WO2023197671A1 - 多跳组网方法、装置、设备、介质及程序产品 - Google Patents
多跳组网方法、装置、设备、介质及程序产品 Download PDFInfo
- Publication number
- WO2023197671A1 WO2023197671A1 PCT/CN2022/141149 CN2022141149W WO2023197671A1 WO 2023197671 A1 WO2023197671 A1 WO 2023197671A1 CN 2022141149 W CN2022141149 W CN 2022141149W WO 2023197671 A1 WO2023197671 A1 WO 2023197671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- hop
- network
- service
- discovery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/005—Discovery of network devices, e.g. terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/104—Peer-to-peer [P2P] networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/14—Direct-mode setup
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to the field of communication technology, and in particular, to a multi-hop networking method, apparatus, equipment, media and program products.
- each node Under the WiFi Direct mechanism, each node performs device discovery and service discovery as a P2P terminal, and then determines its role as GO (Group Owner, group administrator) or GC (Group Client, group administrator) through terminal negotiation. members) to complete the construction of the P2P group. Afterwards, other terminals can access as GC or LC (Legacy Client), thereby realizing close-range data transmission among terminals in the group.
- GO Group Owner, group administrator
- GC Group Client, group administrator
- LC Legacy Client
- the present disclosure provides a multi-hop networking method, device, equipment, medium and program product, which at least to a certain extent overcomes the problem of poor multi-hop connection effect of inter-group equipment in related technologies.
- a multi-hop networking method applied to a first terminal, and the method includes:
- the method before performing device discovery and service discovery as a P2P terminal and obtaining the service information of the neighbor WiFi direct group administrator GO, the method also includes:
- the first terminal When the first terminal cannot serve as the first hop node, it performs device discovery and service discovery as a P2P terminal, and obtains the status information of the neighbor WiFi direct group administrator GO.
- the method further includes:
- a P2P group is established based on WiFi direct connection to become GO.
- the method further includes:
- a service discovery response is sent, and the service discovery response carries GO service information, so that the second terminal determines whether to select the first terminal as the target GO based on the GO service information.
- selecting the target GO as the previous hop according to the GO service information includes:
- the GO with the largest performance weighting value is selected as the target GO as the previous hop.
- GO service information includes GO status information, GO's SSID and password, and the GO status information includes at least one of the following parameters:
- the calculation formula of the performance weighted value of GO is as follows:
- W(i) represents the performance weighted value of GO
- n(i) represents the number of terminal connections
- h(i) represents the number of hops
- P(i) represents the power
- Sc(i) represents the GO network signal strength
- Sw(i) ) represents the WiFi signal strength
- t(i) represents the delay
- N th represents the connection number threshold
- M th represents the hop count threshold
- T th represents the delay threshold
- ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 represent The weight of the parameter and the WiFi signal strength are measured by the first terminal when it discovers the neighboring cell GO.
- device discovery and service discovery are performed as a P2P terminal to obtain the service information of the neighbor WiFi direct group administrator GO, including:
- SD Response includes service information of neighboring cells GO.
- accessing the target GO in a traditional client LC mode includes:
- the method further includes:
- the method further includes:
- the scenario in which the topological connection state cannot be maintained includes at least one of the following scenarios:
- the network strength of the first-hop GO is lower than the first threshold
- the network strength of the non-first-hop GO is higher than the second threshold
- the WiFi signal strength between the non-first-hop GO and the previous hop GO is lower than the third threshold
- the network connection Failure the number of GO terminal connections is greater than the fourth threshold.
- a multi-hop networking device applied to a first terminal, and the device includes:
- the information acquisition module is configured to perform device discovery and service discovery as a P2P terminal, and obtain the service information of the neighboring WiFi direct connection group administrator GO;
- the target selection module is configured to select the target GO as the previous hop based on the GO service information
- the access module is configured to access the target GO in the traditional client LC mode
- the group building module is configured to establish a P2P group as GO based on WiFi direct connection.
- an electronic device including: a processor; and a memory for storing executable instructions of the processor; wherein the processor is configured to execute the executable instructions via Execute the above multi-hop networking method.
- a computer-readable storage medium on which a computer program is stored.
- the computer program is executed by a processor, the above-mentioned multi-hop networking method is implemented.
- a computer program product including a computer program that implements any of the above multi-hop networking methods when executed by a processor.
- the first terminal performs device discovery and service discovery as a P2P terminal, and obtains the service information of the neighboring WiFi direct connection group administrator GO; and then selects the target based on the GO service information.
- GO serves as the previous hop, and accesses the GO of the previous hop, and establishes a P2P group based on WiFi direct connection to become GO.
- Each terminal in the multi-hop network of the embodiment of the present application serves as a GO of a P2P group, which facilitates flexible expansion and dynamic adjustment of the network.
- Figure 1 shows a schematic flow chart of a multi-hop networking method in an embodiment of the present disclosure
- Figure 2 shows a schematic flow chart of another multi-hop networking method in an embodiment of the present disclosure
- Figure 3 shows a schematic flowchart of the selection process of target GO in the embodiment of the present disclosure
- Figure 4 shows a schematic flow chart of yet another multi-hop networking method in an embodiment of the present disclosure
- Figure 5 shows a schematic flow chart of yet another multi-hop networking method in an embodiment of the present disclosure
- Figure 6 shows a schematic diagram of a multi-hop networking device in an embodiment of the present disclosure
- Figure 7 shows a structural block diagram of a computer device in an embodiment of the present disclosure.
- Example embodiments will now be described more fully with reference to the accompanying drawings.
- Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
- the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
- terminal communication In the 5G communication system, smart terminals have been widely used, and the demand for wireless communication has increased dramatically.
- terminal communication relies on network infrastructure, such as WiFi APs and cellular base stations.
- network infrastructure such as WiFi APs and cellular base stations.
- terminal communications will suffer from bottlenecks in hot spots (such as stadiums, concerts), coverage blind spots (mountainous areas, suburbs), or when infrastructure fails due to natural disasters.
- This promotes the development of local communication systems for D2D communication, such as Bluetooth and WiFi Direct.
- WiFi Direct Compared to Bluetooth, WiFi Direct has better network coverage and data transmission rate. Therefore, in order to further solve the problem of limited bandwidth and assist terminal devices in communicating without a network, you can consider building a local network based on WiFi Direct.
- each node performs device discovery and service discovery as a P2P terminal, and then decides its role as GO (Group Owner) or GC (Group Client) through terminal negotiation, completing the construction of the P2P group. . Afterwards, other terminals can access as GC or LC (Legacy Client), thereby realizing close-range data transmission among terminals in the group.
- the original WiFi Direct is only used for intra-group communication. In large-scale scenarios, it is often necessary to implement multi-hop connections between devices in the group.
- certain research results have been achieved in multi-hop networking based on WiFi Direct, but it still requires each terminal to negotiate to become GO and GC.
- the network topology is not flexible enough and the scope is not broad enough.
- the existing research only considers the interoperability between terminals, and does not realize distributed routing when each terminal transmits/requests data services to the base station, etc., nor does it consider how to support network status changes, user access, movement, departure, etc. Events, lack a comprehensive and flexibly deployable local communication network.
- the present disclosure provides a multi-hop networking method, device, equipment and storage medium, which can at least solve the problems in the related art that the multi-hop connection effect of inter-group equipment is poor and the expansion is not flexible enough.
- inventions of the present disclosure provide a multi-hop networking method, which is applied to a first terminal.
- the first terminal can be any electronic device with computing processing capabilities.
- the execution subject of the multi-hop networking method may be at least one of the user terminals such as mobile phones, tablets, wearable devices, etc. that can be configured to execute the multi-hop networking method provided by the embodiments of the present disclosure,
- the execution subject of the method can also be the client itself that can execute the method.
- Figure 1 shows a flow chart of a multi-hop networking method in an embodiment of the present disclosure.
- the multi-hop networking method provided in an embodiment of the present disclosure includes the following steps:
- S102 perform device discovery and service discovery as a P2P terminal, and obtain the service information of the neighboring WiFi direct connection group administrator GO;
- S108 Establish a P2P group based on WiFi direct connection to become GO.
- each terminal in the multi-hop network serves as a GO of a P2P group, which facilitates flexible expansion and dynamic adjustment of the network.
- the terminal that directly accesses the cellular/WiFi network is the first-hop GO, that is, the gateway GO.
- Other GOs access other groups in the form of LC and can transmit/request data services to the network through the connection link.
- the WiFi Direct standard allows devices in a wireless network to connect to each other without going through a wireless router.
- This standard supports WiFi wireless devices that are interconnected in a point-to-point manner like Bluetooth. Compared with Bluetooth, the transmission speed and transmission distance are greatly improved, and the power consumption is also higher than Bluetooth.
- WiFi direct connection is a point-to-point connection technology. It can directly establish a tcp/ip link between two stations without the participation of AP.
- One of the stations will function as an AP in the traditional sense and is called a Group. Owner (GO), the other station is called Group Client (GC), connected to GO like an AP.
- GO and GC can not only be one-to-one, but also one-to-many.
- WiFi direct connection and traditional WiFi technology are not mutually exclusive: GO can provide services for several GCs like an AP; it can also connect to an AP like a traditional station; it can also be an AP itself.
- the method before performing device discovery and service discovery as a P2P terminal and obtaining the service information of the neighbor WiFi direct group administrator GO, the method further includes:
- Whether to serve as the first hop node is determined based on the network information, which includes the network connection status and network signal strength of the first terminal.
- the terminal that can connect to the network decides whether to serve as the first hop node, that is, the gateway node, based on its own network information.
- the terminal as the gateway node does not perform GO negotiation, but directly establishes a group based on WiFi Direct, and marks itself as GO, allowing other terminals to access the network. enter.
- a P2P group is established based on WiFi direct connection to become GO;
- the first terminal When the first terminal cannot serve as the first hop node, it performs device discovery and service discovery as a P2P terminal, and obtains the service information of the neighbor WiFi direct group administrator GO.
- the network in the above “network information” can be a cellular network or a WiFi network.
- the present disclosure does not limit the type of network.
- the terminal directly establishes a group by itself as a GO, and accesses other groups as an LC.
- the negotiation and group establishment process of each terminal can be simplified, and any terminal in the network can access other groups or be accessed by other terminals, making the network architecture more flexible.
- the first terminal performs device discovery and service discovery as a P2P terminal, and obtains service information of neighboring GOs; the terminal uses the received GO service information as the basis for routing decisions, and selects the appropriate GO as the previous hop; and in LC mode After accessing the previous hop GO, no GO negotiation will be performed, and the GO will be established directly based on WiFi Direct.
- the recorded hop number is the previous hop + 1, allowing other terminals to access.
- the terminal continuously broadcasts beacon frames (Beacon) to announce the existence of the group, responds to device discovery and service discovery requests from other P2P terminals, and carries GO service information in the service discovery response.
- Beacon beacon frames
- the method may also include the following steps:
- the second terminal sends device discovery and service discovery requests
- the second terminal determines whether to select the first terminal as the target GO based on the GO service information.
- the above-mentioned process of device discovery and service discovery in S210 and S212 is similar to the process of S102 in which the first terminal performs device discovery and service discovery as a P2P terminal and obtains the service information of the neighbor WiFi direct group administrator GO.
- performing device discovery and service discovery as a P2P terminal to obtain the service information of the neighbor WiFi direct group administrator GO can be implemented as follows:
- SD Response includes service information of neighboring cell GO.
- GO service information may include GO status information, GO SSID and password.
- GO status information includes but is not limited to at least one of the following information:
- the service information of the GO when the GO is the first hop, also includes the network signal strength; when the GO is the non-first hop, the service information of the GO also includes the delay to the base station.
- accessing the target GO in LC mode in the above steps can be done by using the SSID and password in the GO service information to access the target GO in the LC role.
- the target GO is selected as the previous hop based on the GO service information.
- the terminal may weight the discovered GO service information one by one to characterize the GO performance and select the optimal previous hop G0.
- selecting the target GO may include the following steps:
- the network signal strength can be the cellular signal strength of the GO, or the WiFi signal strength of the GO connection.
- the performance weighted value of GO is calculated as follows:
- W(i) represents the performance weighted value of GO
- n(i) represents the number of terminal connections
- h(i) represents the number of hops
- P(i) represents the power
- Sc(i) represents the GO network signal strength
- Sw(i) ) represents the WiFi signal strength
- t(i) represents the delay
- N th represents the connection number threshold
- M th represents the hop count threshold
- T th represents the delay threshold
- ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 represent The weight of the parameter and the WiFi signal strength are measured by the first terminal when it discovers the neighboring cell GO.
- the overall network topology construction and routing selection can be completed to realize the transmission/request of data services to the network.
- the method may also include:
- S410 Complete the overall network topology construction and routing selection, and realize the transmission/request of data services to the network.
- the P2P group when the topological connection state cannot be maintained, the P2P group is disbanded, and network status determination and connection construction are re-executed.
- the terminal can re-judge the network status and build connections to achieve adaptive dynamic adjustment of the network.
- the scenario in which the topological connection state cannot be maintained may include but is not limited to at least one of the following scenarios:
- the network strength of the first-hop GO is lower than the first threshold
- the network strength of the non-first-hop GO is higher than the second threshold
- the WiFi signal strength between the non-first-hop GO and the previous hop GO is lower than the third threshold
- the network connection Failure the number of GO terminal connections is greater than the fourth threshold.
- first threshold and the second threshold may be the same or different, and are not limited here.
- each terminal can transmit/request data services to the cellular base station.
- the terminal can disband the group on its own and re-judge the network status and build connections to achieve adaptive dynamic adjustment of the network.
- the group will be deleted and jump to the above step of deciding whether to serve as the first hop node based on network information.
- a non-gateway GO if the cellular strength of a non-gateway GO is higher than the threshold and it is considered that it can serve as a gateway GO, it will disconnect from the up-hop GO and mark itself as a gateway GO. Connected lower-level terminals will not be affected.
- GO in order to confirm the network connection status, GO periodically sends ping packets. If the ping fails for three consecutive times, it is considered that the network connection has failed, the group will be deleted, and the group will be deleted and jump to the step above to determine whether to serve as the first hop node based on the network information. .
- GO will deny access to other terminals until a terminal leaves.
- the multi-hop networking method takes into account terminal performance, network changes, user access, movement, departure and other events, solves the routing problem of each terminal transmitting/requesting data services under the distributed network, and ensures the security of each terminal.
- User experience build a local communication network with comprehensive functions and flexible networking.
- each terminal collects its own cellular information
- the cellular information includes cellular connection status and cellular signal strength.
- the cellular signal strength is higher than the threshold, it determines that it can serve as a gateway node, executes S503 to establish a group based on WiFi Direct, and directly marks itself as a gateway GO, with a recorded hop count of 1.
- S504 continues to broadcast Beacon frames and respond to other P2P terminals at the same time. device discovery and service discovery requests, and carries its own status information in the service discovery response.
- the device discovery and service discovery process is performed.
- the specific process is as follows:
- the terminal scans the 1/6/11 channel as a P2P terminal, and sends a Probe Request frame on each channel for device discovery; S506, if the Probe Response frame or GO cycle of the GO response is received on a certain channel Beacon frame of sexual broadcast, enter the service discovery process, otherwise resend the Probe Request frame;
- a service discovery request SD query is sent, and GO's service information is obtained through the SD Response returned by GO, including GO's status information, GO's SSID and password.
- GO's status information includes hop count, power, and connection. number, cellular signal strength (first hop) or delay to the base station (non-first hop), etc.
- S508 Calculate the performance weighted value of GO by weighting the obtained number of GO hops, power, number of connections, cellular strength/delay and the WiFi signal strength measured by yourself.
- the calculation formula of the weighted value can adopt the formula (1) above.
- S509 Select the GO with the optimal performance weighting value as the previous hop. And record its own hop count as the previous hop plus 1; S510, establishes a group based on WiFi Direct and directly sets itself as GO, and accesses the previous hop GO as LC role through SSID and password to complete routing selection; S511 continues to broadcast Beacon frames respond to device discovery and service discovery requests from other P2P terminals at the same time, and carry their own service information in the service discovery response.
- the terminal continues to perform device discovery and service discovery, and then goes to S505.
- each terminal can transmit/request data services to the cellular base station.
- the terminal can re-judge the network status and build connections to achieve adaptive dynamic adjustment of the network. details as follows:
- GO In order to confirm the network connection status, GO periodically sends ping packets. If the ping fails for three consecutive times, it is considered that the network connection has failed, the group will be deleted, and the group will be deleted and jump to the step above to determine whether to serve as the first hop node based on the status network information;
- This disclosed embodiment divides terminals according to network connection status, taking into account terminal transmission requirements, network changes, user access, movement, departure and other events, based on the proposed networking mechanism, using the terminal status obtained in service discovery Information, select appropriate paths to build local communication networks, and solve the problem of multi-hop forwarding of data in distributed networks.
- embodiments of the present disclosure also provide a multi-hop networking device, as described in the following embodiments. Since the problem-solving principle of this device embodiment is similar to that of the above-mentioned method embodiment, the implementation of this device embodiment can refer to the implementation of the above-mentioned method embodiment, and repeated details will not be repeated.
- Figure 6 shows a schematic diagram of a multi-hop networking device in an embodiment of the present disclosure, applied to the first terminal.
- the multi-hop networking device 600 includes:
- the information acquisition module 602 is configured to perform device discovery and service discovery as a P2P terminal, and obtain the service information of the neighboring WiFi direct connection group administrator GO;
- the target selection module 604 is configured to select the target GO as the previous hop according to the GO service information
- the access module 606 is configured to access the target GO in the traditional client LC mode
- the group establishment module 608 is configured to establish a P2P group as GO based on WiFi direct connection.
- the multi-hop networking device 600 may also include:
- the information judgment module is configured to decide whether to serve as the first hop node based on network information.
- the network information includes the network connection status and network signal strength of the first terminal;
- the information acquisition module 602 can be specifically configured to perform device discovery and service discovery as a P2P terminal when the first terminal cannot serve as the first hop node, and obtain the service information of the neighbor WiFi direct group administrator GO. .
- the multi-hop networking device 600 may also include:
- the second group building module is configured to establish a P2P group as a GO based on WiFi direct connection when the first terminal is the first hop node.
- the second group building module may be the same module as the above group building module 608, or it may be a different module.
- the multi-hop networking device 600 may also include:
- a request receiving module configured to receive device discovery and service discovery requests from the second terminal
- the service response module is configured to respond to the device discovery and service discovery requests of the second terminal and send a service discovery response, where the service discovery response carries GO service information, so that the second terminal determines whether to select the first terminal based on the GO service information. As a target GO.
- the target selection module 604 can be implemented as follows:
- the GO with the largest performance weighting value is selected as the target GO as the previous hop.
- GO service information includes GO status information, GO SSID and password, and GO status information includes but is not limited to at least one of the following parameters:
- the calculation formula of the performance weighted value of GO is as follows:
- W(i) represents the performance weighted value of GO
- n(i) represents the number of terminal connections
- h(i) represents the number of hops
- P(i) represents the power
- Sc(i) represents the GO network signal strength
- Sw(i) ) represents the WiFi signal strength
- t(i) represents the delay
- N th represents the connection number threshold
- M th represents the hop count threshold
- T th represents the delay threshold
- ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and ⁇ 5 represent The weight of the parameter.
- the information acquisition module 602 can be implemented as follows:
- SD Response includes service information of neighboring cell GO.
- the access module 606 may be specifically configured as:
- the multi-hop networking device 600 may also include:
- the topology building module is configured to complete the overall network topology construction and routing selection, and realize the transmission/request of data services to the network.
- the topology building module can also be configured as:
- the P2P group is disbanded and the network status is judged and the connection is established again.
- the scenario in which the topological connection state cannot be maintained includes at least one of the following scenarios:
- the cellular strength of the first-hop GO is lower than the first threshold
- the cellular strength of the non-first-hop GO is higher than the second threshold
- the WiFi signal strength between the non-first-hop GO and the previous hop GO is lower than the third threshold
- the network connection Failure the number of GO terminal connections is greater than the fourth threshold.
- first threshold and the second threshold may be the same or different, and are not limited here.
- the multi-hop networking device provided by the embodiments of the present application can be configured to execute the multi-hop networking method provided by the above method embodiments. Its implementation principles and technical effects are similar, and will not be described again for the sake of brief introduction.
- FIG. 7 An electronic device 700 according to this embodiment of the present disclosure is described below with reference to FIG. 7 .
- the electronic device 700 shown in FIG. 7 is only an example and should not bring any limitations to the functions and usage scope of the embodiments of the present disclosure.
- electronic device 700 is embodied in the form of a general computing device.
- the components of the electronic device 700 may include, but are not limited to: the above-mentioned at least one processing unit 710, the above-mentioned at least one storage unit 720, and a bus 730 connecting different system components (including the storage unit 720 and the processing unit 710).
- the storage unit stores program code, and the program code can be executed by the processing unit 710, so that the processing unit 710 performs various exemplary methods according to the present disclosure described in the "Example Method" section of this specification. Implementation steps.
- the processing unit 710 can perform the following steps of the above method embodiment:
- the storage unit 720 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 7201 and/or a cache storage unit 7202, and may further include a read-only storage unit (ROM) 7203.
- RAM random access storage unit
- ROM read-only storage unit
- Storage unit 720 may also include a program/utility 7204 having a set of (at least one) program modules 7205 including, but not limited to: an operating system, one or more application programs, other program modules, and program data, Each of these examples, or some combination, may include the implementation of a network environment.
- Bus 730 may be a local area representing one or more of several types of bus structures, including a memory unit bus or memory unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or using any of a variety of bus structures. bus.
- Electronic device 700 may also communicate with one or more external devices 740 (e.g., keyboard, pointing device, Bluetooth device, etc.), may also communicate with one or more devices that enable a user to interact with electronic device 700, and/or with Any device (eg, router, modem, etc.) that enables the electronic device 700 to communicate with one or more other computing devices. This communication may occur through input/output (I/O) interface 750.
- external devices 740 e.g., keyboard, pointing device, Bluetooth device, etc.
- Any device eg, router, modem, etc.
- the electronic device 700 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 760.
- networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet.
- LAN local area network
- WAN wide area network
- Internet public network
- network adapter 760 communicates with other modules of electronic device 700 through bus 730 .
- the example embodiments described here can be implemented by software, or can be implemented by software combined with necessary hardware. Therefore, the technical solution according to the embodiment of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a terminal device, a network device, etc.) to execute a method according to an embodiment of the present disclosure.
- a computing device which may be a personal computer, a server, a terminal device, a network device, etc.
- a computer-readable storage medium is also provided, and the computer-readable storage medium may be a readable signal medium or a readable storage medium.
- Program products capable of implementing the above methods of the present disclosure are stored thereon.
- various aspects of the present disclosure can also be implemented in the form of a program product, which includes program code.
- program product When the program product is run on a terminal device, the program code is used to cause the The terminal device performs the steps according to various exemplary embodiments of the present disclosure described in the above "Example Method" section of this specification.
- Computer-readable storage media in this disclosure may include, but are not limited to: electrical connections having one or more wires, portable computer disks, hard drives, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
- RAM random access memory
- ROM read only memory
- EPROM or flash memory Erasable programmable read-only memory
- CD-ROM portable compact disk read-only memory
- magnetic storage device or any suitable combination of the above.
- a computer-readable storage medium may include a data signal propagated in baseband or as part of a carrier wave carrying readable program code therein.
- Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
- a readable signal medium may also be any readable medium other than a readable storage medium that can send, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
- program code embodied on a computer-readable storage medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical cable, RF, etc., or any suitable combination of the foregoing.
- program code for performing operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., and Includes conventional procedural programming languages—such as "C” or similar programming languages.
- the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
- the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as provided by an Internet service. (business comes via Internet connection).
- LAN local area network
- WAN wide area network
- Internet service business comes via Internet connection
- the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one module or unit described above may be further divided into being embodied by multiple modules or units.
- the technical solution according to the embodiment of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a mobile terminal, a network device, etc.) to execute a method according to an embodiment of the present disclosure.
- a non-volatile storage medium which can be a CD-ROM, U disk, mobile hard disk, etc.
- a computing device which may be a personal computer, a server, a mobile terminal, a network device, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开提供了一种多跳组网方法、装置、设备及存储介质,涉及通信技术领域。该方法包括:第一终端以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;根据GO服务信息,选择目标GO作为上一跳;以传统客户端LC方式接入目标GO;基于WiFi直连建立P2P组成为GO。本申请实施例的多跳网络内每个终端都作为一个P2P组的GO,方便网络的灵活扩展和动态调整。
Description
相关申请的交叉引用
本公开要求于2022年04月12日提交的申请号为202210383835.4,名称为“多跳组网方法、装置、设备及存储介质”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
本公开涉及通信技术领域,尤其涉及一种多跳组网方法、装置、设备、介质及程序产品。
在WiFi直连(WiFi Direct)机制下,各节点以P2P终端的身份进行设备发现与服务发现,接着通过终端协商,决定自身角色为GO(Group Owner,组管理员)或GC(Group Client,组成员),完成P2P组的构建。之后其他终端可以以GC或者LC(Legacy Client)的身份进行接入,从而实现组内终端近距离的数据传输。然而,原始的WiFi Direct仅用于组内通信,在大规模场景下往往更需要实现组间设备的多跳连接。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种多跳组网方法、装置、设备、介质及程序产品,至少在一定程度上克服相关技术中组间设备的多跳连接效果较差的问题。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供一种多跳组网方法,应用于第一终端,方法包括:
以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;
根据GO服务信息,选择目标GO作为上一跳;
以传统客户端LC方式接入目标GO;
基于WiFi直连建立P2P组成为GO。
在本公开的一个实施例中,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息之前,方法还包括:
根据网络信息决定是否作为第1跳节点,网络信息包括第一终端的网络连接状态与网络信号强度;
以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组 管理员GO的状态信息,包括:
在第一终端不能作为第1跳节点时,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的状态信息。
在本公开的一个实施例中,方法还包括:
在第一终端为第1跳节点时,基于WiFi直连建立P2P组成为GO。
在本公开的一个实施例中,方法还包括:
接收第二终端的设备发现和服务发现请求;
响应于第二终端的设备发现和服务发现请求,发送服务发现响应,服务发现响应中携带有GO服务信息,以使第二终端基于GO服务信息判断是否选择第一终端作为目标GO。
在本公开的一个实施例中,根据GO服务信息,选择目标GO作为上一跳,包括:
通过对获取的GO信息中的多个参数进行加权,计算出GO的性能加权值;
在性能加权值最大的GO的性能加权值大于预设性能阈值时,选择性能加权值最大的GO为目标GO作为上一跳。
在本公开的一个实施例中,GO服务信息包括GO状态信息、GO的SSID和密码,所述GO状态信息包括如下参数中的至少一种:
终端连接数、跳数、电量、网络信号强度、时延。
在本公开的一个实施例中,GO的性能加权值的计算公式如下所示:
其中,W(i)表示GO的性能加权值,n(i)表示终端连接数,h(i)表示跳数,P(i)表示电量,Sc(i)表示GO网络信号强度,Sw(i)表示WiFi信号强度,t(i)表示时延,N
th表示连接数阈值,M
th表示跳数阈值,T
th表示时延阈值,ω
1、ω
2、ω
3、ω
4、ω
5表示参数的权重,WiFi信号强度为所述第一终端在发现邻区GO时测量得到的。
在本公开的一个实施例中,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息,包括:
以P2P终端的身份在1/6/11信道上进行扫描,并在每个信道上发送Probe Request帧进行设备发现;
若在信道接收到GO响应的Probe Response帧或GO周期性广播的Beacon帧,进入服务发现流程,发送服务发现请求SD query,以使邻区WiFi直连组管理员GO响应SD query,回复SD Response,SD Response 包括邻区GO的服务信息。
在本公开的一个实施例中,以传统客户端LC方式接入目标GO,包括:
通过GO服务信息中的SSID和密码以LC角色接入目标GO。
在本公开的一个实施例中,方法还包括:
完成整体网络拓扑构建和路由选择,实现数据业务到网络的传输/请求。
在本公开的一个实施例中,方法还包括:
在拓扑连接状态无法维持时,重新进行网络状态判断与连接构建。
在本公开的一个实施例中,拓扑连接状态无法维持的场景,包括如下场景中的至少一种:
第1跳GO的网络强度低于第一阈值、非第1跳GO的网络强度高于第二阈值、非第1跳GO与上一跳GO间的WiFi信号强度低于第三阈值、网络连接失败、GO终端连接数大于第四阈值。
根据本公开的另一个方面,提供一种多跳组网装置,应用于第一终端,装置包括:
信息获取模块,被配置为以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;
目标选择模块,被配置为根据GO服务信息,选择目标GO作为上一跳;
接入模块,被配置为以传统客户端LC方式接入目标GO;
建组模块,被配置为基于WiFi直连建立P2P组成为GO。
根据本公开的再一个方面,提供一种电子设备,包括:处理器;以及存储器,用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述的多跳组网方法。
根据本公开的又一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的多跳组网方法。
根据本公开的另一个方面,还提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现上述任意一项的多跳组网方法。
本公开的实施例所提供的多跳组网方法,第一终端以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;然后根据GO服务信息选择目标GO作为上一跳,并接入上一跳的GO,以及基于WiFi直连建立P2P组成为GO。本申请实施例的多跳网络内每个终端都作为一个P2P组的GO,方便网络的灵活扩展和动态调整。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开实施例中一种多跳组网方法流程示意图;
图2示出本公开实施例中另一种多跳组网方法流程示意图;
图3示出本公开实施例中目标GO的选择流程示意图;
图4示出本公开实施例中又一种多跳组网方法流程示意图;
图5示出本公开实施例中再一种多跳组网方法流程示意图;
图6示出本公开实施例中一种多跳组网装置示意图;
图7示出本公开实施例中一种计算机设备的结构框图。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
5G通信系统中,智能终端得到了广泛的应用,无线通信需求急剧增长。然而,终端的通信依赖于网络基础设施,如WiFi AP和蜂窝基站。但在热点区域(如体育场、音乐会)、覆盖盲点(山区、郊区)、或自然灾害导致基础设施产生故障时,终端通信将遭受瓶颈。这促进了本地通信系统在D2D通信上的发展,如蓝牙和WiFi Direct。其中,相较于蓝牙,WiFi Direct拥有更好的网络覆盖范围和数据传输速率。因此,为了进一步解决带宽受限难题,辅助终端设备在无网络状态下的通信,可以考虑基于WiFi Direct实现本地网络的构建。
发明人发现,在WiFi Direct机制下,各节点以P2P终端的身份进行设备发现与服务发现,接着通过终端协商,决定自身角色为GO(Group Owner)或GC(Group Client),完成P2P组的构建。之后其他终端可以 以GC或者LC(Legacy Client)的身份进行接入,从而实现组内终端近距离的数据传输。
然而,原始的WiFi Direct仅用于组内通信,在大规模场景下往往更需要实现组间设备的多跳连接。近年来在基于WiFi Direct的多跳组网方面已有了一定的研究成果,但其仍需各终端通过协商成为GO与GC,网络拓扑不够灵活,范围不够广阔。且现有的研究只考虑了终端之间的互通,没有实现各终端向基站等传输/请求数据业务时的分布式路由选择,也没有考虑如何支持网络状态变化、用户接入、移动、离开等事件,缺乏一个功能全面、可灵活部署的本地通信网络。
基于发明人的上述发现,本公开提供了一种多跳组网方法、装置、设备及存储介质,至少可以解决相关技术中组间设备的多跳连接效果较差,扩展不够灵活的问题。
下面结合附图及实施例对本示例实施方式进行详细说明。
首先,本公开实施例中提供了一种多跳组网方法,该方法应用于第一终端,第一终端可以是任意具备计算处理能力的电子设备。
作为一个示例,该多跳组网方法的执行主体,可以是手机、平板电脑、可穿戴设备等能够被配置为执行本公开实施例提供的多跳组网方法的用户终端中的至少一种,或者,该方法的执行主体,还可以是能够执行该方法的客户端本身。
图1示出本公开实施例中一种多跳组网方法流程图,如图1所示,本公开实施例中提供的多跳组网方法包括如下步骤:
S102,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;
S104,根据GO服务信息,选择目标GO作为上一跳;
S106,以传统客户端LC(Legacy Client)方式接入目标GO;
S108,基于WiFi直连建立P2P组成为GO。
需要说明的是,上述步骤中可以先执行S106再执行S108,也可以先执行S108然后再执行S106。步骤的具体执行顺序本公开不作限定。本公开实施例提供的多跳组网方法,多跳网络内每个终端都作为一个P2P组的GO,方便网络的灵活扩展和动态调整。其中,直接接入蜂窝/WiFi网络的终端为第1跳GO,即网关GO,其他GO以LC的方式接入其他组,可通过连接链路向网络传输/请求数据业务。
下面对上述步骤进行详细说明,具体如下所示:
WiFi直连(WiFi Direct)标准是指允许无线网络中的设备无须通过无线路由器即可相互连接。这种标准支持WiFi的无线设备像蓝牙那样以点对点的形式互连,与蓝牙相比,在传输速度与传输距离方面有大幅提升,功耗方面也比蓝牙要高。
WiFi直连是一种点对点连接技术,它可以在两台station之间直接建 立tcp/ip链接,并不需要AP的参与;其中一台station会起到传统意义上的AP的作用,称为Group Owner(GO),另外一台station则称为Group Client(GC),像连接AP一样连接到GO。GO和GC不仅可以是一对一,也可以是一对多。WiFi直连和传统WiFi技术并不是互斥的:GO可以像AP一样为几台GC提供服务;它同时可以像传统的station一样,连接到某个AP;它同时自己也可以是一个AP。
在一些实施例中,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息之前,方法还包括:
根据网络信息决定是否作为第1跳节点,网络信息包括第一终端的网络连接状态与网络信号强度。
能连接网络的终端根据自身的网络信息决定是否作为第1跳节点,即网关节点,作为网关节点的终端不进行GO协商,直接基于WiFi Direct建组,并将自身标记为GO,允许其他终端接入。
也就是说,在第一终端为第1跳节点时,基于WiFi直连建立P2P组成为GO;
在第一终端不能作为第1跳节点时,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息。
上述“网络信息”中的网络可以是蜂窝网络,也可以是wifi网络,对于网络的类型,本公开不作限定。
本公开实施例中终端直接自行建组成为GO,并以LC身份接入其他组。可以简化各终端协商建组流程,且网络内的任意终端都可以接入其他组,或被其他终端接入,网络架构更加灵活。
第一终端以P2P终端的身份进行设备发现与服务发现,获取邻区GO的服务信息;终端以接收到的GO服务信息作为路由决策的依据,选择合适的GO作为上一跳;并以LC方式接入上一跳GO,之后不进行GO协商,直接基于WiFi Direct建组成为GO,记录跳数为上一跳+1,允许其他终端接入。
作为GO的终端持续广播信标帧(Beacon)来宣告本组的存在,同时响应其他P2P终端的设备发现和服务发现请求,并在服务发现响应中携带GO服务信息。
在一些实施例中,如图2所示,在图1所示实施例的基础上,该方法还可以包括如下步骤:
S210,第二终端发送设备发现和服务发现请求;
S212,响应于第二终端的设备发现和服务发现请求,发送服务发现响应,服务发现响应中携带有GO服务信息;
S214,第二终端基于GO服务信息判断是否选择第一终端作为目标GO。
上述S210和S212进行设备发现和服务发现的流程与前文中S102第 一终端以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息的流程相似。
作为一个示例,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息,可以具体实现如下:
以P2P终端的身份在1/6/11信道上进行扫描,并在每个信道上发送Probe Request帧进行设备发现;
若在信道接收到GO响应的Probe Response帧或GO周期性广播的Beacon帧,进入服务发现流程,发送服务发现请求SD query,以使邻区WiFi直连组管理员GO响应SD query,回复SD Response,SD Response包括邻区GO的服务信息。
在一些实施例中,GO的服务信息,可以包括GO状态信息、GO的SSID和密码,GO状态信息包括但不限于如下信息中的至少一种:
跳数、电量、连接数。
在一些实施例中,在GO为第1跳时,GO的服务信息还包括网络信号强度;在GO为非第1跳时,GO的服务信息还包括到基站的时延。
相应地,上述步骤中以LC方式接入目标GO,可以是通过GO服务信息中的SSID和密码以LC角色接入目标GO。
上述实施例中根据GO服务信息,选择目标GO作为上一跳,可以是终端逐个对发现的GO的服务信息进行加权,实现对GO性能的表征,择优选择上一跳G0。
在一些实施例中,如图3所示,选择目标GO可以包括如下步骤:
S302,通过对获取的GO信息中的多个参数进行加权,计算出GO的性能加权值;
S304,在性能加权值最大的GO的性能加权值大于预设性能阈值时,选择性能加权值最大的GO为目标GO作为上一跳。
上述实施例中的GO服务信息可以包括但不限于如下参数:
终端连接数、跳数、电量、网络信号强度、时延。
其中,网络信号强度可以是GO的蜂窝信号强度,也可以是GO连接的WiFi信号强度。
作为一个示例,GO的性能加权值的计算公式如下所示:
其中,W(i)表示GO的性能加权值,n(i)表示终端连接数,h(i)表示跳数,P(i)表示电量,Sc(i)表示GO网络信号强度,Sw(i)表示WiFi信号 强度,t(i)表示时延,N
th表示连接数阈值,M
th表示跳数阈值,T
th表示时延阈值,ω
1、ω
2、ω
3、ω
4、ω
5表示参数的权重,WiFi信号强度为所述第一终端在发现邻区GO时测量得到的。
在一些实施例中,在每个终端都接入上一跳GO后,可以完成整体网络拓扑构建和路由选择,实现数据业务到网络的传输/请求。
如图4所示,在图1实施例的基础上,该方法还可以包括:
S410,完成整体网络拓扑构建和路由选择,实现数据业务到网络的传输/请求。
在一些实施例中,在拓扑连接状态无法维持时,解散P2P组,重新进行网络状态判断与连接构建。
若由于突发事件(网络状态变化、用户接入、移动、离开等)导致拓扑连接状态无法维持,则终端可重新进行网络状态判断与连接构建,实现网络的自适应动态调整。
在一些实施例中,拓扑连接状态无法维持的场景,可以包括但不限于如下场景中的至少一种:
第1跳GO的网络强度低于第一阈值、非第1跳GO的网络强度高于第二阈值、非第1跳GO与上一跳GO间的WiFi信号强度低于第三阈值、网络连接失败、GO终端连接数大于第四阈值。
需要说明的是,这里第一阈值和第二阈值可以相同,也可以不同,在此不作限定。
当网络拓扑构建完成,各终端可向蜂窝基站传输/请求数据业务。此外,对于动态网络下出现突发事件导致拓扑连接状态无法维持的情况,终端可自行解散组,并重新进行网络状态判断与连接构建,实现网络的自适应动态调整。
作为一个示例,若网关GO的蜂窝强度低于阈值,认为其无法继续担任网关GO,则删除组,跳转至上文中根据网络信息决定是否作为第1跳节点的步骤。
作为另一个示例,若非网关GO的蜂窝强度高于阈值,认为其可担任网关GO,则断开与上跳GO的连接,标记自身为网关GO,已连接的下级终端不受影响。
作为又一个示例,若非网关GO与上一跳GO间的WiFi信号强度低于阈值,认为其无法维持连接,则删除组,跳转至上文中根据网络信息决定是否作为第1跳节点的步骤。
作为再一个示例,为确认网络连接状态,GO周期性发送ping包,若连续3次ping不通,认为网络连接失败,则删除组,跳转至上文中根据网络信息决定是否作为第1跳节点的步骤。
作为又一个示例,若GO终端连接数饱和(超出设定的阈值),认为 GO难以支撑更多终端设备的数据传输,则GO拒绝其他终端接入,直至有终端离开。
本公开实施例提供的多跳组网方法,考虑终端性能,考虑网络变化、用户接入、移动、离开等事件,解决分布式网络下各终端传输/请求数据业务的路由问题,保障各终端的用户体验,构建功能全面、组网灵活的本地通信网络。
下面结合附图5详细说明本公开实施例提供的多跳组网方法,如图5所示,以向蜂窝网络传输/请求数据业务为例,该方法包括如下步骤:
S501,各终端收集自身蜂窝信息;
这里,蜂窝信息包括蜂窝连接状态与蜂窝信号强度。
S502,判断蜂窝信号强度是否高于预设阈值;
若蜂窝信号强度高于该阈值,则判断自身可以担任网关节点,执行S503基于WiFi Direct建组,并直接标记自身为网关GO,记录跳数为1,S504持续广播Beacon帧,同时响应其他P2P终端的设备发现和服务发现请求,并在服务发现响应中携带自身状态信息。
若蜂窝信号强度不高于该阈值,则判断自身无法担任网关节点,执行设备发现与服务发现过程,具体流程如下:
S505,终端以P2P终端的身份在1/6/11信道上进行扫描,并每个信道上发送Probe Request帧进行设备发现;S506,若在某个信道接收到GO响应的Probe Response帧或GO周期性广播的Beacon帧,进入服务发现流程,否则重新发送Probe Request帧;
S507,服务发现过程中发送服务发现请求SD query,并通过GO回复的SD Response中得到GO的服务信息,包括GO的状态信息、GO的SSID和密码,GO的状态信息包括跳数、电量、连接数、蜂窝信号强度(第1跳)或到基站的时延(非第1跳)等。
S508,通过对获取的GO跳数、电量、连接数、蜂窝强度/时延与自己测量得到的WiFi信号强度进行加权,计算出GO的性能加权值。加权值的计算公式可以采用上文中的公式(1)。
S509,选择性能加权值最优的GO作为上一跳。并将自身跳数记为上一跳加1;S510,基于WiFi Direct建组并直接设定自身为GO,并通过SSID和密码以LC角色接入上一跳GO,完成路由选择;S511持续广播Beacon帧,同时响应其他P2P终端的设备发现和服务发现请求,并在服务发现响应中携带自身服务信息。
若邻区不存在适合接入的GO,终端持续进行设备发现与服务发现,转至S505。
当网络拓扑构建完成,各终端可向蜂窝基站传输/请求数据业务。此外,对于动态网络下出现突发事件导致拓扑连接状态无法维持的情况,终端可重新进行网络状态判断与连接构建,实现网络的自适应动态调整。具 体如下:
(1)若网关GO的蜂窝强度低于阈值,认为其无法继续担任网关GO,则删除组,跳转至上文中根据网络信息决定是否作为第1跳节点的步骤;
(2)若非网关GO的蜂窝强度高于阈值,认为其可担任网关GO,则断开与上跳GO的连接,标记自身为网关GO,已连接的下级终端不受影响;
(3)若非网关GO与上一跳GO间的WiFi信号强度低于阈值,认为其无法维持连接,则删除组,跳转至上文中根据网络信息决定是否作为第1跳节点的步骤;
(4)为确认网络连接状态,GO周期性发送ping包,若连续3次ping不通,认为网络连接失败,则删除组,跳转至上文中根据状态网络信息决定是否作为第1跳节点的步骤;
(5)若GO终端连接数饱和(超出设定的阈值),认为GO难以支撑更多终端设备的数据传输,则GO拒绝其他终端接入,直至有终端离开;
本公开实施例根据网络连接状态划分终端,在考虑终端传输需求、考虑网络变化、用户接入、移动、离开等事件的基础上,基于所提出的组网机制,利用服务发现中获取的终端状态信息,选取合适的路径构建本地通信网络,解决分布式网络下数据的多跳转发问题。
基于同一发明构思,本公开实施例中还提供了一种多跳组网装置,如下面的实施例所述。由于该装置实施例解决问题的原理与上述方法实施例相似,因此该装置实施例的实施可以参见上述方法实施例的实施,重复之处不再赘述。
图6示出本公开实施例中一种多跳组网装置示意图,应用于第一终端,如图6所示,该多跳组网装置600,包括:
信息获取模块602,被配置为以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;
目标选择模块604,被配置为根据GO服务信息,选择目标GO作为上一跳;
接入模块606,被配置为以传统客户端LC方式接入目标GO;
建组模块608,被配置为基于WiFi直连建立P2P组成为GO;。
在一些实施例中,该多跳组网装置600,还可以包括:
信息判断模块,被配置为根据网络信息决定是否作为第1跳节点,网络信息包括第一终端的网络连接状态与网络信号强度;
相应地,信息获取模块602,可以具体被配置为在第一终端不能作为第1跳节点时,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息。
在一些实施例中,该多跳组网装置600,还可以包括:
第二建组模块,被配置为在第一终端为第1跳节点时,基于WiFi直 连建立P2P组成为GO。
这里第二建组模块可以上文中的建组模块608为同一个模块,也可以是不同的模块。
在一些实施例中,该多跳组网装置600,还可以包括:
请求接收模块,被配置为接收第二终端的设备发现和服务发现请求;
服务响应模块,被配置为响应于第二终端的设备发现和服务发现请求,发送服务发现响应,服务发现响应中携带有GO服务信息,以使第二终端基于GO服务信息判断是否选择第一终端作为目标GO。
在一些实施例中,目标选择模块604,可以具体实现如下:
通过对获取的GO信息中的多个参数进行加权,计算出GO的性能加权值;
在性能加权值最大的GO的性能加权值大于预设性能阈值时,选择性能加权值最大的GO为目标GO作为上一跳。
在一些实施例中,GO服务信息包括GO状态信息、GO的SSID和密码,GO状态信息包括但不限于如下参数中的至少一种:
终端连接数、跳数、电量、网络信号强度、时延、GO的SSID和密码。
在一些实施例中,GO的性能加权值的计算公式如下所示:
其中,W(i)表示GO的性能加权值,n(i)表示终端连接数,h(i)表示跳数,P(i)表示电量,Sc(i)表示GO网络信号强度,Sw(i)表示WiFi信号强度,t(i)表示时延,N
th表示连接数阈值,M
th表示跳数阈值,T
th表示时延阈值,ω
1、ω
2、ω
3、ω
4、ω
5表示参数的权重。
在一些实施例中,信息获取模块602,可以实现如下:
以P2P终端的身份在1/6/11信道上进行扫描,并在每个信道上发送Probe Request帧进行设备发现;
若在信道接收到GO响应的Probe Response帧或GO周期性广播的Beacon帧,进入服务发现流程,发送服务发现请求SD query,以使邻区WiFi直连组管理员GO响应SD query,回复SD Response,SD Response包括邻区GO的服务信息。
在一些实施例中,接入模块606,可以具体被配置为:
通过GO服务信息中的SSID和密码以LC角色接入目标GO。
在一些实施例中,该多跳组网装置600,还可以包括:
拓扑构建模块,被配置为完成整体网络拓扑构建和路由选择,实现数据业务到网络的传输/请求。
在一些实施例中,拓扑构建模块,还可以被配置为:
在拓扑连接状态无法维持时,解散P2P组,重新进行网络状态判断与连接构建。
在一些实施例中,拓扑连接状态无法维持的场景,包括如下场景中的至少一种:
第1跳GO的蜂窝强度低于第一阈值、非第1跳GO的蜂窝强度高于第二阈值、非第1跳GO与上一跳GO间的WiFi信号强度低于第三阈值、网络连接失败、GO终端连接数大于第四阈值。
需要说明的是,这里第一阈值和第二阈值可以相同,也可以不同,在此不作限定。
本申请实施例提供的多跳组网装置,可以被配置为执行上述各方法实施例提供的多跳组网方法,其实现原理和技术效果类似,为简介起见,在此不再赘述。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图7来描述根据本公开的这种实施方式的电子设备700。图7显示的电子设备700仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图7所示,电子设备700以通用计算设备的形式表现。电子设备700的组件可以包括但不限于:上述至少一个处理单元710、上述至少一个存储单元720、连接不同系统组件(包括存储单元720和处理单元710)的总线730。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元710执行,使得所述处理单元710执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。例如,所述处理单元710可以执行上述方法实施例的如下步骤:
以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;
根据GO服务信息,选择目标GO作为上一跳;
以传统客户端LC方式接入目标GO;
基于WiFi直连建立P2P组成为GO;。
存储单元720可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)7201和/或高速缓存存储单元7202,还可以进一步 包括只读存储单元(ROM)7203。
存储单元720还可以包括具有一组(至少一个)程序模块7205的程序/实用工具7204,这样的程序模块7205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线730可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备700也可以与一个或多个外部设备740(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备700交互的设备通信,和/或与使得该电子设备700能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口750进行。
并且,电子设备700还可以通过网络适配器760与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。
如图7所示,网络适配器760通过总线730与电子设备700的其它模块通信。
应当明白,尽管图中未示出,可以结合电子设备700使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质可以是可读信号介质或者可读存储介质。其上存储有能够实现本公开上述方法的程序产品。
在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。
本公开中的计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM 或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
在本公开中,计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。
这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。
可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
在一些示例中,计算机可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
在具体实施时,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。
程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。
实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。
因此,根据本公开实施方式的技术方案可以以软件产品的形式体现 出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。
本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
Claims (16)
- 一种多跳组网方法,应用于第一终端,所述方法包括:以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;根据所述GO服务信息,选择目标GO作为上一跳;以传统客户端LC方式接入所述目标GO;基于WiFi直连建立P2P组成为GO。
- 根据权利要求1所述的方法,其中,所述以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息之前,所述方法还包括:根据网络信息决定是否作为第1跳节点,所述网络信息包括第一终端的网络连接状态与网络信号强度;所述以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息,包括:在第一终端不能作为第1跳节点时,以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息。
- 根据权利要求2所述的方法,所述方法还包括:在第一终端为第1跳节点时,基于WiFi直连建立P2P组成为GO。
- 根据权利要求1所述的方法,所述方法还包括:接收第二终端的设备发现和服务发现请求;响应于所述第二终端的设备发现和服务发现请求,发送服务发现响应,所述服务发现响应中携带有GO服务信息,以使所述第二终端基于所述GO服务信息判断是否选择第一终端作为目标GO。
- 根据权利要求1所述的方法,其中,所述根据所述GO服务信息,选择目标GO作为上一跳,包括:通过对获取的GO服务信息中的多个参数进行加权,计算出GO的性能加权值;在性能加权值最大的GO的性能加权值大于预设性能阈值时,选择所述性能加权值最大的GO为目标GO作为上一跳。
- 根据权利要求5所述的方法,其中,所述GO服务信息包括GO状态信息、GO的SSID和密码,所述GO状态信息包括如下参数中的至少一种:终端连接数、跳数、电量、网络信号强度、时延。
- 根据权利要求1所述的方法,其中,所述以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息,包括:以P2P终端的身份在1/6/11信道上进行扫描,并在每个信道上发送Probe Request帧进行设备发现;若在信道接收到GO响应的Probe Response帧或GO周期性广播的Beacon帧,进入服务发现流程,发送服务发现请求SD query,以使邻区WiFi直连组管理员GO响应所述SD query,回复SD Response,所述SD Response包括邻区GO的服务信息。
- 根据权利要求1所述的方法,其中,所述以传统客户端LC方式接入所述目标GO,包括:通过所述GO服务信息中的SSID和密码以LC角色接入所述目标GO。
- 根据权利要求1所述的方法,所述方法还包括:完成整体网络拓扑构建和路由选择,实现数据业务到网络的传输/请 求。
- 根据权利要求10所述的方法,所述方法还包括:在拓扑连接状态无法维持时,重新进行网络状态判断与连接构建。
- 根据权利要求11所述的方法,拓扑连接状态无法维持的场景,包括如下场景中的至少一种:第1跳GO的网络强度低于第一阈值、非第1跳GO的网络强度高于第二阈值、非第1跳GO与上一跳GO间的WiFi信号强度低于第三阈值、网络连接失败、GO终端连接数大于第四阈值。
- 一种多跳组网装置,应用于第一终端,所述装置包括:信息获取模块,用于以P2P终端的身份进行设备发现与服务发现,获取邻区WiFi直连组管理员GO的服务信息;目标选择模块,用于根据所述GO服务信息,选择目标GO作为上一跳;接入模块,用于以传统客户端LC方式接入所述目标GO;建组模块,用于基于WiFi直连建立P2P组成为GO。
- 一种电子设备,包括:处理器;以及存储器,用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1-12中任意一项所述多跳组网方法。
- 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-12中任意一项所述的多跳组网方法。
- 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现权利要求1-12中任意一项所述的多跳组网方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210383835.4 | 2022-04-12 | ||
CN202210383835.4A CN114845289B (zh) | 2022-04-12 | 2022-04-12 | 多跳组网方法、装置、设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023197671A1 true WO2023197671A1 (zh) | 2023-10-19 |
Family
ID=82564680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/141149 WO2023197671A1 (zh) | 2022-04-12 | 2022-12-22 | 多跳组网方法、装置、设备、介质及程序产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114845289B (zh) |
WO (1) | WO2023197671A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114845289B (zh) * | 2022-04-12 | 2023-09-29 | 中国电信股份有限公司 | 多跳组网方法、装置、设备及存储介质 |
CN116528319B (zh) * | 2023-06-29 | 2023-09-29 | 中国电信股份有限公司 | 多跳组网方法、装置、电子设备及计算机可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130148642A1 (en) * | 2011-06-13 | 2013-06-13 | Qualcomm Incorporated | Enhanced discovery procedures in peer-to-peer wireless local area networks (wlans) |
CN104394515A (zh) * | 2014-11-26 | 2015-03-04 | 王海 | 基于Android WI-FI DIRECT模式的长生命周期广播树建立方法 |
US20150180970A1 (en) * | 2012-09-20 | 2015-06-25 | Peraso Technologies, Inc. | Group owner renegotiation in a wireless network |
US20160057721A1 (en) * | 2014-08-20 | 2016-02-25 | Honeywell International Inc. | Multimedia streaming over multiple hops in wifi mesh network |
CN114845289A (zh) * | 2022-04-12 | 2022-08-02 | 中国电信股份有限公司 | 多跳组网方法、装置、设备及存储介质 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102005771B1 (ko) * | 2012-02-24 | 2019-10-01 | 삼성전자주식회사 | 무선 통신 네트워크에서 ip 주소 할당 방법 및 장치 |
CN104471962B (zh) * | 2012-04-10 | 2019-03-22 | 索尼公司 | 通信装置、通信控制方法 |
US9560129B2 (en) * | 2014-07-28 | 2017-01-31 | Google Technology Holdings LLC | Peer-to-peer group re-formation |
CN104333888A (zh) * | 2014-10-27 | 2015-02-04 | 中央民族大学 | 一种基于Wi-Fi直连的自组织即时通信方法 |
CN104394516B (zh) * | 2014-11-26 | 2018-05-29 | 王海 | 基于Android WI-FI DIRECT模式的最大覆盖广播树建立方法 |
CN106302580A (zh) * | 2015-05-21 | 2017-01-04 | 北京大学 | multi-hop wifi:wifi多跳组网技术 |
WO2017175216A1 (en) * | 2016-04-03 | 2017-10-12 | Maxtech Communication Networks Ltd. | System and method for mesh interconnectivity across ad hoc wifi networks |
KR101692259B1 (ko) * | 2016-06-28 | 2017-01-17 | 애니파이 주식회사 | Wi-Fi 다이렉트 멀티그룹 네트워크 상에서 통신을 위한 방법, 장치 및 컴퓨터 판독 가능한 기록 매체 |
CN108616954A (zh) * | 2018-03-23 | 2018-10-02 | 东南大学 | 一种基于WiFi-Direct构建设备互联的系统 |
CN111263379B (zh) * | 2020-02-19 | 2023-08-04 | 深圳市共进电子股份有限公司 | 回传站连接建立的方法、网络设备及存储介质 |
-
2022
- 2022-04-12 CN CN202210383835.4A patent/CN114845289B/zh active Active
- 2022-12-22 WO PCT/CN2022/141149 patent/WO2023197671A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130148642A1 (en) * | 2011-06-13 | 2013-06-13 | Qualcomm Incorporated | Enhanced discovery procedures in peer-to-peer wireless local area networks (wlans) |
US20150180970A1 (en) * | 2012-09-20 | 2015-06-25 | Peraso Technologies, Inc. | Group owner renegotiation in a wireless network |
US20160057721A1 (en) * | 2014-08-20 | 2016-02-25 | Honeywell International Inc. | Multimedia streaming over multiple hops in wifi mesh network |
CN104394515A (zh) * | 2014-11-26 | 2015-03-04 | 王海 | 基于Android WI-FI DIRECT模式的长生命周期广播树建立方法 |
CN114845289A (zh) * | 2022-04-12 | 2022-08-02 | 中国电信股份有限公司 | 多跳组网方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN114845289B (zh) | 2023-09-29 |
CN114845289A (zh) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105493421B (zh) | Wlan 802.11中的快速关联 | |
CN101873695B (zh) | 无线通信设备、无线通信系统、无线通信方法和程序 | |
JP6054419B2 (ja) | トンネルダイレクトリンクセットアップのためのipアドレス発見の装置、システムおよび方法 | |
EP2803244B1 (en) | Methods and apparatus for establishing a tunneled direct link setup (tdls) session between devices in a wireless network | |
WO2019179444A1 (zh) | 用于混合组网的入网方法、代理协调设备和站点设备 | |
CN108028802B (zh) | 使用802.11ad技术来构建自组织网状网络 | |
CN108323246B (zh) | 组网方法、芯片及无线网络系统 | |
US9438499B2 (en) | Approximation of the physical location of devices and transitive device discovery through the sharing of neighborhood information using wireless or wired discovery mechanisms | |
WO2023197671A1 (zh) | 多跳组网方法、装置、设备、介质及程序产品 | |
US20180213460A1 (en) | Networking devices and methods | |
US8116285B1 (en) | Intelligent wireless access point selection | |
KR20090077593A (ko) | 메쉬 네트워크의 설정을 위한 능동 스캔 방법 | |
US7289518B2 (en) | Method and apparatus for reducing power consumption in a wireless network station | |
CN114845287A (zh) | 一种基于蓝牙mesh的低压采集系统及分簇自组网方法 | |
CN106793178A (zh) | 一种Android区域便携移动自组网的软硬件系统构建方法 | |
Usman et al. | Towards energy efficient multi-hop d2d networks using wifi direct | |
WO2018030587A1 (ko) | 멀티 홉 네트워크 구성 방법 및 장치 | |
CN102065509B (zh) | 无线网状网络系统 | |
CN113133092B (zh) | 一种节能控制方法及相关设备 | |
Pal et al. | E-Darwin2: A smartphone based disaster recovery network using WiFi tethering | |
CN115551124A (zh) | 一种组网方法、装置、设备以及计算机存储介质 | |
CN116033499A (zh) | 一种5g专网环境下基于终端位置预测的无线接入网络切换方法 | |
CN118175586A (zh) | 通信方法、通信装置、通信系统、介质、芯片和程序产品 | |
CN116744402A (zh) | 多跳组网方法、装置、设备及存储介质 | |
CN116684858A (zh) | 多跳组网方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22937298 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22937298 Country of ref document: EP Kind code of ref document: A1 |