WO2023182129A1 - 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 - Google Patents
脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 Download PDFInfo
- Publication number
- WO2023182129A1 WO2023182129A1 PCT/JP2023/010253 JP2023010253W WO2023182129A1 WO 2023182129 A1 WO2023182129 A1 WO 2023182129A1 JP 2023010253 W JP2023010253 W JP 2023010253W WO 2023182129 A1 WO2023182129 A1 WO 2023182129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- oxygen
- oxygen scavenger
- water
- scavenger composition
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
- B01J20/0229—Compounds of Fe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/2805—Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28059—Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3092—Packing of a container, e.g. packing a cartridge or column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/24—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
- B65D81/26—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
- B65D81/266—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
- B65D81/268—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants the absorber being enclosed in a small pack, e.g. bag, included in the package
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/112—Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
- B01D2253/1122—Metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/104—Oxygen
Definitions
- the present invention relates to an oxygen absorber composition, an oxygen absorber package, and a method for producing an oxygen absorber package.
- a method using an oxygen absorber is known as a preservation technique for foods, medicines, etc.
- the article to be stored and an oxygen absorber are sealed in a sealed container with gas barrier properties, and the oxygen in the container is absorbed by the oxygen absorber, thereby substantially eliminating the atmosphere inside the container.
- an oxygen scavenger In order to function as an oxygen scavenger, it is required to be small and absorb a large amount of oxygen. In other words, there is a need for an oxygen scavenger composition that has a high oxygen absorption per unit volume.
- Typical oxygen scavengers include iron-based oxygen scavengers whose main ingredient is iron (iron powder), and non-ferrous oxygen scavengers whose main ingredient is ascorbic acid, glycerin, or the like.
- the oxygen scavenger is appropriately selected depending on the application, but iron-based oxygen scavengers are widely used from the viewpoint of oxygen absorption performance. Under these circumstances, attempts have been made to downsize iron-based oxygen scavengers and improve their oxygen absorption.
- Patent Document 1 discloses an oxygen scavenger composition that includes an oxygen absorbing substance, water, and a swelling agent, and is solidified by pressure molding to eliminate gaps between particles, thereby reducing the volume and making it more compact. things are disclosed.
- Patent Document 2 discloses, for the purpose of providing an oxygen scavenger composition with an excellent oxygen absorption amount, an ⁇ layer containing a water retention agent, a swelling agent, a metal salt, and water, a ⁇ layer containing iron, a ⁇ layer containing a porous carrier, and the granular material has a layered structure in the order of the ⁇ layer, the ⁇ layer, and the ⁇ layer from the inside to the outside of the granular material.
- An oxygen scavenger composition is disclosed.
- an object of the present invention is to provide an oxygen absorber composition, an oxygen absorber package, and a method for producing an oxygen absorber package that has a high oxygen absorption rate at the initial stage of the reaction and can exhibit high oxygen absorption performance.
- the gist of the present invention is as follows.
- [1] Contains iron, metal salts and water, Content of water present on the surface of iron per unit surface area of iron [content of water present on the surface of iron (g)/ ⁇ content of iron (g) x specific surface area of iron (m 2 /g) ) ⁇ is 0.60 g/m 2 or more and 2.00 g/m 2 or less.
- [2] The oxygen scavenger composition according to [1] above, wherein at least a portion of the metal salt is present on the surface of the iron.
- [3] The oxygen scavenger composition according to [2] above, wherein the metal salt present on the surface of the iron coats the surface of the iron.
- the metal salt present on the surface of the iron is one or more selected from the group consisting of calcium chloride, sodium chloride, calcium bromide, and sodium bromide, as described in [2] or [3] above.
- oxygen scavenger composition [5] Any of [2] to [4] above, wherein the content of the metal salt present on the surface of the iron is 0.1 parts by mass or more and 5.0 parts by mass or less based on 100 parts by mass of iron.
- Step (III-1) Storing the oxygen scavenger composition (a) in the air-permeable packaging container (b1)
- Step (II-1) Place the oxygen scavenger composition (a) in the air-permeable packaging container (b1).
- step (IV-1) How the body is manufactured.
- Step (IV-1) Step [12] of further accommodating the air-permeable packaging container (b1) containing the oxygen scavenger composition (A) in a gas barrier container (b2) [12] Following the step (I) , the method for producing an oxygen absorber package according to [9] above, which comprises the following steps (III-2), (IV-2), and (II-2) in this order.
- Step (III-2) A step of storing the oxygen scavenger composition (a) and the moisture donor in the air permeable packaging container (b1)
- Step (IV-2) The oxygen scavenger composition (a) and Step (II-2) of further accommodating the breathable packaging container (b1) containing the moisture donor in a gas barrier container (b2): From the moisture donor to the oxygen scavenger composition (a). Supplying water to obtain the oxygen scavenger composition (A)
- an oxygen scavenger composition an oxygen scavenger package, and a method for producing an oxygen scavenger package that has a high oxygen absorption rate in the initial stage of the reaction and can exhibit high oxygen absorption performance.
- Embodiments of the oxygen absorber composition, the oxygen absorber package, and the method for manufacturing the oxygen absorber package according to the present invention will be described in detail below.
- the term "A to B” regarding the description of numerical values means “A or more and B or less” (in the case of A ⁇ B) or "A or less and B or more” (in the case of A>B).
- combinations of preferred embodiments are more preferred embodiments.
- the oxygen scavenger composition of the present invention contains iron, a metal salt, and water, and the content of water present on the surface of iron per unit surface area of iron [content of water present on the surface of iron (g)] / ⁇ Iron content (g) ⁇ Specific surface area of iron (m 2 /g) ⁇ ] is 0.60 g/m 2 or more and 2.00 g/m 2 or less.
- the content of water present on the surface of iron per unit surface area of iron is an index of "thickness of the water film formed on the surface of iron" If the content of water present on the surface per unit surface area of iron is within the above-mentioned predetermined range, it means that a water film having a predetermined thickness is formed on the iron surface.
- the oxygen scavenger composition of the present invention can increase the oxygen absorption rate at the initial stage of the reaction and exhibit high oxygen absorption performance.
- the reason why the oxygen scavenger composition of the present invention achieves the above effects is not clear, it is speculated as follows.
- iron-based oxygen scavengers iron reacts with water and oxygen, resulting in a rapid oxygen scavenging reaction.
- water vapor in a deoxidized environment moisture evaporated from an object to be preserved, etc.
- a water-containing carrier moisture donor, etc.
- the reaction rate of the deoxygenation reaction when the water film is thin, the amount of oxygen absorbed is small due to the lack of water on the iron surface, and it is thought that when the water is consumed and becomes extremely small, the reaction rate becomes slow. On the other hand, if the water film is too thick, the rate of deoxygenation reaction is considered to be slow due to diffusion-limiting, which lowers the dissolved oxygen concentration in the water film.
- the oxygen scavenger composition of the present invention by forming a water film with a predetermined thickness on the surface of iron in advance, the iron surface can be coated with appropriate moisture and oxygen (dissolved oxygen) from the initial stage of the oxygen scavenging reaction. ), it is thought that the reaction rate of the deoxygenation reaction and the amount of oxygen absorption can be increased, and high oxygen absorption performance can be exhibited.
- iron The form of iron contained in the oxygen scavenger composition of the present invention is not particularly limited, but from the viewpoints of oxygen absorption performance, availability, and ease of handling, iron powder is preferable.
- the iron powder is preferably one with an exposed surface of iron (zero-valent metal iron), but it may also have an extremely thin oxide film like a normal metal surface as long as it does not impede the effects of the present invention. good.
- reduced iron powder, electrolytic iron powder, atomized iron powder, etc. can be suitably used.
- crushed or cut products such as cast iron can also be used.
- One type of iron powder can be used alone, or two or more types can be used in combination as necessary. Moreover, these iron powders can be easily obtained and used as commercially available products.
- the average particle diameter (D50) of the iron powder is preferably 3000 ⁇ m or less, more preferably 1000 ⁇ m or less, even more preferably 300 ⁇ m or less, from the viewpoint of improving contact with oxygen, and from the viewpoint of suppressing dust generation. , preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more. More specifically, the average particle diameter (D50) of the iron powder is preferably 1 ⁇ m or more and 3000 ⁇ m or less, more preferably 1 ⁇ m or more and 1000 ⁇ m or less, even more preferably 10 ⁇ m or more and 1000 ⁇ m or less, even more preferably 20 ⁇ m or more and 300 ⁇ m or less. It is.
- the iron powder having an average particle diameter within the above range can be obtained by appropriately selecting commercially available iron powder. It can also be obtained by classifying, for example, using a sieve according to the desired average particle diameter.
- the average particle size is measured as the average particle size (D50) at a cumulative frequency of 50% in the volume-based particle size distribution using, for example, a commercially available laser diffraction/scattering particle size distribution analyzer (LA-960 manufactured by Horiba, Ltd.). can do.
- the specific surface area of the iron powder is preferably 0.03 m 2 /g or more, more preferably 0.05 m 2 /g or more from the viewpoint of oxygen absorption performance, and from the viewpoint of suppressing dust generation, Preferably it is 0.20 m 2 /g or less, more preferably 0.10 m 2 /g or less, still more preferably 0.09 m 2 /g or less. More specifically, the specific surface area of the iron powder is preferably 0.03 m 2 /g or more and 0.20 m 2 /g or less, more preferably 0.03 m 2 / g or more and 0.10 m 2 /g or less, More preferably, it is 0.05 m 2 /g or more and 0.09 m 2 /g or less. Note that the specific surface area of the iron powder can be measured by the BET multipoint method. Specifically, it can be measured by the method described in Examples.
- the oxygen scavenger composition of the present invention contains iron as a main ingredient.
- the content of iron in the oxygen scavenger composition is not particularly limited, but is preferably 40% by mass or more and 98% by mass or less, more preferably 60% by mass or more and 98% by mass or less, even more preferably 80% by mass or more and 98% by mass.
- the content is more preferably 85% by mass or more and 96% by mass or less, even more preferably 85% by mass or more and 94% by mass or less.
- the metal salt contained in the oxygen scavenger composition of the present invention is a substance that acts catalytically on the oxidation reaction of iron and improves the activity of iron.
- the metal salt also plays a role in preventing water contained in the oxygen scavenger composition from being evaporated and lost from the oxygen scavenger composition.
- the oxygen scavenger composition of the present invention needs to form a water film of a predetermined thickness on the surface of iron in advance, but in order to attract moisture to the surface of iron, the deliquescence of the metal salt is necessary. used. Therefore, it is preferable that the metal salt is present at least partially, more preferably mainly, on the surface of the iron.
- the oxygen scavenger composition of the present invention may contain a water donor, as described below, and the water donor may contain a metal salt, and the metal salt is not supported on the carrier of the water donor. It is distinguished from the metal salts that exist on the surface of iron. Therefore, when the oxygen scavenger composition contains a moisture donor, a portion of the metal salt only needs to be present on the surface of the iron, and the rest may be supported on the carrier of the moisture donor.
- the metal salt is mainly present on the surface of iron
- the metal salt includes, for example, a case where a component containing a metal salt such as a moisture donor is not added to the oxygen scavenger composition, and the metal salt is substantially present on the surface of the iron. This means that all of the above is present on the iron surface.
- the metal salt present on the surface of iron coats the surface of iron.
- the method for coating the surface of iron with the metal salt is not particularly limited, but for example, as described below, after mixing iron powder and an aqueous solution containing the metal salt, drying to remove moisture, forming the iron powder This can be done by attaching a metal salt to the surface of the
- the metal salt is not particularly limited, but a metal salt having deliquescent properties is preferable.
- metal halides are preferred.
- the metal in the metal halide is not particularly limited, but includes, for example, one or more selected from the group consisting of alkali metals, alkaline earth metals, copper, zinc, aluminum, tin, iron, cobalt, and nickel. Among these, one or more selected from the group consisting of lithium, potassium, sodium, magnesium, calcium, barium, and iron is more preferable, and one or more selected from the group consisting of sodium and calcium is even more preferable.
- the halide in the metal halide is not particularly limited, but examples thereof include chloride, bromide, and iodide, and preferably one or more selected from the group consisting of chloride and bromide.
- the metal halide may be one or more selected from the group consisting of calcium chloride, sodium chloride, calcium bromide, sodium bromide, calcium iodide, and sodium iodide from the viewpoint of ease of handling and safety.
- it is one or more selected from the group consisting of calcium chloride, sodium chloride, calcium bromide, and sodium bromide.
- the metal salt present on the surface of iron is preferably one or more selected from the group consisting of calcium chloride, sodium chloride, calcium bromide, and sodium bromide.
- One type of metal salt can be used alone, or two or more types can be used in combination as necessary. Moreover, these metal salts can be easily obtained and used as commercial products.
- the content of the metal salt is not particularly limited, but is preferably 0.09% by mass or more and 10% by mass or less, more preferably 0.09% by mass or more and 5.0% by mass or less, even more preferably It is 0.10% by mass or more and 2.0% by mass or less. Further, the content of the metal salt is preferably 0.09% by mass or more and 5.0% by mass or less, more preferably 0.10% by mass or more and 2.0% by mass in the oxygen scavenger composition excluding the moisture donor. The content is more preferably 0.10% by mass or more and 1.0% by mass or less.
- the content of the metal salt is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 2.0 parts by mass or less, and even more preferably is 0.1 parts by mass or more and 1.0 parts by mass or less, and even more preferably 0.2 parts by mass or more and 1.0 parts by mass or less.
- the content of the metal salt present on the surface of iron is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, more preferably 0.1 parts by mass or more and 2.0 parts by mass or less, per 100 parts by mass of iron.
- the amount is not more than 0.1 part by mass and not more than 1.0 part by mass, even more preferably not less than 0.1 part by mass and not more than 0.5 part by mass.
- Water contained in the oxygen scavenger composition of the present invention is a necessary component for advancing the oxygen scavenging reaction.
- the oxygen scavenger composition of the present invention requires that a water film of a predetermined thickness be formed on the surface of iron in advance. It is thought to be incorporated into the metal salts present. Therefore, water is preferably present at least partially, more preferably primarily, on the surface of the iron together with the metal salt.
- “at least a portion of water is present on the surface of iron” means that a portion or all of the water contained in the oxygen scavenger composition is present on the surface of iron.
- the oxygen scavenger composition of the present invention may contain a moisture donor, as described later, and the moisture donor contains water, but since the water is supported on the carrier of the moisture donor, iron It is distinguished from water that exists on the surface of Therefore, when the oxygen scavenger composition contains a water donor, part of the water may be present on the surface of the iron, and the rest may be supported on the carrier of the water donor.
- water mainly exists on the surface of iron includes, for example, a case where a water-containing component such as a moisture donor is not added to the oxygen scavenger composition, and substantially all of the water is present on the surface of the iron. This means that it exists on the surface of iron. Further, it is more preferable that the water present on the surface of the iron coats the surface of the iron together with a metal salt.
- the oxygen absorption rate at the initial stage of the reaction can be increased and high oxygen absorption performance can be achieved.
- the thickness of the water film can be determined by the content of water present on the surface of iron per unit surface area of iron. Content of water present on the surface of iron per unit surface area of iron [content of water present on the surface of iron (g)/ ⁇ content of iron (g) x specific surface area of iron (m 2 /g) ) ⁇ ] is 0.60 g/m 2 or more and 2.00 g/m 2 or less.
- the content of water present on the iron surface per unit surface area of iron is preferably 0.70 g/m 2 or more and 2.00 g/m 2 or less, more preferably 1.10 g/m 2 or more and 2.00 g/m 2 or less. m 2 or less, more preferably 1.10 g/m 2 or more and 1.98 g/m 2 or less, even more preferably 1.50 g/m 2 or more and 1.90 g/m 2 or less.
- Content of water present on the surface of iron per unit surface area of iron is not particularly limited, but for example, (1) the method of supplying water to the iron surface and its conditions (atmospheric humidity and humidity of the moisture donor) may be appropriately selected. (2) The desired thickness can be controlled by appropriately selecting and adjusting the type and content of the metal salt present on the surface of the iron. In particular, when drawing moisture to the surface of iron, the deliquescence phenomenon of metal salts is used. For example, when controlling by humidity conditions, the higher the humidity, the greater the amount of water present on the surface of iron.
- the per-unit content [water content (g) present on the surface of iron/ ⁇ iron content (g) ⁇ specific surface area of iron (m 2 /g) ⁇ ] can be increased.
- the more the content of metal salts present on the iron surface is increased, the more the content of water present on the iron surface per unit surface area of iron [ It is considered that the existing water content (g)/ ⁇ iron content (g) x specific surface area of iron (m 2 /g) ⁇ ] can be increased.
- humidity conditions cannot often be adjusted arbitrarily, so it is more preferable to control them by the method (2) above.
- the content of water in the oxygen scavenger composition is not particularly limited, but is preferably 2.0% by mass or more and 30% by mass or less, more preferably 3.0% by mass or more and 20% by mass or less, and even more preferably The content is 4.0% by mass or more and 15% by mass or less, and even more preferably 7.0% by mass or more and 14% by mass or less.
- the content of water in the oxygen scavenger composition excluding the moisture donor is preferably 3.0% by mass or more and 20% by mass or less, more preferably 4.0% by mass or more and 15% by mass or less, and even more preferably It is 7.0% by mass or more and 14% by mass or less.
- the water content is preferably 2.0 parts by mass or more and 30 parts by mass or less, more preferably 3.0 parts by mass or more and 20 parts by mass or less, based on 100 parts by mass of iron. More preferably, it is 4.0 parts by mass or more and 19 parts by mass or less, even more preferably 7.0 parts by mass or more and 17 parts by mass or less.
- the content of water present on the surface of the iron is preferably 3.0 parts by mass or more and 20 parts by mass or less, more preferably 4.0 parts by mass or more and 19 parts by mass or less, and more preferably 4.0 parts by mass or more and 19 parts by mass or less, based on 100 parts by mass of iron.
- it is 7.0 parts by mass or more and 17 parts by mass or less, and even more preferably 8.0 parts by mass or more and 16 parts by mass or less.
- the oxygen scavenger composition of the present invention can further contain a moisture donor.
- the moisture donor is a carrier impregnated with moisture (water-containing carrier), and supplies water to iron.
- the moisture donor includes a carrier, a metal salt, and water.
- the carrier may be anything that can supply supported moisture to the iron, and in general, granular materials such as zeolite, calcined diatomaceous earth, silica gel, perlite, vermiculite, activated alumina, activated clay, activated carbon, and bentonite are preferably used. Among them, zeolite, calcined diatomaceous earth, and activated carbon are preferred.
- the metal salt the above-mentioned components can be used, but sodium chloride is preferred.
- the content of the moisture donor is not particularly limited, and may be any amount that can provide the required amount of moisture.
- the content is 15% by mass or more and 60% by mass or less, more preferably 30% by mass or more and 50% by mass or less.
- the content of the moisture donor is preferably 25 parts by mass or more and 100 parts by mass or less, more preferably 40 parts by mass or more and 60 parts by mass or less, based on 100 parts by mass of iron.
- the content of the carrier is preferably 15% by mass or more and 60% by mass or less, more preferably 30% by mass or more and 50% by mass or less in the oxygen absorber composition. % by mass or less.
- the content of the carrier is preferably 20 parts by mass or more and 150 parts by mass or less, more preferably 25 parts by mass or more and 100 parts by mass or less, and even more preferably 40 parts by mass or more and 60 parts by mass or less, per 100 parts by mass of iron. It is.
- the oxygen scavenger composition of the present invention from the viewpoint of ease of controlling the thickness of the water film and from the viewpoint of miniaturization of the oxygen scavenger package, it is preferable that moisture is supplied by external moisture absorption. In that case, the oxygen scavenger composition may be substantially free of moisture donor.
- the oxygen scavenger composition of the present invention may contain other components as necessary.
- Other components include alkaline substances, swelling agents, fluidity improvers, catalysts, odor adsorbents, thermal dispersants, and the like.
- the shape of the oxygen scavenger composition of the present invention is not particularly limited, but examples include spherical, approximately spherical, elliptical, and cylindrical shapes, which tend to have better filling properties and higher bulk density. Spherical and approximately spherical shapes are preferred, and spherical shapes are more preferred.
- the content of water present on the surface of iron per unit surface area of iron [Content of water present on the surface of iron (g)/ ⁇ Content of iron (g) x Specific surface area of iron (m 2 /g) ⁇ ] is 0.60 g/m 2 or more and 2.00 g/m 2 or less.
- Step (i) is a step of obtaining an oxygen scavenger composition (a) containing iron and a metal salt.
- an oxygen scavenger composition (a) containing iron and a metal salt it is as above.
- the metal salt is preferably present on the surface of iron, and more preferably coats the surface of iron.
- the method for obtaining such an oxygen scavenger composition (a) is not particularly limited, but for example, iron powder to which a metal salt is attached may be obtained by mixing an aqueous solution of a metal salt with iron powder and drying the mixture. .
- the concentration of the salt is preferably 1% by mass or more and 20% by mass or less, more preferably 2% by mass or more and 10% by mass or less.
- Step (ii) is to supply water to the oxygen scavenger composition (a), which contains iron, a metal salt, and water, and the content per unit surface area of iron [iron] of water present on the surface of iron.
- the water content (g)/ ⁇ iron content (g) x iron specific surface area (m 2 /g) ⁇ ] is 0.60 g/m 2 or more and 2.00 g/m 2 or less.
- This is a step of obtaining a certain oxygen scavenger composition (A). Through this step, a water film having a desired thickness can be formed on the surface of iron, and an oxygen scavenger composition that has a high oxygen absorption rate at the initial stage of the reaction and can exhibit high oxygen absorption performance can be obtained.
- the method of supplying water to the oxygen scavenger composition (a) is not particularly limited, but examples include the following methods.
- a water-containing body for example, wetted absorbent cotton, etc.
- Another example is (2) a method in which a water-containing carrier (such as a water donor) is further blended into the oxygen scavenger composition (a), and water is supplied from the water-containing carrier to the oxygen scavenger composition (a).
- a water film having a desired thickness can be formed on the surface of iron by adjusting the amount of the water-containing carrier, the water content of the water-containing carrier, and the like.
- the oxygen scavenger composition (A) obtained by this method substantially further contains a carrier in addition to iron, metal salt, and water.
- step (ii) should be performed in an inert atmosphere. It is preferable that the oxygen scavenger composition (A) obtained is stored in an inert atmosphere until it is used as an oxygen scavenger.
- the mixing device for mixing the above components is not particularly limited, but specific examples include a ribbon mixer (manufactured by Ohno Kagaku Kikai Co., Ltd.), a Nauta mixer (manufactured by Hosokawa Micron Co., Ltd.), and a conical mixer (manufactured by Ohno Kagaku Kikai Co., Ltd.) , a vertical granulator (manufactured by Powrec Co., Ltd.), an SP granulator (manufactured by Dalton Co., Ltd.), a high-speed mixer (manufactured by Earth Technica Co., Ltd.), and a granulator (manufactured by Akira Kiko Co., Ltd.) can be used.
- a ribbon mixer manufactured by Ohno Kagaku Kikai Co., Ltd.
- a Nauta mixer manufactured by Hosokawa Micron Co., Ltd.
- a conical mixer manufactured by Ohno Kagaku
- the oxygen absorber package of the present invention includes the above-described oxygen absorber composition and an air-permeable packaging container containing the oxygen absorber composition.
- the breathable packaging container is not particularly limited as long as it is a container made of a packaging material used as an oxygen absorber, but from the viewpoint of ensuring that the oxygen absorber package exhibits sufficient oxygen absorption performance, it must contain at least a breathable packaging material.
- a breathable packaging material For example, two pieces of breathable packaging material are pasted together to form a bag, one piece of breathable packaging material and one piece of non-breathable packaging material are pasted together to form a bag shape, and one piece of
- An example is a bag-shaped bag made by folding an air-permeable packaging material and sealing the edges excluding the folded portion.
- Other examples include containers in which an air-permeable packaging material is attached to the opening surface of a non-air-permeable rigid container.
- the breathable packaging container is made into a bag by overlapping two sheets of the breathable packaging material and heat-sealing the four sides.
- one sheet of breathable packaging material and one sheet of non-breathable packaging material are stacked together and heat-sealed on four sides to form a bag, one sheet of breathable packaging material is folded, and the folded part is
- One example is a bag-shaped bag that is heat-sealed on all but three sides.
- the packaging material may also be formed into a bag by making the air-permeable packaging material cylindrical and heat-sealing both ends and the body of the cylindrical body.
- the breathable packaging material As the breathable packaging material, a packaging material that is permeable to oxygen and water vapor is selected. Among these, those having an air permeability resistance measured by the Gurley tester method of 600 seconds or less, more preferably 90 seconds or less, and still more preferably 30 seconds or less are preferably used.
- the air permeability resistance refers to a value measured by the method of JIS P8117:2009. More specifically, it refers to the time required for 100 mL of air to pass through the breathable packaging material using a Gurley densometer (manufactured by Toyo Seiki Seisakusho Co., Ltd.).
- a plastic film made of breathable material can be used.
- a plastic film for example, a film such as polyethylene terephthalate, polyamide, polypropylene, polycarbonate, etc. and a film such as polyethylene, ionomer, polybutadiene, ethylene acrylic acid copolymer, ethylene methacrylic acid copolymer, or ethylene vinyl acetate copolymer as a sealing layer are laminated and bonded.
- a laminated film etc. can be used.
- these laminates can also be used as breathable packaging materials.
- Various methods can be used to impart breathability, including perforation using cold needles and hot needles.
- the permeability can be freely adjusted by adjusting the diameter, number, material, etc. of the holes to be perforated.
- the thickness of the laminated film is preferably 50 to 300 ⁇ m, particularly preferably 60 to 250 ⁇ m.
- the packaging material can maintain strength and have excellent heat sealability and packaging suitability.
- Non-breathable packaging material packaging materials used as oxygen absorbers can be used, and packaging materials that can block moisture, alcohol, oil, and solid components of the stored items and have sealing properties are suitable.
- examples include laminates with an oxygen permeability of 0.05 to 20 mL/ m2.24 hr.atm (25°C, 50% RH), such as coextruded multilayer sheets and films made of polyethylene terephthalate or nylon. It will be done.
- the oxygen absorber package of the present invention may further include a gas barrier container that houses the air-permeable packaging container containing the oxygen absorber composition described above.
- a gas barrier container that houses the air-permeable packaging container containing the oxygen absorber composition described above.
- the gas barrier container is not particularly limited as long as it can be sealed and has substantially gas barrier properties, but from the viewpoint of blocking external ventilation, it is preferably constructed of the above-mentioned non-breathable material.
- multilayer sheets and films with laminated structures such as polyethylene terephthalate/aluminum vapor deposition/polyethylene, oriented polypropylene/polyvinyl alcohol/polyethylene, polyvinylidene chloride coated oriented nylon/polyethylene, and nylon coextruded multilayer sheets and films.
- a bag or packaging container made of a laminate having an oxygen permeability of 0.05 to 20 mL/m 2 24 hr atm (25° C., 50% RH) can be easily used.
- metal cans, glass bottles, plastic containers, etc. can also be used as gas barrier containers.
- the method for producing the oxygen absorber package is not particularly limited, but preferably includes, for example, the following steps (I) to (III). According to such a method, it is possible to obtain an oxygen scavenger package that has a high oxygen absorption rate at the initial stage of the reaction and can exhibit high oxygen absorption performance. Note that the order of steps (II) and (III) below does not matter.
- Steps (I) and (II) are the same as steps (i) and (ii) in the method for producing the oxygen scavenger composition.
- Step (III) is a step of accommodating at least one of the oxygen absorber composition (a) and the oxygen absorber composition (A) in an air-permeable packaging container (b1).
- the oxygen scavenger composition (a) and the oxygen scavenger composition (A) can be housed in an air-permeable packaging container, and the oxygen absorption rate at the initial stage of the reaction is fast and the oxygen absorption performance is high. It is possible to obtain an oxygen absorber package that can exhibit the following properties.
- the air-permeable packaging container (b1) those described above can be used.
- the air-permeable packaging container (b1) containing at least one of the oxygen absorber composition (a) and the oxygen absorber composition (A) is further transformed into a gas barrier container (b2). It is possible to block the inflow of oxygen and water vapor into the gas barrier container. Therefore, oxidation of iron can be suppressed, and the amount of moisture on the surface of iron can be appropriately controlled.
- this step is suitable when the air-permeable packaging container (b1) contains the oxygen scavenger composition (A). Since a water film has already been formed in the oxygen scavenger composition (A), the oxygen scavenging reaction gradually progresses in the presence of oxygen.
- this step is effective from the viewpoint of maintaining good oxygen absorption performance until the time of use as an oxygen scavenger.
- substantially The inside of the gas barrier container (b2) is preferably a closed system, and more preferably the inside of the system is in a reducing atmosphere free of oxygen.
- Method 1 preferably includes the following step (III-1) and step (II-1) in this order after the step (I).
- Step (III-1) Storing the oxygen scavenger composition (a) in the air-permeable packaging container (b1)
- Step (II-1) Place the oxygen scavenger composition (a) in the air-permeable packaging container (b1). Supplying water to composition (a) to obtain the oxygen scavenger composition (A)
- Step (III-1) corresponds to the above step (III) and is a step of accommodating the oxygen absorber composition (a) in an air-permeable packaging container (b1).
- Step (II-1) corresponds to the above step (II), and supplies water to the oxygen scavenger composition (a) through the air-permeable packaging container (b1) to remove the oxygen scavenger composition (a).
- This is the process of obtaining A).
- the method of supplying water to the oxygen scavenger composition (a) through the breathable packaging container (b1) is not particularly limited, but for example, the breathable packaging container containing the oxygen scavenger composition (a)
- a water-containing body for example, wetted absorbent cotton, etc.
- Step (IV-1) A step of further accommodating the air-permeable packaging container (b1) containing the oxygen scavenger composition (A) in a gas barrier container (b2). This is a step of further accommodating the air-permeable packaging container (b1) containing the oxygen agent composition (A) in a gas barrier container (b2). Since the oxygen scavenger composition (A) has excellent oxygen absorption performance, it is preferably stored in a gas barrier container until it is used as an oxygen scavenger.
- Method 2 preferably includes the following steps (III-2), (IV-2), and (II-2) in this order after the above step (I).
- Step (III-2) a step of accommodating the oxygen scavenger composition (a) and the moisture donor in the air-permeable packaging container (b1);
- Step (IV-2) Step (II-2) of further accommodating the breathable packaging container (b1) containing the oxygen scavenger composition (a) and the moisture donor in a gas barrier container (b2) : Supplying water from the moisture donor to the oxygen scavenger composition (a) to obtain the oxygen scavenger composition (A).
- Step (III-2) corresponds to the above step (III), and is a step of housing the oxygen scavenger composition (a) in a breathable packaging container (b1). This is a step of housing the drug composition (a) together with the air-permeable packaging container (b1). Through this step, a self-reactive oxygen scavenger is obtained.
- the above-mentioned ones can be used as the moisture donor.
- Step (IV-2) is a step of further accommodating the breathable packaging container (b1) containing the oxygen scavenger composition (a) and the moisture donor in a gas barrier container (b2).
- a gas barrier container b2
- ventilation with the outside can be blocked.
- water can be effectively supplied from the moisture donor to the oxygen scavenger composition (a) to obtain an oxygen scavenger composition (A) in which a water film having a desired thickness is formed. (corresponds to step (II-2)).
- the average particle diameter was measured by one of the following methods. ⁇ D50 diameter measured with a laser diffraction/scattering particle size distribution measuring device Cumulative measurement in the volume-based particle size distribution using a laser diffraction/scattering particle size distribution measuring device (“LA-960” manufactured by Horiba, Ltd.) The average particle diameter (D50) was measured at a frequency of 50%. ⁇ D50 diameter determined by measuring particle size distribution by classification Weight according to the size of the sieve after 5 minutes of vibration using a standard sieve that complies with ISO 3310-1:2000 (equivalent to JIS Z8801-1:2006) From the fraction, the average particle diameter at a cumulative frequency of 50% (D50) was measured.
- the specific surface area was measured using a constant volume specific surface area measuring device (BELSORP mini II, manufactured by Microtrac Bell Co., Ltd.) under the following conditions, and the specific surface area was calculated by the BET method. . Measurement temperature: -196°C Pretreatment: 300°C, 3 hours, nitrogen flow
- Air permeability resistance The air permeability resistance was measured three times using a digital Oken type air permeability tester (“EG02” manufactured by Asahi Seiko Co., Ltd.). The arithmetic mean value of the obtained results was taken as the measurement result.
- Example 1 (1) Dissolve 0.25 g of sodium chloride (NaCl) in 6 g of water, and add this aqueous solution (NaCl concentration: 4% by mass) to reduced iron powder (manufactured by Höganäs, average particle size 80 ⁇ m (laser diffraction/scattering particle size distribution). D50 diameter measured with a measuring device), specific surface area 0.085 m 2 /g) 100 g), dried, and the surface of the iron powder was coated with sodium chloride by adhering sodium chloride to the surface of the iron powder. (Oxygen scavenger composition (a)) was obtained.
- the oxygen absorber composition (A) containing iron, a metal salt, and water was supplied, and an oxygen absorber package (x2) containing the oxygen absorber composition (A) in an air-permeable packaging container (b1) was obtained.
- an oxygen absorber package (x2) containing the oxygen absorber composition (A) in an air-permeable packaging container (b1) was obtained.
- the absorbent cotton and the oxygen absorber package (x2) are separated in the three-sided aluminum bag, the oxygen absorber package (x2) is cut off along with the three-sided aluminum bag, and the cut end is heated again.
- An oxygen absorber package (y2) in which the oxygen absorber package (x2) was sealed and housed in a three-sided aluminum bag (gas barrier container (b2)) was obtained.
- the following oxygen removal experiment was conducted on the obtained oxygen absorber package (y2) to evaluate its oxygen absorption performance.
- the content of water present on the surface of iron per unit surface area of iron [content of water present on the surface of iron (g)/ ⁇ water present on the surface of iron] Content (g) ⁇ Specific surface area of iron (m 2 /g) ⁇ ] was determined by the following method. First, the weight W 1 of the oxygen absorber package (x1) immediately after production (before water absorption) was measured in advance. Next, the oxygen absorber package (y2) is housed in an aluminum three-sided bag (gas barrier container (b2)) to contain the oxygen absorber package (x2) obtained by supplying water to the oxygen absorber package (x1). ) was measured .
- the amount of water is the amount of water supplied from the absorbent cotton to the surface of the iron in the oxygen absorber composition (a), that is, the content of water present on the surface of the iron in the oxygen absorber composition (A). It can be estimated that the amount.
- Example 2 to 12 and Comparative Examples 1 to 4 oxygen scavenger composition (A) And an oxygen absorber package (y2) was produced.
- the obtained oxygen absorber package (y2) was subjected to the same measurements as in Example 1 and the following evaluation. The results are shown in Table 1.
- an aluminum bag (aluminum foil laminated plastic film bag, manufactured by San-A Kaken Co., Ltd., "700 Aluminum Bag", 700 mm x 800 mm, thickness 0.12 mm), which is a gas barrier bag with higher gas barrier properties, was placed into a size of 350 mm x 400 mm.
- a rubber sheet for sampling (25 mm x 25 mm, 2 mm thick) is glued to the position corresponding to the rubber sheet for sampling of the PTS bag for measurement. I got it.
- the measurement PTS bag contained 3000 mL of air and the oxygen absorber package (y2), and the opening was sealed by heat sealing. Moreover, the oxygen concentration (initial oxygen concentration) in the PTS bag at this time was measured. Next, open the oxygen absorber package (y2) in the PTS bag, take out the oxygen absorber package (x2) from inside, place it together with the PTS bag in the aluminum bag for measurement, and heat seal the opening. and sealed it. At this time, the sampling rubber sheet of the PTS bag and the sampling rubber sheet of the aluminum bag were arranged so as to overlap, and the PTS bag and the aluminum bag were adhered with double-sided tape to prevent the rubber sheets from shifting. The aluminum bag was immediately placed in a constant temperature bath at 25°C and kept there for 7 days. At this time, the oxygen concentration in the PTS bag was measured at each time point of the holding time of 2 hours and 7 days.
- the oxygen concentration was measured using a gas analyzer (“Check Mate 3” manufactured by MOCON). The measurement is performed by inserting the hollow needle at the tip of the sampling silicone tube attached to the gas analyzer into the PTS bag through the sampling rubber sheet attached to the PTS bag and aluminum bag in advance, and measuring the oxygen concentration. This was done by measuring. From the measurement results of the oxygen concentration, the amount of oxygen absorbed per weight of iron powder in the PTS bag (mL/g) was calculated. In this example, when the amount of oxygen absorbed per weight of iron powder after 2 hours is 15 mL/g or more, and when the amount of oxygen absorbed per weight of iron powder after 7 days is 50 mL/g or more, the oxygen absorption It was determined that the performance was good.
- Table 1 The components in Table 1 are shown below.
- - Reduced iron powder manufactured by Höganäs, average particle diameter 80 ⁇ m (D50 diameter measured with a laser diffraction/scattering particle size distribution measuring device), specific surface area 0.085 m 2 /g ⁇ Atomized iron powder 1: Atomized iron powder (manufactured by Kobe Steel, Ltd., average particle diameter 75 ⁇ m (D50 diameter determined by measuring particle size distribution by classification)) passed through a sieve with an opening of 45 ⁇ m, specific surface area 0 .073m 2 /g ⁇ Atomized iron powder 2: Atomized iron powder (same as above) was passed through a sieve with an opening of 180 ⁇ m, and the remaining portion was passed through a sieve with an opening of 150 ⁇ m, specific surface area: 0.035 m 2 /g ⁇ NaCl: Sodium chloride ⁇ NaBr: Sodium bromide ⁇ CaCl 2 : Calcium chloride ⁇
- the content of water present on the surface of iron per unit surface area of iron [content of water present on the surface of iron (g)/ ⁇ content of iron (g) x
- An oxygen scavenger composition having a specific surface area (m 2 /g) ⁇ in the range of 0.60 g/m 2 or more and 2.00 g/m 2 or less has a fast oxygen absorption rate at the initial stage of the reaction and has high oxygen absorption performance. (Examples 1 to 12).
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Gas Separation By Absorption (AREA)
- Packages (AREA)
Abstract
Description
このような状況において、鉄系脱酸素剤の小型化、酸素吸収量を改善する試みがなされている。
また、特許文献2には、酸素吸収量が優れた脱酸素剤組成物を提供することを目的として、保水剤、膨潤剤、金属塩及び水を含むα層と、鉄を含むβ層と、多孔性担体を含むγ層と、を有する粉粒体を含み、前記粉粒体は、該粉粒体の内側から外側に向かって、前記α層、前記β層、前記γ層の順に層構造を形成している脱酸素剤組成物が開示されている。
そこで本発明は、反応初期の酸素吸収速度が速く、高い酸素吸収性能を発揮し得る脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法を提供することを目的とする。
[1] 鉄、金属塩及び水を含み、
鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である、脱酸素剤組成物。
[2] 前記金属塩の少なくとも一部が、前記鉄の表面に存在する、上記[1]に記載の脱酸素剤組成物。
[3] 前記鉄の表面に存在する金属塩が、前記鉄の表面を被覆してなる、上記[2]に記載の脱酸素剤組成物。
[4] 前記鉄の表面に存在する金属塩が、塩化カルシウム、塩化ナトリウム、臭化カルシウム及び臭化ナトリウムからなる群から選択される1種以上である、上記[2]又は[3]に記載の脱酸素剤組成物。
[5] 前記鉄の表面に存在する金属塩の含有量が、鉄100質量部に対して0.1質量部以上5.0質量部以下である、上記[2]~[4]のいずれか一項に記載の脱酸素剤組成物。
[6] 前記鉄の比表面積が、0.03m2/g以上0.20m2/g以下である、上記[1]~[5]のいずれか一項に記載の脱酸素剤組成物。
[7] 前記鉄の平均粒子径(D50)が、1μm以上1000μm以下である、上記[1]~[6]のいずれか一項に記載の脱酸素剤組成物。
[8] 上記[1]~[7]のいずれか一項に記載の脱酸素剤組成物と、該脱酸素剤組成物を収容した通気性包装容器とを備える、脱酸素剤包装体。
[9] 下記工程(I)~(III)を含む、脱酸素剤包装体の製造方法。
工程(I):金属塩及び鉄を含む脱酸素剤組成物(a)を得る工程
工程(II):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である脱酸素剤組成物(A)を得る工程
工程(III):前記脱酸素剤組成物(a)及び前記脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程
[10] 前記工程(I)に次いで、下記工程(III-1)及び工程(II-1)を順に有する、上記[9]に記載の脱酸素剤包装体の製造方法。
工程(III-1):前記脱酸素剤組成物(a)を前記通気性包装容器(b1)に収容する工程
工程(II-1):前記通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
[11] 更に、下記工程(IV-1)を有する、上記[10]に記載の脱酸素剤包装体の製造方法。
工程(IV-1):前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
[12] 前記工程(I)に次いで、下記工程(III-2)、工程(IV-2)及び工程(II-2)を順に有する、上記[9]に記載の脱酸素剤包装体の製造方法。
工程(III-2):前記脱酸素剤組成物(a)及び水分供与剤を前記通気性包装容器(b1)に収容する工程
工程(IV-2):前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
工程(II-2):前記水分供与剤から、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
なお、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」(A<Bの場合)又は「A以下B以上」(A>Bの場合)を意味する。また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。
本発明の脱酸素剤組成物は、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である。
なお、本明細書において、「鉄の表面に存在する水の、鉄の単位表面積当たりの含有量」は、「鉄の表面に形成される水膜の厚さ」の指標であり、「鉄の表面に存在する水の、鉄の単位表面積当たりの含有量」が上記所定の範囲内であれば、鉄の表面に所定の厚さを有する水膜が形成されていることを意味する。
本発明の脱酸素剤組成物が上記効果を奏する理由については定かではないが、以下のように推察する。
まず、鉄系脱酸素剤では、鉄が、水及び酸素と反応することで、速い脱酸素反応が起こる。
水は、脱酸素環境中の水蒸気(被保存物等から蒸散した水分等)を用いる場合(水分依存型)と、予め脱酸素剤包装体内に含水担体(水分供与剤等)を同包する場合(自力反応型)とがある。いずれの場合も、鉄が酸素を吸収するためには、鉄の表面に水分を呼び込む必要があるが、それには金属塩の潮解現象が利用される。
また、本発明者等が、鉄の酸素吸収について更に反応解析を行ったところ、上記反応は、鉄と、気体状態の水(水蒸気)や酸素が直接反応するのではなく、まず、金属塩の潮解現象により、鉄の表面に水膜が形成され、該水膜中の水及び溶存酸素が、鉄と反応する機構であることが推察された。
更に、上記機構において、水膜の厚さが薄い場合は、鉄の表面における水不足のために酸素吸収量が少なく、また水分が消費され極少量になると反応速度も遅くなってくると考えられる。一方、水膜が厚すぎる場合は、水膜中の溶存酸素濃度が低くなる拡散律速のために、脱酸素反応の反応速度は遅くなると考えられる。
本発明の脱酸素剤組成物においては、予め鉄の表面に所定の厚さを有する水膜を形成することにより、脱酸素反応の初期段階から、鉄の表面に適度な水分と酸素(溶存酸素)を供給でき、脱酸素反応の反応速度及び酸素吸収量を高めることができ、高い酸素吸収性能を発揮し得ると考えられる。
本発明の脱酸素剤組成物に含まれる鉄の形状は特に限定されないが、酸素吸収性能、入手容易性及び取扱い容易性の観点から、好ましくは鉄粉である。鉄粉は、鉄(0価の金属鉄)の表面が露出したものが好ましいが、本発明の効果を妨げない範囲で、通常の金属表面のように極薄い酸化被膜を有するものであってもよい。具体的には、還元鉄粉、電解鉄粉、噴霧鉄粉(アトマイズ鉄粉)等を好適に用いることができる。また、鋳鉄等の粉砕物、切削品を用いることもできる。
鉄粉は、1種を単独で用いることができ、必要に応じて2種以上を併用して用いることもできる。また、これらの鉄粉は、市販品を容易に入手でき、用いることもできる。
なお、平均粒子径が上記範囲にある鉄粉は、市販の鉄粉を適宜選択し入手することができる。また、例えば所望の平均粒子径に応じた篩を用いて分級して得ることもできる。
また、平均粒子径は、例えば市販のレーザ回折・散乱式粒子径分布測定装置(株式会社堀場製作所製LA-960)等により体積基準粒度分布における累積頻度50%の平均粒子径(D50)として測定することができる。
なお、鉄粉の比表面積は、BET多点法にて測定することができる。具体的には、実施例に記載の方法により測定することができる。
本発明の脱酸素剤組成物に含まれる金属塩は、鉄の酸化反応に触媒的に作用し、鉄の活性を向上させる物質である。また、金属塩は、脱酸素剤組成物に含まれる水が蒸散して脱酸素剤組成物から失われるのを防止する役割を果たす。
また、本発明の脱酸素剤組成物は、予め鉄の表面に所定の厚さの水膜を形成しておく必要があるが、鉄の表面に水分を呼び込むには、金属塩の潮解現象が利用される。そのため、金属塩は、好ましくは少なくとも一部が、より好ましくは主に、鉄の表面に存在することが好ましい。
ここで、「金属塩の少なくとも一部が鉄の表面に存在する」とは、脱酸素剤組成物中に含まれる金属塩のうち、一部又は全部が、鉄の表面に存在することを意味する。本発明の脱酸素剤組成物は、後述するように、水分供与剤を含んでもよく、水分供与剤には金属塩が含まれる場合があるが、該金属塩は水分供与剤の担体に担持されているため、鉄の表面に存在する金属塩とは区別される。したがって、脱酸素剤組成物が水分供与剤を含む場合には、金属塩は、一部が鉄の表面に存在していればよく、その他は水分供与剤の担体に担持されていてもよい。
また、「金属塩が主に鉄の表面に存在する」とは、例えば水分供与剤等の金属塩を含む成分を脱酸素剤組成物に配合しない場合等が挙げられ、実質的に、金属塩の全部が鉄の表面に存在する場合を意味する。
また、鉄の表面に存在する金属塩は、鉄の表面を被覆してなることがより好ましい。なお、金属塩が、鉄の表面を被覆する方法は特に限定されないが、例えば、後述のように、鉄粉と金属塩を含む水溶液とを混合した後、乾燥して水分を除去し、鉄粉の表面に金属塩を付着させることによって行うことができる。
ハロゲン化金属における金属としては特に限定されないが、例えば、アルカリ金属、アルカリ土類金属、銅、亜鉛、アルミニウム、スズ、鉄、コバルト及びニッケルからなる群から選択される1種以上が挙げられる。中でも、リチウム、カリウム、ナトリウム、マグネシウム、カルシウム、バリウム及び鉄からなる群から選択される1種以上がより好ましく、ナトリウム及びカルシウムからなる群から選択される1種以上が更に好ましい。
また、ハロゲン化金属におけるハロゲン化物としては特に限定されないが、例えば、塩化物、臭化物、及びヨウ化物が挙げられ、好ましくは塩化物及び臭化物からなる群から選択される1種以上である。
特に、鉄の表面に存在する金属塩としては、好ましくは塩化カルシウム、塩化ナトリウム、臭化カルシウム及び臭化ナトリウムからなる群から選択される1種以上である。
金属塩は、1種を単独で用いることができ、必要に応じて2種以上を併用して用いることもできる。また、これらの金属塩は、市販品を容易に入手でき、用いることもできる。
本発明の脱酸素剤組成物に含まれる水は、脱酸素反応を進行させるために必要な成分である。
また、本発明の脱酸素剤組成物は、予め鉄の表面に所定の厚さの水膜を形成しておく必要があるが、このとき水は、金属塩の潮解現象により、鉄の表面に存在する金属塩にとりこまれると考えられる。そのため、水は、好ましくは少なくとも一部が、より好ましくは主に、金属塩と共に、鉄の表面に存在することが好ましい。
ここで、「水の少なくとも一部が鉄の表面に存在する」とは、脱酸素剤組成物中に含まれる水のうち、一部又は全部が、鉄の表面に存在することを意味する。本発明の脱酸素剤組成物は、後述するように、水分供与剤を含んでもよく、水分供与剤には水が含まれるが、該水は水分供与剤の担体に担持されているため、鉄の表面に存在する水とは区別される。したがって、脱酸素剤組成物が水分供与剤を含む場合には、水は、一部が鉄の表面に存在していればよく、その他は水分供与剤の担体に担持されていてもよい。
また、「水が主に鉄の表面に存在する」とは、例えば水分供与剤等の水を含む成分を脱酸素剤組成物に配合しない場合等が挙げられ、実質的に、水の全部が鉄の表面に存在する場合を意味する。
また、鉄の表面に存在する水は、金属塩と共に、鉄の表面を被覆してなることがより好ましい。
鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]は、0.60g/m2以上2.00g/m2以下である。鉄の表面に存在する水の、鉄の単位表面積当たりの含有量が0.60g/m2未満であると、水不足のために酸素吸収量が減ると考えられる。また、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量が2.00g/m2超であると、水膜が厚すぎるため、水膜中の溶存酸素濃度の低下(拡散律速)により、反応初期の酸素吸収速度が遅くなると考えられる。鉄の表面に存在する水の、鉄の単位表面積当たりの含有量は、好ましくは0.70g/m2以上2.00g/m2以下、より好ましくは1.10g/m2以上2.00g/m2以下、更に好ましくは1.10g/m2以上1.98g/m2以下、より更に好ましくは1.50g/m2以上1.90g/m2以下である。
また、水の含有量は、酸素吸収性能の観点から、鉄100質量部に対して、好ましくは2.0質量部以上30質量部以下、より好ましくは3.0質量部以上20質量部以下、更に好ましくは4.0質量部以上19質量部以下、より更に好ましくは7.0質量部以上17質量部以下である。
本発明の脱酸素剤組成物は、更に水分供与剤を含むことができる。水分供与剤は、水分を、担体に含浸させたもの(含水担体)であり、鉄に水を供給するものである。
水分供与剤は、担体と、金属塩と、水とを含むことが好ましい。
担体としては、担持した水分を鉄に供給できるものであればよく、一般的にはゼオライト、焼成珪藻土、シリカゲル、パーライト、バーミキュライト、活性アルミナ、活性白土、活性炭、ベントナイト等の粒状物が好適に使用され、中でもゼオライト、焼成珪藻土、活性炭が好ましい。
金属塩としては、前述の成分を用いることができるが、好ましくは塩化ナトリウムである。
本発明の脱酸素剤組成物は、上記成分の他に、必要に応じてその他の成分を含んでいてもよい。その他の成分としては、アルカリ性物質、膨潤剤、流動性改善剤、触媒、臭気吸着剤、熱分散剤等が挙げられる。
本発明の脱酸素剤組成物の形状は、特に限定されないが、例えば、球形、略球形、楕円形、及び円柱が挙げられ、充填性により優れ、嵩密度がより高くなる傾向にあることから、球形及び略球形が好ましく、球形がより好ましい。
本発明の脱酸素剤組成物を製造する方法は特に限定されないが、例えば下記工程(i)及び(ii)を順に有することが好ましい。
工程(i):鉄及び金属塩を含む脱酸素剤組成物(a)を得る工程
工程(ii):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である脱酸素剤組成物(A)を得る工程
工程(i)は、鉄及び金属塩を含む脱酸素剤組成物(a)を得る工程である。
鉄及び金属塩については、上記のとおりである。
工程(ii)は、上記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である脱酸素剤組成物(A)を得る工程である。
本工程により、所望の厚さを有する水膜を鉄の表面に形成することができ、反応初期の酸素吸収速度が速く、高い酸素吸収性能を発揮し得る脱酸素剤組成物が得られる。
まず、(1)水を外部からの吸湿で供給する場合は、脱酸素剤組成物(a)を所定の湿度に調整した雰囲気に一定時間放置し、水分を吸収させる方法や、脱酸素剤組成物(a)に含水体(例えば、濡らせた脱脂綿等)を接触させ、含水体から脱酸素剤組成物(a)に水を供給する方法等が挙げられる。これらの方法によれば、湿度及び放置時間、並びに含水体の水分量及び接触時間等を適宜調整することにより、所望の厚さを有する水膜を鉄の表面に形成することができる。
本発明の脱酸素剤包装体は、上述した脱酸素剤組成物と、該脱酸素剤組成物を収容した通気性包装容器とを備える。
通気性包装容器は、脱酸素剤用途に用いられる包装材料からなる容器であれば特に制限されないが、脱酸素剤包装体が十分な酸素吸収性能を発揮する観点から、少なくとも通気性包装材を含み、例えば2枚の通気性包装材を貼り合わせて袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを貼り合わせて袋状としたもの、1枚の通気性包装材を折り曲げ、折り曲げ部を除く縁部同士をシールして袋状としたものが挙げられる。他にも、非通気性の剛性容器の開口面に通気性包装材を貼り付けた容器等も挙げられる。
通気性包装材としては、酸素と水蒸気を透過する包装材が選択される。なかでも、ガーレ式試験機法による透気抵抗度が600秒以下、より好ましくは90秒以下、更に好ましくは30秒以下のものが好適に用いられる。ここで、透気抵抗度とは、JIS P8117:2009の方法により測定された値を言うものとする。より具体的には、ガーレ式デンソメーター(株式会社東洋精機製作所製)を使用して100mLの空気が通気性包装材を透過するのに要した時間を言う。
非通気性包装材としては、脱酸素剤用途に用いられる包装材料を用いることができ、被保存物品の水分やアルコール、油分や固体成分を遮断でき、またシール性のある包装材が好適である。具体的には、ポリエチレンテレフタレートやナイロン系の共押出し多層シートやフィルムのような、酸素透過度0.05~20mL/m2・24hr・atm(25℃、50%RH)の積層体等が挙げられる。
本発明の脱酸素剤包装体は、上述した脱酸素剤組成物を収容した通気性包装容器を更に収容するガスバリア性容器を備えてもよい。上述した脱酸素剤組成物を収容した通気性包装容器を、ガスバリア性容器に収容することにより、外部との通気を遮断することができ、特に、ガスバリア性容器内への酸素の流入及び水蒸気の流出を防止でき、脱酸素剤としての使用時まで酸素吸収性能を良好に維持することができる。
具体的には、ポリエチレンテレフタレート/アルミニウム蒸着/ポリエチレン、延伸ポリプロピレン/ポリビニルアルコール/ポリエチレン、ポリ塩化ビニリデンコート延伸ナイロン/ポリエチレン等の積層構造を有する多層シートやフィルム、ナイロン系の共押出し多層シートやフィルムのような、酸素透過度0.05~20mL/m2・24hr・atm(25℃、50%RH)の積層体から成る、袋や包装容器を簡便に使用することができる。
また、上記の他にも、ガスバリア性容器としては、金属缶、ガラス瓶、プラスティック容器等を用いることもできる。
脱酸素剤包装体の製造方法は、特に限定されないが、例えば下記工程(I)~(III)を含むことが好ましい。このような方法によれば、反応初期の酸素吸収速度が速く、高い酸素吸収性能を発揮し得る脱酸素剤包装体を得ることができる。なお、下記工程(II)及び(III)の順序は問わない。
工程(I):鉄及び金属塩を含む脱酸素剤組成物(a)を得る工程
工程(II):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である脱酸素剤組成物(A)を得る工程
工程(III):前記脱酸素剤組成物(a)及び前記脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程
工程(I)及び(II)は、上記脱酸素剤組成物を製造する方法における工程(i)及び(ii)と同じである。
工程(III)は、脱酸素剤組成物(a)及び脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程である。
本工程を有することにより、脱酸素剤組成物(a)及び脱酸素剤組成物(A)を通気性包装容器内に収容することができ、反応初期の酸素吸収速度が速く、高い酸素吸収性能を発揮し得る脱酸素剤包装体を得ることができる。
なお、通気性包装容器(b1)については、上述のものを使用することができる。
工程(IV):脱酸素剤組成物(a)及び脱酸素剤組成物(A)の少なくとも一方を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
特に、本工程は、通気性包装容器(b1)が脱酸素剤組成物(A)を収容している場合に、好適である。脱酸素剤組成物(A)は、既に水膜が形成されているため、酸素の存在下では徐々に脱酸素反応が進行する。そのため、脱酸素剤としての使用時まで酸素吸収性能を良好に維持する観点から、本工程は有効である。
なお、脱酸素剤組成物(a)及び脱酸素剤組成物(A)の少なくとも一方を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する場合は、実質的にガスバリア性容器(b2)の内部は密閉系となることが好ましく、系内を酸素のない還元性雰囲気にすることがより好ましい。
<方法1>
方法1としては、上記工程(I)に次いで、下記工程(III-1)及び工程(II-1)を順に有するものであることが好ましい。
工程(III-1):前記脱酸素剤組成物(a)を前記通気性包装容器(b1)に収容する工程
工程(II-1):前記通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
ここで、通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給する方法は、特に限定されないが、例えば脱酸素剤組成物(a)を収容した通気性包装容器(b1)の外側から含水体(例えば、濡らせた脱脂綿等)を接触させることにより、含水体に含まれる水を、通気性包装容器(b1)を通して(通過させて)、脱酸素剤組成物(a)に供給する方法が挙げられる。本工程を有することにより、得られる脱酸素剤組成物(A)において、所望の厚さを有する水膜の形成が容易になる。
工程(IV-1):前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
工程(IV-1)は、前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程である。脱酸素剤組成物(A)は、酸素吸収性能に優れるため、脱酸素剤として使用するまではガスバリア性容器に収容されていることが好ましい。
方法2としては、上記工程(I)に次いで、下記工程(III-2)、工程(IV-2)及び工程(II-2)を順に有するものであることが好ましい。
工程(III-2):前記脱酸素剤組成物(a)及び水分供与剤を前記通気性包装容器(b1)に収容する工程、
工程(IV-2):前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
工程(II-2):前記水分供与剤から、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
なお、水分供与剤は、上述のものを使用することができる。
平均粒子径は、以下のいずれかの方法で測定した。
・レーザ回折・散乱式粒子径分布測定装置にて測定されたD50径
レーザ回折・散乱式粒子径分布測定装置(株式会社堀場製作所製「LA-960」)を用いて、体積基準粒度分布における累積頻度50%の平均粒子径(D50)を測定した。
・分級により粒度分布を測定して求めたD50径
ISO 3310-1:2000(JIS Z8801-1:2006相当)に準拠する標準篩を用いて、5分間振動させた後の篩目のサイズによる重量分率から、累積頻度50%の平均粒子径(D50)を測定した。
比表面積の測定は、定容量法の比表面積測定装置(マイクロトラック・ベル社製、「BELSORP mini II」)を用い、以下の条件で窒素吸着量測定を行い、BET法により比表面積を算出した。
測定温度:-196℃
前処理:300℃、3時間、窒素流通
透気抵抗度は、デジタル型王研式透気度試験機(旭精工株式会社製「EG02」)を用いて3回測定した。得られた結果の算術平均値を測定結果とした。
(1)塩化ナトリウム(NaCl)0.25gを水6gに溶解し、この水溶液(NaCl濃度:4質量%)を還元鉄粉(ヘガネス社製、平均粒子径80μm(レーザ回折・散乱式粒子径分布測定装置にて測定されたD50径)、比表面積0.085m2/g)100gに混合し、乾燥させ、鉄粉の表面に塩化ナトリウムを付着させることによって、塩化ナトリウムで表面を被覆した鉄粉(脱酸素剤組成物(a))を得た。
(2)上記(1)で得られた脱酸素剤組成物(a)1.00gを、通気性積層フィルム(構成:ポリエチレン製不織布(ユニチカ株式会社製、「エルベス」)/耐油合成紙(阿波製紙株式会社製、「アルト」)、透気抵抗度:10秒、厚さ:200μm)を用いた40mm×40mmの袋(通気性包装容器(b1))に充填し、三方シールして、脱酸素剤包装体(x1)を得た。
(3)上記(2)で得られた脱酸素剤包装体(x1)と、吸水した脱脂綿(脱脂綿3.5g、水5.0g)とを、アルミ三方袋(株式会社サンエー化研製「700アルミ袋」を180mm×250mmに切断して作製、ガスバリア性容器(b2))の中に導入し、袋内の酸素濃度が0.1体積%以下となるように袋内を窒素ガスで置換し、袋の口をヒートシールして封止し、脱酸素剤包装体(y1)を得た。
(4)上記(3)で得られた脱酸素剤包装体(y1)を、25℃にて4日間保存し、上記吸水した脱脂綿(含水体)から脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含む脱酸素剤組成物(A)並びにこれを通気性包装容器(b1)に収容する脱酸素剤包装体(x2)を得た。そして、上記保存期間後に、アルミ三方袋内で、脱脂綿と、脱酸素剤包装体(x2)とを分離して、脱酸素剤包装体(x2)部分をアルミ三方袋ごと切り離し、切り口を再度ヒートシールして封止して、脱酸素剤包装体(x2)をアルミ三方袋(ガスバリア性容器(b2))内に収容する脱酸素剤包装体(y2)を得た。
得られた脱酸素剤包装体(y2)に対して、下記脱酸素実験を行い、酸素吸収性能を評価した。
(5)なお、脱酸素剤組成物(A)における、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]は以下の方法で求めた。
まず、作製直後(吸水前)の脱酸素剤包装体(x1)の重量W1を予め測定しておいた。
次に、脱酸素剤包装体(x1)に水を供給して得た脱酸素剤包装体(x2)をアルミ三方袋(ガスバリア性容器(b2))内に収容する脱酸素剤包装体(y2)の重量W2を測定した。
更に、後述する脱酸素実験において脱酸素剤包装体(y2)から脱酸素剤包装体(x2)を取り出した際に残った、アルミ三方袋(ガスバリア性容器(b2))の重量W3を測定した。
なお、上記各重量の測定は、精密天秤を用いて行った。
また、アルミ三方袋から脱酸素剤包装体(x2)を取り出した際の、包装材の外部や内部に結露水はなかったことを確認していることから、下記式(1)で算出される水分量は全て、吸水した脱脂綿から、脱酸素剤組成物(a)の鉄の表面に供給された水の量、すなわち脱酸素剤組成物(A)における、鉄の表面に存在する水の含有量と推定できる。
したがって、下記式(1)で算出される水分量と、脱酸素剤組成物(A)における鉄の含有量及び比表面積とから、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]を算出した。結果を表1に示す。
水分量(g)=W2-W1-W3 ・・・(1)
実施例2~12及び比較例1~4は、鉄粉、金属塩及び保存日数を表1に示すように変更した以外は、実施例1と同様の方法で、脱酸素剤組成物(A)及び脱酸素剤包装体(y2)を作製した。
得られた脱酸素剤包装体(y2)に対して、実施例1と同様の測定及び下記の評価を行った。結果を表1に示す。
実施例1~12及び比較例1~4で作製した脱酸素剤包装体(y2)を用いて以下の評価を行った。結果を表1に示す。
(脱酸素実験)
まず、ガスバリア袋であるPTS袋(セラミック蒸着プラスチックフィルム袋、三菱ガス化学株式会社製、「PB600700P」、600mm×700mm、厚さ0.11mm)を300mm×350mmの大きさに切断して作製したPTS袋の一面に、サンプリング用ゴムシート(25mm×25mm、厚さ2mm)を接着し、測定用PTS袋を得た。
次に、よりガスバリア性の高いガスバリア袋であるアルミ袋(アルミニウム箔ラミネートプラスチックフィルム袋、株式会社サンエー化研製、「700アルミ袋」、700mm×800mm、厚さ0.12mm)を350mm×400mmの大きさに切断して作製したアルミ袋の一面であり、測定用PTS袋のサンプリング用ゴムシートに対応する位置に、サンプリング用ゴムシート(25mm×25mm、厚さ2mm)を接着し、測定用アルミ袋を得た。
次に、PTS袋中で、脱酸素剤包装体(y2)を開封し、中から脱酸素剤包装体(x2)を取り出し、PTS袋ごと上記測定用アルミ袋に収容し、開口部をヒートシールして封止した。この時、PTS袋のサンプリング用ゴムシートとアルミ袋のサンプリング用ゴムシートが重なるように配置し、ゴムシートの位置がずれないようにPTS袋とアルミ袋を両面テープで接着した。
アルミ袋ごと速やかに25℃の恒温槽に入れ、7日間保持した。このとき、保持時間2時間及び7日のそれぞれの経過時点において、PTS袋内の酸素濃度を測定した。
上記酸素濃度の測定結果から、PTS袋内の鉄粉重量当たりの酸素吸収量(mL/g)を算出した。
本実施例では、2時間後の鉄粉重量当たりの酸素吸収量が15mL/g以上である場合、7日後の鉄粉重量当たりの酸素吸収量が50mL/g以上である場合をそれぞれ、酸素吸収性能が良好であると判定した。なお、2時間後の鉄粉重量当たりの酸素吸収量が多い程、初期の酸素吸収速度がより速いことを意味する。また、7日後の鉄粉重量当たりの酸素吸収量が多い程、トータルの酸素吸収量がより高く、高い酸素吸収性能を発揮し得ることを意味する。
・還元鉄粉:ヘガネス社製、平均粒子径80μm(レーザ回折・散乱式粒子径分布測定装置にて測定されたD50径)、比表面積0.085m2/g
・アトマイズ鉄粉1:アトマイズ鉄粉(株式会社神戸製鋼所製、平均粒子径75μm(分級により粒度分布を測定して求めたD50径))を目開き45μmの篩にかけた通過分、比表面積0.073m2/g
・アトマイズ鉄粉2:アトマイズ鉄粉(同上)を目開き180μmの篩にかけ、通過分を目開き150μmの篩にかけた残留分、比表面積0.035m2/g
・NaCl:塩化ナトリウム
・NaBr:臭化ナトリウム
・CaCl2:塩化カルシウム
・CaBr2:臭化カルシウム
Claims (12)
- 鉄、金属塩及び水を含み、
鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である、脱酸素剤組成物。 - 前記金属塩の少なくとも一部が、前記鉄の表面に存在する、請求項1に記載の脱酸素剤組成物。
- 前記鉄の表面に存在する金属塩が、前記鉄の表面を被覆してなる、請求項2に記載の脱酸素剤組成物。
- 前記鉄の表面に存在する金属塩が、塩化カルシウム、塩化ナトリウム、臭化カルシウム及び臭化ナトリウムからなる群から選択される1種以上である、請求項2又は3に記載の脱酸素剤組成物。
- 前記鉄の表面に存在する金属塩の含有量が、鉄100質量部に対して0.1質量部以上5.0質量部以下である、請求項2~4のいずれか一項に記載の脱酸素剤組成物。
- 前記鉄の比表面積が、0.03m2/g以上0.20m2/g以下である、請求項1~5のいずれか一項に記載の脱酸素剤組成物。
- 前記鉄の平均粒子径(D50)が、1μm以上1000μm以下である、請求項1~6のいずれか一項に記載の脱酸素剤組成物。
- 請求項1~7のいずれか一項に記載の脱酸素剤組成物と、該脱酸素剤組成物を収容した通気性包装容器とを備える、脱酸素剤包装体。
- 下記工程(I)~(III)を含む、脱酸素剤包装体の製造方法。
工程(I):金属塩及び鉄を含む脱酸素剤組成物(a)を得る工程
工程(II):前記脱酸素剤組成物(a)に水を供給して、鉄、金属塩及び水を含み、鉄の表面に存在する水の、鉄の単位表面積当たりの含有量[鉄の表面に存在する水の含有量(g)/{鉄の含有量(g)×鉄の比表面積(m2/g)}]が0.60g/m2以上2.00g/m2以下である脱酸素剤組成物(A)を得る工程
工程(III):前記脱酸素剤組成物(a)及び前記脱酸素剤組成物(A)の少なくとも一方を通気性包装容器(b1)に収容する工程 - 前記工程(I)に次いで、下記工程(III-1)及び工程(II-1)を順に有する、請求項9に記載の脱酸素剤包装体の製造方法。
工程(III-1):前記脱酸素剤組成物(a)を前記通気性包装容器(b1)に収容する工程
工程(II-1):前記通気性包装容器(b1)を通して、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程 - 更に、下記工程(IV-1)を有する、請求項10に記載の脱酸素剤包装体の製造方法。
工程(IV-1):前記脱酸素剤組成物(A)を収容した前記通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程 - 前記工程(I)に次いで、下記工程(III-2)、工程(IV-2)及び工程(II-2)を順に有する、請求項9に記載の脱酸素剤包装体の製造方法。
工程(III-2):前記脱酸素剤組成物(a)及び水分供与剤を前記通気性包装容器(b1)に収容する工程
工程(IV-2):前記脱酸素剤組成物(a)及び前記水分供与剤を収容した通気性包装容器(b1)を、更にガスバリア性容器(b2)に収容する工程
工程(II-2):前記水分供与剤から、前記脱酸素剤組成物(a)に水を供給して、前記脱酸素剤組成物(A)を得る工程
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380026283.4A CN118843504A (zh) | 2022-03-22 | 2023-03-16 | 脱氧剂组合物、脱氧剂包装体和脱氧剂包装体的制造方法 |
US18/845,609 US20250186965A1 (en) | 2022-03-22 | 2023-03-16 | Oxygen scavenger composition, oxygen scavenger package, and method for manufacturing oxygen scavenger package |
EP23774725.8A EP4497491A1 (en) | 2022-03-22 | 2023-03-16 | Oxygen scavenger composition, oxygen scavenger package, and method for manufacturing oxygen scavenger package |
JP2023541873A JP7401032B1 (ja) | 2022-03-22 | 2023-03-16 | 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 |
KR1020247030148A KR20240159905A (ko) | 2022-03-22 | 2023-03-16 | 탈산소제 조성물, 탈산소제 포장체 및 탈산소제 포장체의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022045663 | 2022-03-22 | ||
JP2022-045663 | 2022-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182129A1 true WO2023182129A1 (ja) | 2023-09-28 |
Family
ID=88100847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010253 WO2023182129A1 (ja) | 2022-03-22 | 2023-03-16 | 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20250186965A1 (ja) |
EP (1) | EP4497491A1 (ja) |
JP (1) | JP7401032B1 (ja) |
KR (1) | KR20240159905A (ja) |
CN (1) | CN118843504A (ja) |
TW (1) | TW202348308A (ja) |
WO (1) | WO2023182129A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046449A1 (ja) | 2005-10-21 | 2007-04-26 | Mitsubishi Gas Chemical Company, Inc. | 固形の脱酸素剤組成物及びその製造方法 |
WO2017169015A1 (ja) | 2016-03-30 | 2017-10-05 | 三菱瓦斯化学株式会社 | 脱酸素剤組成物 |
JP2020192485A (ja) * | 2019-05-24 | 2020-12-03 | 三菱瓦斯化学株式会社 | 脱酸素剤組成物及びその製造方法 |
WO2022004740A1 (ja) * | 2020-06-30 | 2022-01-06 | 三菱瓦斯化学株式会社 | 脱酸素剤組成物及びその製造方法 |
-
2023
- 2023-03-16 US US18/845,609 patent/US20250186965A1/en active Pending
- 2023-03-16 WO PCT/JP2023/010253 patent/WO2023182129A1/ja active Application Filing
- 2023-03-16 EP EP23774725.8A patent/EP4497491A1/en active Pending
- 2023-03-16 JP JP2023541873A patent/JP7401032B1/ja active Active
- 2023-03-16 KR KR1020247030148A patent/KR20240159905A/ko active Pending
- 2023-03-16 CN CN202380026283.4A patent/CN118843504A/zh active Pending
- 2023-03-21 TW TW112110373A patent/TW202348308A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046449A1 (ja) | 2005-10-21 | 2007-04-26 | Mitsubishi Gas Chemical Company, Inc. | 固形の脱酸素剤組成物及びその製造方法 |
WO2017169015A1 (ja) | 2016-03-30 | 2017-10-05 | 三菱瓦斯化学株式会社 | 脱酸素剤組成物 |
JP2020192485A (ja) * | 2019-05-24 | 2020-12-03 | 三菱瓦斯化学株式会社 | 脱酸素剤組成物及びその製造方法 |
WO2022004740A1 (ja) * | 2020-06-30 | 2022-01-06 | 三菱瓦斯化学株式会社 | 脱酸素剤組成物及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240159905A (ko) | 2024-11-07 |
US20250186965A1 (en) | 2025-06-12 |
EP4497491A1 (en) | 2025-01-29 |
JPWO2023182129A1 (ja) | 2023-09-28 |
CN118843504A (zh) | 2024-10-25 |
JP7401032B1 (ja) | 2023-12-19 |
TW202348308A (zh) | 2023-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR19980032770A (ko) | 산소흡수용 조성물 | |
JPH09504988A (ja) | 酸素吸収剤 | |
JP7459595B2 (ja) | 脱酸素剤組成物 | |
CN113811195B (zh) | 脱氧剂组合物及其制造方法 | |
EP4173691A1 (en) | Oxygen scavenger composition and method for producing same | |
JP2000000462A (ja) | 酸素吸収剤 | |
JP7401032B1 (ja) | 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 | |
JP5234530B1 (ja) | 脱酸素剤組成物、及び、これを用いた脱酸素剤包装体、並びに脱酸素する方法 | |
WO2023182130A1 (ja) | 脱酸素剤組成物、脱酸素剤包装体及び脱酸素剤包装体の製造方法 | |
JP4131030B2 (ja) | 脱酸素剤組成物、脱酸素剤包装体および物品の保存方法 | |
CN119947813A (zh) | 脱氧剂组合物及其制造方法、以及脱氧剂包装体 | |
JP6690201B2 (ja) | 脱酸素剤組成物及び脱酸素剤 | |
JP2024140232A (ja) | 脱酸素剤組成物及びその製造方法、並びに脱酸素剤包装体 | |
JP4942289B2 (ja) | 耐湿性脱酸素剤 | |
JP5294161B2 (ja) | 耐湿性脱酸素剤 | |
EP4299161A1 (en) | Oxygen scavenger powder | |
JP7263989B2 (ja) | 脱酸素剤、脱酸素剤包装体及び食品包装体 | |
WO2024195595A1 (ja) | 脱酸素剤組成物及びその製造方法、並びに脱酸素剤包装体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023541873 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774725 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20247030148 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380026283.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18845609 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417070905 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023774725 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023774725 Country of ref document: EP Effective date: 20241022 |
|
WWP | Wipo information: published in national office |
Ref document number: 18845609 Country of ref document: US |