WO2023188150A1 - 検出装置および検出システム - Google Patents
検出装置および検出システム Download PDFInfo
- Publication number
- WO2023188150A1 WO2023188150A1 PCT/JP2022/016122 JP2022016122W WO2023188150A1 WO 2023188150 A1 WO2023188150 A1 WO 2023188150A1 JP 2022016122 W JP2022016122 W JP 2022016122W WO 2023188150 A1 WO2023188150 A1 WO 2023188150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotation angle
- drum
- torque
- detection device
- wall
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 93
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 10
- 239000011707 mineral Substances 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000005484 gravity Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C25/00—Control arrangements specially adapted for crushing or disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C17/00—Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
- B02C17/18—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C17/00—Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
- B02C17/18—Details
- B02C17/1805—Monitoring devices for tumbling mills
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0061—Force sensors associated with industrial machines or actuators
- G01L5/0071—Specific indicating arrangements, e.g. of overload
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Definitions
- Embodiments of the present invention relate to a detection device and a detection system that detect the presence or absence of a mineral-derived workpiece adhered to the inner wall of a drum of a mill that crushes minerals.
- mineral resources such as ores are collected in mines, etc., they are adjusted to a predetermined size and shape, and then pulverized by a crusher such as a ball mill, SAG (Semi-Auto Geneous) mill, or AG (Auto Geneous) mill. be done.
- a crusher such as a ball mill, SAG (Semi-Auto Geneous) mill, or AG (Auto Geneous) mill.
- Mineral resources put into the drum of a mill may stick to the inner wall of the drum during the process of being refined. For example, if the operation is interrupted and the drum is stopped for a long time while the workpiece in the refining process remains in the crusher, the workpiece in the refining process may stick to the inner wall of the drum. expensive. In such a case, when the drum starts rotating when restarting operations, the workpiece may peel off from the inner wall at the top of the drum due to its own weight and fall to the bottom of the drum, damaging the inner wall of the drum.
- Embodiments of the present invention have been made to solve the above problems, and an object thereof is to provide a detection device and a detection system that can easily detect the presence or absence of a workpiece stuck to the inner wall of a drum. do.
- a detection device detects the presence or absence of a workpiece stuck to the inner wall of a drum of a mill that crushes minerals.
- This detection device is detected at a preset initial rotation angle, stores the initial torque when there is a workpiece stuck to the inner wall of the drum, and stores the initial torque, the initial rotation angle, and the initial rotation angle. Based on a rotation angle larger than , calculate the maximum torque at the rotation angle when there is a workpiece stuck to the inner wall of the drum, and calculate the ratio of the torque at the rotation angle divided by the maximum torque.
- the ratio is compared with a preset threshold value, and if the ratio is smaller than the threshold value, it is determined that there is no workpiece stuck to the inner wall of the drum, and the rotation angle of the drum is determined. is greater than the initial rotation angle, and after reaching a first rotation angle at which the workpiece can fall off the inner wall of the drum, the ratio is equal to the threshold value or the threshold value If it is larger than , it is determined that there is a workpiece stuck to the inner wall of the drum.
- a detection device and a detection system that can easily detect the presence or absence of a workpiece stuck to the inner wall of a drum are realized.
- FIG. 1 is a schematic block diagram illustrating a mill according to an embodiment.
- FIG. 2 is a schematic diagram for explaining the operating principle of the detection device according to the embodiment.
- FIG. 2 is a schematic diagram for explaining the operating principle of the detection device according to the embodiment.
- FIG. 2 is a schematic diagram for explaining the operating principle of the detection device according to the embodiment. It is an example of a flowchart for explaining the operation of the detection device according to the embodiment.
- FIG. 1 is a schematic block diagram illustrating a detection device according to an embodiment.
- FIG. 1 is a schematic block diagram illustrating a mill according to an embodiment.
- the detection system 1 includes an electric motor 5, a drive device 6, a rotation angle detector 7, a torque detector 8, and a detection device 10.
- the detection system 1 is provided together with the mill body 4.
- the mill main body 4 is connected to an electric motor 5 via a transmission or the like.
- the mill body 4 has a drum that rotates as described below.
- the drum is a cylindrical member, and minerals of a predetermined size are placed inside the drum.
- the drum of the mill body 4 is rotationally driven by an electric motor 5.
- the electric motor 5 is a DC motor or an AC motor, and in the case of an AC motor, it is, for example, an induction motor or a synchronous motor.
- the drive device 6 is connected to the electric motor 5.
- the drive device 6 applies a predetermined voltage to the electric motor 5, causes a predetermined current to flow, and drives the electric motor 5 by a magnetic field generated according to the current.
- the drive device 6 drives the electric motor 5 according to a control program and parameters for the control program introduced into a main control device (not shown).
- the drive device 6 drives the electric motor 5 so that the rotational speed follows a speed reference, which is a preset parameter, for example.
- the rotation angle detector 7 is connected to the electric motor 5.
- the rotation angle detector 7 detects, for example, the number of rotations per unit time of the electric motor 5, and calculates and outputs the rotation angle of the drum of the mill body 4 based on the reduction ratio of the electric motor 5 and the mill body 4. .
- the rotation angle detector 7 is a measuring device including, for example, a rotary encoder. An appropriate rotary encoder is selected, such as an optical type or a magnetic type.
- the rotation angle detector 7 may be integrated with the electric motor 5 or may be installed separately from the electric motor 5.
- the rotation angle detector 7 may detect and output the number of rotations of the electric motor 5 per unit time, and the detection device 10 may convert the number of rotations of the electric motor 5 into a rotation angle of the drum.
- the torque detector 8 is connected to the drive device 6.
- the torque detector 8 receives a signal related to the output current from the drive device 6, calculates and outputs the value of the torque that the electric motor 5 is outputting based on the output current.
- the torque detector 8 may be integrated with the drive device 6 or may be installed separately from the drive device 6. Alternatively, the torque detector 8 may include an individual torque detection mechanism independent of the drive device 6.
- a detection device 10 that detects the presence or absence of a workpiece stuck to the inner wall of the drum is connected to the output of the rotation angle detector 7 and to the output of the torque detector 8.
- the detection device 10 sequentially inputs data on the rotation angle of the electric motor 5 and data on the torque of the electric motor 5, and detects whether or not a workpiece is stuck to the inner wall of the drum of the mill body 4.
- the detection device 10 calculates the torque when the workpiece is stuck to the inner wall of the drum as the maximum torque value, and when the measured torque is sufficiently smaller than the calculated maximum torque, the detection device 10 calculates the torque when the workpiece is stuck to the inner wall of the drum. It is determined that the workpiece is not stuck. The detection device 10 determines that there is a fixed object on the inner wall of the drum when the actually measured torque is close to the maximum value of the calculated torque.
- the maximum value of torque when a workpiece is stuck to the inner wall of the drum is referred to as maximum torque Tmax.
- the detection device 10 calculates the maximum torque Tmax as follows. That is, the detection device 10 inputs the initial torque TL at a preset initial rotation angle ⁇ L from the torque detector 8. The initial rotation angle ⁇ L is set to a sufficiently small value to maintain the attachment of the workpiece to the inner wall of the drum.
- the electric motor 5 continues to rotate after the initial rotation angle ⁇ L, and the rotation angle ⁇ is detected by the rotation angle detector 7, for example, at regular intervals.
- the detection device 10 calculates the maximum torque Tmax at the rotation angle ⁇ by applying the value of the rotation angle ⁇ and the value of the initial torque TL to Equation (1), which will be described later, each time the rotation angle ⁇ is detected.
- the detection device 10 calculates the ratio to the actually measured torque T.
- the detection device 10 compares a preset threshold value ⁇ with T/Tmax, and determines that there is no adhered substance on the inner wall of the drum when T/Tmax is smaller than the threshold value ⁇ . When T/Tmax or more, the detection device 10 determines that there is a fixed object on the inner wall of the drum.
- FIGS. 2 to 4 are schematic diagrams for explaining the operating principle of the detection device according to the embodiment.
- 2 to 4 show a drum 40 that constitutes the mill body 4 shown in FIG. 1.
- the drum 40 shown in FIGS. 2 to 4 is drawn so that the internal state can be seen.
- workpieces P0 to P2 are arranged inside the drum 40.
- FIGS. 2-4 the drum 40 rotates counterclockwise with C as the center along with the workpieces P0-P2.
- FIGS. 2, 3, and 4 it is shown that time has passed.
- the workpieces P0 to P2 are made of the same material and have the same mass M.
- G is the center of gravity when the mass M is a concentrated mass.
- r is the shortest distance between the center C and the center of gravity G.
- the shapes of the workpieces P0 to P2 can change due to the rotation of the drum 40, but in the following description, unless otherwise specified, the center of gravity G is constant at a distance r from the center C. shall be.
- FIG. 2 shows the drum 40 before the mill main body 4 is started.
- the workpiece P0 remains at the bottom of the drum 40. It is assumed that the workpiece P0 is fixed to the inner wall of the drum 40.
- the rotation angle of the drum in the state shown in FIG. 2 is a reference value, and the rotation angle at this time is, for example, 0°. In the following, it is assumed that the rotation angle is an angle based on 0°.
- FIG. 3 shows a state in which the mill main body 4 is started from the state shown in FIG. 2 and the drum 40 is rotated counterclockwise by an initial rotation angle ⁇ L.
- the workpiece P1 is fixed to the inner wall of the drum 40, and the initial rotation angle ⁇ L is such that the line segment connecting the center C in FIG. 3 and the center of gravity G is the same as the center C in FIG. This is the angle formed by the line segment connecting the center of gravity G.
- the force F due to gravity at the center of gravity G is decomposed into a component in the tangential direction and a component in the normal direction to the circumference of the drum 40.
- the component in the tangential direction to the circumference of the drum 40 is calculated as gM sin ⁇ L
- the component in the normal direction to the circumference of the drum 40 is calculated as gMcos ⁇ L.
- the workpiece P1 generates a moment based on the force gMsin ⁇ L in the tangential direction of the circumference of the drum 40.
- the moment at this time is calculated as rgMsin ⁇ L using the distance r between the center C and the center of gravity G.
- the drive device 6 In the state of FIG. 3, the drive device 6 generates torque to drive the electric motor 5 so as to overcome the moment of rgMsin ⁇ L.
- the torque at the initial rotation angle ⁇ L is referred to as initial torque TL.
- the detection device 10 executes the subsequent calculations assuming that the initial torque TL is equal to rgMsin ⁇ L.
- FIG. 4 shows the inside of the drum 40 when the drum 40 further rotates counterclockwise from the initial rotation angle ⁇ L and reaches the rotation angle ⁇ .
- the rotation angle ⁇ is the angle that a line segment connecting the center C and the center of gravity G in FIG. 4 makes with a line segment connecting the center C and the center of gravity G in FIG.
- the force F due to gravity at the center of gravity G is decomposed into a component in the tangential direction and a component in the normal direction to the circumference of the drum 40, as in the case of FIG.
- the component in the tangential direction to the circumference of the drum 40 is calculated as gMsin ⁇
- the component in the normal direction to the circumference of the drum 40 is calculated as gMcos ⁇ .
- the workpiece P2 In the state shown in FIG. 4, the workpiece P2 generates a moment based on the force gMsin ⁇ in the tangential direction of the circumference of the drum 40.
- the moment at this time is calculated as rgMsin ⁇ using the distance r between the center C and the center of gravity G.
- the drive device 6 When the workpiece P2 is fixed to the inner wall of the drum 40, the drive device 6 generates a torque to drive the electric motor 5 so as to overcome the moment of rgMsin ⁇ . When the workpiece is not fixed to the inner wall of the drum 40, the drive device 6 can drive the electric motor 5 with a torque sufficiently smaller than rgMsin ⁇ . Therefore, rgMsin ⁇ can be the maximum torque Tmax generated by the drive device 6 during the operation of the detection device 10.
- the maximum torque Tmax is calculated by applying the initial torque TL, initial rotation angle ⁇ L, and rotation angle ⁇ to the following equation (1) as follows.
- the initial torque TL is detected by the torque detector 8 and input to the detection device 10.
- the initial rotation angle ⁇ L and the rotation angle ⁇ are detected by the rotation angle detector 7 and input to the detection device 10.
- the detection device 10 can calculate the maximum torque Tmax using equation (1).
- a threshold value ⁇ is set in advance in the detection device 10.
- the detection device 10 calculates the ratio between the maximum torque Tmax and the actually measured torque T detected by the torque detector 8, calculates T/Tmax every time the rotation angle ⁇ is detected, and compares the calculated result with the threshold. Compare with the value ⁇ .
- the initial rotation angle ⁇ L is set to a sufficiently small rotation angle that the workpiece can remain fixed to the inner wall of the drum.
- the initial rotation angle ⁇ L is preferably set to a rotation angle after the electric motor 5 has released the starting torque, and is set to an appropriate value depending on the mechanical constants of the electric motor 5 and the mill main body 4.
- the initial rotation angle ⁇ L is, for example, about 20°.
- a fixed object presence/absence detection angle (first rotation angle) ⁇ C for detecting the presence or absence of a fixed object is set. Until the rotation angle ⁇ of the drum 40 reaches ⁇ C, it is not determined that the comparative object is stuck even if T/Tmax is equal to or larger than the threshold ⁇ .
- the fixed object presence/absence detection angle ⁇ C is selected to be an angle at which the workpiece will definitely start deforming if the workpiece is not stuck.
- the fixed object presence/absence detection angle ⁇ C is, for example, about 60°.
- FIG. 5 is an example of a flowchart for explaining the operation of the detection device according to the embodiment.
- the detection device 10 inputs the initial rotation angle ⁇ L detected by the rotation angle detector 7, inputs the initial torque TL detected by the torque detector 8, and inputs the initial rotation angle ⁇ L detected by the rotation angle detector 7. Store the angle ⁇ L and initial torque TL.
- step S2 the rotation angle detector 7 detects that the rotation angle ⁇ has reached the fixed object detection angle ⁇ C, and the torque detector 8 detects the torque at the rotation angle ⁇ .
- the detection device 10 receives data on the detected rotation angle ⁇ and data on the torque T.
- step S3 the detection device 10 calculates the maximum torque Tmax using the stored initial rotation angle ⁇ L, the stored initial torque TL, and the input rotation angle ⁇ .
- step S4 the detection device 10 calculates T/Tmax and compares the calculation result with a preset threshold ⁇ . If T/Tmax is smaller than the threshold value ⁇ , the detection device 10 determines that there is no stuck object in step S6. If the calculated T/Tmax is equal to or larger than the threshold value ⁇ , the detection device 10 determines that a fixed object has been detected on the inner wall of the drum 40 in step S5.
- the detection device 10 of the embodiment is a computer device that executes each step of the flowchart shown in FIG. 5, and the computer device stores a program including each step in a storage device, etc., and reads and executes it when necessary.
- the computer device implementing the detection device 10 may be a programmable logic controller (PLC).
- PLC programmable logic controller
- FIG. 6 is a schematic block diagram illustrating a detection device according to an embodiment.
- the detection device 10 includes comparison and determination elements 11, 18, and 19, a storage element 12, calculation elements 13 to 17, numerical restriction elements 21 and 22, and an OR logic element 23.
- an initial rotation angle ⁇ L is set in advance.
- a numerical limit element 21 is provided at the input terminal A for the initial rotation angle.
- the initial rotation angle ⁇ L input to the input terminal A is input to one terminal of the comparison determination element 11.
- the numerical limit element 21 is provided to limit the range of the initial rotation angle ⁇ L in advance, and includes, for example, a maximum limit value larger than the rotation angle when the starting torque of the electric motor 5 is generated and a minimum limit value smaller than 45°. is set.
- the setting of the numerical restriction element 21 is arbitrary, and the numerical restriction element 21 does not need to be provided.
- the rotation angle ⁇ of the drum 40 obtained from the electric motor 5 or the rotation angle ⁇ of the drum 40 obtained by another method is detected by the rotation angle detector 7 and input to the input terminal B.
- the input rotation angle ⁇ is input to the other terminal of the comparison and determination element 11.
- the comparison and determination element 11 outputs a pulse when the magnitude of the rotation angle ⁇ becomes larger than the magnitude of the initial rotation angle ⁇ L.
- the output pulses are input to the storage element 12.
- the storage element 12 is outputting the initial torque TL.
- the rotation angle ⁇ input to the input terminal B is input to the calculation element 13.
- the calculation element 13 performs a sine calculation and outputs sin ⁇ .
- the calculation element 14 inputs the sin ⁇ calculated by the calculation element 13 and the initial torque TL from the storage element 12, and outputs the result of multiplying these by TL sin ⁇ .
- the initial rotation angle ⁇ L input from the input terminal A is input to the calculation element 15.
- the calculation element 15 performs a sine calculation and outputs sin ⁇ L.
- the calculation element 16 divides TL ⁇ sin ⁇ calculated and output by the calculation element 14 by sin ⁇ L calculated and output by the calculation element 15, and outputs the result as the maximum torque Tmax.
- the detailed calculation utilizes the derivation process of equation (1) described above.
- a numerical limit element 22 is provided at the output of the calculation element 16. The numerical limit element 22 is provided to exclude inappropriate calculation results due to calculation errors generated by each calculation element.
- the calculation element 17 divides the torque T detected by the torque detector 8 by the maximum torque Tmax calculated and output by the calculation element 16 and outputs the result.
- a threshold value ⁇ is set in advance to one terminal D of the comparison and judgment element 18, and is input to the comparison and judgment element 18.
- T/Tmax calculated and output by the calculation element 17 is input to the other terminal of the comparison and determination element 18 .
- the comparison/determination element 18 compares T/Tmax with a threshold value ⁇ , and if T/Tmax is smaller than the threshold value ⁇ , it is determined that there is no adhered substance to the inner wall of the drum. Outputs a signal (Y) indicating that there is no such thing. If T/Tmax is equal to or larger than the threshold ⁇ , the comparison determination element 18 determines that there is an object stuck to the inner wall of the drum 40, and sends a signal indicating that there is an object stuck to the inner wall of the drum 40. (N) is output. In this example, the signal (Y) indicating that there is no stuck object corresponds to the logical value "1", and the signal (N) indicating that there is a stuck object corresponds to the logical value "0".
- the output of the comparison determination element 18 is determined based on the magnitude relationship between the rotation angle ⁇ and the fixed object detection angle ⁇ C.
- a comparative determination element 19 makes a comparison between the rotation angle ⁇ and the fixed object detection angle ⁇ C.
- Terminal B is connected to one input of the comparison and determination element 19, and the rotation angle ⁇ is input thereto.
- a terminal E is connected to the other input of the comparison determination element 19, and a preset fixed object presence/absence detection angle ⁇ C is input thereto.
- the output of the comparison/judgment element 18 is connected to one input of the OR logic element 23, and the output of the comparison/judgment element 19 is connected to the other input of the OR logic element 23.
- the comparison determination element 19 determines that the rotation angle ⁇ is smaller than the fixed object detection angle ⁇ C, it outputs a logical value “1”. Therefore, since the logical value "1" is input to the OR logical element 23, regardless of the output of the comparison judgment element 18, the OR logical element 23 has the logical value "1", that is, it indicates that there is no stuck object. Outputs signal (Y).
- the comparison determination element 19 outputs a logical value of "0" when it is determined that the rotation angle ⁇ is greater than or equal to the fixed object detection angle ⁇ C. Therefore, the OR logic element 23 outputs the logical value of the output of the comparison judgment element 18. That is, when the comparison determination element 18 outputs a signal (N) indicating that there is a stuck object, the OR logic element 23 outputs a signal (N) indicating that there is a stuck object. When the comparison determination element 18 outputs a signal (Y) indicating that there is no stuck object, the OR logic element 23 outputs a signal (Y) indicating that there is no stuck object.
- the detection device 10 of the embodiment can determine whether or not a mineral-derived workpiece is stuck to the inner wall of the drum.
- the detection device 10 described above operates when the mill body 4 is started after it has been stopped for inspection or the like. That is, when the mill body 4 is started and the drive device 6 starts driving the electric motor 5, the detection device 10 operates to detect whether or not the workpiece is stuck to the inner wall of the drum. When detecting that the workpiece is stuck, the detection device 10 generates a stop command to stop driving the electric motor 5, for example. Upon receiving the stop command, the master control device (not shown) stops the operation of the mill main body 4 itself through an interlock. As a result, stuck objects can be removed safely.
- the detection device 10 When the detection device 10 detects that the workpiece is stuck to the inner wall of the drum, it generates a command to the main control device to perform a workpiece removal operation to eliminate the workpiece sticking. Good too. For example, when performing a workpiece removal operation, the master controller rotates the workpiece by approximately -90° in the opposite direction to the current direction of rotation, and then rotates the workpiece in the original direction of rotation. This is an action that shakes the object to break it up.
- the detection device 10 may continue to operate or may stop operating after a preset rotation angle has elapsed. You can do it like this.
- the detection device 10 of the embodiment detects when a workpiece is stuck to the inner wall of the drum based on the rotation angle detected by the rotation angle detector 7 of the electric motor 5 and the torque detected by the torque detector 8.
- the torque can be calculated as the maximum torque Tmax.
- the maximum torque Tmax can be easily calculated using equation (1). Therefore, by appropriately setting the threshold value ⁇ , it is possible to easily determine whether or not the workpiece is stuck to the inner wall of the drum.
- the detection device 10 of the embodiment performs the sticking determination as described above, so the torque characteristics of the electric motor, including the mechanical system such as the drum, can be determined for each mill installation state and the type and state of the workpiece. Since there is no need to acquire the information, installation and adjustment can be performed easily.
- a detection device is realized that can easily detect the presence or absence of a workpiece stuck to the inner wall of the drum.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crushing And Grinding (AREA)
Abstract
Description
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
図1に示すように、検出システム1は、電動機5と、駆動装置6と、回転角度検出器7と、トルク検出器8と、検出装置10と、を備える。検出システム1は、ミル本体4とともに設けられる。
図2~図4は、実施形態に係る検出装置の動作原理を説明するための模式図である。
図2~図4には、図1に示したミル本体4を構成するドラム40が示されている。図2~図4に示されたドラム40は、内部の様子が見えるように描かれている。ドラム40の内部には、被加工物P0~P2が配置されている。図2~図4では、ドラム40は、Cを中心にして、被加工物P0~P2とともに反時計まわりに回転する。図2、図3および図4と図面番号が進むにつれて、時間が経過していることを示している。
図2に示すように、被加工物P0は、ドラム40の底に滞留している。被加工物P0は、ドラム40の内壁に固着しているものとする。被加工物P0は、自身の質量Mにより、重力方向にF=gMの力を受けている。図2の状態のときのドラムの回転角度は基準値であり、このときの回転角度は、たとえば0°である。以下では、回転角度は、0°を基準とした角度であるものとする。
図3に示すように、被加工物P1は、ドラム40の内壁に固着しており、初期回転角度θLは、図3の中心Cと重心Gとを結ぶ線分が、図2の中心Cと重心Gとを結ぶ線分となす角度である。
=rgMsinθL×(sinθ/sinθL)
=TL×(sinθ/sinθL) (1)
ここで、θ>θLである。
図5は、実施形態に係る検出装置の動作を説明するためのフローチャートの例である。
図5に示すように、ステップS1において、検出装置10は、回転角度検出器7によって検出された初期回転角度θLを入力し、トルク検出器8によって検出された初期トルクTLを入力し、初期回転角度θLおよび初期トルクTLを記憶する。
図6には、図5に示したフローチャートが、PLCに導入される制御プログラムを表すように書き換えられている。
以下では、図6にしたがって、実施形態の検出装置10の動作について説明する。
図6に示すように、検出装置10は、比較判定要素11,18、19、記憶要素12、演算要素13~17、数値制限要素21,22、およびOR論理要素23を備えている。
検出装置10には、初期回転角度θLがあらかじめ設定される。この例では、初期回転角度の入力端子Aに数値制限要素21が設けられている。入力端子Aに入力された初期回転角度θLは、比較判定要素11の一方の端子に入力される。
実施形態の検出装置10では、電動機5の回転角度検出器7によって検出される回転角度およびトルク検出器8によって検出されるトルクにもとづいて、ドラムの内壁に被加工物が固着している場合のトルクを最大トルクTmaxとして計算することができる。最大トルクTmaxは、式(1)を用いて、容易に計算することができる。したがって、しきい値αを適切に設定することによって、簡便にドラムの内壁への被加工物の固着の有無を判定することができる。
Claims (5)
- 鉱物を粉砕するミルの起動時にドラムの内壁に固着した被加工物の有無を検出する検出装置であって、
前記ドラムの所定の初期回転角度において検出され、前記ドラムの内壁に固着した被加工物が存在する場合の初期トルクを記憶し、
前記初期トルク、前記初期回転角度および前記初期回転角度よりも大きい回転角度にもとづいて、前記ドラムの内壁に固着した被加工物が存在する場合の前記回転角度における最大トルクを計算し、
前記回転角度において検出されたトルクを前記最大トルクで除した比を計算し、
前記比とあらかじめ設定されたしきい値とを比較し、
前記比が前記しきい値よりも小さい場合に前記ドラムの内壁に固着した被加工物が存在しないと判定し、
前記ドラムの回転角度が前記初期回転角度よりも大きい角度であって、前記被加工物が前記ドラムの内壁から脱落し得る第1回転角度に達した後に、前記比が前記しきい値と等しいか、前記しきい値よりも大きい場合に前記ドラムの内壁に固着した被加工物が存在することを判定するように構成された検出装置。 - 前記最大トルクをTmax、前記初期トルクをTL、前記回転角度をθ、前記初期回転角度をθLとしたときに、
前記最大トルクを計算することは、式(1)にしたがう計算を実行することである請求項1記載の検出装置。
Tmax=TL×(sinθ/sinθL) (1) - 前記ドラムの内壁に固着した被加工物が存在することを判定したときに、前記ミルの運転を停止する指令を生成する請求項1記載の検出装置。
- 前記ドラムの内壁に固着した被加工物が存在することを判定したときに、前記ミルの運転を前記被加工物除去動作をする指令を生成する請求項1記載の検出装置。
- 前記ミルのドラムを駆動する電動機と、
前記電動機を駆動する駆動装置と、
前記電動機の回転角度を検出する回転角度検出器と、
前記駆動装置が出力するトルクを検出するトルク検出器と、
請求項1記載の検出装置と、
を備え、
前記ミルは、ボールミル、SAGミルおよびAGミルのいずれかであり、
前記回転角度検出器は、前記回転角度を逐次検出して前記検出装置に送信し、
前記トルク検出器は、前記初期トルクして前記検出装置に送信し、前記回転角度における前記トルクを逐次検出して前記検出装置に送信し、
前記検出装置は、前記回転角度における前記トルクを受信するごとに、前記比を計算し、前記比と前記しきい値とを比較し、前記比と前記しきい値との大小関係を判定する検出システム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022450944A AU2022450944B2 (en) | 2022-03-30 | 2022-03-30 | Detection device and detection system |
US18/569,605 US20240286141A1 (en) | 2022-03-30 | 2022-03-30 | Detection device and detection system |
EP22935295.0A EP4501459A1 (en) | 2022-03-30 | 2022-03-30 | Detection device and detection system |
CN202280039142.1A CN117396276A (zh) | 2022-03-30 | 2022-03-30 | 检测装置以及检测系统 |
JP2024510923A JP7661614B2 (ja) | 2022-03-30 | 2022-03-30 | 検出装置および検出システム |
PCT/JP2022/016122 WO2023188150A1 (ja) | 2022-03-30 | 2022-03-30 | 検出装置および検出システム |
ZA2023/11595A ZA202311595B (en) | 2022-03-30 | 2023-12-18 | Detection device and detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/016122 WO2023188150A1 (ja) | 2022-03-30 | 2022-03-30 | 検出装置および検出システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023188150A1 true WO2023188150A1 (ja) | 2023-10-05 |
Family
ID=88199796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/016122 WO2023188150A1 (ja) | 2022-03-30 | 2022-03-30 | 検出装置および検出システム |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240286141A1 (ja) |
EP (1) | EP4501459A1 (ja) |
JP (1) | JP7661614B2 (ja) |
CN (1) | CN117396276A (ja) |
AU (1) | AU2022450944B2 (ja) |
WO (1) | WO2023188150A1 (ja) |
ZA (1) | ZA202311595B (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6237086A (ja) * | 1985-08-07 | 1987-02-18 | シ−メンス、アクチエンゲゼルシヤフト | 回転機構の負荷状態監視方法および装置 |
US20030052205A1 (en) * | 2001-09-17 | 2003-03-20 | Tirschler Ehrenfried Albert | Angle-based method and device for protecting a rotating component |
US20070145168A1 (en) * | 2005-12-27 | 2007-06-28 | Metso Minerals Industries, Inc. | Locked charge detector |
US9522400B2 (en) | 2011-02-18 | 2016-12-20 | Siemens Aktiengesellschaft | Drive system for a ball mill and method for operating a ball mill |
JP2017513694A (ja) * | 2014-03-24 | 2017-06-01 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | 粉砕管の内壁からの付着充填物の剥離 |
WO2018010880A1 (de) * | 2016-07-15 | 2018-01-18 | Siemens Aktiengesellschaft | Verfahren zum anfahren eines mahlrohrs |
JP2022083314A (ja) * | 2020-11-24 | 2022-06-03 | 株式会社ナガオシステム | 回転装置および微粒子作製方法 |
-
2022
- 2022-03-30 JP JP2024510923A patent/JP7661614B2/ja active Active
- 2022-03-30 WO PCT/JP2022/016122 patent/WO2023188150A1/ja active Application Filing
- 2022-03-30 EP EP22935295.0A patent/EP4501459A1/en active Pending
- 2022-03-30 CN CN202280039142.1A patent/CN117396276A/zh active Pending
- 2022-03-30 AU AU2022450944A patent/AU2022450944B2/en active Active
- 2022-03-30 US US18/569,605 patent/US20240286141A1/en active Pending
-
2023
- 2023-12-18 ZA ZA2023/11595A patent/ZA202311595B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6237086A (ja) * | 1985-08-07 | 1987-02-18 | シ−メンス、アクチエンゲゼルシヤフト | 回転機構の負荷状態監視方法および装置 |
US20030052205A1 (en) * | 2001-09-17 | 2003-03-20 | Tirschler Ehrenfried Albert | Angle-based method and device for protecting a rotating component |
US20070145168A1 (en) * | 2005-12-27 | 2007-06-28 | Metso Minerals Industries, Inc. | Locked charge detector |
US9522400B2 (en) | 2011-02-18 | 2016-12-20 | Siemens Aktiengesellschaft | Drive system for a ball mill and method for operating a ball mill |
JP2017513694A (ja) * | 2014-03-24 | 2017-06-01 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | 粉砕管の内壁からの付着充填物の剥離 |
WO2018010880A1 (de) * | 2016-07-15 | 2018-01-18 | Siemens Aktiengesellschaft | Verfahren zum anfahren eines mahlrohrs |
JP2022083314A (ja) * | 2020-11-24 | 2022-06-03 | 株式会社ナガオシステム | 回転装置および微粒子作製方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240286141A1 (en) | 2024-08-29 |
JP7661614B2 (ja) | 2025-04-14 |
EP4501459A1 (en) | 2025-02-05 |
CN117396276A (zh) | 2024-01-12 |
JPWO2023188150A1 (ja) | 2023-10-05 |
ZA202311595B (en) | 2025-04-30 |
AU2022450944A1 (en) | 2024-01-04 |
AU2022450944B2 (en) | 2025-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10124457B2 (en) | Machine tool having inspection function for deteriorated state of spindle | |
JP6856465B2 (ja) | ブレーキ検査装置およびモータ制御装置 | |
JP6312645B2 (ja) | ファンの動作異常を報知可能なモータ駆動装置、およびその方法 | |
JP6467209B2 (ja) | 電動機のコギングトルク測定方法 | |
UA116593C2 (uk) | Відокремлення налиплого завантаженого матеріалу від внутрішньої стінки помольної труби | |
WO2023188150A1 (ja) | 検出装置および検出システム | |
US10454401B2 (en) | Motor controller | |
US9356550B2 (en) | Motor controller having abnormality detection function of power transmission unit between motor and main shaft | |
CN105676605A (zh) | 图像形成装置和操作该图像形成装置的方法 | |
KR100968049B1 (ko) | 속도검출용 센서의 검출신호 분석을 통한 성능 검증 장치 및 그 제어방법 | |
BR112020002256A2 (pt) | método para desprender uma carga congelada, dispositivo para liberar uma carga congelada, e, sistema industrial para processar um material de base | |
CN108367416B (zh) | 用于脉冲扳手旋转检测的方法及装置 | |
JP2010133330A (ja) | ファンの監視制御装置 | |
CN109562388B (zh) | 用于启动研磨管的方法 | |
JP4820053B2 (ja) | モータの回転停止検出装置 | |
JP4168952B2 (ja) | 遠心機 | |
CN107038796A (zh) | 一种钞箱舌片的定位控制方法及装置 | |
JP5115409B2 (ja) | 遠心分離機 | |
JP7294901B2 (ja) | ファンモータ、ファンモータ駆動装置、及び冷却装置 | |
KR101960137B1 (ko) | 전장부품의 파손 감지방법 | |
JPH06153560A (ja) | モータの回転速度異常検知装置 | |
CN116126035A (zh) | 角度控制方法、装置、电子设备及存储介质 | |
JP2022150110A (ja) | ねじ締め装置 | |
JP2020139537A (ja) | 同期異常検出装置及び同期異常検出方法 | |
JPS59175943A (ja) | 工具異常検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22935295 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280039142.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022450944 Country of ref document: AU Ref document number: AU2022450944 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18569605 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023026347 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2022450944 Country of ref document: AU Date of ref document: 20220330 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024510923 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022935295 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022935295 Country of ref document: EP Effective date: 20241030 |
|
ENP | Entry into the national phase |
Ref document number: 112023026347 Country of ref document: BR Kind code of ref document: A2 Effective date: 20231214 |