[go: up one dir, main page]

WO2023179159A1 - 通信芯片、蓝牙通信设备及数据传输方法 - Google Patents

通信芯片、蓝牙通信设备及数据传输方法 Download PDF

Info

Publication number
WO2023179159A1
WO2023179159A1 PCT/CN2022/143497 CN2022143497W WO2023179159A1 WO 2023179159 A1 WO2023179159 A1 WO 2023179159A1 CN 2022143497 W CN2022143497 W CN 2022143497W WO 2023179159 A1 WO2023179159 A1 WO 2023179159A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
control unit
data
bluetooth
bluetooth communication
Prior art date
Application number
PCT/CN2022/143497
Other languages
English (en)
French (fr)
Inventor
任凯
余庆华
王泷
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023179159A1 publication Critical patent/WO2023179159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of computer technology, and in particular to a communication chip, a Bluetooth communication device and a data transmission method.
  • Any communication chip can establish a Bluetooth communication link with a Bluetooth communication device, thereby performing data transmission with the Bluetooth communication device based on the Bluetooth communication link.
  • any communication chip can only transmit data to one Bluetooth communication device at the same time, so the data transmission efficiency is low.
  • Embodiments of the present application provide a communication chip, a Bluetooth communication device, and a data transmission method.
  • the technical solutions are as follows:
  • a communication chip includes a control unit and a plurality of transmission units;
  • the control unit is configured to:
  • Each of the transmission units is configured to:
  • Data transmission is performed with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • a Bluetooth communication device includes a Bluetooth host and a communication chip.
  • the communication chip includes a control unit and a plurality of transmission units;
  • the control unit is configured to:
  • Each of the transmission units is configured to:
  • a data transmission method is provided.
  • the method is executed by a Bluetooth communication device.
  • the Bluetooth communication device includes a Bluetooth host and a communication chip.
  • the communication chip includes a control unit and a plurality of transmission devices. unit; the method includes:
  • control unit When receiving a connection instruction from the Bluetooth host, the control unit controls the multiple transmission units to establish Bluetooth communication links with the corresponding Bluetooth communication devices;
  • Each transmission unit performs data transmission with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • a communication chip includes a plurality of Bluetooth cores, each of the Bluetooth cores includes a first control unit and a transmission unit;
  • the first control unit is configured to:
  • the transmission unit is configured to:
  • Data transmission is performed with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • a Bluetooth communication device includes a Bluetooth host and a communication chip.
  • the communication chip includes a plurality of Bluetooth cores, and each of the Bluetooth cores includes a first control unit. and transmission unit;
  • the first control unit is configured to:
  • the transmission unit is configured to:
  • Data transmission is performed with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • a data transmission method is provided.
  • the method is executed by a Bluetooth communication device.
  • the Bluetooth communication device includes a Bluetooth host and a communication chip.
  • the communication chip includes multiple Bluetooth cores, each of which The Bluetooth core includes a first control unit and a transmission unit; the method includes:
  • the first control unit controls the transmission unit in the same Bluetooth core to establish a Bluetooth communication link with the corresponding Bluetooth communication device;
  • the transmission unit performs data transmission with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • a Bluetooth communication device includes a Bluetooth host and multiple communication chips connected to the Bluetooth host.
  • Each of the communication chips includes a first control unit and a transmission unit. unit;
  • Each first control unit is configured to:
  • Any one of the first control units is also configured to:
  • Each first control unit is also configured to:
  • Each transmission unit is instructed to perform data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link.
  • a data transmission method is provided.
  • the method is executed by a Bluetooth communication device.
  • the Bluetooth communication device includes a Bluetooth host and multiple communication chips connected to the Bluetooth host.
  • Each of the The communication chip includes a first control unit and a transmission unit; the method includes:
  • each first control unit controls each of the transmission units to establish a Bluetooth communication link with the corresponding Bluetooth communication device;
  • Any of the first control units determines the frequency band corresponding to each of the transmission units, and sends the frequency band corresponding to each of the transmission units to each of the first control units;
  • Each of the first control units instructs each of the transmission units to perform data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link.
  • a Bluetooth communication device includes a plurality of Bluetooth hosts and communication chips connected to the plurality of Bluetooth hosts respectively.
  • Each of the communication chips includes a first control chip. units and transmission units;
  • Each first control unit is configured to:
  • Any one of the first control units is also configured to:
  • Each first control unit is also configured to:
  • Each transmission unit is instructed to perform data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link.
  • a data transmission method is provided.
  • the method is executed by a Bluetooth communication device.
  • the Bluetooth communication device includes multiple Bluetooth hosts and communication chips connected to the multiple Bluetooth hosts respectively.
  • Each communication chip includes a first control unit and a transmission unit; the method includes:
  • each first control unit When each first control unit receives a connection instruction from the connected Bluetooth host, it controls each of the transmission units to establish a Bluetooth communication link with the corresponding Bluetooth communication device;
  • Any of the first control units determines the frequency band corresponding to each of the transmission units, and sends the frequency band corresponding to each of the transmission units to each of the first control units;
  • Each of the first control units instructs each of the transmission units to perform data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link.
  • Figure 1 shows a schematic diagram of a communication chip provided by an exemplary embodiment of the present application
  • Figure 2 shows a schematic diagram of a Bluetooth communication device provided by an exemplary embodiment of the present application
  • Figure 3 shows a flow chart of a data transmission method provided by an exemplary embodiment of the present application
  • Figure 4 shows a schematic diagram of another communication chip provided by an exemplary embodiment of the present application.
  • Figure 5 shows a schematic diagram of yet another communication chip provided by an exemplary embodiment of the present application.
  • Figure 6 shows a schematic diagram of another Bluetooth communication device provided by an exemplary embodiment of the present application.
  • Figure 7 shows a schematic diagram of yet another Bluetooth communication device provided by an exemplary embodiment of the present application.
  • Figure 8 shows a flow chart of another data transmission method provided by an exemplary embodiment of the present application.
  • Figure 9 shows a schematic diagram of yet another Bluetooth communication device provided by an exemplary embodiment of the present application.
  • Figure 10 shows a schematic diagram of a multi-link data transmission process provided by an exemplary embodiment of the present application
  • Figure 11 shows a schematic diagram of another multi-link data transmission process provided by an exemplary embodiment of the present application.
  • Figure 12 shows a schematic diagram of yet another multi-link data transmission process provided by an exemplary embodiment of the present application.
  • Figure 13 shows a schematic diagram of yet another multi-link data transmission process provided by an exemplary embodiment of the present application.
  • Figure 14 shows a flow chart of yet another data transmission method provided by an exemplary embodiment of the present application.
  • Figure 15 shows a schematic diagram of yet another Bluetooth communication device provided by an exemplary embodiment of the present application.
  • Figure 16 shows a flow chart of yet another data transmission method provided by an exemplary embodiment of the present application.
  • At least one mentioned in this article means one or more, and “plurality” means two or more.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. The character “/” generally indicates that the related objects are in an "or” relationship.
  • the information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • signals involved in this application All are authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions.
  • the data transmitted between communication chips or Bluetooth communication devices in this application are obtained with full authorization.
  • FIG. 1 is a schematic diagram of a communication chip 100 provided by an embodiment of the present application.
  • the communication chip 100 includes a control unit 101 and a plurality of transmission units 102 (two transmission units 102 are taken as an example in Figure 1), wherein the control unit 101 communicates with each transmission unit in the plurality of transmission units 102 respectively. 102 connections.
  • control unit 101 when the control unit 101 receives a connection instruction from the Bluetooth host, it controls multiple transmission units 102 to establish Bluetooth communication links with the corresponding Bluetooth communication devices, and then each transmission unit 102 establishes a Bluetooth communication link based on the corresponding Bluetooth communication link. Perform data transmission with the corresponding Bluetooth communication device.
  • the Bluetooth host is used to issue instructions to the control unit 101, and the control unit 101 responds to the instructions and performs operations corresponding to the instructions. For example, if the instruction is a connection instruction, then when the control unit 101 receives the connection instruction, it controls the transmission unit 102 to establish a Bluetooth communication link with the corresponding Bluetooth communication device. For example, if the instruction is a data sending instruction, then when receiving the data sending instruction, the control unit 101 acquires the data to be sent and instructs the transmission unit 102 to send the data based on the established Bluetooth communication link.
  • the Bluetooth host is located in the CPU (Central Processing Unit, central processing unit) of the Bluetooth communication device.
  • the control unit 101 is an LC (Link Controller) or other control unit 101.
  • any transmission unit 102 includes a PHY (Physical Layer, physical layer) and an RF (Radio Frequency, radio frequency) module.
  • PHY Physical Layer, physical layer
  • RF Radio Frequency, radio frequency
  • PHY is used to encode or decode data transmitted between communication chips 100 .
  • the RF module is used to send or receive data.
  • control unit 101 when receiving a connection instruction from a Bluetooth host, controls at least two transmission units 102 corresponding to the connection instruction to establish Bluetooth communication links with corresponding Bluetooth communication devices.
  • the connection instruction includes unit identifiers of at least two transmission units 102 and connection information of the Bluetooth communication device corresponding to each unit identifier, where the unit identifier indicates that the corresponding transmission unit 102 needs to establish a Bluetooth communication link.
  • the control unit 101 controls the transmission unit 102 to which the unit identification belongs to establish a Bluetooth communication link with the Bluetooth communication device based on the connection information of the Bluetooth communication device corresponding to the unit identification.
  • the control unit 101 controls the transmission unit 102 to send a connection request to the Bluetooth communication device based on the connection information of the Bluetooth communication device.
  • the Bluetooth communication device receives the connection request, it establishes Bluetooth communication with the transmission unit 102 link.
  • the communication chip 100 can simultaneously transmit data to multiple Bluetooth communication devices based on the established multiple Bluetooth communication links.
  • the Bluetooth host sends a data sending instruction to the control unit 101.
  • the data sending instruction carries multiple data to be sent and the Bluetooth communication device corresponding to each data to be sent.
  • the control unit 101 forwards the data to be sent to the corresponding transmission unit 102, that is, the transmission unit 102 that has established a Bluetooth communication link with the Bluetooth communication device corresponding to the data to be sent.
  • the transmission unit 102 is based on the established The Bluetooth communication link sends the received data to the connected peer communication chip.
  • any transmission unit 102 receives data sent by the corresponding Bluetooth communication device, it sends the data to the control unit 101, and the control unit 101 forwards the data to the Bluetooth host, so that the Bluetooth host processes the data. deal with.
  • any two transmission units 102 are connected, so as to facilitate data exchange between the two transmission units 102.
  • the two transmission units 102 can share current data transmission power, data reception power, etc. with each other.
  • the control unit 101 determines the frequency bands corresponding to the multiple transmission units 102 and instructs each transmission unit 102 to perform data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link. This can effectively reduce When multiple transmission units 102 perform data transmission, the degree of interference between them increases the success rate of data transmission.
  • the control unit 101 executes this step when receiving the data sending instruction.
  • the control unit 101 determines the frequency band corresponding to the transmission unit 102 within the ISM (Industrial Scientific Medical) frequency band.
  • the ISM frequency band includes 2402MHz ⁇ 2480MHz.
  • the control unit 101 determines the frequency band corresponding to the transmission unit 102 based on the AFH (Adaptive Frequency Hopping) algorithm, that is, the transmission The frequency band used by the Bluetooth communication link established by unit 102 for data transmission.
  • the AFH algorithms corresponding to multiple transmission units 102 are independent. That is, for any transmission unit 102, the control unit 101 determines the transmission without considering the frequency bands corresponding to other transmission units 102. The frequency band corresponding to unit 102.
  • the AFH algorithms corresponding to multiple transmission units 102 are coordinated, that is, when the control unit 101 determines the frequency band corresponding to any transmission unit 102, from other frequency bands outside the frequency band, The frequency band corresponding to another transmission unit 102 is determined, and so on, until the frequency band corresponding to each transmission unit 102 is determined.
  • the AFH algorithms corresponding to multiple transmission units 102 are the same, that is, when the control unit 101 determines the frequency band corresponding to any transmission unit 102, it uses the frequency band as the frequency band corresponding to other transmission units 102.
  • the above AFH algorithm is only an illustrative description. In other embodiments, other frequency hopping algorithms can also be used, and the embodiments of the present application do not limit this.
  • the control unit 101 sends the corresponding frequency bands to each transmission unit 102, and each transmission unit 102 receives the corresponding frequency band.
  • the control unit 101 Based on the established Bluetooth communication link, Perform data transmission with the corresponding Bluetooth communication device on the corresponding frequency band. That is, data is transmitted through frequency division multiplexing.
  • the control unit 101 instructs the transmission units 102 corresponding to two different frequency bands with frequency band intervals to send data in an asynchronous mode, so that no need Aligning the data sending times of the transmission units 102 corresponding to the two different frequency bands reduces the complexity of data transmission.
  • the control unit 101 determines the frequency band interval between every two frequency bands, and when any frequency band interval meets the interval condition, instructs the transmission unit 102 corresponding to the two frequency bands with the frequency band interval to send data in an asynchronous mode
  • the asynchronous mode is a mode in which the data transmission times of the transmission units 102 corresponding to the two frequency bands are independent.
  • the spacing condition is that the frequency band spacing is greater than or equal to the reference spacing.
  • the reference interval can be set to any value as needed, and the embodiments of this application do not limit this.
  • the transmission unit 102 that sends data in an asynchronous mode includes a first transmission unit and a second transmission unit.
  • the control unit 101 instructs the first transmission unit and the second transmission unit to send data in an asynchronous mode.
  • the implementation method is: control unit 101 respectively determine the data sending time corresponding to the first transmission unit and the data sending time corresponding to the second transmission unit, and the data sending time corresponding to the first transmission unit and the data sending time corresponding to the second transmission unit are the same or different. After receiving the corresponding data sending time, the first transmission unit and the second transmission unit send data at the corresponding data sending time.
  • the frequency band spacing between the two frequency bands satisfies the spacing condition, indicating that the frequency band spacing between the two frequency bands is relatively large.
  • Data transmission is performed on these two frequency bands.
  • the degree of interference between the two frequency bands is In this case, the transmission units 102 corresponding to the two frequency bands are controlled to send data in asynchronous mode. There is no need to align the time when the two transmission units 102 send data. On the premise of ensuring the data transmission quality, the data transmission time is reduced. complexity.
  • the control unit 101 instructs the transmission units 102 corresponding to two different frequency bands with frequency band intervals to send data in a synchronization mode, so that
  • the frequency band spacing between the frequency bands corresponding to the two transmission units 102 is small, the degree of interference between the two frequency bands during data transmission on the two frequency bands can be effectively reduced, and the success rate of data transmission can be improved.
  • the control unit 101 determines the frequency band interval between every two frequency bands, and if any frequency band interval does not meet the interval condition, instructs the transmission unit 102 corresponding to the two frequency bands with the frequency band interval to send data in a synchronization mode.
  • the synchronization mode is a mode in which the data transmission time of the transmission unit 102 corresponding to the two frequency bands is the same.
  • the frequency band spacing does not meet the spacing condition, it means that the frequency band spacing is small.
  • control unit 101 controls the transmission units 102 corresponding to the two frequency bands to send data in the synchronous mode by: the control unit 101 determines the data sending time, and then sends the data to the transmission units 102 corresponding to the two frequency bands respectively. At the sending time, any transmission unit 102 sends the data at the data sending time after receiving the data sending time.
  • the transmission unit 102 corresponding to the two frequency bands is controlled to Sending data in synchronous mode can effectively reduce the degree of interference between the two frequency bands when transmitting data on these two frequency bands and improve the success rate of data transmission.
  • the above-mentioned method of determining the data transmission mode corresponding to the transmission unit 102 is only an exemplary explanation. In other embodiments, the data transmission mode corresponding to the transmission unit 102 can also be determined in other ways.
  • the control unit 101 indicates the corresponding transmission of the same frequency band. Unit 102 sends data in synchronous mode.
  • the control unit 101 uses a first frequency hopping algorithm on the first Bluetooth communication link, and uses a second frequency hopping algorithm on the second Bluetooth communication link.
  • the first frequency hopping algorithm is the same as the third frequency hopping algorithm.
  • the two frequency hopping algorithms work together to maintain a frequency band interval between the first frequency band corresponding to the first Bluetooth communication link and the second frequency band corresponding to the second Bluetooth communication link.
  • the first Bluetooth communication link and the second Bluetooth communication link are Bluetooth communication links established by two different transmission units 102 respectively.
  • the first frequency band corresponding to the first Bluetooth communication link is the frequency band used by the first Bluetooth communication link when performing data transmission.
  • the second frequency band corresponding to the second Bluetooth communication link is the frequency band used by the second Bluetooth communication link when performing data transmission.
  • the first frequency hopping algorithm and the second frequency hopping algorithm are arbitrary frequency hopping algorithms, and the embodiments of this application do not limit this.
  • the first frequency hopping algorithm is used on the first Bluetooth communication link
  • the second frequency hopping algorithm is used on the second Bluetooth communication link.
  • the second frequency hopping algorithm is used on the Bluetooth communication link to maintain a frequency band interval between the first frequency band corresponding to the first Bluetooth communication link and the second frequency band corresponding to the second Bluetooth communication link, thereby avoiding the need for switching between the first frequency band and the second frequency band. Changes in the frequency band spacing between the two devices affect the data transmission quality of the first Bluetooth communication link and the second Bluetooth communication link.
  • the transmission unit 102 that sends data in a synchronous mode includes a first transmission unit and a second transmission unit.
  • the transmission unit 102 that first sends one frame of data has to wait for the other one.
  • a transmission unit 102 sends the next frame of data. That is to say, the control unit 101 instructs the first transmission unit and the second transmission unit to send data at the same sending time, and when the first transmission unit successfully sends one frame of data, controls the first transmission unit to stop sending. data until the second transmission unit successfully sends one frame of data, instructing the first transmission unit and the second transmission unit to send the next frame of data.
  • the transmission unit 102 successfully sends one frame of data means that after the transmission unit 102 sends one frame of data, it receives the first response signal returned by the Bluetooth communication device corresponding to the transmission unit 102.
  • the first response signal indicates that the Bluetooth communication device is successful. This frame of data is received.
  • the first response signal is an ACK (Acknowledgement, confirmation) signal.
  • the Bluetooth communication device may not receive the frame of data. In this case, the Bluetooth communication device will return the first frame of data to the transmission unit 102.
  • the second response signal indicates that the Bluetooth communication device has not received the frame of data.
  • the transmission unit 102 will resend the frame of data to the Bluetooth communication device until it receives the frame of data returned by the Bluetooth communication device.
  • the first response signal indicates that the transmission unit 102 successfully sends one frame of data.
  • the second response signal is a NACK (Negative Acknowledgment) signal.
  • the transmission unit 102 re-sends the response signal to the Bluetooth communication device. One frame of data, and so on, until the first response signal returned by the Bluetooth communication device is received, which means that the transmission unit 102 successfully sends one frame of data.
  • the first transmission unit successfully sends a frame of data before the second transmission unit. It is most likely that the second transmission unit retransmits data. In this case, the first transmission unit is instructed to wait for the second transmission unit.
  • the transmission unit successfully sends one frame of data before sending the next frame of data, which can prevent the transmission of the next frame of data from interfering with the data retransmission of the second transmission unit, thereby improving the success rate of data transmission.
  • the data transmission instruction sent by the Bluetooth host to the control unit 101 carries multi-frame data corresponding to the first transmission unit and multi-frame data corresponding to the second transmission unit, where one frame of data is sent by the transmission unit 102 at one time.
  • this frame of data can also be called a data packet.
  • the length of one frame of data corresponding to the first transmission unit and the length of one frame of data corresponding to the second transmission unit are the same or different.
  • the length of one frame of data corresponding to the first transmission unit is 2 bytes
  • the length of one frame of data corresponding to the second transmission unit is 2 bytes.
  • the length of one frame of data is 1 byte.
  • the lengths of the multi-frame data corresponding to any transmission unit 102 are the same or different.
  • the length of the first frame data corresponding to the first transmission unit is 2 bytes
  • the length of the corresponding second frame data is 1 byte.
  • the embodiment of the present application does not limit this.
  • the technical solution provided by the embodiment of the present application enables a Bluetooth communication device configured with the communication chip 100 to establish links with at least two Bluetooth communication devices and perform data transmission when the ISM frequency band interference is small.
  • the transmission success rate is high.
  • the data throughput rate of the Bluetooth communication device itself has been doubled, that is, large-volume data communication based on the Bluetooth communication link has been realized, such as videos, pictures and High-fidelity audio transmission.
  • the Bluetooth communication device configured with the communication chip 100 is a low-power Bluetooth communication device.
  • the communication chip 100 includes multiple transmission units 102, then the communication chip 100 can establish Bluetooth communication links with multiple Bluetooth communication devices based on the multiple transmission units 102, and pass all The multiple Bluetooth communication links established perform data transmission with multiple Bluetooth communication devices respectively, that is, multi-link communication is realized, thus greatly improving the efficiency of data transmission.
  • control unit 101 determines the frequency bands corresponding to the multiple transmission units 102, and instructs each transmission unit 102 to perform data transmission on the corresponding frequency band based on the established Bluetooth communication link, which can effectively reduce the number of transmission units.
  • the units 102 perform data transmission, the degree of interference between them increases the success rate of data transmission.
  • the control unit 101 instructs the transmission units 102 corresponding to two different frequency bands with frequency band intervals to send data in an asynchronous mode, so that there is no need to align these
  • the data transmission times of the transmission units 102 corresponding to two different frequency bands reduce the complexity of data transmission.
  • the control unit 101 instructs the transmission units 102 corresponding to two different frequency bands with frequency band intervals to send data in a synchronization mode, so that in the two
  • the frequency band spacing between the frequency bands corresponding to the transmission unit is small, the degree of interference between the two frequency bands when data is transmitted on these two frequency bands can be effectively reduced, and the success rate of data transmission can be improved.
  • the first frequency hopping algorithm is used on the first Bluetooth communication link
  • the second frequency hopping algorithm is used on the second Bluetooth communication link.
  • the second frequency hopping algorithm is used on the Bluetooth communication link to maintain a frequency band interval between the first frequency band corresponding to the first Bluetooth communication link and the second frequency band corresponding to the second Bluetooth communication link, thereby avoiding the need for switching between the first frequency band and the second frequency band. Changes in the frequency band spacing between the two devices affect the data transmission quality of the first Bluetooth communication link and the second Bluetooth communication link.
  • the first transmission unit successfully sends a frame of data before the second transmission unit. It is most likely that the second transmission unit retransmits data. In this case, the first transmission unit is instructed to wait for the second transmission unit.
  • the transmission unit successfully sends one frame of data before sending the next frame of data, which can prevent the transmission of the next frame of data from interfering with the data retransmission of the second transmission unit, thereby improving the success rate of data transmission.
  • FIG. 2 is a schematic diagram of a Bluetooth communication device 200 provided by an embodiment of the present application.
  • the Bluetooth communication device 200 includes a Bluetooth host 201 and a communication chip.
  • the communication chip includes a control unit 202 and multiple transmission units 203 (two transmission units 203 are taken as an example in Figure 2).
  • the Bluetooth host 201 is connected to the control unit 202 in the communication chip, and the control unit 202 is connected to each transmission unit 203 of the plurality of transmission units 203 respectively.
  • This communication chip is the communication chip shown in Figure 1.
  • the control unit 202 controls the plurality of transmission units 203 to establish Bluetooth communication links with corresponding Bluetooth communication devices. Then each transmission unit 203 performs data transmission with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link. Please refer to the above-mentioned embodiment shown in Figure 1 for specific implementation methods, which will not be described again here.
  • FIG 3 is a schematic diagram of a data transmission method provided by an embodiment of the present application.
  • the data transmission method is executed by a Bluetooth communication device.
  • the Bluetooth communication device includes a Bluetooth host and a communication chip.
  • the communication chip includes a control unit and multiple transmission units. Referring to Figure 3, the method includes:
  • the Bluetooth communication device When receiving a connection instruction from the Bluetooth host through the control unit, the Bluetooth communication device controls multiple transmission units to establish Bluetooth communication links with the corresponding Bluetooth communication devices.
  • the Bluetooth communication device performs data transmission with the corresponding Bluetooth communication device through each transmission unit based on the corresponding Bluetooth communication link.
  • steps 301-302 please refer to the embodiment shown in Figure 1 above, which will not be described again here.
  • FIG. 4 is a schematic diagram of a communication chip 400 provided by an embodiment of the present application.
  • the communication chip 400 includes multiple Bluetooth cores 401 (two Bluetooth cores 401 are taken as an example in Figure 4).
  • Each Bluetooth core 401 includes a first control unit 402 and a transmission unit 403.
  • the first control unit 402 Connect to the transmission unit 403.
  • any two Bluetooth cores 401 are connected, for example, the two Bluetooth cores 401 in Figure 4 are connected.
  • the first control unit 402 controls the transmission unit 403 in the same Bluetooth core to establish a Bluetooth communication link with the corresponding Bluetooth communication device. Then the transmission unit 403 performs data transmission with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • the Bluetooth host is used to issue connection instructions to at least two first control units 402 respectively.
  • the first control unit 402 that receives the connection instruction controls the transmission unit 403 in the same Bluetooth core and the corresponding Bluetooth device based on the connection instruction.
  • the communication device establishes a Bluetooth communication link.
  • the connection instruction sent by the Bluetooth host to any first control unit 402 includes connection information of a Bluetooth communication device.
  • the first control unit 402 that receives the connection instruction controls the same device based on the connection information in the connection instruction.
  • the transmission unit 403 in the Bluetooth kernel establishes a Bluetooth communication link with a Bluetooth communication device.
  • the first control unit 402 that receives the connection instruction controls the transmission unit 403 to send a connection request to a Bluetooth communication device based on the connection information in the connection instruction.
  • the Bluetooth communication device receives the connection request, it communicates with the Bluetooth communication device.
  • the transmission unit 403 establishes a Bluetooth communication link.
  • the communication chip 400 can simultaneously communicate with at least two Bluetooth communication links based on the established at least two Bluetooth communication links.
  • Bluetooth communication device for data transmission.
  • the Bluetooth host sends data sending instructions to at least two first control units 402 at the same time.
  • the data sending instructions carry the data to be sent.
  • the first control unit 402 that receives the data sending instruction sends the data sent by the data sending instruction.
  • the carried data is forwarded to the transmission unit 403 in the same Bluetooth kernel, which sends the received data to the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • any transmission unit 403 when any transmission unit 403 receives data sent by a Bluetooth communication device, it sends the data to the first control unit 402 in the same Bluetooth core, and the first control unit 402 forwards the data to the Bluetooth host, So that the Bluetooth host can process the data.
  • the first control units 402 in the two connected Bluetooth cores 401 in the communication chip 400 are connected to each other to facilitate data exchange between the first control units 402 in the two Bluetooth cores 401.
  • the transmission units 403 in the two connected Bluetooth cores 401 in the communication chip 400 are connected to each other to facilitate data exchange between the transmission units 403 in the two Bluetooth cores 401.
  • the first control unit 402 also determines the frequency band corresponding to the transmission unit 403 in the same Bluetooth kernel, and instructs the transmission unit 403 to operate on the frequency band corresponding to the transmission unit 403 based on the corresponding Bluetooth communication link. Performing data transmission can effectively reduce the degree of interference between multiple transmission units 403 when performing data transmission, and improve the success rate of data transmission.
  • the first control unit 402 performs this step when receiving a data sending instruction from the Bluetooth host.
  • each first control unit 402 determines the frequency band corresponding to the corresponding transmission unit 403 based on the AFH algorithm, that is, the frequency band used by the Bluetooth communication link established by the transmission unit 403 for data transmission.
  • the AFH algorithms used by multiple first control units 402 are independent, that is, each first control unit 402 determines the frequency band in the same Bluetooth core without considering the frequency bands determined by other control units.
  • the AFH algorithms corresponding to multiple first control units 402 are coordinated, that is, when any first control unit 402 determines the frequency band of the corresponding transmission unit 403, it sends a signal to another first control unit 402.
  • a control unit 402 sends the determined frequency band.
  • the first control unit 402 that receives the frequency band determines the frequency band of the transmission unit 403 in the same Bluetooth core from other frequency bands outside the frequency band. Then, the first control unit 402 The two determined frequency bands are then sent to another first control unit 402. The first control unit 402 that receives the frequency band determines the frequency band of the transmission unit 403 in the same Bluetooth core from other frequency bands outside these two frequency bands. , and so on, until each first control unit 402 determines the frequency band of the transmission unit 403 in the same Bluetooth core.
  • the AFH algorithm used by each first control unit 402 in the plurality of first control units 402 is the same, that is, any first control unit 402 determines the value of the corresponding transmission unit 403 In the case of a frequency band, the frequency band is sent to other first control units 402, and the first control unit 402 that receives the frequency band uses the frequency band as the frequency band of the transmission unit 403 in the same Bluetooth core.
  • each first control unit 402 sends the frequency band corresponding to each transmission unit 403 to each transmission unit 403, and then each transmission unit 403 performs data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link.
  • the communication chip 400 further includes a second control unit 404 , and the second control unit 404 is respectively connected to multiple Bluetooth cores 401 in the communication chip 400 .
  • the second control unit 404 is connected to the first control unit 402 in each Bluetooth core 401 respectively.
  • each first control unit 402 After determining the frequency band, each first control unit 402 sends the determined frequency band to the second control unit 404 .
  • the second control unit 404 determines the data transmission mode of each transmission unit 403 based on the received frequency band, sends the data transmission mode of each transmission unit 403 to each first control unit 402, and then each first control unit 402 instructs each transmission unit 403 Send data in this data sending mode.
  • the second control unit 404 sends the data sending mode of the transmission unit 403 to the first control unit 402 in the same Bluetooth core as the transmission unit 403.
  • the second control unit 404 determines the data transmission mode of each transmission unit 403 based on the frequency band corresponding to each transmission unit 403, and sends the data transmission mode of each transmission unit 403 to each first control unit 402.
  • the data transmission mode is such that each first control unit 402 instructs each transmission unit 403 to send data in this data transmission mode, which can improve the success rate of data transmission.
  • the second control unit 404 determines the frequency band interval between every two frequency bands, and determines the data transmission mode of each transmission unit 403 based on the frequency band interval between every two frequency bands.
  • the data transmission mode includes an asynchronous mode and a synchronous mode.
  • the asynchronous mode is a data transmission mode in which the data transmission time of each transmission unit 403 is independent.
  • the synchronization mode is a data transmission mode in which the data transmission times of the plurality of transmission units 403 are the same.
  • the second control unit 404 determines the data transmission mode of each transmission unit 403 based on the frequency band spacing between each two frequency bands, and sends data to each transmission unit 403 .
  • the first control unit 402 sends the data transmission mode of each transmission unit 403 respectively, so that each first control unit 402 instructs each transmission unit 403 to send data in the data transmission mode, which can improve the success rate of data transmission.
  • the second control unit 404 determines that the data sending mode of the transmission unit 403 corresponding to two different frequency bands with frequency band spacing is an asynchronous mode, so that there is no need to align the transmission units 403 corresponding to the two different frequency bands.
  • the data sending time reduces the complexity of data transmission.
  • the second control unit 404 determines that the data transmission mode of the transmission unit corresponding to the two frequency bands with the frequency band interval is an asynchronous mode, and the asynchronous mode is the asynchronous mode corresponding to the two frequency bands.
  • the data transmission time of the transmission unit 403 is independent of each other. Among them, if the frequency band spacing meets the spacing condition, it means that the frequency band spacing is relatively large.
  • the spacing condition is that the frequency band spacing is greater than or equal to the reference spacing.
  • the reference interval can be set to any value as needed, and the embodiments of this application do not limit this.
  • the transmission unit that sends data in the asynchronous mode includes a first transmission unit and a second transmission unit.
  • the implementation of the first transmission unit and the second transmission unit sending data in the asynchronous mode is: the third control unit determines the first transmission unit.
  • the data sending time of the unit is sent to the first transmission unit.
  • the fourth control unit determines the data sending time of the second transmission unit and sends the data sending time to the second transmission unit.
  • the first transmission unit and the second transmission unit The units respectively send data when the received data is sent, wherein the third control unit is a first control unit in the same Bluetooth core as the first transmission unit, and the fourth control unit is a third control unit in the same Bluetooth core as the second transmission unit.
  • the frequency band spacing between any two frequency bands satisfies the spacing condition, which means that the frequency band spacing between these two frequency bands is relatively large.
  • Data transmission is performed on these two frequency bands, and there is interference between these two frequency bands.
  • the transmission units 403 corresponding to the two frequency bands to send data in asynchronous mode, there is no need to align the time when the two transmission units 403 send data.
  • the efficiency of data transmission is reduced. the complexity.
  • the second control unit 404 determines that the data transmission mode of the transmission units corresponding to two different frequency bands with frequency band intervals is the synchronization mode, so that the frequency band between the frequency bands corresponding to the two transmission units 403 When the interval is small, the degree of interference between the two frequency bands can be effectively reduced when data is transmitted on these two frequency bands, and the success rate of data transmission can be improved.
  • the second control unit 404 determines that the data transmission mode of the transmission unit 403 corresponding to the two frequency bands with the frequency band interval is a synchronization mode, and the synchronization mode is the two frequency bands.
  • the data transmission time of the transmission units corresponding to the frequency bands is the same. Among them, if the frequency band spacing does not meet the spacing condition, it means that the frequency band spacing is small.
  • the transmission unit that sends data in the synchronous mode includes a first transmission unit and a second transmission unit.
  • the first transmission unit and the second transmission unit send data in the synchronous mode in the following manner: the third control unit determines the target transmission time. , sending the target sending time to the fourth control unit, or the fourth control unit determines the target sending time and sends the target sending time to the third control unit, and the third control unit sends the target sending time to the first transmission unit, and the fourth The control unit sends the target sending time to the second transmission unit, and then the first transmission unit and the second transmission unit respectively send data at the target sending time.
  • the third control unit is a first control unit in the same Bluetooth core as the first transmission unit
  • the fourth control unit is a first control unit in the same Bluetooth core as the second transmission unit.
  • the Bluetooth communication device is sending response data, and there is a Bluetooth communication device corresponding to another transmission unit 403 that is receiving data, the Bluetooth communication device is affected by another Bluetooth communication device. Due to the influence of data transmission power, data may not be received or data may be received incorrectly. Therefore, in the embodiment of the present application, when the frequency band spacing between two frequency bands does not meet the spacing condition, the transmission units corresponding to the two frequency bands are instructed. 403 sends data in synchronous mode, which can effectively reduce the degree of interference between the two frequency bands when transmitting data on these two frequency bands and improve the success rate of data transmission.
  • the above-mentioned method of determining the data transmission mode corresponding to the transmission unit 403 is only an exemplary explanation. In other embodiments, the data transmission mode corresponding to the transmission unit 403 can also be determined in other ways. For example, the second control unit 404 determines that the corresponding frequency bands are the same. The data sending mode of the transmission unit 403 is the synchronous mode.
  • the third control unit uses a first frequency hopping algorithm on the first Bluetooth communication link
  • the fourth control unit uses a second frequency hopping algorithm on the second Bluetooth communication link.
  • the frequency algorithm and the second frequency hopping algorithm work together to maintain a frequency band interval between the first frequency band corresponding to the first Bluetooth communication link and the second frequency band corresponding to the second Bluetooth communication link.
  • the first Bluetooth communication link and the second Bluetooth communication link are Bluetooth communication links established by two different transmission units 403 respectively.
  • the third control unit and the fourth control unit are any first control units in the communication chip.
  • the third control unit and the fourth control unit are respectively the first control unit in the same Bluetooth core as the two different transmission units 403 .
  • the first frequency band corresponding to the first Bluetooth communication link is the frequency band used by the first Bluetooth communication link when performing data transmission.
  • the second frequency band corresponding to the second Bluetooth communication link is the frequency band used by the second Bluetooth communication link when performing data transmission.
  • the first frequency hopping algorithm and the second frequency hopping algorithm are arbitrary frequency hopping algorithms, and the embodiments of this application do not limit this.
  • the first frequency hopping algorithm is used on the first Bluetooth communication link
  • the second frequency hopping algorithm is used on the second Bluetooth communication link.
  • the second frequency hopping algorithm is used on the Bluetooth communication link to maintain a frequency band interval between the first frequency band corresponding to the first Bluetooth communication link and the second frequency band corresponding to the second Bluetooth communication link, thereby avoiding the need for switching between the first frequency band and the second frequency band. Changes in the frequency band spacing between the two devices affect the data transmission quality of the first Bluetooth communication link and the second Bluetooth communication link.
  • the transmission unit 403 that sends data in synchronous mode includes a first transmission unit and a second transmission unit.
  • the one that sends first The transmission unit 403 that has completed one frame of data waits for another transmission unit 403 to complete sending one frame of data before sending the next frame of data.
  • the third control unit instructs the first transmission unit to send a frame of data at the target transmission time.
  • the third control unit is the first transmission unit in the same Bluetooth core as the first transmission unit. control unit.
  • the fourth control unit instructs the second transmission unit to send one frame of data at the target transmission time.
  • the fourth control unit is a first control unit in the same Bluetooth core as the second transmission unit.
  • the third control unit sends a success notification to the fourth control unit and instructs the first transmission unit to stop sending data.
  • the fourth control unit receives the success notification, and when the second transmission unit successfully sends one frame of data, sends the success notification to the third control unit and instructs the second transmission unit to send the next frame of data.
  • the third control unit instructs the first transmission unit to send the next frame of data.
  • the data sending instructions sent by the Bluetooth host to each first control unit 402 carry multiple frames of data.
  • Each first control unit 402 forwards the multi-frame data to the transmission unit 403 in the same Bluetooth core.
  • the transmission unit 403 successfully sends one frame of data means that after the transmission unit 403 sends one frame of data, it receives the first response signal returned by the Bluetooth communication device corresponding to the transmission unit 403.
  • the first response signal indicates that the Bluetooth communication device is successful. This frame of data is received.
  • the first transmission unit successfully sends a frame of data before the second transmission unit. It is most likely that the second transmission unit retransmits data. In this case, the first transmission unit is instructed to wait for the second transmission unit.
  • the transmission unit successfully sends one frame of data before sending the next frame of data, which can prevent the transmission of the next frame of data from interfering with the data retransmission of the second transmission unit, thereby improving the success rate of data transmission.
  • the communication chip 400 includes multiple Bluetooth cores 401, and each Bluetooth core 401 includes a first control unit 402 and a transmission unit 403. Then the communication chip 400 can control respectively based on each first control unit 402.
  • Each transmission unit 403 establishes a Bluetooth communication link with a Bluetooth communication device, and performs data transmission with multiple Bluetooth communication devices through the established Bluetooth communication links. That is, multi-link communication is realized, so it is extremely convenient. Greatly improves the efficiency of data transmission.
  • the first control unit 402 also determines the frequency band of the transmission unit 403 in the same Bluetooth kernel, and instructs the transmission unit 403 to perform data transmission on the frequency band corresponding to the transmission unit 403 based on the corresponding Bluetooth communication link. , can effectively reduce the degree of interference between multiple transmission units 403 when performing data transmission, and improve the success rate of data transmission.
  • the second control unit 404 determines the data transmission mode of each transmission unit 403 based on the frequency band corresponding to each transmission unit 403, and sends the data to each first control unit 403.
  • the unit 402 sends the data transmission mode of each transmission unit 403, so that each first control unit 402 controls each transmission unit 403 to send data in the data transmission mode, which can improve the success rate of data transmission.
  • the second control unit 404 determines that the data sending mode of the transmission unit 403 corresponding to two different frequency bands with frequency band spacing is an asynchronous mode, so that there is no need to align the transmission units corresponding to the two different frequency bands when sending data.
  • the data sending time of 403 reduces the complexity of data transmission.
  • the second control unit 404 determines that the data transmission mode of the transmission units corresponding to two different frequency bands with frequency band spacing is the synchronization mode, so that the frequency band spacing between the frequency bands corresponding to the two transmission units 403 is relatively small. When it is small, it can effectively reduce the degree of interference between the two frequency bands when transmitting data on these two frequency bands, and improve the success rate of data transmission.
  • the first transmission unit successfully sends a frame of data before the second transmission unit. It is most likely that the second transmission unit retransmits data. In this case, the first transmission unit is instructed to wait for the second transmission unit.
  • the transmission unit successfully sends one frame of data before sending the next frame of data, which can prevent the transmission of the next frame of data from interfering with the data retransmission of the second transmission unit, thereby improving the success rate of data transmission.
  • FIG 6 is a schematic diagram of a Bluetooth communication device 600 provided by an embodiment of the present application.
  • the Bluetooth communication device 600 includes a Bluetooth host 601 and a communication chip.
  • the communication chip includes multiple Bluetooth cores 602 (two Bluetooth cores 602 are taken as an example in Figure 6).
  • Each Bluetooth core 602 includes a first control unit and A transmission unit, the first control unit is connected to the transmission unit.
  • any two Bluetooth cores 602 are connected, for example, the two Bluetooth cores 602 in Figure 6 are connected.
  • the first control unit responds to the connection instruction from the Bluetooth host 601 and controls the transmission unit in the same Bluetooth core to establish a Bluetooth communication link with the corresponding Bluetooth communication device.
  • the transmission unit then performs data transmission with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • the Bluetooth communication device 600 further includes a second control unit 603 , and the second control unit 603 is connected to the Bluetooth host 601 and multiple Bluetooth cores 602 respectively.
  • the second control unit 603 is used to determine the data transmission mode of each transmission unit.
  • FIG 8 is a schematic diagram of a data transmission method provided by an embodiment of the present application.
  • the method is executed by a Bluetooth communication device, which includes a Bluetooth host and a communication chip.
  • the communication chip includes multiple Bluetooth cores, and each Bluetooth core includes a first control unit and a transmission unit.
  • the method includes:
  • the Bluetooth communication device responds to the connection instruction from the Bluetooth host through the first control unit and controls the transmission unit in the same Bluetooth core to establish a Bluetooth communication link with the corresponding Bluetooth communication device.
  • the Bluetooth communication device performs data transmission with the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link through the transmission unit.
  • steps 801-802 please refer to the above embodiment shown in Figure 4 and Figure 5, which will not be described again here.
  • FIG 9 is a schematic diagram of a Bluetooth communication device 900 provided by an embodiment of the present application.
  • the Bluetooth communication device 900 includes a Bluetooth host 901 and multiple communication chips 902 connected to the Bluetooth host 901.
  • Each communication chip 902 includes a first control unit and a transmission unit, and the first control unit is connected to the corresponding transmission unit.
  • each first control unit controls each transmission unit to establish a Bluetooth communication link with the corresponding Bluetooth communication device; any first control unit determines the frequency band corresponding to each transmission unit Finally, the frequency bands corresponding to each transmission unit are sent to each first control unit respectively. Then, each first control unit instructs each transmission unit to perform data transmission with the corresponding Bluetooth communication device on the corresponding frequency band based on the corresponding Bluetooth communication link.
  • the Bluetooth host 901 is used to issue connection instructions to each first control unit respectively.
  • the first control unit that receives the connection instruction controls the transmission unit in the same communication chip to establish Bluetooth communication with a Bluetooth communication device based on the connection instruction. link.
  • the connection instruction sent by the Bluetooth host 901 to each first control unit includes connection information of a Bluetooth communication device.
  • the first control unit that receives the connection instruction controls the same communication chip based on the connection information in the connection instruction.
  • the transmission unit in the device establishes a Bluetooth communication link with a Bluetooth communication device.
  • the first control unit that receives the connection instruction controls the transmission unit in the same communication chip to send a connection request to a Bluetooth communication device based on the connection information in the connection instruction.
  • the Bluetooth communication device receives the connection request. Next, establish a Bluetooth communication link with the transmission unit.
  • the first control units of any two communication chips 902 in the Bluetooth host 901 are connected.
  • the first control units in two communication chips 902 are connected.
  • multiple first control units in the Bluetooth communication device 900 perform data exchange to determine the first control unit used to determine the frequency band corresponding to each transmission unit, wherein the first control unit is used to determine the frequency band corresponding to each transmission unit.
  • the first control unit is any first control unit among the plurality of first control units.
  • any of the above first control units determines the frequency band of each transmission unit based on the AFH algorithm, that is, the frequency band used by the Bluetooth communication link established by each transmission unit for data transmission.
  • the AFH algorithms corresponding to each transmission unit are independent, that is, for any transmission unit, the first control unit determines the frequency band of the transmission unit without considering the frequency bands of other transmission units.
  • the AFH algorithms corresponding to each transmission unit are coordinated, that is, when the first control unit determines the frequency band of any transmission unit, it determines another frequency band from other frequency bands outside the frequency band. The frequency band of a transmission unit, and so on, until the frequency band of each transmission unit is determined.
  • the AFH algorithms corresponding to each transmission unit are the same, that is, when the first control unit determines the frequency band of any transmission unit, it also uses the frequency band as the frequency band of other transmission units.
  • the Bluetooth communication device 900 can simultaneously communicate with multiple Bluetooth communication links based on the Bluetooth communication link established by the transmission unit in each communication chip 902 .
  • Communication equipment performs data transmission.
  • the Bluetooth host 901 sends data sending instructions to the first control units of multiple communication chips 902 at the same time.
  • the data sending instructions carry the data to be sent.
  • the first control unit that receives the data sending instructions sends the data.
  • the data carried by the instruction is forwarded to the transmission unit in the same communication chip, and the transmission unit sends the received data to the corresponding Bluetooth communication device based on the corresponding Bluetooth communication link.
  • any transmission unit when any transmission unit receives data sent by a connected Bluetooth communication device, it sends the data to the first control unit in the same communication chip, and the first control unit forwards the data to the Bluetooth host 901 , so that the Bluetooth host 901 processes the data.
  • each communication chip further includes a second control unit.
  • Any second control unit receives the frequency band from each first control unit, determines the data transmission mode of each transmission unit based on the received frequency band, sends the data transmission mode of each transmission unit to each first control unit, and then each first The control unit instructs each transmission unit to send data in the data sending mode.
  • the second control unit sends the data transmission mode of the transmission unit to the first control unit that is on the same communication chip as the transmission unit.
  • the second control unit determines the data transmission mode of each transmission unit based on the frequency band corresponding to each transmission unit, and sends the data transmission mode of each transmission unit to each first control unit, so as to Having each first control unit instruct each transmission unit to send data in the data sending mode can improve the success rate of data sending.
  • the second control unit determines the frequency band spacing between every two frequency bands, determines the data transmission mode of each transmission unit based on the frequency band spacing between every two frequency bands, and sends each transmission unit to each first control unit respectively. the data sending mode; then each first control unit instructs each transmission unit to send data in the data sending mode.
  • the data transmission mode includes an asynchronous mode and a synchronous mode.
  • the asynchronous mode is a mode in which the data transmission time of each transmission unit is independent.
  • the synchronization mode is a mode in which data transmission times of multiple transmission units are the same.
  • the second control units of any two communication chips 902 in the Bluetooth host 901 are connected.
  • the second control units in two communication chips 902 are connected.
  • multiple second control units in the Bluetooth communication device 900 perform data exchange to determine the second control unit used to determine the data transmission mode of each transmission unit, wherein the second control unit used to determine the data transmission mode of each transmission unit
  • the second control unit in the sending mode is any second control unit among a plurality of second control units.
  • each first control unit obtains the frequency band of the corresponding transmission unit, it sends the frequency band to the second control unit in the same communication chip, and the second control unit forwards the frequency band to the transmission unit for determining The second control unit of the data sending mode.
  • the data transmission mode of each transmission unit is sent to the second control unit on the same communication chip as each transmission unit.
  • the control unit forwards the received data transmission pattern to the first control unit in the same communication chip.
  • the second control unit determines the data transmission mode of each transmission unit based on the frequency band spacing between each two frequency bands, and sends data to each first The control unit sends the data transmission mode of each transmission unit respectively, so that each first control unit instructs each transmission unit to send data in the data transmission mode, which can improve the success rate of data transmission.
  • any of the above second control units determines that the data sending mode of the transmission units corresponding to two different frequency bands with frequency band spacing is an asynchronous mode, so that there is no need to align the transmission units corresponding to the two different frequency bands.
  • the time of data sending reduces the complexity of data transmission.
  • the second control unit determines that the data transmission mode of the transmission units corresponding to the two frequency bands with the frequency band interval is an asynchronous mode, and the asynchronous mode is the data of the two transmission units. Modes with independent sending times. Among them, if the frequency band spacing meets the spacing condition, it means that the frequency band spacing is relatively large.
  • the spacing condition is that the frequency band spacing is greater than or equal to the reference spacing.
  • the reference interval can be set to any value as needed, and the embodiments of this application do not limit this.
  • the transmission unit that sends data in the asynchronous mode includes a first transmission unit and a second transmission unit.
  • the implementation of the first transmission unit and the second transmission unit sending data in the asynchronous mode is: the third control unit determines the first transmission unit.
  • the data sending time of the unit is sent to the first transmission unit.
  • the fourth control unit determines the data sending time of the second transmission unit and sends the data sending time to the second transmission unit.
  • the first transmission unit and the second transmission unit The units respectively send data when the received data is sent, wherein the third control unit is a first control unit on the same communication chip as the first transmission unit, and the fourth control unit is a third control unit on the same communication chip as the second transmission unit.
  • the frequency band spacing between any two frequency bands satisfies the spacing condition, which means that the frequency band spacing between these two frequency bands is relatively large.
  • Data transmission is performed on these two frequency bands, and there is interference between these two frequency bands.
  • the transmission units corresponding to the two frequency bands are controlled to send data in asynchronous mode. There is no need to align the time when the two transmission units send data. This reduces the cost of data transmission while ensuring the quality of data transmission. the complexity.
  • any of the above second control units determines that the data transmission mode of the transmission units corresponding to two different frequency bands with frequency band intervals is the synchronization mode, and the frequency band interval between the frequency bands corresponding to the two transmission units In the case of smaller size, it can effectively reduce the degree of interference between the two frequency bands when transmitting data on these two frequency bands, and improve the success rate of data transmission.
  • the second control unit determines that the data transmission mode of the transmission unit corresponding to the two frequency bands with the frequency band interval is a synchronization mode, and the synchronization mode is the two transmission
  • the unit's data is sent in the same pattern at the same time.
  • the frequency band spacing does not meet the spacing condition, it means that the frequency band spacing is small.
  • the transmission unit that sends data in the synchronous mode includes a first transmission unit and a second transmission unit.
  • the first transmission unit and the second transmission unit send data in the synchronous mode in the following manner: the third control unit determines the target transmission time. , sending the target sending time to the fourth control unit, or the fourth control unit determines the target sending time and sends the target sending time to the third control unit, and the third control unit sends the target sending time to the first transmission unit, and the fourth The control unit sends the target sending time to the second transmission unit, and then the first transmission unit and the second transmission unit respectively send data at the target sending time.
  • the third control unit is a first control unit located on the same communication chip as the first transmission unit
  • the fourth control unit is a first control unit located on the same communication chip as the second transmission unit.
  • the transmission units corresponding to the two frequency bands are instructed to synchronize Mode sending data can effectively reduce the degree of interference between the two frequency bands when data is transmitted on these two frequency bands, and improve the success rate of data transmission.
  • the above method of determining the data transmission mode corresponding to the transmission unit is only an illustrative description.
  • the data transmission mode corresponding to the transmission unit can also be determined in other ways.
  • the second control unit determines the corresponding transmission unit with the same frequency band.
  • the data sending mode is synchronous mode.
  • the third control unit uses a first frequency hopping algorithm on the first Bluetooth communication link
  • the fourth control unit uses a second frequency hopping algorithm on the second Bluetooth communication link.
  • the frequency algorithm and the second frequency hopping algorithm work together to maintain a frequency band interval between the first frequency band corresponding to the first Bluetooth communication link and the second frequency band corresponding to the second Bluetooth communication link.
  • the first Bluetooth communication link and the second Bluetooth communication link are Bluetooth communication links established by two different transmission units respectively.
  • the third control unit and the fourth control unit are any first control units in the Bluetooth communication device.
  • the third control unit and the fourth control unit are respectively the first control unit in the same communication chip as the two different transmission units.
  • the first frequency band corresponding to the first Bluetooth communication link is the frequency band used by the first Bluetooth communication link when performing data transmission.
  • the second frequency band corresponding to the second Bluetooth communication link is the frequency band used by the second Bluetooth communication link when performing data transmission.
  • the first frequency hopping algorithm and the second frequency hopping algorithm are arbitrary frequency hopping algorithms, and the embodiments of this application do not limit this.
  • the first frequency hopping algorithm is used on the first Bluetooth communication link
  • the second frequency hopping algorithm is used on the second Bluetooth communication link.
  • the second frequency hopping algorithm is used on the Bluetooth communication link to maintain a frequency band interval between the first frequency band corresponding to the first Bluetooth communication link and the second frequency band corresponding to the second Bluetooth communication link, thereby avoiding the need for switching between the first frequency band and the second frequency band. Changes in the frequency band spacing between the two devices affect the data transmission quality of the first Bluetooth communication link and the second Bluetooth communication link.
  • the transmission unit that sends data in synchronous mode includes a first transmission unit and a second transmission unit.
  • the first transmission unit completes the transmission.
  • the transmission unit of one frame of data must wait for another transmission unit to finish sending one frame of data before sending the next frame of data.
  • the third control unit instructs the first transmission unit to send a frame of data at the target transmission time.
  • the third control unit is the first communication chip on the same communication chip as the first transmission unit. control unit.
  • the fourth control unit instructs the second transmission unit to send one frame of data at the target transmission time.
  • the fourth control unit is the first control unit on the same communication chip as the second transmission unit; the third control unit successfully sends the data when the first transmission unit In the case of one frame of data, a success notification is sent to the fourth control unit and the first transmission unit is instructed to stop sending data; the fourth control unit receives the success notification and, in the case of the second transmission unit successfully sending one frame of data, sends a success notification to the fourth control unit.
  • the third control unit sends the success notification and instructs the second transmission unit to send the next frame of data; upon receiving the success notification from the fourth control unit, the third control unit instructs the first transmission unit to send the next frame of data. frame data.
  • the data sending instruction sent by the Bluetooth host 901 to the first control unit of each communication chip 902 carries multiple frames of data.
  • Each first control unit forwards the multi-frame data to the transmission unit in the same communication chip.
  • the transmission unit successfully sends one frame of data means that after the transmission unit sends one frame of data, it receives the first response signal returned by the Bluetooth communication device corresponding to the transmission unit.
  • the first response signal indicates that the Bluetooth communication device successfully receives the One frame of data.
  • the first transmission unit successfully sends a frame of data before the second transmission unit. It is most likely that the second transmission unit retransmits data. In this case, the first transmission unit is instructed to wait for the second transmission unit.
  • the transmission unit successfully sends one frame of data before sending the next frame of data, which can prevent the transmission of the next frame of data from interfering with the data retransmission of the second transmission unit, thereby improving the success rate of data transmission.
  • the Bluetooth communication device 900 includes multiple communication chips 902 , and each communication chip 902 includes a first control unit and a transmission unit. Then the Bluetooth communication device 900 can be based on the first communication chip 902 in each communication chip 902 .
  • the control unit respectively instructs each transmission unit to establish a Bluetooth communication link with a Bluetooth communication device, and performs data transmission with multiple Bluetooth communication devices through the established Bluetooth communication links, that is, multi-link communication is realized. , thus greatly improving the efficiency of data transmission.
  • the second control unit determines the data transmission mode of each transmission unit based on the frequency band corresponding to each transmission unit, and sends the data to each first control unit.
  • the data transmission mode of each transmission unit is such that the first control unit instructs each transmission unit to transmit data in the data transmission mode, which can improve the success rate of data transmission.
  • the second control unit determines that the data sending mode of the transmission units corresponding to two different frequency bands with frequency band spacing is an asynchronous mode, so that there is no need to align the data of the transmission units corresponding to the two different frequency bands when sending data.
  • the sending time reduces the complexity of data transmission.
  • the second control unit determines that the data transmission mode of the transmission units corresponding to two different frequency bands with frequency band intervals is the synchronization mode, so that the frequency band interval between the frequency bands corresponding to the two transmission units is smaller. In this case, it can effectively reduce the degree of interference between the two frequency bands when transmitting data on these two frequency bands, and improve the success rate of data transmission.
  • the first transmission unit successfully sends a frame of data before the second transmission unit. It is most likely that the second transmission unit retransmits data. In this case, the first transmission unit is instructed to wait for the second transmission unit.
  • the transmission unit successfully sends one frame of data before sending the next frame of data, which can prevent the transmission of the next frame of data from interfering with the data retransmission of the second transmission unit, thereby improving the success rate of data transmission.
  • FIG 10 is a schematic diagram of a multi-link data transmission process provided by an embodiment of the present application.
  • the master device includes multiple communication chips, in which a link 1 is established between the communication chip 1 and the communication chip in the slave device 1, and a link 2 is established between the communication chip 2 and the communication chip in the slave device 2. .
  • the master device can send data to slave device 1 and slave device 2 based on link 1 and link 2 respectively.
  • the length of the data sent by the master device to slave device 1 and the data sent to slave device 2 are the same, and the data sending time is also the same.
  • slave device 1 and slave device 2 respectively returned the first response signal to the master device under the time condition of meeting the frame interval, indicating that the data was successfully received.
  • the master device refers to the Bluetooth communication device that actively initiates the connection
  • the slave device refers to the Bluetooth communication device that accepts the connection.
  • FIG 11 is a schematic diagram of another multi-link data transmission process provided by an embodiment of the present application.
  • the master device includes multiple communication chips, in which a link 1 is established between the communication chip 1 and the communication chip in the slave device 1, and a link 2 is established between the communication chip 2 and the communication chip in the slave device 2. .
  • the master device can send data to slave device 1 and slave device 2 based on link 1 and link 2 respectively.
  • the length of the first frame of data sent by the master device to slave device 1 and the first frame of data sent to slave device 2 are different, but the data sending time is the same.
  • slave device 1 and slave device 2 respectively returned the first response signal to the master device under the time condition of satisfying the frame interval, indicating that the data was successfully received.
  • the master device simultaneously sent the second frame data to slave device 1 and slave device 2 at another sending moment, and the second frame data sent to slave device 1 was different from the second frame data sent to slave device 2. Same length.
  • FIG 12 is a schematic diagram of yet another multi-link data transmission process provided by an embodiment of the present application.
  • the master device includes multiple communication chips, in which a link 1 is established between the communication chip 1 and the communication chip in the slave device 1, and a link 2 is established between the communication chip 2 and the communication chip in the slave device 2. .
  • the master device can send data to slave device 1 and slave device 2 based on link 1 and link 2 respectively.
  • the data sent by the master device to slave device 1 is of the same length as the data sent to slave device 2, and the data is sent at the same time.
  • the slave device 2 After receiving the data, the slave device 2 returns the first response signal to the master device under the time condition that the frame interval is met, indicating that the data has been successfully received.
  • Slave device 1 did not receive data, so it returned a second response signal to the master device, indicating that data was not received.
  • the first response signal is returned to the master device, indicating that the data is successfully received.
  • the master device resends data to slave device 1, and then receives the first response signal returned from slave device 1, indicating that the slave device successfully received the data this time.
  • the master device stops sending data to the slave device 2 to avoid interference with the data retransmission.
  • FIG 13 is a schematic diagram of a multi-link data transmission process provided by an embodiment of the present application.
  • the master device includes multiple communication chips, in which a link 1 is established between the communication chip 1 and the communication chip in the slave device 1, and a link 2 is established between the communication chip 2 and the communication chip in the slave device 2. .
  • the master device can send data to slave device 1 and slave device 2 based on link 1 and link 2 respectively.
  • the length of the data sent by the master device to slave device 1 and the data sent to slave device 2 are the same, but the sending time of the data is independent, that is, the master device sends each time to slave device 1 and slave device 2
  • the data does not need to be the same time.
  • Each time slave device 1 and slave device 2 receive data, they respectively return the first response signal to the master device under the condition that the frame interval is met, indicating that the data has been successfully received this time.
  • FIG 14 is a schematic diagram of a data transmission method provided by an embodiment of the present application.
  • the method is executed by a Bluetooth communication device, which includes a Bluetooth host and multiple communication chips connected to the Bluetooth host.
  • Each communication chip includes a first control unit and a transmission unit; the method includes:
  • the Bluetooth communication device When receiving a connection instruction from the Bluetooth host through each first control unit, the Bluetooth communication device controls each transmission unit to establish a Bluetooth communication link with the corresponding Bluetooth communication device.
  • the Bluetooth communication device determines the frequency band corresponding to each transmission unit through any first control unit, and sends the frequency band corresponding to each transmission unit to each first control unit respectively.
  • the Bluetooth communication device instructs each transmission unit to perform data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link through each first control unit.
  • steps 1401-1403 please refer to the above embodiment shown in Figure 9, which will not be described again here.
  • FIG 15 is a schematic diagram of a Bluetooth communication device 150 provided by an embodiment of the present application.
  • the Bluetooth communication device 150 includes multiple Bluetooth hosts 151 (two Bluetooth hosts 151 are used as an example in Figure 15) and communication chips 152 respectively connected to the multiple Bluetooth hosts 151.
  • Each communication chip 152 includes a first control unit and a transmission unit. And the first control unit is connected with the transmission unit.
  • each first control unit When receiving a connection instruction from the connected Bluetooth host 151, each first control unit controls each transmission unit to establish a Bluetooth communication link with the corresponding Bluetooth communication device. Any first control unit determines the frequency band of each transmission unit and sends the frequency band of each transmission unit to each first control unit. Then each first control unit instructs each transmission unit to perform data transmission with the corresponding Bluetooth communication device on the corresponding frequency band based on the corresponding Bluetooth communication link.
  • the Bluetooth communication device 150 shown in FIG. 15 includes multiple Bluetooth hosts 151, each Bluetooth The host 151 can send instructions to the connected communication chip 152 and perform data exchange with the connected communication chip 152 respectively.
  • any two communication chips 152 among the plurality of communication chips 152 need to perform data exchange, these two communication chips 152 can send the data that needs to be exchanged to the connected Bluetooth host 151, and the connected Bluetooth host 151 can The host 151 forwards the data to the Bluetooth host 151 connected to another communication chip 152, and then the Bluetooth host 151 forwards the data to the connected communication chip 152.
  • the upper communication chip 152 sends the data that needs to be sent to the lower communication chip 152 to the upper Bluetooth host 151.
  • the upper Bluetooth host 151 forwards the data to the lower Bluetooth host 151, and the lower Bluetooth host 151 This data is forwarded to the communication chip 152 below.
  • multiple communication chips 152 in the Bluetooth communication device 150 are connected to each other.
  • the upper communication chip 152 is connected to the lower communication chip 152, then the upper communication chip 152 and the lower communication chip 152 can directly exchange data.
  • the first control unit in the upper communication chip 152 is connected to the first control unit in the lower communication chip 152 .
  • the second control unit in the upper communication chip 152 can communicate with the second control unit in the lower communication chip 152 connect.
  • each communication chip 152 includes a second control unit, the first control unit and the second control unit in each communication chip 152 are connected.
  • the Bluetooth communication device 150 includes multiple Bluetooth hosts 151 and communication chips 152 connected to each Bluetooth host 151 respectively, and each communication chip 152 includes a first control unit and a transmission unit, then the Bluetooth communication The device 150 can instruct the first control unit in each communication chip 152 based on each Bluetooth host 151 to control the transmission unit to establish a Bluetooth communication link with the corresponding Bluetooth communication device, and communicate with multiple Bluetooth communication links through the established Bluetooth communication links.
  • the communication equipment transmits data, that is, realizes multi-link communication, thus greatly improving the efficiency of data transmission.
  • each transmission unit determines the frequency band of each transmission unit, instruct each transmission unit to perform data transmission with the corresponding Bluetooth communication device on the corresponding frequency band based on the corresponding Bluetooth communication link, which can effectively reduce the mutual interference between multiple transmission units when transmitting data.
  • the degree of interference between them improves the success rate of data transmission.
  • FIG 16 is a schematic diagram of a data transmission method provided by an embodiment of the present application.
  • the method is executed by a Bluetooth communication device, which includes a plurality of Bluetooth hosts and communication chips respectively connected to the plurality of Bluetooth hosts.
  • Each communication chip includes a first control unit and a transmission unit; the method includes:
  • the Bluetooth communication device uses each first control unit to control each transmission unit to establish a Bluetooth communication link with the corresponding Bluetooth communication device when receiving a connection instruction from the connected Bluetooth host.
  • the Bluetooth communication device determines the frequency band corresponding to each transmission unit through any first control unit, and sends the frequency band corresponding to each transmission unit to each first control unit respectively.
  • the Bluetooth communication device instructs each transmission unit to perform data transmission on the corresponding frequency band based on the corresponding Bluetooth communication link through each first control unit.
  • steps 1601-1603 please refer to the above-mentioned embodiments shown in Figure 9 and Figure 15, which will not be described again here.
  • the data transmitted between the above-mentioned Bluetooth communication devices or communication chips can be any data, such as image data, audio data, video data, control data, etc. And these data are all authorized by the user.
  • the Bluetooth communication device displays a pop-up window, and the pop-up window includes the data to be sent. After the user performs a confirmation operation, the Bluetooth communication device sends the data to the opposite Bluetooth communication device.
  • the above-mentioned Bluetooth communication device can be any device, such as a mobile phone, a computer, a vehicle-mounted terminal, a speaker, a computer, a watch, a household appliance, etc. The embodiments of the present application are not limited to this.
  • the solution provided by the embodiment of the present application can be applied to the scene of playing music.
  • the user performs a connection operation on the mobile phone and controls the mobile phone (master device) to establish Bluetooth communication links with the headset (slave device) and the speaker (slave device) respectively through the solution provided by the embodiment of the present application.
  • the mobile phone master device
  • Bluetooth communication links Based on the two established A Bluetooth communication link sends the music selected by the user to the headset and the speaker respectively, and then the headset and the speaker can play the music at the same time.
  • the solutions provided by the embodiments of this application can also be applied to scenarios of controlling home appliances.
  • the user performs a connection operation on the mobile phone and controls the mobile phone (master device) to establish Bluetooth communication links with the TV (slave device) and the washing machine (slave device) respectively through the solution provided by the embodiment of this application.
  • the mobile phone is based on the connection established with the TV.
  • the Bluetooth communication link sends user-determined control instructions to the TV, for example, a video switching instruction to control the TV to switch the currently playing video.
  • the mobile phone sends user-determined control instructions, such as a start instruction, to the TV to control the starting of the washing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信芯片、蓝牙通信设备及数据传输方法,属于计算机技术领域。通信芯片包括控制单元和多个传输单元;控制单元配置成:在接收到来自于蓝牙主机的连接指令的情况下,控制多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路;各传输单元配置成:基于相应的蓝牙通信链路与对应的蓝牙通信设备进行数据传输。

Description

通信芯片、蓝牙通信设备及数据传输方法
本申请要求于2022年03月24日提交的申请号为202210303099.7、发明名称为“通信芯片、蓝牙通信设备及数据传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,特别涉及一种通信芯片、蓝牙通信设备及数据传输方法。
背景技术
任一通信芯片能够与蓝牙通信设备建立蓝牙通信链路,从而基于该蓝牙通信链路与该蓝牙通信设备进行数据传输。
然而相关技术中,任一通信芯片在同一时刻仅能与一个蓝牙通信设备进行数据传输,因此数据传输的效率低。
发明内容
本申请实施例提供了一种通信芯片、蓝牙通信设备及数据传输方法。所述技术方案如下:
根据本申请实施例的一方面,提供了一种通信芯片,所述通信芯片包括控制单元和多个传输单元;
所述控制单元配置成:
在接收到来自于蓝牙主机的连接指令的情况下,控制所述多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路;
各所述传输单元配置成:
基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
根据本申请实施例的另一方面,提供了一种蓝牙通信设备,所述蓝牙通信设备包括蓝牙主机和通信芯片,所述通信芯片包括控制单元和多个传输单元;
所述控制单元配置成:
在接收到来自于所述蓝牙主机的连接指令的情况下,控制所述多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路;
各所述传输单元配置成:
基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。根据本申请实施例的另一方面,提供了一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括蓝牙主机和通信芯片,所述通信芯片包括控制单元和多个传输单元;所述方法包括:
所述控制单元在接收到来自于所述蓝牙主机的连接指令的情况下,控制所述多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路;
各所述传输单元基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
根据本申请实施例的另一方面,提供了一种通信芯片,所述通信芯片包括多个蓝牙内核,各所述蓝牙内核包括第一控制单元和传输单元;
所述第一控制单元配置成:
在接收到来自于蓝牙主机的连接指令的情况下,控制同一蓝牙内核中的所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
所述传输单元配置成:
基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
根据本申请实施例的另一方面,提供了一种蓝牙通信设备,所述蓝牙通信设备包括蓝牙主机和通信芯片,所述通信芯片包括多个蓝牙内核,各所述蓝牙内核包括第一控制单元和传输单元;
所述第一控制单元配置成:
在接收到来自于所述蓝牙主机的连接指令的情况下,控制同一蓝牙内核中的所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
所述传输单元配置成:
基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
根据本申请实施例的另一方面,提供了一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括蓝牙主机和通信芯片,所述通信芯片包括多个蓝牙内核,各所述蓝牙内核包括第一控制单元和传输单元;所述方法包括:
所述第一控制单元在接收到来自于所述蓝牙主机的连接指令的情况下,控制同一蓝牙内核中的所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
所述传输单元基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
根据本申请实施例的另一方面,提供了一种蓝牙通信设备,所述蓝牙通信设备包括蓝牙主机和所述蓝牙主机连接的多个通信芯片,各所述通信芯片包括第一控制单元和传输单元;
各所述第一控制单元配置成:
在接收到来自于所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
任一所述第一控制单元还配置成:
确定各所述传输单元对应的频带,将各所述传输单元对应的频带分别发送至各所述第一控制单元;
各所述第一控制单元还配置成:
指示各所述传输单元基于相应的所述蓝牙通信链路,在对应的频带上进行数据传输。
根据本申请实施例的另一方面,提供了一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括蓝牙主机和所述蓝牙主机连接的多个通信芯片,各所述通信芯片包括第一控制单元和传输单元;所述方法包括:
各所述第一控制单元在接收到来自于所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
任一所述第一控制单元确定各所述传输单元对应的频带,将各所述传输单元对应的频带分别发送至各所述第一控制单元;
各所述第一控制单元指示各所述传输单元基于相应的所述蓝牙通信链路,在对应的频带上进行数据传输。
根据本申请实施例的另一方面,提供了一种蓝牙通信设备,所述蓝牙通信设备包括多个蓝牙主机以及所述多个蓝牙主机分别连接的通信芯片,各所述通信芯片包括第一控制单元和传输单元;
各所述第一控制单元配置成:
在接收到来自于所连接的所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
任一所述第一控制单元还配置成:
确定各所述传输单元对应的频带,将各所述传输单元对应的频带发送至各所述第一控制单元;
各所述第一控制单元还配置成:
指示各所述传输单元基于相应的蓝牙通信链路,在对应的频带上进行数据传输。
根据本申请实施例的另一方面,提供了一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括多个蓝牙主机以及所述多个蓝牙主机分别连接的通信芯片,各所述通信芯片包括第一控制单元和传输单元;所述方法包括:
各所述第一控制单元在接收到来自于所连接的所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
任一所述第一控制单元确定各所述传输单元对应的频带,将各所述传输单元对应的频带分别发送至各所述第一控制单元;
各所述第一控制单元指示各所述传输单元基于相应的蓝牙通信链路,在对应的频带上进行数据传输。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的一种通信芯片的示意图;
图2示出了本申请一个示例性实施例提供的一种蓝牙通信设备的示意图;
图3示出了本申请一个示例性实施例提供的一种数据传输方法的流程图;
图4示出了本申请一个示例性实施例提供的另一种通信芯片的示意图;
图5示出了本申请一个示例性实施例提供的又一种通信芯片的示意图;
图6示出了本申请一个示例性实施例提供的另一种蓝牙通信设备的示意图;
图7示出了本申请一个示例性实施例提供的又一种蓝牙通信设备的示意图;
图8示出了本申请一个示例性实施例提供的另一种数据传输方法的流程图;
图9示出了本申请一个示例性实施例提供的再一种蓝牙通信设备的示意图;
图10示出了本申请一个示例性实施例提供的一种多链路数据传输过程的示意图;
图11示出了本申请一个示例性实施例提供的另一种多链路数据传输过程的示意图;
图12示出了本申请一个示例性实施例提供的又一种多链路数据传输过程的示意图;
图13示出了本申请一个示例性实施例提供的再一种多链路数据传输过程的示意图;
图14示出了本申请一个示例性实施例提供的又一种数据传输方法的流程图;
图15示出了本申请一个示例性实施例提供的再一种蓝牙通信设备的示意图;
图16示出了本申请一个示例性实施例提供的再一种数据传输方法的流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本文中提及的“至少一个”是指一个或多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请所涉及的信息(包括但不限于用户设备信息、用户个人信息等)、数据(包括但不限于用于分析的数据、存储的数据、展示的数据等)以及信号,均为经用户授权或者经过各方充分授权的,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。例如,本申请中通信芯片或者蓝牙通信设备间传输的数据都是在充分授权的情况下获取的。
图1是本申请实施例提供的一种通信芯片100的示意图。参考图1,该通信芯片100包括控制单元101和多个传输单元102(图1中以两个传输单元102为例),其中,控制单元101分别和多个传输单元102中的每个传输单元102连接。
其中,控制单元101在接收到来自于蓝牙主机的连接指令的情况下,控制多个传输单元102分别与对应的蓝牙通信设备建立蓝牙通信链路,然后各传输单元102基于相应的蓝牙通信链路与对应的蓝牙通信设备进行数据传输。
其中,蓝牙主机用于向控制单元101下发指令,控制单元101响应于该指令,执行该指令对应的操作。例如,该指令为连接指令,那么控制单元101在接收到该连接指令的情况下,控制传输单元102与对应的蓝牙通信设备建立蓝牙通信链路。例如,该指令为数据发送指令,那么控制单元101在接收到该数据发送指令的情况下,获取待发送的数据,指示传输单元102基于所建立的蓝牙通信链路发送该数据。可选地,该蓝牙主机位于蓝牙通信设备的CPU(Central Processing Unit,中央处理器)中。可选地,该控制单元101为LC(Link Controller,链路控制器)或者其他控制单元101。可选地,任一传输单元102包括PHY(Physical Layer,物理层)和RF(Radio Frequency,射频)模块。其中,PHY用于对通信芯片100之间传输的数据进行编码或者解码。RF模块用于发送或者接收数据。
可选地,控制单元101在接收到来自于蓝牙主机的连接指令的情况下,控制该连接指令对应的至少两个传输单元102分别与对应的蓝牙通信设备建立蓝牙通信链路。
可选地,连接指令包括至少两个传输单元102的单元标识和每个单元标识对应的蓝牙通信设备的连接信息,其中单元标识表示所属的传输单元102需要建立蓝牙通信链路。相应的,对于任一单元标识,控制单元101基于该单元标识对应的蓝牙通信设备的连接信息,控制该单元标识所属的传输单元102与该蓝牙通信设备建立蓝牙通信链路。例如,控制单元101基于该蓝牙通信设备的连接信息,控制该传输单元102向该蓝牙通信设备发送连接请求,该蓝牙通信设备在接收到该连接请求的情况下,与该传输单元102建立蓝牙通信链路。
在多个传输单元102分别与一个蓝牙通信设备建立蓝牙通信链路之后,该通信芯片100能够基于所建立的多个蓝牙通信链路,同时与多个蓝牙通信设备进行数据传输。例如,蓝牙主机向控制单元101发送数据发送指令,数据发送指令携带多个待发送的数据,以及每个待发送的数据对应的蓝牙通信设备,相应的, 对于任一待发送的数据,控制单元101将该待发送的数据转发给对应的传输单元102,也即是,与该待发送的数据对应的蓝牙通信设备之间已建立蓝牙通信链路的传输单元102,该传输单元102基于所建立的蓝牙通信链路,向所连接的对端通信芯片发送所接收的数据。又如,任一传输单元102在接收到对应的蓝牙通信设备发送的数据的情况下,向控制单元101发送该数据,控制单元101将该数据转发给蓝牙主机,以使蓝牙主机对该数据进行处理。
可选地,通信芯片100内的多个传输单元102中,任意两个传输单元102之间进行连接,这样方便这两个传输单元102之间进行数据交互。例如,继续参考图1,其中,两个传输单元102之间进行连接,那么这两个传输单元102之间能够互相分享当前的数据发送功率、数据接收功率等。
在一种可能的实现方式中,控制单元101确定该多个传输单元102分别对应的频带,指示各传输单元102基于相应的蓝牙通信链路,在对应的频带上进行数据传输,这样能够有效降低多个传输单元102在进行数据传输时,相互之间的干扰程度,提高数据传输的成功率。可选地,控制单元101在接收到数据发送指令的情况下,执行该步骤。其中,控制单元101在ISM(Industrial Scientific Medical,工业、科学、医疗)频段内确定传输单元102对应的频带。其中,ISM频段包括2402MHz~2480MHz。
可选地,对于该多个传输单元102中的任一传输单元102,控制单元101基于AFH(Adaptive Frequency Hopping,自适应跳频)算法确定该传输单元102对应的频带,也即是,该传输单元102所建立的蓝牙通信链路在进行数据传输时所使用的频带。可选地,多个传输单元102对应的AFH算法之间是独立的,也即是,对于任一传输单元102,控制单元101在不考虑其他传输单元102对应的频带的情况下,确定该传输单元102对应的频带。可选地,多个传输单元102对应的AFH算法之间是协同的,也即是,控制单元101在确定出任一传输单元102对应的频带的情况下,从该频带之外的其他频带中,确定另一传输单元102对应的频带,以此类推,直至确定出每个传输单元102对应的频带。可选地,多个传输单元102对应的AFH算法是相同的,也即是,控制单元101在确定出任一传输单元102对应的频带的情况下,将该频带作为其他传输单元102对应的频带。上述AFH算法仅是示例性说明,在其他实施例中,还能够采用其他跳频算法,本申请实施例对此不做限制。
可选地,控制单元101在确定出多个传输单元102分别对应的频带后,向各传输单元102分别发送对应的频带,各传输单元102接收对应的频带,基于所建立的蓝牙通信链路,在对应的频带上与相应的蓝牙通信设备进行数据传输。也即是,通过频分复用的方式进行数据传输。
在一种可能的实现方式中,该控制单元101在确定出多个传输单元102分别对应的频带后,指示具有频带间隔的两个不同频带对应的传输单元102以异步模式来发送数据,这样无需对齐这两个不同频带对应的传输单元102的数据发送时刻,降低了数据传输的复杂度。
可选地,控制单元101确定每两个频带之间的频带间隔,在任一频带间隔满足间隔条件的情况下,指示具有该频带间隔的两个频带对应的传输单元102以异步模式来发送数据,其中,该异步模式为该两个频带对应的传输单元102的数据发送时刻各自独立的模式。其中,频带间隔满足间隔条件表示该频带间隔较大。可选地,该间隔条件为频带间隔大于或者等于参考间隔。根据需要该参考间隔能够设置为任意数值,本申请实施例对此不做限制。
可选地,以异步模式发送数据的传输单元102包括第一传输单元和第二传输单元,控制单元101指示第一传输单元和第二传输单元以异步模式来发送数据的实现方式为:控制单元101分别确定第一传输单元对应的数据发送时刻和第二传输单元对应的数据发送时刻,且第一传输单元对应的数据发送时刻和第二传输单元对应的数据发送时刻相同或者不相同。第一传输单元和第二传输单元在接收到对应的数据发送时刻后,在对应的数据发送时刻发送数据。
在本申请实施例中,两个频带之间的频带间隔满足间隔条件,说明这两个频带之间的频带间隔较大,在这两个频带上进行数据传输,这两个频带之间干扰程度较小,这种情况下控制这两个频带对应的传输单元102以异步模式发送数据,则无需对齐两个传输单元102发送数据的时刻,在保证了数据传输质量的前提下,降低了数据传输的复杂度。
在另一种可能的实现方式中,该控制单元101在确定出多个传输单元102分别对应的频带后,指示具有频带间隔的两个不同频带对应的传输单元102以同步模式来发送数据,这样在两个传输单元102对应的频带之间的频带间隔较小的情况下,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
可选地,控制单元101确定每两个频带之间的频带间隔,在任一频带间隔不满足间隔条件的情况下,指示具有该频带间隔的两个频带对应的传输单元102以同步模式来发送数据,其中,该同步模式为该两个频带对应的传输单元102的数据发送时刻相同的模式。其中,频带间隔不满足间隔条件表示频带间隔较小。
可选地,控制单元101控制这两个频带对应的传输单元102以同步模式发送数据的实现方式为:控制单元101确定数据发送时刻,然后向该两个频带对应的传输单元102分别发送该数据发送时刻,任一传输 单元102接收到该数据发送时刻后,在该数据发送时刻发送数据。
需要说明的一点是,由于数据发送功率远大于数据接收功率,如果两个频带之间的频带间隔较小,且两个频带对应的传输单元102的数据发送时刻不同,那么在其中一个传输单元102已将数据发送至对应的蓝牙通信设备,该蓝牙通信设备正在发送应答数据时,如果另一传输单元102对应的蓝牙通信设备正在接收数据,那么该蓝牙通信设备受到另一蓝牙通信设备的数据发送功率的影响,会无法接收数据或者错误接收数据,因此,在本申请实施例中,在两个频带之间的频带间隔不满足间隔条件的情况下,控制该两个频带对应的传输单元102以同步模式发送数据,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
上述传输单元102对应的数据发送模式的确定方式仅是示例性说明,在其他实施例中还能够通过其他方式确定传输单元102对应的数据发送模式,例如,控制单元101指示对应的频带相同的传输单元102以同步模式来发送数据。
在一种可能的实现方式中,控制单元101在第一蓝牙通信链路上使用第一跳频算法,并在第二蓝牙通信链路上使用第二跳频算法,第一跳频算法与第二跳频算法共同作用以使得:第一蓝牙通信链路对应的第一频带与第二蓝牙通信链路对应的第二频带保持频带间隔。其中,第一蓝牙通信链路和第二蓝牙通信链路是两个不同的传输单元102分别建立的蓝牙通信链路。第一蓝牙通信链路对应的第一频带即第一蓝牙通信链路在进行数据传输时所使用的频带。第二蓝牙通信链路对应的第二频带即第二蓝牙通信链路在进行数据传输时所使用的频带。第一跳频算法和第二跳频算法为任意跳频算法,本申请实施例对此不做限制。
在本申请实施例中,考虑到两个频带之间的频带间隔会影响两个频带上的数据的传输质量,因此,在第一蓝牙通信链路上使用第一跳频算法,并在第二蓝牙通信链路上使用第二跳频算法以使得第一蓝牙通信链路对应的第一频带与第二蓝牙通信链路对应的第二频带保持频带间隔,从而避免第一频带和第二频带之间的频带间隔变化影响第一蓝牙通信链路和第二蓝牙通信链路的数据传输质量。
在一种可能的实现方式中,以同步模式发送数据的传输单元102包括第一传输单元和第二传输单元,在连续发送数据的情况下,先发送完一帧数据的传输单元102要等待另一传输单元102发送完一帧数据后,再发送下一帧数据。也即是,控制单元101指示该第一传输单元和该第二传输单元分别在同一发送时刻发送数据,在该第一传输单元成功发送一帧数据的情况下,控制该第一传输单元停止发送数据,直至该第二传输单元成功发送一帧数据,指示该第一传输单元和该第二传输单元发送下一帧数据。
其中,传输单元102成功发送一帧数据是指传输单元102发送一帧数据后,接收到了该传输单元102对应的蓝牙通信设备返回的第一应答信号,该第一应答信号表示该蓝牙通信设备成功接收到这一帧数据。例如,第一应答信号为ACK(Acknowledgement,确认)信号。传输单元102在向对应的蓝牙通信设备发送一帧数据后,由于信道质量问题,该蓝牙通信设备可能未接收到这一帧数据,这种情况下,该蓝牙通信设备会向传输单元102返回第二应答信号,第二应答信号表示该蓝牙通信设备未接收到该一帧数据,这样情况下,传输单元102会向该蓝牙通信设备重新发送这一帧数据,直至接收到该蓝牙通信设备返回的第一应答信号,这表示传输单元102成功发送了一帧数据。例如,第二应答信号为NACK(Negative Acknowledgement)信号。还有一种情况是,传输单元102向对应的蓝牙通信设备发送一帧数据后,在预设时长内未接收到该蓝牙通信设备返回的应答信号,那么传输单元102重新向该蓝牙通信设备发送这一帧数据,以此类推,直到接收到该蓝牙通信设备返回的第一应答信号,这表示传输单元102成功发送了一帧数据。
在本申请实施例中,第一传输单元比第二传输单元优先成功发送一帧数据,极大可能是由于第二传输单元发生数据重传,这种情况下,指示第一传输单元等待第二传输单元成功发送一帧数据后再发送下一帧数据,能够避免该下一帧数据的发送对第二传输单元的数据重传造成干扰,从而提高数据发送的成功率。
可选地,蓝牙主机向控制单元101发送的数据发送指令中,携带第一传输单元对应的多帧数据以及第二传输单元对应的多帧数据,其中,一帧数据为传输单元102一次发送的数据,该一帧数据也能够称为一个数据包。第一传输单元对应的一帧数据与第二传输单元对应的一帧数据的长度相同或者不同,例如,第一传输单元对应的一帧数据的长度为2个字节,第二传输单元对应的一帧数据的长度为1个字节。另外任一传输单元102对应的多帧数据的长度相同或者不同,例如,第一传输单元对应的第一帧数据的长度为2个字节,对应的第二帧数据的长度为1个字节,本申请实施例对此不做限制。
本申请实施例提供的技术方案,在ISM频段干扰较小的情况下,对于配置了该通信芯片100的蓝牙通信设备,能够与至少两个蓝牙通信设备建立链路,并进行数据传输,且数据传输的成功率高。从配置了该通信芯片100的蓝牙通信设备的角度讲,该蓝牙通信设备自身的数据吞吐率实现了倍增,也就是说,实现了基于蓝牙通信链路的大数据量通信,例如视频、图片和高保真音频传输。可选地,配置了该通信芯片100的蓝牙通信设备为低功耗蓝牙通信设备。
本申请实施例提供的技术方案中,通信芯片100包括多个传输单元102,那么该通信芯片100能够基 于该多个传输单元102,与多个蓝牙通信设备分别建立蓝牙通信链路,并且通过所建立的多个蓝牙通信链路分别与多个蓝牙通信设备进行数据传输,也即是,实现了多链路通信,因此极大提高了数据传输的效率。
在本申请实施例中,控制单元101确定多个传输单元102分别对应的频带,指示各传输单元102基于所建立的蓝牙通信链路,在对应的频带上进行数据传输,能够有效降低多个传输单元102在进行数据传输时,相互之间的干扰程度,提高数据传输的成功率。
在本申请实施例中,该控制单元101在确定出多个传输单元102分别对应的频带后,指示具有频带间隔的两个不同频带对应的传输单元102以异步模式来发送数据,这样无需对齐这两个不同频带对应的传输单元102的数据发送时刻,降低了数据传输的复杂度。
在本申请实施例中,该控制单元101在确定出多个传输单元102分别对应的频带后,指示具有频带间隔的两个不同频带对应的传输单元102以同步模式来发送数据,这样在两个传输单元对应的频带之间的频带间隔较小的情况下,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
在本申请实施例中,考虑到两个频带之间的频带间隔会影响两个频带上的数据的传输质量,因此,在第一蓝牙通信链路上使用第一跳频算法,并在第二蓝牙通信链路上使用第二跳频算法以使得第一蓝牙通信链路对应的第一频带与第二蓝牙通信链路对应的第二频带保持频带间隔,从而避免第一频带和第二频带之间的频带间隔变化影响第一蓝牙通信链路和第二蓝牙通信链路的数据传输质量。
在本申请实施例中,第一传输单元比第二传输单元优先成功发送一帧数据,极大可能是由于第二传输单元发生数据重传,这种情况下,指示第一传输单元等待第二传输单元成功发送一帧数据后再发送下一帧数据,能够避免该下一帧数据的发送对第二传输单元的数据重传造成干扰,从而提高数据发送的成功率。
图2是本申请实施例提供的一种蓝牙通信设备200的示意图。参考图2,该蓝牙通信设备200包括蓝牙主机201和通信芯片,该通信芯片包括控制单元202和多个传输单元203(图2中以两个传输单元203为例)。其中,蓝牙主机201和通信芯片中的控制单元202连接,控制单元202分别和多个传输单元203中的每个传输单元203连接。该通信芯片即图1所示的通信芯片。
控制单元202在接收到来自于该蓝牙主机201的连接指令的情况下,控制该多个传输单元203分别与对应的蓝牙通信设备建立蓝牙通信链路。然后各传输单元203基于相应的蓝牙通信链路与对应的蓝牙通信设备进行数据传输。具体实现方式请参考上述图1所示的实施例,此处不再赘述。
图3是本申请实施例提供的一种数据传输方法的示意图。该数据传输方法由蓝牙通信设备执行,该蓝牙通信设备包括蓝牙主机和通信芯片,通信芯片包括控制单元和多个传输单元。参考图3,该方法包括:
301、蓝牙通信设备通过控制单元在接收到来自于蓝牙主机的连接指令的情况下,控制多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路。
302、蓝牙通信设备通过各传输单元基于相应的蓝牙通信链路与对应的蓝牙通信设备进行数据传输。
步骤301-302的实现方式请参考上述图1所示的实施例,此处不再赘述。
图4是本申请实施例提供的一种通信芯片400的示意图。参考图4,该通信芯片400包括多个蓝牙内核401(图4中以两个蓝牙内核401为例),各该蓝牙内核401包括第一控制单元402和传输单元403,该第一控制单元402与该传输单元403连接。可选地,任意两个蓝牙内核401之间连接,例如图4中的两个蓝牙内核401连接。
其中,第一控制单元402在接收到来自于蓝牙主机的连接指令的情况下,控制同一蓝牙内核中的传输单元403与对应的蓝牙通信设备建立蓝牙通信链路。然后该传输单元403基于相应的蓝牙通信链路与对应的蓝牙通信设备进行数据传输。
其中,蓝牙主机用于分别向至少两个第一控制单元402下发连接指令,接收到该连接指令的第一控制单元402,基于该连接指令控制同一蓝牙内核中的传输单元403与对应的蓝牙通信设备建立蓝牙通信链路。可选地,蓝牙主机向任一第一控制单元402发送的连接指令包括一个蓝牙通信设备的连接信息,相应的,接收到连接指令的第一控制单元402基于连接指令中的连接信息,控制同一蓝牙内核中的传输单元403与一个蓝牙通信设备建立蓝牙通信链路。例如,接收到连接指令的第一控制单元402基于连接指令中的连接信息,控制该传输单元403向一个蓝牙通信设备发送连接请求,该蓝牙通信设备在接收到该连接请求的情况下,与该传输单元403建立蓝牙通信链路。
在该至少两个第一控制单元402对应的传输单元403分别与一个蓝牙通信设备建立蓝牙通信链路之后,该通信芯片400能够基于所建立的至少两个蓝牙通信链路,同时与至少两个蓝牙通信设备进行数据传输。例如,蓝牙主机同时向至少两个第一控制单元402发送数据发送指令,数据发送指令携带待发送的数据, 相应的,接收到该数据发送指令的第一控制单元402,将该数据发送指令所携带的数据转发给同一蓝牙内核中的传输单元403,该传输单元403基于相应的蓝牙通信链路向对应的蓝牙通信设备发送所接收的数据。又如,任一传输单元403在接收到蓝牙通信设备发送的数据的情况下,向同一蓝牙内核中的第一控制单元402发送该数据,该第一控制单元402将该数据转发给蓝牙主机,以使蓝牙主机对该数据进行处理。
可选地,通信芯片400中相连的两个蓝牙内核401内的第一控制单元402之间相互连接,便于这两个蓝牙内核401中的第一控制单元402之间进行数据交互。可选地,通信芯片400中相连的两个蓝牙内核401内的传输单元403之间相互连接,便于这两个蓝牙内核401中的传输单元403之间进行数据交互。
在一种可能的实现方式中,第一控制单元402还确定同一蓝牙内核中的传输单元403对应的频带,指示该传输单元403基于相应的蓝牙通信链路,在该传输单元403对应的频带上进行数据传输,能够有效降低多个传输单元403在进行数据传输时,相互之间的干扰程度,提高数据传输的成功率。可选地,第一控制单元402在接收到来自于蓝牙主机的数据发送指令的情况下,执行该步骤。
可选地,各第一控制单元402基于AFH算法确定对应的传输单元403对应的频带,也即是,该传输单元403所建立的蓝牙通信链路在进行数据传输时所使用的频带。可选地,多个第一控制单元402使用的AFH算法之间是独立的,也即是,各第一控制单元402在不考虑其他控制单元所确定的频带的情况下,确定同一蓝牙内核中的传输单元403的频带。可选地,多个第一控制单元402对应的AFH算法之间是协同的,也即是,任一第一控制单元402在确定出对应的传输单元403的频带的情况下,向另一第一控制单元402发送已确定的频带,接收到该频带的第一控制单元402从该频带之外的其他频带中,确定同一蓝牙内核中的传输单元403的频带,然后,该第一控制单元402再向另一第一控制单元402发送已经确定的两个频带,接收到该频带的第一控制单元402从这两个频带之外的其他频带中,确定同一蓝牙内核中的传输单元403的频带,以此类推,直至每个第一控制单元402都确定出同一蓝牙内核中的传输单元403的频带。可选地,多个第一控制单元402中的每个第一控制单元402之间使用的AFH算法是相同的,也即是,任一第一控制单元402在确定出对应的传输单元403的频带的情况下,向其他第一控制单元402发送该频带,接收到该频带的第一控制单元402将该频带作为同一蓝牙内核中的传输单元403的频带。
可选地,各第一控制单元402将各传输单元403对应的频带分别发送至各传输单元403,然后各传输单元403基于相应的蓝牙通信链路,在对应的频带上进行数据传输。
在一种可能的实现方式中,参考图5,该通信芯片400还包括第二控制单元404,第二控制单元404分别与通信芯片400中的多个蓝牙内核401连接。可选地,该第二控制单元404分别与各蓝牙内核401中的第一控制单元402连接。
各第一控制单元402在确定频带后,向该第二控制单元404发送所确定的频带。该第二控制单元404基于接收的频带确定各传输单元403的数据发送模式,向各第一控制单元402分别发送各传输单元403的数据发送模式,然后各第一控制单元402指示各传输单元403以该数据发送模式发送数据。其中,对于任一传输单元403,第二控制单元404将该传输单元403的数据发送模式发送至与该传输单元403处于同一蓝牙内核的第一控制单元402。考虑到不同数据发送模式对于频带间隔的需求不同,因此第二控制单元404基于各传输单元403对应的频带确定各传输单元403的数据发送模式,向各第一控制单元402发送各传输单元403的数据发送模式,以使各第一控制单元402指示各传输单元403以该数据发送模式发送数据,能够提高数据发送的成功率。
可选地,第二控制单元404确定每两个频带之间的频带间隔,基于每两个频带之间的频带间隔,确定各传输单元403的数据发送模式。其中,数据发送模式包括异步模式和同步模式,该异步模式为各传输单元403的数据发送时刻各自独立的数据发送模式。同步模式为多个传输单元403的数据发送时刻相同的数据发送模式。
在本申请实施例中,考虑到不同数据发送模式对于频带间隔的需求不同,因此第二控制单元404通过基于每两个频带之间的频带间隔,确定各传输单元403的数据发送模式,向各第一控制单元402分别发送各传输单元403的数据发送模式,以使各第一控制单元402指示各传输单元403以该数据发送模式发送数据,能够提高数据发送的成功率。
在一种可能的实现方式中,该第二控制单元404确定具有频带间隔的两个不同频带对应的传输单元403的数据发送模式为异步模式,这样无需对齐这两个不同频带对应的传输单元403的数据发送时刻,降低了数据传输的复杂度。
可选地,第二控制单元404在任一频带间隔满足间隔条件的情况下,确定具有该频带间隔的两个频带对应的传输单元的数据发送模式为异步模式,该异步模式为这两个频带对应的传输单元403的数据发送时刻各自独立的模式。其中,频带间隔满足间隔条件表示该频带间隔较大。可选地,该间隔条件为频带间隔大于或者等于参考间隔。根据需要该参考间隔能够设置为任意数值,本申请实施例对此不做限制。
可选地,以异步模式发送数据的传输单元包括第一传输单元和第二传输单元,第一传输单元和第二传 输单元以异步模式发送数据的实现方式为:第三控制单元确定第一传输单元的数据发送时刻,向第一传输单元发送该数据发送时刻,第四控制单元确定第二传输单元的数据发送时刻,向第二传输单元发送该数据发送时刻,第一传输单元和第二传输单元分别在所接收的数据发送时发送数据,其中,第三控制单元是与第一传输单元处于同一蓝牙内核的第一控制单元,第四控制单元是与第二传输单元处于同一蓝牙内核的第一控制单元。
在本申请实施例中,任两个频带之间的频带间隔满足间隔条件,说明这两个频带之间的频带间隔较大,在这两个频带上进行数据传输,这两个频带之间干扰程度较小,这种情况下控制这两个频带对应的传输单元403以异步模式发送数据,则无需对齐两个传输单元403发送数据的时刻,在保证数据传输质量的前提下,降低数据传输的复杂度。
在一种可能的实现方式中,该第二控制单元404确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为同步模式,这样在两个传输单元403对应的频带之间的频带间隔较小的情况下,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
可选地,该第二控制单元404在任一频带间隔不满足间隔条件的情况下,确定具有该频带间隔的两个频带对应的传输单元403的数据发送模式为同步模式,该同步模式为这两个频带对应的传输单元的数据发送时刻相同的数据发送模式。其中,频带间隔不满足间隔条件表示频带间隔较小。
可选地,以同步模式发送数据的传输单元包括第一传输单元和第二传输单元,第一传输单元和第二传输单元以同步模式发送数据的实现方式为:第三控制单元确定目标发送时刻,向第四控制单元发送该目标发送时刻,或者第四控制单元确定目标发送时刻,向第三控制单元发送该目标发送时刻,第三控制单元向第一传输单元发送该目标发送时刻,第四控制单元向第二传输单元发送该目标发送时刻,然后第一传输单元和第二传输单元分别在该目标发送时刻发送数据。其中,第三控制单元是与第一传输单元处于同一蓝牙内核的第一控制单元,第四控制单元是与第二传输单元处于同一蓝牙内核的第一控制单元。
需要说明的一点是,由于数据发送功率远大于数据接收功率,如果两个频带之间的频带间隔较小,且两个频带对应的传输单元403的数据发送时刻不同,那么在其中一个传输单元403已将数据发送至对应的蓝牙通信设备,该蓝牙通信设备正在发送应答数据,且存在另一传输单元403对应的蓝牙通信设备正在接收数据的情况下,该蓝牙通信设备受到另一蓝牙通信设备的数据发送功率的影响,会无法接收数据或者错误接收数据,因此,在本申请实施例中,在两个频带之间的频带间隔不满足间隔条件的情况下,指示该两个频带对应的传输单元403以同步模式发送数据,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
上述传输单元403对应的数据发送模式的确定方式仅是示例性说明,在其他实施例中还能够通过其他方式确定传输单元403对应的数据发送模式,例如,第二控制单元404确定对应的频带相同的传输单元403的数据发送模式为同步模式。
在一种可能的实现方式中,第三控制单元在第一蓝牙通信链路上使用第一跳频算法,第四控制单元在第二蓝牙通信链路上使用第二跳频算法,第一跳频算法与第二跳频算法共同作用以使得第一蓝牙通信链路对应的第一频带与第二蓝牙通信链路对应的第二频带保持频带间隔。其中,第一蓝牙通信链路和第二蓝牙通信链路是两个不同的传输单元403分别建立的蓝牙通信链路。第三控制单元和第四控制单元为通信芯片中的任一第一控制单元。例如,第三控制单元和第四控制单元分别是与这两个不同的传输单元403处于同一蓝牙内核的第一控制单元。第一蓝牙通信链路对应的第一频带即第一蓝牙通信链路在进行数据传输时所使用的频带。第二蓝牙通信链路对应的第二频带即第二蓝牙通信链路在进行数据传输时所使用的频带。第一跳频算法和第二跳频算法为任意跳频算法,本申请实施例对此不做限制。
在本申请实施例中,考虑到两个频带之间的频带间隔会影响两个频带上的数据的传输质量,因此,在第一蓝牙通信链路上使用第一跳频算法,并在第二蓝牙通信链路上使用第二跳频算法以使得第一蓝牙通信链路对应的第一频带与第二蓝牙通信链路对应的第二频带保持频带间隔,从而避免第一频带和第二频带之间的频带间隔变化影响第一蓝牙通信链路和第二蓝牙通信链路的数据传输质量。
在一种可能的实现方式中,以同步模式发送数据的传输单元403包括第一传输单元和第二传输单元,在连续发送数据的情况下,第一传输单元和第二传输单元中,先发送完一帧数据的传输单元403要等待另一传输单元403发送完一帧数据后,再发送下一帧数据。以第一传输单元优先成功发送一帧数据为例,第三控制单元指示第一传输单元在目标发送时刻发送一帧数据,该第三控制单元是与第一传输单元处于同一蓝牙内核的第一控制单元。第四控制单元指示第二传输单元在目标发送时刻发送一帧数据,该第四控制单元是与第二传输单元处于同一蓝牙内核的第一控制单元。该第三控制单元在该第一传输单元成功发送一帧数据的情况下,向该第四控制单元发送成功通知,并且指示该第一传输单元停止发送数据。该第四控制单元接收该成功通知,在该第二传输单元成功发送一帧数据的情况下,向该第三控制单元发送该成功通知,以及指示该第二传输单元发送下一帧数据。该第三控制单元在接收到来自于该第四控制单元的该成功通知 的情况下,指示该第一传输单元发送下一帧数据。
可选地,蓝牙主机向各第一控制单元402发送的数据发送指令中,携带多帧数据。各第一控制单元402将该多帧数据转发至同一蓝牙内核中的传输单元403。
其中,传输单元403成功发送一帧数据是指传输单元403发送一帧数据后,接收到该传输单元403对应的蓝牙通信设备返回的第一应答信号,该第一应答信号表示该蓝牙通信设备成功接收到这一帧数据。
在本申请实施例中,第一传输单元比第二传输单元优先成功发送一帧数据,极大可能是由于第二传输单元发生数据重传,这种情况下,指示第一传输单元等待第二传输单元成功发送一帧数据后再发送下一帧数据,能够避免该下一帧数据的发送对第二传输单元的数据重传造成干扰,从而提高数据发送的成功率。
本申请实施例提供的技术方案中,通信芯片400包括多个蓝牙内核401,各蓝牙内核401包括第一控制单元402和传输单元403,那么该通信芯片400能够基于各第一控制单元402分别控制各传输单元403与一个蓝牙通信设备建立蓝牙通信链路,并且通过所建立的多个蓝牙通信链路分别与多个蓝牙通信设备进行数据传输,也即是,实现了多链路通信,因此极大提高了数据传输的效率。
在本申请实施例中,第一控制单元402还确定同一蓝牙内核中的传输单元403的频带,指示该传输单元403基于相应的蓝牙通信链路,在该传输单元403对应的频带上进行数据传输,能够有效降低多个传输单元403在进行数据传输时,相互之间的干扰程度,提高数据传输的成功率。
在本申请实施例中,考虑到不同数据发送模式对于频带间隔的需求不同,因此第二控制单元404基于各传输单元403对应的频带,确定各传输单元403的数据发送模式,向各第一控制单元402发送各传输单元403的数据发送模式,以使各第一控制单元402控制各传输单元403以该数据发送模式发送数据,能够提高数据发送的成功率。
在本申请实施例中,第二控制单元404确定具有频带间隔的两个不同频带对应的传输单元403的数据发送模式为异步模式,这样在发送数据时无需对齐这两个不同频带对应的传输单元403的数据发送时刻,降低了数据传输的复杂度。
在本申请实施例中,该第二控制单元404确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为同步模式,这样在两个传输单元403对应的频带之间的频带间隔较小的情况下,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
在本申请实施例中,第一传输单元比第二传输单元优先成功发送一帧数据,极大可能是由于第二传输单元发生数据重传,这种情况下,指示第一传输单元等待第二传输单元成功发送一帧数据后再发送下一帧数据,能够避免该下一帧数据的发送对第二传输单元的数据重传造成干扰,从而提高数据发送的成功率。
图6是本申请实施例提供的一种蓝牙通信设备600的示意图。参考图6,该蓝牙通信设备600包括蓝牙主机601和通信芯片,该通信芯片包括多个蓝牙内核602(图6中以两个蓝牙内核602为例),各蓝牙内核602包括第一控制单元和传输单元,该第一控制单元与该传输单元连接。可选地,任意两个蓝牙内核602之间连接,例如图6中的两个蓝牙内核602连接。
其中,第一控制单元响应于来自于该蓝牙主机601的连接指令,控制同一蓝牙内核中的传输单元与对应的蓝牙通信设备建立蓝牙通信链路。然后该传输单元基于相应的蓝牙通信链路与对应的蓝牙通信设备进行数据传输。具体实现方式请参考上述图4和图5所示的实施例,此处不再赘述。
在一种可能的实现方式中,参考图7,该蓝牙通信设备600还包括第二控制单元603,第二控制单元603分别与蓝牙主机601和多个蓝牙内核602连接。该第二控制单元603用于确定各传输单元的数据发送模式。具体实现方式请参考上述图4和图5所示的实施例,此处不再赘述。
图8是本申请实施例提供的一种数据传输方法的示意图。该方法由蓝牙通信设备执行,该蓝牙通信设备包括蓝牙主机和通信芯片,该通信芯片包括多个蓝牙内核,各蓝牙内核包括第一控制单元和传输单元。参考图8,该方法包括:
801、蓝牙通信设备通过第一控制单元响应于来自于蓝牙主机的连接指令,控制同一蓝牙内核中的传输单元与对应的蓝牙通信设备建立蓝牙通信链路。
802、蓝牙通信设备通过传输单元基于相应的蓝牙通信链路与对应的蓝牙通信设备进行数据传输。
步骤801-802的实现方式请参考上述图4和图5所示的实施例,此处不再赘述。
图9是本申请实施例提供的一种蓝牙通信设备900的示意图。参考图9,该蓝牙通信设备900包括蓝牙主机901和蓝牙主机901连接的多个通信芯片902,各通信芯片902包括第一控制单元和传输单元,第一控制单元与对应的传输单元连接。
各第一控制单元在接收到来自于该蓝牙主机901的连接指令的情况下,控制各传输单元与对应的蓝牙 通信设备建立蓝牙通信链路;任一第一控制单元确定各传输单元对应的频带后,将各传输单元对应的频带分别发送至各第一控制单元。然后,各第一控制单元指示各传输单元基于相应的蓝牙通信链路,在对应的频带上与对应的蓝牙通信设备进行数据传输。
其中,蓝牙主机901用于分别向各第一控制单元下发连接指令,接收到该连接指令的第一控制单元,基于该连接指令控制同一通信芯片中的传输单元与一个蓝牙通信设备建立蓝牙通信链路。可选地,蓝牙主机901向各第一控制单元发送的连接指令包括一个蓝牙通信设备的连接信息,相应的,接收到连接指令的第一控制单元基于连接指令中的连接信息,控制同一通信芯片中的传输单元与一个蓝牙通信设备建立蓝牙通信链路。可选的,接收到连接指令的第一控制单元基于连接指令中的连接信息,控制同一通信芯片中的传输单元向一个蓝牙通信设备发送连接请求,该蓝牙通信设备在接收到该连接请求的情况下,与该传输单元建立蓝牙通信链路。
可选地,蓝牙主机901中的任意两个通信芯片902的第一控制单元之间连接。例如,图9中,两个通信芯片902中的第一控制单元连接。可选地,该蓝牙通信设备900中的多个第一控制单元进行数据交互,以确定出用于确定各传输单元对应的频带的第一控制单元,其中,用于确定各传输单元对应的频带的第一控制单元为多个第一控制单元中的任一第一控制单元。
可选地,上述任一第一控制单元基于AFH算法确定各传输单元的频带,也即是,各传输单元所建立的蓝牙通信链路在进行数据传输时所使用的频带。可选地,各传输单元对应的AFH算法之间是独立的,也即是,对于任一传输单元,该第一控制单元在不考虑其他传输单元的频带的情况下,确定该传输单元的频带。可选地,各传输单元对应的AFH算法之间是协同的,也即是,该第一控制单元在确定出任一传输单元的频带的情况下,从该频带之外的其他频带中,确定另一传输单元的频带,以此类推,直至确定出各传输单元的频带。可选地,各传输单元对应的AFH算法之间是相同的,也即是,该第一控制单元在确定出任一传输单元的频带的情况下,将该频带也作为其他传输单元的频带。
在各传输单元分别与一个蓝牙通信设备建立蓝牙通信链路,且确定对应的频带之后,蓝牙通信设备900能够基于各通信芯片902中的传输单元所建立的蓝牙通信链路,同时与多个蓝牙通信设备进行数据传输。例如,蓝牙主机901同时向多个通信芯片902的第一控制单元发送数据发送指令,数据发送指令携带待发送的数据,相应的,接收到该数据发送指令的第一控制单元,将该数据发送指令所携带的数据转发给同一通信芯片中的传输单元,该传输单元基于相应的蓝牙通信链路,向对应的蓝牙通信设备发送所接收的数据。又如,任一传输单元在接收到所连接的蓝牙通信设备发送的数据的情况下,向同一通信芯片中的第一控制单元发送该数据,该第一控制单元将该数据转发给蓝牙主机901,以使蓝牙主机901对该数据进行处理。
在一种可能的实现方式中,各通信芯片还包括第二控制单元。任一第二控制单元接收来自于各第一控制单元的频带,基于接收的频带确定各传输单元的数据发送模式,向各第一控制单元分别发送各传输单元的数据发送模式,然后各第一控制单元指示各传输单元以该数据发送模式发送数据。其中,对于任一传输单元,第二控制单元将该传输单元的数据发送模式发送至与该传输单元处于同一通信芯片的第一控制单元。考虑到不同数据发送模式对于频带间隔的需求不同,因此第二控制单元基于各传输单元对应的频带确定各传输单元的数据发送模式,向各第一控制单元发送各传输单元的数据发送模式,以使各第一控制单元指示各传输单元以该数据发送模式发送数据,能够提高数据发送的成功率。
可选地,第二控制单元确定每两个频带之间的频带间隔,基于每两个频带之间的频带间隔,确定各传输单元的数据发送模式,向各第一控制单元分别发送各传输单元的数据发送模式;然后各第一控制单元指示各传输单元以该数据发送模式发送数据。其中,数据发送模式包括异步模式和同步模式,该异步模式为各传输单元的数据发送时刻各自独立的模式。同步模式为多个传输单元的数据发送时刻相同的模式。
可选地,蓝牙主机901中的任意两个通信芯片902的第二控制单元之间连接。例如,图9中,两个通信芯片902中的第二控制单元连接。可选地,该蓝牙通信设备900中的多个第二控制单元进行数据交互,以确定出用于确定各传输单元的数据发送模式的第二控制单元,其中,用于确定各传输单元的数据发送模式的第二控制单元为多个第二控制单元中的任一第二控制单元。可选地,各第一控制单元得到对应的传输单元的频带后,将该频带发送给同一通信芯片中的第二控制单元,由该第二控制单元将该频带转发给用于确定各传输单元的数据发送模式的第二控制单元。
可选地,上述任一第二控制单元确定出各传输单元的数据发送模式后,将各传输单元的数据发送模式分别至与各传输单元处于同一通信芯片的第二控制单元,由各第二控制单元将接收的数据发送模式转发给同一通信芯片中的第一控制单元。
在本申请实施例中,考虑到不同数据发送模式对于频带间隔的需求不同,因此第二控制单元通过基于每两个频带之间的频带间隔,确定各传输单元的数据发送模式,向各第一控制单元分别发送各传输单元的数据发送模式,以使各第一控制单元指示各传输单元以该数据发送模式发送数据,能够提高数据发送的成功率。
在一种可能的实现方式中,上述任一第二控制单元确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为异步模式,这样无需对齐这两个不同频带对应的传输单元的数据发送时刻,降低了数据传输的复杂度。
可选地,第二控制单元在任一频带间隔满足间隔条件的情况下,确定具有该频带间隔的两个频带对应的传输单元的数据发送模式为异步模式,异步模式为这两个传输单元的数据发送时刻各自独立的模式。其中,频带间隔满足间隔条件表示该频带间隔较大。可选地,该间隔条件为频带间隔大于或者等于参考间隔。根据需要该参考间隔能够设置为任意数值,本申请实施例对此不做限制。
可选地,以异步模式发送数据的传输单元包括第一传输单元和第二传输单元,第一传输单元和第二传输单元以异步模式发送数据的实现方式为:第三控制单元确定第一传输单元的数据发送时刻,向第一传输单元发送该数据发送时刻,第四控制单元确定第二传输单元的数据发送时刻,向第二传输单元发送该数据发送时刻,第一传输单元和第二传输单元分别在所接收的数据发送时发送数据,其中,第三控制单元是与第一传输单元处于同一通信芯片的第一控制单元,第四控制单元是与第二传输单元处于同一通信芯片的第一控制单元。
在本申请实施例中,任两个频带之间的频带间隔满足间隔条件,说明这两个频带之间的频带间隔较大,在这两个频带上进行数据传输,这两个频带之间干扰程度较小,这种情况下控制这两个频带对应的传输单元以异步模式发送数据,则无需对齐两个传输单元发送数据的时刻,在保证了数据传输质量的前提下,降低了数据传输的复杂度。
在一种可能的实现方式中,上述任一第二控制单元确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为同步模式,在两个传输单元对应的频带之间的频带间隔较小的情况下,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
可选地,该第二控制单元在任一频带间隔不满足间隔条件的情况下,确定具有该频带间隔的两个频带对应的传输单元的数据发送模式为同步模式,该同步模式为这两个传输单元的数据发送时刻相同的模式。其中,频带间隔不满足间隔条件表示频带间隔较小。
可选地,以同步模式发送数据的传输单元包括第一传输单元和第二传输单元,第一传输单元和第二传输单元以同步模式发送数据的实现方式为:第三控制单元确定目标发送时刻,向第四控制单元发送该目标发送时刻,或者第四控制单元确定目标发送时刻,向第三控制单元发送该目标发送时刻,第三控制单元向第一传输单元发送该目标发送时刻,第四控制单元向第二传输单元发送该目标发送时刻,然后第一传输单元和第二传输单元分别在该目标发送时刻发送数据。其中,第三控制单元是与第一传输单元处于同一通信芯片的第一控制单元,第四控制单元是与第二传输单元处于同一通信芯片的第一控制单元。
需要说明的一点是,由于数据发送功率远大于数据接收功率,如果两个频带之间的频带间隔较小,且两个频带对应的传输单元的数据发送时刻不同,那么在其中一个传输单元已将数据发送至对应的蓝牙通信设备,该蓝牙通信设备正在发送应答数据,且存在另一传输单元对应的蓝牙通信设备正在接收数据的情况下,那么该蓝牙通信设备受到另一蓝牙通信设备的数据发送功率的影响,会无法接收数据或者错误接收数据,因此,在本申请实施例中,在两个频带之间的频带间隔不满足间隔条件的情况下,指示该两个频带对应的传输单元以同步模式发送数据,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
上述传输单元对应的数据发送模式的确定方式仅是示例性说明,在其他实施例中还能够通过其他方式确定传输单元对应的数据发送模式,例如,第二控制单元确定对应的频带相同的传输单元的数据发送模式为同步模式。
在一种可能的实现方式中,第三控制单元在第一蓝牙通信链路上使用第一跳频算法,第四控制单元在第二蓝牙通信链路上使用第二跳频算法,第一跳频算法与第二跳频算法共同作用以使得:第一蓝牙通信链路对应的第一频带与第二蓝牙通信链路对应的第二频带保持频带间隔。其中,第一蓝牙通信链路和第二蓝牙通信链路是两个不同的传输单元分别建立的蓝牙通信链路。第三控制单元和第四控制单元为蓝牙通信设备中的任一第一控制单元。例如,第三控制单元和第四控制单元分别是与这两个不同的传输单元处于同一通信芯片的第一控制单元。第一蓝牙通信链路对应的第一频带即第一蓝牙通信链路在进行数据传输时所使用的频带。第二蓝牙通信链路对应的第二频带即第二蓝牙通信链路在进行数据传输时所使用的频带。第一跳频算法和第二跳频算法为任意跳频算法,本申请实施例对此不做限制。
在本申请实施例中,考虑到两个频带之间的频带间隔会影响两个频带上的数据的传输质量,因此,在第一蓝牙通信链路上使用第一跳频算法,并在第二蓝牙通信链路上使用第二跳频算法以使得第一蓝牙通信链路对应的第一频带与第二蓝牙通信链路对应的第二频带保持频带间隔,从而避免第一频带和第二频带之间的频带间隔变化影响第一蓝牙通信链路和第二蓝牙通信链路的数据传输质量。
在一种可能的实现方式中,以同步模式发送数据的传输单元包括第一传输单元和第二传输单元,在连 续发送数据的情况下,第一传输单元和第二传输单元中,先发送完一帧数据的传输单元要等待另一传输单元发送完一帧数据后,再发送下一帧数据。以第一传输单元优先成功发送一帧数据为例,第三控制单元指示第一传输单元在目标发送时刻发送一帧数据,该第三控制单元是与第一传输单元处于同一通信芯片的第一控制单元。第四控制单元指示第二传输单元在目标发送时刻发送一帧数据,该第四控制单元是与第二传输单元处于同一通信芯片的第一控制单元;第三控制单元在第一传输单元成功发送一帧数据的情况下,向第四控制单元发送成功通知,并且指示第一传输单元停止发送数据;第四控制单元接收该成功通知,在第二传输单元成功发送一帧数据的情况下,向第三控制单元发送该成功通知,以及指示第二传输单元发送下一帧数据;该第三控制单元在接收到来自于第四控制单元的成功通知的情况下,指示第一传输单元发送下一帧数据。
可选地,蓝牙主机901向各通信芯片902的第一控制单元发送的数据发送指令中,携带多帧数据。各第一控制单元将该多帧数据转发至同一通信芯片中的传输单元。
其中,传输单元成功发送一帧数据是指传输单元发送一帧数据后,接收到了该传输单元对应的蓝牙通信设备返回的第一应答信号,该第一应答信号表示该蓝牙通信设备成功接收到这一帧数据。
在本申请实施例中,第一传输单元比第二传输单元优先成功发送一帧数据,极大可能是由于第二传输单元发生数据重传,这种情况下,指示第一传输单元等待第二传输单元成功发送一帧数据后再发送下一帧数据,能够避免该下一帧数据的发送对第二传输单元的数据重传造成干扰,从而提高数据发送的成功率。
本申请实施例提供的技术方案中,蓝牙通信设备900包括多个通信芯片902,各通信芯片902包括第一控制单元和传输单元,那么该蓝牙通信设备900能够基于各通信芯片902中的第一控制单元分别指示各传输单元与一个蓝牙通信设备建立蓝牙通信链路,并且通过所建立的多个蓝牙通信链路分别与多个蓝牙通信设备进行数据传输,也即是,实现了多链路通信,因此极大提高了数据传输的效率。并且确定各传输单元对应的频带,指示各传输单元基于相应的蓝牙通信链路,在对应的频带上与对应的蓝牙通信设备进行数据传输,能够有效降低多个传输单元在进行数据传输时,相互之间的干扰程度,提高数据传输的成功率。
在本申请实施例中,考虑到不同数据发送模式对于频带间隔的需求不同,因此第二控制单元通过基于各传输单元对应的频带,确定各传输单元的数据发送模式,向各第一控制单元发送各传输单元的数据发送模式,以使第一控制单元指示各传输单元以该数据发送模式发送数据,能够提高数据发送的成功率。
在本申请实施例中,第二控制单元确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为异步模式,这样在发送数据时无需对齐这两个不同频带对应的传输单元的数据发送时刻,降低了数据传输的复杂度。
在本申请实施例中,该第二控制单元确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为同步模式,这样在两个传输单元对应的频带之间的频带间隔较小的情况下,能够有效降低在这两个频带上进行数据传输时,两个频带之间的干扰程度,提高数据传输的成功率。
在本申请实施例中,第一传输单元比第二传输单元优先成功发送一帧数据,极大可能是由于第二传输单元发生数据重传,这种情况下,指示第一传输单元等待第二传输单元成功发送一帧数据后再发送下一帧数据,能够避免该下一帧数据的发送对第二传输单元的数据重传造成干扰,从而提高数据发送的成功率。
图10是本申请实施例提供的一种多链路数据传输过程的示意图。参考图10,主设备包括多个通信芯片,其中通信芯片1与从设备1中的通信芯片之间建立了链路1,通信芯片2与从设备2中的通信芯片之间建立了链路2。主设备能够基于链路1和链路2分别向从设备1和从设备2发送数据。主设备向从设备1发送的数据与向从设备2发送的数据的长度是相同的,并且数据的发送时刻也相同。从设备1和从设备2在接收到数据后,在满足帧间隔的时间条件下,分别向主设备返回了第一应答信号,表示成功接收到数据。其中,主设备是指主动发起连接的蓝牙通信设备,从设备是指接受连接的蓝牙通信设备。
图11是本申请实施例提供的另一种多链路数据传输过程的示意图。参考图11,主设备包括多个通信芯片,其中通信芯片1与从设备1中的通信芯片之间建立了链路1,通信芯片2与从设备2中的通信芯片之间建立了链路2。主设备能够基于链路1和链路2分别向从设备1和从设备2发送数据。主设备向从设备1发送的第一帧数据与向从设备2发送的第一帧数据的长度不相同,但数据的发送时刻相同。从设备1和从设备2在接收到第一帧数据后,在满足帧间隔的时间条件下,分别向主设备返回了第一应答信号,表示成功接收到数据。然后,主设备又在另一发送时刻,同时向从设备1和从设备2发送了第二帧数据,且向从设备1发送的第二帧数据与向从设备2发送的第二帧数据的长度相同。
图12是本申请实施例提供的再一种多链路数据传输过程的示意图。参考图12,主设备包括多个通信芯片,其中通信芯片1与从设备1中的通信芯片之间建立了链路1,通信芯片2与从设备2中的通信芯片之间建立了链路2。主设备能够基于链路1和链路2分别向从设备1和从设备2发送数据。主设备向从设备1发送的数据与向从设备2发送的数据的长度相同,且数据的发送时刻相同。从设备2在接收到数据后,在满足帧间隔的时间条件下,向主设备返回了第一应答信号,表示成功接收到数据。从设备1未接收到数 据,因此向主设备返回了第二应答信号,表示未接收到数据。在满足帧间隔的时间条件下,向主设备返回了第一应答信号,表示成功接收到数据。然后,主设备重新向从设备1发送数据,然后接收到了从设备1返回的第一应答信号,表示从设备本次成功接收到数据。其中,在主设备向从设备1重发数据的过程中,主设备停止向从设备2发送数据,以避免对数据重发造成干扰。
图13是本申请实施例提供的一种多链路数据传输过程的示意图。参考图13,主设备包括多个通信芯片,其中通信芯片1与从设备1中的通信芯片之间建立了链路1,通信芯片2与从设备2中的通信芯片之间建立了链路2。主设备能够基于链路1和链路2分别向从设备1和从设备2发送数据。主设备向从设备1发送的数据与向从设备2发送的数据的长度是相同的,但数据的发送时刻是各自独立的,也即是,主设备每次向从设备1和从设备2发送数据的时刻无需相同。从设备1和从设备2每次接收到数据后,在满足帧间隔的时间条件下,分别向主设备返回第一应答信号,表示本次成功接收到数据。
图14是本申请实施例提供的一种数据传输方法的示意图。该方法由蓝牙通信设备执行,该蓝牙通信设备包括蓝牙主机和该蓝牙主机连接的多个通信芯片,各通信芯片包括第一控制单元和传输单元;该方法包括:
1401、蓝牙通信设备通过各第一控制单元在接收到来自于蓝牙主机的连接指令的情况下,控制各传输单元与对应的蓝牙通信设备建立蓝牙通信链路。
1402、蓝牙通信设备通过任一第一控制单元确定各传输单元对应的频带,将各传输单元对应的频带分别发送至各第一控制单元。
1403、蓝牙通信设备通过各第一控制单元指示各传输单元基于相应的蓝牙通信链路,在对应的频带上进行数据传输。
步骤1401-1403的实现方式请参考上述图9所示的实施例,此处不再赘述。
图15是本申请实施例提供的一种蓝牙通信设备150的示意图。该蓝牙通信设备150包括多个蓝牙主机151(图15以两个蓝牙主机151为例)以及该多个蓝牙主机151分别连接的通信芯片152,各通信芯片152包括第一控制单元和传输单元,且该第一控制单元与该传输单元连接。
各第一控制单元在接收到来自于所连接的蓝牙主机151的连接指令的情况下,控制各传输单元与对应的蓝牙通信设备建立蓝牙通信链路。任一第一控制单元确定各传输单元的频带,将各传输单元的频带发送至各第一控制单元。然后各第一控制单元指示各传输单元基于相应的蓝牙通信链路,在对应的频带上与对应的蓝牙通信设备进行数据传输。
具体实现方式请参考上述图9所示的实施例,此处不再赘述。需要说明的一点是,图15所示的蓝牙通信设备150与图9所示的蓝牙通信设备900的不同点在于:由于图15所示的蓝牙通信设备150包括多个蓝牙主机151,因此各蓝牙主机151能够分别向所连接的通信芯片152发送指令,以及与所连接的通信芯片152进行数据交互。另外,在多个通信芯片152中的任意两个通信芯片152需要进行数据交互的情况下,这两个通信芯片152能够将需要交互的数据发送至所连接的蓝牙主机151,由所连接的蓝牙主机151将该数据转发给另一通信芯片152所连接的蓝牙主机151,再由该蓝牙主机151转发给所连接的通信芯片152。参考图15,上方的通信芯片152将需要发送给下方的通信芯片152的数据发送给上方的蓝牙主机151,上方的蓝牙主机151将该数据转发给下方的蓝牙主机151,下方的蓝牙主机151将该数据转发给下方的通信芯片152。可选地,该蓝牙通信设备150中的多个通信芯片152之间连接。例如,上方的通信芯片152与下方的通信芯片152连接,那么上方的通信芯片152与下方的通信芯片152能够直接进行数据交互。可选地,上方的通信芯片152中的第一控制单元与下方的通信芯片152中的第一控制单元连接。可选地,在上方的通信芯片152和下方的通信芯片152都包括第二控制单元的情况下,上方的通信芯片152中的第二控制单元能够与下方的通信芯片152中的第二控制单元连接。其中,在各通信芯片152包括第二控制单元的情况下,各通信芯片152中的第一控制单元和第二控制单元连接。
本申请实施例提供的技术方案中,蓝牙通信设备150包括多个蓝牙主机151和各蓝牙主机151分别连接的通信芯片152,且各通信芯片152包括第一控制单元和传输单元,那么该蓝牙通信设备150能够基于各蓝牙主机151指示各通信芯片152中的第一控制单元控制传输单元与对应的蓝牙通信设备建立蓝牙通信链路,并且通过所建立的多个蓝牙通信链路分别与多个蓝牙通信设备进行数据传输,也即是,实现了多链路通信,因此极大提高了数据传输的效率。并且确定各传输单元的频带,指示各传输单元基于相应的蓝牙通信链路,在对应的频带上与对应的蓝牙通信设备进行数据传输,能够有效降低多个传输单元在进行数据传输时,相互之间的干扰程度,提高数据传输的成功率。
图16是本申请实施例提供的一种数据传输方法的示意图。该方法由蓝牙通信设备执行,该蓝牙通信 设备包括多个蓝牙主机以及该多个蓝牙主机分别连接的通信芯片,各通信芯片包括第一控制单元和传输单元;该方法包括:
1601、蓝牙通信设备通过各第一控制单元在接收到来自于所连接的蓝牙主机的连接指令的情况下,控制各传输单元与对应的蓝牙通信设备建立蓝牙通信链路。
1602、蓝牙通信设备通过任一第一控制单元确定各传输单元对应的频带,将各传输单元对应的频带分别发送至各第一控制单元。
1603、蓝牙通信设备通过各第一控制单元指示各传输单元基于相应的蓝牙通信链路,在对应的频带上进行数据传输。
步骤1601-1603的实现方式请参考上述图9和图15所示的实施例,此处不再赘述。
需要说明的一点是,上述蓝牙通信设备之间或者通信芯片之间传输的数据能够为任意数据,例如图像数据、音频数据、视频数据、控制数据等。并且这些数据均是用户已经授权的,例如,蓝牙通信设备显示弹窗,弹窗中包括待发送的数据,用户执行确定操作后,蓝牙通信设备才向对端蓝牙通信设备发送该数据。上述蓝牙通信设备能够为任意设备,例如,手机、电脑、车载终端、音箱、计算机、手表、家用电器等,本申请实施例对此不做限制。
本申请提供的多个实施例能够以任意方式结合,本申请实施例对此不做限制。
本申请实施例提供的方案能够应用在播放音乐的场景。例如,用户在手机上执行连接操作,控制手机(主设备)通过本申请实施例提供的方案,分别与耳机(从设备)和音箱(从设备)建立蓝牙通信链路,手机基于所建立的两个蓝牙通信链路分别向耳机和音箱发送用户选中的音乐,那么该耳机和该音箱能够同时播放该音乐。
本申请实施例提供的方案还能够应用在控制家电的场景。例如,用户在手机上执行连接操作,控制手机(主设备)通过本申请实施例提供的方案,分别与电视(从设备)和洗衣机(从设备)建立蓝牙通信链路,手机基于与电视所建立的蓝牙通信链路向电视发送用户确定的控制指令,例如,视频切换指令,以控制电视切换当前播放的视频。手机基于与洗衣机所建立的蓝牙通信链路向电视发送用户确定的控制指令,例如,启动指令,以控制洗衣机启动。
本申请实施例还能够应用在其他场景,本申请实施例对此不做限制。

Claims (26)

  1. 一种通信芯片,所述通信芯片包括控制单元和多个传输单元;
    所述控制单元配置成:
    在接收到来自于蓝牙主机的连接指令的情况下,控制所述多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路;
    各所述传输单元配置成:
    基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
  2. 根据权利要求1所述的通信芯片,其中,
    所述控制单元还配置成:
    确定所述多个传输单元分别对应的频带;
    指示各所述传输单元基于相应的所述蓝牙通信链路,在对应的频带上进行数据传输。
  3. 根据权利要求2所述的通信芯片,其中,
    所述控制单元还配置成:
    指示具有频带间隔的两个不同频带对应的所述传输单元以异步模式来发送数据。
  4. 根据权利要求2所述的通信芯片,其中,
    所述控制单元还配置成:
    指示具有频带间隔的两个不同频带对应的所述传输单元以同步模式来发送数据。
  5. 根据权利要求3或4所述的通信芯片,其中,
    所述控制单元还配置成:
    在第一蓝牙通信链路上使用第一跳频算法,并在第二蓝牙通信链路上使用第二跳频算法;
    其中,所述第一跳频算法与所述第二跳频算法共同作用以使得:
    所述第一蓝牙通信链路对应的第一频带与所述第二蓝牙通信链路对应的第二频带保持所述频带间隔。
  6. 根据权利要求4所述的通信芯片,其中,以所述同步模式发送数据的传输单元包括第一传输单元和第二传输单元;
    所述控制单元还配置成:
    指示所述第一传输单元和所述第二传输单元分别在同一发送时刻发送数据,在所述第一传输单元成功发送一帧数据的情况下,指示所述第一传输单元停止发送数据,直至所述第二传输单元成功发送一帧数据,指示所述第一传输单元和所述第二传输单元发送下一帧数据。
  7. 一种蓝牙通信设备,包括蓝牙主机和通信芯片,所述通信芯片包括控制单元和多个传输单元;
    所述控制单元配置成:
    在接收到来自于所述蓝牙主机的连接指令的情况下,控制所述多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路;
    各所述传输单元配置成:
    基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
  8. 一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括蓝牙主机和通信芯片,所述通信芯片包括控制单元和多个传输单元;所述方法包括:
    所述控制单元在接收到来自于所述蓝牙主机的连接指令的情况下,控制所述多个传输单元分别与对应的蓝牙通信设备建立蓝牙通信链路;
    各所述传输单元基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
  9. 一种通信芯片,所述通信芯片包括多个蓝牙内核,各所述蓝牙内核包括第一控制单元和传输单元;
    所述第一控制单元配置成:
    在接收到来自于蓝牙主机的连接指令的情况下,控制同一蓝牙内核中的所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
    所述传输单元配置成:
    基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
  10. 根据权利要求9所述的通信芯片,其中,
    所述第一控制单元还配置成:
    确定所述传输单元对应的频带;
    指示所述传输单元基于相应的所述蓝牙通信链路,在对应的频带上进行数据传输。
  11. 根据权利要求10所述的通信芯片,其中,所述通信芯片还包括第二控制单元;
    各所述第一控制单元还配置成:
    向所述第二控制单元发送所确定的频带;
    所述第二控制单元配置成:
    基于接收的频带确定各所述传输单元的数据发送模式,向各所述第一控制单元分别发送各所述传输单元的数据发送模式;
    各所述第一控制单元还配置成:
    指示各所述传输单元以所述数据发送模式发送数据。
  12. 根据权利要求11所述的通信芯片,其中,
    所述第二控制单元配置成:
    确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为异步模式。
  13. 根据权利要求11所述的通信芯片,其中,
    所述第二控制单元配置成:
    确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为同步模式。
  14. 根据权利要求12或13所述的通信芯片,其中,
    第三控制单元配置成:
    在第一蓝牙通信链路上使用第一跳频算法;
    第四控制单元配置成:
    在第二蓝牙通信链路上使用第二跳频算法;
    其中,所述第三控制单元和所述第四控制单元为所述通信芯片中的任一第一控制单元,所述第一跳频算法与所述第二跳频算法共同作用以使得:
    所述第一蓝牙通信链路对应的第一频带与所述第二蓝牙通信链路对应的第二频带保持所述频带间隔。
  15. 根据权利要求13所述的通信芯片,其中,以所述同步模式发送数据的传输单元包括第一传输单元和第二传输单元;
    第三控制单元配置成:
    指示所述第一传输单元在目标发送时刻发送一帧数据,其中所述第三控制单元是与所述第一传输单元处于同一蓝牙内核的第一控制单元;
    第四控制单元配置成:
    指示所述第二传输单元在所述目标发送时刻发送一帧数据,其中所述第四控制单元是与所述第二传输单元处于同一蓝牙内核的第一控制单元;
    所述第三控制单元还配置成:
    在所述第一传输单元成功发送一帧数据的情况下,向所述第四控制单元发送成功通知,并且指示所述第一传输单元停止发送数据;
    所述第四控制单元还配置成:
    接收所述成功通知,在所述第二传输单元成功发送一帧数据的情况下,向所述第三控制单元发送所述成功通知,以及指示所述第二传输单元发送下一帧数据;
    所述第三控制单元还配置成:
    在接收到来自于所述第四控制单元的所述成功通知的情况下,指示所述第一传输单元发送下一帧数据。
  16. 一种蓝牙通信设备,包括蓝牙主机和通信芯片所述通信芯片包括多个蓝牙内核,各所述蓝牙内核包括第一控制单元和传输单元;
    所述第一控制单元配置成:
    在接收到来自于所述蓝牙主机的连接指令的情况下,控制同一蓝牙内核中的所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
    所述传输单元配置成:
    基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
  17. 一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括蓝牙主机和通信芯片,所述通信芯片包括多个蓝牙内核,各所述蓝牙内核包括第一控制单元和传输单元;所述方法包括:
    所述第一控制单元在接收到来自于所述蓝牙主机的连接指令的情况下,控制同一蓝牙内核中的所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
    所述传输单元基于相应的所述蓝牙通信链路与对应的所述蓝牙通信设备进行数据传输。
  18. 一种蓝牙通信设备,所述蓝牙通信设备包括蓝牙主机和所述蓝牙主机连接的多个通信芯片,各所述通信芯片包括第一控制单元和传输单元;
    各所述第一控制单元配置成:
    在接收到来自于所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
    任一所述第一控制单元还配置成:
    确定各所述传输单元对应的频带,将各所述传输单元对应的频带分别发送至各所述第一控制单元;
    各所述第一控制单元还配置成:
    指示各所述传输单元基于相应的所述蓝牙通信链路,在对应的频带上进行数据传输。
  19. 一种蓝牙通信设备,所述蓝牙通信设备包括多个蓝牙主机以及所述多个蓝牙主机分别连接的通信芯片,各所述通信芯片包括第一控制单元和传输单元;
    各所述第一控制单元配置成:
    在接收到来自于所连接的所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
    任一所述第一控制单元还配置成:
    确定各所述传输单元对应的频带,将各所述传输单元对应的频带分别发送至各所述第一控制单元;
    各所述第一控制单元还配置成:
    指示各所述传输单元基于相应的蓝牙通信链路,在对应的频带上进行数据传输。
  20. 根据权利要求18或19所述的蓝牙通信设备,其中,各所述蓝牙通信芯片还包括第二控制单元;
    任一所述第二控制单元配置成:
    接收来自于各所述第一控制单元的频带,基于接收的频带确定各所述传输单元的数据发送模式,将各所述传输单元的数据发送模式分别发送至各所述第一控制单元;
    各所述第一控制单元还配置成:
    指示各所述传输单元以所述数据发送模式发送数据。
  21. 根据权利要求20所述的蓝牙通信设备,其中,
    任一所述第二控制单元配置成:
    确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为异步模式。
  22. 根据权利要求20所述的蓝牙通信设备,其中,
    任一所述第二控制单元配置成:
    确定具有频带间隔的两个不同频带对应的传输单元的数据发送模式为同步模式。
  23. 根据权利要求21或22所述的蓝牙通信设备,其中,
    第三控制单元配置成:
    在第一蓝牙通信链路上使用第一跳频算法;
    第四控制单元配置成:
    在第二蓝牙通信链路上使用第二跳频算法;
    其中,所述第三控制单元和所述第四控制单元为所述蓝牙通信设备中的任一第一控制单元,所述第一 跳频算法与所述第二跳频算法共同作用以使得:
    所述第一蓝牙通信链路对应的第一频带与所述第二蓝牙通信链路对应的第二频带保持所述频带间隔。
  24. 根据权利要求22所述的蓝牙通信设备,其中,以所述同步模式发送数据的传输单元包括第一传输单元和第二传输单元;
    第三控制单元配置成:
    指示所述第一传输单元在目标发送时刻发送一帧数据,其中所述第三控制单元是与所述第一传输单元处于同一通信芯片的第一控制单元;
    第四控制单元配置成:
    指示所述第二传输单元在所述目标发送时刻发送一帧数据,其中所述第四控制单元是与所述第二传输单元处于同一通信芯片的第一控制单元;
    所述第三控制单元还配置成:
    在所述第一传输单元成功发送一帧数据的情况下,向所述第四控制单元发送成功通知,并且指示所述第一传输单元停止发送数据;
    所述第四控制单元还配置成:
    接收所述成功通知,在所述第二传输单元成功发送一帧数据的情况下,向所述第三控制单元发送所述成功通知,以及指示所述第二传输单元发送下一帧数据;
    所述第三控制单元还配置成:
    在接收到来自于所述第四控制单元的所述成功通知的情况下,指示所述第一传输单元发送下一帧数据。
  25. 一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括蓝牙主机和所述蓝牙主机连接的多个通信芯片,各所述通信芯片包括第一控制单元和传输单元;所述方法包括:
    各所述第一控制单元在接收到来自于所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
    任一所述第一控制单元确定各所述传输单元对应的频带,将各所述传输单元对应的频带分别发送至各所述第一控制单元;
    各所述第一控制单元指示各所述传输单元基于相应的所述蓝牙通信链路,在对应的频带上进行数据传输。
  26. 一种数据传输方法,所述方法由蓝牙通信设备执行,所述蓝牙通信设备包括多个蓝牙主机以及所述多个蓝牙主机分别连接的通信芯片,各所述通信芯片包括第一控制单元和传输单元;所述方法包括:
    各所述第一控制单元在接收到来自于所连接的所述蓝牙主机的连接指令的情况下,控制各所述传输单元与对应的蓝牙通信设备建立蓝牙通信链路;
    任一所述第一控制单元确定各所述传输单元对应的频带,将各所述传输单元对应的频带分别发送至各所述第一控制单元;
    各所述第一控制单元指示各所述传输单元基于相应的蓝牙通信链路,在对应的频带上进行数据传输。
PCT/CN2022/143497 2022-03-24 2022-12-29 通信芯片、蓝牙通信设备及数据传输方法 WO2023179159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210303099.7 2022-03-24
CN202210303099.7A CN114745705B (zh) 2022-03-24 2022-03-24 通信芯片、蓝牙通信设备及数据传输方法

Publications (1)

Publication Number Publication Date
WO2023179159A1 true WO2023179159A1 (zh) 2023-09-28

Family

ID=82276202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143497 WO2023179159A1 (zh) 2022-03-24 2022-12-29 通信芯片、蓝牙通信设备及数据传输方法

Country Status (2)

Country Link
CN (1) CN114745705B (zh)
WO (1) WO2023179159A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745705B (zh) * 2022-03-24 2024-11-26 Oppo广东移动通信有限公司 通信芯片、蓝牙通信设备及数据传输方法
CN115209389A (zh) * 2022-07-13 2022-10-18 深圳市飞易通科技有限公司 一种蓝牙设备通信方法、蓝牙设备及通信系统
CN115499037B (zh) * 2022-09-09 2024-08-02 安克创新科技股份有限公司 蓝牙装置、设备系统及其信道切换方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010010689A1 (en) * 2000-01-20 2001-08-02 Awater Geert Arnout Interoperability for bluetooth/IEEE 802.11
US20020065045A1 (en) * 2000-11-27 2002-05-30 Samsung Electronics Co., Ltd. Method of information sharing between cellular and local wireless communication systems
US20090161602A1 (en) * 2007-12-21 2009-06-25 Kabushiki Kaisha Toshiba Wireless communication apparatus and wireless communication method using bluetooth
CN111294777A (zh) * 2018-12-06 2020-06-16 海能达通信股份有限公司 一种蓝牙音频传输器的控制方法及通信方法
CN113329381A (zh) * 2021-04-28 2021-08-31 荣耀终端有限公司 一种建立蓝牙连接的方法及电子设备
CN114745705A (zh) * 2022-03-24 2022-07-12 Oppo广东移动通信有限公司 通信芯片、蓝牙通信设备及数据传输方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10681479B2 (en) * 2015-01-30 2020-06-09 Cassia Networks Inc. Methods, devices and systems for bluetooth audio transmission
WO2018103006A1 (zh) * 2016-12-07 2018-06-14 海能达通信股份有限公司 一种蓝牙链接方法、装置及蓝牙设备
CN108616847B (zh) * 2016-12-07 2021-09-28 海能达通信股份有限公司 一种蓝牙链接方法、装置及蓝牙设备
US11329702B2 (en) * 2018-06-25 2022-05-10 Mediatek Inc. Multi-in multi-out bluetooth module, and wireless device using the multi-in multi-out bluetooth module
WO2021226881A1 (zh) * 2020-05-13 2021-11-18 深圳市汇顶科技股份有限公司 一种数据传输方法、装置、芯片、电子设备及存储介质
CN113068166B (zh) * 2021-03-17 2023-07-25 上海物骐微电子有限公司 一种基于中继的多设备数据传输系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010010689A1 (en) * 2000-01-20 2001-08-02 Awater Geert Arnout Interoperability for bluetooth/IEEE 802.11
US20020065045A1 (en) * 2000-11-27 2002-05-30 Samsung Electronics Co., Ltd. Method of information sharing between cellular and local wireless communication systems
US20090161602A1 (en) * 2007-12-21 2009-06-25 Kabushiki Kaisha Toshiba Wireless communication apparatus and wireless communication method using bluetooth
CN111294777A (zh) * 2018-12-06 2020-06-16 海能达通信股份有限公司 一种蓝牙音频传输器的控制方法及通信方法
CN113329381A (zh) * 2021-04-28 2021-08-31 荣耀终端有限公司 一种建立蓝牙连接的方法及电子设备
CN114745705A (zh) * 2022-03-24 2022-07-12 Oppo广东移动通信有限公司 通信芯片、蓝牙通信设备及数据传输方法

Also Published As

Publication number Publication date
CN114745705B (zh) 2024-11-26
CN114745705A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
US10917774B2 (en) Bluetooth audio communication system and method for acknowledging reception of packets of audio streams at a slave and master devices
WO2023179159A1 (zh) 通信芯片、蓝牙通信设备及数据传输方法
US10412481B1 (en) Operation mode switch of wireless headphones
CN110995326B (zh) 一种无线耳机的通信方法、无线耳机及无线耳塞
CN110267305B (zh) 一种无线数据重传方法
CN100544491C (zh) 无线通讯系统重建接收边处理定时器的方法及装置
WO2021190430A1 (zh) 音频数据传输方法、系统和装置
WO2020134720A1 (zh) 数据传输控制方法及相关产品
CN112437369B (zh) 音频数据的传输方法、系统、tws耳机对、芯片及介质
EP3923608B1 (en) Data transmission method between tws bluetooth devices and tws bluetooth device therefor
WO2020020030A1 (zh) 随机接入方法及相关设备
CN111556475B (zh) 蓝牙tws设备及其主、从设备和设备间的数据传输方法
JP2023546303A (ja) 無線通信システムに用いられる装置間通信方法及びシステム
CN109922540B (zh) 无线收发设备组通信方法、设备组、系统及存储介质
WO2020020333A1 (zh) 随机接入方法及相关设备
CN110166988B (zh) 一种无线通信系统及其方法
CN113330757B (zh) 一种数据传输方法以及相关装置
TWI877212B (zh) 接收同時下行鏈路傳輸的方法及傳輸同時下行鏈路傳輸的方法
CN110545151B (zh) 音频端之间状态同步、发送音频数据包的方法及音频设备
CN114079898B (zh) 双发模式下音频数据通信方法、装置、设备和系统
CN114079894B (zh) 双无线音频通信控制方法、装置、设备和系统
CN114079897B (zh) 一种蓝牙音频系统、设备及系统通信方法
CN112218197B (zh) 音频补偿方法及对应使用此方法的无线音频输出装置
US20250244948A1 (en) Parameter configuration method, audio playback device, and readable storage medium
EP4114036A1 (en) Method and system for transmitting audio data wirelessly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22933206

Country of ref document: EP

Kind code of ref document: A1