[go: up one dir, main page]

WO2023176055A1 - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
WO2023176055A1
WO2023176055A1 PCT/JP2022/043697 JP2022043697W WO2023176055A1 WO 2023176055 A1 WO2023176055 A1 WO 2023176055A1 JP 2022043697 W JP2022043697 W JP 2022043697W WO 2023176055 A1 WO2023176055 A1 WO 2023176055A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
electrode
optical
optical modulator
main body
Prior art date
Application number
PCT/JP2022/043697
Other languages
French (fr)
Japanese (ja)
Inventor
聡希 ▲浜▼村
康弘 會田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2024507508A priority Critical patent/JPWO2023176055A1/ja
Publication of WO2023176055A1 publication Critical patent/WO2023176055A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Definitions

  • the present disclosure relates to an optical modulator.
  • An optical transceiver includes an optical modulator as a main component.
  • An optical modulator is responsible for converting electrical signals into optical signals.
  • a conventional optical modulator is disclosed in, for example, Japanese Patent Laid-Open No. 2020-20953 (Patent Document 1).
  • the optical modulator of Patent Document 1 includes a ridge-type optical waveguide formed of a dielectric thin film having an electro-optic effect on a substrate, a buffer layer covering the optical waveguide, and a buffer layer disposed on the optical waveguide. and a signal electrode disposed.
  • the width of the signal electrode is wider than the width of the ridge of the optical waveguide, and covers at least one side surface of the ridge via the buffer layer.
  • the optical modulator of Patent Document 1 has a ground electrode placed on a thin film at a predetermined distance from a signal electrode. In other words, the optical modulator of Patent Document 1 has a coplanar electrode consisting of a signal electrode and a ground electrode.
  • the ridge-shaped optical waveguide formed on the substrate is completely covered with a buffer layer.
  • the signal electrode is not sufficiently close to the optical waveguide, the electric field applied to the optical waveguide may be reduced.
  • the buffer layer were not formed, the difference between the effective refractive index perceived by electrical signals and the effective refractive index perceived by light waves would not become small, and the modulation frequency could not be increased. This is because there is no buffer layer that contributes to adjustment of the effective refractive index.
  • An object of the present disclosure is to provide an optical modulator that can suppress a decrease in the electric field applied to an optical waveguide, increase the modulation frequency, and further improve the ratio of the electric field applied to the optical waveguide. That's true.
  • An optical modulator includes a ridge-shaped optical waveguide made of a material having an electro-optic effect, a control electrode for controlling light passing through the optical waveguide, and a low dielectric constant lower than that of the optical waveguide. comprising a layer.
  • the control electrode includes a first electrode and a second electrode that form a potential difference with each other.
  • the first electrode is provided on one side in the thickness direction of the optical waveguide
  • the second electrode is provided on the other side in the thickness direction of the optical waveguide
  • the first electrode is , a main body portion facing the optical waveguide in the thickness direction of the optical waveguide, and a convex portion protruding toward the optical waveguide from an end portion of the main body portion in the width direction.
  • a low dielectric constant layer is interposed between the main body of the first electrode and the optical waveguide.
  • the optical modulator it is possible to suppress a decrease in the electric field applied to the optical waveguide, increase the modulation frequency, and further improve the ratio of the electric field applied to the optical waveguide.
  • FIG. 1 is a schematic diagram showing a cross section of an optical modulator according to a first embodiment.
  • FIG. 2 is a schematic diagram showing a cross section of an optical modulator according to a second embodiment.
  • FIG. 3 is a schematic diagram showing a cross section of an optical modulator of Modification Example 1.
  • FIG. 4 is a schematic diagram showing a cross section of an optical modulator of Modification 1.
  • FIG. 5 is a schematic diagram showing a cross section of an optical modulator of Modification Example 1.
  • FIG. 6 is a schematic diagram showing a cross section of an optical modulator of Modification Example 1.
  • FIG. 7 is a schematic diagram showing a cross section of an optical modulator of Modification 2.
  • FIG. 8 is a schematic diagram showing a cross section of an optical modulator of Modification 2.
  • FIG. 1 is a schematic diagram showing a cross section of an optical modulator according to a first embodiment.
  • FIG. 2 is a schematic diagram showing a cross section of an optical modulator according to a second embodiment.
  • FIG. 9 is a schematic diagram showing a cross section of an optical modulator according to modification 2.
  • FIG. 10 is a schematic diagram showing a cross section of an optical modulator of modification 2.
  • FIG. 11 is a schematic diagram showing a cross section of an optical modulator according to modification 3.
  • FIG. 12 is a schematic diagram showing a cross section of an optical modulator according to modification 3.
  • FIG. 13 is a schematic diagram showing a cross section of an optical modulator according to a third embodiment.
  • FIG. 14 is a schematic diagram showing a cross section of an optical modulator according to a fourth embodiment.
  • FIG. 15 is a schematic plan view of the optical modulator according to the fourth embodiment.
  • the optical modulator includes a ridge-shaped optical waveguide made of a material having an electro-optic effect, a control electrode for controlling light passing through the optical waveguide, and a low dielectric material having a lower dielectric constant than the optical waveguide. and a rate layer.
  • the control electrode includes a first electrode and a second electrode that form a potential difference with each other.
  • the first electrode is provided on one side in the thickness direction of the optical waveguide
  • the second electrode is provided on the other side in the thickness direction of the optical waveguide
  • the first electrode is , a main body portion facing the optical waveguide in the thickness direction of the optical waveguide, and a convex portion protruding toward the optical waveguide from an end portion of the main body portion in the width direction.
  • a low dielectric constant layer is interposed between the main body of the first electrode and the optical waveguide (first configuration).
  • the first electrode and the second electrode are arranged to sandwich the optical waveguide in the thickness direction. Further, the convex portion of the first electrode protrudes from the end portion in the width direction of the main body toward the optical waveguide, so that the convex portion of the first electrode is located closer to the ridge-shaped optical waveguide than the main body. From another perspective, in the first electrode, the distance between the bottom surface of the main body (the surface facing the optical waveguide in the main body) and the top surface of the optical waveguide (the surface facing the main body in the optical waveguide) is between the convex portion and the optical waveguide. It is much larger than the distance from the wave path. Therefore, a sufficiently thick low dielectric constant layer exists between the main body of the first electrode and the optical waveguide.
  • the convex portion of the first electrode exists near the optical waveguide, the electric field applied to the optical waveguide does not decrease. Therefore, a decrease in the electric field applied to the optical waveguide can be suppressed.
  • the electric field directed from the first electrode toward the ridge-shaped optical waveguide passes through a sufficiently thick low dielectric constant layer existing between the main body of the first electrode and the optical waveguide. This reduces the effective refractive index felt by the electrical signal.
  • the effective refractive index felt by electrical signals is larger than the effective refractive index felt by light waves. Therefore, the difference between the effective refractive index felt by the electric signal and the effective refractive index felt by the light wave becomes small. Therefore, the modulation frequency can be increased.
  • the optical waveguide is ridge-shaped, light can be further confined within the optical waveguide.
  • the optical modulator described above preferably has the following configuration.
  • the shortest distance between the inner side surface of the convex portion and the side surface of the optical waveguide is the same as the surface of the main body facing the optical waveguide and the surface of the optical waveguide facing the main body. (second configuration).
  • the optical modulator of the first configuration preferably has the following configuration.
  • the convex portion In a cross-sectional view perpendicular to the direction in which the optical waveguide extends, the convex portion is in contact with the optical waveguide (third configuration).
  • the electric field is directly guided from the convex portion of the first electrode to the optical waveguide. Therefore, a decrease in the electric field applied to the optical waveguide can be further suppressed.
  • the first electrode is in contact with the optical waveguide only through the convex portion.
  • the refractive index of the first electrode is much smaller than the refractive index of the optical waveguide. Therefore, due to the refractive index relationship between the first electrode and the optical waveguide, absorption of light leaking from the optical waveguide into the first electrode is suppressed. Therefore, optical loss can be suppressed.
  • the optical modulator with the above configuration preferably has the following configuration.
  • the shortest distance between the surface of the main body facing the optical waveguide and the surface of the optical waveguide facing the main body is 6 times the thickness of the thickest part of the optical waveguide. It is as follows (fourth configuration).
  • the optical modulator described above preferably has the following configuration.
  • the material of the optical waveguide is LiNbO 3 (fifth configuration). LiNbO 3 (lithium niobate) has a particularly high electro-optic effect. In this specification, LiNbO 3 may be referred to as LN.
  • the material of the optical waveguide is not particularly limited as long as it has an electro-optic effect.
  • the material of the optical waveguide may be LiTaO 3 (lithium tantalate), PLZT (lead lanthanum zirconate titanate), KTN (potassium tantalate niobate), BaTiO 3 (barium titanate), etc. It may be.
  • the above optical modulator may further include a substrate provided with an optical waveguide (sixth configuration).
  • the optical modulator in any one of the first to fifth configurations may include two optical modulator units arranged in parallel.
  • the two optical modulator units each include an optical waveguide, a control electrode, and a low dielectric constant layer (seventh configuration).
  • the optical modulator of the seventh configuration constitutes a Mach-Zehnder type optical modulator.
  • intensity modulation is also possible in addition to phase modulation. This allows multilevel modulation to be performed and increases transmission capacity.
  • the optical modulator of the seventh configuration provides the same effects as the first to fifth configurations.
  • the optical modulator with the seventh configuration may include the following configuration.
  • Each of the optical modulator units further includes a substrate provided with an optical waveguide.
  • the substrate of one of the two optical modulator units is arranged in parallel with the substrate of the other optical modulator unit (eighth configuration).
  • the optical modulator with the eighth configuration may include the following configuration.
  • the substrate of one optical modulator unit is integrated with the substrate of the other optical modulator unit, and the optical waveguide of one optical modulator unit and the optical waveguide of the other optical modulator unit are connected to each other.
  • the direction of spontaneous polarization is opposite to that of the optical waveguide.
  • the first electrode of one optical modulator unit is integrally formed with the first electrode of the other optical modulator unit.
  • the second electrode of one optical modulator unit is integrally formed with the second electrode of the other optical modulator unit. Voltages having the same phase are applied to the first electrode of one optical modulator unit and the first electrode of the other optical modulator unit (ninth configuration).
  • the substrate of one optical modulator unit can be shared with the substrate of the other optical modulator unit.
  • the optical waveguide of one optical modulator unit and the optical waveguide of the other optical modulator unit are provided on a shared substrate. Therefore, the distance between the optical waveguide of one optical modulator unit and the optical waveguide of the other optical modulator unit can be reduced.
  • the first electrode of one optical modulator unit can be shared with the first electrode of the other optical modulator unit.
  • the second electrode of one optical modulator unit can be shared with the second electrode of the other optical modulator unit. Therefore, the distance between the optical waveguides can be further reduced. Therefore, the width of the entire optical modulator can be further reduced.
  • FIG. 1 is a schematic diagram showing a cross section of an optical modulator 100 according to the first embodiment.
  • FIG. 1 shows a cross section perpendicular to the direction in which the optical waveguide 2 extends.
  • the direction in which the optical waveguide 2 extends can also be said to be a direction along the optical waveguide 2.
  • a cross section means a cross section perpendicular to the direction in which the optical waveguide 2 or optical waveguides 2A and 2B described below extend.
  • the support plate 7 that supports the whole is located at the bottom, the thickness direction of the optical modulator 100 corresponds to the up-down direction, and the width direction of the optical modulator 100 corresponds to the left-right direction.
  • upper, lower, left, and right are defined for convenience of explanation, and do not limit the actual posture of the optical modulator 100.
  • an optical modulator 100 includes a substrate 1, an optical waveguide 2, a first electrode 3, a second electrode 4, and a low dielectric constant layer 5.
  • the first electrode 3 and the second electrode 4 are included in a control electrode for controlling light passing through the optical waveguide 2.
  • the first electrode 3 is placed above the substrate 1 .
  • the first electrode 3 and the second electrode 4 form a potential difference with each other.
  • the first electrode 3 is, for example, a signal electrode.
  • the second electrode 4 is not particularly limited as long as it forms a potential difference with the first electrode 3.
  • the second electrode 4 is, for example, a ground electrode.
  • the second electrode 4 may be a reverse signal electrode that applies a voltage having an opposite phase to the voltage of the first electrode 3.
  • the second electrode 4 is placed below the substrate 1.
  • the first electrode 3 and the second electrode 4 are arranged to sandwich the optical waveguide 2 in the vertical direction (thickness direction).
  • the optical modulator 100 of this embodiment further includes an auxiliary low dielectric constant layer 6.
  • the substrate 1 , the optical waveguide 2 , the low dielectric constant layer 5 , the first electrode 3 , the second electrode 4 and the auxiliary low dielectric constant layer 6 are supported by a support plate 7 .
  • the support plate 7 is arranged at the bottom.
  • the optical waveguide 2 is made of a material that has an electro-optic effect.
  • the material of the optical waveguide 2 is, for example, LN.
  • the optical waveguide 2 is formed on the substrate 1.
  • the substrate 1 has a ridge-shaped optical waveguide 2. That is, the substrate 1 has a protrusion on its upper part, and this protrusion functions as the optical waveguide 2.
  • a protruding strip that will become the optical waveguide 2 is formed on the substrate 1.
  • the protrusions can confine light in the thickness direction and width direction.
  • the substrate 1 may be made of the same material as the optical waveguide 2. However, the material of the substrate 1 may be different from the material of the optical waveguide 2. In this case, the material of the substrate 1 is, for example, Si.
  • the optical waveguide 2 can have a cross-sectional shape in which the width (the horizontal dimension) is larger than the thickness (the vertical dimension).
  • the cross-sectional shape of the ridge-type optical waveguide 2 is substantially wide and generally rectangular.
  • the cross-sectional shape of the optical waveguide 2 includes a first side extending in the width direction and a second side arranged parallel to the first side and extending in the width direction.
  • the cross-sectional shape of the optical waveguide 2 further includes a third side and a fourth side, each extending in the thickness direction.
  • the first side and the second side are a pair of long sides
  • the third side and the fourth side are a pair of short sides.
  • the cross-sectional shape of the optical waveguide 2 is a wide rectangle
  • one of the pair of long sides is parallel to the surface of the substrate 1
  • the other long side is parallel to the surface of the substrate 1.
  • the second side is located on the surface of the substrate 1.
  • the first and second long sides are connected by the third and fourth short sides.
  • the third side and the fourth side of the optical waveguide 2 are linear in a cross-sectional view of the optical modulator 100, and are parallel to the thickness direction of the optical waveguide 2.
  • the third side and the fourth side may be inclined with respect to the thickness direction of the optical waveguide 2, and do not necessarily need to be linear.
  • the third side and the fourth side of the optical waveguide 2 may have a curved shape, or may have a shape that is a combination of a straight line and a curved line.
  • the length of the third side may be the same as the length of the fourth side, or may be different.
  • the length of the first side may be the same as the length of the second side, or may be different.
  • the cross-sectional shape of the ridge-type optical waveguide 2 is often trapezoidal.
  • the cross-sectional shape of the optical waveguide 2 includes an upper base and a lower base, each extending in the width direction, and a pair of legs.
  • the upper and lower bases are parallel to each other.
  • the cross-sectional shape of the optical waveguide 2 is a wide trapezoid, the upper base (the upper short side) is parallel to the surface of the substrate 1, and the lower base (lower long side) is located on the surface of the substrate 1. .
  • the ridge-type optical waveguide 2 has an upper surface 2a located on the opposite side from the substrate 1 and two side surfaces 2b. Each side surface 2b is connected to an end in the width direction of the upper surface 2a.
  • a low dielectric constant layer 5 is laminated on the substrate 1 .
  • a low dielectric constant layer 5 is laminated on the optical waveguide 2.
  • the low dielectric constant layer 5 directly covers the top surface 2a and side surface 2b of the ridge-shaped optical waveguide 2, and also directly covers the top surface of the substrate 1 in the periphery thereof.
  • the dielectric constant of the low dielectric constant layer 5 is lower than that of the optical waveguide 2.
  • the material of the low dielectric constant layer 5 is not particularly limited as long as the dielectric constant is lower than the dielectric constant of the optical waveguide 2.
  • the low dielectric constant layer 5 for example, an oxide (eg, Al 2 O 3 , SiO 2 , LaAlO 3 , LaYO 3 , ZnO, HfO 2 , MgO, Y 2 O 3 ) is used.
  • a polymer eg, BCB (benzocyclobutene), PI (polyimide) may be used.
  • the first electrode 3 and the second electrode 4 are made of metal material.
  • the first electrode 3 is provided on one side of the optical waveguide 2 in the thickness direction.
  • the second electrode 4 is provided on the other side of the optical waveguide 2 in the thickness direction.
  • the first electrode 3 is arranged above the substrate 1, and the second electrode 4 is arranged below the substrate 1.
  • the first electrode 3 includes a main body portion 31 and a convex portion 32.
  • the main body portion 31 faces the optical waveguide 2 in the thickness direction of the optical waveguide 2. That is, the main body portion 31 is placed directly above the optical waveguide 2 .
  • the main body portion 31 has a bottom surface 31a facing the top surface 2a of the optical waveguide 2.
  • the convex portion 32 protrudes from the end portion of the main body portion 31 in the width direction toward the optical waveguide 2 side. In the example shown in FIG. 1, the convex portion 32 protrudes downward.
  • the convex portion 32 has an inner side surface 32a located on the main body portion 31 side.
  • the convex portions 32 are provided at both ends of the main body portion 31 in the width direction.
  • the convex portion 32 may be provided only at one of both ends of the main body portion 31 in the width direction.
  • the low dielectric constant layer 5 is interposed between the first electrode 3 and the optical waveguide 2. Specifically, the low dielectric constant layer 5 is interposed between the main body portion 31 of the first electrode 3 and the optical waveguide 2 .
  • Each of the convex portions 32 of the first electrode 3 protrudes from the end of the main body 31 toward the optical waveguide 2, and thus exists closer to the ridge-shaped optical waveguide 2 than the main body 31.
  • the distance between the bottom surface 31a of the main body portion 31 and the top surface 2a of the optical waveguide 2 is much larger than the distance between the convex portion 32 and the optical waveguide 2. Therefore, a sufficiently thick low dielectric constant layer 5 exists between the main body portion 31 of the first electrode 3 and the optical waveguide 2.
  • each convex portion 32 of the first electrode 3 is in contact with the optical waveguide 2. Specifically, the inner corner of each of the convex portions 32 of the first electrode 3 is in contact with the corner at the end of the optical waveguide 2 in the width direction. In other words, the shortest distance between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is zero. The inner side surface 32a of the convex portion 32 does not cover the side surface 2b of the optical waveguide 2.
  • an auxiliary low dielectric constant layer 6 is laminated under the substrate 1.
  • the support plate 7 is laminated under the auxiliary low dielectric constant layer 6.
  • the dielectric constant of the auxiliary low dielectric constant layer 6 is lower than that of the optical waveguide 2, similarly to the low dielectric constant layer 5.
  • the material of the auxiliary low dielectric constant layer 6 is not particularly limited as long as the dielectric constant is lower than the dielectric constant of the optical waveguide 2.
  • the material of the auxiliary low dielectric constant layer 6 may be the same as the material of the low dielectric constant layer 5, or may be different.
  • the auxiliary low dielectric constant layer 6 covers the second electrode 4.
  • the second electrode 4 is arranged inside the auxiliary low dielectric constant layer 6 so as to be parallel to the substrate 1 .
  • the auxiliary low dielectric constant layer 6 directly covers the upper and lower surfaces of the second electrode 4.
  • the second electrode 4 may be directly laminated under the substrate 1.
  • the auxiliary low dielectric constant layer 6 directly covers the lower surface of the second electrode 4.
  • the first electrode 3 and the second electrode 4 are arranged to sandwich the optical waveguide 2 in the thickness direction. Furthermore, a sufficiently thick low dielectric constant layer 5 is present between the main body portion 31 of the first electrode 3 and the optical waveguide 2 . Furthermore, since the convex portion 32 of the first electrode 3 protrudes from the end of the main body 31 toward the optical waveguide 2, it is located closer to the ridge-shaped optical waveguide 2 than the main body 31.
  • an electric field is applied from the first electrode 3 to the ridge-shaped optical waveguide 2 when the optical modulator 100 is operated.
  • the first electrode 3 and the second electrode 4 are arranged to sandwich the optical waveguide 2 in the thickness direction. That is, the optical waveguide 2 is arranged between the first electrode 3 and the second electrode 4. Therefore, an electric field acts from the first electrode 3 toward the second electrode 4. In other words, the electric field acts in the vertical direction. Therefore, an electric field is effectively guided from the first electrode 3 to the optical waveguide 2.
  • the electrodes are arranged on the same side in the thickness direction with respect to the optical waveguide 2, and the ratio of the electric field applied to the optical waveguide 2 is improved compared to the case where the optical waveguide 2 is not sandwiched between these electrodes. I can do it.
  • the convex portion 32 of the first electrode 3 is located closer to the optical waveguide 2 than the main body portion 31.
  • the convex portion 32 of the first electrode 3 is arranged close to the optical waveguide 2 . Since the electric field is concentrated on the convex portion 32 of the first electrode 3, the intensity of the electric field directed from the first electrode 3 toward the optical waveguide 2 increases. Therefore, the electric field applied to the optical waveguide 2 does not decrease. Therefore, a decrease in the electric field applied to the optical waveguide 2 can be suppressed.
  • a sufficiently thick low dielectric constant layer 5 exists between the main body portion 31 of the first electrode 3 and the optical waveguide 2.
  • the electric field directed from the first electrode 3 toward the ridge-shaped optical waveguide 2 passes through the sufficiently thick low dielectric constant layer 5.
  • the effective refractive index felt by the electrical signal in the optical waveguide 2 is reduced. Therefore, the difference between the effective refractive index felt by the electric signal and the effective refractive index felt by the light wave becomes small. Therefore, the modulation frequency can be increased.
  • the optical waveguide 2 is ridge-shaped, light can be further confined within the optical waveguide 2.
  • the convex portion 32 of the first electrode 3 that protrudes from the main body 31 is in contact with the optical waveguide 2, so that an electric field is generated from the convex portion 32 of the first electrode 3 to the optical waveguide 2. Directly guided. Therefore, a decrease in the electric field applied to the optical waveguide 2 can be further suppressed.
  • the first electrode 3 is in contact with the optical waveguide 2 only through the convex portion 32.
  • the refractive index of the first electrode 3 is smaller than the refractive index of the low dielectric constant layer 5 and much smaller than the refractive index of the optical waveguide 2. Therefore, due to the refractive index relationship between the first electrode 3 and the optical waveguide 2, light does not leak from the optical waveguide 2 to the first electrode 3. Therefore, the optical modulator 100 will not stop functioning due to the first electrode 3 coming into contact with the optical waveguide 2.
  • the first electrode 3 and the optical waveguide The contact area with 2 is small.
  • the corner at the end of the optical waveguide 2 in the width direction means the area from the end to 10% of the width of the optical waveguide 2 in the width direction of the optical waveguide 2, and in the thickness direction of the optical waveguide 2. This means the area from the end to 10% of the thickness of the optical waveguide 2.
  • the inner corner of the convex part 32 of the first electrode 3 means an area corresponding to 10% of the width of the optical waveguide 2 from the end in the width direction of the convex part 32; In the thickness direction, it means a region corresponding to 10% of the thickness of the optical waveguide 2 from the end.
  • FIG. 2 is a schematic diagram showing a cross section of the optical modulator 100 according to the second embodiment.
  • the optical modulator 100 of this embodiment is a modification of the optical modulator 100 of the first embodiment.
  • the first electrode 3 is not in contact with the optical waveguide 2. That is, the inner corner portions of each of the convex portions 32 of the first electrode 3 are slightly spaced apart upward from the optical waveguide 2 .
  • the distance between the convex portion 32 of the first electrode 3 and the optical waveguide 2 is significantly smaller than the distance between the main body portion 31 and the optical waveguide 2, as in the first embodiment.
  • a low dielectric constant layer 5 exists between the convex portion 32 and the optical waveguide 2, which are slightly spaced apart from each other in the thickness direction of the optical waveguide 2.
  • the convex portion 32 of the first electrode 3 is still located closer to the optical waveguide 2 than the main body portion 31. Therefore, an electric field is effectively guided from the convex portion 32 of the first electrode 3 to the optical waveguide 2. Therefore, a decrease in the electric field applied to the optical waveguide 2 can be suppressed.
  • the convex portion 32 of the first electrode 3 is not in contact with the optical waveguide 2, absorption of light leaking from the optical waveguide 2 into the first electrode 3 can be further suppressed. . Therefore, optical loss can be further suppressed.
  • the inner corner of the convex part 32 of the first electrode 3 is It is preferable that the contact point be in contact with the corner of the section.
  • [Modification 1] 3 to 6 are schematic diagrams showing modification example 1 of the optical modulator 100. A cross section of the optical modulator 100 is shown in FIGS. 3-6. In modification 1, the form of the first electrode 3 relative to the optical waveguide 2 in the optical modulator 100 shown in FIGS. 1 and 2 is changed.
  • the cross-sectional shape of the optical waveguide 2 is rectangular.
  • the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction.
  • the convex portion 32 of the first electrode 3 is slightly apart from the optical waveguide 2 in the width direction of the optical waveguide 2 .
  • the shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.
  • the cross-sectional shape of the optical waveguide 2 is trapezoidal.
  • the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction.
  • the convex portion 32 of the first electrode 3 is slightly apart from the optical waveguide 2 in the width direction of the optical waveguide 2 .
  • the shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.
  • the cross-sectional shape of the optical waveguide 2 is rectangular.
  • the inner side surface 32a of the convex portion 32 has a tapered shape. That is, the inner side surface 32a of the convex portion 32 is formed to form an obtuse angle with the bottom surface 31a of the main body portion 31.
  • the convex portion 32 of the first electrode 3 is slightly apart from the optical waveguide 2 in the width direction of the optical waveguide 2 .
  • the shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.
  • the dimensions of the first electrode 3 with respect to the optical waveguide 2 are the same as in the example shown in FIG.
  • the auxiliary low dielectric constant layer 6 exists so as to cover both ends of the substrate 1 in the width direction.
  • the width of the substrate 1 is smaller than the width of the substrate 1 shown in FIGS. 3-5.
  • the effective refractive index can be adjusted by adjusting the ratio of the auxiliary low dielectric constant layer 6 to the substrate 1 in the region where the electric field is applied.
  • two etching steps are required to form the shape of the substrate 1 and the shape of the optical waveguide 2.
  • Modification 2 7 to 10 are schematic diagrams showing a second modification of the optical modulator 100. 7 to 10, cross sections of the optical modulator 100 are shown. In modification 2, the form of the first electrode 3 relative to the optical waveguide 2 in the optical modulator 100 shown in FIGS. 1 and 2 is changed.
  • the cross-sectional shape of the optical waveguide 2 is rectangular.
  • the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction.
  • the convex portion 32 of the first electrode 3 is spaced apart from the optical waveguide 2 in the thickness direction and width direction of the optical waveguide 2 .
  • the shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.
  • the shortest distance ta between the bottom surface 31a of the main body 31 and the top surface 2a of the optical waveguide 2 is six times or less the thickness tb of the thickest part of the optical waveguide 2.
  • this condition is met. The reason is shown below.
  • the modulation speed of light can be improved. If the low dielectric constant layer 5 is installed between the first electrode 3 and the second electrode 4, the effective refractive index felt by the electric signal will be reduced, but the electric field applied to the optical waveguide 2 will be weakened.
  • the low dielectric constant layer 5 When considering the voltage drop in the low dielectric constant layer 5 and the effective refractive index felt by electric signals, if the low dielectric constant layer 5 is designed to be about 6 times or less than the optical waveguide 2, a balance between the two can be achieved. , it is possible to both reduce optical loss and ensure voltage application efficiency.
  • the cross-sectional shape of the optical waveguide 2 is rectangular.
  • the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction.
  • the inner corner of the convex portion 32 of the first electrode 3 is located near the end of the optical waveguide 2 in the width direction.
  • the convex portion 32 of the first electrode 3 extends to the immediate vicinity of the substrate 1.
  • the convex portion 32 of the first electrode 3 does not cover the entire side surface 2b of the optical waveguide 2. That is, when viewed along the width direction of the optical waveguide 2, the convex portion 32 of the first electrode 3 partially overlaps with the optical waveguide 2.
  • the shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2. Further, the shortest distance ta between the bottom surface 31a of the main body 31 and the top surface 2a of the optical waveguide 2 is six times or less the thickness tb of the thickest portion of the optical waveguide 2.
  • the inner corner of the convex portion 32 of the first electrode 3 is located near the end of the optical waveguide 2 in the width direction, so a strong electric field can be applied to the optical waveguide 2. Therefore, it becomes possible to suppress power consumption.
  • the cross-sectional shape of the optical waveguide 2 is rectangular.
  • the inner side surface 32a of the convex portion 32 has a tapered shape.
  • the inner side surface 32a of the convex portion 32 of the first electrode 3 is located near the corner at the end of the optical waveguide 2 in the width direction.
  • the shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.
  • the shortest distance ta between the bottom surface 31a of the main body 31 and the top surface 2a of the optical waveguide 2 is six times or less the thickness tb of the thickest portion of the optical waveguide 2.
  • the inner side surface 32a of the convex portion 32 of the first electrode 3 is in contact with the corner at the end of the optical waveguide 2 in the width direction.
  • the first electrode 3 since the first electrode 3 contacts the optical waveguide 2 with a relatively small area through the convex portion 32, absorption of light from the optical waveguide 2 to the first electrode 3 is minimized, and the optical waveguide 2 is strengthened. An electric field can be applied.
  • Modification 3 11 and 12 are schematic diagrams showing a third modification of the optical modulator 100. 11 and 12 show cross sections of the optical modulator 100. In modification 3, the form of the first electrode 3 relative to the optical waveguide 2 in the optical modulator 100 shown in FIG. 1 is changed.
  • the tip surface of the convex portion 32 of the first electrode 3 is in contact with the upper surface 2a of the optical waveguide 2.
  • the inner side surface 32a of the convex portion 32 of the first electrode 3 is in contact with the side surface 2b of the optical waveguide 2. In either case, since the convex portion 32 of the first electrode 3 is in contact with the optical waveguide 2 in a narrow range, a stronger electric field can be applied to the optical waveguide 2. Therefore, it becomes possible to suppress power consumption.
  • the contact range between the convex part 32 of the first electrode 3 and the optical waveguide 2 is too large, light will leak from the optical waveguide 2 to the convex part 32 and be absorbed by the first electrode 3.
  • they are in contact.
  • FIG. 13 is a schematic diagram showing a cross section of the optical modulator 101 according to the third embodiment.
  • the optical modulator 101 of this embodiment constitutes a Mach-Zehnder type optical modulator.
  • the optical modulator 101 of this embodiment is a modification of the optical modulator 100 of the first embodiment, and each element of the optical modulator 100 of the first embodiment is arranged in parallel.
  • the optical modulator 101 of this embodiment includes two optical modulator units 100A and 100B.
  • One optical modulator unit 100A includes a substrate 1A, a ridge-shaped optical waveguide 2A, a first electrode 3A, a second electrode 4A, a low dielectric constant layer 5A, and an auxiliary low dielectric constant layer 6A.
  • the other optical modulator unit 100B includes a substrate 1B, a ridge-shaped optical waveguide 2B, a first electrode 3B, a second electrode 4B, a low dielectric constant layer 5B, and an auxiliary low dielectric constant layer 6B.
  • the optical modulator unit 100A and the optical modulator unit 100B are supported by a support plate 7.
  • the substrates 1A and 1B correspond to the substrate 1 described above.
  • the optical waveguides 2A and 2B correspond to the optical waveguide 2 described above.
  • the low dielectric constant layers 5A and 5B correspond to the low dielectric constant layer 5 described above.
  • the first electrodes 3A and 3B correspond to the first electrode 3 described above.
  • the second electrodes 4A and 4B correspond to the second electrode 4 described above.
  • the auxiliary low dielectric constant layers 6A and 6B correspond to the auxiliary low dielectric constant layer 6 described above.
  • the substrate 1A provided with the optical waveguide 2A is arranged in parallel with the substrate 1B provided with the optical waveguide 2B. That is, the optical waveguide 2A and the optical waveguide 2B are arranged side by side. Upstream of the optical waveguide 2A and the optical waveguide 2B, one input optical waveguide branches into the optical waveguide 2A and the optical waveguide 2B. At the downstream of the optical waveguide 2A and the optical waveguide 2B, the optical waveguide 2A and the optical waveguide 2B merge into one output optical waveguide.
  • optical modulator 101 of this embodiment Even with the optical modulator 101 of this embodiment, effects similar to those of the first embodiment described above can be obtained. Furthermore, since the optical modulator 101 of this embodiment constitutes a Mach-Zehnder type optical modulator, intensity modulation is also possible in addition to phase modulation. This allows multilevel modulation to be performed and increases transmission capacity.
  • the first electrode 3A does not need to be in contact with the optical waveguide 2A as in the second embodiment, and the first electrode 3B does not need to be in contact with the optical waveguide 2B.
  • FIG. 14 and 15 are schematic diagrams showing an optical modulator 101 according to the fourth embodiment.
  • FIG. 14 shows a cross section of the optical modulator 101.
  • FIG. 15 shows a plane when the optical modulator 101 is viewed from above.
  • the optical modulator 101 of this embodiment is a modification of the optical modulator 101 of the third embodiment.
  • the substrate 1A of the optical modulator unit 100A is integrated with the substrate 1B of the optical modulator unit 100B.
  • the optical waveguide 2A and the optical waveguide 2B have opposite directions of spontaneous polarization.
  • the material of the substrate 1A and the substrate 1B is a ferroelectric crystal such as LN or LiTaO3
  • the direction of spontaneous polarization cannot be reversed by applying a high voltage to the ferroelectric crystal material. be.
  • the location where the polarization is reversed can be recognized by observation using an atomic force microscope or an electron microscope. In this case, when the optical modulator 101 is operated, voltages having the same phase are applied to the first electrode 3A and the first electrode 3B.
  • the substrate 1A and the substrate 1B can be used in common.
  • the optical waveguide 2A and the optical waveguide 2B are provided on shared substrates 1A and 1B. Therefore, the distance between the optical waveguide 2A and the optical waveguide 2B can be reduced.
  • the first electrode 3A of the optical modulator unit 100A is formed integrally with the first electrode 3B of the optical modulator unit 100B. That is, the first electrode 3B is electrically integrated with the first electrode 3A. In this case, the first electrode 3B can be shared with the first electrode 3A.
  • the second electrode 4A of the optical modulator unit 100A is formed integrally with the second electrode 4B of the optical modulator unit 100B. That is, the second electrode 4B is electrically integrated with the second electrode 4A. In this case, the second electrode 4B can be used in common with the second electrode 4A. Therefore, the distance between the optical waveguide 2A and the optical waveguide 2B can be made smaller. Therefore, the width of the entire optical modulator 101 can be further reduced, and the size of the optical modulator 101 can be further reduced.
  • Optical modulator 1 Substrate 2: Optical waveguide 3: First electrode 31: Main body portion 32: Convex portion 4: Second electrode 5: Low dielectric constant layer 6: Auxiliary low dielectric constant layer 7: Support plate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

An optical modulator (100) comprises a ridge-type optical waveguide (2), a first electrode (3), a second electrode (4), and a low dielectric constant layer (5). The optical waveguide (2) is made of a material having electro-optical effects. The first electrode (3) and the second electrode (4) form a potential difference between each other. In a cross-sectional view perpendicular to the direction in which the optical waveguide (2) extends, the first electrode (3) is provided on one side in the thickness direction of the optical waveguide (2), and the second electrode (4) is provided on the other side in the thickness direction of the optical waveguide (2). The first electrode (3) includes: a main body part (31) opposing the optical waveguide (2) in the thickness direction of the optical waveguide (2); and a convex part (32) protruding to the optical waveguide (2) side from an end of the main body part (31) in the width direction. The low dielectric constant layer (5) is interposed between the main body part (31) and the optical waveguide (2).

Description

光変調器light modulator

 本開示は、光変調器に関する。 The present disclosure relates to an optical modulator.

 モバイル端末やクラウドの普及により、インターネットの通信量が著しく増加している。このため、光通信の需要が拡大している。光通信では、光信号と電気信号とを相互変換するために、光トランシーバが必要とされる。光トランシーバは、主要部品として、光変調器を備える。光変調器は、電気信号を光信号に変換する役割を担う。 Due to the spread of mobile devices and cloud computing, internet traffic is increasing significantly. For this reason, demand for optical communications is expanding. Optical communications require optical transceivers to mutually convert optical signals and electrical signals. An optical transceiver includes an optical modulator as a main component. An optical modulator is responsible for converting electrical signals into optical signals.

 従来の光変調器は、例えば、特開2020-20953号公報(特許文献1)に開示される。特許文献1の光変調器は、基板の上に電気光学効果を有する誘電体の薄膜で形成されたリッジ型の光導波路と、光導波路を覆うバッファ層と、光導波路の上にバッファ層を介して配置される信号電極と、を有する。信号電極の幅は、光導波路のリッジ幅よりも広く、かつ、バッファ層を介してリッジの少なくとも一方の側面を覆っている。特許文献1の光変調器は、薄膜の上に、信号電極から所定の間隔をおいて配置される接地電極を有する。つまり、特許文献1の光変調器は、信号電極と接地電極とからなるコプレーナ型の電極を有する。 A conventional optical modulator is disclosed in, for example, Japanese Patent Laid-Open No. 2020-20953 (Patent Document 1). The optical modulator of Patent Document 1 includes a ridge-type optical waveguide formed of a dielectric thin film having an electro-optic effect on a substrate, a buffer layer covering the optical waveguide, and a buffer layer disposed on the optical waveguide. and a signal electrode disposed. The width of the signal electrode is wider than the width of the ridge of the optical waveguide, and covers at least one side surface of the ridge via the buffer layer. The optical modulator of Patent Document 1 has a ground electrode placed on a thin film at a predetermined distance from a signal electrode. In other words, the optical modulator of Patent Document 1 has a coplanar electrode consisting of a signal electrode and a ground electrode.

特開2020-20953号公報JP 2020-20953 Publication

 特許文献1の光変調器において、基板に形成されたリッジ型の光導波路は、バッファ層によって完全に覆われている。この場合、信号電極が光導波路に十分に接近していないため、光導波路に印加される電界が低下するおそれがある。仮にバッファ層が形成されていなければ、電気信号の感じる実効屈折率と光波の感じる実効屈折率との差が小さくならず、変調周波数を高めることができない。実効屈折率の調整に寄与するバッファ層が存在しないためである。 In the optical modulator of Patent Document 1, the ridge-shaped optical waveguide formed on the substrate is completely covered with a buffer layer. In this case, since the signal electrode is not sufficiently close to the optical waveguide, the electric field applied to the optical waveguide may be reduced. If the buffer layer were not formed, the difference between the effective refractive index perceived by electrical signals and the effective refractive index perceived by light waves would not become small, and the modulation frequency could not be increased. This is because there is no buffer layer that contributes to adjustment of the effective refractive index.

 さらに、特許文献1の光変調器において、信号電極からの電界の一部が、光導波路を通過せずに接地電極に漏れることは否めない。このため、光導波路に印加される電界の比率が高いとは言い難い。 Furthermore, in the optical modulator of Patent Document 1, it is undeniable that a part of the electric field from the signal electrode leaks to the ground electrode without passing through the optical waveguide. Therefore, it is difficult to say that the ratio of the electric field applied to the optical waveguide is high.

 本開示の目的は、光導波路に印加される電界の低下を抑制し、且つ変調周波数を高めることができ、さらに光導波路に印加される電界の比率を向上することができる光変調器を提供することである。 An object of the present disclosure is to provide an optical modulator that can suppress a decrease in the electric field applied to an optical waveguide, increase the modulation frequency, and further improve the ratio of the electric field applied to the optical waveguide. That's true.

 本開示に係る光変調器は、電気光学効果を有する材料からなるリッジ型の光導波路と、光導波路を通過する光を制御するための制御電極と、誘電率が光導波路よりも低い低誘電率層と、を備える。制御電極は、互いに電位差を形成する第1電極及び第2電極を含む。光導波路の延びる方向に垂直な断面視において、第1電極は、光導波路の厚み方向の一方側に設けられ、第2電極は、光導波路の厚み方向の他方側に設けられ、第1電極は、光導波路の厚み方向で光導波路と対向する本体部と、本体部における幅方向の端部から光導波路側に突出する凸部と、を含む。この断面視において、第1電極の本体部と光導波路との間に低誘電率層が介在している。 An optical modulator according to the present disclosure includes a ridge-shaped optical waveguide made of a material having an electro-optic effect, a control electrode for controlling light passing through the optical waveguide, and a low dielectric constant lower than that of the optical waveguide. comprising a layer. The control electrode includes a first electrode and a second electrode that form a potential difference with each other. In a cross-sectional view perpendicular to the extending direction of the optical waveguide, the first electrode is provided on one side in the thickness direction of the optical waveguide, the second electrode is provided on the other side in the thickness direction of the optical waveguide, and the first electrode is , a main body portion facing the optical waveguide in the thickness direction of the optical waveguide, and a convex portion protruding toward the optical waveguide from an end portion of the main body portion in the width direction. In this cross-sectional view, a low dielectric constant layer is interposed between the main body of the first electrode and the optical waveguide.

 本開示に係る光変調器によれば、光導波路に印加される電界の低下を抑制し、且つ変調周波数を高めることができ、さらに光導波路に印加される電界の比率を向上することができる。 According to the optical modulator according to the present disclosure, it is possible to suppress a decrease in the electric field applied to the optical waveguide, increase the modulation frequency, and further improve the ratio of the electric field applied to the optical waveguide.

図1は、第1実施形態に係る光変調器の断面を示す模式図である。FIG. 1 is a schematic diagram showing a cross section of an optical modulator according to a first embodiment. 図2は、第2実施形態に係る光変調器の断面を示す模式図である。FIG. 2 is a schematic diagram showing a cross section of an optical modulator according to a second embodiment. 図3は、変形例1の光変調器の断面を示す模式図である。FIG. 3 is a schematic diagram showing a cross section of an optical modulator of Modification Example 1. 図4は、変形例1の光変調器の断面を示す模式図である。FIG. 4 is a schematic diagram showing a cross section of an optical modulator of Modification 1. 図5は、変形例1の光変調器の断面を示す模式図である。FIG. 5 is a schematic diagram showing a cross section of an optical modulator of Modification Example 1. 図6は、変形例1の光変調器の断面を示す模式図である。FIG. 6 is a schematic diagram showing a cross section of an optical modulator of Modification Example 1. 図7は、変形例2の光変調器の断面を示す模式図である。FIG. 7 is a schematic diagram showing a cross section of an optical modulator of Modification 2. 図8は、変形例2の光変調器の断面を示す模式図である。FIG. 8 is a schematic diagram showing a cross section of an optical modulator of Modification 2. 図9は、変形例2の光変調器の断面を示す模式図である。FIG. 9 is a schematic diagram showing a cross section of an optical modulator according to modification 2. 図10は、変形例2の光変調器の断面を示す模式図である。FIG. 10 is a schematic diagram showing a cross section of an optical modulator of modification 2. 図11は、変形例3の光変調器の断面を示す模式図である。FIG. 11 is a schematic diagram showing a cross section of an optical modulator according to modification 3. 図12は、変形例3の光変調器の断面を示す模式図である。FIG. 12 is a schematic diagram showing a cross section of an optical modulator according to modification 3. 図13は、第3実施形態に係る光変調器の断面を示す模式図である。FIG. 13 is a schematic diagram showing a cross section of an optical modulator according to a third embodiment. 図14は、第4実施形態に係る光変調器の断面を示す模式図である。FIG. 14 is a schematic diagram showing a cross section of an optical modulator according to a fourth embodiment. 図15は、第4実施形態に係る光変調器の平面を示す模式図である。FIG. 15 is a schematic plan view of the optical modulator according to the fourth embodiment.

 以下、本開示の実施形態について説明する。なお、以下の説明では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明において特定の数値や特定の材料を例示する場合があるが、本開示はそれらの例示に限定されない。 Hereinafter, embodiments of the present disclosure will be described. Note that in the following description, embodiments of the present disclosure will be described using examples, but the present disclosure is not limited to the examples described below. Although specific numerical values and specific materials may be illustrated in the following description, the present disclosure is not limited to those examples.

 本実施形態に係る光変調器は、電気光学効果を有する材料からなるリッジ型の光導波路と、光導波路を通過する光を制御するための制御電極と、誘電率が光導波路よりも低い低誘電率層と、を備える。制御電極は、互いに電位差を形成する第1電極及び第2電極を含む。光導波路の延びる方向に垂直な断面視において、第1電極は、光導波路の厚み方向の一方側に設けられ、第2電極は、光導波路の厚み方向の他方側に設けられ、第1電極は、光導波路の厚み方向で光導波路と対向する本体部と、本体部における幅方向の端部から光導波路側に突出する凸部と、を含む。この断面視において、第1電極の本体部と光導波路との間に低誘電率層が介在している(第1の構成)。 The optical modulator according to the present embodiment includes a ridge-shaped optical waveguide made of a material having an electro-optic effect, a control electrode for controlling light passing through the optical waveguide, and a low dielectric material having a lower dielectric constant than the optical waveguide. and a rate layer. The control electrode includes a first electrode and a second electrode that form a potential difference with each other. In a cross-sectional view perpendicular to the extending direction of the optical waveguide, the first electrode is provided on one side in the thickness direction of the optical waveguide, the second electrode is provided on the other side in the thickness direction of the optical waveguide, and the first electrode is , a main body portion facing the optical waveguide in the thickness direction of the optical waveguide, and a convex portion protruding toward the optical waveguide from an end portion of the main body portion in the width direction. In this cross-sectional view, a low dielectric constant layer is interposed between the main body of the first electrode and the optical waveguide (first configuration).

 第1の構成の光変調器では、第1電極及び第2電極は光導波路を厚み方向に挟むように配置される。さらに、第1電極の凸部は、本体部の幅方向の端部から光導波路側に突出していることにより、本体部と比較してリッジ型の光導波路の近くに存在する。別の観点では、第1電極において、本体部の底面(本体部における光導波路と対向する面)と光導波路の上面(光導波路における本体部と対向する面)との間隔は、凸部と光導波路との間隔よりも遥かに大きい。このため、第1電極の本体部と光導波路との間に十分な厚みの低誘電率層が存在する。 In the optical modulator with the first configuration, the first electrode and the second electrode are arranged to sandwich the optical waveguide in the thickness direction. Further, the convex portion of the first electrode protrudes from the end portion in the width direction of the main body toward the optical waveguide, so that the convex portion of the first electrode is located closer to the ridge-shaped optical waveguide than the main body. From another perspective, in the first electrode, the distance between the bottom surface of the main body (the surface facing the optical waveguide in the main body) and the top surface of the optical waveguide (the surface facing the main body in the optical waveguide) is between the convex portion and the optical waveguide. It is much larger than the distance from the wave path. Therefore, a sufficiently thick low dielectric constant layer exists between the main body of the first electrode and the optical waveguide.

 光変調器の作動時、第1電極からリッジ型の光導波路に電界が印加される。このとき、第1電極及び第2電極は光導波路を厚み方向に挟むように配置されているため、第1電極から第2電極に向かって電界が作用する。このため、第1電極から光導波路に電界が有効に導かれる。したがって、特許文献1のように電極が光導波路を厚み方向に挟み込んでいない場合と比較して、光導波路に印加される電界の比率を向上することができる。 When the optical modulator operates, an electric field is applied from the first electrode to the ridge-shaped optical waveguide. At this time, since the first electrode and the second electrode are arranged to sandwich the optical waveguide in the thickness direction, an electric field acts from the first electrode toward the second electrode. Therefore, an electric field is effectively guided from the first electrode to the optical waveguide. Therefore, compared to the case where the electrodes do not sandwich the optical waveguide in the thickness direction as in Patent Document 1, the ratio of the electric field applied to the optical waveguide can be improved.

 第1電極の凸部が光導波路の近くに存在するため、光導波路に印加される電界は低下しない。したがって、光導波路に印加される電界の低下を抑制することができる。 Since the convex portion of the first electrode exists near the optical waveguide, the electric field applied to the optical waveguide does not decrease. Therefore, a decrease in the electric field applied to the optical waveguide can be suppressed.

 さらに、第1電極からリッジ型の光導波路に向かう電界は、第1電極の本体部と光導波路との間に存在する十分な厚みの低誘電率層を通過する。これにより、電気信号の感じる実効屈折率が低下する。通常、電気信号の感じる実効屈折率は、光波の感じる実効屈折率よりも大きい。このため、電気信号の感じる実効屈折率と光波の感じる実効屈折率との差が小さくなる。したがって、変調周波数を高めることができる。しかも、光導波路がリッジ型のため、光導波路内に光をより閉じ込めることができる。 Further, the electric field directed from the first electrode toward the ridge-shaped optical waveguide passes through a sufficiently thick low dielectric constant layer existing between the main body of the first electrode and the optical waveguide. This reduces the effective refractive index felt by the electrical signal. Usually, the effective refractive index felt by electrical signals is larger than the effective refractive index felt by light waves. Therefore, the difference between the effective refractive index felt by the electric signal and the effective refractive index felt by the light wave becomes small. Therefore, the modulation frequency can be increased. Moreover, since the optical waveguide is ridge-shaped, light can be further confined within the optical waveguide.

 上記した光変調器は、好ましくは、下記の構成を備える。光導波路の延びる方向に垂直な断面視において、凸部の内側側面と光導波路の側面との間の最短距離が、本体部における光導波路と対向する面と光導波路における本体部と対向する面との間の最短距離よりも小さい(第2の構成)。 The optical modulator described above preferably has the following configuration. In a cross-sectional view perpendicular to the direction in which the optical waveguide extends, the shortest distance between the inner side surface of the convex portion and the side surface of the optical waveguide is the same as the surface of the main body facing the optical waveguide and the surface of the optical waveguide facing the main body. (second configuration).

 第1の構成の光変調器は、好ましくは、下記の構成を備える。光導波路の延びる方向に垂直な断面視において、凸部が、光導波路に接触している(第3の構成)。 The optical modulator of the first configuration preferably has the following configuration. In a cross-sectional view perpendicular to the direction in which the optical waveguide extends, the convex portion is in contact with the optical waveguide (third configuration).

 第3の構成の光変調器の場合、第1電極の凸部から光導波路に電界が直接導かれる。したがって、光導波路に印加される電界の低下をより抑制することができる。 In the case of the optical modulator with the third configuration, the electric field is directly guided from the convex portion of the first electrode to the optical waveguide. Therefore, a decrease in the electric field applied to the optical waveguide can be further suppressed.

 しかもこの場合、第1電極は、凸部のみで光導波路に接触しているに過ぎない。第1電極の屈折率は、光導波路の屈折率よりはるかに小さい。このため、第1電極と光導波路との間の屈折率の関係で、光導波路から漏れた光の第1電極への吸収は抑えられる。したがって、光損失を抑制することができる。 Furthermore, in this case, the first electrode is in contact with the optical waveguide only through the convex portion. The refractive index of the first electrode is much smaller than the refractive index of the optical waveguide. Therefore, due to the refractive index relationship between the first electrode and the optical waveguide, absorption of light leaking from the optical waveguide into the first electrode is suppressed. Therefore, optical loss can be suppressed.

 上記した構成の光変調器は、好ましくは、下記の構成を備える。光導波路の延びる方向に垂直な断面視において、本体部における光導波路と対向する面と光導波路における本体部と対向する面との間の最短距離が、光導波路の最も厚い部分の厚みの6倍以下である(第4の構成)。 The optical modulator with the above configuration preferably has the following configuration. In a cross-sectional view perpendicular to the direction in which the optical waveguide extends, the shortest distance between the surface of the main body facing the optical waveguide and the surface of the optical waveguide facing the main body is 6 times the thickness of the thickest part of the optical waveguide. It is as follows (fourth configuration).

 上記した光変調器は、好ましくは、下記の構成を備える。光導波路の材料は、LiNbOである(第5の構成)。LiNbO(ニオブ酸リチウム)は、特に電気光学効果が高い。本明細書において、LiNbOをLNと記す場合がある。光導波路の材料は、電気光学効果を有するものであれば特に限定されない。例えば、光導波路の材料は、LiTaO(タンタル酸リチウム)であってもよいし、PLZT(ジルコン酸チタン酸鉛ランタン)、KTN(タンタル酸ニオブ酸カリウム)、及びBaTiO(チタン酸バリウム)等であってもよい。 The optical modulator described above preferably has the following configuration. The material of the optical waveguide is LiNbO 3 (fifth configuration). LiNbO 3 (lithium niobate) has a particularly high electro-optic effect. In this specification, LiNbO 3 may be referred to as LN. The material of the optical waveguide is not particularly limited as long as it has an electro-optic effect. For example, the material of the optical waveguide may be LiTaO 3 (lithium tantalate), PLZT (lead lanthanum zirconate titanate), KTN (potassium tantalate niobate), BaTiO 3 (barium titanate), etc. It may be.

 上記の光変調器は、さらに、光導波路が設けられた基板を備えていてもよい(第6の構成)。 The above optical modulator may further include a substrate provided with an optical waveguide (sixth configuration).

 第1~第5の構成のいずれか1つの光変調器は、並列に配置される2つの光変調器ユニットを備えてもよい。2つの光変調器ユニットは、それぞれ、光導波路と、制御電極と、低誘電率層とを含む(第7の構成)。 The optical modulator in any one of the first to fifth configurations may include two optical modulator units arranged in parallel. The two optical modulator units each include an optical waveguide, a control electrode, and a low dielectric constant layer (seventh configuration).

 第7の構成の光変調器は、マッハツェンダ型の光変調器を構成する。この場合、位相変調と合わせて、強度変調も可能になる。これより多値変調を行うことができ、伝送容量を大きくすることができる。しかも、第7の構成の光変調器は、第1~第5の構成と同様の効果を奏する。 The optical modulator of the seventh configuration constitutes a Mach-Zehnder type optical modulator. In this case, intensity modulation is also possible in addition to phase modulation. This allows multilevel modulation to be performed and increases transmission capacity. Moreover, the optical modulator of the seventh configuration provides the same effects as the first to fifth configurations.

 第7の構成の光変調器は、下記の構成を備えてもよい。光変調器ユニットの各々は、さらに、光導波路が設けられた基板を含む。2つの光変調器ユニットのうち、一方の光変調器ユニットの基板は、他方の光変調器ユニットの基板と並列に配置される(第8の構成)。 The optical modulator with the seventh configuration may include the following configuration. Each of the optical modulator units further includes a substrate provided with an optical waveguide. The substrate of one of the two optical modulator units is arranged in parallel with the substrate of the other optical modulator unit (eighth configuration).

 第8の構成の光変調器は、下記の構成を備えてもよい。2つの光変調器ユニットのうち、一方の光変調器ユニットの基板は、他方の光変調器ユニットの基板と一体であり、一方の光変調器ユニットの光導波路と、他方の光変調器ユニットの光導波路とは、相互に自発分極の向きが反転している。一方の光変調器ユニットの第1電極は、他方の光変調器ユニットの第1電極と一体に形成されている。一方の光変調器ユニットの第2電極は、他方の光変調器ユニットの第2電極と一体に形成されている。一方の光変調器ユニットの第1電極及び他方の光変調器ユニットの第1電極には、相互に同じ位相の電圧が印加される(第9の構成)。 The optical modulator with the eighth configuration may include the following configuration. Of the two optical modulator units, the substrate of one optical modulator unit is integrated with the substrate of the other optical modulator unit, and the optical waveguide of one optical modulator unit and the optical waveguide of the other optical modulator unit are connected to each other. The direction of spontaneous polarization is opposite to that of the optical waveguide. The first electrode of one optical modulator unit is integrally formed with the first electrode of the other optical modulator unit. The second electrode of one optical modulator unit is integrally formed with the second electrode of the other optical modulator unit. Voltages having the same phase are applied to the first electrode of one optical modulator unit and the first electrode of the other optical modulator unit (ninth configuration).

 第9の構成の光変調器では、一方の光変調器ユニットの基板を、他方の光変調器ユニットの基板と共用することができる。一方の光変調器ユニットの光導波路及び他方の光変調器ユニットの光導波路は、共用された基板に設けられる。このため、一方の光変調器ユニットの光導波路と他方の光変調器ユニットの光導波路との間隔を小さくすることができる。しかも、一方の光変調器ユニットの第1電極を、他方の光変調器ユニットの第1電極と共用することができる。さらに、一方の光変調器ユニットの第2電極を、他方の光変調器ユニットの第2電極と共用することができる。このため、光導波路同士の間隔をより小さくすることができる。したがって、光変調器全体の幅をより狭めることができる。 In the optical modulator of the ninth configuration, the substrate of one optical modulator unit can be shared with the substrate of the other optical modulator unit. The optical waveguide of one optical modulator unit and the optical waveguide of the other optical modulator unit are provided on a shared substrate. Therefore, the distance between the optical waveguide of one optical modulator unit and the optical waveguide of the other optical modulator unit can be reduced. Furthermore, the first electrode of one optical modulator unit can be shared with the first electrode of the other optical modulator unit. Furthermore, the second electrode of one optical modulator unit can be shared with the second electrode of the other optical modulator unit. Therefore, the distance between the optical waveguides can be further reduced. Therefore, the width of the entire optical modulator can be further reduced.

 以下、本開示の実施形態について、図面を参照しつつ説明する。各図において同一又は相当の構成については同一符号を付し、同じ説明を繰り返さない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each figure, the same or equivalent components are designated by the same reference numerals, and the same description will not be repeated.

 <第1実施形態>
 [光変調器100の構成]
 図1は、第1実施形態に係る光変調器100の断面を示す模式図である。図1には、光導波路2の延びる方向に垂直な断面が示される。光導波路2の延びる方向は、光導波路2に沿う方向とも言える。本明細書において、特に断りがない限り、断面は、光導波路2又は後述する光導波路2A,2Bの延びる方向に垂直な断面を意味する。光変調器100の断面において、全体を支持する支持板7が最も下にあり、光変調器100の厚み方向は上下方向に相当し、光変調器100の幅方向は左右方向に相当する。ただし、本明細書において、上、下、左及び右は、説明の便宜上で定めたものであり、実際の光変調器100の姿勢を限定するものではない。
<First embodiment>
[Configuration of optical modulator 100]
FIG. 1 is a schematic diagram showing a cross section of an optical modulator 100 according to the first embodiment. FIG. 1 shows a cross section perpendicular to the direction in which the optical waveguide 2 extends. The direction in which the optical waveguide 2 extends can also be said to be a direction along the optical waveguide 2. In this specification, unless otherwise specified, a cross section means a cross section perpendicular to the direction in which the optical waveguide 2 or optical waveguides 2A and 2B described below extend. In the cross section of the optical modulator 100, the support plate 7 that supports the whole is located at the bottom, the thickness direction of the optical modulator 100 corresponds to the up-down direction, and the width direction of the optical modulator 100 corresponds to the left-right direction. However, in this specification, upper, lower, left, and right are defined for convenience of explanation, and do not limit the actual posture of the optical modulator 100.

 図1を参照して、光変調器100は、基板1と、光導波路2と、第1電極3と、第2電極4と、低誘電率層5と、を備える。第1電極3及び第2電極4は、光導波路2を通過する光を制御するための制御電極に含まれる。 Referring to FIG. 1, an optical modulator 100 includes a substrate 1, an optical waveguide 2, a first electrode 3, a second electrode 4, and a low dielectric constant layer 5. The first electrode 3 and the second electrode 4 are included in a control electrode for controlling light passing through the optical waveguide 2.

 第1電極3は、基板1の上の位置に配置される。第1電極3及び第2電極4は、互いに電位差を形成する。第1電極3は、例えば信号電極である。第2電極4は、第1電極3と電位差を形成する限り、特に限定されない。第2電極4は、例えば接地電極である。第2電極4は、第1電極3の電圧とは逆位相の電圧を印加する逆信号電極であってもよい。 The first electrode 3 is placed above the substrate 1 . The first electrode 3 and the second electrode 4 form a potential difference with each other. The first electrode 3 is, for example, a signal electrode. The second electrode 4 is not particularly limited as long as it forms a potential difference with the first electrode 3. The second electrode 4 is, for example, a ground electrode. The second electrode 4 may be a reverse signal electrode that applies a voltage having an opposite phase to the voltage of the first electrode 3.

 第2電極4は、基板1の下の位置に配置される。要するに、第1電極3及び第2電極4は光導波路2を上下方向(厚み方向)に挟むように配置される。本実施形態の光変調器100は、さらに、補助低誘電率層6を備える。基板1、光導波路2、低誘電率層5、第1電極3、第2電極4及び補助低誘電率層6は、支持板7によって支持される。支持板7は、最も下に配置される。 The second electrode 4 is placed below the substrate 1. In short, the first electrode 3 and the second electrode 4 are arranged to sandwich the optical waveguide 2 in the vertical direction (thickness direction). The optical modulator 100 of this embodiment further includes an auxiliary low dielectric constant layer 6. The substrate 1 , the optical waveguide 2 , the low dielectric constant layer 5 , the first electrode 3 , the second electrode 4 and the auxiliary low dielectric constant layer 6 are supported by a support plate 7 . The support plate 7 is arranged at the bottom.

 光導波路2は、電気光学効果を有する材料からなる。光導波路2の材質は、例えばLNである。光導波路2は、基板1に形成されている。具体的には、基板1は、リッジ型の光導波路2を有する。つまり、基板1は、上部に凸条を有し、この凸条が光導波路2として機能する。例えば、フォトリソグラフィ、エッチングを利用して、基板1の素材であるウエハに加工を施すことにより、光導波路2となる凸条が基板1上に形成される。凸条は、その厚み方向及び幅方向において光を閉じ込めることができる。基板1は、光導波路2と同じ材料で構成されていてもよい。ただし、基板1の材料は、光導波路2の材料と異なってもよい。この場合、基板1の材料は、例えばSiである。 The optical waveguide 2 is made of a material that has an electro-optic effect. The material of the optical waveguide 2 is, for example, LN. The optical waveguide 2 is formed on the substrate 1. Specifically, the substrate 1 has a ridge-shaped optical waveguide 2. That is, the substrate 1 has a protrusion on its upper part, and this protrusion functions as the optical waveguide 2. For example, by processing a wafer, which is the material of the substrate 1, using photolithography or etching, a protruding strip that will become the optical waveguide 2 is formed on the substrate 1. The protrusions can confine light in the thickness direction and width direction. The substrate 1 may be made of the same material as the optical waveguide 2. However, the material of the substrate 1 may be different from the material of the optical waveguide 2. In this case, the material of the substrate 1 is, for example, Si.

 光導波路2は、例えば、厚み(上下方向の寸法)よりも幅(左右方向の寸法)の方が大きい断面形状を有することができる。図1において、リッジ型の光導波路2の断面形状は、実質的に幅広の概ね矩形状である。この場合、光導波路2の断面形状は、幅方向に延びる第1辺と、第1辺と平行に配置され、幅方向に延びる第2辺とを含む。光導波路2の断面形状は、それぞれ厚み方向に延びる第3辺及び第4辺をさらに含んでいる。図1に示す例において、第1辺及び第2辺は一対の長辺であり、第3辺及び第4辺は一対の短辺である。光導波路2の断面形状が幅広の矩形状の場合、一対の長辺のうちの一方の長辺(上側の第1辺)が基板1の表面と平行であり、他方の長辺(下側の第2辺)が基板1の表面上に位置する。 For example, the optical waveguide 2 can have a cross-sectional shape in which the width (the horizontal dimension) is larger than the thickness (the vertical dimension). In FIG. 1, the cross-sectional shape of the ridge-type optical waveguide 2 is substantially wide and generally rectangular. In this case, the cross-sectional shape of the optical waveguide 2 includes a first side extending in the width direction and a second side arranged parallel to the first side and extending in the width direction. The cross-sectional shape of the optical waveguide 2 further includes a third side and a fourth side, each extending in the thickness direction. In the example shown in FIG. 1, the first side and the second side are a pair of long sides, and the third side and the fourth side are a pair of short sides. When the cross-sectional shape of the optical waveguide 2 is a wide rectangle, one of the pair of long sides (the first side on the upper side) is parallel to the surface of the substrate 1, and the other long side (the first side on the lower side) is parallel to the surface of the substrate 1. The second side) is located on the surface of the substrate 1.

 光導波路2の断面において、長辺である第1辺及び第2辺は、短辺である第3辺及び第4辺によって接続されている。図1に示す例において、光導波路2の第3辺及び第4辺は、光変調器100の断面視で直線状であり、光導波路2の厚み方向と平行になっている。ただし、第3辺及び第4辺は、光導波路2の厚み方向に対して傾いていてもよいし、必ずしも直線状である必要はない。光変調器100の断面視で、光導波路2の第3辺及び第4辺は、曲線状を有していてもよいし、直線と曲線とを組み合わせた形状を有していてもよい。また、第3辺の長さは、第4辺の長さと同じであってもよいし、異なっていてもよい。同様に、第1辺の長さは、第2辺の長さと同じであってもよいし、異なっていてもよい。 In the cross section of the optical waveguide 2, the first and second long sides are connected by the third and fourth short sides. In the example shown in FIG. 1, the third side and the fourth side of the optical waveguide 2 are linear in a cross-sectional view of the optical modulator 100, and are parallel to the thickness direction of the optical waveguide 2. However, the third side and the fourth side may be inclined with respect to the thickness direction of the optical waveguide 2, and do not necessarily need to be linear. In a cross-sectional view of the optical modulator 100, the third side and the fourth side of the optical waveguide 2 may have a curved shape, or may have a shape that is a combination of a straight line and a curved line. Moreover, the length of the third side may be the same as the length of the fourth side, or may be different. Similarly, the length of the first side may be the same as the length of the second side, or may be different.

 リッジ型の光導波路2の断面形状は、台形状である場合が多い。この場合、光導波路2の断面形状は、各々が幅方向に延びる上底及び下底と、一対の脚と、を含む。上底と下底は互いに平行である。光導波路2の断面形状が幅広の台形状の場合、上底(上側の短い辺)が基板1の表面と平行であり、下底(下側の長い辺)が基板1の表面上に位置する。 The cross-sectional shape of the ridge-type optical waveguide 2 is often trapezoidal. In this case, the cross-sectional shape of the optical waveguide 2 includes an upper base and a lower base, each extending in the width direction, and a pair of legs. The upper and lower bases are parallel to each other. When the cross-sectional shape of the optical waveguide 2 is a wide trapezoid, the upper base (the upper short side) is parallel to the surface of the substrate 1, and the lower base (lower long side) is located on the surface of the substrate 1. .

 このような断面形状により、リッジ型の光導波路2は、基板1とは反対側に位置される上面2a、及び2つの側面2bを有する。各側面2bは、上面2aの幅方向の端につながる。 With such a cross-sectional shape, the ridge-type optical waveguide 2 has an upper surface 2a located on the opposite side from the substrate 1 and two side surfaces 2b. Each side surface 2b is connected to an end in the width direction of the upper surface 2a.

 基板1の上に、低誘電率層5が積層されている。このため、光導波路2の上に、低誘電率層5が積層されている。この場合、低誘電率層5は、リッジ型の光導波路2の上面2a及び側面2bを直接覆い、さらにその周辺の基板1の上面を直接覆っている。低誘電率層5の誘電率は、光導波路2の誘電率よりも低い。低誘電率層5の材質は、誘電率が光導波路2の誘電率よりも低い限り特に限定されない。低誘電率層5として、例えば、酸化物(例:Al、SiO、LaAlO、LaYO、ZnO、HfO、MgO、Y)が用いられる。低誘電率層5として、ポリマー(例:BCB(ベンゾシクロブテン)、PI(ポリイミド))が用いられてもよい。 A low dielectric constant layer 5 is laminated on the substrate 1 . For this reason, a low dielectric constant layer 5 is laminated on the optical waveguide 2. In this case, the low dielectric constant layer 5 directly covers the top surface 2a and side surface 2b of the ridge-shaped optical waveguide 2, and also directly covers the top surface of the substrate 1 in the periphery thereof. The dielectric constant of the low dielectric constant layer 5 is lower than that of the optical waveguide 2. The material of the low dielectric constant layer 5 is not particularly limited as long as the dielectric constant is lower than the dielectric constant of the optical waveguide 2. As the low dielectric constant layer 5, for example, an oxide (eg, Al 2 O 3 , SiO 2 , LaAlO 3 , LaYO 3 , ZnO, HfO 2 , MgO, Y 2 O 3 ) is used. As the low dielectric constant layer 5, a polymer (eg, BCB (benzocyclobutene), PI (polyimide)) may be used.

 第1電極3と第2電極4は、金属材料からなる。第1電極3は、光導波路2の厚み方向の一方側に設けられている。第2電極4は、光導波路2の厚み方向の他方側に設けられている。図1に示す例では、第1電極3は、基板1の上方に配置され、第2電極4は、基板1の下方に配置されている。 The first electrode 3 and the second electrode 4 are made of metal material. The first electrode 3 is provided on one side of the optical waveguide 2 in the thickness direction. The second electrode 4 is provided on the other side of the optical waveguide 2 in the thickness direction. In the example shown in FIG. 1, the first electrode 3 is arranged above the substrate 1, and the second electrode 4 is arranged below the substrate 1.

 第1電極3は、本体部31と、凸部32と、を含む。本体部31は、光導波路2の厚み方向で光導波路2と対向する。つまり、本体部31は、光導波路2の真上に配置される。本体部31は、光導波路2の上面2aと対向する底面31aを有する。凸部32は、本体部31における幅方向の端部から光導波路2側に突出する。図1に示す例では、凸部32は下方に突出する。凸部32は、本体部31側に位置する内側側面32aを有する。本実施形態では、凸部32は、本体部31における幅方向の両端部のそれぞれに設けられている。ただし、凸部32は、本体部31における幅方向の両端部の一方のみに設けられていてもよい。 The first electrode 3 includes a main body portion 31 and a convex portion 32. The main body portion 31 faces the optical waveguide 2 in the thickness direction of the optical waveguide 2. That is, the main body portion 31 is placed directly above the optical waveguide 2 . The main body portion 31 has a bottom surface 31a facing the top surface 2a of the optical waveguide 2. The convex portion 32 protrudes from the end portion of the main body portion 31 in the width direction toward the optical waveguide 2 side. In the example shown in FIG. 1, the convex portion 32 protrudes downward. The convex portion 32 has an inner side surface 32a located on the main body portion 31 side. In this embodiment, the convex portions 32 are provided at both ends of the main body portion 31 in the width direction. However, the convex portion 32 may be provided only at one of both ends of the main body portion 31 in the width direction.

 低誘電率層5は、第1電極3と光導波路2との間に介在している。具体的には、第1電極3の本体部31と光導波路2との間に、低誘電率層5が介在している。第1電極3の各凸部32は、本体部31の端部から光導波路2側に突出していることにより、本体部31と比較してリッジ型の光導波路2の近くに存在する。別の観点では、光導波路2の厚み方向において、本体部31の底面31aと光導波路2の上面2aとの間隔は、凸部32と光導波路2との間隔よりも遥かに大きい。このため、第1電極3の本体部31と光導波路2との間に十分な厚みの低誘電率層5が存在する。 The low dielectric constant layer 5 is interposed between the first electrode 3 and the optical waveguide 2. Specifically, the low dielectric constant layer 5 is interposed between the main body portion 31 of the first electrode 3 and the optical waveguide 2 . Each of the convex portions 32 of the first electrode 3 protrudes from the end of the main body 31 toward the optical waveguide 2, and thus exists closer to the ridge-shaped optical waveguide 2 than the main body 31. From another perspective, in the thickness direction of the optical waveguide 2, the distance between the bottom surface 31a of the main body portion 31 and the top surface 2a of the optical waveguide 2 is much larger than the distance between the convex portion 32 and the optical waveguide 2. Therefore, a sufficiently thick low dielectric constant layer 5 exists between the main body portion 31 of the first electrode 3 and the optical waveguide 2.

 本実施形態では、第1電極3の各凸部32が光導波路2に接触している。具体的には、第1電極3の凸部32それぞれの内側角部が、光導波路2の幅方向の端部における角部に接触している。つまり、凸部32の内側側面32aと光導波路2の側面2bとの間の最短距離は、ゼロである。凸部32の内側側面32aは、光導波路2の側面2bを覆っていない。 In this embodiment, each convex portion 32 of the first electrode 3 is in contact with the optical waveguide 2. Specifically, the inner corner of each of the convex portions 32 of the first electrode 3 is in contact with the corner at the end of the optical waveguide 2 in the width direction. In other words, the shortest distance between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is zero. The inner side surface 32a of the convex portion 32 does not cover the side surface 2b of the optical waveguide 2.

 さらに、本実施形態では、基板1の下に、補助低誘電率層6が積層されている。支持板7は、補助低誘電率層6の下に積層されている。補助低誘電率層6の誘電率は、低誘電率層5と同様に光導波路2の誘電率よりも低い。補助低誘電率層6の材質は、誘電率が光導波路2の誘電率よりも低い限り特に限定されない。補助低誘電率層6の材質は、低誘電率層5の材質と同じであってもよいし、異なっていてもよい。 Furthermore, in this embodiment, an auxiliary low dielectric constant layer 6 is laminated under the substrate 1. The support plate 7 is laminated under the auxiliary low dielectric constant layer 6. The dielectric constant of the auxiliary low dielectric constant layer 6 is lower than that of the optical waveguide 2, similarly to the low dielectric constant layer 5. The material of the auxiliary low dielectric constant layer 6 is not particularly limited as long as the dielectric constant is lower than the dielectric constant of the optical waveguide 2. The material of the auxiliary low dielectric constant layer 6 may be the same as the material of the low dielectric constant layer 5, or may be different.

 補助低誘電率層6は、第2電極4の周囲を覆っている。本実施形態の例では、第2電極4は、基板1と平行になるように補助低誘電率層6の内部に配置されている。この場合、補助低誘電率層6は、第2電極4の上面及び下面を直接覆っている。ただし、第2電極4は、基板1の下に直接積層されていてもよい。この場合、補助低誘電率層6は、第2電極4の下面を直接覆っている。 The auxiliary low dielectric constant layer 6 covers the second electrode 4. In the example of this embodiment, the second electrode 4 is arranged inside the auxiliary low dielectric constant layer 6 so as to be parallel to the substrate 1 . In this case, the auxiliary low dielectric constant layer 6 directly covers the upper and lower surfaces of the second electrode 4. However, the second electrode 4 may be directly laminated under the substrate 1. In this case, the auxiliary low dielectric constant layer 6 directly covers the lower surface of the second electrode 4.

 [効果]
 本実施形態では、第1電極3及び第2電極4は光導波路2を厚み方向に挟むように配置される。さらに、第1電極3の本体部31と光導波路2との間に十分な厚みの低誘電率層5が存在する。さらに、第1電極3の凸部32は、本体部31の端部から光導波路2側に突出しているため、本体部31に比べてリッジ型の光導波路2の近くに存在する。
[effect]
In this embodiment, the first electrode 3 and the second electrode 4 are arranged to sandwich the optical waveguide 2 in the thickness direction. Furthermore, a sufficiently thick low dielectric constant layer 5 is present between the main body portion 31 of the first electrode 3 and the optical waveguide 2 . Furthermore, since the convex portion 32 of the first electrode 3 protrudes from the end of the main body 31 toward the optical waveguide 2, it is located closer to the ridge-shaped optical waveguide 2 than the main body 31.

 本実施形態の光変調器100によれば、光変調器100の作動時、第1電極3からリッジ型の光導波路2に電界が印加される。このとき、第1電極3及び第2電極4は光導波路2を厚み方向に挟むように配置されている。つまり、第1電極3と第2電極4との間に光導波路2が配置されている。このため、第1電極3から第2電極4に向かって電界が作用する。つまり、電界が上下方向に作用する。このため、第1電極3から光導波路2に電界が有効に導かれる。したがって、光導波路2に対して厚み方向の同じ側に電極が配置され、これらの電極で光導波路2を挟み込んでいない場合と比較して、光導波路2に印加される電界の比率を向上することができる。 According to the optical modulator 100 of this embodiment, an electric field is applied from the first electrode 3 to the ridge-shaped optical waveguide 2 when the optical modulator 100 is operated. At this time, the first electrode 3 and the second electrode 4 are arranged to sandwich the optical waveguide 2 in the thickness direction. That is, the optical waveguide 2 is arranged between the first electrode 3 and the second electrode 4. Therefore, an electric field acts from the first electrode 3 toward the second electrode 4. In other words, the electric field acts in the vertical direction. Therefore, an electric field is effectively guided from the first electrode 3 to the optical waveguide 2. Therefore, the electrodes are arranged on the same side in the thickness direction with respect to the optical waveguide 2, and the ratio of the electric field applied to the optical waveguide 2 is improved compared to the case where the optical waveguide 2 is not sandwiched between these electrodes. I can do it.

 第1電極3の凸部32は、本体部31と比較して光導波路2の近くに存在する。第1電極3の凸部32は、光導波路2に近接して配置されている。電界は第1電極3の凸部32に集中するため、第1電極3から光導波路2に向かう電界の強度は上昇する。このため、光導波路2に印加される電界は低下しない。したがって、光導波路2に印加される電界の低下を抑制することができる。 The convex portion 32 of the first electrode 3 is located closer to the optical waveguide 2 than the main body portion 31. The convex portion 32 of the first electrode 3 is arranged close to the optical waveguide 2 . Since the electric field is concentrated on the convex portion 32 of the first electrode 3, the intensity of the electric field directed from the first electrode 3 toward the optical waveguide 2 increases. Therefore, the electric field applied to the optical waveguide 2 does not decrease. Therefore, a decrease in the electric field applied to the optical waveguide 2 can be suppressed.

 また、第1電極3の本体部31と光導波路2との間に十分な厚みの低誘電率層5が存在する。第1電極3からリッジ型の光導波路2に向かう電界は、十分な厚みの低誘電率層5を通過する。これにより、光導波路2で電気信号の感じる実効屈折率が低下する。このため、電気信号の感じる実効屈折率と光波の感じる実効屈折率との差が小さくなる。したがって、変調周波数を高めることができる。しかも、光導波路2がリッジ型のため、光導波路2内に光をより閉じ込めることができる。 Furthermore, a sufficiently thick low dielectric constant layer 5 exists between the main body portion 31 of the first electrode 3 and the optical waveguide 2. The electric field directed from the first electrode 3 toward the ridge-shaped optical waveguide 2 passes through the sufficiently thick low dielectric constant layer 5. As a result, the effective refractive index felt by the electrical signal in the optical waveguide 2 is reduced. Therefore, the difference between the effective refractive index felt by the electric signal and the effective refractive index felt by the light wave becomes small. Therefore, the modulation frequency can be increased. Moreover, since the optical waveguide 2 is ridge-shaped, light can be further confined within the optical waveguide 2.

 さらに、本実施形態では、第1電極3のうち、本体部31から突出する凸部32が、光導波路2に接触しているため、第1電極3の凸部32から光導波路2に電界が直接導かれる。したがって、光導波路2に印加される電界の低下をより抑制することができる。 Furthermore, in this embodiment, the convex portion 32 of the first electrode 3 that protrudes from the main body 31 is in contact with the optical waveguide 2, so that an electric field is generated from the convex portion 32 of the first electrode 3 to the optical waveguide 2. Directly guided. Therefore, a decrease in the electric field applied to the optical waveguide 2 can be further suppressed.

 本実施形態において、第1電極3は、凸部32のみで光導波路2に接触しているに過ぎない。第1電極3の屈折率は、低誘電率層5の屈折率より小さく、光導波路2の屈折率よりはるかに小さい。このため、第1電極3と光導波路2との間の屈折率の関係で、光導波路2から第1電極3に光が漏れることはない。したがって、光導波路2に第1電極3が接触することにより、光変調器100が機能しなくなることはない。特に、本実施形態では、第1電極3の凸部32の内側角部と光導波路2の幅方向の端部における角部とが局所的に接触しているため、第1電極3と光導波路2との接触面積が小さい。このため、光導波路2から第1電極3への光の吸収がより抑えられ、光損失をより抑制することができる。本明細書において、光導波路2の幅方向の端部における角部とは、光導波路2の幅方向では端から光導波路2の幅の10%までの領域を意味し、光導波路2の厚み方向では端から光導波路2の厚みの10%までの領域を意味する。別の観点では、第1電極3の凸部32の内側角部とは、凸部32の幅方向では端から光導波路2の幅の10%までに相当する領域を意味し、凸部32の厚み方向では端から光導波路2の厚みの10%までに相当する領域を意味する。 In this embodiment, the first electrode 3 is in contact with the optical waveguide 2 only through the convex portion 32. The refractive index of the first electrode 3 is smaller than the refractive index of the low dielectric constant layer 5 and much smaller than the refractive index of the optical waveguide 2. Therefore, due to the refractive index relationship between the first electrode 3 and the optical waveguide 2, light does not leak from the optical waveguide 2 to the first electrode 3. Therefore, the optical modulator 100 will not stop functioning due to the first electrode 3 coming into contact with the optical waveguide 2. In particular, in this embodiment, since the inner corner of the convex portion 32 of the first electrode 3 and the corner at the widthwise end of the optical waveguide 2 are in local contact, the first electrode 3 and the optical waveguide The contact area with 2 is small. Therefore, absorption of light from the optical waveguide 2 to the first electrode 3 can be further suppressed, and optical loss can be further suppressed. In this specification, the corner at the end of the optical waveguide 2 in the width direction means the area from the end to 10% of the width of the optical waveguide 2 in the width direction of the optical waveguide 2, and in the thickness direction of the optical waveguide 2. This means the area from the end to 10% of the thickness of the optical waveguide 2. From another perspective, the inner corner of the convex part 32 of the first electrode 3 means an area corresponding to 10% of the width of the optical waveguide 2 from the end in the width direction of the convex part 32; In the thickness direction, it means a region corresponding to 10% of the thickness of the optical waveguide 2 from the end.

 <第2実施形態>
 図2は、第2実施形態に係る光変調器100の断面を示す模式図である。本実施形態の光変調器100は、第1実施形態の光変調器100を変形したものである。
<Second embodiment>
FIG. 2 is a schematic diagram showing a cross section of the optical modulator 100 according to the second embodiment. The optical modulator 100 of this embodiment is a modification of the optical modulator 100 of the first embodiment.

 図2を参照して、本実施形態の光変調器100では、第1電極3が光導波路2に接触していない。つまり、第1電極3の凸部32それぞれの内側角部が、光導波路2から上方に僅かに離間している。ただし、光導波路2の厚み方向において、第1電極3の凸部32と光導波路2との間隔は、第1実施形態と同様、本体部31と光導波路2との間隔よりも有意に小さい。光導波路2の厚み方向において僅かに離間した凸部32と光導波路2との間には、低誘電率層5が存在している。 Referring to FIG. 2, in the optical modulator 100 of this embodiment, the first electrode 3 is not in contact with the optical waveguide 2. That is, the inner corner portions of each of the convex portions 32 of the first electrode 3 are slightly spaced apart upward from the optical waveguide 2 . However, in the thickness direction of the optical waveguide 2, the distance between the convex portion 32 of the first electrode 3 and the optical waveguide 2 is significantly smaller than the distance between the main body portion 31 and the optical waveguide 2, as in the first embodiment. A low dielectric constant layer 5 exists between the convex portion 32 and the optical waveguide 2, which are slightly spaced apart from each other in the thickness direction of the optical waveguide 2.

 本実施形態の光変調器100でも、第1電極3の凸部32が、本体部31と比較して光導波路2の近くに存在することに変わりはない。このため、第1電極3の凸部32から光導波路2に電界が有効に導かれる。したがって、光導波路2に印加される電界の低下を抑制することができる。 In the optical modulator 100 of this embodiment, the convex portion 32 of the first electrode 3 is still located closer to the optical waveguide 2 than the main body portion 31. Therefore, an electric field is effectively guided from the convex portion 32 of the first electrode 3 to the optical waveguide 2. Therefore, a decrease in the electric field applied to the optical waveguide 2 can be suppressed.

 さらに、本実施形態の光変調器100では、第1電極3の凸部32が光導波路2に接触していないため、光導波路2から漏れた光の第1電極3への吸収はより抑えられる。したがって、光損失をより抑制することができる。 Furthermore, in the optical modulator 100 of this embodiment, since the convex portion 32 of the first electrode 3 is not in contact with the optical waveguide 2, absorption of light leaking from the optical waveguide 2 into the first electrode 3 can be further suppressed. . Therefore, optical loss can be further suppressed.

 もっとも、光導波路2に印加される電界の低下をより抑制するためには、第1実施形態のように、第1電極3の凸部32の内側角部が、光導波路2の幅方向の端部における角部に接触していることが好ましい。 However, in order to further suppress a decrease in the electric field applied to the optical waveguide 2, as in the first embodiment, the inner corner of the convex part 32 of the first electrode 3 is It is preferable that the contact point be in contact with the corner of the section.

 [光導波路2に対する第1電極3の寸法の変形例]
 [変形例1]
 図3~図6は、光変調器100の変形例1を示す模式図である。図3~図6には、光変調器100の断面が示される。変形例1では、図1及び図2に示す光変調器100から光導波路2に対する第1電極3の形態が変更されている。
[Modification of the dimensions of the first electrode 3 with respect to the optical waveguide 2]
[Modification 1]
3 to 6 are schematic diagrams showing modification example 1 of the optical modulator 100. A cross section of the optical modulator 100 is shown in FIGS. 3-6. In modification 1, the form of the first electrode 3 relative to the optical waveguide 2 in the optical modulator 100 shown in FIGS. 1 and 2 is changed.

 図3に示す例では、光導波路2の断面形状は矩形状である。第1電極3において、凸部32の内側側面32aは、幅方向に垂直な形状である。光導波路2に対して、第1電極3の凸部32が、光導波路2の幅方向に僅かに離れている。凸部32の内側側面32aと光導波路2の側面2bとの間の最短距離tcが、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taよりも小さい。 In the example shown in FIG. 3, the cross-sectional shape of the optical waveguide 2 is rectangular. In the first electrode 3, the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction. The convex portion 32 of the first electrode 3 is slightly apart from the optical waveguide 2 in the width direction of the optical waveguide 2 . The shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.

 図4に示す例では、光導波路2の断面形状は台形状である。第1電極3において、凸部32の内側側面32aは、幅方向に垂直な形状である。光導波路2に対して、第1電極3の凸部32が、光導波路2の幅方向に僅かに離れている。凸部32の内側側面32aと光導波路2の側面2bとの間の最短距離tcが、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taよりも小さい。 In the example shown in FIG. 4, the cross-sectional shape of the optical waveguide 2 is trapezoidal. In the first electrode 3, the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction. The convex portion 32 of the first electrode 3 is slightly apart from the optical waveguide 2 in the width direction of the optical waveguide 2 . The shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.

 図5に示す例では、光導波路2の断面形状は矩形状である。第1電極3において、凸部32の内側側面32aは、テーパ形状である。つまり、凸部32の内側側面32aは、本体部31の底面31aと鈍角を成すように形成されている。光導波路2に対して、第1電極3の凸部32が、光導波路2の幅方向に僅かに離れている。凸部32の内側側面32aと光導波路2の側面2bとの間の最短距離tcが、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taよりも小さい。 In the example shown in FIG. 5, the cross-sectional shape of the optical waveguide 2 is rectangular. In the first electrode 3, the inner side surface 32a of the convex portion 32 has a tapered shape. That is, the inner side surface 32a of the convex portion 32 is formed to form an obtuse angle with the bottom surface 31a of the main body portion 31. The convex portion 32 of the first electrode 3 is slightly apart from the optical waveguide 2 in the width direction of the optical waveguide 2 . The shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.

 図6に示す例では、光導波路2に対する第1電極3の寸法は、図3に示す例と同じである。図6に示す例では、基板1の幅方向の両端を覆うように補助低誘電率層6が存在する。別の観点では、基板1の幅は、図3~図5に示す基板1の幅よりも小さい。この場合、電界が印加される領域において、補助低誘電率層6と基板1の割合により、実効屈折率を調整することができる。また、図3~図5に示す例の場合、基板1の形状及び光導波路2の形状を形成するためには、2回のエッチングが必要となる。一方、図6に示す例の場合、1回のエッチングによって、基板1の形状及び光導波路2の形状を形成することが可能である。 In the example shown in FIG. 6, the dimensions of the first electrode 3 with respect to the optical waveguide 2 are the same as in the example shown in FIG. In the example shown in FIG. 6, the auxiliary low dielectric constant layer 6 exists so as to cover both ends of the substrate 1 in the width direction. In another aspect, the width of the substrate 1 is smaller than the width of the substrate 1 shown in FIGS. 3-5. In this case, the effective refractive index can be adjusted by adjusting the ratio of the auxiliary low dielectric constant layer 6 to the substrate 1 in the region where the electric field is applied. Furthermore, in the case of the examples shown in FIGS. 3 to 5, two etching steps are required to form the shape of the substrate 1 and the shape of the optical waveguide 2. On the other hand, in the case of the example shown in FIG. 6, it is possible to form the shape of the substrate 1 and the shape of the optical waveguide 2 by one-time etching.

 [変形例2]
 図7~図10は、光変調器100の変形例2を示す模式図である。図7~図10には、光変調器100の断面が示される。変形例2では、図1及び図2に示す光変調器100から光導波路2に対する第1電極3の形態が変更されている。
[Modification 2]
7 to 10 are schematic diagrams showing a second modification of the optical modulator 100. 7 to 10, cross sections of the optical modulator 100 are shown. In modification 2, the form of the first electrode 3 relative to the optical waveguide 2 in the optical modulator 100 shown in FIGS. 1 and 2 is changed.

 図7に示す例では、光導波路2の断面形状は矩形状である。第1電極3において、凸部32の内側側面32aは、幅方向に垂直な形状である。光導波路2に対して、第1電極3の凸部32が、光導波路2の厚み方向及び幅方向に離れている。凸部32の内側側面32aと光導波路2の側面2bとの間の最短距離tcが、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taよりも小さい。 In the example shown in FIG. 7, the cross-sectional shape of the optical waveguide 2 is rectangular. In the first electrode 3, the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction. The convex portion 32 of the first electrode 3 is spaced apart from the optical waveguide 2 in the thickness direction and width direction of the optical waveguide 2 . The shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2.

 また、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taが、光導波路2の最も厚い部分の厚みtbの6倍以下である。この条件が満たされることが好ましい。その理由を以下に示す。電気信号の感じる実効屈折率を下げることで、光の変調速度を向上させることができる。低誘電率層5を第1電極3と第2電極4との間に設置すれば、電気信号の感じる実効屈折率は小さくなるが、光導波路2に印加される電界が弱まる。低誘電率層5における電圧降下と電気信号の感じる実効屈折率を考慮したときに、低誘電率層5は、光導波路2の6倍程度以下で光変調器を設計すると、両者のバランスが取れ、光損失の低減と電圧印加効率の確保を両立することができる。 Furthermore, the shortest distance ta between the bottom surface 31a of the main body 31 and the top surface 2a of the optical waveguide 2 is six times or less the thickness tb of the thickest part of the optical waveguide 2. Preferably, this condition is met. The reason is shown below. By lowering the effective refractive index perceived by electrical signals, the modulation speed of light can be improved. If the low dielectric constant layer 5 is installed between the first electrode 3 and the second electrode 4, the effective refractive index felt by the electric signal will be reduced, but the electric field applied to the optical waveguide 2 will be weakened. When considering the voltage drop in the low dielectric constant layer 5 and the effective refractive index felt by electric signals, if the low dielectric constant layer 5 is designed to be about 6 times or less than the optical waveguide 2, a balance between the two can be achieved. , it is possible to both reduce optical loss and ensure voltage application efficiency.

 図8に示す例では、光導波路2の断面形状は矩形状である。第1電極3において、凸部32の内側側面32aは、幅方向に垂直な形状である。光導波路2に対して、第1電極3の凸部32の内側角部が、光導波路2の幅方向の端の傍に位置する。別の観点では、第1電極3の凸部32が、基板1の直ぐ近くまで延びている。ただし、第1電極3の凸部32は、光導波路2の側面2bの全体を覆わない。すなわち、光導波路2の幅方向に沿って見たとき、第1電極3の凸部32は光導波路2と部分的に重複する。凸部32の内側側面32aと光導波路2の側面2bとの間の最短距離tcが、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taよりも小さい。また、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taが、光導波路2の最も厚い部分の厚みtbの6倍以下である。 In the example shown in FIG. 8, the cross-sectional shape of the optical waveguide 2 is rectangular. In the first electrode 3, the inner side surface 32a of the convex portion 32 has a shape perpendicular to the width direction. With respect to the optical waveguide 2, the inner corner of the convex portion 32 of the first electrode 3 is located near the end of the optical waveguide 2 in the width direction. From another point of view, the convex portion 32 of the first electrode 3 extends to the immediate vicinity of the substrate 1. However, the convex portion 32 of the first electrode 3 does not cover the entire side surface 2b of the optical waveguide 2. That is, when viewed along the width direction of the optical waveguide 2, the convex portion 32 of the first electrode 3 partially overlaps with the optical waveguide 2. The shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2. Further, the shortest distance ta between the bottom surface 31a of the main body 31 and the top surface 2a of the optical waveguide 2 is six times or less the thickness tb of the thickest portion of the optical waveguide 2.

 図8に示す例の場合、第1電極3の凸部32の内側角部が、光導波路2の幅方向の端の傍に位置するため、光導波路2に強い電界を印加することができる。このため、消費電力を抑えることが可能になる。 In the case of the example shown in FIG. 8, the inner corner of the convex portion 32 of the first electrode 3 is located near the end of the optical waveguide 2 in the width direction, so a strong electric field can be applied to the optical waveguide 2. Therefore, it becomes possible to suppress power consumption.

 図9に示す例では、光導波路2の断面形状は矩形状である。第1電極3において、凸部32の内側側面32aは、テーパ形状である。この場合、図8に示す例と比較して、第1電極3の凸部32の内側側面32aが、光導波路2の幅方向の端部における角部の近くに位置する。凸部32の内側側面32aと光導波路2の側面2bとの間の最短距離tcが、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taよりも小さい。また、本体部31の底面31aと光導波路2の上面2aとの間の最短距離taが、光導波路2の最も厚い部分の厚みtbの6倍以下である。 In the example shown in FIG. 9, the cross-sectional shape of the optical waveguide 2 is rectangular. In the first electrode 3, the inner side surface 32a of the convex portion 32 has a tapered shape. In this case, compared to the example shown in FIG. 8, the inner side surface 32a of the convex portion 32 of the first electrode 3 is located near the corner at the end of the optical waveguide 2 in the width direction. The shortest distance tc between the inner side surface 32a of the convex portion 32 and the side surface 2b of the optical waveguide 2 is smaller than the shortest distance ta between the bottom surface 31a of the main body portion 31 and the upper surface 2a of the optical waveguide 2. Further, the shortest distance ta between the bottom surface 31a of the main body 31 and the top surface 2a of the optical waveguide 2 is six times or less the thickness tb of the thickest portion of the optical waveguide 2.

 図9に示す例の場合、第1電極3の凸部32の内側側面32aが、光導波路2の幅方向の端部における角部の近くに位置するため、凸部32の内側角部及び内側側面32aから光導波路2に電界を導くことができ、光導波路2に強い電界を印加することができる。このため、図8に示す例と比較して、消費電力を抑えることが可能になる。 In the case of the example shown in FIG. 9, since the inner side surface 32a of the convex part 32 of the first electrode 3 is located near the corner of the widthwise end of the optical waveguide 2, the inner side surface 32a of the convex part 32 An electric field can be guided to the optical waveguide 2 from the side surface 32a, and a strong electric field can be applied to the optical waveguide 2. Therefore, compared to the example shown in FIG. 8, power consumption can be reduced.

 図10に示す例では、第1電極3の凸部32の内側側面32aが、光導波路2の幅方向の端部における角部に接触している。この場合、第1電極3が凸部32によって光導波路2と比較的小さい面積で接触するため、光導波路2から第1電極3への光の吸収を最小限に抑えつつ、光導波路2により強い電界を印加することができる。 In the example shown in FIG. 10, the inner side surface 32a of the convex portion 32 of the first electrode 3 is in contact with the corner at the end of the optical waveguide 2 in the width direction. In this case, since the first electrode 3 contacts the optical waveguide 2 with a relatively small area through the convex portion 32, absorption of light from the optical waveguide 2 to the first electrode 3 is minimized, and the optical waveguide 2 is strengthened. An electric field can be applied.

 [変形例3]
 図11及び図12は、光変調器100の変形例3を示す模式図である。図11及び図12には、光変調器100の断面が示される。変形例3では、図1に示す光変調器100から光導波路2に対する第1電極3の形態が変更されている。
[Modification 3]
11 and 12 are schematic diagrams showing a third modification of the optical modulator 100. 11 and 12 show cross sections of the optical modulator 100. In modification 3, the form of the first electrode 3 relative to the optical waveguide 2 in the optical modulator 100 shown in FIG. 1 is changed.

 図11に示す例の場合、第1電極3の凸部32の先端面が、光導波路2の上面2aと接触している。図12に示す例の場合、第1電極3の凸部32の内側側面32aが、光導波路2の側面2bと接触している。いずれの場合も、第1電極3の凸部32が狭い範囲で光導波路2と接触しているため、光導波路2により強い電界を印加することができる。このため、消費電力を抑えることが可能になる。 In the case of the example shown in FIG. 11, the tip surface of the convex portion 32 of the first electrode 3 is in contact with the upper surface 2a of the optical waveguide 2. In the example shown in FIG. 12, the inner side surface 32a of the convex portion 32 of the first electrode 3 is in contact with the side surface 2b of the optical waveguide 2. In either case, since the convex portion 32 of the first electrode 3 is in contact with the optical waveguide 2 in a narrow range, a stronger electric field can be applied to the optical waveguide 2. Therefore, it becomes possible to suppress power consumption.

 ただし、第1電極3の凸部32と光導波路2との接触範囲が大きすぎると、光導波路2から凸部32に光が漏れて第1電極3に吸収されてしまう。光の吸収を最小限に抑えつつ、光導波路2に強い電界を印加するには、図1に示すように、第1電極3の凸部32の内側角部が、光導波路2の角部に接触していることが好ましい。 However, if the contact range between the convex part 32 of the first electrode 3 and the optical waveguide 2 is too large, light will leak from the optical waveguide 2 to the convex part 32 and be absorbed by the first electrode 3. In order to apply a strong electric field to the optical waveguide 2 while minimizing light absorption, as shown in FIG. Preferably, they are in contact.

 <第3実施形態>
 図13は、第3実施形態に係る光変調器101の断面を示す模式図である。本実施形態の光変調器101は、マッハツェンダ型の光変調器を構成する。本実施形態の光変調器101は、第1実施形態の光変調器100を変形したものであり、その第1実施形態の光変調器100の各要素をそれぞれ並列に配置したものである。
<Third embodiment>
FIG. 13 is a schematic diagram showing a cross section of the optical modulator 101 according to the third embodiment. The optical modulator 101 of this embodiment constitutes a Mach-Zehnder type optical modulator. The optical modulator 101 of this embodiment is a modification of the optical modulator 100 of the first embodiment, and each element of the optical modulator 100 of the first embodiment is arranged in parallel.

 図13を参照して、本実施形態の光変調器101は、2つの光変調器ユニット100A,100Bを備える。 Referring to FIG. 13, the optical modulator 101 of this embodiment includes two optical modulator units 100A and 100B.

 一方の光変調器ユニット100Aは、基板1Aと、リッジ型の光導波路2Aと、第1電極3Aと、第2電極4Aと、低誘電率層5Aと、補助低誘電率層6Aと、を備える。他方の光変調器ユニット100Bは、基板1Bと、リッジ型の光導波路2Bと、第1電極3Bと、第2電極4Bと、低誘電率層5Bと、補助低誘電率層6Bと、を備える。光変調器ユニット100A,光変調器ユニット100Bは、支持板7によって支持される。 One optical modulator unit 100A includes a substrate 1A, a ridge-shaped optical waveguide 2A, a first electrode 3A, a second electrode 4A, a low dielectric constant layer 5A, and an auxiliary low dielectric constant layer 6A. . The other optical modulator unit 100B includes a substrate 1B, a ridge-shaped optical waveguide 2B, a first electrode 3B, a second electrode 4B, a low dielectric constant layer 5B, and an auxiliary low dielectric constant layer 6B. . The optical modulator unit 100A and the optical modulator unit 100B are supported by a support plate 7.

 基板1A,1Bは、上記の基板1に相当する。光導波路2A,2Bは、上記の光導波路2に相当する。低誘電率層5A,5Bは、上記の低誘電率層5に相当する。第1電極3A,3Bは、上記の第1電極3に相当する。第2電極4A,4Bは、上記の第2電極4に相当する。補助低誘電率層6A,6Bは、上記の補助低誘電率層6に相当する。 The substrates 1A and 1B correspond to the substrate 1 described above. The optical waveguides 2A and 2B correspond to the optical waveguide 2 described above. The low dielectric constant layers 5A and 5B correspond to the low dielectric constant layer 5 described above. The first electrodes 3A and 3B correspond to the first electrode 3 described above. The second electrodes 4A and 4B correspond to the second electrode 4 described above. The auxiliary low dielectric constant layers 6A and 6B correspond to the auxiliary low dielectric constant layer 6 described above.

 光導波路2Aが設けられた基板1Aは、光導波路2Bが設けられた基板1Bと並列に配置されている。つまり、光導波路2Aと光導波路2Bとが相互に横並びに配置されている。光導波路2A及び光導波路2Bの上流において、1本の入側光導波路が光導波路2A及び光導波路2Bに分岐している。光導波路2A及び光導波路2Bの下流において、光導波路2A及び光導波路2Bが1本の出側光導波路に合流している。 The substrate 1A provided with the optical waveguide 2A is arranged in parallel with the substrate 1B provided with the optical waveguide 2B. That is, the optical waveguide 2A and the optical waveguide 2B are arranged side by side. Upstream of the optical waveguide 2A and the optical waveguide 2B, one input optical waveguide branches into the optical waveguide 2A and the optical waveguide 2B. At the downstream of the optical waveguide 2A and the optical waveguide 2B, the optical waveguide 2A and the optical waveguide 2B merge into one output optical waveguide.

 本実施形態の光変調器101であっても、上記した第1実施形態と同様の効果を得ることができる。さらに、本実施形態の光変調器101は、マッハツェンダ型の光変調器を構成するため、位相変調と合わせて、強度変調も可能になる。これより多値変調を行うことができ、伝送容量を大きくすることができる。 Even with the optical modulator 101 of this embodiment, effects similar to those of the first embodiment described above can be obtained. Furthermore, since the optical modulator 101 of this embodiment constitutes a Mach-Zehnder type optical modulator, intensity modulation is also possible in addition to phase modulation. This allows multilevel modulation to be performed and increases transmission capacity.

 本実施形態の光変調器101では、第2実施形態のように第1電極3Aが光導波路2Aに接触していず、第1電極3Bが光導波路2Bに接触していなくてもよい。 In the optical modulator 101 of this embodiment, the first electrode 3A does not need to be in contact with the optical waveguide 2A as in the second embodiment, and the first electrode 3B does not need to be in contact with the optical waveguide 2B.

 <第4実施形態>
 図14及び図15は、第4実施形態に係る光変調器101を示す模式図である。図14には、光変調器101の断面が示される。図15には、光変調器101を上方から見たときの平面が示される。本実施形態の光変調器101は、第3実施形態の光変調器101を変形したものである。
<Fourth embodiment>
14 and 15 are schematic diagrams showing an optical modulator 101 according to the fourth embodiment. FIG. 14 shows a cross section of the optical modulator 101. FIG. 15 shows a plane when the optical modulator 101 is viewed from above. The optical modulator 101 of this embodiment is a modification of the optical modulator 101 of the third embodiment.

 図14及び図15を参照して、光変調器ユニット100Aの基板1Aは、光変調器ユニット100Bの基板1Bと一体である。光導波路2Aと光導波路2Bとは、相互に自発分極の向きが反転している。基板1A及び基板1Bの材料が、LNやLiTaO等のような強誘電性結晶である場合、その強誘電性結晶の材料に高電圧を印加することにより、自発分極の向きの反転は可能である。反転分極した箇所は原子間力顕微鏡、又は電子顕微鏡による観察で認識することができる。この場合、光変調器101の作動時、第1電極3A及び第1電極3Bには、相互に同じ位相の電圧が印加される。 Referring to FIGS. 14 and 15, the substrate 1A of the optical modulator unit 100A is integrated with the substrate 1B of the optical modulator unit 100B. The optical waveguide 2A and the optical waveguide 2B have opposite directions of spontaneous polarization. When the material of the substrate 1A and the substrate 1B is a ferroelectric crystal such as LN or LiTaO3 , the direction of spontaneous polarization cannot be reversed by applying a high voltage to the ferroelectric crystal material. be. The location where the polarization is reversed can be recognized by observation using an atomic force microscope or an electron microscope. In this case, when the optical modulator 101 is operated, voltages having the same phase are applied to the first electrode 3A and the first electrode 3B.

 本実施形態の光変調器101では、基板1Aと基板1Bとを共用することができる。光導波路2A及び光導波路2Bは、共用された基板1A,1Bに設けられる。このため、光導波路2Aと光導波路2Bとの間隔を小さくすることができる。 In the optical modulator 101 of this embodiment, the substrate 1A and the substrate 1B can be used in common. The optical waveguide 2A and the optical waveguide 2B are provided on shared substrates 1A and 1B. Therefore, the distance between the optical waveguide 2A and the optical waveguide 2B can be reduced.

 さらに、光変調器ユニット100Aの第1電極3Aは、光変調器ユニット100Bの第1電極3Bと一体に形成されている。つまり、第1電極3Bが第1電極3Aと電気的に一体である。この場合、第1電極3Bを第1電極3Aと共用することができる。さらに、光変調器ユニット100Aの第2電極4Aは、光変調器ユニット100Bの第2電極4Bと一体に形成されている。つまり、第2電極4Bが第2電極4Aと電気的に一体である。この場合、第2電極4Bを第2電極4Aと共用することができる。このため、光導波路2Aと光導波路2Bとの間隔をより小さくすることができる。したがって、光変調器101全体の幅をより狭めることができ、光変調器101の小型化をより実現することができる。 Further, the first electrode 3A of the optical modulator unit 100A is formed integrally with the first electrode 3B of the optical modulator unit 100B. That is, the first electrode 3B is electrically integrated with the first electrode 3A. In this case, the first electrode 3B can be shared with the first electrode 3A. Furthermore, the second electrode 4A of the optical modulator unit 100A is formed integrally with the second electrode 4B of the optical modulator unit 100B. That is, the second electrode 4B is electrically integrated with the second electrode 4A. In this case, the second electrode 4B can be used in common with the second electrode 4A. Therefore, the distance between the optical waveguide 2A and the optical waveguide 2B can be made smaller. Therefore, the width of the entire optical modulator 101 can be further reduced, and the size of the optical modulator 101 can be further reduced.

 その他、本開示は上記の実施形態に限定されず、本開示の趣旨を逸脱しない範囲で、種々の変更が可能である。 In addition, the present disclosure is not limited to the above-described embodiments, and various changes can be made without departing from the spirit of the present disclosure.

 100:光変調器
 1:基板
 2:光導波路
 3:第1電極
 31:本体部
 32:凸部
 4:第2電極
 5:低誘電率層
 6:補助低誘電率層
 7:支持板
100: Optical modulator 1: Substrate 2: Optical waveguide 3: First electrode 31: Main body portion 32: Convex portion 4: Second electrode 5: Low dielectric constant layer 6: Auxiliary low dielectric constant layer 7: Support plate

Claims (9)

 電気光学効果を有する材料からなるリッジ型の光導波路と、
 前記光導波路を通過する光を制御するための制御電極と、
 誘電率が前記光導波路よりも低い低誘電率層と、を備え、
 前記制御電極は、互いに電位差を形成する第1電極及び第2電極を含み、
 前記光導波路の延びる方向に垂直な断面視において、
 前記第1電極は、前記光導波路の厚み方向の一方側に設けられ、
 前記第2電極は、前記光導波路の厚み方向の他方側に設けられ、
 前記第1電極は、前記光導波路の厚み方向で前記光導波路と対向する本体部と、前記本体部における幅方向の端部から前記光導波路側に突出する凸部と、を含み、
 前記第1電極の前記本体部と前記光導波路との間に前記低誘電率層が介在している、光変調器。
a ridge-shaped optical waveguide made of a material having an electro-optic effect;
a control electrode for controlling light passing through the optical waveguide;
a low dielectric constant layer having a dielectric constant lower than that of the optical waveguide,
The control electrode includes a first electrode and a second electrode that form a potential difference with each other,
In a cross-sectional view perpendicular to the direction in which the optical waveguide extends,
The first electrode is provided on one side of the optical waveguide in the thickness direction,
The second electrode is provided on the other side of the optical waveguide in the thickness direction,
The first electrode includes a main body portion facing the optical waveguide in the thickness direction of the optical waveguide, and a convex portion protruding toward the optical waveguide from an end in the width direction of the main body portion,
An optical modulator, wherein the low dielectric constant layer is interposed between the main body portion of the first electrode and the optical waveguide.
 請求項1に記載の光変調器であって、
 前記光導波路の延びる方向に垂直な断面視において、前記凸部の内側側面と前記光導波路の側面との間の最短距離が、前記本体部における前記光導波路と対向する面と前記光導波路における前記本体部と対向する面との間の最短距離よりも小さい、光変調器。
The optical modulator according to claim 1,
In a cross-sectional view perpendicular to the direction in which the optical waveguide extends, the shortest distance between the inner side surface of the convex portion and the side surface of the optical waveguide is the same as the distance between the surface of the main body portion facing the optical waveguide and the surface of the optical waveguide that faces the optical waveguide. An optical modulator that is smaller than the shortest distance between the main body and the opposing surface.
 請求項1に記載の光変調器であって、
 前記光導波路の延びる方向に垂直な断面視において、前記凸部が、前記光導波路に接触している、光変調器。
The optical modulator according to claim 1,
An optical modulator, wherein the convex portion is in contact with the optical waveguide in a cross-sectional view perpendicular to the direction in which the optical waveguide extends.
 請求項1~3のいずれか1項に記載の光変調器であって、
 前記光導波路の延びる方向に垂直な断面視において、前記本体部における前記光導波路と対向する面と前記光導波路における前記本体部と対向する面との間の最短距離が、前記光導波路の最も厚い部分の厚みの6倍以下である、光変調器。
The optical modulator according to any one of claims 1 to 3,
In a cross-sectional view perpendicular to the direction in which the optical waveguide extends, the shortest distance between the surface of the main body facing the optical waveguide and the surface of the optical waveguide facing the main body is the thickest of the optical waveguide. An optical modulator that is less than 6 times the thickness of the part.
 請求項1~4のいずれか1項に記載の光変調器であって、
 前記光導波路の前記材料は、LiNbOである、光変調器。
The optical modulator according to any one of claims 1 to 4,
The optical modulator, wherein the material of the optical waveguide is LiNbO3 .
 請求項1~5のいずれか1項に記載の光変調器であって、さらに、
 前記光導波路が設けられた基板を備える、光変調器。
The optical modulator according to any one of claims 1 to 5, further comprising:
An optical modulator comprising a substrate provided with the optical waveguide.
 請求項1~5のいずれか1項に記載の光変調器であって、
 前記光導波路と、前記制御電極と、前記低誘電率層とをそれぞれ含み、並列に配置される2つの光変調器ユニット、を備える、光変調器。
The optical modulator according to any one of claims 1 to 5,
An optical modulator comprising two optical modulator units arranged in parallel, each including the optical waveguide, the control electrode, and the low dielectric constant layer.
 請求項7に記載の光変調器であって、
 前記光変調器ユニットの各々は、さらに、前記光導波路が設けられた基板を含み、
 前記2つの光変調器ユニットのうち、一方の光変調器ユニットの前記基板は、他方の光変調器ユニットの前記基板と並列に配置される、光変調器。
The optical modulator according to claim 7,
Each of the optical modulator units further includes a substrate provided with the optical waveguide,
An optical modulator, wherein the substrate of one of the two optical modulator units is arranged in parallel with the substrate of the other optical modulator unit.
 請求項8に記載の光変調器であって、
 前記2つの光変調器ユニットのうち、一方の光変調器ユニットの前記基板は、他方の光変調器ユニットの前記基板と一体であり、
 前記一方の光変調器ユニットの前記光導波路と、前記他方の光変調器ユニットの前記光導波路とは、相互に自発分極の向きが反転し、
 前記一方の光変調器ユニットの前記第1電極は、前記他方の光変調器ユニットの前記第1電極と一体に形成され、
 前記一方の光変調器ユニットの前記第2電極は、前記他方の光変調器ユニットの前記第2電極と一体に形成されており、
 前記一方の光変調器ユニットの前記第1電極及び前記他方の光変調器ユニットの前記第1電極には、相互に同じ位相の電圧が印加される、光変調器。
The optical modulator according to claim 8,
Of the two optical modulator units, the substrate of one optical modulator unit is integrated with the substrate of the other optical modulator unit,
The optical waveguide of the one optical modulator unit and the optical waveguide of the other optical modulator unit have mutually opposite directions of spontaneous polarization,
The first electrode of the one optical modulator unit is integrally formed with the first electrode of the other optical modulator unit,
The second electrode of the one optical modulator unit is integrally formed with the second electrode of the other optical modulator unit,
An optical modulator, wherein voltages having the same phase are applied to the first electrode of the one optical modulator unit and the first electrode of the other optical modulator unit.
PCT/JP2022/043697 2022-03-17 2022-11-28 Optical modulator WO2023176055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024507508A JPWO2023176055A1 (en) 2022-03-17 2022-11-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-042071 2022-03-17
JP2022042071 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176055A1 true WO2023176055A1 (en) 2023-09-21

Family

ID=88023158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043697 WO2023176055A1 (en) 2022-03-17 2022-11-28 Optical modulator

Country Status (2)

Country Link
JP (1) JPWO2023176055A1 (en)
WO (1) WO2023176055A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201686A1 (en) * 2004-03-12 2005-09-15 Cole James H. Low loss electrodes for electro-optic modulators
JP2008250258A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Optical control device
WO2015087988A1 (en) * 2013-12-11 2015-06-18 住友大阪セメント株式会社 Electro-optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201686A1 (en) * 2004-03-12 2005-09-15 Cole James H. Low loss electrodes for electro-optic modulators
JP2008250258A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Optical control device
WO2015087988A1 (en) * 2013-12-11 2015-06-18 住友大阪セメント株式会社 Electro-optical element

Also Published As

Publication number Publication date
JPWO2023176055A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
JP4589354B2 (en) Light modulation element
US7088875B2 (en) Optical modulator
US8600197B2 (en) Optical control device
JP4445977B2 (en) Light control element
US20080031564A1 (en) Optical modulator
US7099524B2 (en) Optical modulator
JP4151798B2 (en) Light modulator
JP2008046573A (en) Light modulator
JP7259486B2 (en) optical modulator
US8031986B2 (en) Optical control device
JP3250712B2 (en) Polarization independent light control element
WO2023176055A1 (en) Optical modulator
JP3924289B2 (en) Light modulation element and manufacturing method thereof
WO2023176054A1 (en) Optical modulator
JP7538208B2 (en) Light Modulation Element
JP7538209B2 (en) Light Modulation Element
JP7155848B2 (en) Optical waveguide element and optical modulator
JP3067760B1 (en) Waveguide type optical device
US20070081755A1 (en) Optical modulator
JPH05297332A (en) Optical modulator
JP4926423B2 (en) Light modulator
JP4920212B2 (en) Light modulator
WO2023176053A1 (en) Optical modulator
JPH06250131A (en) Light control element
WO2022049770A1 (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024507508

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22932318

Country of ref document: EP

Kind code of ref document: A1