[go: up one dir, main page]

WO2023173441A1 - 电池单体及其制造方法和制造设备、电池、用电设备 - Google Patents

电池单体及其制造方法和制造设备、电池、用电设备 Download PDF

Info

Publication number
WO2023173441A1
WO2023173441A1 PCT/CN2022/081827 CN2022081827W WO2023173441A1 WO 2023173441 A1 WO2023173441 A1 WO 2023173441A1 CN 2022081827 W CN2022081827 W CN 2022081827W WO 2023173441 A1 WO2023173441 A1 WO 2023173441A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
insulating
battery cell
battery
electrode
Prior art date
Application number
PCT/CN2022/081827
Other languages
English (en)
French (fr)
Inventor
陈龙
陈新祥
林蹬华
黄守君
郑于炼
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/081827 priority Critical patent/WO2023173441A1/zh
Priority to CN202280061237.3A priority patent/CN117957703A/zh
Priority to EP22931472.9A priority patent/EP4418423A4/en
Publication of WO2023173441A1 publication Critical patent/WO2023173441A1/zh
Priority to US18/770,770 priority patent/US20240363984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell and its manufacturing method and manufacturing equipment, batteries, and electrical equipment.
  • This application provides a battery cell, its manufacturing method and manufacturing equipment, batteries, and electrical equipment, which can enhance the safety of the battery.
  • a battery cell including: a casing having openings at both ends in a first direction; end covers for covering the openings at both ends of the casing; a first electrode assembly and A second electrode assembly is accommodated in the housing, wherein the first electrode assembly and the second electrode assembly are arranged along the first direction and are insulated; an insulating structure is at least partially provided on the first electrode assembly and the second electrode assembly, for electrically isolating the first electrode assembly and the second electrode assembly.
  • the insulating structure, the first electrode assembly and the second electrode assembly are accommodated in the housing, wherein at least part of the insulating structure is provided between the first electrode assembly and the second electrode assembly arranged along the first direction.
  • such an insulating structure can play the role of electrically isolating the first electrode assembly and the second electrode assembly, reducing the possibility of contact between the pole pieces of the first electrode assembly and the pole pieces of the second electrode assembly, and preventing the internal components of the battery cells from being
  • the electrical connection between electrically isolated components creates a short circuit, thereby reducing safety risks and enhancing battery safety.
  • the insulation structure includes: a first part disposed between the first electrode assembly and the second electrode assembly; a second part along a circumferential direction perpendicular to the first direction. Wrapped around the outer periphery of the first electrode assembly; a third part wrapped around the outer periphery of the second electrode assembly in a circumferential direction perpendicular to the first direction; the second part and the third part At least one of them is integrally formed with part or all of the first part.
  • the second part and the third part respectively cover the outer periphery of the first electrode assembly and the second electrode assembly, and can isolate the first electrode assembly from at least part of the housing, and isolate the second electrode assembly from at least part of the housing. open, thereby reducing the risk that the housing connects the positive and negative electrode sheets of the first electrode assembly and the risk that the housing connects the positive and negative electrode sheets of the second electrode assembly.
  • at least one of the second part and the third part is integrally formed with part or all of the first part, which can simplify the processing technology of the insulation structure and reduce the number of parts.
  • the first part is provided with a through hole that runs through the thickness of the first part, and the through hole is used for electrolyte circulation in the battery cell.
  • the through hole provided on the first part can be used as an ion channel and an electrolyte infiltration channel in the battery cell.
  • providing the through hole helps to solve the problem of electrolyte circulation and improve the electrolyte infiltration of the first electrode assembly and the second electrode. Component consistency; on the other hand, the electrolyte weight can be reduced, thereby reducing the cost of the battery cells.
  • the insulation structure includes: a first insulation film wrapped around the outer periphery of the first electrode assembly, wherein the first insulation film is away from the first electrode assembly in the first direction.
  • One end of the two electrode components has an opening, and the first insulating film includes a first wrapping end opposite to the opening; a second insulating film is wrapped around the outer periphery of the second electrode component, wherein the second The insulating film has an opening at one end away from the first electrode assembly in the first direction, the second insulating film includes a second wrapping end opposite to the opening; an insulating member is disposed on the first wrapping end and the second wrapped end.
  • the first insulating film covers the outer periphery of the first electrode assembly and can isolate the first electrode assembly from at least part of the case, thereby reducing the risk that the case will conduct the positive and negative electrodes of the first electrode assembly.
  • the second insulating film covers the outer periphery of the second electrode assembly and can isolate the second electrode assembly from at least part of the case, thereby reducing the risk that the case will conduct the positive and negative electrodes of the second electrode assembly.
  • the insulating member is disposed between the first wrapping end and the second wrapping end, which can avoid the risk of electrical isolation failure caused by damage to the first insulating film and the second insulating film, thereby strengthening the first electrode assembly and the second electrode assembly. electrical isolation between them.
  • the insulating member is fixedly connected to the first wrapping end and/or the second wrapping end.
  • the insulating piece is fixedly connected to the first wrapping end and/or the second wrapping end, which can improve assembly efficiency. It can also reduce the shaking amplitude of the insulating piece when the battery cell is subjected to external impact, reduce the risk of insulating piece failure, and improve safety. .
  • the insulating member is provided with a through hole that runs through the thickness of the insulating member, and the through hole is used for electrolyte circulation in the battery cell.
  • the through holes provided on the insulating member can be used as ion channels and electrolyte infiltration channels in the battery cells.
  • providing through holes helps to solve the problem of electrolyte circulation and improve the electrolyte infiltration of the first electrode assembly and the second electrode. Component consistency; on the other hand, the electrolyte weight can be reduced, thereby reducing the cost of the battery cells.
  • the first wrapping end is provided with a first through hole that runs through the thickness of the first wrapping end; and the second wrapping end is provided with a second through hole that runs through the thickness of the second wrapping end. hole; the first through hole and the second through hole are used for electrolyte circulation in the battery cell; wherein the first through hole and the through hole are disposed in an offset manner, and/or the third through hole is The two through holes are offset from the through holes.
  • the through hole provided on the insulating member may be offset from at least one of the first through hole and the second through hole. This can prevent the space where the first electrode assembly is located from being directly connected to the space where the second electrode assembly is located, thereby preventing metal debris or other conductors generated in the first insulating film from entering the space where the second electrode assembly is located, or the second insulating film. Metal debris or other conductors generated in the process enter the space where the first electrode assembly is located through the through hole. Therefore, the electrical connection between the first electrode assembly and the second electrode assembly due to metal debris and the subsequent risk of short circuit are avoided, the electrical isolation between the first electrode assembly and the second electrode assembly is improved, and the battery is enhanced. security.
  • the insulation structure includes: a first insulation film wrapped around the outer periphery of the first electrode assembly, wherein the first insulation film has openings at both ends in the first direction; A second insulating film is wrapped around the outer periphery of the second electrode assembly, and the second insulating film has openings at both ends in the first direction; an insulating member is provided between the first electrode assembly and the third electrode assembly. Between the two electrode assemblies, it is used to cover the opening of the first insulating film close to the second electrode assembly and the opening of the second insulating film close to the first electrode assembly.
  • the first insulating film covers the outer periphery of the first electrode assembly and can isolate the first electrode assembly from at least part of the case, thereby reducing the risk that the case will conduct the positive and negative electrodes of the first electrode assembly.
  • the second insulating film covers the outer periphery of the second electrode assembly and can isolate the second electrode assembly from at least part of the case, thereby reducing the risk that the case will conduct the positive and negative electrodes of the second electrode assembly.
  • the insulating member is disposed between the first electrode assembly and the second electrode assembly. When the battery cell is impacted by an external force, it can block the first electrode assembly and the second electrode assembly and reduce the size of the pole piece of the first electrode assembly and the second electrode. The possibility of contact between the pole pieces of the component reduces the risk of short circuit and improves safety.
  • the insulating member is an insulating material with a melting point greater than or equal to 200°C.
  • Insulating parts made of high-temperature resistant insulating materials can withstand higher temperatures and generally have higher strength and hardness. Therefore, electrical isolation failure caused by damage to the first insulating film and the second insulating film can be avoided. risk, thereby increasing the electrical isolation between the first electrode assembly and the second electrode assembly.
  • the high-temperature resistance of the insulating parts allows the insulating parts to maintain their original characteristics at high temperatures, which can improve heat conduction inside the battery cells.
  • the insulating material includes at least one of the following: polyethylene terephthalate, EPDM rubber, polytetrafluoroethylene, fusible polytetrafluoroethylene, fluorine rubber, Silicone rubber, alumina, silicon nitride and ceramics.
  • the above-mentioned insulating materials all have excellent heat resistance and can maintain good original characteristics under high temperature conditions, which can reduce the risk of insulation failure and improve safety.
  • the insulating member is an elastic material, one side of the insulating member is configured to abut against the first electrode assembly, and the other side of the insulating member is configured to abut against the first electrode assembly. the second electrode assembly.
  • the insulator is made of elastic material, and its two sides are respectively in contact with the first electrode assembly and the second electrode assembly.
  • the first electrode assembly and the second electrode assembly can be stably installed during the assembly process.
  • the relative movement between the first electrode assembly and the second electrode assembly during use of the battery can be reduced, or the movement amplitude of the first electrode assembly and the second electrode assembly can be reduced. In this way, welding failure or connection member damage caused by shaking of the first electrode assembly and/or the second electrode assembly can be reduced or avoided, and the problem of electrical connection failure between the tab and the electrode terminal can be avoided. Furthermore, the service life of the battery cells can be increased and the safety of the battery can be enhanced.
  • the insulating member includes: a first insulating sheet and a second insulating sheet disposed oppositely along the first direction; and disposed between the first insulating sheet and the second insulating sheet. There is an elastic body between them, and the elastic body is used to make the first insulating sheet contact the first electrode assembly, and to make the second insulating sheet contact the second electrode assembly.
  • the elastic body is made of elastic material and contacts the first electrode assembly and the second electrode assembly through the first insulating sheet and the second insulating sheet.
  • the first electrode assembly and the second electrode assembly can be removed during the assembly process.
  • Stable mounting on the other hand, can reduce relative movement between the first electrode assembly and the second electrode assembly during use of the battery, or reduce the amplitude of movement of the first electrode assembly and the second electrode assembly. In this way, welding failure or connection member damage caused by shaking of the first electrode assembly and/or the second electrode assembly can be reduced or avoided, and the problem of electrical connection failure between the tab and the electrode terminal can be avoided. Furthermore, the service life of the battery cells can be increased and the safety of the battery can be enhanced.
  • the first insulating sheet and the second insulating sheet are elastic materials.
  • the first insulating piece and the second insulating piece located on both sides of the elastomer are also made of elastic material. On the one hand, it helps the insulating piece to absorb more deformation as a whole and play a buffering role. On the other hand, it helps to simplify the installation of the insulating piece. Processing technology.
  • the first end surface of the first electrode assembly faces the second electrode assembly; wherein the first electrode assembly includes a first pole piece and a second pole piece, and the first pole The sheet and the second pole piece are wound around a winding axis, the winding axis is parallel to the first direction, and the first end surface is perpendicular to the winding axis, or the first electrode assembly It includes a plurality of first pole pieces and a plurality of second pole pieces, the plurality of first pole pieces and the plurality of second pole pieces are alternately stacked along a second direction, and the second direction is perpendicular to the first pole piece.
  • the first end surface is perpendicular to the first direction, or the first electrode assembly includes a first pole piece and a plurality of second pole pieces, and the first pole piece includes a plurality of laminated segments and a plurality of second pole pieces.
  • a bending section the bending section is used to connect two adjacent laminated sections, the plurality of second pole pieces and the plurality of laminated sections are alternately stacked along the second direction, and the second The direction is perpendicular to the first direction, and the first end surface is perpendicular to the first direction.
  • the first end surface of the first electrode assembly is arranged in the above manner.
  • the electrolyte can quickly infiltrate each layer of pole pieces of the first electrode assembly through the first end surface, which can make multiple electrodes of the first electrode assembly
  • the wetting effect of the layer is relatively uniform, thereby improving the wetting efficiency of the first electrode assembly.
  • the first direction is the length direction of the housing.
  • the first electrode assembly and the second electrode assembly are arranged along the length direction of the casing, and the battery cells can have a larger size in the first direction, thereby reducing the number of battery cells in the battery and reducing the need for fixing the battery cells.
  • the use of fixed structures improves space utilization and increases the energy density of the battery.
  • a battery including: the battery cell in the above-mentioned first aspect or any possible implementation of the first aspect.
  • an electrical device including: the battery in the second aspect, and the battery is used to provide electrical energy to the electrical device.
  • a method for manufacturing a battery cell including: providing a case having openings at both ends in a first direction; providing end caps; providing a first electrode assembly and a second electrode assembly; providing Insulating structure; accommodate the insulating structure, the first electrode assembly and the second electrode assembly in the housing, so that at least part of the insulating structure is arranged in the first direction and is insulated.
  • the first electrode assembly and the second electrode assembly are electrically isolated from each other; the end caps cover the openings at both ends of the housing.
  • a battery cell manufacturing equipment including: providing a module for: providing a housing having openings at both ends in a first direction; providing end caps; providing a first electrode assembly and a second electrode assembly; providing an insulating structure; and a mounting module for: accommodating the insulating structure, the first electrode assembly and the second electrode assembly in the housing, so that at least part of the insulating structure is disposed electrically isolating the first electrode assembly and the second electrode assembly between the first electrode assembly and the second electrode assembly arranged in the first direction and insulated; covering the end cap Close the openings at both ends of the housing.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 4 is an exploded schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an insulation structure provided by an embodiment of the present application.
  • Figure 6-9 is a schematic cross-sectional view of an insulation structure provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an insulation structure provided by an embodiment of the present application.
  • Figures 11-13 are schematic three-dimensional views and cross-sectional views of an insulation structure provided by embodiments of the present application.
  • Figure 14 is a schematic structural diagram of an insulation structure provided by an embodiment of the present application.
  • Figure 15 is a schematic cross-sectional view of an insulation structure provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of an insulating component provided by an embodiment of the present application.
  • Figure 17 is a schematic assembly diagram of the insulating member in Figure 16 being installed on a battery cell;
  • Figure 18 is a schematic structural diagram of an insulating component provided by an embodiment of the present application.
  • Figure 19 is a schematic assembly diagram of the insulating member in Figure 18 being installed on a battery cell;
  • Figures 20-22 are schematic cross-sectional views of the first electrode assembly provided by an embodiment of the present application.
  • Figure 23 is a schematic flow chart of a manufacturing method of a battery cell disclosed in an embodiment of the present application.
  • FIG. 24 is a schematic block diagram of a battery cell manufacturing equipment disclosed in an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the present application.
  • a battery cell may also be called a cell.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode current collector that is coated with the positive electrode active material layer. , the positive electrode current collector without coating the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode current collector that is coated with the negative electrode active material layer.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the bus component mentioned in this application is used to realize the electrical connection between multiple battery cells, such as parallel connection, series connection or mixed connection.
  • the bus component can realize electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus component may be fixed to the electrode terminal of the battery cell by welding.
  • the bus component transmits the voltage of the battery cells. When multiple battery cells are connected in series, a higher voltage will be obtained.
  • the electrical connection formed by the bus component can also be called a "high-voltage connection.”
  • multiple battery cells can be integrated into a battery module, and then the battery module is installed in a battery box to form a battery pack.
  • multiple battery cells can also be directly installed in the battery box to form a battery pack.
  • This battery packaging technology can also be called cell to pack (CTP). ) packaging technology.
  • CTP packaging technology since the intermediate state of the battery module is removed, the quality of the battery pack can be reduced and the energy density of the battery can be increased. That is to say, in the process of packaging the battery, multiple battery cells can be directly formed into a battery, or a battery module can be formed first, and then the battery module can be formed into a battery. The battery is further installed in the electrical equipment to provide electrical energy to the electrical equipment.
  • a battery includes a case and a plurality of battery cells accommodated in the case.
  • the box is usually provided with a fixed structure for supporting and fixing the battery cells.
  • the space utilization rate is low, resulting in the energy density of the battery being unable to meet the requirements.
  • the size of a single battery cell can be increased to reduce the number of battery cells in the battery, simplify the fixed structure in the box, and improve the space utilization inside the battery.
  • multiple electrode assemblies can be arranged in sequence within the casing of the battery cell, and the multiple electrode assemblies can be connected in series or in parallel to form a whole.
  • the current needs to be drawn out through the same electrode terminal.
  • the current generated by the electrode assembly far away from the electrode terminal needs to pass through the electrode assembly close to the electrode terminal before it can be transmitted to the electrode terminal. This causes the current far away from the electrode terminal.
  • the conductive path of the electrode assembly is too long and the internal resistance is too large, resulting in low power of the battery cell.
  • the electrode assembly close to the electrode terminal not only needs to conduct the current generated by itself, but also needs to conduct the current generated by the electrode assembly far away from the electrode terminal. This will cause the electrode assembly close to the electrode terminal to generate more heat and affect the charge and discharge performance.
  • the electrode components within the battery cell can be electrically insulated so that the electrode components do not need to transmit current to each other.
  • adjacent electrode assemblies are spaced apart.
  • the inventor found that although the spaced arrangement can achieve a certain degree of electrical isolation, when the battery cell is impacted by an external force, the two electrode assemblies may still come into contact. Since the electrode assemblies include metal materials, contact between the two electrode assemblies will cause the two electrode assemblies to be electrically connected, which may easily lead to a short circuit in the battery cell. A short circuit may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature, or even safety issues such as explosion or fire of the battery cell, thus posing safety risks.
  • this application provides a technical solution that utilizes an insulation structure to electrically isolate adjacent electrode assemblies within a battery cell to enhance battery safety. More specifically, the insulating structure, the first electrode assembly and the second electrode assembly are accommodated in the housing, so that the insulating structure is at least partially disposed between the first electrode assembly and the second electrode assembly which are arranged in the first direction and are insulated. to electrically isolate the first electrode assembly and the second electrode assembly. This can achieve electrical isolation between adjacent electrode components in the battery cell and prevent short circuits caused by electrical connections between components within the battery cell that should be electrically isolated, thereby reducing safety risks and enhancing battery safety.
  • batteries such as mobile phones, portable devices, laptops, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft.
  • spacecraft include Airplanes, rockets, space shuttles and spacecraft, etc.
  • Vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • the battery 10 may also be referred to as a battery pack.
  • multiple battery cells may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a battery. That is to say, multiple battery cells can directly form the battery 10, or they can first form a battery module, and then the battery module can form the battery 10.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box (or cover) 11.
  • the inside of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • the box body 11 may include two parts, here respectively referred to as the first box body part 111 and the second box body part 112.
  • the first box body part 111 and the second box body part 112 are fastened on Together, a receiving space for a plurality of battery cells 20 is formed.
  • multiple battery cells 20 can be first integrated into at least one battery module, and then the battery module is installed in the box 11 to form a battery pack. )form.
  • auxiliary structural members such as cross beams may also be provided between the battery modules to improve the installation stability of the battery modules in the box 11 .
  • multiple battery cells 20 can be directly connected to each other and installed in the box 11 to form a battery pack. Since the intermediate state of the battery module is eliminated, there is no need to install auxiliary structural components such as beams in the box 11 , thereby reducing the weight of the battery 10 and increasing the energy density of the battery 10 .
  • This implementation mode may also be called a cell to pack (CTP) installation technology in the related art.
  • the box 11 can be integrated into the electrical equipment where the battery 10 is located.
  • the box 11 can be integrally formed with the structural parts in the electrical equipment.
  • the box 11 can be integrated into a local area of the chassis of the above-mentioned vehicle 1.
  • the chassis of the vehicle 1 After multiple battery cells 20 are connected to each other, they can be directly installed on the chassis of the vehicle 1.
  • This implementation mode can also be called a battery cell to chassis (cell to chassis, CTC) installation technology in the related art.
  • the battery 10 may also include other structures, which will not be described again one by one.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus component may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be drawn out through the box 11 through the conductive mechanism.
  • the conductive mechanism may also belong to the bus component.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power.
  • FIG. 3 shows a schematic structural diagram of a battery cell 20 provided by an embodiment of the present application.
  • Figure 4 shows a schematic diagram of a possible exploded structure of the battery cell 20 according to the embodiment of the present application.
  • the battery cell 20 shown in Figure 4 can be the exploded structure of the battery cell 20 shown in Figure 3 Schematic diagram.
  • the battery cell 20 of the embodiment of the present application includes a case 211 , an end cap 212 , a first electrode assembly 221 , a second electrode assembly 222 and an insulating structure 23 .
  • the housing 211 has openings at both ends in the first direction.
  • the end caps 212 are used to cover the openings at both ends of the housing 211 .
  • the first electrode assembly 221 and the second electrode assembly 222 are accommodated in the housing 211 , wherein the first electrode assembly 221 and the second electrode assembly 222 are arranged along the first direction and are insulated. At least part of the insulating structure 23 is disposed between the first electrode assembly 221 and the second electrode assembly 222 for electrically isolating the first electrode assembly 221 and the second electrode assembly 222 .
  • the end cover 212 and the housing 211 may form the outer shell of the battery cell 20 .
  • the housing has a receiving cavity to accommodate the first electrode assembly 221 and the second electrode assembly 222 .
  • the housing may be a polyhedral structure.
  • the walls of the housing 211 and the end caps 212 are both called walls of the battery cell 20 .
  • the shape of the housing 211 can be adapted to the combined shape of the electrode assembly provided in the housing 211 .
  • the housing 211 may be a hollow rectangular parallelepiped with both ends open or a hollow cylinder with both ends open.
  • the opening of the housing 211 facilitates the placement of the first electrode assembly 221 and the second electrode assembly 222 in the housing 211 .
  • the openings on the housing 211 may be located at both ends of the housing 211 in the length direction. Therefore, the first direction in this application may be the length direction of the housing 211, such as the direction X shown in FIG. 3 .
  • the length direction of the housing 211 can also be understood as the length direction of the battery cell 20 .
  • the first electrode assembly 221 and the second electrode assembly 222 are arranged along the first direction X.
  • the first electrode assembly 221 includes a first end surface 2211 and a second end surface 2212 that are oppositely arranged in the first direction
  • the second electrode assembly 222 includes a third end surface 2221 that is oppositely arranged in the first direction. and fourth end face 2222.
  • the first end surface 2211 of the first electrode assembly 221 faces the third end surface 2221 of the second electrode assembly 222 .
  • the second end surface 2212 of the first electrode assembly 221 faces the cover plate close to the first electrode assembly 221 .
  • the fourth end surface 2222 of the second electrode assembly 222 faces the cover plate close to the second electrode assembly 222 .
  • a closed cavity can be formed in which the first electrode assembly 221 and the second electrode assembly 222 arranged along the first direction are placed.
  • the cavity can also be filled with electrolyte to conduct ions.
  • the end cap 212 may include a first cover plate 212a and a second cover plate 212b.
  • the first cover plate 212a and the second cover plate 212b respectively cover the openings at both ends of the housing 211 and are connected with the housing 211, thereby forming the above-mentioned closed cavity.
  • first cover plate 212a and the second cover plate 212b can be formed independently and then connected to the housing 211 respectively to cover the opening.
  • Both the first electrode assembly 221 and the second electrode assembly 222 may be referred to as electrode assemblies.
  • Each electrode assembly in the battery cell 20 has a first tab 22a and a second tab 22b.
  • the first tab 22a and the second tab 22b have opposite polarities. For example, when the first tab 22a is a positive tab, the second tab 22b is a negative tab.
  • the battery cell 20 in the embodiment of the present application may also include electrode terminals 214.
  • the electrode terminal 214 is used to electrically connect with the electrode assembly to output the electric energy of the battery cell 20 .
  • the electrode terminals may be arranged according to the position of the tabs of the electrode assembly.
  • the battery cell 20 may include at least one set of electrode terminals 214 , and each set of electrode terminals 214 includes a positive electrode terminal 214 a and a negative electrode terminal 214 b.
  • the positive electrode terminal 214a is used for electrical connection with the positive electrode tab 22a
  • the negative electrode terminal 241b is used for electrical connection with the negative electrode tab 22b.
  • the positive electrode terminal 214a and the positive electrode tab 22a may be directly connected or indirectly connected.
  • the negative electrode terminal 214b and the negative electrode tab 22b may be connected directly or indirectly.
  • the positive electrode terminal 214a may be electrically connected to the positive electrode tab 22a through one connecting member
  • the negative electrode terminal 214b may be electrically connected to the negative electrode tab 22b through another connecting member.
  • the tabs of the first electrode assembly 221 and the tabs of the second electrode assembly 222 face different walls of the battery cell 20.
  • the battery cell 20 includes multiple sets of electrode terminals.
  • the first cover plate 212 a and the second cover plate 212 b are respectively provided with a set of electrode terminals 214 .
  • the first tab 22a and the second tab 22b of the first electrode assembly 221 face the first cover 212a.
  • the first tab 22a and the second tab 22b of the second electrode assembly 222 face the second cover 212b.
  • the positive electrode terminal 214a provided on the first cover plate 212a is used for electrical connection with the positive electrode tab of the first electrode assembly 221, and the negative electrode terminal 214b provided on the first cover plate 212a is used for electrical connection with the negative electrode tab of the first electrode assembly 221. Ear electrical connection.
  • the positive electrode terminal 214a provided on the second cover plate 212b is used for electrical connection with the positive electrode tab of the second electrode assembly 222
  • the negative electrode terminal 214b provided on the second cover plate 212b is used for electrical connection with the second electrode assembly 222
  • the negative pole lug is electrically connected.
  • the tabs of the same electrode assembly in the two electrode assemblies are arranged on the same end surface, but the tabs of the two electrode assemblies are facing in opposite directions, and both are facing outside of the battery cell 20 .
  • the two tabs of the first electrode assembly 221 can be disposed on the second end surface 2212
  • the two tabs of the second electrode assembly 222 can be disposed on the fourth end surface 2222 .
  • the battery cell 20 includes two sets of electrode terminals, and the two sets of electrode terminals are located on different walls of the battery cell 20 , but the embodiment of the present application is not limited thereto.
  • the first electrode assembly 221 and the second electrode assembly 222 in the embodiment of the present application are each connected to a set of electrode terminals.
  • the first electrode assembly 221 and the second electrode assembly 222 may be electrically insulated, so that the first electrode assembly 221 and the second electrode assembly 222 are electrically isolated.
  • the first electrode assembly 221 and the second electrode assembly 222 are insulated, which means that the first electrode assembly 221 and the second electrode assembly 222 are not electrically connected.
  • the electrical isolation between the first electrode assembly 221 and the second electrode assembly 222 is achieved through the insulation structure 23.
  • a pressure relief mechanism may be disposed on one wall of the battery cell 20 .
  • the pressure relief mechanism is used to be activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism and the electrode terminal 214 may be disposed on the same wall of the battery cell 20 , or may be disposed on different walls of the battery cell 20 , which is not limited in the embodiments of the present application.
  • the first cover 212a is provided with one set of electrode terminals 214
  • the second cover 212b is also provided with another set of electrode terminals 214.
  • the pressure relief mechanism can be provided on the first cover 212a or the second cover 212b, or can be provided on the housing 211.
  • the pressure relief mechanism can be a part of the wall where it is located, for example, by providing a notch on the wall where it is located; the pressure relief mechanism can also be a separate structure from the wall where it is located, and be fixed on the wall where it is located by, for example, welding.
  • the pressure relief mechanism may be any possible pressure relief mechanism, such as a temperature-sensitive pressure relief mechanism or a pressure-sensitive pressure relief mechanism, which is not limited in the embodiments of the present application.
  • the insulating structure 23, the first electrode assembly 221 and the second electrode assembly 222 are accommodated in the housing 211, wherein at least part of the insulating structure 23 is arranged in a first direction and is insulated.
  • the insulating structure 23 is disposed between the first electrode assembly 221 and the second electrode assembly 222, so that the insulation structure 23 can electrically isolate the first electrode assembly 221 and the second electrode assembly 222, reducing the pole piece of the first electrode assembly 221 and
  • the possibility of contact between the pole pieces of the second electrode assembly 222 prevents short circuits caused by electrical connections between components within the battery cell 20 that should be electrically isolated, thereby reducing safety risks and enhancing battery safety.
  • first electrode assembly 221 and the second electrode assembly 222 are arranged along the first direction in the housing 211, which can increase the size of the battery cell 20 along the first direction, thereby increasing the space of the battery cell 20 in the battery. Utilization efficiency, improve energy density.
  • the first direction is the length direction of the battery cell 20, so the first cover plate 212a and the second cover plate 212b are respectively perpendicular to the first direction.
  • the first cover plate 212a and the second cover plate 212b are the walls of the battery cell 20 with the smallest area.
  • the surfaces of the first electrode assembly 221 and the second electrode assembly 222 that are prone to expansion due to temperature correspond to the wall of the battery cell 20 with the largest area. That is, the expansion direction of the electrode assembly in the battery cell where it is most susceptible to thermal expansion is perpendicular to the wall with the largest area of the battery cell 20 , which is beneficial to the heat dissipation of the battery cell 20 and reduces expansion.
  • first electrode assembly 221 and the second electrode assembly 222 are electrically isolated by at least part of the insulating structure 23 , so the first electrode assembly 221 and the second electrode assembly 222 do not need to transmit current to each other. This can shorten the conductive path of the first electrode assembly 221 and the second electrode assembly 222, reduce internal resistance, reduce heat generation, increase the power of the battery cell, and improve the charge and discharge performance of the battery cell.
  • the insulation structure 23 is arranged in various ways, which will be described in detail below with reference to the accompanying drawings.
  • Figure 5 shows a schematic structural diagram of an insulation structure provided by an embodiment of the present application.
  • the insulation structure 23 includes a first part 231 , a second part 232 and a third part 233 .
  • the first portion 231 is disposed between the first electrode assembly 221 and the second electrode assembly 222 .
  • the second portion 232 is wrapped around the outer periphery of the first electrode assembly 221 along a circumferential direction perpendicular to the first direction.
  • the third portion 233 is wrapped around the outer periphery of the second electrode assembly 222 along a circumferential direction perpendicular to the first direction.
  • At least one of the second part 232 and the third part 233 is integrally formed with part or all of the first part 231 .
  • the second part 232 wraps the surface of the first electrode assembly 221 except the surface in the first direction, wherein the wrapping direction of the second part 232 is a circumferential direction perpendicular to the first direction.
  • the third part 233 wraps the surface of the second electrode assembly 222 except the surface in the first direction, wherein the wrapping direction of the third part 233 is the circumferential direction perpendicular to the first direction.
  • one end of the first electrode assembly 221 away from the second electrode assembly 222 in the first direction is not wrapped by the second part 232 , and this end is used for electrical connection between the tabs of the first electrode assembly 221 and the electrode terminals.
  • One end of the second electrode assembly 222 away from the first electrode assembly 221 in the first direction is not wrapped by the third part 233 , and this end is used for electrical connection between the tabs of the second electrode assembly 222 and the electrode terminal.
  • the first part 231 may include multiple parts that are separated from each other, or may be a whole, as illustrated below.
  • FIG. 6 shows a schematic cross-sectional view of the insulation structure 23 .
  • the first portion 231 is disposed between the first electrode assembly 221 and the second electrode assembly 222 .
  • the first part 231 may include a first sub-part 231a and a second sub-part 231b that are separated from each other, wherein the first sub-part 231a and the second sub-part 231b are oppositely arranged along the first direction.
  • the second portion 232 and the third portion 233 are each integrally formed with portions of the first portion 231 . More specifically, the second part 232 is integrally formed with the first sub-part 231a, and the third part 233 is integrally formed with the second sub-part 231b. Since the first sub-part 231a and the second sub-part 231b are detachable, the integrally formed second part 232 and the first sub-part 231a are detachable relative to the integrally formed third part 233 and the second sub-part 231b.
  • the second part 232 and the first sub-part 231a form a cylindrical structure with one end open, and the first electrode assembly 221 is disposed in the accommodation space formed by the cylindrical structure.
  • the third part 233 and the second sub-part 231b form another cylindrical structure with one end open, and the second electrode assembly 222 is disposed in the accommodation space formed by the other cylindrical structure.
  • the portion of the insulating structure 23 wrapped around the first electrode assembly 221 and the portion of the insulating structure 23 wrapped around the second electrode assembly 222 can be separated from each other. Therefore, during the installation process, the first electrode assembly can be removed first. 221 and the second electrode 222 are respectively disposed in two relatively independent cylindrical structures formed by the insulating structure 23 and then assembled. This makes the assembly process more flexible.
  • the cylindrical structure formed by the second part 232 and the first sub-part 231a may be a first insulating film wrapped around the outer periphery of the first electrode assembly 221 .
  • the first insulating film has an opening at one end away from the second electrode assembly 222 in the first direction.
  • the cylindrical structure formed by the third part 233 and the second sub-part 231b may be a second insulating film wrapped around the outer periphery of the second electrode assembly 222 .
  • the second insulating film has an opening at one end away from the first electrode assembly 221 in the first direction.
  • FIG. 7 shows a schematic cross-sectional view of the insulation structure 23 .
  • the first part 231 is disposed between the first electrode assembly 221 and the second electrode assembly 222 , and the second part 232 and the third part 233 are both integrally formed with the first part 231 . That is, the first part 231, the second part 232 and the third part 233 included in the insulation structure 23 are integrally formed.
  • the second part 232 and the first part 231 form a cylindrical structure with one end open, and the third part 233 and the first part 231 form another cylindrical structure with one end open.
  • the two cylindrical structures have the same bottom wall, and the openings of the two cylindrical structures face opposite directions.
  • the first electrode assembly 221 and the second electrode assembly 222 are respectively disposed in the accommodation space formed by the two cylindrical structures.
  • the part of the insulating structure 23 covering the first electrode assembly 221 and the part of the insulating structure 23 covering the second electrode assembly 222 are integrally formed, which can simplify the processing technology of the insulating structure 23 and reduce the number of parts.
  • the alignment operation of the first electrode assembly 221 and the second electrode assembly 222 can be saved, thereby improving assembly efficiency and further improving battery production efficiency.
  • FIG. 8 shows yet another schematic cross-sectional view of the insulation structure 23 .
  • the first part 231 is disposed between the first electrode assembly 221 and the second electrode assembly 222 , and the third part 233 and the first part 231 are integrally formed.
  • the third part 233 and the first part 231 form a cylindrical structure with an open end, where the open end is an end of the third part 233 away from the first electrode assembly 221 in the first direction.
  • the second part 232 forms a cylindrical structure with both ends open.
  • the first part 231 is the bottom wall of the cylindrical structure with one end open, and can also be used as the bottom wall to cover the cylindrical structure with both ends open close to the opening of the second electrode assembly 222 in the first direction. end, electrical isolation between the first electrode assembly 221 and the second electrode assembly 222 can also be achieved.
  • the first part 231 may be integrally formed with the second part 232 to form a cylindrical structure with one end open, and the third part 233 may form a cylindrical structure with both ends open.
  • the first part 231 is the bottom wall of the cylindrical structure formed by the second part 232 and the first part 231. At the same time, it can also be used as the bottom wall to cover the cylindrical structure with both ends open formed by the third part 233. direction is close to the open end of the first electrode assembly 221 .
  • the first part 231 is integrally formed with the second part 232 and/or the third part 233 .
  • the first part 231 may also be a separate part, that is, the first part 231 , the second part 232 and the third part 233 may be separated from each other.
  • the second part 232 and the third part 233 respectively form a cylindrical structure with both ends open, and the first part 231 can serve as a common bottom wall of the two cylindrical structures.
  • the first part 231 , the second part 232 and the third part 233 included in the insulation structure 23 may be made of the same material, such as polyester insulating material.
  • polyester insulating material such as Polyimide, polyethylene, polyvinylidene fluoride, polytetrafluoroethylene, etc. are used.
  • the insulating structure 23 may be a mylar film.
  • the first part 231 is provided with a through hole 2311 extending through the thickness of the first part 231 , and the through hole 2311 is used for electrolyte circulation in the battery cell.
  • the through hole 2311 can extend along the first direction, can extend along a straight line located on the same plane as the first direction and has an acute angle with the first direction, or can also extend along a straight line located on the same plane as the first direction.
  • the curves of the same plane extend as long as the through hole 2311 penetrates from the end of the first part 231 close to the first electrode assembly 221 to the end of the first part 231 close to the second electrode assembly 222. This is not specifically limited in the embodiment of the present application.
  • the first part 231 can electrically isolate the first electrode assembly 221 and the second electrode assembly 222, and the through hole 2311 provided on the first part 231 can serve as an ion channel and an electrolyte infiltration channel in the battery cell, which is beneficial to the electrolysis in the battery cell.
  • the liquid circulates between the space where the first electrode assembly 221 is located and the space where the second electrode assembly 222 is located. On the one hand, it helps to solve the problem of electrolyte circulation and improves the consistency of the electrolyte infiltrating the first electrode assembly 221 and the second electrode assembly 222 . On the other hand, the weight of the electrolyte can be reduced, thereby reducing the cost of the battery cells.
  • the first part 231 may also be provided with a through hole 2311 as shown in FIG. 9 to facilitate the circulation of the electrolyte. For the sake of simplicity, details will not be described again.
  • Figure 10 shows a schematic structural diagram of another insulation structure provided by an embodiment of the present application.
  • the insulation structure 23 includes a first insulation film 234 , a second insulation film 235 and an insulation member 236 .
  • the first insulating film 234 is wrapped around the outer periphery of the first electrode assembly 221 , wherein the first insulating film 234 has an opening 234 a at one end away from the second electrode assembly 222 in the first direction.
  • the first insulation film 234 includes a first wrapping end 234b disposed opposite to the opening 234a.
  • the opening 234a provided in the first insulating film 234 is called the first opening.
  • the second insulating film 235 is wrapped around the outer periphery of the second electrode assembly 222 , wherein the second insulating film 235 has an opening 235 a at one end away from the first electrode assembly 221 in the first direction.
  • the second insulating film 235 includes a second wrapped end 235b opposite to the opening 235a.
  • the opening 235a provided in the second insulating film 235 is called the second opening.
  • the insulating member 236 is disposed between the first wrapping end 234b and the second wrapping end 235b.
  • the first insulating film 234 covers the outer periphery of the first electrode assembly 221 and can separate the first electrode assembly 221 from at least part of the case 211, thereby reducing the case 211 from conducting the positive and negative electrodes of the first electrode assembly 221. pass risk.
  • the second insulating film 235 covers the outer periphery of the second electrode assembly 222, which can separate the second electrode assembly 222 from at least part of the casing 211, and can lower the casing 211 to conduct the positive and negative electrodes of the second electrode assembly 222. pass risk.
  • the insulating member 236 is disposed between the first wrapped end 234b and the second wrapped end 235b, which can avoid the risk of electrical isolation failure caused by damage to the first insulating film 234 and the second insulating film 235, thereby strengthening the first electrode assembly. 221 and the second electrode assembly 222.
  • the insulating member 236 can be arranged in various ways, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 11 shows a schematic perspective view and cross-sectional view of the insulation structure 23 .
  • the insulating member 236 may be independent of the first insulating film 234 and the second insulating film 235 . That is, the insulating member 236 and the first insulating film 234 and the second insulating film 235 can be separated from each other. In this way, during the installation process, the first electrode assembly 221 can be wrapped in the first insulating film 234, the second electrode 222 can be wrapped in the second insulating film 235, and then the insulating member 236 can be placed on the covered insulating film. between the first electrode assembly 221 and the second electrode assembly 22 . In this way, the assembly process can be made more flexible.
  • FIG. 12 shows a schematic perspective view and a cross-sectional view of the insulation structure 23 .
  • the insulating member 236 is fixedly connected to the first wrapping end 234b of the first insulating film 234 .
  • the insulating member 236 may be independently formed and then fixedly connected to the first wrapping end 234b, or may be fixedly connected to the first wrapping end 234b during the forming process of the first insulating film 234. This is not limited in the embodiment of the present application.
  • the fixedly connected insulating member 236 and the first wrapping end 234b are not detachable, and the insulating member 236 and the second insulating film 235 are separable from each other.
  • the insulating member 236 may also be fixedly connected to the second wrapping end 235b of the second insulating film 235 and separated from the first insulating film 234.
  • the specific design of the insulation structure is similar to the structure shown in Figure 13, and will not be described again for simplicity.
  • the insulating member 236 is fixedly connected to the first wrapping end 234b and/or the second wrapping end 235b, which can reduce the shaking amplitude of the insulating member 236 when the battery cell is subjected to external impact, reduce the risk of the insulating member 236 failing, and improve safety.
  • the insulating member 236 is fixedly connected to one of the first wrapping end 234b and the second wrapping end 235b, which can also reduce the number of parts and improve production efficiency.
  • FIG. 13 shows a schematic perspective view and cross-sectional view of the insulation structure 23 .
  • the insulating member 236 is fixedly connected to the first wrapped end 234b of the first insulating film 234 and the second wrapped end 235b of the second insulating film 235 .
  • the insulating member 236 can be independently formed and then fixedly connected to the first wrapping end 234b and the second wrapping end 235b, or it can be connected to the first wrapping end 234b during the forming process of the first insulating film 234 and the second insulating film 235. It is fixedly connected to the second wrapping end 235b, which is not limited in the embodiment of the present application.
  • the fixedly connected insulating member 236, the first wrapping end 234b and the second wrapping end 235b are not detachable.
  • the alignment operation of the first electrode assembly 221 and the second electrode assembly 222 can be saved, thereby improving assembly efficiency and improving battery production efficiency.
  • the insulating member 236 is provided with a through hole 2361 that runs through the thickness of the insulating member 236 , and the through hole 2361 is used for electrolyte circulation in the battery cell.
  • the through hole 2361 can extend along the first direction, can extend along a straight line located on the same plane as the first direction and has an acute angle with the first direction, or can also extend along a straight line located on the same plane as the first direction.
  • the curves of the same plane extend as long as the through hole 2361 can be used as a channel for the electrolyte to flow, which is not specifically limited in the embodiment of the present application.
  • the through hole 2361 provided on the insulating member 236 can serve as an ion channel and an electrolyte infiltration channel in the battery cell, which facilitates the circulation of the electrolyte in the battery cell between the space where the first electrode assembly is located and the space where the second electrode assembly is located.
  • the setting of the through hole 2361 can, on the one hand, help solve the problem of electrolyte circulation and improve the consistency of the electrolyte infiltrating the first electrode assembly 221 and the second electrode assembly 222, thereby improving the charging and discharging performance of the battery; on the other hand, it can Reduce the weight of the electrolyte, thereby reducing the cost of battery cells.
  • the insulating member 236 shown in FIGS. 11 to 13 can be provided with a through hole 2361 as shown in FIG. 14 .
  • the through hole 2361 can be close to the first electrode assembly 236 from the insulating member 236.
  • One side of the wrapped end 234b penetrates to the side of the insulating member 236 close to the second wrapped end 235b.
  • the through hole 2361 may penetrate from the side of the insulating member 236 close to the second wrapping end 235b to the side of the insulating member 236 close to the first wrapping end 234b and continue to penetrate the first wrapping end. 234b thickness.
  • the through hole 2361 can penetrate from the side of the insulating member 236 close to the second wrapping end 235b to the side of the insulating member 236 close to the first wrapping end 234b, and continue to penetrate the second wrapping end 234b on both sides. The thickness of one wrapped end 234b and the thickness of the second wrapped end 235b.
  • the first wrapped end 234b is provided with a first through hole 2341 extending through the thickness of the first wrapped end 234b.
  • the second wrapped end 235b is provided with a second through hole 2351 penetrating the thickness of the second wrapped end 235b.
  • the first through hole 2341 and the second through hole 2351 are used for electrolyte circulation in the battery cells.
  • the first through hole 2341 is offset from the through hole 2361
  • the second through hole 2351 is offset from the through hole 2361. That is to say, the through hole 2361 provided on the insulating member 236 may be disposed in an offset position with at least one of the first through hole 2341 and the second through hole 2351 . This can prevent the space where the first electrode assembly 221 is located from being directly connected to the space where the second electrode assembly 222 is located, thereby preventing metal debris or other conductors generated in the first insulating film 234 from entering the space where the second electrode assembly 222 is located through the through hole 2361.
  • the through hole 2361 can also be connected to the first through hole 2341 and/or the second through hole 2351, for example, arranged in alignment.
  • the specific design can be carried out according to actual needs (such as the connection relationship between the insulating member 236 and the first insulating film 234 and the second insulating film 235, the size of the opening, the ion flow efficiency, etc.).
  • the through-hole 2361 provided on the insulating member 236 may be the same as the first through-hole 2341 provided on the first wrapped end 234b and the second wrapped end 235b. At least one of the second through holes 2351 is disposed in an offset manner.
  • the through-hole 2361 provided on the insulating member 236 can be disposed offset from the second through-hole 2351 provided on the second wrapping end 235b, but not the same as the second through-hole 2351 provided on the second wrapping end 235b.
  • a first through hole 2341 provided on the wrapping end 234b is connected.
  • the through-hole 2361 provided on the insulating member 236 can be connected with the first through-hole 2341 provided on the first wrapping end 234b and the second wrapping end 235b.
  • the second through hole 2351 provided on them is connected with each other.
  • the "disposition" of the two through holes can be understood to mean that the projected areas of the two through holes in the first direction do not overlap.
  • the projection of the through hole 2361 in the first direction does not overlap with the projection of the first through hole 2341 in the first direction.
  • it can be The projections of the two opposite ends of the hole 2361 and the first through hole 2341 in the first direction do not overlap. That is, the projection of the end of the through hole 2361 close to the first insulating film 234 in the first direction does not overlap with the projection of the end of the first through hole 2341 close to the insulating member 236 in the first direction.
  • the understanding of the offset arrangement of the through hole 2361 and the second through hole 2351 is similar, and will not be described again for simplicity.
  • two through holes are connected, which can be understood that the projected areas of the two through holes in the first direction partially or completely overlap.
  • the through hole 2361 communicating with the first through hole 2341 it can be understood that the projection of the through hole 2361 in the first direction and the projection of the first through hole 2341 in the first direction at least partially overlap.
  • the understanding of the connection between the through hole 2361 and the second through hole 2351 is similar, and is not repeated here for simplicity.
  • the projected areas of the two through holes in the first direction completely overlap, or when the projection of one through hole in the first direction is within the projection range of the other through hole in the first direction, it is also possible to It can be said that the two vias are aligned.
  • Figure 15 shows a schematic structural diagram of yet another insulation structure provided by an embodiment of the present application.
  • the insulation structure 23 includes a first insulation film 234 , a second insulation film 235 and an insulation member 236 .
  • the first insulating film 234 is wrapped around the outer periphery of the first electrode assembly 221 , wherein the first insulating film 234 has openings at both ends in the first direction.
  • the second insulating film 235 is wrapped around the outer periphery of the second electrode assembly 222, and the second insulating film 235 has openings at both ends in the first direction.
  • the insulating member 236 is disposed between the first electrode assembly 221 and the second electrode assembly 222 for covering the opening of the first insulating film 234 close to the second electrode assembly 222 and the opening of the second insulating film 235 close to the first electrode assembly 221 of opening.
  • the first insulating film 234 is wrapped around the outer periphery of the first electrode assembly 221 along the circumferential direction perpendicular to the first direction.
  • the second insulating film 235 is wrapped around the outer periphery of the second electrode assembly 222 along the circumferential direction perpendicular to the first direction.
  • the insulating member 236 electrically isolates the first electrode assembly 221 and the second electrode assembly 222.
  • the insulating member 236 may be an independent component, and may be separated from the first insulating film 234 and the second insulating film 235 .
  • the insulating member 236 may be fixedly connected to the first insulating film 234 and/or the second insulating film 235 .
  • the insulation structure 23 may include a third insulation film 237 and an insulation member 236 .
  • the third insulating film 237 is wrapped around the outer periphery of the first electrode assembly 221 and the second electrode assembly 222, wherein the third insulating film 237 has openings at both ends in the first direction.
  • the insulating member 236 is disposed inside the third insulating film 237 and between the first electrode assembly 221 and the second electrode assembly 222 .
  • the third insulating film 237 is a cylindrical structure with openings at both ends in the first direction, and the first electrode assembly 221 and the second electrode assembly 222 are disposed in the accommodation space formed by the cylindrical structure.
  • the first electrode assembly 221 and the second electrode assembly 222 are electrically isolated by an insulator 236 .
  • the insulation structure 23 shown in (b) of FIG. 15 can be deformed from the insulation structure 23 shown in (a) of FIG. 15 .
  • the first insulating film 234 and the second insulating film 235 are integrally formed to form a third insulating film 237 .
  • the insulating member 236 is disposed in the space formed by the third insulating film 237 .
  • the insulating member 236 may also be provided with a through hole 2361 as shown in FIG. 14 for the circulation of electrolyte.
  • the first insulating film 234 and the second insulating film 235 included in the insulating structure 23 can be made of the same material, such as polyester insulating material, specifically polyester insulating material. Imide, polyethylene, polyvinylidene fluoride, polytetrafluoroethylene, etc.
  • the first insulating film 234 and the second insulating film 235 may be mylar films.
  • the above-mentioned insulating member 236 may be made of high-temperature resistant insulating material.
  • the insulating member 236 may be an insulating material with a melting point greater than or equal to 200°C.
  • the insulating member 236 made of high-temperature resistant insulating material can withstand higher temperatures and generally has higher strength and hardness. Therefore, it can avoid electric shock caused when the first insulating film 234 and the second insulating film 235 are damaged. The risk of isolation failure may increase the electrical isolation between the first electrode assembly 221 and the second electrode assembly 222 .
  • the high temperature resistance of the insulating member 236 allows the insulating member 236 to maintain its original characteristics at high temperatures, which can improve heat conduction inside the battery cell.
  • the insulating material used in the insulating member 236 may include at least one of the following: polyethylene terephthalate (PET), ethylene propylene diene monomer (EPDM) , polytetrafluoroethylene (PTFE), fusible polytetrafluoroethylene (polyfluoroalkoxy, PFA) (also known as perfluoroalkylate), fluororubber (usually abbreviated as FKM), silicone Rubber, alumina, silicon nitride and ceramics.
  • PET polyethylene terephthalate
  • EPDM ethylene propylene diene monomer
  • PTFE polytetrafluoroethylene
  • PFA fusible polytetrafluoroethylene
  • FKM fluororubber
  • silicone Rubber silicone Rubber
  • the insulator 236 may also be an anodized material.
  • Anodizing is a metal surface treatment process, which specifically refers to a material protection technology that forms an oxide film on the surface of metal materials in an electrolyte solution by applying an external anodic current, also known as surface anodization. After metal materials or products undergo surface anodization, their corrosion resistance, hardness, wear resistance, insulation, heat resistance, etc. are greatly improved.
  • the metal material may be aluminum, magnesium alloy, zinc, zinc alloy, titanium alloy, steel, cadmium, tantalum, zirconium, etc.
  • the above-mentioned insulating materials all have excellent heat resistance and can maintain good original characteristics under high temperature conditions, which can reduce the risk of insulation failure and improve safety.
  • the material of the insulating member 236 can be selected according to requirements (such as cost, performance, etc.), which is not specifically limited in the embodiments of the present application.
  • the insulating member 236 may be preferably made of PET material.
  • the insulating member 236 may preferably be made of fluorine rubber.
  • the end of the first electrode assembly 221 away from the second electrode assembly 222 in the first direction is not covered by the insulating structure 23 , and the end of the second electrode assembly 222 away from the first electrode assembly 221 in the first direction.
  • One end is not covered by the insulating structure 23 .
  • the purpose of this design is to facilitate the electrical connection between the positive electrode tab and the negative electrode tab of the first electrode assembly 221 and the electrode terminal, and the electrical connection between the positive electrode tab and the negative electrode tab of the second electrode assembly 222 and the electrode terminal.
  • the tabs of the electrode assembly can be electrically connected to the electrode terminal through a connecting member (such as an adapter piece).
  • the connecting member may be broken or damaged, or the welding between the connecting member and the tab may fail, thereby causing the tab to be electrically connected to the electrode terminal. Invalid. Therefore, in order to solve the problem of shaking of the electrode assembly inside the battery cell, the present application further provides the following embodiments, which are described below with reference to the accompanying drawings.
  • FIG. 16 shows a schematic structural diagram of an insulating member provided by an embodiment of the present application
  • FIG. 17 shows a schematic assembly diagram of the insulating member in FIG. 16 applied to a battery cell.
  • the insulating member 236 may be an elastic material. One side of the insulating member 236 is configured to abut the first electrode assembly 221 , and the other side of the insulating member 236 is configured to abut the second electrode assembly 222 .
  • the insulating member 236 may be a sheet-like structure made of elastic material.
  • FIG. 17 shows a schematic top view of the battery cell 20
  • FIG. 17 shows a schematic cross-sectional view of the battery cell 20 taken along line A-A
  • FIG. 17 shows a partially enlarged schematic diagram B of the cross-sectional view of the battery cell 20 .
  • the insulating member 236 is disposed between the first electrode assembly 221 and the second electrode assembly 222 . In the assembled state, the side of the insulating member 236 close to the first electrode assembly 221 in the first direction abuts against the first electrode assembly 221 , and the side of the insulating member 236 close to the second electrode assembly 222 in the first direction abuts on the second electrode assembly 222.
  • the thickness of the insulating member 236 in the free state should be greater than the maximum distance that can be achieved between the first electrode assembly 221 and the second electrode assembly 222 in the assembled state. In this way, during assembly, the insulating member 236 will be extruded and deformed, thereby abutting the first electrode assembly 221 and the second electrode assembly 222 .
  • the thickness of the insulating member 236 in the free state should satisfy: in the assembled state, an interference fit is formed between the insulating member 236 and the first electrode assembly 221, and an interference fit is formed between the insulating member 236 and the second electrode assembly 222. Cooperate with surplus.
  • the insulating member 236 is made of elastic material, which can not only deform during the assembly process to stabilize the first electrode assembly 221 and the second electrode assembly 222, but also reduce the friction between the first electrode assembly 221 and the second electrode assembly during use of the battery.
  • the relative movement between the electrode assemblies 222 may reduce the movement amplitude of the first electrode assembly 221 and the second electrode assembly 222. Therefore, welding failure or connection member damage caused by shaking of the first electrode assembly 221 and/or the second electrode assembly 222 can be reduced or avoided, and the problem of electrical connection failure between the tab and the electrode terminal can be avoided. Furthermore, the service life of the battery cells can be increased and the safety of the battery can be enhanced.
  • the insulator 236 may be provided with one or more through holes 2361.
  • the plurality of through holes 2361 can be arranged randomly; or arranged in an array of m rows * n columns, where m and n are both integers greater than 0; or arranged in a circular array. This application The embodiment does not limit this.
  • a plurality of through holes 2361 are provided on the insulating member 236, which is beneficial to the infiltration of electrolyte and improves the efficiency of electric ion circulation.
  • FIG. 18 shows a schematic structural diagram of another insulating member provided by an embodiment of the present application
  • FIG. 19 shows a schematic assembly diagram of the insulating member in FIG. 18 applied to a battery cell.
  • the insulating member 236 may include a first insulating sheet 236a and a second insulating sheet 236b that are oppositely arranged along the first direction, and are disposed on the first insulating sheet 236a. and the elastic body 236c between the second insulating sheet 236b.
  • the elastic body 236c is used to make the first insulating sheet 236a contact the first electrode assembly 221, and to make the second insulating sheet 236b contact the second electrode assembly 222.
  • the elastic body 236c is made of elastic material.
  • the elastic body 236c may be cylindrical.
  • the elastic body 236c can also be in other shapes, such as a cube, a cuboid, a sphere, a truncated cone, etc., which are not limited in the embodiments of the present application.
  • FIG. 19 shows a schematic top view of the battery cell 20
  • (b) in FIG. 19 shows a schematic cross-sectional view of the battery cell 20 taken along line C-C
  • (c) in FIG. 19 ) shows a partially enlarged schematic diagram D of the cross-sectional view of the battery cell 20 .
  • the insulating member 236 is disposed between the first electrode assembly 221 and the second electrode assembly 222.
  • the first insulating sheet 236a is arranged opposite to the first electrode assembly 221
  • the second insulating sheet 236b is arranged opposite to the second electrode assembly 222.
  • the elastic body 236c disposed between the first insulating sheet 236a and the second insulating sheet 236b will deform when squeezed, so that the first insulating sheet 236a contacts the first electrode assembly 221, and the second insulating sheet 236b contacts the first electrode assembly 221. on the second electrode assembly 222.
  • the elastic body 236c is made of elastic material, which can deform during the assembly process to stabilize the installation of the first electrode assembly 221 and the second electrode assembly 222, and can also reduce the friction between the first electrode assembly 221 and the second electrode assembly during use of the battery.
  • the relative movement between the electrode assemblies 222 may reduce the movement amplitude of the first electrode assembly 221 and the second electrode assembly 222. Therefore, welding failure or connection member damage caused by shaking of the first electrode assembly 221 and/or the second electrode assembly 222 can be reduced or avoided, and the problem of electrical connection failure between the tab and the electrode terminal can be avoided. Furthermore, the service life of the battery cells can be increased and the safety of the battery can be enhanced.
  • the first insulating sheet 236a and the second insulating sheet 236b may be elastic materials. This helps the insulating member 236 absorb more deformation as a whole and play a buffering role.
  • the first insulating sheet 236a, the second insulating sheet 236b and the elastic body 236c are all made of elastic material, which can simplify the processing technology of the insulating member 236.
  • the first insulating sheet 236a and the second insulating sheet 236b may be provided with one or more through holes 2361.
  • the plurality of through holes 2361 can be arranged randomly; or arranged in an array of m rows * n columns, where m and n are both integers greater than 0; or arranged in a circular array. This application The embodiment does not limit this.
  • a plurality of through holes 2361 are provided on the first insulating sheet 236a and the second insulating sheet 236b, which is beneficial to the infiltration of electrolyte and improves the efficiency of electric ion circulation.
  • one or more elastic bodies 236c may be disposed between the first insulating sheet 236a and the second insulating sheet 236b. When multiple elastic bodies 236c are provided, the force on the insulating member 236 is more uniform.
  • a channel for electrolyte circulation can also be formed between adjacent elastic bodies 236c, which is beneficial to the infiltration of electrolyte and improves the efficiency of electric ion circulation.
  • the elastic body 236c is offset from the through holes 2361 provided on the first insulating sheet 236a and the second insulating sheet 236b.
  • elastomer 236c may be a thermoset elastomer or a thermoplastic elastomer.
  • the thermoplastic elastomers include but are not limited to styrenic thermoplastic elastomers, olefin thermoplastic elastomers, thermoplastic EPDM dynamic vulcanization elastomers, thermoplastic polyurethane elastomers, etc.
  • the elastic materials mentioned above include but are not limited to: rubber, plastic, synthetic rubber, modified plastic, etc.
  • the rubber can include fluorine rubber, silicone rubber, EPDM rubber, etc.
  • the “contact” involved in the embodiments of this application includes direct contact and indirect contact.
  • the insulating member 236 may directly contact the first electrode assembly 221 and the second electrode assembly 222 and apply force.
  • the insulating member 236 may be in contact with the first electrode assembly 221 and the second electrode assembly 222 through other components such as the aforementioned first insulating film 234 and the second insulating film 235, respectively.
  • the insulating member 236 provided in Figs. 16 and 18 can be combined with any embodiment in Figs. 10 to 15, for example, the insulating member 236 described in Figs. The structure of the insulating member 236 shown in 18. For the sake of brevity, it will not be described in detail here.
  • Figure 20 shows a schematic cross-sectional view of a first electrode assembly provided by an embodiment of the present application.
  • the first electrode assembly 221 includes a first pole piece 221a and a second pole piece 221b.
  • the first pole piece 221a and the second pole piece 221b are wound around the winding axis.
  • the winding axis is parallel to the first direction X, and the first end surface 2211 is perpendicular to the winding axis.
  • the winding direction of the first pole piece 221a and the second pole piece 221b is perpendicular to the first direction X, and one end of the first pole piece 221a along the first direction One end in one direction X forms a first end surface 2211 perpendicular to the first direction X.
  • the electrolyte contacts the first end face 2211, the electrolyte can quickly infiltrate each layer of electrode pieces of the first electrode assembly 221 through the first end face 2211, which can make the infiltration effect of multiple layers of the first electrode assembly 221 more uniform, thereby improving Wetting efficiency of the first electrode assembly 221.
  • Figure 21 shows a schematic cross-sectional view of a first electrode assembly provided by another embodiment of the present application.
  • the first electrode assembly 221 is of a stacked type. Specifically, the first electrode assembly 221 includes a plurality of first pole pieces 221a and a plurality of second pole pieces 221b. The plurality of first pole pieces 221a and the plurality of second pole pieces 221b are arranged along the second direction (as shown in FIG. 21 direction Y) alternately stacked. The second direction Y is perpendicular to the first direction X, and the first end surface 2211 is perpendicular to the first direction X.
  • the first electrode assembly 221 also includes an isolation member 221c, which is used to insulate and isolate the adjacent first pole piece 221a and the second pole piece 221b.
  • an isolation member 221c which is used to insulate and isolate the adjacent first pole piece 221a and the second pole piece 221b.
  • one isolator 221c can be used for isolation between a first pole piece 221a and a second pole piece 221b; or, one isolator 221c can be used for multiple first pole pieces 221a and multiple second pole pieces 221b. isolation between.
  • the stacking direction of the plurality of first pole pieces 221a and the plurality of second pole pieces 221b is perpendicular to the first direction X, and each of the plurality of first pole pieces 221a is along the first direction X.
  • One end in a direction X and an end of each second pole piece 221b in the plurality of second pole pieces 221b along the first direction When the electrolyte contacts the first end face 2211, the electrolyte can quickly infiltrate each layer of electrode pieces of the first electrode assembly 221 through the first end face 2211, which can make the infiltration effect of multiple layers of the first electrode assembly 221 more uniform, thereby improving Wetting efficiency of the first electrode assembly 221.
  • Figure 22 shows a schematic cross-sectional view of a first electrode assembly provided by yet another embodiment of the present application.
  • the first electrode assembly 221 includes a first pole piece 221a and a plurality of second pole pieces 221b.
  • the first pole piece 221a includes a plurality of laminated sections 221d and a plurality of bent sections 221e.
  • the bent sections 221e For connecting two adjacent laminated segments 221d, the plurality of second pole pieces 221b and the plurality of laminated segments 221d are alternately stacked along the second direction (direction Y as shown in FIG. 22).
  • the second direction Y is perpendicular to the first direction X, and the first end surface 2211 is perpendicular to the first direction X.
  • the first end surface 2211 can also be set perpendicular to the bending section 221e, that is, the first end face 2211 is perpendicular to the extending direction of each bending section 221e, so as to avoid setting the first end face 2211 to include
  • the end surfaces of the plurality of bent sections 221e can thereby avoid the electrolyte from needing to pass through the bent sections 221e to infiltrate the first electrode assembly 221, thereby improving the infiltration efficiency.
  • the stacking direction of the second pole piece 221b and the stacked section 221d is perpendicular to the first direction X, and one end of the second pole piece 221b along the first direction
  • One end of each second pole piece 221b along the first direction X forms a first end surface 2211 perpendicular to the first direction X.
  • the above-mentioned arrangement of the first electrode assembly 221 and the first end surface 2211 is also applicable to the arrangement of the second electrode assembly 222 and the third end surface 2221.
  • the first electrode assembly 221 and the first electrode assembly 222 may be of the same type or different types of electrode assemblies.
  • the first electrode assembly 221 and the second electrode assembly 222 may both be rolled or stacked of the same type to facilitate processing.
  • the electrolyte can pass through the first end face 2211 and the third end face 2221.
  • the end surface 2211 and the third end surface 2221 quickly wet each layer of the first electrode assembly 221 and the second electrode assembly 222 respectively, which can also make the wetting effect of the first electrode assembly 221 and the second electrode assembly 222 more uniform, thereby improving the performance of the first electrode assembly 221 and the second electrode assembly 222. Wetting efficiency of one electrode assembly 221 and the second electrode assembly 222.
  • One embodiment of the present application also provides a battery, which may include the battery cells 20 in the aforementioned embodiments.
  • An embodiment of the present application also provides an electrical device.
  • the electrical device may include the battery 10 in the previous embodiments, and the battery 10 is used to provide electrical energy to the electrical device.
  • the electrical equipment may be a vehicle 1, a ship or a spacecraft.
  • the present application provides a battery cell 20 including a first electrode assembly 221 and a second electrode assembly 222 accommodated in a housing 211 , wherein the first electrode The component 221 and the second electrode component 222 are arranged along the length direction of the housing 211 and are insulated.
  • the housing 211 is provided with openings at both ends along the length direction.
  • the battery cell 20 also includes end caps 212 for covering the openings at both ends of the housing 211 .
  • An insulating member 236 is provided between the first electrode assembly 221 and the second electrode assembly 222 for electrically isolating the first electrode assembly 221 and the second electrode assembly 222.
  • the insulating member 236 is provided with a through hole 2361 for the circulation of electrolyte to improve the consistency of wetting the first electrode assembly 221 and the second electrode assembly 222 .
  • At least part of the insulating member 236 is made of elastic material, so that both sides of the insulating member 236 along the first direction abut against the first electrode assembly 221 and the second electrode assembly 222 respectively, thereby reducing the number of the first electrode assembly 221 and the second electrode assembly 222 .
  • the shaking of the second electrode assembly 222 is provided with a through hole 2361 for the circulation of electrolyte to improve the consistency of wetting the first electrode assembly 221 and the second electrode assembly 222 .
  • At least part of the insulating member 236 is made of elastic material, so that both sides of the insulating member 236 along the first direction abut against the first electrode assembly 221 and the second electrode assembly 222 respectively, thereby reducing the number of the first electrode assembly 221 and the second electrode assembly 222 .
  • the outer periphery of the first electrode assembly 221 may be covered with the first insulating film 234
  • the outer periphery of the second electrode assembly 222 may be covered with the second insulating film 235
  • the insulating member 236 is connected with the first insulating film 234 and/or the second insulating film 235 Fixed connections, thereby reducing the number of parts and improving battery production efficiency.
  • the insulating member 236 , the first insulating film 234 and the second insulating film 235 are collectively referred to as the insulating structure 23 .
  • FIG. 23 shows a schematic flow chart of a manufacturing method 300 of the battery cell 20 according to an embodiment of the present application.
  • the manufacturing method 300 may include:
  • the housing 211 has openings at both ends in the first direction.
  • end cap 212 is provided.
  • the insulating structure 23 accommodates the insulating structure 23, the first electrode assembly 221 and the second electrode assembly 222 in the housing 211, so that at least part of the insulating structure 23 is disposed between the first electrode assembly 221 and the second electrode assembly 221 and the second electrode assembly that are arranged in the first direction and are insulated.
  • the first electrode assembly 221 and the second electrode assembly 222 are electrically isolated between the two electrode assemblies 222 .
  • S360 Cover the openings at both ends of the housing 211 with the end caps 212.
  • FIG. 24 shows a schematic block diagram of a manufacturing equipment 400 for a battery cell 20 according to an embodiment of the present application.
  • the manufacturing equipment 400 may include:
  • Provide module 410 which provides module 410 for:
  • a housing 211 is provided, and the housing 211 has openings at both ends in the first direction;
  • End caps 212 are provided;
  • the insulating structure 23, the first electrode assembly 221 and the second electrode assembly 222 are accommodated in the housing 211, so that at least part of the insulating structure 23 is disposed on the first electrode assembly 221 and the second electrode which are arranged in the first direction and are insulated.
  • the first electrode assembly 221 and the second electrode assembly 222 are electrically isolated between the components 222;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池单体及其制造方法和制造设备、电池、用电设备。该电池单体包括:壳体,壳体在第一方向的两端具有开口;端盖,用于盖合壳体两端的开口;第一电极组件和第二电极组件,容纳于壳体内,其中第一电极组件和第二电极组件沿第一方向排列且绝缘设置;绝缘结构,至少部分设置于第一电极组件与第二电极组件之间,用于电隔离第一电极组件与第二电极组件。上述技术方案实现了电池单体内相邻电极组件之间的电隔离,能够增强电池的安全性。

Description

电池单体及其制造方法和制造设备、电池、用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体及其制造方法和制造设备、电池、用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的电学性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池单体及其制造方法和制造设备、电池、用电设备,能够增强电池的安全性。
第一方面,提供一种电池单体,包括:壳体,所述壳体在第一方向的两端具有开口;端盖,用于盖合所述壳体两端的开口;第一电极组件和第二电极组件,容纳于所述壳体内,其中所述第一电极组件和所述第二电极组件沿所述第一方向排列且绝缘设置;绝缘结构,至少部分设置于所述第一电极组件与所述第二电极组件之间,用于电隔离所述第一电极组件与所述第二电极组件。
基于本申请实施例的技术方案,绝缘结构、第一电极组件和第二电极组件容纳于壳体内,其中绝缘结构的至少部分设置于沿第一方向排列的第一电极组件与第二电极组件之间,这样绝缘结构可以起到电隔离第一电极组件与第二电极组件的作用,减小第一电极组件的极片和第二电极组件的极片接触的可能性,防止电池单体内本应电隔离的部件之间电连接而产生短路现象,从而能够降低安全风险,增强电池的安全性。
在一些可能的实施方式中,所述绝缘结构包括:第一部分,设置于所述第一电极组件与所述第二电极组件之间;第二部分,沿垂直于所述第一方向的周向包设于所述第一电极组件的外周;第三部分,沿垂直于所述第一方向的周向包设于所述第二电极组件的外周;所述第二部分和所述第三部分中的至少一者与所述第一部分的部分或全部一体成型。
第二部分和第三部分分别包覆第一电极组件和第二电极组件的外周,可以 将第一电极组件与壳体的至少部分隔开,并且将第二电极组件与壳体的至少部分隔开,从而降低壳体将第一电极组件的正负极片导通的风险以及壳体将第二电极组件的正负极片导通的风险。另外,第二部分和第三部分中的至少一者与第一部分的部分或全部一体成型,能够简化绝缘结构的加工工艺,减少零部件数量。
在一些可能的实施方式中,所述第一部分设置有贯穿所述第一部分厚度的通孔,所述通孔用于所述电池单体中的电解液流通。
设置于第一部分上的通孔可以作为电池单体内的离子通道和电解液浸润通道,一方面,设置通孔有助于解决电解液流通的问题,改善电解液浸润第一电极组件和第二电极组件的一致性;另一方面,可降低电解液重量,从而降低电池单体的成本。
在一些可能的实施方式中,所述绝缘结构包括:第一绝缘膜,包设于所述第一电极组件的外周,其中,所述第一绝缘膜在所述第一方向上远离所述第二电极组件的一端具有开口,所述第一绝缘膜包括与所述开口相对设置的第一包裹端;第二绝缘膜,包设于所述第二电极组件的外周,其中,所述第二绝缘膜在所述第一方向上远离所述第一电极组件的一端具有开口,所述第二绝缘膜包括与所述开口相对设置的第二包裹端;绝缘件,设置于所述第一包裹端与所述第二包裹端之间。
第一绝缘膜包覆在第一电极组件的外周,可以将第一电极组件与壳体的至少部分隔开,从而降低壳体将第一电极组件的正负极片导通的风险。第二绝缘膜包覆在第二电极组件的外周,可以将第二电极组件与壳体的至少部分隔开,从而降低壳体将第二电极组件的正负极片导通的风险。
绝缘件设置于第一包裹端与第二包裹端之间,可以避免第一绝缘膜和第二绝缘膜破损所带来的电隔离失效的风险,从而可以增强第一电极组件与第二电极组件之间的电隔离。
在一些可能的实施方式中,所述绝缘件与所述第一包裹端和/或所述第二包裹端固定连接。
绝缘件与第一包裹端和/或第二包裹端固定连接,可以提高组装效率,还可以在电池单体受到外部冲击时减小绝缘件的晃动幅度,降低绝缘件失效的风险,提高安全性。
在一些可能的实施方式中,所述绝缘件上设置有贯穿所述绝缘件厚度的通孔,所述通孔用于所述电池单体中的电解液流通。
设置于绝缘件上的通孔可以作为电池单体内的离子通道和电解液浸润通道,一方面,设置通孔有助于解决电解液流通的问题,改善电解液浸润第一电极组件和第二电极组件的一致性;另一方面,可降低电解液重量,从而降低电池单体的成本。
在一些可能的实施方式中,所述第一包裹端设置有贯穿所述第一包裹端厚度的第一通孔;所述第二包裹端设置有贯穿所述第二包裹端厚度的第二通孔;所述第一通孔和所述第二通孔用于所述电池单体中的电解液流通;其中,所述第一通孔与所述通孔错位设置,和/或所述第二通孔与所述通孔错位设置。
绝缘件上设置的通孔可以与第一通孔和第二通孔中的至少一者错位设置。这样可以避免第一电极组件所在空间与第二电极组件所在空间直接连通,从而避免第一绝缘膜中产生的金属碎屑或其他导体通过通孔进入第二电极组件所在空间,或者第二绝缘膜中产生的金属碎屑或其他导体通过通孔进入第一电极组件所在空间。因此避免了第一电极组件与第二电极组件之间由于金属碎屑产生电连接,以及后续可能发生的短路风险,提高了第一电极组件与第二电极组件之间的电隔离,增强了电池的安全性。
在一些可能的实施方式中,所述绝缘结构包括:第一绝缘膜,包设于所述第一电极组件的外周,其中所述第一绝缘膜在所述第一方向的两端具有开口;第二绝缘膜,包设于所述第二电极组件的外周,所述第二绝缘膜在所述第一方向的两端具有开口;绝缘件,设置于所述第一电极组件与所述第二电极组件之间,用于盖合所述第一绝缘膜的靠近所述第二电极组件的开口和所述第二绝缘膜的靠近所述第一电极组件的开口。
第一绝缘膜包覆在第一电极组件的外周,可以将第一电极组件与壳体的至少部分隔开,从而降低壳体将第一电极组件的正负极片导通的风险。第二绝缘膜包覆在第二电极组件的外周,可以将第二电极组件与壳体的至少部分隔开,从而降低壳体将第二电极组件的正负极片导通的风险。绝缘件设置于第一电极组件与第二电极组件之间,当电池单体受到外力冲击时,能够阻挡第一电极组件和第二电极组件,减小第一电极组件的极片和第二电极组件的极片接触的可能性,降低短路风险,提高安全性。
在一些可能的实施方式中,所述绝缘件为熔点大于或等于200℃的绝缘材料。
采用耐高温绝缘材料的绝缘件能够耐受较高温度,一般来说也具有较高的强度和硬度,因此可以避免第一绝缘膜和第二绝缘膜发生破损时所带来的电隔离失效的风险,从而可以提高第一电极组件与第二电极组件之间的电隔离。另外,绝缘件耐高温性使得绝缘件在高温下仍能保持原有特性,可以提高电池单体内部的热传导。
在一些可能的实施方式中,所述绝缘材料包括以下至少一种:聚对苯二甲酸乙二醇酯、三元乙丙橡胶、聚四氟乙烯、可熔性聚四氟乙烯、氟橡胶、硅橡胶、氧化铝、氮化硅和陶瓷。
上述绝缘材料均具有优良的耐热性,在温度较高的条件下也能够保持良原有特性,能够降低绝缘件失效的风险,提高安全性。
在一些可能的实施方式中,所述绝缘件为弹性材料,所述绝缘件的一侧被配置为抵接于所述第一电极组件,所述绝缘件的另一侧被配置为抵接于所述第二电极组件。
绝缘件采用弹性材料制成,其两侧分别抵接于第一电极组件和第二电极组件,一方面,能够使第一电极组件和第二电极组件在装配过程被稳定安装,另一方面,能够减少在使用电池过程中第一电极组件与第二电极组件之间的相对运动,或降低第一电极组件和第二电极组件的运动幅度。这样,可以降低或避免由于第一电极组 件和/或第二电极组件的晃动而导致的焊接失效或连接构件破坏现象,避免出现极耳与电极端子电连接失效的问题。进一步地,可以提高电池单体的使用寿命,增强电池的安全性。
在一些可能的实施方式中,所述绝缘件包括:沿所述第一方向相对设置的第一绝缘片和第二绝缘片;以及设置于所述第一绝缘片与所述第二绝缘片之间的弹性体,所述弹性体用于使所述第一绝缘片抵接于所述第一电极组件,且使所述第二绝缘片抵接于所述第二电极组件。
弹性体采用弹性材料制成,并通过第一绝缘片和第二绝缘片与第一电极组件和第二电极组件抵接,一方面,能够使第一电极组件和第二电极组件在装配过程被稳定安装,另一方面,能够减少在使用电池过程中第一电极组件与第二电极组件之间的相对运动,或降低第一电极组件和第二电极组件的运动幅度。这样,可以降低或避免由于第一电极组件和/或第二电极组件的晃动而导致的焊接失效或连接构件破坏现象,避免出现极耳与电极端子电连接失效的问题。进一步地,可以提高电池单体的使用寿命,增强电池的安全性。
在一些可能的实施方式中,所述第一绝缘片和所述第二绝缘片为弹性材料。
位于弹性体两侧的第一绝缘片和第二绝缘片也采用弹性材料制成,一方面有助于绝缘件整体吸收更多变形,并起到缓冲作用,另一方面有利于简化绝缘件的加工工艺。
在一些可能的实施方式中,所述第一电极组件的第一端面朝向所述第二电极组件;其中,所述第一电极组件包括第一极片和第二极片,所述第一极片与所述第二极片绕卷绕轴线卷绕设置,所述卷绕轴线平行于所述第一方向,所述第一端面垂直于所述卷绕轴线,或者,所述第一电极组件包括多个第一极片和多个第二极片,所述多个第一极片和所述多个第二极片沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面垂直于所述第一方向,或者,所述第一电极组件包括第一极片和多个第二极片,所述第一极片包括多个层叠段和多个折弯段,所述折弯段用于连接相邻的两个所述层叠段,所述多个第二极片与多个所述层叠段沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面垂直于所述第一方向。
按照上述方式设置第一电极组件的第一端面,当电解液接触第一端面时,电解液可以通过第一端面快速浸润第一电极组件的各层极片,可以使得第一电极组件的多个层的浸润效果较为均匀,进而提高第一电极组件的浸润效率。
在一些可能的实施方式中,所述第一方向为所述壳体的长度方向。
第一电极组件和第二电极组件沿壳体的长度方向排列,电池单体在第一方向上可以具有较大的尺寸,从而减少电池中的电池单体的数量,减少用于固定电池单体的固定结构的使用,提高空间利用率,增大电池的能量密度。
第二方面,提供一种电池,包括:上述第一方面或第一方面中任一可能的实施方式中的电池单体。
第三方面,提供一种用电设备,包括:上述第二方面中的电池,该电池用 于所述用电设备提供电能。
第四方面,提供一种电池单体的制造方法,包括:提供壳体,所述壳体在第一方向的两端具有开口;提供端盖;提供第一电极组件和第二电极组件;提供绝缘结构;将所述绝缘结构、所述第一电极组件和所述第二电极组件容纳于所述壳体内,使所述绝缘结构的至少部分设置于沿所述第一方向排列且绝缘设置的所述第一电极组件与所述第二电极组件之间以电隔离所述第一电极组件与所述第二电极组件;将所述端盖盖合所述壳体两端的开口。
第五方面,提供一种电池单体的制造设备,包括:提供模块,用于:提供壳体,所述壳体在第一方向的两端具有开口;提供端盖;提供第一电极组件和第二电极组件;提供绝缘结构;安装模块,用于:将所述绝缘结构、所述第一电极组件和所述第二电极组件容纳于所述壳体内,使所述绝缘结构的至少部分设置于沿所述第一方向排列且绝缘设置的所述第一电极组件与所述第二电极组件之间以电隔离所述第一电极组件与所述第二电极组件;将所述端盖盖合所述壳体两端的开口。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池单体的结构示意图;
图4是本申请一实施例公开的一种电池单体的分解示意图;
图5是本申请一实施例提供的一种绝缘结构的结构示意图;
图6-9本申请一实施例提供的一种绝缘结构的剖面示意图;
图10是本申请一实施例提供的一种绝缘结构的结构示意图;
图11-13是本申请实施例提供的一种绝缘结构的立体示意图和剖面示意图;
图14是本申请一实施例提供的一种绝缘结构的结构示意图;
图15是本申请一实施例提供的一种绝缘结构的剖面示意图;
图16是本申请一实施例提供的一种绝缘件的结构示意图;
图17是图16中的绝缘件安装于电池单体的装配示意图;
图18是本申请一实施例提供的一种绝缘件的结构示意图;
图19是图18中的绝缘件安装于电池单体的装配示意图;
图20-22是本申请一实施例提供的第一电极组件的剖面示意图;
图23是本申请一实施例公开的电池单体的制造方法的示意性流程图;
图24是本申请一实施例公开的电池单体的制造设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1-车辆;10-电池;11-箱体;111-第一箱体部分;112-第二箱体部分;20-电池单体;211-壳体;212-端盖;212a-第一盖板;212b-第二盖板;214-电极端子;214a-正电极端子;214b-负电极端子;221-第一电极组件;2211-第一端面;2212-第二端面;221a-第一极片;221b-第二极片;221c-隔离件;221d-层叠段;221e-折弯段;222-第二电极组件;2221-第三端面;2222-第四端面;22a-第一极耳;22b-第二极耳;23-绝缘结构;231-第一部分;2311-通孔;231a第一子部;231b-第二子部;232-第二部分;233-第三部分;234-第一绝缘膜;2341-第一通孔;234a-第一开口;234b-第一包裹端;235-第二绝缘膜;2351-第二通孔;235a-第二开口;235b-第二包裹端;236-绝缘件;236a-第一绝缘片;236b-第二绝缘片;236c-弹性体;2361-通孔;237-第三绝缘膜;30-控制器;40-马达。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上(包括两个);术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”“相连”“连接”应做广义理解,例如,可以是不可拆卸连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解为,本申请所描述的实施例可以与其它实施例相结合。
本申请中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
在一些实施例中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。在一些实施方式中,电池单体也可称之为电芯。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
本申请实施例中的电池的箱体用于容纳多个电池单体、汇流部件以及电池的其他部件。在一些实施例中,箱体中还可以设置用于固定电池单体的结构。箱体的形状可以根据所容纳的多个电池单体而定。在一些实施例中,箱体可以为方形,具有六个壁。
本申请中所提到的汇流部件用于实现多个电池单体之间的电连接,例如并联、串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。汇流部件传输电池单体的电压,多个电池单体串联后会得到较高的电压,相应地,汇流部件形成的电连接也可称为“高压连接”。
在一些电池封装技术中,可以先将多个电池单体(cell)整合为电池模块(module),然后将电池模块安装于电池的箱体中,形成电池包(pack)。而在另一些电池封装技术中,也可直接将多个电池单体安装于电池的箱体中形成电池包,这种电池封装技术也可以称为电池单体到电池包(cell to pack,CTP)的封装技术。在CTP封装技术中,由于去除了电池模块这个中间状态,可以降低电池包的质量并提高电池的能量密度。也就是说,在封装电池的过程中,多个电池单体可以直接组成电池,也 可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数。另外,还需要考虑电池的安全性。
一般而言,电池包括箱体和容纳于箱体内的多个电池单体。箱体通常设置有用于支撑和固定电池单体的固定结构。对于电池而言,在电池容量一定的前提下,电池单体的尺寸越小,电池单体的数量越多,箱体需要设置更多的固定结构来固定电池单体,这会造成电池内部的空间利用率底,导致电池的能量密度无法满足要求。
为了简化电池的结构,提高电池的能量密度,可以增大单个电池单体的尺寸,以减少电池中的电池单体的数量,简化箱体内的固定结构,提高电池内部的空间利用率。
为了适配电池单体的尺寸,可以将多个电极组件依次排布在电池单体的外壳内,并使多个电极组件通过串联或并联连为一个整体。然而,多个电极组件串并联时,需要通过相同的电极端子将电流引出,远离电极端子的电极组件产生的电流需要经过靠近电极端子的电极组件才能够传输到电极端子,这造成远离电极端子的电极组件的导电路径偏长、内阻偏大,进而导致电池单体的功率较低。靠近电极端子的电极组件不仅要传导自身产生的电流,还需要传导远离电极端子的电极组件产生的电流,这会导致靠近电极端子的电极组件产生更多的热量,影响充放电性能。
为了解决这一问题,可以将电池单体内的电极组件电绝缘设置,使得电极组件无需传输彼此的电流。在一些方案中采用了将相邻电极组件间隔设置的方式。然而,发明人发现,间隔设置的方式虽然可以实现一定的电隔离,但在电池单体受到外力冲击时,两个电极组件仍有接触的可能性。由于电极组件包括金属材料,两个电极组件相接触会使得两个电极组件电连接,则容易导致电池单体发生短路现象。短路可能会导致电池单体内部发生热失控从而压力或温度骤升,甚至引发电池单体爆炸、起火等安全问题,因而存在安全隐患。
鉴于此,本申请提供一种技术方案,利用绝缘结构电隔离电池单体内的相邻电极组件,以增强电池的安全性。更为具体地,将绝缘结构、第一电极组件和第二电极组件容纳于壳体内,使绝缘结构至少部分设置于沿第一方向排列且绝缘设置的第一电极组件与第二电极组件之间以电隔离第一电极组件与第二电极组件。这样可以实现电池单体内相邻电极组件之间的电隔离,防止电池单体内本应电隔离的部件之间电连接而产生短路现象,从而能够降低安全风险,增强电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的设备,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图。车 辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池10,也可以先组成电池模块,电池模块再组成电池10。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图。电池10可以包括多个电池单体20。电池10还可以包括箱体(或称罩体)11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。示例性的,参考图2,箱体11可以包括两部分,这里分别称为第一箱体部分111和第二箱体部分112,第一箱体部分111和第二箱体部分112扣合在一起,形成容纳多个电池单体20的收容空间。第一箱体部分111和第二箱体部分112的形状可以根据多个电池单体20组合的形状而定,第一箱体部分111和第二箱体部分112可以均具有一个开口。例如,第一箱体部分111和第二箱体部分112均可以为中空长方体且各自只有一个面为开口面,第一箱体部分111的开口和第二箱体部分112的开口相对设置,并且第一箱体部分111和第二箱体部分112相互扣合形成具有封闭腔室的箱体11。多个电池单体20相互并联或串联或混联组合后置于第一箱体部分111和第二箱体部分112扣合后形成的箱体11内。
本申请实施例中,将多个电池单体20安装于箱体11内的方式有很多种,下面举例说明。
在一种可能的实施方式中,可以首先将多个电池单体(cell)20先整合为至少一个电池模组(module),然后将电池模组安装于箱体11中,形成电池包(pack)形态。在该实施方式中,电池模组之间还可以设置有横梁等辅助结构件,以提高电池模组在箱体11中的安装稳定性。
在另一种可能的实施方式中,可以直接将多个电池单体20相互连接,并安装设置于箱体11中形成电池包形态。由于去除了电池模组这个中间状态,箱体11中可不必设置横梁等辅助结构件,从而能够降低电池10的重量并提高电池10的能量密度。该实施方式在相关技术中也可称之为电池单体至电池包(cell to pack,CTP)的安装技术。
在又一种可能的实施方式中,箱体11可集成于电池10所在的用电设备。换言之,箱体11可与用电设备中的结构件一体成型。多个电池单体20相互连接后,可直接安装设置于用电设备中的箱体11中。作为一种示例,箱体11可集成设置于上述车辆1的底盘的局部区域,多个电池单体20相互连接后,可直接安装于车辆1的底 盘。该实施方式在相关技术中也可称之为电池单体至底盘(cell to chassis,CTC)的安装技术。
在其他一些实施例中,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可通过导电机构穿过箱体11而引出。在一些实施例中,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。
图3示出了本申请实施例提供的一种电池单体20的示意性结构图。图4示出了本申请实施例的电池单体20的一种可能的分解结构示意图,例如,该图4所示的电池单体20可以为如图3所示的电池单体20的分解结构示意图。
参考图3和图4,本申请实施例的电池单体20包括壳体211、端盖212、第一电极组件221、第二电极组件222和绝缘结构23。壳体211在第一方向的两端具有开口。端盖212用于盖合壳体211两端的开口。第一电极组件221和第二电极组件222容纳于壳体211内,其中第一电极组件221与第二电极组件222沿第一方向排列且绝缘设置。绝缘结构23的至少部分设置于第一电极组件221与第二电极组件222之间,用于电隔离第一电极组件221与第二电极组件222。
本申请实施例中,端盖212与壳体211可以形成电池单体20的外壳。该外壳具有容纳腔,以容纳第一电极组件221和第二电极组件222。在一些实施例中,该外壳可以为多面体结构。壳体211的壁以及端盖212均称为电池单体20的壁。
本申请实施例中,壳体211的形状可以与壳体211内设置的电极组件组合后的形状相适配。作为示例而非限定,壳体211可以为两端开口的空心长方体或两端开口的空心圆柱体。壳体211的开口便于第一电极组件221和第二电极组件222放置于壳体211内。在一些实施例中,壳体211上的开口可以位于壳体211在长度方向上的两端。因此,本申请中的第一方向可以为壳体211的长度方向,例如图3所示的方向X。在一些实施例中,壳体211的长度方向也可以理解为是电池单体20的长度方向。
本申请实施例中,第一电极组件221与第二电极组件222沿第一方向X排列。示例性的,如图4所示,第一电极组件221包括在第一方向相对设置的第一端面2211和第二端面2212,第二电极组件222包括在第一方向相对设置的第三端面2221和第四端面2222。其中,第一电极组件221的第一端面2211朝向第二电极组件222的第三端面2221。第一电极组件221的第二端面2212朝向靠近第一电极组件221的盖板。第二电极组件222的第四端面2222朝向靠近第二电极组件222的盖板。
本申请实施例中,端盖212盖合壳体211两端的开口后,可以形成放置沿第一方向排列的第一电极组件221和第二电极组件222的封闭腔体。该腔体内还可以填充电解液,用于传导离子。
在一些实施例中,端盖212可以包括第一盖板212a和第二盖板212b。第一 盖板212a和第二盖板212b分别覆盖壳体211两端的开口并且与壳体211连接,从而形成上述封闭腔体。通过设置两个开口和两个盖板,可便于实现第一电极组件221的入壳和第二电极组件222的入壳,能够简化电池单体的装配工艺。
在一种可能的实施方式中,第一盖板212a和第二盖板212b可以独立成型后再分别与壳体211连接以覆盖开口。
第一电极组件221和第二电极组件222均可称为电极组件。电池单体20中的每个电极组件都具有第一极耳22a和第二极耳22b。第一极耳22a和第二极耳22b的极性相反。例如,当第一极耳22a为正极极耳时,第二极耳22b为负极极耳。
本申请实施例中的电池单体20还可以包括电极端子214。电极端子214用于与电极组件电连接,以输出电池单体20的电能。在一些实施例中,电极端子可以根据电极组件的极耳的设置位置进行设置。例如图4所示,对应于电极组件的极耳,该电池单体20可以包括至少一组电极端子214,每组电极端子214包括正电极端子214a和负电极端子214b。其中,正电极端子214a用于与正极极耳22a电连接,负电极端子241b用于与负极极耳22b电连接。正电极端子214a与正极极耳22a可以直接连接,也可以间接连接。负电极端子214b与负极极耳22b可以直接连接,也可以间接连接。例如,正电极端子214a可以通过一个连接构件与正极极耳22a电连接,负电极端子214b通过另一个连接构件与负极极耳22b电连接。
与电极组件的极耳的设置相对应,同一组电极端子可以设置于电池单体20的同一个壁,或者不同壁,而不同组的电极端子也可以设置于电池单体20的同一个壁或者不同的壁。
为了便于说明,本申请以第一电极组件221的极耳和第二电极组件222的极耳朝向电池单体20的不同壁为例,对应的,电池单体20包括多组电极端子。例如图4所示,第一盖板212a和第二盖板212b分别设置有一组电极端子214。第一电极组件221的第一极耳22a和第二极耳22b朝向第一盖板212a。第二电极组件222的第一极耳22a和第二极耳22b朝向第二盖板212b。第一盖板212a上设置的正电极端子214a用于与第一电极组件221的正极极耳电连接,第一盖板212a上设置的负电极端子214b用于与第一电极组件221的负极极耳电连接。类似地,第二盖板212b上设置的正电极端子214a用于与第二电极组件222的正极极耳电连接,第二盖板212b上设置的负电极端子214b用于与第二电极组件222的负极极耳电连接。
也就是说,对于第一电极组件221和第二电极组件222,该两个电极组件中同一个电极组件的极耳设置在同一端面,但两个电极组件的极耳朝向相反方向,且均朝向电池单体20的外部。例如4所示,第一电极组件221的两个极耳可以设置于第二端面2212,第二电极组件222的两个极耳设置于第四端面2222。与之对应的,该电池单体20包括两组电极端子,且该两组电极端子位于电池单体20的不同的壁上,但本申请实施例并不限于此。
本申请实施例的第一电极组件221与第二电极组件222各自连接一组电极端子,为避免第一电极组件221的极片与第二电极组件222的极片短接,该第一电极组件221与第二电极组件222中间可以设置为电绝缘,使第一电极组件221与第二电 极组件222电隔离。
第一电极组件221与第二电极组件222绝缘设置,指的是第一电极组件221与第二电极组件222没有电连接。
本申请实施例中,第一电极组件221与第二电极组件222之间的电隔离通过绝缘结构23实现,以下实施例将结合附图进行着重介绍,在此暂不详述。
在一些实施例中,电池单体20的一个壁上还可设置泄压机构,该泄压机构用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。泄压机构和电极端子214可以设置于电池单体20的同一壁,也可以设置于电池单体20的不同壁,本申请实施例对此不作限定。例如,第一盖板212a设置有一组电极端子214,第二盖板212b也设置有另一组电极端子214,泄压机构可以设置于第一盖板212a或第二盖板212b,也可以设置于壳体211上。
泄压机构可以为其所在壁的一部分,例如通过在其所在壁上设置刻痕方式形成;泄压机构也可以与其所在壁为分体式结构,通过例如焊接的方式固定在其所在壁上。另外,泄压机构可以为各种可能的泄压机构,例如温敏泄压机构或压敏泄压机构,本申请实施例对此并不限定。
根据本申请实施例提供的电池单体20,绝缘结构23、第一电极组件221和第二电极组件222容纳于壳体211内,其中绝缘结构23的至少部分设置于沿第一方向排列且绝缘设置的第一电极组件221与第二电极组件222之间,这样绝缘结构23可以起到电隔离第一电极组件221与第二电极组件222的作用,减小第一电极组件221的极片和第二电极组件222的极片接触的可能性,防止电池单体20内本应电隔离的部件之间电连接而产生短路现象,从而能够降低安全风险,增强电池的安全性。
另外,第一电极组件221和第二电极组件222在壳体211内沿第一方向排列,可以增大电池单体20沿第一方向的尺寸,从而增大电池单体20在电池中的空间利用率,提高能量密度。第一方向为电池单体20的长度方向,因此第一盖板212a和第二盖板212b分别垂直于该第一方向。第一盖板212a和第二盖板212b为电池单体20的面积最小的壁。这样,第一电极组件221和第二电极组件222由于温度而易于发生膨胀的表面对应于电池单体20的面积最大的壁。即电池单体内设置的电极组件的最易于受热发生膨胀的位置的膨胀方向,垂直于该电池单体20的面积最大的壁,有利于该电池单体20的散热,减小膨胀。
此外,第一电极组件221和第二电极组件222之间通过绝缘结构23的至少部分实现电隔离,因此第一电极组件221和第二电极组件222无需传输彼此的电流。这样可以缩短第一电极组件221的导电路径和第二电极组件222的导电路径,减小内阻,减少产热,提高电池单体的功率,改善电池单体的充放电性能。
本申请实施例中,为了电隔离第一电极组件221与第二电极组件222,绝缘结构23的设置方式有多种,下面将结合附图进行详细介绍。
图5示出了本申请实施例提供的一种绝缘结构的示意性结构图。
如图5所示,绝缘结构23包括第一部分231、第二部分232和第三部分233。第一部分231设置于第一电极组件221与第二电极组件222之间。第二部分232 沿垂直于第一方向的周向包设于第一电极组件221的外周。第三部分233沿垂直于第一方向的周向包设于第二电极组件222的外周。其中第二部分232和第三部分233中的至少一者与第一部分231的部分或全部一体成型。
作为示例而非限定,第二部分232包裹第一电极组件221的除第一方向上的面之外的面,其中第二部分232的包裹方向为垂直于第一方向的周向。第三部分233包裹第二电极组件222的除第一方向上的面之外的面,其中第三部分233的包裹方向为垂直于第一方向的周向。
在一些实施例中,第一电极组件221在第一方向上远离第二电极组件222的一端未被第二部分232包裹,该端用于第一电极组件221的极耳与电极端子实现电连接。第二电极组件222在第一方向上远离第一电极组件221的一端未被第三部分233包裹,该端用于第二电极组件222的极耳与电极端子实现电连接。
本申请实施例中,第一部分231可以包括相互分离的多个部分,也可以为一个整体,下面举例说明。
作为一个示例,图6示出了绝缘结构23的一种示意性截面图。如图6所示,第一部分231设置于第一电极组件221与第二电极组件222之间。第一部分231可以包括相互分离的第一子部231a和第二子部231b,其中第一子部231a与第二子部231b沿第一方向相对设置。
在该示例中,第二部分232和第三部分233分别与第一部分231的部分一体成型。更为具体地,第二部分232与第一子部231a一体成型,第三部分233与第二子部231b一体成型。由于第一子部231a与第二子部231b可分离,因此一体成型的第二部分232与第一子部231a相对于一体成型的第三部分233与第二子部231b可分离。
在一些实施例中,可以认为第二部分232与第一子部231a形成一端开口的筒状结构,第一电极组件221设置于该筒状结构所形成的容纳的空间中。可以认为第三部分233与第二子部231b形成一端开口的另一个筒状结构,第二电极组件222设置于该另一个筒状结构所形成的容纳空间中。
在该实施例中,绝缘结构23包设于第一电极组件221的部分与绝缘结构23包设于第二电极组件222的部分可相互分离,因此在安装过程中,可先将第一电极组件221与第二电极222分别设置于绝缘结构23所形成的两个相对独立的筒状结构中,然后再进行组装。这样可以使得组装工艺流程更灵活。
在一些实施例中,第二部分232与第一子部231a形成的筒状结构可以为第一绝缘膜,该第一绝缘膜包设于第一电极组件221的外周。其中,第一绝缘膜在第一方向上远离第二电极组件222的一端具有开口。类似地,第三部分233与第二子部231b形成的筒状结构可以为第二绝缘膜,该第二绝缘膜包设于第二电极组件222的外周。其中,第二绝缘膜在第一方向上远离第一电极组件221的一端具有开口。
作为另一个示例,图7示出了绝缘结构23的一种示意性截面图。如图7所示,第一部分231设置于第一电极组件221与第二电极组件222之间,第二部分232和第三部分233均与第一部分231一体成型。即,绝缘结构23所包括的第一部分231、第二部分232和第三部分233一体成型。
在一些实施例中,可以认为第二部分232与第一部分231形成一端开口的筒状结构,第三部分233与第一部分231形成一端开口的另一个筒状结构。该两个筒状结构具有相同的底壁,且该两个筒状结构开口朝向相反。第一电极组件221和第二电极组件222分别设置于该两个筒状结构所形成的容纳空间中。
在该实施例中,绝缘结构23包设于第一电极组件221的部分与绝缘结构23包设于第二电极组件222的部分一体成型,可以简化绝缘结构23的加工工艺,减少零部件数量。另外还可以节省第一电极组件221与第二电极组件222的对位操作,从而提高组装效率,进一步提高电池的生产效率。
作为又一个示例,图8示出了绝缘结构23的又一种示意性截面图。如图8所示,第一部分231设置于第一电极组件221与第二电极组件222之间,第三部分233与第一部分231一体成型。
在一些实施例中,可以认为第三部分233与第一部分231形成一端开口的筒状结构,其中开口端为第三部分233在第一方向上远离第一电极组件221的一端。第二部分232则形成两端开口的筒状结构。
在该实施例中,第一部分231为该一端开口的筒状结构的底壁,同时也可以作为底壁盖合该两端开口的筒状结构在第一方向上靠近第二电极组件222的开口端,同样可以实现第一电极组件221与第二电极组件222之间的电隔离。
在其他一些实施例中,第一部分231可以与第二部分232一体成型,形成一端开口的筒状结构,而第三部分233则形成两端开口的筒状结构。此时,第一部分231为该第二部分232与第一部分231形成的筒状结构的底壁,同时也可以作为底壁盖合第三部分233所形成的两端开口的筒状结构在第一方向上靠近第一电极组件221的开口端。
上述示例中,第一部分231与第二部分232和/或第三部分233一体成型。在其他实施例中,如图9所示,第一部分231也可以为单独的一部分,即第一部分231、第二部分232以及第三部分233可相互分离。具体地,第二部分232以及第三部分233分别形成两端开口的筒状结构,第一部分231可以作为该两个筒状结构的共同的底壁。
在一些实施例中,在图6至图9的示例中,绝缘结构23所包括的第一部分231、第二部分232以及第三部分233可以采用相同材料如聚酯类绝缘材料制成,例如可采用聚酰亚胺、聚乙烯、聚偏二氟乙烯、聚四氟乙烯等。在一些实施例中,绝缘结构23可以为麦拉(mylar)薄膜。
在一些实施例中,参考图9所示,第一部分231设置有贯穿第一部分231厚度的通孔2311,该通孔2311用于电池单体中的电解液流通。
本申请实施例中,该通孔2311可以沿第一方向延伸,可以沿与第一方向位于同一平面且与第一方向之间的夹角为锐角的直线延伸,还可以沿与第一方向位于同一平面的曲线延伸,只要该通孔2311从第一部分231靠近第一电极组件221的一端贯穿至第一部分231靠近第二电极组件222的一端即可,本申请实施例对此不作具体限定。
第一部分231可以电隔离第一电极组件221与第二电极组件222,而设置于第一部分231上的通孔2311可以作为电池单体内的离子通道和电解液浸润通道,有利于电池单体内的电解液在第一电极组件221所在空间与第二电极组件222所在空间之间流通。一方面有助于还解决电解液流通的问题,能够改善电解液浸润第一电极组件221和第二电极组件222的一致性。另一方面,可降低电解液重量,从而降低电池单体的成本。
应理解,在图6至图8的示例中,第一部分231也可以设置如图9所示的通孔2311以利于电解液流通,为简洁,不再赘述。
图10示出了本申请实施例提供的另一种绝缘结构的示意性结构图。如图10所示,绝缘结构23包括第一绝缘膜234、第二绝缘膜235和绝缘件236。
第一绝缘膜234包设于第一电极组件221的外周,其中,第一绝缘膜234在第一方向上远离第二电极组件222的一端具有开口234a。第一绝缘膜234包括与开口234a相对设置的第一包裹端234b。为方便描述和区分,本申请以下实施例中,将设置于第一绝缘膜234的开口234a称为第一开口。
第二绝缘膜235包设于第二电极组件222的外周,其中,第二绝缘膜235在第一方向上远离第一电极组件221的一端具有开口235a。第二绝缘膜235包括与开口235a相对设置的第二包裹端235b。为方便描述和区分,本申请以下实施例中,将设置于第二绝缘膜235的开口235a称为第二开口。
绝缘件236,设置于第一包裹端234b与第二包裹端235b之间。
换言之,第一电极组件221包裹于第一绝缘膜234中,其中第一电极组件221在第一方向上远离第二电极组件222的一端未被第一绝缘膜234包覆。第二电极组件222包裹于第二绝缘膜235中,其中第二电极组件222在第一方向上远离第一电极组件221的一端未被第二绝缘膜235包覆。第一电极组件221与第二电极组件222相邻近的端部之间依次设置有第一包裹端234b、绝缘件236和第二包裹端235b。
第一绝缘膜234包覆在第一电极组件221的外周,可以将第一电极组件221与壳体211的至少部分隔开,从而降低壳体211将第一电极组件221的正负极片导通的风险。第二绝缘膜235包覆在第二电极组件222的外周,可以将第二电极组件222与壳体211的至少部分隔开,可以降低壳体211将第二电极组件222的正负极片导通的风险。绝缘件236设置于第一包裹端234b与第二包裹端235b之间,可以避免第一绝缘膜234和第二绝缘膜235破损所带来的电隔离失效的风险,从而可以增强第一电极组件221与第二电极组件222之间的电隔离。
本申请实施例中,绝缘件236的设置方式有多种,下面结合附图进行详细描述。
作为一个示例,图11示出了绝缘结构23的一种示意性立体图和截面图。如图11中的(a)和(b)所示,在一些实施例中,绝缘件236可以独立于第一绝缘膜234以及第二绝缘膜235。即绝缘件236与第一绝缘膜234以及第二绝缘膜235之间可相互分离。这样在安装过程中,可先将第一电极组件221包裹在第一绝缘膜234中,将第二电极222包裹于第二绝缘膜235中,然后再将绝缘件236设置于已包覆绝缘膜 的第一电极组件221与第二电极组件22之间。这样,可以使组装工艺流程更灵活。
作为另一个示例,图12示出了绝缘结构23的一种示意性立体图和截面图。如图12中的(a)和(b)所示,绝缘件236与第一绝缘膜234的第一包裹端234b固定连接。例如,绝缘件236可以是独立成型后再与第一包裹端234b固定连接,也可以是在第一绝缘膜234成型过程中与第一包裹端234b固定连接,本申请实施例对此不作限定。固定连接的绝缘件236与第一包裹端234b不可拆卸,而绝缘件236与第二绝缘膜235可相互分离。
在另一个示例中,绝缘件236也可以与第二绝缘膜235的第二包裹端235b固定连接,而与第一绝缘膜234相互分离。在该示例中,绝缘结构的具体设计与图13所示结构类似,为简洁,不再赘述。
绝缘件236与第一包裹端234b和/或第二包裹端235b固定连接,可以在电池单体受到外部冲击时减小绝缘件236的晃动幅度,降低绝缘件236失效的风险,提高安全性。此外,绝缘件236与第一包裹端234b和第二包裹端235b中的一者固定连接,还可以减少零部件数量,提高生产效率。
作为又一个示例,图13示出了绝缘结构23的一种示意性立体图和截面图。如图13中的(a)和(b)所示,绝缘件236与第一绝缘膜234的第一包裹端234b以及第二绝缘膜235的第二包裹端235b固定连接。例如,绝缘件236可以是独立成型后再与第一包裹端234b以及第二包裹端235b固定连接,也可以是在第一绝缘膜234和第二绝缘膜235成型过程中与第一包裹端234b和第二包裹端235b固定连接,本申请实施例对此不作限定。固定连接的绝缘件236、第一包裹端234b以及第二包裹端235b不可拆卸。
这样可以简化绝缘结构23的加工工艺,减少零部件数量。并且可以节省第一电极组件221与第二电极组件222的对位操作,从而提高组装效率以提高电池的生产效率。
在一些实施例中,参考图14所示,绝缘件236上设置有贯穿绝缘件236厚度的通孔2361,该通孔2361用于电池单体中的电解液流通。
本申请实施例中,该通孔2361可以沿第一方向延伸,可以沿与第一方向位于同一平面且与第一方向之间的夹角为锐角的直线延伸,还可以沿与第一方向位于同一平面的曲线延伸,只要该通孔2361能够作为电解液流通的通道即可,本申请实施例对此不作具体限定。
设置于绝缘件236上的通孔2361可以作为电池单体内的离子通道和电解液浸润通道,有利于电池单体内的电解液在第一电极组件所在空间与第二电极组件所在空间之间流通。通孔2361的设置,一方面有助于解决电解液流通的问题,能够改善电解液浸润第一电极组件221和第二电极组件222的一致性,从而提高电池的充放电性能;另一方面可降低电解液重量,从而降低电池单体的成本。
可以理解的是,图11至图13所示的绝缘件236均可以设置如图14所示的通孔2361。为了提高电解液的流通速率以及改善电解液浸润第一电极组件221和第二电极组件222的一致性,对于图11所示的绝缘件236来说,通孔2361可以从绝缘件 236靠近第一包裹端234b的一侧贯穿至绝缘件236靠近第二包裹端235b的一侧。对于图12所示的绝缘件236来说,通孔2361可以从绝缘件236靠近第二包裹端235b的一侧贯穿至绝缘件236靠近第一包裹端234b的一侧且继续贯穿第一包裹端234b的厚度。对于图13所示的绝缘件236来说,通孔2361可以从绝缘件236靠近第二包裹端235b的一侧贯穿至绝缘件236靠近第一包裹端234b的一侧,且两侧继续贯穿第一包裹端234b的厚度和第二包裹端235b的厚度。
继续参考图14,在一些实施例中,第一包裹端234b设置有贯穿第一包裹端234b厚度的第一通孔2341。第二包裹端235b设置有贯穿第二包裹端235b厚度的第二通孔2351。第一通孔2341和第二通孔2351用于电池单体中的电解液流通。
在一个示例中,第一通孔2341与通孔2361错位设置,和/或第二通孔2351与通孔2361错位设置。也就是说,绝缘件236上设置的通孔2361可以与第一通孔2341和第二通孔2351中的至少一者错位设置。这样可以避免第一电极组件221所在空间与第二电极组件222所在空间直接连通,从而避免第一绝缘膜234中产生的金属碎屑或其他导体通过通孔2361进入第二电极组件222所在空间,或者第二绝缘膜235中产生的金属碎屑或其他导体通过通孔2361进入第一电极组件221所在空间。因此避免了第一电极组件221与第二电极组件222之间由于金属碎屑产生电连接,以及后续可能发生的短路风险,提高了第一电极组件221与第二电极组件222之间的电隔离,增强了电池的安全性。
当然,在其他一些实施例中,通孔2361也可以与第一通孔2341和/或第二通孔2351相连通,例如对齐设置。具体可以根据实际需求(例如绝缘件236与第一绝缘膜234、第二绝缘膜235之间的连接关系、开孔大小、离子流通效率等)进行设计。
例如,当将通孔设计应用于图11所示的绝缘结构23时,绝缘件236上设置的通孔2361可以与第一包裹端234b上设置的第一通孔2341和第二包裹端235b上设置的第二通孔2351中的至少一者错位设置。
又如,当将通孔设计应用于图12所示的绝缘结构23时,绝缘件236上设置的通孔2361可以与第二包裹端235b上设置的第二通孔2351错位设置,而与第一包裹端234b上设置的第一通孔2341相连通。
再如,当将通孔设计应用于图13所示的绝缘结构23时,绝缘件236上设置的通孔2361可以与第一包裹端234b上设置的第一通孔2341以及第二包裹端235b上设置的第二通孔2351相连通。
需要说明的是,本申请实施例中,两个通孔“错位设置”,可以理解为是该两个通孔在第一方向上的投影面积无重叠。以通孔2361与第一通孔2341错位设置为例,可以理解为通孔2361在第一方向上的投影与第一通孔2341在第一方向上的投影无重叠,具体地,可以是通孔2361与第一通孔2341相对的两端在第一方向上的投影无重叠。即通孔2361靠近第一绝缘膜234的一端在第一方向上的投影与第一通孔2341靠近绝缘件236的一端在第一方向上的投影无重叠。对于通孔2361与第二通孔2351错位设置的理解类似,为简洁,在此不再赘述。
另外,本申请实施例中,两个通孔相连通,可以理解为该两个通孔在第一 方向上的投影面积部分或全部重叠。以通孔2361与第一通孔2341相连通为例,可以理解为通孔2361在第一方向上的投影与第一通孔2341在第一方向上的投影至少部分重叠,具体地,可以是通孔2361与第一通孔2341相对的两端在第一方向上的投影至少部分重叠。即通孔2361靠近第一绝缘膜234的一端在第一方向上的投影与第一通孔2341靠近绝缘件236的一端在第一方向上的投影至少部分重叠。对于通孔2361与第二通孔2351相连通的理解类似,为简洁,在此不再赘述。
在一些实施例中,两个通孔在第一方向上的投影面积完全重叠,或者其中一个通孔在第一方向上投影位于另一个通孔在第一方向上的投影范围之内时,也可以称为该两个通孔对齐设置。
图15示出了本申请实施例提供的又一种绝缘结构的示意性结构图。
在一种可能的实现方式中,如图15中的(a)所示,绝缘结构23包括第一绝缘膜234、第二绝缘膜235和绝缘件236。第一绝缘膜234包设于第一电极组件221的外周,其中第一绝缘膜234在第一方向的两端具有开口。第二绝缘膜235包设于第二电极组件222的外周,第二绝缘膜235在第一方向的两端具有开口。绝缘件236设置于第一电极组件221与第二电极组件222之间,用于盖合第一绝缘膜234的靠近第二电极组件222的开口和第二绝缘膜235的靠近第一电极组件221的开口。
换言之,第一绝缘膜234沿垂直于第一方向的周向包设于第一电极组件221的外周。第二绝缘膜235沿垂直于第一方向的周向包设于第二电极组件222的外周。绝缘件236则电隔离第一电极组件221与第二电极组件222。
在一些实施例中,如图15所示,绝缘件236可以为独立的部件,其与第一绝缘膜234以及第二绝缘膜235之间可相互分离。
在另一些实施例中,绝缘件236可以与第一绝缘膜234和/或第二绝缘膜235固定连接。
在另一种可能的实现方式中,如图15中的(b)所示,绝缘结构23可以包括第三绝缘膜237和绝缘件236。第三绝缘膜237包设于第一电极组件221和第二电极组件222的外周,其中第三绝缘膜237在第一方向的两端具有开口。绝缘件236设置于第三绝缘膜237内部且位于第一电极组件221与第二电极组件222之间。
或者说,第三绝缘膜237为在第一方向的两端具有开口的筒状结构,第一电极组件221和第二电极组件222设置于该筒状结构所形成的容纳空间中。其中第一电极组件221与第二电极组件222之间通过绝缘件236实现电隔离。
可以理解的是,图15中的(b)所示的绝缘结构23可以通过图15中的(a)所示的绝缘结构23变形而来。具体地,图15中的(a)第一绝缘膜234与第二绝缘膜235一体成型,可形成第三绝缘膜237。绝缘件236则设置于第三绝缘膜237所形成的空间中。
在一些实施例中,在图15的示例中,绝缘件236也可以设置如图14所示的通孔2361,用于电解液的流通。
在一些实施例中,在图10至图15的示例中,绝缘结构23所包括的第一绝缘膜234和第二绝缘膜235可以采用相同材料如聚酯类绝缘材料制成,具体可为聚酰 亚胺、聚乙烯、聚偏二氟乙烯、聚四氟乙烯等。在一些实施例中,第一绝缘膜234和第二绝缘膜235可以为麦拉(mylar)薄膜。
在一些实施例中,上述涉及的绝缘件236可以采用耐高温绝缘材料制成。示例性的,绝缘件236可以为熔点大于或等于200℃的绝缘材料。采用耐高温绝缘材料的绝缘件236能够耐受较高温度,一般来说也具有较高的强度和硬度,因此可以避免第一绝缘膜234和第二绝缘膜235发生破损时所带来的电隔离失效的风险,从而可以提高第一电极组件221与第二电极组件222之间的电隔离。另外,绝缘件236耐高温性使得绝缘件236在高温下仍能保持原有特性,可以提高电池单体内部的热传导。
在一些实施例中,绝缘件236所采用的绝缘材料可以包括以下至少一种:聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)、三元乙丙橡胶(ethylene propylene diene monomer,EPDM)、聚四氟乙烯(poly tetra fluoroethylene,PTFE)、可熔性聚四氟乙烯(polyfluoroalkoxy,PFA)(也可以称为过氟烷基化物)、氟橡胶(fluororubber)(通常简称为FKM)、硅橡胶、氧化铝、氮化硅和陶瓷。
在一些实施例中,绝缘件236还可以为经过阳极化处理的材料。阳极化处理是一种金属表面处理工艺,具体是指金属材料在电解质溶液中,通过外施阳极电流使其表面形成氧化膜的一种材料保护技术,又称表面阳极氧化。金属材料或制品经过表面阳极化处理后,其耐蚀性、硬度、耐磨性、绝缘性、耐热性等均有大幅度提高。这里,金属材料可以为铝、镁合金、锌、锌合金、钛合金、钢、镉、钽、锆等。
上述绝缘材料均具有优良的耐热性,在温度较高的条件下也能够保持良原有特性,能够降低绝缘件失效的风险,提高安全性。
应理解,在实际应用中,本领域技术人员可以根据需求(例如成本、性能等)选择绝缘件236的材料,本申请实施例对此不作具体限定。示例性的,从节约成本的角度考虑,绝缘件236可以优先采用PET材料。从减震和吸收变形量的角度考虑,绝缘件236可以优先采用氟橡胶。
以上介绍的实施例中,第一电极组件221在第一方向上远离第二电极组件222的一端未被绝缘结构23包覆,第二电极组件222在第一方向上远离第一电极组件221的一端未被绝缘结构23包覆。这样设计的目的在于,方便第一电极组件221的正极极耳和负极极耳与电极端子电连接,以及第二电极组件222的正极极耳和负极极耳与电极端子电连接。通常地,电极组件的极耳可以通过连接构件(如转接片)与电极端子电连接。若电极组件(如第一电极组件221或第二电极组件222)在电池单体内发生晃动,则容易导致连接构件折断、损坏或连接构件与极耳焊接失效,进而导致极耳与电极端子电连接失效。因此,为了解决电池单体内部电极组件的晃动问题,本申请还进一步提供了以下实施例,下面结合附图说明。
图16示出了本申请实施例提供的一种绝缘件的示意性结构图,图17示出了图16中的绝缘件应用于电池单体的装配示意图。
如图16和图17所示,绝缘件236可以为弹性材料。绝缘件236的一侧被配置为抵接于第一电极组件221,绝缘件236的另一侧被配置为抵接于第二电极组件222。
作为示例而非限定,参考图16,绝缘件236可以为片状结构,该片状结构采用弹性材料制成。
图17中的(a)示出了电池单体20的示意性俯视图,图17中的(b)示出了电池单体20沿A-A线剖开的示意性剖面图,图17中的(c)示出了电池单体20的剖面图的局部放大示意图B。参考图17,绝缘件236设置于第一电极组件221与第二电极组件222之间。在装配状态下,绝缘件236在第一方向上靠近第一电极组件221的一侧抵接于第一电极组件221,绝缘件236在第一方向上靠近第二电极组件222的一侧抵接于第二电极组件222。
在一些实施例中,在实际设计时,绝缘件236在自由状态下的厚度应满足:大于装配状态下第一电极组件221与第二电极组件222之间能够达到的最大距离。这样在装配时,绝缘件236会被挤压而产生变形,从而抵接于第一电极组件221和第二电极组件222。或者说,绝缘件236在自由状态下的厚度应满足:在装配状态下,绝缘件236与第一电极组件221之间形成过盈配合,且绝缘件236与第二电极组件222之间形成过盈配合。
绝缘件236采用弹性材料制成,其既能够在装配过程中产生变形而使第一电极组件221和第二电极组件222稳定安装,还能够减少电池在使用过程中第一电极组件221与第二电极组件222之间的相对运动,或降低第一电极组件221和第二电极组件222的运动幅度。从而可以降低或避免由于第一电极组件221和/或第二电极组件222的晃动而导致的焊接失效或连接构件破坏现象,避免出现极耳与电极端子电连接失效的问题。进一步地,可以提高电池单体的使用寿命,增强电池的安全性。
在一些实施例中,绝缘件236可设置一个或多个通孔2361。当设置多个通孔2361时,该多个通孔2361可以随机排列;或者按m行*n列的阵列排列,其中m、n均为大于0的整数;或者按圆形阵列排列,本申请实施例对此不作限定。本申请实施例中,绝缘件236上设置多个通孔2361,有利于电解液浸润,提高电离子流通效率。
图18示出了本申请实施例提供的另一种绝缘件的示意性结构图,图19示出了图18中的绝缘件应用于电池单体的装配示意图。
如图18中的(a)和(b)以及图19所示,绝缘件236可以包括沿第一方向相对设置的第一绝缘片236a和第二绝缘片236b,以及设置于第一绝缘片236a与第二绝缘片236b之间的弹性体236c。弹性体236c用于使第一绝缘片236a抵接于第一电极组件221,且使第二绝缘片236b抵接于第二电极组件222。
本申请实施例中,弹性体236c采用弹性材料制成。
作为示例而非限定,参考图18,弹性体236c可以呈圆柱状。当然,弹性体236c还可以为其他形状,例如正方体、长方体、球体、圆台等,本申请实施例对此不作限定。
图19中的(a)示出了电池单体20的示意性俯视图,图19中的(b)示出了电池单体20沿C-C线剖开的示意性剖面图,图19中的(c)示出了电池单体20的剖面图的局部放大示意图D。
参考图19,绝缘件236设置于第一电极组件221与第二电极组件222之 间。在装配状态下,第一绝缘片236a与第一电极组件221相对设置,第二绝缘片236b与第二电极组件222相对设置。设置于第一绝缘片236a与第二绝缘片236b之间的弹性体236c受挤压会产生变形,使得第一绝缘片236a抵接于第一电极组件221,且使得第二绝缘片236b抵接于第二电极组件222。
在一些实施例中,在实际设计时,弹性体236c在自由状态下的厚度应满足:大于装配状态下第一绝缘片236a与第二绝缘片236b之间能够达到的最大距离,或者大于装配状态下第一电极组件221与第二电极组件222之间能够达到的最大距离。这样在装配时,弹性体236c会被挤压而产生变形,从而使第一绝缘片236a和第二绝缘片236b分别抵接于第一电极组件221和第二电极组件222。
弹性体236c采用弹性材料制成,其既能够在装配过程中产生变形而使第一电极组件221和第二电极组件222稳定安装,还能够减少电池在使用过程中第一电极组件221与第二电极组件222之间的相对运动,或降低第一电极组件221和第二电极组件222的运动幅度。从而可以降低或避免由于第一电极组件221和/或第二电极组件222的晃动而导致的焊接失效或连接构件破坏现象,避免出现极耳与电极端子电连接失效的问题。进一步地,可以提高电池单体的使用寿命,增强电池的安全性。
在一些实施例中,第一绝缘片236a和第二绝缘片236b可以为弹性材料。这样有助于绝缘件236整体吸收更多变形,并起到缓冲作用。另外,第一绝缘片236a、第二绝缘片236b和弹性体236c均采用弹性材料制成,可以简化绝缘件236的加工工艺。
在一些实施例中,第一绝缘片236a和第二绝缘片236b可以设置一个或多个通孔2361。当设置多个通孔2361时,该多个通孔2361可以随机排列;或者按m行*n列的阵列排列,其中m、n均为大于0的整数;或者按圆形阵列排列,本申请实施例对此不作限定。本申请实施例中,第一绝缘片236a和第二绝缘片236b上设置多个通孔2361,有利于电解液浸润,提高电离子流通效率。
在一些实施例中,第一绝缘片236a和第二绝缘片236b之间可以设置一个或多个弹性体236c。当设置多个弹性体236c时,绝缘件236的受力更均匀。另外,相邻弹性体236c之间还可以形成电解液流通的通道,有利于电解液浸润,提高电离子流通效率。
在一些实施例中,弹性体236c与第一绝缘片236a和第二绝缘片236b上设置的通孔2361错位设置。
在一些实施例中,弹性体236c可以为热固性弹性或热塑性弹性体。其中热塑性弹性体包括但不限于苯乙烯类热塑性弹性体、烯烃类热塑性弹性体、热塑性三元乙丙动态硫化弹性体、热塑性聚氨酯弹性体等。
在一些实施例中,上述提及的弹性材料包括但不限于:橡胶、塑料、合成橡胶、改性塑料等。其中橡胶可以包括氟橡胶、硅橡胶、三元乙丙橡胶等。
需要说明的是,本申请实施例中所涉及的“抵接”,包括直接抵接和间接抵接。以图17为例,绝缘件236可以与第一电极组件221以及第二电极组件222直接接触并施加作用力。在其他实施例中,绝缘件236可以通过其他部件例如前述第一绝 缘膜234和第二绝缘膜235分别与第一电极组件221和第二电极组件222相抵接。可以理解的是,图16和图18提供的绝缘件236可以与图10至图15中的任意实施例相结合,例如将图10至图15中所描述的绝缘件236替换为图16或图18所示的绝缘件236的结构。为简洁,在此不再详细描述。
以上对绝缘构件23的结构进行了详细描述,下面对电池单体内设置的电极组件的结构进行说明。应理解,本申请实施例的第一电极组件221或第二电极组件222可以为卷绕式或者层叠式,或者也可以为其他类型的电极组件。第一电极组件221的类型与第二电极组件222的类型可以相同,也可以不同。为方便理解,下面以第一电极组件221以及第一端面2211为例,说明本申请实施例的电池单体20包括的电极组件的可能的类型。
图20示出了本申请一个实施例提供的第一电极组件的示意性剖面图。
如图20所示,第一电极组件221包括第一极片221a和第二极片221b,第一极片221a与第二极片221b绕卷绕轴线卷绕设置。该卷绕轴线平行于第一方向X,第一端面2211垂直于卷绕轴线。
第一极片221a与第二极片221b的极性相反。即第一极片221a与第二极片221b中的一者为正极极片,另一者为负极极片。示例性的,本申请实施例中,第一极片221a为负极极片,第二极片221b为正极极片。
第一电极组件221还包括设置于第一极片221a与第二极片221b之间的隔离件221c。隔离件221c用于将第一极片221a与第二极片221b绝缘隔离。在一些实施例中,第一极片221a、第二极片221b和隔离件221c均为带状结构。第一极片221a、第二极片221b和隔离件221c依次层叠并沿卷绕轴线卷绕至少两圈,以形成第一电极组件221。隔离件221c可以为前述隔离膜,其材质可以为聚丙烯或聚乙烯等。
本申请实施例中,第一极片221a和第二极片221b的卷绕方向垂直于第一方向X,第一极片221a沿第一方向X的一个端部与第二极片221b沿第一方向X的一个端部形成垂直于第一方向X的第一端面2211。当电解液接触第一端面2211时,电解液可以通过第一端面2211快速浸润第一电极组件221的各层极片,可以使得第一电极组件221的多个层的浸润效果较为均匀,进而提高第一电极组件221的浸润效率。
图21示出了本申请另一个实施例提供的第一电极组件的示意性剖面图。
如图21所示,第一电极组件221为层叠式。具体地,第一电极组件221包括多个第一极片221a和多个第二极片221b,多个第一极片221a和多个第二极片221b沿第二方向(如图21所示的方向Y)交替层叠设置。第二方向Y垂直于第一方向X,第一端面2211垂直于第一方向X。
第一电极组件221还包括隔离件221c,隔离件221c用于将相邻的第一极片221a和第二极片221b绝缘隔离。示例性的,一个隔离件221c可用于一个第一极片221a和一个第二极片221b间的隔离;或者,一个隔离件221c可用于多个第一极片221a和多个第二极片221b间的隔离。
本申请实施例中,多个第一极片221a和多个第二极片221b的层叠方向垂直于第一方向X,该多个第一极片221a中的每个第一极片221a沿第一方向X的一个 端部与该多个第二极片221b中的每个第二极片221b沿第一方向X的一个端部形成垂直于第一方向X的第一端面2211。当电解液接触第一端面2211时,电解液可以通过第一端面2211快速浸润第一电极组件221的各层极片,可以使得第一电极组件221的多个层的浸润效果较为均匀,进而提高第一电极组件221的浸润效率。
图22示出了本申请又一个实施例提供的第一电极组件的示意性剖面图。
如图22所示,第一电极组件221包括第一极片221a和多个第二极片221b,第一极片221a包括多个层叠段221d和多个折弯段221e,该折弯段221e用于连接相邻的两个层叠段221d,该多个第二极片221b与多个层叠段221d沿第二方向(如图22所示的方向Y)交替层叠设置。第二方向Y垂直于第一方向X,第一端面2211垂直于第一方向X。
在一些实施例中,该第一端面2211还可以设置为垂直于折弯段221e,即该第一端面2211垂直于每个折弯段221e的延伸方向,以避免将第一端面2211设置为包括多个折弯段221e的端面,进而避免电解液需要穿过该折弯段221e浸润第一电极组件221,以提高浸润效率。
在本申请实施例中,第二极片221b和层叠段221d的层叠方向垂直于第一方向X,第二极片221b沿第一方向X的一个端部与该多个第二极片221b中的每个第二极片221b沿第一方向X的一个端部形成垂直于第一方向X的第一端面2211。当电解液接触第一端面2211时,电解液可以通过第一端面2211快速浸润第一电极组件221的各层极片,可以使得第一电极组件221的多个层的浸润效果较为均匀,进而提高第一电极组件221的浸润效率。
需要说明的是,上述第一电极组件221和第一端面2211的设置同样适用于第二电极组件222和第三端面2221的设置。具体地,该第一电极组件221可以与第一电极组件222为同一类型或者不同类型的电极组件。例如第一电极组件221和第二电极组件222可以均为卷绕式,或者为同一类型的层叠式,以便于加工。另外,按照上述方式设置相对的第一端面2211与第三端面2221,与其他设置方式相比,当电解液从该第一端面2211与第三端面2221之间流通时,电解液可以通过第一端面2211与第三端面2221分别快速浸润第一电极组件221和第二电极组件222的各层极片,还可以使得第一电极组件221和第二电极组件222的浸润效果较为均匀,进而提高第一电极组件221和第二电极组件222的浸润效率。
本申请一个实施例还提供了一种电池,该电池可以包括前述各实施例中的电池单体20。
本申请一个实施例还提供了一种用电设备,该用电设备可以包括前述各实施例中的电池10,并且电池10用于为用电设备提供电能。在一些实施例中,用电设备可以为车辆1、船舶或航天器。
根据本申请的一些实施例,参见图10至图19,本申请提供了一种电池单体20,包括容纳于壳体211内的第一电极组件221和第二电极组件222,其中第一电极组件221和第二电极组件222沿壳体211的长度方向排列且绝缘设置。壳体211沿长度方向的两端设有开口,电池单体20还包括端盖212,用于盖合壳体211两端的开口。第 一电极组件221与第二电极组件222之间设置有绝缘件236,用于电隔离第一电极组件221和第二电极组件222。绝缘件236上设置有通孔2361,用于电解液的流通,以改善浸润第一电极组件221和第二电极组件222的一致性。该绝缘件236的至少部分采用弹性材料制成,以使该绝缘件236沿第一方向的两侧分别抵接于第一电极组件221和第二电极组件222,从而减少第一电极组件221和第二电极组件222的晃动。第一电极组件221的外周可以包覆第一绝缘膜234,第二电极组件222的外周可以包覆第二绝缘膜235,其中绝缘件236与第一绝缘膜234和/或第二绝缘膜235固定连接,从而减少零部件数量,提高电池生产效率。这里,绝缘件236、第一绝缘膜234和第二绝缘膜235统称为绝缘结构23。
上文描述了本申请实施例的电池单体、电池和用电设备,下面将描述本申请实施例的电池单体的制造方法和制造设备,未详细描述部分可参见前述各实施例。
图23示出了本申请一个实施例的电池单体20的制造方法300的示意性流程图。如图23所示,该制造方法300可以包括:
S310,提供壳体211。壳体211在第一方向的两端具有开口。
S320,提供端盖212。
S330,提供第一电极组件221和第二电极组件222。
S340,提供绝缘结构23。
S350,将绝缘结构23、第一电极组件221和第二电极组件222容纳于壳体211内,使绝缘结构23的至少部分设置于沿第一方向排列且绝缘设置的第一电极组件221与第二电极组件222之间以电隔离第一电极组件221与第二电极组件222。
S360,将端盖212盖合壳体211两端的开口。
图24示出了本申请一个实施例的电池单体20的制造设备400的示意性框图。如图24所示,该制造设备400可以包括:
提供模块410,该提供模块410用于:
提供壳体211,壳体211在第一方向的两端具有开口;
提供端盖212;
提供第一电极组件221和第二电极组件222;
提供绝缘结构23。
安装模块420,用于:
将绝缘结构23、第一电极组件221和第二电极组件222容纳于壳体211内,使绝缘结构23的至少部分设置于沿第一方向排列且绝缘设置的第一电极组件221与第二电极组件222之间以电隔离第一电极组件221与第二电极组件222;
将端盖212盖合壳体211两端的开口。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (19)

  1. 一种电池单体,其特征在于,包括:
    壳体(211),所述壳体(211)在第一方向的两端具有开口;
    端盖(212),用于盖合所述壳体(211)两端的开口;
    第一电极组件(221)和第二电极组件(222),容纳于所述壳体(211)内,其中所述第一电极组件(221)和所述第二电极组件(222)沿所述第一方向排列且绝缘设置;
    绝缘结构(23),至少部分设置于所述第一电极组件(221)与所述第二电极组件(222)之间,用于电隔离所述第一电极组件(221)与所述第二电极组件(222)。
  2. 根据权利要求1所述的电池单体,其特征在于,所述绝缘结构(23)包括:
    第一部分(231),设置于所述第一电极组件(221)与所述第二电极组件(222)之间;
    第二部分(232),沿垂直于所述第一方向的周向包设于所述第一电极组件(221)的外周;
    第三部分(233),沿垂直于所述第一方向的周向包设于所述第二电极组件(222)的外周;
    所述第二部分(232)和所述第三部分(233)中的至少一者与所述第一部分(231)的部分或全部一体成型。
  3. 根据权利要求2所述的电池单体,其特征在于,所述第一部分(231)设置有贯穿所述第一部分(231)厚度的通孔(2311),所述通孔(2311)用于所述电池单体中的电解液流通。
  4. 根据权利要求1所述的电池单体,其特征在于,所述绝缘结构(23)包括:
    第一绝缘膜(234),包设于所述第一电极组件(221)的外周,其中,所述第一绝缘膜(234)在所述第一方向上远离所述第二电极组件(222)的一端具有开口(234a),所述第一绝缘膜(234)包括与所述开口(234a)相对设置的第一包裹端(234b);
    第二绝缘膜(235),包设于所述第二电极组件(222)的外周,其中,所述第二绝缘膜(235)在所述第一方向上远离所述第一电极组件(221)的一端具有开口(235a),所述第二绝缘膜(235)包括与所述开口(235a)相对设置的第二包裹端(235b);
    绝缘件(236),设置于所述第一包裹端(234b)与所述第二包裹端(235b)之间。
  5. 根据权利要求4所述的电池单体,其特征在于,所述绝缘件(236)与所述第一包裹端(234b)和/或所述第二包裹端(235b)固定连接。
  6. 根据权利要求4或5所述的电池单体,其特征在于,所述绝缘件(236)上设置有贯穿所述绝缘件(236)厚度的通孔(2361),所述通孔(2361)用于所述电池单体中的电解液流通。
  7. 根据权利要求6所述的电池单体,其特征在于,
    所述第一包裹端(234b)设置有贯穿所述第一包裹端(234b)厚度的第一通孔(2341);
    所述第二包裹端(235b)设置有贯穿所述第二包裹端(235b)厚度的第二通孔(2351);
    所述第一通孔(2341)和所述第二通孔(2351)用于所述电池单体中的电解液流通;
    其中,所述第一通孔(2341)与所述通孔(2361)错位设置,和/或所述第二通孔(2351)与所述通孔(2361)错位设置。
  8. 根据权利要求1所述的电池单体,其特征在于,所述绝缘结构(23)包括:
    第一绝缘膜(234),包设于所述第一电极组件(221)的外周,其中所述第一绝缘膜(234)在所述第一方向的两端具有开口;
    第二绝缘膜(235),包设于所述第二电极组件(222)的外周,所述第二绝缘膜(235)在所述第一方向的两端具有开口;
    绝缘件(236),设置于所述第一电极组件(221)与所述第二电极组件(222)之间,用于盖合所述第一绝缘膜(234)的靠近所述第二电极组件(222)的开口和所述第二绝缘膜(235)的靠近所述第一电极组件(221)的开口。
  9. 根据权利要求4至8中任一项所述的电池单体,其特征在于,所述绝缘件(236)为熔点大于或等于200℃的绝缘材料。
  10. 根据权利要求9所述的电池单体,其特征在于,所述绝缘材料包括以下至少一种:
    聚对苯二甲酸乙二醇酯、三元乙丙橡胶、聚四氟乙烯、可熔性聚四氟乙烯、氟橡胶、硅橡胶、氧化铝、氮化硅和陶瓷。
  11. 根据权利要求4至10中任一项所述的电池单体,其特征在于,所述绝缘件(236)为弹性材料,所述绝缘件(236)的一侧被配置为抵接于所述第一电极组件(221),所述绝缘件(236)的另一侧被配置为抵接于所述第二电极组件(222)。
  12. 根据权利要求4至10中任一项所述的电池单体,其特征在于,所述绝缘件(236)包括:
    沿所述第一方向相对设置的第一绝缘片(236a)和第二绝缘片(236b);以及
    设置于所述第一绝缘片(236a)与所述第二绝缘片(236b)之间的弹性体(236c),所述弹性体(236c)用于使所述第一绝缘片(236a)抵接于所述第一电极组件(221),且使所述第二绝缘片(236b)抵接于所述第二电极组件(222)。
  13. 根据权利要求12所述的电池单体,其特征在于,所述第一绝缘片(236a)和所述第二绝缘片(236b)为弹性材料。
  14. 根据权利要求1至13中任一项所述的电池单体,其特征在于,所述第一电极组件(221)的第一端面(2211)朝向所述第二电极组件(222);其中,
    所述第一电极组件(221)包括第一极片(221a)和第二极片(221b),所述第一极片(221a)与所述第二极片(221b)绕卷绕轴线卷绕设置,所述卷绕轴线平行于所述第一方向,所述第一端面(2211)垂直于所述卷绕轴线;或者,
    所述第一电极组件(221)包括多个第一极片(221a)和多个第二极片(221b),所述多个第一极片(221a)和所述多个第二极片(221b)沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面(2211)垂直于所述第一方向;或者,
    所述第一电极组件(221)包括第一极片(221a)和多个第二极片(221b),所述第一极片(221a)包括多个层叠段(221d)和多个折弯段(221e),所述折弯段(221e)用于连接相邻的两个所述层叠段(221d),所述多个第二极片(221b)与多个所述层叠段(221d)沿第二方向交替层叠设置,所述第二方向垂直于所述第一方向,所述第一端面(2211)垂直于所述第一方向。
  15. 根据权利要求1至14中任一项所述的电池单体,其特征在于,所述第一方向为所述壳体(211)的长度方向。
  16. 一种电池,其特征在于,包括:根据权利要求1至15中任一项所述的电池单体。
  17. 一种用电设备,其特征在于,包括:根据权利要求16所述的电池,所述电池用于为所述用电设备提供电能。
  18. 一种电池单体的制造方法,其特征在于,包括:
    提供壳体(211),所述壳体(211)在第一方向的两端具有开口;
    提供端盖(212);
    提供第一电极组件(221)和第二电极组件(222);
    提供绝缘结构(23);
    将所述绝缘结构(23)、所述第一电极组件(221)和所述第二电极组件(222)容纳于所述壳体(211)内,使所述绝缘结构(23)的至少部分设置于沿所述第一方向排列且绝缘设置的所述第一电极组件(221)与所述第二电极组件(222)之间以电隔离所述第一电极组件(221)与所述第二电极组件(222);
    将所述端盖(212)盖合所述壳体(211)两端的开口。
  19. 一种电池单体的制造设备,其特征在于,包括:
    提供模块,用于:
    提供壳体(211),所述壳体(211)在第一方向的两端具有开口;
    提供端盖(212);
    提供第一电极组件(221)和第二电极组件(222);
    提供绝缘结构(23);
    安装模块,用于:
    将所述绝缘结构(23)、所述第一电极组件(221)和所述第二电极组件(222)容纳于所述壳体(211)内,使所述绝缘结构(23)的至少部分设置于沿所述第一方向排列且绝缘设置的所述第一电极组件(221)与所述第二电极组件(222)之间以电隔离所述第一电极组件(221)与所述第二电极组件(222);
    将所述端盖(212)盖合所述壳体(211)两端的开口。
PCT/CN2022/081827 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备 WO2023173441A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/081827 WO2023173441A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备
CN202280061237.3A CN117957703A (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备
EP22931472.9A EP4418423A4 (en) 2022-03-18 2022-03-18 BATTERY ELEMENT, MANUFACTURING METHOD AND MANUFACTURING DEVICE, BATTERY AND ELECTRICAL DEVICE
US18/770,770 US20240363984A1 (en) 2022-03-18 2024-07-12 Battery cell, battery cell manufacturing method and equipment, battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081827 WO2023173441A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/770,770 Continuation US20240363984A1 (en) 2022-03-18 2024-07-12 Battery cell, battery cell manufacturing method and equipment, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023173441A1 true WO2023173441A1 (zh) 2023-09-21

Family

ID=88021979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081827 WO2023173441A1 (zh) 2022-03-18 2022-03-18 电池单体及其制造方法和制造设备、电池、用电设备

Country Status (4)

Country Link
US (1) US20240363984A1 (zh)
EP (1) EP4418423A4 (zh)
CN (1) CN117957703A (zh)
WO (1) WO2023173441A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025097740A1 (zh) * 2023-11-09 2025-05-15 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120225342A1 (en) * 2011-03-04 2012-09-06 Sangwon Byun Secondary battery
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN112993473A (zh) * 2019-11-29 2021-06-18 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN214428753U (zh) * 2021-04-29 2021-10-19 合肥国轩高科动力能源有限公司 动力电池模组及其隔离组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828717B (zh) * 2020-01-13 2020-07-10 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120225342A1 (en) * 2011-03-04 2012-09-06 Sangwon Byun Secondary battery
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN112993473A (zh) * 2019-11-29 2021-06-18 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN214428753U (zh) * 2021-04-29 2021-10-19 合肥国轩高科动力能源有限公司 动力电池模组及其隔离组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4418423A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025097740A1 (zh) * 2023-11-09 2025-05-15 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN117957703A (zh) 2024-04-30
EP4418423A1 (en) 2024-08-21
US20240363984A1 (en) 2024-10-31
EP4418423A4 (en) 2025-07-09

Similar Documents

Publication Publication Date Title
US11757161B2 (en) Battery cell, battery and electricity consuming device
JP7491939B2 (ja) 電池、電気機器、電池の製造方法及び装置
CN117203830A (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023197133A1 (zh) 电池单体的壳体、电池单体、电池以及用电装置
CN216872134U (zh) 电池和用电设备
US20230395952A1 (en) Battery cell, battery and electrical device
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
CN217788621U (zh) 电池单体及其制造设备、电池、用电设备
KR102826083B1 (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
US20240363984A1 (en) Battery cell, battery cell manufacturing method and equipment, battery, and electrical device
KR102825392B1 (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2024020766A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法
CN117199736B (zh) 电池单体、电池以及用电装置
CN217719740U (zh) 电池及用电装置
EP4258437A1 (en) Battery, electric device, and battery preparation method and device
KR102820867B1 (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
WO2023245673A1 (zh) 电池单体、电池及用电装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2024045065A1 (zh) 端盖组件、电池组件、电池及用电设备
WO2024020910A1 (zh) 电池单体、电池以及用电装置
KR102826084B1 (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR102832073B1 (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
CN222735317U (zh) 电池单体、电池以及用电装置
KR102832072B1 (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061237.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022931472

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022931472

Country of ref document: EP

Effective date: 20240516

NENP Non-entry into the national phase

Ref country code: DE