WO2023173768A1 - 一种变换气全温程模拟旋转移动床变压吸附(FTrSRMPSA)增强反应制氢工艺 - Google Patents
一种变换气全温程模拟旋转移动床变压吸附(FTrSRMPSA)增强反应制氢工艺 Download PDFInfo
- Publication number
- WO2023173768A1 WO2023173768A1 PCT/CN2022/130759 CN2022130759W WO2023173768A1 WO 2023173768 A1 WO2023173768 A1 WO 2023173768A1 CN 2022130759 W CN2022130759 W CN 2022130759W WO 2023173768 A1 WO2023173768 A1 WO 2023173768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adsorption
- gas
- reaction
- rotary valve
- tower
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/06—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
- B01D53/08—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
- C01B3/58—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/42—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/508—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/169—Controlling the feed
Definitions
- the present invention relates to the field of producing hydrogen (H 2 ) by reforming and converting hydrocarbons, and more specifically to a hydrogen production process that simulates a rotating moving bed pressure swing adsorption enhanced reaction in the full temperature range of shift gas.
- Shift gas mainly refers to the gas containing 30 to 60% H 2 ( Volume ratio, the following is similar), 10-20% CO, 10-20% CO 2 , unreacted water, hydrocarbons and other hydrocarbons or organic by-products and other impurities.
- the CO is further mixed with Water vapor undergoes a medium-temperature or low-temperature shift reaction under a certain temperature, pressure and shift catalyst to generate H 2 and CO 2 , and then undergoes organic amine absorption or pressure swing adsorption (PSA) decarburization and pressure swing adsorption (PSA) to purify H 2 steps to obtain high-purity H 2 products.
- PSA pressure swing adsorption
- PSA pressure swing adsorption
- One method is to develop a dual-functional composite catalyst and its supporting integrated reactor and process.
- the core is to integrate the catalytic reforming reaction and the shift reaction in a reactor.
- This method has been applied in industrial devices, such as In the process of methanol hydrogen production, because the methanol steam catalytic reforming (cracking) reaction temperature and pressure are relatively mild, most of the catalysts used are copper-based, which is equivalent to the reaction temperature and pressure of iron-based catalysts in the shift reaction. The two reactions The thermal equilibrium process is relatively similar, and the effect of achieving bifunctional catalyst is ideal.
- catalysts used in catalytic reforming reactions such as methane are high-temperature catalysts, such as nickel series, and the reaction temperatures are mostly 700 to 900°C, which is much higher than the 100 to 300°C reaction temperature required for medium and low-temperature shift catalysts. This leads to a significant increase in the difficulty of developing dual-function catalysts.
- SERP Standard Air Products Chemical Company
- the basic principle of adsorption enhancement reaction is to use Le Chatelier thermodynamics principle, that is, when the system reaches (chemical) equilibrium, if any conditions of the equilibrium state are changed, such as concentration, temperature, pressure, etc., the equilibrium will move in the direction that can weaken the change. move.
- Le Chatelier thermodynamics principle that is, when the system reaches (chemical) equilibrium, if any conditions of the equilibrium state are changed, such as concentration, temperature, pressure, etc., the equilibrium will move in the direction that can weaken the change. move.
- the SERP process first developed by APCI for pressure swing regeneration of fuel cell hydrogen supply is used for hydrogen production by methane steam conversion.
- the adsorbent used is a high temperature and water resistant reversible chemical adsorbent (K 2 CO 3 - Hydrotalcite), used for selective adsorption and removal of CO 2 from the reaction zone with a reaction temperature of 400 to 550°C.
- the saturated adsorbent is regenerated through PSA cycle operation, and the nickel active component is loaded on aluminum oxide.
- the conversion catalyst and CO 2 chemical adsorbent are mixed and filled in the pressure swing adsorption enhanced reactor to form a PSA enhanced reaction process with two axial flow fixed beds. Among them, one adsorption reactor performs the reaction-adsorption step, and the other performs the reverse reduction step. Desorption and regeneration steps of pressure, vacuum flushing and reverse pressurization.
- the operating pressure of the reaction-adsorption step is 70 ⁇ 350kPa. Normal pressure reverse release and vacuum flushing.
- the flushing gas is 5 ⁇ 10% H 2 steam, containing H 2 , the desorbed gas of methane (CH 4 ), CO 2 and water is condensed to remove water and then output as fuel gas.
- the pressurized gas is the raw material gas of the mixed gas of methane and steam.
- the purity of the obtained H2 product is 94.4%, where, The CH4 content is 5.6%, CO2 is 40ppmv, CO is 30ppmv, and the methane conversion rate is as high as 73%, which is higher than the traditional two-step method of catalytic conversion and shift reaction of methane steam catalytic reforming (SMR) to produce converted gas.
- SMR methane steam catalytic reforming
- the conversion rate of 50-55% is much higher, which not only increases the H 2 concentration in the conversion gas, but also reduces the load of subsequent PSA hydrogen extraction. It also simplifies the hydrogen production process and saves investment, equipment and operating costs.
- the SERP process developed by APCI has some obvious shortcomings. First, the process cannot directly produce H 2 products with higher purity. It still requires further hydrogen extraction through PSA to obtain high-purity H 2; second, the selected The adsorbent is relatively special and requires high temperature resistance and water resistance. It is difficult to apply general commercial adsorbents; thirdly, the reaction temperature is too high. Even the nickel-based catalyst in APCI's SERP process can be reduced to 500 with the CO2 removal adsorbent.
- the adsorbent used is a chemical adsorbent, It is a consumable adsorbent. Not only does it consume a lot and cannot be recycled like traditional adsorbents, but it is also affected by the temperature difference stress during adsorption and desorption regeneration at higher temperatures and water vapor contents, which will affect the thermal stability of the adsorbent itself. has a greater impact on the performance; fifthly, due to the small height-to-diameter ratio of the adsorption reactor in the SERP system, it is also very unfavorable for the diffusion path of CO 2 adsorption.
- APCI's SERP process for hydrogen production by steam methane reforming is difficult to replace the traditional SMR process.
- APCI has developed another "Temperature Swing Adsorption Enhanced Reaction (TSSER)" process using temperature swing adsorption for hydrogen production from water gas (shift gas). Since the iron-based catalyst for the shift reaction has a relatively low action temperature, the reaction - The temperature of the adsorption step is 300 to 400°C, which is lower than the 400 to 550°C temperature of SERP. This is beneficial to the adsorption of CO 2 and further improves the purity of the produced H 2. However, the desorption and regeneration temperature of the adsorbent reaches 500 to 550°C.
- the adsorbent will be more affected by the temperature difference stress during adsorption and desorption regeneration at the same time at higher temperature and water vapor content, and the negative impact on the thermal stability of the adsorbent itself will be greater than that of the SERP process. Therefore, in the TSSER process The replacement frequency of the adsorbent is higher than that of the SERP process, and the cost also increases accordingly.
- APCI Company has to use chemical adsorbents that are temperature-resistant, water-resistant, and have extremely fast adsorption rates to match the movement of the reaction-adsorption equilibrium system.
- the price is short service life of the adsorbent, high cost, and high purity of H 2 products.
- the yield is relatively low, but other factors that affect adsorption efficiency are ignored, such as gas flow distribution, CO 2 adsorption mass transfer path, adsorbent and catalyst selection and corresponding filling methods, or the solid shape of the adsorbent/catalyst itself, and the adsorption and desorption cycle operation methods. wait.
- the present invention proposes a full temperature range simulated rotational movement pressure swing adsorption (Full Temperature range Simulated Rotated Moving PSA (FTrSRMPSA) new process is used to remove CO 2 and purify H 2 through the pressure swing adsorption enhanced reaction of shift gas.
- FTrSRMPSA Full Temperature range Simulated Rotated Moving PSA
- This process is based on pressure swing adsorption enhanced reaction (PSA-ERP) and makes full use of shift
- PSA-ERP pressure swing adsorption enhanced reaction
- the temperature and pressure of the gas, the properties of the medium and low temperature shift catalyst/adsorbent, the adsorption separation coefficient and physical and chemical properties of the product H 2 and CO 2 components in the temperature range of 90 to 150°C, and the pressure range of 0.2 to 1.0MPa The difference is that an axial flow fixed-bed adsorption reactor with multiple mixed loads of medium and low-temperature shift catalysts and adsorbents will be placed in the center of a multi-channel rotary valve and placed around it on a circular rotating tray and passed through the pipeline.
- a hydrogen production process for simulated rotating moving bed pressure swing adsorption enhanced reaction in the full temperature range of shift gas is composed of n (2 ⁇ n ⁇ 10 natural integer) loaded with an axial flow fixed bed adsorption reactor (tower) consisting of a medium and low temperature shift catalyst and a composite adsorbent mixed with catalyst/adsorbent in a certain proportion and having a certain height-to-diameter ratio and placed in a
- the adsorption reactor (tower) on the annular rotating tray with a rotation speed ( ⁇ 2 , unit of seconds (s)/cycle) has m (natural integer of 5 ⁇ m ⁇ 36) channels and is placed in the annular
- the rotary valve in the center of the rotary tray rotates at a rotation speed ( ⁇ 1 , in seconds (s)/cycle), the rotary valve and the material pipeline for the material gas in and out of the system, and the pipeline connected to the a
- the process pipeline between the upper and lower parts of the (tower) and the rotary valve, as well as the corresponding driving mechanism, buffer tank , condenser/ Or heat exchanger/or superheater/or booster/or vacuum pump to form an FTrSRMPSA-ERP system which is characterized in that the pipeline connecting the inlet and outlet of the adsorption reactor (tower) and the inlet and outlet of the m-channel rotary valve is through It is preset that the built-in pipes in the annular rotating tray are connected to form a process pipeline and are the same as the number m of the rotary valve channels.
- the position of the material gas entering and exiting the FtrSRMPSA-ERP system is distributed and fixed by the rotating channel of the m-channel rotary valve.
- the material gas Including the raw gas (F) of the conversion gas, H 2 product gas (H 2 PG), purge gas outside the system (P), final charge outside the system (FR) and reverse purge (D) or/and vacuum air (V) or/desorption gas (D) composed of flushing waste gas (PW), and corresponding connections including buffer tank/condenser/or heat exchanger/or superheater/or booster/or vacuum pump Equipment, the position of the process gas flow in the process pipeline connected between the inlet and outlet of the m-channel rotary valve and the inlet and outlet of the adsorption reactor (tower) through the built-in pipeline in the annular rotating tray moves alternately, and the process gas is in the FtrSRMPSA -Flow within the ERP system, including raw gas (F), forward air purging (PP), flushing air inside and outside the system (P), equal pressure degassing (ED), reverse air purging (D) or/and vacuum air ( V) or/and desorption gas (D) composed of flushing waste gas (P
- the specific adsorption and desorption cycle process is,
- the raw material conversion gas (F) from outside the FTrSRMPSA-ERP system enters the raw gas (F) inlet of the multi-channel rotary valve, and passes through the raw gas (F) channel and outlet of the rotary valve, the built-in pipe of the annular rotating tray and the annular
- the process pipelines connected to the inlets of one or more axial flow fixed-bed adsorption reactors (towers) corresponding to the reaction-adsorption (CR-A) state on the rotating tray enter from the bottom of the adsorption reactor (tower) for reaction-adsorption.
- the m-channel rotary valve With the annular rotating tray continuing to rotate step by step, or/with the adsorption reactor (tower) at the end of reaction-adsorption (CR-A) to another or several in the flushing (P) or pressure equalization (ER) state
- the adsorption reactor (tower) performs the sequential discharge (PP) or equal pressure drop (ED) step through the process pipeline in the system, and the adsorption reactor (tower) after completing the sequential discharge (PP) or equal pressure drop (ED) step, then
- the m-channel rotary valve and the annular rotating tray continue to rotate and step into the reverse release (D) or/and vacuum (V) or/and flushing (P) steps.
- the desorbed gas (D) is enriched CO 2 gas, or directly enters the condenser
- the high-concentration CO 2 is removed as a by-product, or enters the decarbonization and H 2 recovery process, or is used as a carbon-hydrogen ratio adjustment to return to the natural gas/light hydrocarbon steam reforming reaction to prepare shift gas or feed gas, and then ends the reverse release (D) or/with vacuuming (V) or/with flushing (P) steps of the adsorption reactor (tower), as the m-channel rotary valve and the annular rotating tray continue to rotate and step into a uniform pressure rise (ER) or/and waiting area (-) step, flows out from the adsorption reactor (tower) in the equal pressure drop (ED) step and passes through the annular rotating tray built-in pipeline and the rotary valve equalized pressure drop (ED) channel And enter the adsorption reactor (tower) in the equal pressure rise (ER) step to equalize the pressure, so that the pressure in the adsorption reactor (tower)
- the adsorption reactor (tower) of the equal pressure rise (ER) or/and waiting area (-) step is completed, and the m-channel rotary valve and the annular rotating tray are further connected. Rotate and enter the final charging (FR) step.
- the H 2 product gas (H 2 PG) or raw material conversion gas (F) flows through the m channel rotary valve as the final charging (FR).
- the final charging (FR) channel is connected with the annular rotation
- the pipeline built into the tray enters the adsorption reactor (tower) and is pressurized until the pressure in the adsorption reactor (tower) reaches the reaction-adsorption pressure required for the reaction-adsorption (CR-A) step, and prepares for the next round of reaction-adsorption and desorption cycle operation, in which each adsorption reactor (tower) may perform one step or multiple steps and perform each step through the m-channel rotary valve rotation direction and rotation speed ( ⁇ 1 ) and the circular rotation
- the control and matching between the rotation direction and rotation speed ( ⁇ 2 ) of the tray allows the m channels in the rotating m-channel rotary valve to react with the n adsorption reactors (towers) in the rotating annular rotating tray - adsorption and desorption
- the timing table in the cyclic operation is connected from beginning to end to form a circle, and completely forms the operation cycle of the reaction-adsorption and desorption process of the pressure
- the process gas position of the (tower) is continuously changed by matching the rotation direction and rotation speed ( ⁇ 1 ) of the m-channel rotary valve with the rotation direction and rotation speed ( ⁇ 2 ) of the annular rotating tray, so that each adsorption reactor ( Tower) repeats the reaction-adsorption and desorption steps, which is equivalent to each fixed-bed adsorption reactor (tower) completing its own reaction-adsorption and desorption steps while the m-channel rotary valve and the annular rotating tray rotate, thus forming a "
- the product H 2 product gas (H 2 PG) obtained from the shift gas has a purity of greater than or equal to 99.99% and a yield of greater than or equal to 92%.
- the described hydrogen production process of simulated rotating moving bed pressure swing adsorption enhanced reaction in the full temperature range of the shift gas is characterized in that the rotation direction of the m-channel rotary valve and the annular rotating tray and their regulation are
- the hydrogen production process of a full temperature range simulated rotating moving bed pressure swing adsorption enhanced reaction of shifted gas is characterized in that the full temperature range simulated rotating moving bed pressure swing adsorption enhanced reaction (FTrSRMPSA-ERP ) system’s reaction-adsorption and desorption closed-cycle operation steps also include 1 to 2 times of pressure equalization, 1 to 2 batch flushing, 1 time of vacuuming, and 1 to 2 times of heating and cooling heat exchange temperature changes.
- the order of pressure adsorption, one sequential release and equal pressure drop are mutually misaligned, and there is one waiting area step.
- the number of adsorption reactors (towers) (n) and the number of corresponding m-channel rotary valve channels (m) increase, and the adsorption tower height
- the (half) diameter ratio (h/r) is reduced, and the rotation speed of the m-channel rotary valve or annular rotating tray is fast enough or the rotation period is short enough
- the shift gas adsorption enhances the separation effect of the products H 2 and CO 2 in the reaction system Infinitely close to the "steady state" mass transfer separation process of the moving bed, the shift gas reaction balance tends to move toward the complete reaction direction, and finally the H 2 product gas (H 2 PG) purity is greater than or equal to 99.999%, and the product gas yield is greater than equals 95%.
- the described conversion gas full temperature range simulated rotating moving bed pressure swing adsorption enhanced reaction hydrogen production process is characterized in that the conversion gas (F) as the raw material is either methane or methanol or Other hydrocarbons obtained through steam catalytic reforming or thermal cracking contain 30 to 60% H 2 (v), 10 to 20% CO (v), 10 to 20% CO 2 (v), and unreacted water.
- the described shift gas full temperature range simulates the rotating moving bed pressure swing adsorption enhanced reaction hydrogen production process, which is characterized in that the flushing gas (P), or the purge gas (PP) from the system ), or the H 2 product gas (H 2 PG) from outside the system, is flushed in batches through one or more openings in the m-channel rotary valve channel (channel). The number of openings is at most 4.
- the preferred purge gas (PP) from the system is used as the flushing gas (P), and the yield of H 2 product gas (H 2 PG) reaches more than 93%.
- the described hydrogen production process of simulated rotating moving bed pressure swing adsorption enhanced reaction in the full temperature range of the shift gas is characterized in that the step of reverse release (D) adopts a vacuuming method for desorption, and an additional vacuum pump is provided.
- D adopts a vacuuming method for desorption
- an additional vacuum pump is provided.
- the logistics pipeline of the desorbed gas flowing out of the m-channel rotary valve or directly connected to the external pipeline connected to the outlet end of the adsorption tower on the annular rotating tray and equipped with a control valve on the external pipeline, preferably with the circular
- the external pipeline connected to the outlet end of the adsorption tower on the annular rotating tray is directly connected and a control valve is provided on the external pipeline.
- the described shift gas full temperature range simulated rotating moving bed pressure swing adsorption enhanced reaction hydrogen production process is characterized in that the final charging (FR), or the shift gas raw material (F) from outside the system ) or H 2 product gas (H 2 PG).
- H 2 product gas (H 2 PG) purity requirement is greater than or equal to 99.99%, it is preferred to use H 2 product gas (H 2 PG) as the final charge (FR). .
- the described shift gas full temperature range simulated rotating moving bed pressure swing adsorption enhanced reaction process is characterized in that the full temperature range simulated rotating moving bed pressure swing adsorption enhanced reaction (FTrSRMPSA-ERP) system n loaded mixed catalysts/adsorbents, or composed of iron-based medium-temperature shift catalysts and lithium carbon molecular sieves/activated carbon particles stacked at intervals in a ratio of 1:1 to 1.5, or composed of carbon nanotubes loaded with iron active components ( CNTs) or carbon fiber (CNFs)/activated carbon (AC)/alumina composite catalytic adsorbent particles, or made of polymer organic matter or carbon nanotubes or carbon fibers or silicate fibers as the base material and loaded with iron-based active components
- Honeycomb and bundled structured composite catalytic adsorbents are preferably composed of iron-based medium temperature shift catalysts and lithium carbon molecular sieves/activated carbon particles stacked at intervals in a ratio of 1:1.1, or composed of silicate fibers ( It
- the fixed bed shift reaction in hydrogen production from hydrocarbon (oxygen) compounds and the fixed bed PSA separation process can be coupled and simulated into a full temperature range rotating wheel moving bed pressure swing adsorption enhanced reaction hydrogen production process. , and can directly obtain H 2 product gas with high purity and high yield under medium-low temperature (90 ⁇ 150°C) and low pressure (0.2 ⁇ 1.0MPa) operating conditions, with a purity of 99.99% or more and a yield of 92-95% or more. , breaking through the limitation of the existing adsorption-enhanced reaction hydrogen production process that cannot directly obtain high-purity and high-yield H 2 product gas, further reducing investment and costs.
- the present invention can improve the traditional fixed bed adsorption reactor (tower) process.
- the PSA cycle operation of multi-combination and multi-step adsorption and desorption is realized, so that the shift gas reaction balance tends to move in the direction of complete reaction, thereby forming a "simulated rotating moving bed” pressure swing adsorption enhanced reaction process, realizing the axis It simulates the rotating moving bed pressure swing adsorption enhanced reaction process based on the directional flow fixed bed pressure swing adsorption enhanced reaction, and can be flexibly adjusted according to the technical index requirements of product H2 and covers multi-channel rotary valves and traditional fixed Bed PSA combination process and existing moving bed PSA processes such as typical fan-shaped adsorption chamber rotating wheel PSA or fast wheel PSA moving bed process.
- the present invention greatly reduces the number of program control valves and regulating valves of the traditional fixed-bed PSA enhanced reaction hydrogen production device. It also reduces the complexity of manufacturing the fast wheel PSA device and can replace foreign imports, further reducing the cost. Investment and production costs.
- the present invention adapts to the working conditions where the raw gas fluctuates greatly, including the components, by regulating and matching the rotation direction and rotation speed ( ⁇ 1 and ⁇ 2 ) of the multi-channel rotary valve and the annular rotating tray. , concentration, pressure, flow, etc., the operation flexibility is large, and the catalyst/adsorbent mixing forms are diverse, the service life is long, and the production cost is low.
- the present invention adjusts the rotation direction of the rotary valve and the annular rotating tray and the matching of the rotation speed ⁇ 1 and ⁇ 2 as well as the adsorption pressure and temperature.
- Figure 1 is a schematic flow diagram of Embodiment 1 of the present invention.
- Figure 2 is a schematic flow chart of Embodiment 2 of the present invention.
- a shift gas full temperature range simulated rotating moving bed pressure swing adsorption enhanced reaction hydrogen production process in which the full temperature range simulated rotating moving bed is loaded with an iron-based medium temperature shift catalyst and lithium carbon molecular sieve
- Four fixed-bed adsorption reaction towers with axial flow and a height-to-diameter ratio of 2 to 3, composed of mixed catalyst/adsorbent mixed with adsorbent and activated carbon and stacked at intervals of 1:1.2, are placed in a rotating speed of ⁇ 2
- F raw material gas
- H 2 product gas H 2 PG
- D reverse gas release
- D desorption gas
- PW flushing waste gas
- PW flushing waste gas
- Gas channel, the raw gas (F) material pipeline outside the system and the inlet end of the 7-channel rotary valve are sequentially equipped with a compressor, raw gas (F) buffer tank, and superheater and are connected to each other.
- the reverse bleed (D) and The desorbed gas (D) composed of flushing waste gas (PW) flows out of the material pipeline at the outlet of the 7-channel rotary valve and successively connects with heat exchanger 2, desorbed gas (D) buffer tank, condenser, non-condensable gas 1 and CO 2 absorption tower , the non-condensable gas 2 is connected to the raw gas (F) material pipeline, and the condensate water is connected to the steam boiler, the water vapor is connected to the heat exchanger 1 and the superheater, and the H 2 product gas (H 2 PG) flowing out of the outlet of the 7-channel rotary valve ) material pipeline is connected to the H 2 product gas (H 2 PG) buffer tank.
- the feed gas (F) is a hydrogen-containing shift gas obtained from natural gas through steam catalytic reforming. Its typical composition is hydrogen (H 2 ) concentration 55% (v/v), carbon monoxide (CO) concentration 15%, carbon dioxide (CO 2 ) 5%, water vapor 15%, methane (CH 4 ) 8%, and light hydrocarbon components 2%, through the compressor Pressurized to 0.6 ⁇ 0.8MPa and superheated by the raw material gas (F) buffer tank and superheater, the temperature is 120 ⁇ 130°C.
- the raw material gas (F) enters from the through-hole material pipe connected to the inlet of the 7-channel rotary valve channel.
- the reaction-adsorption (CR-A) step of reaction (CR) and adsorption (A) the non-adsorbed phase gas flows out from the outlet end of the adsorption reaction tower 1 and is connected to the adsorption reaction tower 1, the annular rotating tray built-in pipeline and 7 channels.
- Hydrogen (H 2 ) flows out from the product gas (PG) material pipeline connected to the 7- channel rotary valve and the H 2 product gas (H 2 PG) buffer tank.
- H 2 product gas (H 2 PG) with a purity greater than or equal to 99.99% (v/v) enters the H 2 product gas (H 2 PG) buffer tank and is directly exported.
- CR-A reaction adsorption
- the adsorption reaction tower 1 rotates to the position of the adsorption reaction tower 2 in Figure 1 to perform the operations of equalizing pressure drop (ED) and parallel discharge (PP).
- Step: The pressure-equalized degassing (ED) flowing out of the adsorption reaction tower 1 flows through the built-in pipeline of the annular rotating tray and the 7-channel rotary valve uniform pressure-decompressing (ED) channel (such as m 3) and its outlet end and the ring
- the built-in pipeline of the shaped rotating tray is connected to the process pipeline at the inlet end of the adsorption reaction tower 4 which is in the pressure equalization (ER) step, and then enters the adsorption reaction tower 4 (at this time, the position of the tower has stepped to the initial position of the adsorption reaction tower 1). Equalize the pressure until the pressures in the adsorption reaction tower 1 and the adsorption reaction tower 4 are equal to 0.2 to 0.3MPa.
- the adsorption reaction tower 1 of the (ED) step enters the purge (PP) step, and the purge gas (PP) flowing out from it flows through the annular rotating tray built-in pipeline and the 7-channel rotary valve as the purge gas (P).
- the pressure is reversely reduced from the adsorption reaction tower 1 to normal pressure and the reverse release gas (D) flows out as the desorption gas (D).
- the non-condensable gas 1 generated from the condenser directly enters the CO 2 absorption tower using organic amine as the absorbent for decarbonization, thereby producing a high concentration of rich product CO 2 , and the resulting non-condensable gas 2 is After heat exchange with the reverse gas (D) in the heat exchanger 2, it is directly returned to the raw gas (F) to further recover the H 2 and CO.
- the condensate generated from the condenser is water, which is formed after entering the steam boiler. The water vapor is exchanged by heat exchanger 1 and then enters the superheater. Together with the raw material gas (F), it forms a superheated raw material gas and enters the FTrSRMPSA-ERP system.
- the ratio of the amount of circulating water vapor to the newly added water (steam) can be Adjust according to the ratio requirements of H(H 2 O):C(CO) in the feed gas (F) in the shift reaction, so that the shift reaction and CO 2 adsorption can reach a complete dynamic balance.
- the rotary valve continues to rotate synchronously in the same direction.
- the adsorption reaction tower 1 that has completed the reverse release (D) step enters the flushing (P) step during the continuous movement.
- the purge gas (PP) enters the adsorption reaction tower 1 as a flushing gas (P) for flushing (P).
- the flushing exhaust gas (PW) generated therefrom flows through the annular rotating tray built-in pipeline and the 7-channel rotary valve flushing exhaust gas (PW).
- the position of the adsorption reaction tower 1 that has completed the flushing (P) step moves to the initial position of the adsorption reaction tower 4 in Figure 1 and enters the equal pressure rise (ER ) and the final filling (FR) step, the pressure-equalizing drop gas (ED) flowing out from the adsorption reaction tower 3 which is in the pressure-equalizing (ED) step flows through the annular rotating tray built-in pipeline and the 7-channel rotary valve to equalize the pressure drop.
- P flushing
- ER equal pressure rise
- FR final filling
- ED equal pressure rise
- ER equal pressure rise
- ER pressure equalization
- PSA pressure swing adsorption
- CR-A reactive adsorption-average pressure drop (ED)/forward discharge (PP)-reverse discharge (D)/flush (P)-pressure equalization (ER)/final charging (FR) step
- ED reactive adsorption
- PP forward discharge
- D forward discharge
- P flush
- ER flush
- FR final charging
- the material gases and process gases of 2, 3 and 4 also continuously rotate in the same direction and synchronously through the annular rotating tray and the 7-channel rotary valve during the closed-loop cyclic operation of reaction adsorption and desorption in the adsorption reaction tower 1 and pass through the 7 channels.
- the rotary valve regularly switches 7 channels alternately and synchronously and regularly switches the inlet and outlet positions of materials or process gases in each adsorption reaction tower to perform corresponding reaction adsorption and desorption closed-loop cycle operation steps.
- the closed-loop cycle operation steps of each adsorption reaction tower All correspond to the closed-loop circulation operation steps of the other three adsorption towers.
- the hydrogen (H 2 ) concentration is 55% (v/v)
- the carbon monoxide (CO) concentration is 15%
- the carbon dioxide (CO 2 ) concentration is 5 %
- water vapor 15% is 15%
- the yield is greater than or equal to 92%, achieving the "double high" of high purity and high yield of the simulated rotating PSA process based on the axial flow fixed bed of the adsorption enhanced reaction (SERP) process.
- SERP adsorption enhanced reaction
- the shift gas is the raw material gas that is not pressurized by a compressor but is pressurized to 0.2MPa by a blower or directly comes from the 0.2MPa shift produced by the natural gas catalytic reforming reaction unit.
- the gas enters the FTrSRMPSA-ERP system, and a vacuum system is added with an external pipeline connecting the outlet end of the adsorption reaction tower and the vacuum pump, and the CO 2 absorption tower is omitted.
- the rotation speed of the annular rotating tray in the system is ⁇ 2 Adjust to 0, that is, it does not rotate, and the rotation direction of the 7-channel rotary valve still maintains the counterclockwise direction, and its rotation speed ⁇ 1 is adjusted to the level of 200-300s.
- the initial positions of the four adsorption reaction towers are consistent with Example 1, but they are not fixed.
- the 7-channel rotary valve rotates counterclockwise regularly (speed) and alternately switches regularly (speed) so that each adsorption reaction tower undergoes reaction-adsorption (CR-A)-reverse release (D)/vacuum.
- V vacuum flushing
- VP vacuum flushing
- FR final filling
- the formed water vapor then passes through the heater and enters the system together with the raw material gas for a closed cycle operation of reaction-adsorption and desorption regeneration.
- each step the position of the process gas entering and exiting the adsorption reaction tower is constantly changed through the rotation direction and rotation speed ( ⁇ 1 ) of the 7-channel rotary valve, so that each adsorption reaction tower can repeat the reaction-adsorption and desorption steps, which is equivalent to each
- Each fixed-bed adsorption reaction tower completes its respective reaction-adsorption and desorption steps while rotating with the 7-channel rotary valve without rotating, thereby forming a pressure swing adsorption enhanced reaction process that "simulates a rotating moving bed". From this, The purity of the product H 2 obtained from the shift gas containing H 2 /CO/CO 2 /H 2 O/CH 4 is greater than or equal to 99.9%, and its yield is greater than or equal to 92%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Separation Of Gases By Adsorption (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
本发明公开了一种变换气全温程模拟旋转移动床变压吸附(FTrSRMPSA)增强反应制氢工艺,将置于一多通道旋转阀中央且在其周围安置于一圆环形旋转托盘上多个混合装载的中低温变换催化剂与吸附剂的轴向流固定床吸附反应器并通过管道连接以及调控旋转阀旋转方向与旋转速度(ω1)、圆环形旋转托盘旋转方向与旋转速度(ω2),使得流经吸附反应床层的气体,在不断地通过进出每个吸附反应器进出口的位置及每个吸附反应床层在旋转同时完成各自的反应-吸附与解吸再生步骤的传质传热,实现了轴向流固定床变压吸附基础上的模拟旋转移动床变压吸附增强反应过程,从中直接获得氢气(H2)产品气,纯度大于等于99.9-99.99%,收率大于等于92〜95%,且同时副产高纯度二氧化碳(CO2)。
Description
本发明涉碳氢化合物重整转化制取氢气(H
2)领域,更具体的说是涉及一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺。
变换气主要是指来自轻烃类混合物、醇类等含氧化物与水蒸气在一定的温度、压力及重整催化剂作用下与水蒸气催化重整转化后生成的含有30~60%H
2(体积比,以下类同)、10~20%CO、10~20%CO
2,未反应的水、碳氢化合物及其它烃类或有机物副产物等杂质组成构成的混合气体,其中的CO进一步与水蒸气在一定的温度、压力及变换催化剂作用下进行中温或低温变换反应生成H
2与CO
2,从而再经有机胺吸收或变压吸附(PSA)脱碳与变压吸附(PSA)提纯H
2工序得到高纯度H
2产品。典型的轻烃类原料催化重整转化制氢工艺大多是先重整转化反应生成变换气再经变换反应生成富含H2与CO2的转化气后,又经过有机胺吸收或PSA脱碳与PSA提纯工序,最终得到H2产品,虽然该制氢工艺成熟,但流程长、占地面积大、能耗高、设备投资及成本高,进而,国内外对此进行了技术改造与升级,进一步简化流程、降低占地面积与成本。
一种方法是开发一种双功能的复合催化剂及其配套的一体化反应器及工艺,核心是将催化重整反应与变换反应整合在一个反应器中,这种方法已有工业化装置应用,如甲醇制氢过程中,因甲醇水蒸气催化重整(裂解)反应温度与压力比较温和,采用的催化剂大多是铜系,与变换反应中铁系为主的催化剂的反应温度与压力相当,两个反应的热平衡过程比较相近,实现双功能催化剂 的效果比较理想。而对于甲烷等催化重整反应过程中所用的催化剂大多是高温催化剂,如镍系,反应温度大多是在700~900℃,远远高于中低温变换催化剂所需的100~300℃反应温度,导致双功效催化剂开发难度大幅度增加。
另一种方法是美国空气产品化学公司(APCI)首先发明的“吸附增强反应工艺”(Sorption Enhanced Reaction Process,简称“SERP”),是将反应所需的催化剂与吸附分离所需的吸附剂装填于同一个容器中,使得反应器与吸附器合二为一而形成的一个化学反应与吸附分离过程的有机耦合的吸附增强反应器,其与在反应器与吸附器两个独立的容器分别进行化学反应和吸附分离完全不同。吸附增强反应的基本原理是利用Le Chatelier热力学原理,即,当体系达到(化学)平衡时,若改变平衡状态的任已条件,如浓度、温度、压力等,平衡就向着能减弱其改变的方向移动。对于轻烃类水蒸气重整反应制取H
2的催化重整反应及变换反应体系,当反应物和生成物的浓度处于不随时间而变化的状态时,即为达到化学(反应)平衡,但若在反应体系中加入一种选择吸附生成物CO
2的吸附剂,则反应的同时,生成物CO
2就会被立即吸附,其结果是打破了化学平衡,而反应将向着有利于生成H
2的方向进行,使得反应接近于完全。吸附增强反应工艺的优势在于,改善操作条件能增加反应转化率及产品收率或纯度,简化工艺能降低能耗及成本。APCI首先开发的用于燃料电池供氢的变压再生的SERP工艺,用于甲烷水蒸气转化制氢,其中,所采用的吸附剂为一种耐高温和耐水的可逆化学吸附剂(K
2CO
3-水滑石),用于从反应温度为400~550℃的反应区选择性吸附脱除CO
2,吸附饱和的吸附剂通过PSA循环操作再生,负载于三氧化二铝上的镍活性组分的转化催化剂与CO
2化学吸附剂混合充填于变压吸附增强反应器形成两个轴向流固定床层的PSA增强反应工艺,其中,一个 吸附反应器进行反应-吸附步骤,另一个进行逆向降压、抽真空冲洗与逆向加压的解吸再生步骤,反应-吸附步骤的操作压力为70~350kPa,常压逆放与抽真空冲洗,冲洗气为5~10%H
2的蒸汽,含有H
2、甲烷(CH
4)、CO
2和水的解吸气经冷凝脱除水后作为燃料气输出,充压气为甲烷与蒸汽混合气的原料气,所得到的H2产品纯度为94.4%,其中,CH
4含量为5.6%,CO
2为40ppmv,CO为30ppmv,甲烷转化率高达73%,比传统的甲烷水蒸气催化重整(SMR)所经历的催化转化与变换反应两步法制得转化气的转化率50~55%要高出许多,既提高了转化气中的H
2浓度,又降低了后续PSA提氢的负荷,同时简化了制氢流程,节省了投资、设备及操作成本。但是,APCI开发的SERP工艺,存在着明显的一些缺点,首先,该工艺无法直接产生出纯度较高的H
2产品,仍然需要进一步通过PSA提氢来获得高纯度H2;第二,所选择的吸附剂比较特殊,需要耐高温和耐水性,一般商用吸附剂很难应用;第三,反应温度过高,即使APCI的SERP工艺中的镍系催化剂在脱CO
2吸附剂配合下能够降至500℃左右,比常规的二段反应的催化重整镍系催化剂所需的700~900℃低得多,能耗小,但由于较高温度情况下对CO
2的变压吸附过程而言是非常不利的,且在低压吸附下,CO
2非常容易被吸附不饱和而逸出进入非吸附相气体中,使得转化气中的CO
2超标严重;第四,SERP过程中的PSA,实际上仅在较低的压力下吸附,解吸再生是先进行常压逆放,所得到的逆放气作为原料气返回到另一个处于反应-吸附步骤的吸附反应器中,然后再采用含5~10%H
2且低于反应温度的蒸汽对床层进行逆向冲洗,得到的冲洗废气经冷凝除水后再作为燃料气,H
2收率有一定的损失,同时由于所采用的吸附剂为化学吸附剂,属于消耗型吸附剂,不但消耗量大,无法如同传统的吸附剂循环使用,而且在较高温度与水蒸气含量下同时受到吸附与解吸 再生过程中温差应力的影响就会对吸附剂自身热稳定性产生较大影响;第五,由于SERP系统中的吸附反应器高径比比较小,对CO
2吸附的扩散路径而言也非常不利。因而,APCI公司的甲烷水蒸气重整制氢的SERP工艺,很难替代传统的SMR工艺。为此,APCI公司开发了另一种采用变温吸附的“变温吸附增强反应工艺(TSSER)”工艺用于水煤气(变换气)制氢,由于变换反应的铁系催化剂作用温度比较低,其反应-吸附步骤的温度为300~400℃,低于SERP的400~550℃温度,这样有利于CO
2的吸附,使得产出的H
2纯度进一步提升,但是,吸附剂的解吸再生温度达到500~550℃,吸附剂在更高的温度与水蒸气含量下同时受到吸附与解吸再生过程中温差应力的影响就会更大,对吸附剂自身热稳定性产生的负面影响大于SERP工艺,故而TSSER工艺中的吸附剂的更换频率高于SERP工艺,进而成本也相应的增加。
无论是变压吸附增强反应(SERP)或是变温吸附增强反应(TSSER)工艺,其关键技术是吸附剂选择及其相应的工艺。由于甲烷催化重整反应与变换反应速度比较快,且反应自身的吸热与放热过程不同,而要对CO
2的热力学及动力学吸附速率也产生很大的影响,进而导致反应-吸附步骤中是否能够同时完成而改变化学反应平衡一直朝着有利于H
2生成的方向移动。因此,APCI公司不得不采用又耐温又耐水且吸附速率极快的化学吸附剂来匹配反应-吸附的平衡系统的移动,但代价是吸附剂使用寿命短、成本过高、H
2产品纯度与收率比较低,但忽略了影响吸附效率的其它因素,比如气流分布、CO
2吸附传质路径、吸附剂与催化剂选择与相应装填方式或吸附剂/催化剂本身固体外形、吸附与解吸循环操作方式等。
发明内容
针对前述现有的包括甲烷或甲醇为原料与水蒸气催化重整/变换制氢过程中的吸附增强反应工艺的一些问题,本发明提出了一种全温程模拟旋转移动变压吸附(Full Temperature range Simulated Rotated Moving PSA——FTrSRMPSA)新工艺用于变换气变压吸附增强反应脱CO
2与提纯H
2,该工艺是一种以变压吸附增强反应(PSA-ERP)为基础,充分利用变换气自带的温度与压力、中低温变换催化剂/吸附剂性质、生成物H
2与CO
2组分在90~150℃温度范围,以及0.2~1.0MPa压力范围内的吸附分离系数及物理化学性质的差异性,将置于一多通道旋转阀中央且在其周围安置于一圆环形旋转托盘上多个混合装载的中低温变换催化剂与吸附剂的轴向流固定床吸附反应器并通过管道连接以及调控旋转阀旋转方向与旋转速度(ω
1)、圆环形旋转托盘旋转方向与旋转速度(ω
2),使得流经旋转阀通道及通道进出口端与圆环形旋转托盘上的吸附反应器进出口端连接的管道及吸附塔中旋转移动的吸附反应床层的气体,在不断地通过进出每个吸附反应器进出口的位置及每个吸附反应床层在旋转同时完成各自的反应-吸附与解吸再生步骤的传质传热,使得变换气反应平衡随之趋于向反应完全的方向移动,进而形成了“模拟旋转移动床”的变压吸附增强反应过程,实现了轴向流固定床变压吸附基础上的模拟旋转移动床变压吸附增强反应过程,在实现收率与纯度“双高”及避免深度吸附的同时,适用于变换气相应的流量、组分浓度、压力或温度的波动工况,充分利用了轴向流固定床变压吸附及现有技术包括固定床变压吸附增强反应(SERP)、固定床变温吸附增强反应(TSSER)、旋转轮吸附及模拟移动床的各种优势,克服了现有技术工艺的缺陷,具体方案如下:
一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,所述的全温程模拟旋转移动床变压吸附增强反应(FTrSRMPSA-ERP)系统是由n(2≤n≤10的自然整数)个装载有一种由中低温变换催化剂与复合吸附剂按一定比例混装催化剂/吸附剂且具有一定高径比的轴向流固定床层吸附反应器(塔)并安置在一个以旋转速度(ω
2,秒(s)/周为单位)的圆环形旋转托盘上的吸附反应器(塔)、有m(5≤m≤36的自然整数)个通道并安置在圆环形旋转托盘中央的以旋转速度(ω
1,秒(s)/周为单位)旋转的旋转阀、旋转阀与系统外物料气体进出的物料管道以及连接于经圆环形托盘内置管道至吸附反应器(塔)上下与旋转阀之间的工艺管道,以及相应的驱动圆环形旋转托盘及旋转阀旋转方向及其调控其旋转速度(ω
1与ω
2)的驱动机构、缓冲罐、冷凝器/或换热器/或过热器/或增压机/或真空泵所构成而形成一个FTrSRMPSA-ERP系统,其特征在于,吸附反应器(塔)进出口与m通道旋转阀进出口连接的管道是通过预设在圆环形旋转托盘的内置管道相连形成工艺管道且与旋转阀通道数m相同,进出FTrSRMPSA-ERP系统物料气体的位置是由m通道旋转阀旋转的通道加以分配来固定,其物料气体包括转化气的原料气(F)、H
2产品气(H
2PG)、系统外的冲洗气(P)、系统外的终充气(FR)以及逆放气(D)或/与抽真空气(V)或/与冲洗废气(PW)组成的解吸气(D),并相应的连接包括缓冲罐/冷凝器/或换热器/或过热器/或增压机/或真空泵在内的设备,由m通道旋转阀进出口与吸附反应器(塔)进出口之间通过圆环形旋转托盘中内置管道连接的工艺管道中工艺气体流动的位置是移动交替变化的,工艺气体是在FTrSRMPSA-ERP系统内流动,包括原料气(F)、顺放气(PP)、系统内外的冲洗气(P)、均压降气(ED)、逆放气(D)或/与抽真空气(V)或/与冲洗废气(PW)组成的解吸气(D)、 均压升气(ER)、终充气(FR)及产品氢气(H
2PG),具体吸附与解吸的循环过程为,来自FTrSRMPSA-ERP系统外的原料变换气(F)进入多通道旋转阀的原料气(F)进口,并经旋转阀原料气(F)通道及出口、圆环形旋转托盘内置管道及圆环形旋转托盘上对应的处于反应-吸附(CR-A)状态的一个或多个轴向流固定床吸附反应器(塔)进口连接的工艺管道,从吸附反应器(塔)底部进入进行反应-吸附(CR-A)步骤,经过m通道旋转阀旋转方向及旋转速度(ω
1)与圆环形旋转托盘旋转方向及旋转速度(ω
2)之间的调控匹配连续地步进,从吸附反应器(塔)顶部流出的非吸附相气体正好经工艺管道进入m通道旋转阀H
2产品气(H
2PG)通道,并从旋转阀H
2产品气(H
2PG)通道流出形成H
2产品气(H
2PG)进入H
2产品气缓冲罐后输出,处于反应-吸附(CR-A)状态的吸附反应器(塔)完成反应-吸附(CR-A)步骤后,随着m通道旋转阀与圆环形旋转托盘继续旋转步进,或/与反应-吸附(CR-A)结束的吸附反应器(塔)对另一个或几个处于冲洗(P)或均压升(ER)状态的吸附反应器(塔)通过系统内的工艺管道进行顺放(PP)或均压降(ED)步骤,结束顺放(PP)或均压降(ED)步骤的吸附反应器(塔),随着m通道旋转阀与圆环形旋转托盘持续地旋转步进而进入逆放(D)或/与抽真空(V)或/与冲洗(P)步骤,从吸附塔流出的逆放气(D)或/与抽真空气(V)或/与冲洗废气(PW)所形成的解吸气(D),或流经圆环形旋转托盘内置管道或外置管道以及旋转阀逆放气(D)/抽真空气(V)/冲洗废气(PW)通道及其出口端流出并流经解吸气(D)缓冲罐,解吸气(D)为富集CO
2气体,或直接进入冷凝器进行除水副产高浓度CO
2,或进入脱碳并回收H
2工序,或作为碳氢比调节返回至天然气/轻烃类水蒸气重整反应制备变换气或原料气工序中,结束逆放(D)或/与抽真空(V)或/与冲洗(P)步骤的吸附 反应器(塔),随着m通道旋转阀与圆环形旋转托盘连续不断地旋转步进而进入均压升(ER)或/与等待区(-)步骤,从处于均压降(ED)步骤的吸附反应器(塔)流出并经圆环形旋转托盘内置管道及旋转阀均压降气(ED)通道而进入处于均压升(ER)步骤的吸附反应器(塔)进行均压,使得处于均压升(ER)步骤的吸附反应器(塔)内的压力与处于均压降(ED)步骤的吸附反应器(塔)内的压力相等为止,结束均压升(ER)或/与等待区(-)步骤的吸附反应器(塔),随着m通道旋转阀与圆环形旋转托盘进一步连续旋转而进入终充(FR)步骤,来自H
2产品气(H
2PG)或原料变换气(F)作为终充气(FR)流经m通道旋转阀终充气(FR)通道与圆环形旋转托盘内置管道进入吸附反应器(塔)进行充压直至吸附反应器(塔)内的压力达到反应-吸附(CR-A)步骤所需的反应-吸附压力为止,并准备下一轮反应-吸附与解吸的循环操作,其中,每一个吸附反应器(塔)或进行一个步骤或多个步骤且进行每一步骤,均通过m通道旋转阀旋转方向及旋转速度(ω
1)与圆环形旋转托盘旋转方向及旋转速度(ω
2)之间的调控匹配,使得旋转中的m通道旋转阀中m个通道与圆环形旋转托盘旋转中的n个吸附反应器(塔)反应-吸附与解吸的循环操作中的时序表首尾连接成圆,并完整地形成变压吸附(PSA)增强反应的反应-吸附与解吸过程的操作循环性,所有的物料气体及工艺气体被均匀交替地分布在系统中的m通道旋转阀中m个圆(槽)通道与圆环形旋转托盘中内置管道及各个吸附反应器(塔)内,并将一个循环周期的变压吸附(PSA)增强反应过程通过旋转的m通道旋转阀(ω
1)与接通的相应旋转的圆环形旋转托盘(ω
2)上吸附反应器(塔)分别同时进行反应-吸附与解吸过程中的各个步骤,进出吸附反应器(塔)的工艺气体位置是通过m通道旋转阀旋转方向及旋转速度(ω
1)与圆环形旋转托盘旋转方向及旋 转速度(ω
2)匹配而不断地变化,使得每个吸附反应器(塔)重复反应-吸附与解吸步骤,相当于每个固定床吸附反应器(塔)在m通道旋转阀与圆环形旋转托盘旋转的同时完成各自的反应-吸附与解吸步骤,进而形成了“模拟旋转移动床”的变压吸附增强反应过程,由此,从变换气中获得的产品H
2产品气(H
2PG),其纯度大于等于99.99%,其收率大于等于92%。
更进一步的,所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的m通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω
1与ω
2)之间的调控匹配,包括,1)同向同步,顺时针或逆时针方向的同向旋转,且,ω1=ω2/≠0,2)同向异步,顺时针或逆时针方向的同向旋转,且,ω
1>ω
2或ω
1<ω
2或ω
1≠0/ω
2=0或ω
1=0/ω
2≠0,3)异向同步,顺时针/逆时针或逆时针/顺时针的异向旋转,且,ω
1=ω
2/≠0,4)异向异步,顺时针/逆时针或逆时针/顺时针的异向旋转,且,ω
1>ω
2或ω
1<ω
2或ω
1≠0/ω
2=0或ω
1=0/ω
2≠0,优选的,同向同步,同向异步中的顺时针或逆时针方向的同向旋转ω
1≠0/ω
2=0或ω
1=0/ω
2≠0。
更进一步的,所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的全温程模拟旋转移动床变压吸附增强反应(FTrSRMPSA-ERP)系统的反应-吸附与解吸的闭合循环操作步骤的组合还包括,1~2次均压、1~2批次冲洗、1次抽真空、1~2次的加热与冷却换热的变温变压吸附、1次顺放与均压降顺序相互错位、1个等待区步骤,且,吸附反应器(塔)数(n)与相应的m通道旋转阀通道数(m)增加、吸附塔高(半)径比(h/r)减少,以及m通道旋转阀或圆环形旋转托盘旋转速度足够快或旋转周期足够短,变换气吸附增强反应体系中生成物H
2与CO
2的分离效果无限接近移动床“稳态” 传质分离过程,变换气反应平衡随之趋于向反应完全方向移动,最终获得H
2产品气(H
2PG)的纯度大于等于99.999%,产品气收率大于等于95%。
更进一步的,所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的作为原料的转化气(F),是以或甲烷或甲醇或其它碳氢化物物经过水蒸气催化重整或热裂解得到的含有30~60%H
2(v)、10~20%CO(v)、10~20%CO
2(v),未反应的水、碳氢化合物及其它烃类或有机物副产物杂质组成构成的混合气体,温度为90~150℃,压力为0.2~1.0MPa,流量为100~20,000Nm
3/h。
更进一步的,所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的冲洗气(P),或来自系统内的顺放气(PP),或来自系统外的H
2产品气(H
2PG),通过m通道旋转阀通道(槽道)中一个或多个的开孔实现分批次进行冲洗,开孔数至多为4个,优选的来自系统内的顺放气(PP)作为冲洗气(P),H
2产品气(H
2PG)的收率达到93%以上。
更进一步的,所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的逆放(D)步骤采用抽真空方式进行解吸,增设的真空泵,或与解吸气流出m通道旋转阀的物流管道相连,或与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门,优选的与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门。
更进一步的,所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的终充气(FR),或来自系统外的变换气原料(F) 或H
2产品气(H
2PG),在H
2产品气(H
2PG)纯度要求大于等于99.99%工况下,优选的采用H
2产品气(H
2PG)作为终充气(FR)。
更进一步的,所述的一种变换气全温程模拟旋转移动床变压吸附增强反应工艺,其特征在于,所述的全温程模拟旋转移动床变压吸附增强反应(FTrSRMPSA-ERP)系统中n个装载的混装催化剂/吸附剂,或由铁系中温变换催化剂与锂碳分子筛/活性炭颗粒并按1:1~1.5比例间隔堆积组成,或由负载铁活性组分的碳纳米管(CNTs)或碳纤维(CNFs)/活性炭(AC)/三氧化二铝的复合催化吸附剂颗粒,或由高分子有机物或碳纳米管或碳纤维或以硅酸盐纤维为基材且负载铁系活性组分制成的蜂窝状及捆绑式规整复合催化吸附剂,优选的,或由铁系中温变换催化剂与锂碳分子筛/活性炭颗粒并按1:1.1比例间隔堆积组成,或由以硅酸盐纤维(含氟化硅、陶瓷与玻璃纤维)为基材且负载铁/锂系活性组分制成的捆绑式及蜂窝状规整复合吸附剂。
本发明的有益效果是:
(1)通过本发明,可以将碳氢(氧)化合物制氢中的固定床变换反应与固定床PSA分离过程耦合模拟变成一种全温程旋转轮移动床变压吸附增强反应制氢工艺,并在中低温(90~150℃)与低压(0.2~1.0MPa)操作条件下可以高纯度高收率地直接获得H
2产品气,纯度大于等于99.99%,收率大于等于92~95%,突破了现有吸附增强反应制氢工艺无法直接获得高纯度高收率的H
2产品气的限制,投资与成本进一步降低。
(2)本发明通过对多通道旋转阀与圆环形旋转托盘的旋转方向与旋转速度(ω
1与ω
2)之间的调控匹配,能够在传统的固定床吸附反应器(塔)工艺上实现多组合多步骤的吸附与解吸的PSA循环操作,使得变换气 反应平衡随之趋于向反应完全的方向移动,进而形成了“模拟旋转移动床”的变压吸附增强反应过程,实现了轴向流固定床变压吸附增强反应基础上的模拟旋转移动床变压吸附增强反应过程,并能灵活地根据产品H
2的技术指标要求进行调节且含盖了包括多通道旋转阀与传统的固定床PSA组合工艺以及典型的扇形吸附室旋转轮PSA或快轮PSA的移动床工艺等现有的移动床PSA工艺。
(3)本发明大幅度降低了传统的固定床PSA增强反应制氢装置的程序控制阀门及调节阀门的数量,同时也减少了快轮PSA装置制造的复杂性并能替代国外进口,进一步降低了投资与生产成本。
(4)本发明通过多通道旋转阀与圆环形旋转托盘的旋转方向与旋转速度(ω
1与ω
2)之间的调控匹配来适应于原料气出现较大波动的工况,包括组分、浓度、压力、流量等的波动,操作弹性较大,并且催化剂/吸附剂混装形式多样,使用寿命长,生产成本低。
(5)本发明根据原料气及其波动工况和产品H
2技术指标的要求,通过调节旋转阀及圆环形旋转托盘的旋转方向及旋转速度ω
1与ω
2的匹配以及吸附压力与温度,对吸附反应器(塔)的高径比进行调整与设计,使得轴向流固定床中的径向扩散忽略不计而满足轴向流固定床成熟的传质模型,而轴向流扩散随着ω
2的加快以及高径比的减少,其影响越来越小,进而使得吸附塔内的传质过程更加趋近循环床为代表的移动床所具有的“稳态”效应,H
2产品的纯度与收率更趋向于“双高”。
图1为本发明实施例1流程示意图。
图2为本发明实施例2流程示意图。
为了使本领域的技术人员更好地理解本发明,下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整的描述。
实施例1
如图1所示,一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其中,全温程模拟旋转移动床是由装载有一种由铁系中温变换催化剂与锂碳分子筛/活性炭混合吸附剂并按1:1.2比例间隔堆积组成的混装催化剂/吸附剂的4个轴向流且高径比为2~3的固定床层吸附反应塔安置在一个以旋转速度为ω
2=400~600s的圆环形旋转托盘上的吸附反应塔(n=4)及相应的驱动机构、有7个通道(m=7)并安置在圆环形托盘中央的以旋转速度为ω
1=400~600s的7通道旋转阀、7通道旋转阀与系统外由H
2产品气(H
2PG)、原料气(F)、逆放气(D)与冲洗废气(PW)组成的解吸气(D)构成的物料气体进出的物料管道以及连接于经圆环形旋转托盘内置管道至吸附反应塔上下与7通道旋转阀进出口之间的工艺管道,以及H
2产品气(H
2PG)/解吸气(D)缓冲罐、压缩机、过热器、换热器1/换热器2、冷凝器、蒸汽锅炉以及CO
2吸收塔所构成而形成一个FTrSRMPSA-ERP系统,其中,7通道旋转阀旋转速度ω
1与圆环形旋转托盘旋转速度ω
2相等为400~600s且旋转方向为逆时针方向,即,两者旋转调控方式为同向同步,7通道旋转阀中的7个通道的作用分别为,4个通道分别供原料气(F)(如m=1)、H
2产品气(H
2PG)(如m=2)、逆放气(D)(如m=5)、冲洗废气(PW)(如m=6)组成的解吸气(D)以及原料气(F)为终充气(FR)(如m=7)流通的物料气体通道,1个(如m=3)供均压降气(ED)与均压升 气(ER)流通的工艺气体通道,1个(如m=4)供顺放气(PP)作为冲洗气(P)流通的工艺气体通道,系统外的原料气(F)物料管道与7通道旋转阀进口端之间顺序设有压缩机、原料气(F)缓冲罐、过热器并相互连接,由逆放气(D)与冲洗废气(PW)组成的解吸气(D)流出7通道旋转阀出口端的物料管道先后与换热器2、解吸气(D)缓冲罐、冷凝器、不凝气1与CO
2吸收塔、不凝气2与原料气(F)物料管道连接,以及冷凝水与蒸汽锅炉、水蒸气与换热器1及过热器连接,7通道旋转阀出口端流出的H
2产品气(H
2PG)物料管道与H
2产品气(H
2PG)缓冲罐连接,原料气(F)为来自天然气经水蒸气催化重整所获得的含氢变换气,其典型组分为氢气(H
2)浓度55%(v/v),一氧化碳(CO)浓度15%、二氧化碳(CO
2)为5%、水蒸气15%、甲烷(CH
4)8%,以及轻烃类组分2%,经压缩机增压至0.6~0.8MPa并经原料气(F)缓冲罐与过热器过热后的温度为120~130℃,从经连接于7通道旋转阀通道进口通孔物料管道进入原料气(F)的物料通道(如m=1),并经该通道通孔的出口连接于圆环形旋转托盘内置管道及连接于吸附反应塔1的进口端所形成的工艺管道进入吸附反应塔1,并进行变换反应(CR)与吸附(A)的反应吸附(CR-A)步骤,从吸附反应塔1的出口端流出非吸附相气体经过连接于吸附反应塔1、圆环形旋转托盘内置管道及7通道旋转阀物料通道(如m=2)通孔组成的工艺管道,从连接于7通道旋转阀与H
2产品气(H
2PG)缓冲罐的产品气(PG)物料管道流出氢气(H
2)纯度大于等于99.99%(v/v)的H
2产品气(H
2PG),进入H
2产品气(H
2PG)缓冲罐及直接外输,反应吸附(CR-A)步骤结束后,随着7通道旋转阀与圆环形旋转托盘逆时针方向的同向同步旋转,吸附反应塔1旋转至图1中吸附反应塔2的位置进行均压降(ED)与顺放(PP)的操作步骤,吸附反应塔1流出的 均压降气(ED)流经圆环形旋转托盘内置管道及7通道旋转阀均压降气(ED)通道(如m=3)及其出口端与圆环形旋转托盘内置管道与正处于均压升(ER)步骤的吸附反应塔4进口端连接工艺管道而进吸附反应塔4(此时该塔的位置已步进到吸附反应塔1初始位置)进行均压,使得吸附反应塔1与吸附反应塔4内的压力相等为0.2~0.3MPa为止,然后,在圆环形旋转托盘与7通道旋转阀继续同向同步地旋转过程中,结束均压降(ED)步骤的吸附反应塔1进入顺放(PP)步骤,从中流出的顺放气(PP)作为冲洗气(P)流经圆环形旋转托盘内置管道与7通道旋转阀顺放气(PP)通道(如m=4)及其出口端与圆环形旋转托盘内置管道与正处于冲洗(P)步骤的吸附反应塔3进口端连接工艺管道而进吸附反应塔3(此时该塔的位置已步进到吸附反应塔4初始位置)进行冲洗(P),随着圆环形旋转托盘与7通道旋转阀继续同向同步地旋转,结束顺放(PP)步骤的吸附反应塔1的位置移动到图1中吸附反应塔3的初始位置进入逆放(D)步骤,从吸附反应塔1逆向降压至常压且流出逆放气(D)作为解吸气(D)流经圆环形旋转托盘内置管道与7通道旋转阀逆放气(D)通道(如m=5)及其出口端流出,并经换热器2冷却后流经解吸气(D)缓冲罐进入冷凝器,从冷凝器中产生的不凝气1直接进入以有机胺为吸收剂的CO
2吸收塔进行脱碳,由此产生出高浓度富产物CO
2,由此产生的不凝气2经与逆放气(D)在换热器2热交换加热后直接返回原料气(F)处,进一步回收其中的H
2及CO,从冷凝器中产生的冷凝液是水,进入蒸汽锅炉后形成水蒸气并经换热器1换热后再进入过热器,与原料气(F)一起形成过热原料气进入FTrSRMPSA-ERP系统,其中,循环的水蒸气量与新补充的水(蒸汽)比例可依据原料气(F)中H(H
2O):C(CO)在变换反应的比例要求进行调节,使得变换反应与CO
2吸附达到完全的动态平 衡,随着圆环形旋转托盘与7通道旋转阀继续同向同步地旋转,结束逆放(D)步骤的吸附反应塔1在连续移动过程中进入冲洗(P)步骤,从正处于顺放(PP)步骤的吸附反应塔4流出的顺放气(PP)作为冲洗气(P)进入到吸附反应塔1进行冲洗(P),从中产生的冲洗废气(PW)流经圆环形旋转托盘内置管道与7通道旋转阀冲洗废气(PW)通道(如m=6)及其出口端流出作为解吸气(D)经换热器2冷却后流经解吸气(D)缓冲罐并按解吸气(D)处理流程进行处理,随着圆环形旋转托盘与7通道旋转阀进一步持续同向同步地旋转,结束冲洗(P)步骤的吸附反应塔1的位置移动到图1中吸附反应塔4的初始位置进入均压升(ER)与终充(FR)步骤,从正处于均压降(ED)步骤的吸附反应塔3流出的均压降气(ED)流经圆环形旋转托盘内置管道与7通道旋转阀均压降(ED)/均压升(ER)共用通道(如m=3)及其出口端流出并流经圆环形旋转托盘内置管道进入吸附反应塔1进行均压升(ER),使得吸附反应塔1内的压力由常压升至与处于均压降(ED)步骤的吸附反应塔3内的压力相等,均为0.2~0.3MPa,随着圆环形旋转托盘与7通道旋转阀持续同向同步地旋转,结束均压升(ER)步骤的吸附反应塔1在旋转过程中接受来自系统外的原料气(F)作为终充气(FR)流经7通道旋转阀终充气(FR)通道(如m=7)及圆环形旋转托盘内置管道与吸附反应塔1进口处进行充压,使得吸附反应塔1内的压力升至反应-吸附(CR-A)步骤所需的压力0.6~0.8MPa,由此构成了吸附反应塔1完整的变压吸附(PSA)增强反应闭环式循环操作,即,反应吸附(CR-A)-均压降(ED)/顺放(PP)-逆放(D)/冲洗(P)-均压升(ER)/终充(FR)步骤,然后吸附反应塔1再进入下一个反应吸附与解吸的闭环式循环操作过程,而相应的进出吸附反应塔2、3与4的物料气体及工艺气体,也在吸附反应塔1反应吸附与解 吸的闭环式循环操作过程中经由圆环形旋转托盘与7通道旋转阀连续地同向同步转动而通过7通道旋转阀定期交替切换7个通道而同步地定期切换各个吸附反应塔的物料或及工艺气体进出位置进行相应的反应吸附与解吸的闭环式循环操作步骤,每一个吸附反应塔的闭环式循环操作步骤都对应着其它3个吸附塔各自的闭环式循环操作步骤,由此,从氢气(H
2)浓度为55%(v/v),一氧化碳(CO)浓度15%、二氧化碳(CO
2)为5%、水蒸气15%、甲烷(CH
4)8%以及轻烃类组分2%的变换气为原料气直接连续地生产出氢气纯度大于等于99.99%的高纯度氢气(H
2)产品气,其收率大于等于92%,实现了在吸附增强反应(SERP)工艺过程的轴向流固定床层基础上进行的模拟旋转PSA工艺的高纯度与高收率的“双高”。
实施例2
如图2所示,在实施例1基础上,变换气为原料气不经压缩机加压而是经鼓风机增压至0.2MPa后或是直接来自天然气催化重整反应单元产出的0.2MPa变换气进入到FTrSRMPSA-ERP系统,并增设由外置管道连接吸附反应塔出口端与真空泵的抽真空系统以及省去CO
2吸收塔,其中,将系统中的圆环形旋转托盘的旋转速度ω
2调整为0,即不转动,而7通道旋转阀旋转方向仍然维持逆时针方向,其旋转速度ω
1调整至200~300s水平,4个吸附反应塔的初始位置与实施例1一致,但是固定不动的,而通过7通道旋转阀定期(速)逆时针旋转步进并定期(速)交替切换使得每个吸附反应塔均经历反应-吸附(CR-A)-逆放(D)/抽真空(V)-真空冲洗(VP)-终充(FR)的反应-吸附与解吸的闭合循环操作步骤,其中,冲洗气(P)来自系统外的带压过热蒸汽,温度为140~150℃,在吸附反应塔抽真空解吸完成后进行真空冲洗(VP),所形成的真空冲洗废气 (VPW)与逆放气(D)、抽真空气解吸气(VD)一起作为解吸气(D),经过换热器2换热冷却后进入解吸气(D)缓冲罐后再进入冷凝器冷凝,所产生的冷凝水经换热器1与H
2产品气(H
2PG)换热加热后进入蒸汽锅炉,形成的水蒸气再经过热器与原料气一起进入系统进行反应-吸附与解吸再生的闭合循环操作,其中的7通道旋转阀中的1个通道(如m=4)为空道,对应处于抽真空步骤使用,所有的物料气体及工艺气体被均匀交替地分布在系统中的旋转阀中7个圆通道与圆环形旋转托盘中内置管道及各个吸附反应塔内,并将一个循环周期的变压吸附(PSA)通过旋转的旋转阀(ω
1)与接通的相应静止的圆环形旋转托盘(ω
2=0)上吸附反应塔分别同时进行反应吸附与解吸过程中的各个步骤,进出吸附反应塔的工艺气体位置是通过7通道旋转阀旋转方向及旋转速度(ω
1)而不断地变化,使得每个吸附反应塔均可重复反应-吸附与解吸步骤,相当于每个固定床吸附反应塔在不旋转下随着7通道旋转阀旋转过程中完成各自的反应-吸附与解吸步骤,进而形成了“模拟旋转移动床”的变压吸附增强反应过程,由此,从含H
2/CO/CO
2/H
2O/CH
4变换气中获得的产品H
2,其纯度大于等于99.9%,其收率大于等于92%。
显而易见的,上面所述的实施例仅仅是本发明实施例中的一部分,而不是全部。基于本发明记载的实施例,本领域技术人员在不付出创造性劳动的情况下得到的其它所有实施例,或在本发明的启示下做出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。
Claims (8)
- 一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的全温程模拟旋转移动床变压吸附增强反应(FTrSRMPSA-ERP)系统是由n(2≤n≤10的自然整数)个装载有一种由中低温变换催化剂与复合吸附剂按一定比例混装催化剂/吸附剂且具有一定高径比的轴向流固定床层吸附反应器(塔)并安置在一个以旋转速度(ω 2,秒(s)/周为单位)的圆环形旋转托盘上的吸附反应器(塔)、有m(5≤m≤36的自然整数)个通道并安置在圆环形旋转托盘中央的以旋转速度(ω 1,秒(s)/周为单位)旋转的旋转阀、旋转阀与系统外物料气体进出的物料管道以及连接于经圆环形托盘内置管道至吸附反应器(塔)上下与旋转阀之间的工艺管道,以及相应的驱动圆环形旋转托盘及旋转阀旋转方向及其调控其旋转速度(ω 1与ω 2)的驱动机构、缓冲罐、冷凝器/或换热器/或过热器/或增压机/或真空泵所构成而形成一个FTrSRMPSA-ERP系统,其特征在于,吸附反应器(塔)进出口与m通道旋转阀进出口连接的管道是通过预设在圆环形旋转托盘的内置管道相连形成工艺管道且与旋转阀通道数m相同,进出FTrSRMPSA-ERP系统物料气体的位置是由m通道旋转阀旋转的通道加以分配来固定,其物料气体包括变换气为原料气(F)、H 2产品气(H 2PG)、系统外的冲洗气(P)、系统外的终充气(FR)以及逆放气(D)或/与抽真空气(V)或/与冲洗废气(PW)组成的解吸气(D),并相应的连接包括缓冲罐/冷凝器/或换热器/或过热器/或增压机/或真空泵在内的设备,由m通道旋转阀进出口与吸附反应器(塔)进出口之间通过圆环形旋转托盘中内置管道连接的工艺管道中工艺气体流动的位置是移动交替变化的,工艺气体是在FTrSRMPSA-ERP系统内流动,包括原料气(F)、顺放气(PP)、系统内外的冲洗气(P)、均压降气(ED)、逆放气(D)或/与抽真空气(V) 或/与冲洗废气(PW)组成的解吸气(D)、均压升气(ER)、终充气(FR)及产品氢气(H 2PG),具体反应-吸附与解吸的循环过程为,来自FTrSRMPSA-ERP系统外的原料变换气(F)进入多通道旋转阀的原料气(F)进口,并经旋转阀原料气(F)通道及出口、圆环形旋转托盘内置管道及圆环形旋转托盘上对应的处于反应-吸附(CR-A)状态的一个或多个轴向流固定床吸附反应器(塔)进口连接的工艺管道,从吸附反应器(塔)底部进入进行反应-吸附(CR-A)步骤,经过m通道旋转阀旋转方向及旋转速度(ω 1)与圆环形旋转托盘旋转方向及旋转速度(ω 2)之间的调控匹配连续地步进,从吸附反应器(塔)顶部流出的非吸附相气体正好经工艺管道进入m通道旋转阀H 2产品气(H 2PG)通道,并从旋转阀H 2产品气(H 2PG)通道流出形成H 2产品气(H 2PG)进入H 2产品气缓冲罐后输出,处于反应-吸附(CR-A)状态的吸附反应器(塔)完成反应-吸附(CR-A)步骤后,随着m通道旋转阀与圆环形旋转托盘继续旋转步进,或/与反应-吸附(CR-A)结束的吸附反应器(塔)对另一个或几个处于冲洗(P)或均压升(ER)状态的吸附反应器(塔)通过系统内的工艺管道进行顺放(PP)或均压降(ED)步骤,结束顺放(PP)或均压降(ED)步骤的吸附反应器(塔),随着m通道旋转阀与圆环形旋转托盘持续地旋转步进而进入逆放(D)或/与抽真空(V)或/与冲洗(P)步骤,从吸附塔流出的逆放气(D)或/与抽真空气(V)或/与冲洗废气(PW)所形成的解吸气(D),或流经圆环形旋转托盘内置管道或外置管道以及旋转阀逆放气(D)/抽真空气(V)/冲洗废气(PW)通道及其出口端流出并流经解吸气(D)缓冲罐,解吸气(D)为富集CO 2气体,或直接进入冷凝器进行除水副产高浓度CO 2,或进入脱碳并回收H 2工序,或作为碳氢比调节返回至天然气/轻烃类水蒸气重整反应 制备变换气或原料气工序中,结束逆放(D)或/与抽真空(V)或/与冲洗(P)步骤的吸附反应器(塔),随着m通道旋转阀与圆环形旋转托盘连续不断地旋转步进而进入均压升(ER)或/与等待区(-)步骤,从处于均压降(ED)步骤的吸附反应器(塔)流出并经圆环形旋转托盘内置管道及旋转阀均压降气(ED)通道而进入处于均压升(ER)步骤的吸附反应器(塔)进行均压,使得处于均压升(ER)步骤的吸附反应器(塔)内的压力与处于均压降(ED)步骤的吸附反应器(塔)内的压力相等为止,结束均压升(ER)或/与等待区(-)步骤的吸附反应器(塔),随着m通道旋转阀与圆环形旋转托盘进一步连续旋转而进入终充(FR)步骤,来自H 2产品气(H 2PG)或原料变换气(F)作为终充气(FR)流经m通道旋转阀终充气(FR)通道与圆环形旋转托盘内置管道进入吸附反应器(塔)进行充压直至吸附反应器(塔)内的压力达到反应-吸附(CR-A)步骤所需的反应-吸附压力为止,并准备下一轮反应-吸附与解吸的循环操作,其中,每一个吸附反应器(塔)或进行一个步骤或多个步骤且进行每一步骤,均通过m通道旋转阀旋转方向及旋转速度(ω 1)与圆环形旋转托盘旋转方向及旋转速度(ω 2)之间的调控匹配,使得旋转中的m通道旋转阀中m个通道与圆环形旋转托盘旋转中的n个吸附反应器(塔)反应-吸附与解吸的循环操作中的时序表首尾连接成圆,并完整地形成变压吸附(PSA)增强反应的反应-吸附与解吸过程的操作循环性,所有的物料气体及工艺气体被均匀交替地分布在系统中的m通道旋转阀中m个圆(槽)通道与圆环形旋转托盘中内置管道及各个吸附反应器(塔)内,并将一个循环周期的变压吸附(PSA)增强反应过程通过旋转的m通道旋转阀(ω 1)与接通的相应旋转的圆环形旋转托盘(ω 2)上吸附反应器(塔)分别同时进行反应-吸附与解吸过程中 的各个步骤,进出吸附反应器(塔)的工艺气体位置是通过m通道旋转阀旋转方向及旋转速度(ω 1)与圆环形旋转托盘旋转方向及旋转速度(ω 2)匹配而不断地变化,使得每个吸附反应器(塔)重复反应-吸附与解吸步骤,相当于每个固定床吸附反应器(塔)在m通道旋转阀与圆环形旋转托盘旋转的同时完成各自的反应-吸附与解吸步骤,进而形成了“模拟旋转移动床”的变压吸附增强反应过程,由此,从变换气中获得的产品H 2产品气(H 2PG),其纯度大于等于99.99%,其收率大于等于92%。
- 如权利要求1所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的m通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω 1与ω 2)之间的调控匹配,包括,1)同向同步,顺时针或逆时针方向的同向旋转,且,ω1=ω2/≠0,2)同向异步,顺时针或逆时针方向的同向旋转,且,ω 1>ω 2或ω 1<ω 2或ω 1≠0/ω 2=0或ω 1=0/ω 2≠0,3)异向同步,顺时针/逆时针或逆时针/顺时针的异向旋转,且,ω 1=ω 2/≠0,4)异向异步,顺时针/逆时针或逆时针/顺时针的异向旋转,且,ω 1>ω 2或ω 1<ω 2或ω 1≠0/ω 2=0或ω 1=0/ω 2≠0,优选的,同向同步,同向异步中的顺时针或逆时针方向的同向旋转ω 1≠0/ω 2=0或ω 1=0/ω 2≠0。
- 如权利要求1所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的全温程模拟旋转移动床变压吸附增强反应(FTrSRMPSA-ERP)系统的反应-吸附与解吸的闭合循环操作步骤的组合还包括,1~2次均压、1~2批次冲洗、1次抽真空、1~2次的加热与冷却换热的变温变压吸附、1次顺放与均压降顺序相互错位、1个等待区步骤,且,吸附反应器(塔)数(n)与相应的m通道旋转阀通道数(m)增加、吸附塔高(半)径比(h/r)减少,以及m通道旋转阀或圆环形旋转托盘旋转速 度足够快或旋转周期足够短,变换气吸附增强反应体系中生成物H 2与CO 2的分离效果无限接近移动床“稳态”传质分离过程,变换气反应平衡随之趋于向反应完全方向移动,最终获得H 2产品气(H 2PG)的纯度大于等于99.999%,产品气收率大于等于95%。
- 如权利要求1所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的作为原料的转化气(F),是以或甲烷或甲醇或其它碳氢化物物经过水蒸气催化重整或热裂解得到的含有30~60%H 2(v)、10~20%CO(v)、10~20%CO 2(v),未反应的水、碳氢化合物及其它烃类或有机物副产物杂质组成构成的混合气体,温度为90~150℃,压力为0.2~1.0MPa,流量为100~20,000Nm 3/h。
- 如权利要求1所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的冲洗气(P),或来自系统内的顺放气(PP),或来自系统外的H 2产品气(H 2PG),通过m通道旋转阀通道(槽道)中一个或多个的开孔实现分批次进行冲洗,开孔数至多为4个,优选的来自系统内的顺放气(PP)作为冲洗气(P),H 2产品气(H 2PG)的收率达到93%以上。
- 如权利要求1所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的逆放(D)步骤采用抽真空方式进行解吸,增设的真空泵,或与解吸气流出m通道旋转阀的物流管道相连,或与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门,优选的与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门。
- 如权利要求1所述的一种变换气全温程模拟旋转移动床变压吸附增强反应 制氢工艺,其特征在于,所述的终充气(FR),或来自系统外的变换气原料(F)或H 2产品气(H 2PG),在H 2产品气(H 2PG)纯度要求大于等于99.99%工况下,优选的采用H 2产品气(H 2PG)作为终充气(FR)。
- 如权利要求1所述的一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺,其特征在于,所述的全温程模拟旋转移动床变压吸附增强反应(FTrSRMPSA-ERP)系统中n个装载的混装催化剂/吸附剂,或由铁系中温变换催化剂与锂碳分子筛/活性炭颗粒并按1:1~1.5比例间隔堆积组成,或由负载铁活性组分的碳纳米管(CNTs)或碳纤维(CNFs)/活性炭(AC)/三氧化二铝的复合催化吸附剂颗粒,或由高分子有机物或碳纳米管或碳纤维或以硅酸盐纤维为基材且负载铁系活性组分制成的蜂窝状及捆绑式规整复合催化吸附剂,优选的,或由铁系中温变换催化剂与锂碳分子筛/活性炭颗粒并按1:1.1比例间隔堆积组成,或由以硅酸盐纤维(含氟化硅、陶瓷与玻璃纤维)为基材且负载铁/锂系活性组分制成的捆绑式及蜂窝状规整复合吸附剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/810,675 US20250083955A1 (en) | 2022-03-16 | 2024-08-21 | Full temperature range simulated rotated moving pressing swing adsorption (ftrsrmpsa) enhanced reaction hydrogen generation process from shifted gas |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210260623.7 | 2022-03-16 | ||
CN202210260623.7A CN115040983B (zh) | 2022-03-16 | 2022-03-16 | 一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/810,675 Continuation US20250083955A1 (en) | 2022-03-16 | 2024-08-21 | Full temperature range simulated rotated moving pressing swing adsorption (ftrsrmpsa) enhanced reaction hydrogen generation process from shifted gas |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023173768A1 true WO2023173768A1 (zh) | 2023-09-21 |
Family
ID=83157781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/130759 WO2023173768A1 (zh) | 2022-03-16 | 2022-11-09 | 一种变换气全温程模拟旋转移动床变压吸附(FTrSRMPSA)增强反应制氢工艺 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20250083955A1 (zh) |
CN (1) | CN115040983B (zh) |
WO (1) | WO2023173768A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118662990A (zh) * | 2024-06-21 | 2024-09-20 | 苏州中迈新能源科技有限公司 | 一种甲烷气相沉积废气回收利用系统及方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115040983B (zh) * | 2022-03-16 | 2025-03-07 | 浙江天采云集科技股份有限公司 | 一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺 |
CN118150299B (zh) * | 2024-05-13 | 2024-08-09 | 杭州泽天春来科技股份有限公司 | 富集系统及其控制方法和气体分析仪 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4705627A (en) * | 1982-02-04 | 1987-11-10 | Toray Industries, Inc. | Absorption apparatus including rotary valve |
US6063161A (en) * | 1996-04-24 | 2000-05-16 | Sofinoy Societte Financiere D'innovation Inc. | Flow regulated pressure swing adsorption system |
US6103143A (en) * | 1999-01-05 | 2000-08-15 | Air Products And Chemicals, Inc. | Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon |
US20020098394A1 (en) * | 2000-10-27 | 2002-07-25 | Keefer Bowie G. | Systems and processes for providing hydrogen to fuel cells |
US20020110503A1 (en) * | 2001-02-09 | 2002-08-15 | Gittleman Craig S. | Combined water gas shift reactor/carbon dioxide absorber for use in a fuel cell system |
US20040081614A1 (en) * | 2002-10-25 | 2004-04-29 | Ying David Hon Sing | Simultaneous shift-reactive and adsorptive process at moderate temperature to produce pure hydrogen |
CN104030241A (zh) * | 2014-06-27 | 2014-09-10 | 清华大学 | 带有预变换反应器的处理co气体的吸附增强水气变换工艺 |
US20180229177A1 (en) * | 2017-02-15 | 2018-08-16 | Exxonmobil Research And Engineering Company | Fast cycle gas phase simulated moving bed apparatus and process |
CN114558422A (zh) * | 2022-03-16 | 2022-05-31 | 浙江天采云集科技股份有限公司 | 一种基于有机硅与H2反应的SiC-CVD外延尾气提氢与循环再利用方法 |
CN114748979A (zh) * | 2022-03-16 | 2022-07-15 | 四川天采科技有限责任公司 | 一种全温程模拟旋转移动床变压吸附FTrSRMPSA气体分离与净化方法 |
CN115040983A (zh) * | 2022-03-16 | 2022-09-13 | 浙江天采云集科技股份有限公司 | 一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6701774B2 (en) * | 2000-08-02 | 2004-03-09 | Symyx Technologies, Inc. | Parallel gas chromatograph with microdetector array |
US6471744B1 (en) * | 2001-08-16 | 2002-10-29 | Sequal Technologies, Inc. | Vacuum-pressure swing absorption fractionator and method of using the same |
US7514590B1 (en) * | 2005-03-11 | 2009-04-07 | Uop Llc | Isomerization process with adsorptive separation |
CN201179362Y (zh) * | 2008-03-28 | 2009-01-14 | 上海浦东汉威阀门有限公司 | 旋转阀、固定柱式模拟移动床实验装置 |
CN101700874A (zh) * | 2009-09-09 | 2010-05-05 | 张文波 | 一种变压吸附制氢方法 |
CN102078740B (zh) * | 2010-12-13 | 2013-02-27 | 甘肃银光聚银化工有限公司 | 一种利用变压吸附法从水煤气中分离并提纯氢气的方法 |
CN103466546B (zh) * | 2013-09-06 | 2015-04-15 | 清华大学 | 一种将双功能吸附剂应用于吸附增强式水蒸气重整和水气变换反应的中温变压吸附方法 |
CN104511183B (zh) * | 2013-09-29 | 2016-08-24 | 中国石油化工股份有限公司 | 一种模拟移动床吸附分离方法 |
CN108310909B (zh) * | 2017-01-17 | 2020-06-19 | 四川天采科技有限责任公司 | 一种含co的精对苯二甲酸尾气变压吸附提取h2的方法 |
CN209575841U (zh) * | 2018-11-14 | 2019-11-05 | 内蒙古伊泰煤基新材料研究院有限公司 | 一种高效模拟移动床设备 |
CN112642259B (zh) * | 2020-12-23 | 2024-10-08 | 浙江天采云集科技股份有限公司 | 一种烷烃与硅烷反应的氯基SiC-CVD外延制程尾气FTrPSA回收方法 |
-
2022
- 2022-03-16 CN CN202210260623.7A patent/CN115040983B/zh active Active
- 2022-11-09 WO PCT/CN2022/130759 patent/WO2023173768A1/zh active Application Filing
-
2024
- 2024-08-21 US US18/810,675 patent/US20250083955A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4705627A (en) * | 1982-02-04 | 1987-11-10 | Toray Industries, Inc. | Absorption apparatus including rotary valve |
US6063161A (en) * | 1996-04-24 | 2000-05-16 | Sofinoy Societte Financiere D'innovation Inc. | Flow regulated pressure swing adsorption system |
US6103143A (en) * | 1999-01-05 | 2000-08-15 | Air Products And Chemicals, Inc. | Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon |
US20020098394A1 (en) * | 2000-10-27 | 2002-07-25 | Keefer Bowie G. | Systems and processes for providing hydrogen to fuel cells |
US20020110503A1 (en) * | 2001-02-09 | 2002-08-15 | Gittleman Craig S. | Combined water gas shift reactor/carbon dioxide absorber for use in a fuel cell system |
US20040081614A1 (en) * | 2002-10-25 | 2004-04-29 | Ying David Hon Sing | Simultaneous shift-reactive and adsorptive process at moderate temperature to produce pure hydrogen |
CN104030241A (zh) * | 2014-06-27 | 2014-09-10 | 清华大学 | 带有预变换反应器的处理co气体的吸附增强水气变换工艺 |
US20180229177A1 (en) * | 2017-02-15 | 2018-08-16 | Exxonmobil Research And Engineering Company | Fast cycle gas phase simulated moving bed apparatus and process |
CN114558422A (zh) * | 2022-03-16 | 2022-05-31 | 浙江天采云集科技股份有限公司 | 一种基于有机硅与H2反应的SiC-CVD外延尾气提氢与循环再利用方法 |
CN114748979A (zh) * | 2022-03-16 | 2022-07-15 | 四川天采科技有限责任公司 | 一种全温程模拟旋转移动床变压吸附FTrSRMPSA气体分离与净化方法 |
CN115040983A (zh) * | 2022-03-16 | 2022-09-13 | 浙江天采云集科技股份有限公司 | 一种变换气全温程模拟旋转移动床变压吸附增强反应制氢工艺 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118662990A (zh) * | 2024-06-21 | 2024-09-20 | 苏州中迈新能源科技有限公司 | 一种甲烷气相沉积废气回收利用系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115040983B (zh) | 2025-03-07 |
US20250083955A1 (en) | 2025-03-13 |
CN115040983A (zh) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023173768A1 (zh) | 一种变换气全温程模拟旋转移动床变压吸附(FTrSRMPSA)增强反应制氢工艺 | |
CN100345750C (zh) | 使用压力摆动重整的氢气制备 | |
CN112607705B (zh) | 一种水蒸气甲烷重整制氢装置及工艺 | |
CN110407172B (zh) | 一种中小型天然气制氢装置 | |
CN110980644B (zh) | 水基化学链循环制氢系统及方法 | |
CN113830735B (zh) | 碳氢燃料重整中温净化制氢方法、设备和燃料电池供能系统 | |
JP2008538097A (ja) | 熱統合水素発生システムのための方法及び装置 | |
CN101249949A (zh) | 一种由烃类气体制备氢气的工艺 | |
KR20090075700A (ko) | 이산화탄소 회수를 위한 방법 | |
CN114748979B (zh) | 一种全温程模拟旋转移动床变压吸附FTrSRMPSA气体分离与净化方法 | |
CN103288048B (zh) | 一种移动床连续催化吸附强化化学链重整制氢的工艺 | |
CN111217332A (zh) | 超临界水气化制氢气相产物的变压吸收分离系统及方法 | |
CN114917724A (zh) | 一种全温程模拟旋转移动床变压吸附FTrSRMPSA的空气富氧工艺 | |
CN103204464A (zh) | 一种蜂窝状氧载体化学链重整反应器 | |
Zhang et al. | Modeling study on a two-stage hydrogen purification process of pressure swing adsorption and carbon monoxide selective methanation for proton exchange membrane fuel cells | |
CN204848257U (zh) | 一种甲烷催化裂解生产氢气的装置 | |
CN114748980A (zh) | 合成气分离提取h2/co的全温程模拟旋转移动床变压吸附工艺 | |
CN115040982B (zh) | 一种全温程模拟旋转移动床变压吸附(FTrSRMPSA)的空分制氮工艺 | |
CN118387835A (zh) | 串联式重整变换制氢装置及重整变换制氢方法 | |
CN210419231U (zh) | 一种中小型天然气制氢装置 | |
CN216799278U (zh) | 一种氢气变温吸附除杂装置 | |
CN102452641B (zh) | 一种费托合成工艺弛放气的回收方法 | |
CN2934206Y (zh) | 甲烷催化部分氧化制合成气循环流化床装置 | |
CN111960435B (zh) | 一种新型氨气浓缩及分离工艺 | |
CN115382350B (zh) | 一种从混合气中回收co2的全温程模拟旋转移动床变压吸附工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22931781 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22931781 Country of ref document: EP Kind code of ref document: A1 |