the flat display and the spatially floating image display device shown in FIGS. 16 and 17, the amount and direction of the light beam directed toward the liquid crystal display panel 11 can be adjusted with high precision. As a result, similarly to the two embodiments described above, the amount and direction of light incident on the liquid crystal display panel 11 and the light emitted from the liquid crystal display panel 11 can be controlled with high precision. In a spatially floating video display system using a video display device, the diffusion direction and diffusion angle of image light of a spatially floating video can be set to desired values.

 図22は、拡散板206の形状の一例を示す断面図である。上述のように、LEDから出力された発散光は、リフレクタ300またはコリメータ18で略平行光に変換され、偏光変換素子21で特定偏波に変換された後に、導光体で反射させられる。そして、導光体で反射した光束は、拡散板206の入射面の平面部分を通過して、液晶表示パネル11に入射する(図22中の「導光体からの反射光」を示す2本の実線矢印を参照)。 FIG. 22 is a cross-sectional view showing an example of the shape of the diffusion plate 206. As described above, the diverging light output from the LED is converted into substantially parallel light by the reflector 300 or the collimator 18, converted into a specific polarized light by the polarization conversion element 21, and then reflected by the light guide. Then, the light beam reflected by the light guide passes through the flat part of the incident surface of the diffuser plate 206 and enters the liquid crystal display panel 11 (two lines indicating "reflected light from the light guide" in FIG. 22) (see solid arrow).

 また、偏光変換素子21から出射した光のうち、発散光束は、拡散板206の入射面に設けた傾斜面を有する突起部の斜面で全反射して、液晶表示パネル11に入射する。偏光変換素子21から出射した光を拡散板206の突起部の斜面で全反射させるために、突起部の斜面の角度を、偏光変換素子21からの距離に基づいて変化させる。偏光変換素子21から遠い側またはLEDから遠い側の突起部の斜面の角度をαとし、偏光変換素子21から近い側またはLEDから近い側の突起部の斜面の角度をα’とする場合、αはα’より小さい(α<α’)。このような設定とすることにより、偏光変換された光束を有効利用することが可能となる。 Further, among the light emitted from the polarization conversion element 21 , a diverging luminous flux is totally reflected on the slope of a protrusion having an inclined surface provided on the incident surface of the diffuser plate 206 and enters the liquid crystal display panel 11 . In order to cause the light emitted from the polarization conversion element 21 to be totally reflected on the slope of the projection of the diffuser plate 206, the angle of the slope of the projection is changed based on the distance from the polarization conversion element 21. When the angle of the slope of the protrusion on the side far from the polarization conversion element 21 or the side far from the LED is α, and the angle of the slope of the protrusion on the side close to the polarization conversion element 21 or the side close to the LED is α', α is smaller than α' (α<α'). With such a setting, it becomes possible to effectively utilize the polarized light flux.

 <映像表示装置の拡散特性制御技術>
 液晶表示パネル11からの映像光の拡散分布を調整する方法として、光源装置13と液晶表示パネル11との間、あるいは、液晶表示パネル11の表面に、レンチキュラーレンズを設け、当該レンズの形状を最適化することが挙げられる。即ち、レンチキュラーレンズ形状の最適化を行うことによって、液晶表示パネル11から一方向に出射される映像光(以下、「映像光束」とも称する)の出射特性を調整することができる。
<Diffusion characteristic control technology for video display devices>
As a method of adjusting the diffusion distribution of image light from the liquid crystal display panel 11, a lenticular lens is provided between the light source device 13 and the liquid crystal display panel 11, or on the surface of the liquid crystal display panel 11, and the shape of the lens is optimized. One example is to become That is, by optimizing the shape of the lenticular lens, the emission characteristics of the image light (hereinafter also referred to as "image light flux") emitted from the liquid crystal display panel 11 in one direction can be adjusted.

 代替的または追加的に、液晶表示パネル11の表面(または光源装置13と液晶表示パネル11との間)に、マイクロレンズアレイをマトリックス状に配置し、当該配置の態様を調整しても良い。即ち、マイクロレンズアレイの配置を調整することによって、映像表示装置1から出射される映像光束についての、X軸およびY軸方向への出射特性を調整することができ、この結果、所望の拡散特性を有する映像表示装置を得ることができる。 Alternatively or additionally, the microlens array may be arranged in a matrix on the surface of the liquid crystal display panel 11 (or between the light source device 13 and the liquid crystal display panel 11), and the mode of arrangement may be adjusted. That is, by adjusting the arrangement of the microlens array, it is possible to adjust the emission characteristics of the image light flux emitted from the image display device 1 in the X-axis and Y-axis directions, and as a result, desired diffusion characteristics can be obtained. It is possible to obtain a video display device having the following.

 更なる構成例として、映像表示装置1から出射される映像光が通過する位置に、2枚のレンチキュラーレンズを組み合わせて配置する、または、マイクロレンズアレイをマトリックス状に配置して拡散特性を調整するシートを設けても良い。このような光学系の構成とすることにより、X軸およびY軸方向において、映像光の輝度(相対輝度)を、映像光の反射角度(垂直方向に反射した場合を基準(0度)とした反射角度)に応じて調整することができる。 As a further configuration example, a combination of two lenticular lenses may be arranged at a position through which the image light emitted from the image display device 1 passes, or a microlens array may be arranged in a matrix to adjust the diffusion characteristics. A sheet may also be provided. By configuring the optical system like this, the brightness (relative brightness) of the image light in the X-axis and Y-axis directions can be adjusted to the reflection angle of the image light (with the case of reflection in the vertical direction as the standard (0 degrees)). reflection angle).

 本実施例では、このようなレンチキュラーレンズを使用することにより、図29(b)中に「例1(Y方向)」および「例2(Y方向)」のグラフ(プロット曲線)に示すように、従来特性のグラフ(プロット曲線)とは明らかに異なった、優れた光学的特性を獲得することができる。具体的には、例1(Y方向)および例2(Y方向)のプロット曲線では、垂直方向の輝度特性を急峻にし、更に、上下方向(Y軸の正負方向)の指向特性のバランスを変化させることで、反射や拡散による光の輝度(相対輝度)を高めることができる。 In this example, by using such a lenticular lens, as shown in the graphs (plot curves) of "Example 1 (Y direction)" and "Example 2 (Y direction)" in FIG. 29(b), , it is possible to obtain excellent optical characteristics that are clearly different from conventional characteristic graphs (plot curves). Specifically, in the plot curves of Example 1 (Y direction) and Example 2 (Y direction), the brightness characteristics in the vertical direction are made steeper, and the balance of the directional characteristics in the vertical direction (positive and negative directions of the Y axis) is further changed. By doing so, the brightness (relative brightness) of light due to reflection and diffusion can be increased.

 このため、本実施例によれば、面発光レーザ映像源からの映像光のように、拡散角度が狭く(高い直進性)かつ特定の偏波成分のみの映像光とし、従来技術による映像表示装置を用いた場合に再帰反射部材で発生していたゴースト像を抑え、再帰反射による空間浮遊像を効率良く観視者の眼に届けるように、調整することができる。 Therefore, according to this embodiment, the image light has a narrow diffusion angle (high straightness) and has only a specific polarization component, like image light from a surface-emitting laser image source, and the image display device according to the prior art It is possible to suppress the ghost image that would occur in the retroreflective member when using the retroreflection member, and to make adjustments so that the spatially floating image due to retroreflection can be efficiently delivered to the viewer's eyes.

 また、上述した光源装置により、図30の(A)、(B)に示した一般的な液晶表示パネルからの出射光拡散特性(図中では「従来特性」と表記)に対して、X軸方向およびY軸方向ともに大幅に挟角な指向特性を持たせることができる。本実施例では、このような狭角な指向特性を持たせることで、特定方向に向けて平行に近い映像光束を出射する、特定偏波の光を出射する映像表示装置を実現することができる。 In addition, the above-mentioned light source device allows the X-axis It is possible to provide a directional characteristic with a significantly narrow angle in both the direction and the Y-axis direction. In this embodiment, by providing such a narrow-angle directivity characteristic, it is possible to realize an image display device that emits a nearly parallel image light beam in a specific direction and emits light of a specific polarization. .

 図30には、本実施例で採用するレンチキュラーレンズの特性の一例を示している。この例では、特に、Z軸を基準としたX方向(垂直方向)における特性を示しており、特性Oは、光の出射方向のピークが垂直方向(0度)から上方に30度付近の角度であり上下に対称な輝度特性を示している。また、図30のグラフに示す特性Aや特性Bのプロット曲線は、更に、30度付近においてピーク輝度の上方の映像光を集光して輝度(相対輝度)を高めた特性の例を示している。このため、これらの特性Aや特性Bでは、特性Oのプロット曲線と比較して分かるように、Z軸からX方向への傾き(角度θ)が30度を超えた角度(θ>30°)の領域において、急激に光の輝度(相対輝度)が低減する。 FIG. 30 shows an example of the characteristics of the lenticular lens employed in this example. This example particularly shows the characteristics in the X direction (vertical direction) with respect to the Z axis, and the characteristic O is that the peak of the light emission direction is at an angle of around 30 degrees upward from the vertical direction (0 degrees). , and exhibits vertically symmetrical brightness characteristics. Furthermore, the plot curves of characteristics A and B shown in the graph of FIG. 30 further show examples of characteristics in which the image light above the peak brightness is focused around 30 degrees to increase the brightness (relative brightness). There is. Therefore, in these characteristics A and B, as can be seen by comparing with the plot curve of characteristic O, the angle where the inclination (angle θ) from the Z axis to the X direction exceeds 30 degrees (θ > 30 degrees) In the region, the brightness (relative brightness) of light decreases rapidly.

 即ち、上述したレンチキュラーレンズを含んだ光学系によれば、映像表示装置1からの映像光束を再帰反射部材に入射させる際、光源装置13で挟角に揃えられた映像光の出射角度や視野角を調整でき、再帰反射シートの設置の自由度を大幅に向上できる。その結果、ウィンドガラスを反射または透過して所望の位置に結像する空間浮遊像の結像位置の関係の自由度を大幅に向上できる。この結果、拡散角度が狭く(高い直進性)かつ特定の偏波成分のみの光として効率良く室外または室内の観視者の眼に届くようにすることが可能となる。このことによれば、映像表示装置1からの映像光の強度(輝度)が低減しても、観視者は映像光を正確に認識して情報を得ることができる。換言すれば、映像表示装置1の出力を小さくすることにより、消費電力の低い表示システムを実現することが可能となる。 That is, according to the optical system including the above-mentioned lenticular lens, when the image light flux from the image display device 1 is incident on the retroreflective member, the output angle and viewing angle of the image light aligned at an included angle by the light source device 13 are adjusted. can be adjusted, greatly increasing the degree of freedom in installing retroreflective sheets. As a result, the degree of freedom regarding the image formation position of the spatially floating image that is reflected or transmitted through the window glass and formed at a desired position can be greatly improved. As a result, it becomes possible to efficiently reach the eyes of a viewer outdoors or indoors as light with a narrow diffusion angle (high straightness) and only a specific polarization component. According to this, even if the intensity (luminance) of the image light from the image display device 1 is reduced, the viewer can accurately recognize the image light and obtain information. In other words, by reducing the output of the video display device 1, it is possible to realize a display system with low power consumption.

<空間浮遊映像表示装置の別の例>
 本実施例は、複数の特定方向からも同時に映像表示が可能なシステムであって、表示された複数の空間像に対応して表示像を高精度に操作することができる。本実施例の空間浮遊映像表示システムまた空間浮遊映像表示装置では、図36に示すような反射面を有した再帰反射部材5を用いる。この再帰反射部材5は上下2層構造である。
<Another example of a floating video display device>
This embodiment is a system that can simultaneously display images from a plurality of specific directions, and can operate the display image with high precision in response to the plurality of displayed spatial images. In the spatial floating video display system or spatial floating video display device of this embodiment, a retroreflective member 5 having a reflective surface as shown in FIG. 36 is used. This retroreflective member 5 has a two-layer structure, upper and lower.

 また、映像表示装置としては上述する指向特性と拡散特性が制御可能な光源装置を使用する。この時、映像表示装置として高解像度なカラー表示が可能な映像源として特定偏波の映像光が得られる表示パネル(液晶パネルまたは液晶表示パネル)を使用する。本実施例の空間浮遊映像表示装置において使用される再帰反射部材5には、狭角な拡散特性を有する液晶表示パネル1からの映像光を入射させることで本実施例特有の効果が得られる。また、本実施例を実現するために必須となる光源に狭角な拡散特性を持たせる具体的な技術手段については上述した。 Furthermore, as the image display device, the above-mentioned light source device whose directional characteristics and diffusion characteristics can be controlled is used. At this time, a display panel (liquid crystal panel or liquid crystal display panel) from which image light of a specific polarization can be obtained is used as an image source capable of high-resolution color display as an image display device. Effects unique to this embodiment can be obtained by allowing the image light from the liquid crystal display panel 1 having narrow-angle diffusion characteristics to be incident on the retroreflection member 5 used in the spatially floating image display device of this embodiment. Further, the specific technical means for imparting narrow-angle diffusion characteristics to the light source, which is essential for realizing this embodiment, has been described above.

 本実施例は、図37(A)、(B)に示すように映像表示装置1の表示パネル11からの映像光を再帰反射部材5の光制御パネル221の平面光反射部220と光制御パネル222の平面光反射部220とで二度反射させ、反射した光により空中に正規実像としての第一の空間浮遊映像3とその両側に光制御パネル222の平面光反射部220での1回反射による第二の空間浮遊映像3cおよび光制御パネル221の平面光反射部220での1回反射による第三の空間浮遊映像3dを表示する。 In this embodiment, as shown in FIGS. 37(A) and 37(B), image light from the display panel 11 of the image display device 1 is transferred to the planar light reflecting section 220 of the light control panel 221 of the retroreflection member 5 and the light control panel. The reflected light is reflected twice by the planar light reflecting section 220 of the light control panel 222, and the reflected light creates the first spatially floating image 3 as a normal real image in the air, and is reflected once by the planar light reflecting section 220 of the light control panel 222 on both sides. A second space-floating image 3c caused by the light control panel 221 and a third space-floating image 3d caused by one reflection from the plane light reflecting section 220 of the light control panel 221 are displayed.

 空間浮遊映像は、第1の空間浮遊映像と、第1の空間浮遊映像を基準に特定の角度と距離を隔てて形成される複数の空間浮遊映像とがある。本実施例では、図37(A)、(B)に示すように、空間浮遊映像は、中央に浮遊する空間浮遊映像3と、中央に浮遊する空間浮遊映像3を基準に左右に特定の角度と距離を隔てて形成される空間浮遊映像3c、3dとがあり、中央の空間浮遊映像3と左右に形成される空間浮遊映像3cとの成す角度と中央の空間浮遊映像3と左右に形成される空間浮遊映像3dとの成す角度は、再帰反射部材5の光制御パネル221の光反射部220と光制御パネル222の光反射部220との交差角により調整される。また、中央に浮遊する空間浮遊映像の輝度はその他の空間浮遊映像の輝度に対して50%程度である。 The space floating image includes a first space floating image and a plurality of space floating images formed at specific angles and distances with respect to the first space floating image. In this embodiment, as shown in FIGS. 37(A) and 37(B), the spatial floating images include a spatial floating image 3 floating in the center, and a specific angle left and right with respect to the spatial floating image 3 floating in the center. There are spatially floating images 3c and 3d formed at a distance from the central spatially floating image 3, and the angle formed by the central spatially floating image 3 and the spatially floating images 3c formed on the left and right, and the central spatially floating image 3 formed on the left and right. The angle formed by the space floating image 3d is adjusted by the intersection angle between the light reflecting section 220 of the light control panel 221 of the retroreflection member 5 and the light reflecting section 220 of the light control panel 222. Further, the brightness of the spatially floating image floating in the center is about 50% of the brightness of the other spatially floating images.

 この時使用する再帰反射部材5は、図36(A)に示すように、第1の光制御パネル221、第2の光制御パネル222から成り、それぞれの構成は、厚みが一定な透明平板18、17の一方側の面に垂直に多数かつ帯状の平面光反射部220を有する一定ピッチの光学部材20を並べて形成されている。 The retroreflective member 5 used at this time consists of a first light control panel 221 and a second light control panel 222, as shown in FIG. , 17 are formed by arranging optical members 20 having a large number of band-shaped planar light reflecting portions 220 at a constant pitch perpendicularly to one side surface of the optical members 20 .

 ここで、第1の光制御パネル221を構成する光学部材20の平面光反射部220、および、第2の光制御パネル222を構成する光学部材20の平面光反射部220は、平面視して交差して配置されている。この実施例では平面光反射部220は直交状態で配置されている。本実施例における第1の光制御パネル221の平面光反射部220を第1の反射部と称し、第2の光制御パネル222の平面光反射部220を第2の反射部と称する。また、空間浮遊映像3側の再帰反射部材5の面に吸収型偏光シート101を配置しても良いし、映像光の出射方向を調整するために再帰反射部材5と表示パネル11の間に吸収型偏光シート101を配置しても良い。 Here, the planar light reflecting section 220 of the optical member 20 constituting the first light control panel 221 and the planar light reflecting section 220 of the optical member 20 constituting the second light control panel 222 are arranged in a criss-cross manner. In this embodiment, the planar light reflecting portions 220 are arranged orthogonally. In this embodiment, the planar light reflection section 220 of the first light control panel 221 is referred to as a first reflection section, and the planar light reflection section 220 of the second light control panel 222 is referred to as a second reflection section. Further, an absorbing polarizing sheet 101 may be placed on the surface of the retroreflective member 5 on the side of the spatially floating image 3, or an absorbing polarizing sheet 101 may be placed between the retroreflective member 5 and the display panel 11 in order to adjust the emission direction of the image light. A polarizing sheet 101 may also be provided.

 続いて、本実施例の空間浮遊映像表示装置において使用される再帰反射部材5の作用と具体的な空間浮遊映像表示装置の実施例について説明する。図36(B)に示すように、映像表示装置1に対して再帰反射部材5は40~50度の角度を有して傾斜配置されるのが一般的である。この時、空間浮遊映像3は映像光が再帰反射部材5に入射する角度と同一角度で再帰反射部材5から出射する。この時、空間浮遊映像は映像表示装置1と再帰反射部材5までの距離L1と同じ距離だけ離れた対称位置に形成される。 Next, the function of the retroreflective member 5 used in the space floating video display device of this embodiment and a specific example of the space floating video display device will be described. As shown in FIG. 36(B), the retroreflective member 5 is generally arranged at an angle of 40 to 50 degrees with respect to the image display device 1. At this time, the spatially floating image 3 is emitted from the retroreflective member 5 at the same angle as the angle at which the image light is incident on the retroreflective member 5. At this time, the spatially floating image is formed at a symmetrical position separated by the same distance L1 between the image display device 1 and the retroreflective member 5.

 以下、空間浮遊映像の結像のメカニズムについて図36を用いて詳細に説明する。再帰反射部材5の一方側に設けられた映像表示装置1から発した映像光は、第2の光制御パネル222の平面光反射部Cで反射し、次に第1の光制御パネル221の平面光反射部C′で反射することで空間浮遊映像3を、再帰反射部材5の外側位置(他方側の空間)に結像する。即ち、この再帰反射部材5を用いることで空間に映像表示装置1の画像を空間浮遊像として表示できる。 Hereinafter, the mechanism of forming a spatially floating image will be explained in detail using FIG. 36. The image light emitted from the image display device 1 provided on one side of the retroreflective member 5 is reflected by the planar light reflecting portion C of the second light control panel 222, and then reflected by the planar light reflecting portion C of the first light control panel 221. By being reflected by the light reflecting portion C', the space floating image 3 is imaged at a position outside the retroreflective member 5 (space on the other side). That is, by using this retroreflective member 5, the image of the video display device 1 can be displayed in space as a spatially floating image.

 図36(A)、(B)に示すように、以上述べた再帰反射部材5では上述したように2つの反射部が存在するため、空間浮遊映像3の他に1回反射による2つの空間浮遊映像3c、3dが発生する。空間浮遊映像3の他に生成される空間浮遊映像は光制御パネルの数および平面光反射部220の交差角度に応じて決定される。この1回反射によって得られる空間浮遊映像3c、3dは、2つの反射面で反射した後に得られる空間浮遊映像3に比べ2倍の輝度があり、1回反射の浮遊像3c、3dの形成される位置と映像光が発散する方向が前述した空間浮遊映像3とは異なるため、観視者が空間浮遊映像を視認できる観視範囲を拡大できる。 As shown in FIGS. 36(A) and 36(B), in the retroreflective member 5 described above, there are two reflecting parts as described above, so in addition to the space floating image 3, there are two space floating images due to one reflection. Images 3c and 3d are generated. The spatial floating image to be generated in addition to the spatial floating image 3 is determined according to the number of light control panels and the intersecting angle of the planar light reflector 220. The spatial floating images 3c and 3d obtained by this single reflection have twice the brightness compared to the spatial floating image 3 obtained after reflection from two reflective surfaces, and the floating images 3c and 3d obtained by the single reflection are twice as bright. Since the position of the image and the direction in which the image light diverges are different from those of the space floating image 3 described above, the viewing range in which the viewer can view the space floating image can be expanded.

 以下にそのメカニズムを詳細に述べる。図37(B)は、上述した空間浮遊映像3の両側に形成された空中浮遊映像3cと3dの位置を示したものである。図37(B)では筐体800の開口部から空間浮遊映像3、空間浮遊映像3c、空間浮遊映像3dが表示されている。空間浮遊映像3を観視する者は空間浮遊映像3の正面に位置し、視線Pを向けることで空間浮遊映像3を観視する。この時、空間浮遊映像3からの映像光は光源装置13の狭角な拡散特性により制御され、水平方向で±30°、垂直方向で±15°の範囲とし観視方向からの空間浮遊映像3の高輝度化を実現する。 The mechanism will be described in detail below. FIG. 37(B) shows the positions of the floating images 3c and 3d formed on both sides of the above-mentioned floating image 3. In FIG. 37(B), a space floating image 3, a space floating image 3c, and a space floating image 3d are displayed from the opening of the housing 800. A person viewing the spatial floating image 3 is positioned in front of the spatial floating image 3 and views the spatial floating image 3 by directing the line of sight P. At this time, the image light from the space floating image 3 is controlled by the narrow-angle diffusion characteristic of the light source device 13, and is set within a range of ±30° in the horizontal direction and ±15° in the vertical direction. Achieves high brightness.

 一方、再帰反射部材5で1回反射しただけで空間に反射された映像光は空間浮遊映像3の2倍の輝度を持つ空間浮遊映像3cと空間浮遊映像3dを形成させる。この2つの空間浮遊映像はそれぞれ特定方向からのみ観視できる。例えば、空間浮遊映像3cは観視方向Qから、他方、空間浮遊像3dは観視方向Rからのみ観視できる。このため、正規の空間浮遊映像3の他に、2方向の側面からも、空間浮遊映像3cおよび3dを観視できる。 On the other hand, the image light reflected into space after being reflected only once by the retroreflection member 5 forms a space floating image 3c and a space floating image 3d having twice the brightness of the space floating image 3. These two spatially floating images can only be viewed from specific directions. For example, the spatially floating image 3c can be viewed only from the viewing direction Q, while the spatially floating image 3d can only be viewed from the viewing direction R. Therefore, in addition to the regular floating image 3, the floating images 3c and 3d can be viewed from two sides.

 この結果、空間浮遊映像の観視範囲を大きく拡大できる。この時、得られる3つの空間浮遊映像の拡散角は前述した映像表示装置に備えた光源装置の狭角な指向特性と拡散特性により制御可能となる。 As a result, the viewing range of spatially floating images can be greatly expanded. At this time, the diffusion angle of the three spatially floating images obtained can be controlled by the narrow-angle directivity characteristics and diffusion characteristics of the light source device included in the image display device described above.

 更に、空間浮遊映像3の両側に1回反射により形成される空間浮遊映像3cと3dの形成される位置は、図36(A)に示す再帰反射部材5を構成する2枚の光制御パネル221、222を平面視した図36(B)が交差する角度と2枚の部材の距離をパラメータとして設計的に変更することにより異なる。図37(B)に示すように、空間浮遊映像3と空間浮遊映像3cとがなす角度をθ10、空間浮遊映像3と空間浮遊映像3dとがなす角度をθ11とし、図36(A)に示すように光制御パネル221の平面光反射部220と光制御パネル222の平面光反射部220とがなす角度を交差角度とする。 Furthermore, the positions where the spatially floating images 3c and 3d formed by one-time reflection on both sides of the spatially floating image 3 are determined by the two light control panels 221 forming the retroreflective member 5 shown in FIG. 36(A). , 222 in a plan view shown in FIG. 36(B), the difference is made by changing the design using the intersecting angle and the distance between the two members as parameters. As shown in FIG. 37(B), the angle between the space floating image 3 and the space floating image 3c is θ10, and the angle between the space floating image 3 and the space floating image 3d is θ11, as shown in FIG. 36(A). The angle formed by the plane light reflection section 220 of the light control panel 221 and the plane light reflection section 220 of the light control panel 222 is defined as the intersection angle.

 角度θ10およびθ11を大きくするには交差角度は90度を基準に大きくし、他方角度θ10およびθ11を小さくするためには前述の交差角度を基準の90度に対して小さくする。しかしながらこの交差角度を90度に対して±10度以上ずらすと光の利用効率が低下して空間浮遊像の輝度低下を招くので用途に応じて最適な角度にすると良い。また、2枚の光制御パネルの距離を所定距離以上に大きくすると空間浮遊映像のフォーカス感の低下や輝度低下が発生するため最適な値を選択すると良い。 In order to increase the angles θ10 and θ11, the intersection angle is increased with respect to 90 degrees, and on the other hand, in order to decrease the angles θ10 and θ11, the above-mentioned intersection angle is made smaller with respect to the reference 90 degrees. However, if this intersection angle is shifted by ±10 degrees or more from 90 degrees, the light utilization efficiency will decrease and the brightness of the spatially floating image will be lowered, so it is preferable to set the angle optimally depending on the application. Furthermore, if the distance between the two light control panels is increased beyond a predetermined distance, the sense of focus and brightness of the floating image will decrease, so it is best to select an optimal value.

 また、空中浮遊映像として表示される画像を生成する表示パネルには疑似的に三次元となるように画面中心部から周辺部にかけて明るさのグラデーション処理を追加することでより三次元的な映像表示が可能となる。グラデーション処理としては、空間浮遊映像3、3c、3dの中心部より周辺部の輝度が低くなるように、表示パネルに表示される映像を調整する。また、空間浮遊映像の中心部より周辺部の輝度が低くなるように、表示パネルに光を供給する光源光を調整しても良い。その他に、第二の空間浮遊映像3c、第三の空間浮遊映像3dに対しても表示像を高精度に操作する装置を設けてもよい。 In addition, the display panel that generates the image displayed as a floating image has been added with brightness gradation processing from the center of the screen to the periphery to create a pseudo three-dimensional image. becomes possible. As the gradation process, the images displayed on the display panel are adjusted so that the brightness of the peripheral parts of the spatially floating images 3, 3c, and 3d is lower than that of the center. Further, the light source that supplies light to the display panel may be adjusted so that the brightness of the peripheral part of the spatially floating image is lower than that of the center part. In addition, a device may be provided to manipulate display images with high precision for the second spatially floating image 3c and the third spatially floating image 3d.

 上述した3つの空間浮遊映像をより立体的に見せるためには、発明者らは実機を用いて検討し、画面中央に表示される映像に対して画面周辺に表示される映像の輝度を表示パネルに表示された映像に対して低減することで空間浮遊映像の飛び出し感を強調できることを見出した。画面中央に対して左右方向に輝度傾斜を付け周辺を暗くすることで中央部分の出っ張り感が強調でき、この輝度傾斜は中央に対して10%以上周辺部が暗くなるようにすると立体感が強くなり、35%を超えると暗くなりすぎることから、この範囲で選択すると良い。また、輝度傾斜の傾斜は、画面中心に対する画像表示位置の関数として捉えると良く、1次関数的な傾向より、2次関数的に変化させる方がより立体的であった。 In order to make the above-mentioned three spatial floating images appear more three-dimensional, the inventors studied using an actual device and decided to adjust the brightness of the image displayed at the periphery of the screen to the image displayed at the center of the screen. We have found that by reducing the image displayed in the image, it is possible to emphasize the pop-up feeling of the image floating in space. By grading the brightness in the left and right directions from the center of the screen and darkening the periphery, you can emphasize the bulge in the center.If you set this brightness gradient so that the periphery is 10% or more darker than the center, a strong three-dimensional effect will be created. If it exceeds 35%, it will become too dark, so it is best to select within this range. Further, the slope of the brightness gradient can be understood as a function of the image display position with respect to the center of the screen, and changing it like a quadratic function gives a more three-dimensional effect than changing it like a linear function.

 更に立体感を強調するために上下方向でも輝度傾斜を付けると良く、この時も左右方向と同様に画面中心に対して周辺部の輝度を低減すると良く、この輝度傾斜は中央に対して10%以上周辺部が暗くなるようにすると立体感が強くなり、35%を超えると暗くなりすぎるとからこの範囲で選択すると良い。また、輝度傾斜の傾斜は、画面中心に対する画像表示位置の関数として捉えると良く、1次関数的な傾向より、2次関数的に変化させる方がより立体的であった。 Furthermore, in order to emphasize the three-dimensional effect, it is recommended to apply a brightness gradient in the vertical direction as well, and in this case, as in the horizontal direction, it is good to reduce the brightness in the peripheral area relative to the center of the screen, and this brightness gradient is 10% relative to the center. If the peripheral area is made darker than above, the three-dimensional effect will be strong, and if it exceeds 35%, it will become too dark, so it is best to select within this range. Further, the slope of the brightness gradient can be understood as a function of the image display position with respect to the center of the screen, and changing it like a quadratic function gives a more three-dimensional effect than changing it like a linear function.

 他方、表示画像に合わせて輝度傾斜を持たせることが最も効果的であり、光の当たる方向と光の照射面での反射強度に合わせて輝度傾斜を強調すると更に立体感を強化できることも実験により明確になった。 On the other hand, experiments have shown that it is most effective to have a brightness gradient that matches the displayed image, and that the three-dimensional effect can be further enhanced by emphasizing the brightness gradient according to the direction in which the light hits and the intensity of reflection on the light irradiation surface. It became clear.

 上述のように、第一の空間浮遊映像に対して第二、第三の空間浮遊映像は、高輝度な表示が可能で、斜め方向から見ても十分な輝度が得られる空間映像表示装置を実現できる。更に、疑似的に立体的な観視範囲を拡大した空間浮遊映像を得ることができ、同時に、表示画面に直接触れることなく操作入力を行うことができる。 As mentioned above, the second and third spatially floating images can be displayed with high brightness compared to the first spatially floating image using a spatial image display device that can provide sufficient brightness even when viewed from an oblique direction. realizable. Furthermore, it is possible to obtain a spatially floating image with a pseudo-stereoscopic viewing range expanded, and at the same time, it is possible to perform operation input without directly touching the display screen.

 以上、本発明を適用した種々の実施の形態ないし実施例(即ち具体例)について詳述した。一方で、本発明は、上述した実施形態(具体例)のみに限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は、本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Various embodiments and examples (ie, specific examples) to which the present invention is applied have been described in detail above. On the other hand, the present invention is not limited only to the embodiment (specific example) described above, and includes various modifications. For example, in the embodiments described above, the entire system is explained in detail in order to explain the present invention in an easy-to-understand manner, and the system is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations.

 上記で説明した光源装置は、空間浮遊映像表示装置に限られず、HUD、タブレット、デジタルサイネージ等のような表示装置に適用することも可能である。 The light source device described above is not limited to a floating image display device, but can also be applied to display devices such as a HUD, a tablet, a digital signage, etc.

 本実施の形態に係る技術では、空間浮遊映像を高解像度かつ高輝度な映像を空間浮遊した状態で表示することにより、例えば、ユーザは感染症の接触感染に対する不安を感じることなく操作することを可能にする。不特定多数のユーザが使用するシステムに本実施例に係る技術を用いれば、感染症の接触感染のリスクを低減し、不安を感じることなく使用できる非接触ユーザインタフェースを提供することを可能にする。このような技術を提供する本発明によれば、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。 In the technology according to the present embodiment, by displaying a high-resolution and high-brightness video floating in space, the user can, for example, operate the video without feeling anxious about contact transmission of an infectious disease. enable. If the technology according to this embodiment is used in a system used by an unspecified number of users, it will be possible to reduce the risk of contact transmission of infectious diseases and provide a contactless user interface that can be used without anxiety. . According to the present invention, which provides such a technology, it contributes to "Health and well-being for all" of the Sustainable Development Goals (SDGs) proposed by the United Nations.

 また、上述した実施の形態に係る技術では、出射する映像光の発散角を小さくし、更に特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、明るく鮮明な空間浮遊映像を得ることが可能になる。本実施の形態に係る技術によれば、消費電力を大幅に低減することが可能な、利用性に優れた非接触ユーザインタフェースを提供することができる。このような技術を提供する本発明によれば、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9産業と技術革新の基盤をつくろう」および「11住み続けられるまちづくりを」に貢献する。 Further, in the technology according to the embodiment described above, by reducing the divergence angle of the emitted image light and aligning it with a specific polarization, only the regular reflected light can be efficiently reflected by the retroreflective member. , it is possible to obtain bright and clear spatial floating images with high light utilization efficiency. According to the technology according to the present embodiment, it is possible to provide a contactless user interface with excellent usability and which can significantly reduce power consumption. According to the present invention, which provides such technology, the Sustainable Development Goals (SDGs) advocated by the United Nations, ``9 Create a foundation for industry and technological innovation,'' and ``11 Create sustainable cities,'' can be achieved. Contribute to

 更に、上述した実施の形態に係る技術では、指向性(直進性)の高い映像光による空間浮遊映像を形成することを可能にする。本実施例に係る技術では、銀行のATMや駅の券売機等における高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示する場合でも、指向性の高い映像光を表示することで、ユーザ以外に空間浮遊映像を覗き込まれる危険性が少ない非接触ユーザインタフェースを提供することを可能にする。本発明は、以上のような技術を提供することにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「11住み続けられるまちづくりを」に貢献する。 Furthermore, the technology according to the embodiments described above makes it possible to form a spatially floating image using highly directional (straight-progressing) image light. With the technology according to this embodiment, even when displaying images that require high security such as at bank ATMs or ticket vending machines at stations, or when displaying highly confidential images that should be kept secret from the person directly facing the user, the technology can be used to display highly directional images. By displaying the image light, it is possible to provide a non-contact user interface in which there is little risk that the floating image will be looked into by anyone other than the user. By providing the above-mentioned technology, the present invention contributes to the Sustainable Development Goals (SDGs: Sustainable Development Goals 11) advocated by the United Nations.

1…映像表示装置、2…第一の再帰反射部材、5…第二の再帰反射部材、3…空間像(空間浮遊像)、100…透過性プレート、13…光源装置、54…光方向変換パネル、105…リニアフレネルシート、101…吸収型偏光シート(吸収型偏光板)、200…平面ディスプレイ、201…筐体、203…センシングシステム、226…センシングエリア、102…基板、11、335…液晶表示パネル、206…拡散板、21…偏光変換素子、300…リフレクタ、213…λ/2板、306…反射型導光体、307…反射面、308、310…サブリフレクタ、204…空間浮遊映像、334…映像光制御シート、336…透過部、337…光吸収部、81…光学素子、501…偏光変換素子、503…ユニット、507…遮光壁、401、402…遮光板、320…基材、511…筐体、512…サポートアーム、513…ヒンジ、514…バックカバー、515…筐体カバー、516…筐体ベース、517、518…傾斜リニアフレネルシート、519…偏心フレネルシート。 DESCRIPTION OF SYMBOLS 1... Image display device, 2... First retroreflective member, 5... Second retroreflective member, 3... Spatial image (spatial floating image), 100... Transmissive plate, 13... Light source device, 54... Light direction conversion Panel, 105... Linear Fresnel sheet, 101... Absorption type polarizing sheet (absorption type polarizing plate), 200... Flat display, 201... Housing, 203... Sensing system, 226... Sensing area, 102... Substrate, 11, 335... Liquid crystal Display panel, 206... Diffusion plate, 21... Polarization conversion element, 300... Reflector, 213... λ/2 plate, 306... Reflective light guide, 307... Reflective surface, 308, 310... Sub-reflector, 204... Space floating image , 334... Image light control sheet, 336... Transmissive section, 337... Light absorbing section, 81... Optical element, 501... Polarization conversion element, 503... Unit, 507... Light blocking wall, 401, 402... Light blocking plate, 320... Base material , 511... Housing, 512... Support arm, 513... Hinge, 514... Back cover, 515... Housing cover, 516... Housing base, 517, 518... Inclined linear Fresnel sheet, 519... Eccentric Fresnel sheet.

Claims (12)

 空間浮遊映像表示システムであって、
 映像を表示する表示パネルと、
 前記表示パネルに光を供給する光源装置と、
 前記表示パネルからの映像光を反射させ、反射した光により空中に実像の空間浮遊映像を表示させる再帰反射部材と、を備え、
 前記再帰反射部材は、第1の反射部と第2の反射部とを有し、
 中央に浮遊する空間浮遊映像と前記中央に浮遊する空間浮遊映像を基準に特定の角度と距離を隔てて形成される空間浮遊映像との成す角度は、前記第1の反射部と前記第2の反射部との交差角により調整される、
  空間浮遊映像表示システム。
A spatial floating image display system,
a display panel that displays images;
a light source device that supplies light to the display panel;
a retroreflective member that reflects image light from the display panel and displays a real spatial floating image in the air using the reflected light;
The retroreflective member has a first reflective part and a second reflective part,
The angle formed by the spatial floating image floating in the center and the spatial floating image formed at a specific angle and distance based on the spatial floating image floating in the center is the angle formed by the first reflecting part and the second reflecting part. Adjusted by the intersection angle with the reflective part,
Space floating video display system.
 請求項1に記載の空間浮遊映像表示システムにおいて、
 前記再帰反射部材により得られた3つの空間浮遊映像のそれぞれの映像光束の出射方向と発散角は、前記表示パネルと前記光源装置の光源の拡散特性により調整される、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 1,
The emission direction and divergence angle of the image light beam of each of the three spatially floating images obtained by the retroreflection member are adjusted by the diffusion characteristics of the display panel and the light source of the light source device.
Space floating video display system.
 請求項1に記載の空間浮遊映像表示システムにおいて、
 前記空間浮遊映像は3つ表示され、3つの前記空間浮遊映像の中心部より周辺部の輝度が低くなるように、前記表示パネルに表示される映像を調整する、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 1,
Three of the spatially floating images are displayed, and the image displayed on the display panel is adjusted so that the brightness of the peripheral areas of the three spatially floating images is lower than that of the center.
Space floating video display system.
 請求項1に記載の空間浮遊映像表示システムにおいて、
 中央に浮遊する前記空間浮遊映像の輝度はその他の空間浮遊映像に比べて最も低い、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 1,
The brightness of the spatial floating image floating in the center is the lowest compared to other spatial floating images.
Space floating video display system.
 請求項1に記載の空間浮遊映像表示システムにおいて、
 中央に浮遊する前記空間浮遊映像の輝度はその他の空間浮遊映像の輝度に対して50%程度である、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 1,
The brightness of the space floating image floating in the center is about 50% of the brightness of the other space floating images.
Space floating video display system.
  請求項1に記載の空間浮遊映像表示システムにおいて、
 前記光源装置は、
 点状または面状の光源と、
 前記光源からの光を反射させるリフレクタと、
 前記リフレクタからの光を前記表示パネルに向けて導光する導光体と、を備え、
 前記リフレクタの反射面は、前記光源の出射光の光軸に対して非対称な形状である、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 1,
The light source device includes:
A point or planar light source,
a reflector that reflects light from the light source;
a light guide that guides light from the reflector toward the display panel;
The reflective surface of the reflector has an asymmetric shape with respect to the optical axis of the light emitted from the light source.
Space floating video display system.
 請求項6に記載の空間浮遊映像表示システムにおいて、
 前記導光体は、反射型導光体である、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 6,
The light guide is a reflective light guide.
Space floating video display system.
 請求項6に記載の空間浮遊映像表示システムにおいて、
 前記導光体からの光を拡散する拡散板と、
 前記導光体と前記拡散板との空間を挟むように配置される側壁と、を備える、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 6,
a diffusion plate that diffuses light from the light guide;
side walls arranged to sandwich a space between the light guide and the diffuser plate;
Space floating video display system.
 請求項6に記載の空間浮遊映像表示システムにおいて、
 前記リフレクタは、プラスチック材料またはガラス材料または金属材料を用いる、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 6,
The reflector is made of plastic material, glass material or metal material,
Space floating video display system.
 請求項1に記載の空間浮遊映像表示システムにおいて、
 前記第1の反射部を有する第1の光制御パネルと前記第2の反射部を有する第2の光制御パネルは上下に配置されている、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 1,
The first light control panel having the first reflective part and the second light control panel having the second reflective part are arranged one above the other,
Space floating video display system.
 請求項1に記載の空間浮遊映像表示システムにおいて、
 前記第1の反射部を有する第1の光制御パネルと前記第2の反射部を有する第2の光制御パネルは上下に配置され、
 前記第1の反射部と前記第2の反射部は平面視で直角に交差して配置される、
 空間浮遊映像表示システム。
The spatial floating image display system according to claim 1,
A first light control panel having the first reflective part and a second light control panel having the second reflective part are arranged one above the other,
The first reflecting section and the second reflecting section are arranged to intersect at right angles in a plan view,
Space floating video display system.
 映像を表示する表示パネルと、
 前記表示パネルのための光源装置と、
 前記表示パネルからの映像光を反射させ、反射した光により空中に実像の空間浮遊映像を表示させる再帰反射部材と、を備える空間浮遊映像処理システムであって、
 前記再帰反射部材により得られた3つの空間浮遊映像のそれぞれの映像光束の出射方向と発散角を、前記表示パネルと前記光源装置の光源の拡散特性により調整し、
 前記表示パネルに表示される画像に合わせて、光の当たる方向と光の照射面での反射強度に合わせて輝度傾斜を強調する、
 空間浮遊映像処理システム。
a display panel that displays images;
a light source device for the display panel;
A spatial floating image processing system comprising: a retroreflective member that reflects image light from the display panel and displays a real spatial floating image in the air using the reflected light,
adjusting the emission direction and divergence angle of the image luminous flux of each of the three spatially floating images obtained by the retroreflective member according to the diffusion characteristics of the display panel and the light source of the light source device;
emphasizing a brightness gradient in accordance with the direction of light and the intensity of reflection on the light irradiation surface in accordance with the image displayed on the display panel;
Space floating image processing system.
PCT/JP2023/009909 2022-04-13 2023-03-14 Spatial floating video display system and spatial floating video processing system WO2023199685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022066220A JP2023156707A (en) 2022-04-13 2022-04-13 Space floating video display system and space floating video processing system
JP2022-066220 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023199685A1 true WO2023199685A1 (en) 2023-10-19

Family

ID=88329437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009909 WO2023199685A1 (en) 2022-04-13 2023-03-14 Spatial floating video display system and spatial floating video processing system

Country Status (2)

Country Link
JP (1) JP2023156707A (en)
WO (1) WO2023199685A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207615A (en) * 2006-02-02 2007-08-16 Mitsubishi Electric Corp Surface light source device and display device using the surface light source device
JP2013182121A (en) * 2012-03-01 2013-09-12 Seiko Epson Corp Display device
JP2016132361A (en) * 2015-01-20 2016-07-25 カルソニックカンセイ株式会社 Head-up display device
US20180039090A1 (en) * 2016-08-08 2018-02-08 Innolux Corporation Image display system
JP2018097065A (en) * 2016-12-09 2018-06-21 株式会社アスカネット Stereoscopic image formation apparatus and manufacturing method of the same
JP2018097013A (en) * 2016-12-08 2018-06-21 コニカミノルタ株式会社 Method for producing transparent substrate laminate and method for producing aerial image display device
WO2018138940A1 (en) * 2017-01-27 2018-08-02 株式会社アスカネット Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
JP2021189362A (en) * 2020-06-03 2021-12-13 凸版印刷株式会社 Aerial display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207615A (en) * 2006-02-02 2007-08-16 Mitsubishi Electric Corp Surface light source device and display device using the surface light source device
JP2013182121A (en) * 2012-03-01 2013-09-12 Seiko Epson Corp Display device
JP2016132361A (en) * 2015-01-20 2016-07-25 カルソニックカンセイ株式会社 Head-up display device
US20180039090A1 (en) * 2016-08-08 2018-02-08 Innolux Corporation Image display system
JP2018097013A (en) * 2016-12-08 2018-06-21 コニカミノルタ株式会社 Method for producing transparent substrate laminate and method for producing aerial image display device
JP2018097065A (en) * 2016-12-09 2018-06-21 株式会社アスカネット Stereoscopic image formation apparatus and manufacturing method of the same
WO2018138940A1 (en) * 2017-01-27 2018-08-02 株式会社アスカネット Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
JP2021189362A (en) * 2020-06-03 2021-12-13 凸版印刷株式会社 Aerial display device

Also Published As

Publication number Publication date
JP2023156707A (en) 2023-10-25

Similar Documents

Publication Publication Date Title
CN115997157A (en) Space suspended image information display system and light source device used therein
JP7691298B2 (en) Space-floating image display device
WO2023112617A1 (en) Aerial floating image display system
CN116457719A (en) Space suspended image display device
JP2025016526A (en) Space-floating image display device
JP7680830B2 (en) Space-floating image information display system and light source device
JP7367148B2 (en) Space floating video display device
US20250150572A1 (en) Air floating video information display system and stereo sensing apparatus used therein
WO2022118752A1 (en) Floating-in-space-image display device and light source device
WO2023199685A1 (en) Spatial floating video display system and spatial floating video processing system
JP7710938B2 (en) Space-floating image information display system and 3D sensing device used therein
JP7370433B2 (en) Light source device used in spatial floating video information display system
JP2023102461A (en) Spatially-suspended video information displaying system and optical system used therefor
JP2023117741A (en) Spatial floating image information display system and optical system used therefor
WO2023228530A1 (en) Spatial floating image information display system
JP2023087963A (en) Spatial-suspended video information display system and optical system used therefor
JP2023122179A (en) Space floating image display system
JP2023113009A (en) Spatial floating image information display system and retroreflective member used therefor
WO2023136077A1 (en) Spatial floating image display system, light source device used therefor, retroreflective member, and optical system
JP2023115747A (en) Floating image information display system and light source device used therefor
WO2024004557A1 (en) Spatial floating video display system
US20250231418A1 (en) Air floating video display apparatus
WO2024024275A1 (en) Portable spatial floating image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23788107

Country of ref document: EP

Kind code of ref document: A1