[go: up one dir, main page]

WO2023169441A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2023169441A1
WO2023169441A1 PCT/CN2023/080164 CN2023080164W WO2023169441A1 WO 2023169441 A1 WO2023169441 A1 WO 2023169441A1 CN 2023080164 W CN2023080164 W CN 2023080164W WO 2023169441 A1 WO2023169441 A1 WO 2023169441A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical axis
lens assembly
electronic device
assembly
Prior art date
Application number
PCT/CN2023/080164
Other languages
English (en)
French (fr)
Inventor
张凯元
王晓芳
陈锴
丁睿明
丁小恒
龙思琛
李龙
高屹东
郭利德
叶海水
王伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202380026186.5A priority Critical patent/CN118843814A/zh
Priority to EP23766019.6A priority patent/EP4468051A1/en
Publication of WO2023169441A1 publication Critical patent/WO2023169441A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present application relates to the field of terminal technology, and in particular to an electronic device.
  • the camera module includes a lens assembly and an image sensor. Light can enter the camera module through the lens assembly and illuminate the image sensor to form an image.
  • lens components are gradually developing in the direction of imaging with large aperture and large target surface (target surface of the image sensor).
  • target surface of the image sensor For example, users' requirements for capturing detailed scenes are gradually increasing, making the design of large aperture become is particularly important.
  • the aperture of the camera module also directly affects the core functions of the camera such as night scene, video, and background blur. For lenses with large target surfaces and large apertures, it is usually achieved by increasing the number of optical components (such as lenses) to provide a higher degree of design freedom.
  • TTL Total optical length
  • the present application provides an electronic device, which solves the problem that the existing lens assembly with a large aperture and a large target surface has a long overall optical length, which is not conducive to the thinning design of the electronic device.
  • An electronic device provided by this application includes a housing, a lens cover, and a lens assembly disposed in the housing.
  • the lens assembly includes a plurality of lenses arranged in sequence from the object side to the image side along the optical axis direction;
  • the lens cover is located on a side of the lens assembly facing the object side.
  • the lens cover can extend out of the housing along the optical axis direction to form an escape space.
  • the entire lens assembly or all At least one lens in the lens assembly close to the object side moves in the avoidance space along the direction of the optical axis;
  • the lens assembly satisfies the conditional expression: 0.7 ⁇ IH/(4*F#) ⁇ 6, where IH is the full image height of the lens assembly, and F# is the aperture number of the lens assembly.
  • IH is the full image height of the lens assembly
  • F# is the aperture number of the lens assembly.
  • the lens cover can move along the optical axis.
  • the lens cover can move along the optical axis and extend out of the housing.
  • the camera module is in working condition and there is no room for movement of the lens cover.
  • Out of hiding Allowing space the entire lens assembly or at least one lens close to the object side can move along the optical axis in the avoidance space to achieve the focusing function and improve imaging quality.
  • the entire lens assembly or at least one lens close to the object side can move toward the image sensor along the optical axis.
  • the camera module is in a non-working state.
  • the camera module is not subject to imaging requirements such as total optical length.
  • the lens The cover and the lens assembly can be in a retracted state, that is, the distance between the lens cover and the lens assembly, and the distance between the lens assembly and the image sensor (or filter) can be as close as possible, reducing the overall camera module It takes up less space and meets the thinning design requirements of electronic equipment.
  • the camera module in the electronic device provided by this application while achieving a large aperture and taking into account the high-quality imaging requirements of a large target surface, effectively reduces the space occupied by the camera module in the non-working state, which is conducive to reducing the The space required by the camera module in the thickness direction of the electronic device is conducive to the thinning design of the electronic device.
  • it also includes a cover driving device and a lens driving device, the cover driving device being used to drive the lens cover to move along the optical axis direction;
  • the lens driving device is used to drive the entire lens assembly to move along the optical axis.
  • the lens driving device is used to drive at least one lens in the lens assembly close to the object side to move along the optical axis. direction movement.
  • the cover driving device and the lens driving device are two relatively independent driving devices. That is to say, the lens assembly and the lens cover are driven by two driving devices respectively, realizing the moving driving of the lens cover and the moving driving of the lens assembly.
  • the decoupling between the lens cover and the lens assembly is controlled in a decoupled manner to move along the optical axis direction, which can effectively reduce the precision requirements of the mobile drive, help improve the accuracy of movement, and facilitate control implementation.
  • the expansion ratio of the lens cover is less than 0.95. It has a good shrinkage effect on the lens cover, which helps to further reduce the length of the camera module when the lens cover and lens assembly are in a contracted state, further contributing to the thinning of electronic equipment.
  • the equivalent focal length of the lens assembly is 18 mm to 30 mm. In this way, the equivalent focal length is relatively small, so that the lens assembly has a better ability to gather light, which helps to improve the clarity and brightness of the image and improve the quality of the image.
  • multiple lenses all have optical power
  • the lens assembly at least includes a first lens, a second lens, a third lens, a fourth lens and a fifth lens arranged in sequence from the object side to the image side.
  • the number of lenses is at least five, which provides a higher degree of freedom in the design of the lens assembly and helps improve the performance of the lens assembly.
  • the Abbe number vd1 of the first lens and the Abbe number vd2 of the second lens satisfy the conditional expression:
  • the Abbe number of the first lens and the Abbe number of the second lens are relatively different.
  • the first lens can be a lens with a high Abbe number
  • the second lens can be a lens with a low Abbe number, so that the first lens and the second lens
  • the lenses can achieve a complementary balance in terms of dispersion capabilities, reduce the chromatic aberration of imaging, and further improve the quality of imaging.
  • the focal length f1 of the first lens and the total focal length f of the lens assembly satisfy the conditional expression: 0.5 ⁇
  • the first lens and the second lens satisfy the conditional expression: 10 ⁇ CT1(R3+R4)/(R3-R4) ⁇ 40;
  • CT1 is the thickness of the portion corresponding to the first lens and the optical axis
  • R3 is the radius of curvature of the object side of the second lens
  • R4 is the radius of curvature of the image side of the second lens.
  • the shapes and positions of the first lens and the second lens can be distributed more reasonably, which facilitates the processing of the first lens and the second lens.
  • the number of lenses is 5 to 10. While giving the lens assembly a higher degree of design freedom, it can also reduce the size of the lens assembly itself, which contributes to the thinning design of electronic equipment and facilitates production.
  • the lens assembly further includes a sixth lens and a seventh lens arranged in sequence from the fifth lens to the image side;
  • the first lens has positive optical power
  • the second lens has negative optical power
  • the third lens has negative optical power
  • the fourth lens has positive optical power
  • the fifth lens has negative optical power
  • the sixth lens has positive power
  • the seventh lens has negative power.
  • At least a portion of the object side of the first lens corresponding to the optical axis is a convex surface, and at least a portion of the image side of the first lens corresponding to the optical axis is a concave surface;
  • At least a portion of the object side surface of the second lens corresponding to the optical axis is a convex surface, and at least a portion of the image side surface of the second lens corresponding to the optical axis is a concave surface;
  • At least a portion of the image side of the third lens corresponding to the optical axis is concave;
  • At least a portion of the object side surface of the fourth lens corresponding to the optical axis is convex
  • At least a portion of the object side surface of the fifth lens corresponding to the optical axis is a convex surface, and at least a portion of the image side surface of the fifth lens corresponding to the optical axis is a concave surface;
  • At least a portion of the object side of the sixth lens corresponding to the optical axis is convex, and at least a portion of the image side of the sixth lens corresponding to the optical axis is concave;
  • At least a portion of the image side of the seventh lens corresponding to the optical axis is concave.
  • the lens assembly obtained in this way has the characteristics of large aperture and large target surface, which significantly improves the imaging quality of the lens assembly.
  • the lens assembly further includes a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens and a third lens arranged in sequence from the second lens to the image side. eight lenses;
  • the first lens has positive optical power
  • the second lens has negative optical power
  • the third lens has positive optical power
  • the fourth lens has negative optical power
  • the fifth lens has positive optical power
  • the sixth lens has negative optical power
  • the seventh lens has positive optical power
  • the eighth lens has negative optical power.
  • At least a portion of the object side of the first lens corresponding to the optical axis is a convex surface, and at least a portion of the image side of the first lens corresponding to the optical axis is a concave surface;
  • At least a portion of the object side surface of the second lens corresponding to the optical axis is a convex surface, and at least a portion of the image side surface of the second lens corresponding to the optical axis is a concave surface;
  • At least a portion of the object side surface of the third lens corresponding to the optical axis is a convex surface, and at least a portion of the image side surface of the third lens corresponding to the optical axis is a concave surface;
  • At least a portion of the image side of the fourth lens corresponding to the optical axis is concave;
  • At least a portion of the object side of the fifth lens corresponding to the optical axis is convex, and at least a portion of the image side of the fifth lens corresponding to the optical axis is convex;
  • At least a portion of the object side of the sixth lens corresponding to the optical axis is convex, and at least a portion of the image side of the sixth lens corresponding to the optical axis is concave;
  • At least a portion of the object side of the seventh lens corresponding to the optical axis is convex, and at least a portion of the image side of the seventh lens corresponding to the optical axis is concave;
  • At least a portion of the object side of the eighth lens corresponding to the optical axis is a convex surface, and at least a portion of the image side of the eighth lens corresponding to the optical axis is a concave surface.
  • the lens assembly obtained in this way has the characteristics of large aperture and large target surface, which significantly improves the imaging quality of the lens assembly.
  • an image sensor is further included, and the image sensor is located on a side of the lens assembly facing the image side.
  • the lens assembly rotates around a first axis with a first center point as the center of rotation, the first center point coincides with the center of the image sensor, and the first axis passes through the a first center point, and the first axis is parallel to the photosensitive surface of the image sensor.
  • the lens assembly can rotate around the first axis relative to the image sensor, enriching the functions of the lens assembly, making the camera module applicable to more shooting scenes and shooting needs, and meeting the shooting diversity and functional needs of electronic equipment. .
  • the rotation angle of the lens assembly is +10° to -10°. It can reduce the increase in the size of the lens assembly in the thickness direction due to the rotation of the lens assembly, improve the diversity of the lens assembly's shooting functions, and help reduce the size of the lens assembly to meet the thinning design requirements of electronic equipment.
  • the lens assembly moves along a first direction, and the first direction is parallel to the photosensitive surface of the image sensor. This enables the lens assembly to move in the first direction relative to the image sensor, enriches the functions of the lens assembly, makes it applicable to more shooting scenes, better meets the functional requirements of shooting, and enables the electronic device to have better Richer shooting functions.
  • the moving distance of the lens assembly is +1 mm to -1 mm. This can reduce or avoid the impact on imaging quality due to excessive movement distance, ensuring good imaging quality while ensuring that the needs of multi-scenario shooting are met.
  • an optical filter is further included, and the optical filter is located between the image sensor and the lens assembly.
  • the light entering from the lens cover passes through the lens assembly and the filter in turn and then illuminates the image sensor.
  • the filter can filter stray light that is not conducive to imaging and improve imaging quality.
  • Figure 1 is a schematic structural diagram of the back of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a camera module of an electronic device in a first state according to an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a camera module of an electronic device in a second state according to an embodiment of the present application
  • Figure 4 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the first state according to Embodiment 1 of the present application;
  • Figure 5 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the second state according to Embodiment 1 of the present application;
  • Figure 6 is a defocus curve diagram of a lens assembly of an electronic device provided in Embodiment 1 of the present application;
  • Figure 7 is a distortion curve diagram of a lens assembly of an electronic device provided in Embodiment 1 of the present application.
  • Figure 8 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the first state according to Embodiment 2 of the present application;
  • Figure 9 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the second state according to Embodiment 2 of the present application.
  • Figure 10 is a defocus curve diagram of a lens assembly of an electronic device provided in Embodiment 2 of the present application.
  • Figure 11 is a distortion curve diagram of a lens assembly of an electronic device provided in Embodiment 2 of the present application.
  • Figure 12 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the first state according to Embodiment 3 of the present application;
  • Figure 13 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the second state according to Embodiment 3 of the present application;
  • Figure 14 is a defocus curve diagram of a lens assembly of an electronic device provided in Embodiment 3 of the present application.
  • Figure 15 is a distortion curve diagram of a lens assembly of an electronic device provided in Embodiment 3 of the present application.
  • Figure 16 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the first state according to Embodiment 4 of the present application;
  • Figure 17 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the second state according to Embodiment 4 of the present application;
  • Figure 18 is a defocus curve of a lens assembly of an electronic device provided in Embodiment 4 of the present application.
  • Figure 19 is a distortion curve diagram of a lens assembly of an electronic device provided in Embodiment 4 of the present application.
  • Figure 20 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the first state according to Embodiment 5 of the present application;
  • Figure 21 is a schematic diagram of the simulation structure when the camera module of an electronic device is in the second state according to Embodiment 5 of the present application;
  • Figure 22 is a defocus curve of a lens assembly of an electronic device provided in Embodiment 5 of the present application.
  • Figure 23 is a distortion curve of a lens assembly of an electronic device provided in Embodiment 5 of the present application.
  • Focal length also known as focal length, is a measure of the concentration or emission of light in an optical system. It means that when an infinite scene passes through a lens or lens group to form a clear image on the focal plane, the optical center of the lens or lens group reaches The vertical distance from the focal plane. From a practical perspective, it can be understood as the distance from the center of the lens (lens component) to the image plane.
  • Equivalent focal length converts the focal length of lens components with different target surface sizes into the focal length of the lens component corresponding to the 35mm sensor.
  • the converted focal length is the equivalent focal length.
  • the optical axis refers to the straight line passing through the center of each lens of the lens assembly.
  • Aperture is a device used to control the amount of light that enters electronic equipment through the lens. Usually in the lens, the aperture size is expressed by the F# value.
  • the aperture number F# is the relative value obtained by the focal length of the lens/the clear diameter of the lens (the reciprocal of the relative aperture), the aperture number F# The smaller the value, the more light enters in the same unit of time, the smaller the depth of field, and the background content of the photo will be blurred, producing an effect similar to a telephoto lens.
  • Optical power represents the ability of a lens to refract incident parallel light beams.
  • Positive power means that the lens has a positive focal length and has the effect of condensing light.
  • Negative power means that the lens has a negative focal length and has the effect of diverging light.
  • FOV Field of View
  • the object side is bounded by the lens assembly, the side where the subject is located is the object side, and the side of the lens facing the object side is the object side of the lens.
  • the image side is bounded by the lens assembly, the side where the image of the subject is located is the image side, and the side of the lens facing the image side is the image side of the lens.
  • the total optical length refers to the total length from the apex of the first lens set adjacent to the object side in the lens assembly to the imaging surface of the lens assembly, that is, the distance from the first lens to the focal plane of the image sensor.
  • Image Heigth also known as image height, refers to the full image height of the image formed by the lens assembly.
  • the target surface refers to the photosensitive surface of the image sensor. The larger the target surface, the greater the photosensitivity of the image sensor and the larger the image height.
  • Abbe's number also called dispersion coefficient, refers to the difference ratio of the refractive index of optical materials at different wavelengths, indicating the degree of dispersion of the material.
  • Refractive index is the ratio of the speed of light in the air to the speed of light in the optical material. The higher the refractive index of the optical material, the stronger its ability to refract incident light and the thinner the lens.
  • Defocus refers to the blurring phenomenon caused by the focus not being on the subject.
  • Distortion also known as distortion
  • distortion usually refers to the degree of distortion in the image of an object produced by a lens assembly relative to the object itself.
  • the height of the intersection point between the chief rays of different fields of view and the Gaussian image plane after passing through the lens assembly is not equal to the ideal image height, and the difference between the two is distortion.
  • Embodiments of the present application provide an electronic device.
  • the electronic device may include but is not limited to a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC for short), a handheld computer, a walkie-talkie, a netbook, and a POS machine.
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • wearable devices virtual reality devices
  • vehicle-mounted devices and other electronic devices with camera modules 101.
  • the following description takes the electronic device as a mobile phone as an example.
  • FIG. 1 is a schematic structural diagram of the back of an electronic device according to an embodiment of the present application.
  • an electronic device 100 may include a housing 110 and a camera module 101 .
  • the camera module 101 may be disposed on the housing 110 .
  • the camera module 101 may be used for capturing images.
  • a camera module 101 may be provided on the front of the electronic device 100 (the side with the display screen) for taking selfies or photographing other objects.
  • a camera module 101 may also be provided on the back of the electronic device 100 (the side facing away from the display screen) for photographing other objects, and of course, for taking selfies.
  • the direction in which the back surface of the electronic device 100 points to the front surface of the electronic device 100 is the thickness direction of the electronic device 100 (z direction in FIG. 1 ).
  • the electronic device 100 may also include other structural components.
  • a speaker hole 120 may be provided on the housing 110 of the electronic device 100 to play sounds.
  • the housing 110 can also be provided with Data interface 130 is used to connect data lines.
  • the electronic device 100 may also include other structural components that can fully realize its functions, such as sensors, processors, circuit boards, etc., which are not limited in the embodiments of this application.
  • the camera module 101 may include a lens cover 20 and a lens assembly (not shown in the figure).
  • the lens assembly may include a plurality of lenses arranged sequentially from the object side to the image side along the optical axis direction, and the lens arrangement direction may be the same as the thickness direction of the housing 110 of the electronic device 100 .
  • the housing 110 may include a middle frame 112 and a back cover 111 covering the middle frame 112.
  • the lens cover 20 may be located on the back cover 111, and the lens assembly 10 may be disposed on the middle frame 112.
  • the lens cover 20 It can be located on the side of the lens assembly facing away from the display screen, that is, the lens cover 20 is located on the side of the lens assembly facing the object side.
  • the number of camera modules 101 provided on the front or back of the electronic device 100 may be one, as shown in FIG. 1 . Or, it can be multiple.
  • multiple camera modules 101 can be provided on the back of the electronic device 100 to enrich camera functions and improve camera quality.
  • Each camera module includes a lens assembly, and the multiple lens assemblies can One lens cover 20 is shared, that is, the lens cover 20 is located on the side of multiple lens components facing the object side, and one lens cover 20 can cover multiple lens components.
  • the aperture number F value is a key indicator of the lens component.
  • the aperture number directly affects the core functions of the camera such as night scenes, video, background blur, and snapshots.
  • using a lens assembly with a large aperture can increase the blurred background of the image to highlight the subject when shooting, so the shutter speed and focus speed can be increased, and it has better imaging quality and Effect.
  • the size of the target surface is also one of the key factors affecting the imaging quality.
  • the larger the target surface the greater the light sensitivity, the larger the image height, and the better the imaging quality. Therefore, in order to obtain better imaging quality, you can increase the The size and pixels of the photosensitive surface are used to increase the amount of photosensitive light.
  • the large aperture takes into account the brightness and resolution of the image of the large target surface, which is also greatly improved. Therefore, large aperture and large target surface imaging have become one of the important development trends of lens components in mobile phones and other electronic devices.
  • the lens assembly of the camera module has the characteristics of a large aperture and a large target surface, and can reduce the thickness of the electronic device to meet the thinning requirements of the electronic device.
  • FIG. 2 is a schematic structural diagram of a camera module of an electronic device in a first state according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a camera module of an electronic device in a second state according to an embodiment of the present application.
  • the camera module 101 of the electronic device 100 includes a lens cover 20 and a lens assembly 10 .
  • the camera module 101 may also include an image sensor 30.
  • the image sensor 30 may utilize the photoelectric conversion function of the optoelectronic device to convert the light image on the photosensitive surface into an electrical signal proportional to the light image, thereby achieving imaging.
  • the image sensor 30 may be located on a side of the lens assembly 10 facing the image side.
  • the lens assembly 10 may be located between the lens cover 20 and the image sensor 30 .
  • the photosensitive surface of the image sensor 30 faces the lens assembly 10, and the light enters the camera module 101 of the electronic device 100 from the lens cover 20, passes through the lens assembly 10, and then illuminates the image sensor. on the photosensitive surface of the sensor 30 to be received by the image sensor 30 .
  • the image sensor 30 may be a charge-coupled device (CCD for short), or it may be a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS for short). Alternatively, it can also be other devices capable of realizing photoelectric conversion functions.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • CMOS complementary Metal Oxide Semiconductor
  • the camera module 101 may also include a filter 40.
  • the filter 40 may be located between the lens assembly 10 and the image sensor 30.
  • the filter 40 may allow light within a specific wavelength range to pass through, thus playing a role in filtering light. , the light entering from the lens cover 20 passes through the lens assembly 10 and the filter 40 in sequence and then illuminates the image sensor 30.
  • the filter 40 can filter stray light that is not conducive to imaging and improve imaging quality.
  • the camera module 101 may also include an aperture 50.
  • the aperture 50 can adjust the intensity of light to improve the clarity and brightness of imaging and improve imaging quality.
  • the diaphragm 50 can be located between the lens cover 20 and the lens assembly 10 , or the diaphragm 50 can also be located between two adjacent lenses in the lens assembly 10 .
  • the diaphragm 50 being located between the lens cover 20 and the lens assembly 10 as shown in Figure 2.
  • the dotted line in Figure 2 is the optical axis of the lens assembly 10.
  • the lens cover 20, the diaphragm 50, the lens assembly 10, the optical filter 40 and the image sensor 30 can be arranged in sequence on the side.
  • the light irradiates into the camera module 101 through the lens cover 20 , passes through the aperture 50 , the lens assembly 10 , and the filter 40 in sequence, and then irradiates onto the photosensitive surface of the image sensor 30 to be received by the image sensor 30 to form an image.
  • the lens assembly 10 includes a plurality of lenses arranged in sequence from the object side to the image side along the direction of the optical axis, and each of the plurality of lenses has optical power.
  • the lens assembly 10 may include a first lens 11 , a second lens 12 , a third lens 13 , ... an Nth lens arranged in sequence from the object side to the image side along the optical axis direction, and N may be greater than or equal to 3. Positive integer.
  • the lens located at the end of the lens assembly 10 close to the object side is the first lens 11
  • the lens located at the side of the first lens 11 facing the image side is the second lens 12.
  • the first lens 11 is adjacent to the second lens 12, and so on.
  • the lens located at the end of the lens assembly 10 close to the image side is the Nth lens.
  • a first lens 11 a second lens 12 , a third lens 13 , a fourth lens 13 are arranged in sequence from the object side to the image side.
  • the plurality of lenses are arranged sequentially along the optical axis direction, the centers of the plurality of lenses can coincide with each other, and the arrangement direction of the lenses can be consistent with the thickness direction of the electronic device 100 .
  • the lens assembly 10 satisfies the conditional expression 0.7 ⁇ IH/(4*F#) ⁇ 6, where IH is the full image height of the lens assembly, and F# is the aperture number of the lens assembly.
  • the lens assembly 10 can have a smaller aperture number and a larger full image height, where the smaller the aperture number, the larger the aperture, that is, The large aperture of the lens assembly 10 is combined with the performance of a large target surface, thereby improving the imaging performance of the lens assembly 10 and improving the imaging quality.
  • the lens assembly 10 can move along the optical axis direction. Specifically, the entire lens assembly 10 can be moved along the optical axis direction, so that the distance between the entire lens assembly 10 and the image sensor 30 can be adjusted, thereby changing the image distance and realizing the focusing function.
  • one or more lenses in the lens assembly 10 may move along the optical axis direction.
  • at least one lens close to the object side in the lens assembly 10 may move along the optical axis direction, or That is, at least the first lens 11 can move along the optical axis direction.
  • the movement of the first lens 11 will change the distance between the first lens 11 and the image sensor 30 , and can also change the lens assembly 10 The image distance realizes the focusing function.
  • the number of movable lenses in the lens assembly 10 may be one or multiple.
  • both the first lens 11 and the second lens 12 may move along the optical axis direction.
  • the multiple lenses may move separately, or the multiple lenses may move together.
  • the lens cover 20 can also move along the optical axis direction. As shown in FIG. 2 , when the camera module 101 of the electronic device 100 is not used for shooting, the camera module 101 is in the first state. , that is, in the first state, the camera module 101 is in a non-working state.
  • the camera module 101 is not constrained by imaging requirements such as total optical length, and the lens cover 20 and the lens assembly 10 can be in a retracted state, that is, between the lens cover 20 and the lens assembly 10, and between the lens assembly 10 and the image
  • the distance between the sensors 30 (or the filters 40) can be as close as possible to reduce the space occupied by the entire camera module 101, thereby reducing the space occupied by the camera module 101 in the thickness direction of the electronic device 100, which is beneficial to electronic devices. Thin design of device 100.
  • the lens cover 20 can move along the optical axis direction and extend out of the housing 110 .
  • the camera module 101 is in the second state. That is, in the second state, the camera module 101 is in the working state and the lens cover 20 is in the extended state. Since the lens cover 20 moves and extends out of the housing 110 , an avoidance space will be formed between the lens cover 20 and the image sensor 30 (or filter 40 ).
  • the lens assembly 10 as a whole or in the lens assembly 10 At least one lens close to the object side can move along the optical axis in the avoidance space, ensuring that when the camera module 101 is imaging from infinity to near object distance, the lens assembly 10 has a long enough focus movement distance to meet the requirements.
  • the above-mentioned large aperture takes into account the total optical length TTL required for imaging of the lens assembly 10 with a large target surface, realizing the focusing function and ensuring imaging quality.
  • the lens cover 20 can move along the optical axis direction and extend out of the housing 110 so that the camera module 101 is in the second state and the lens cover 20 is free for movement.
  • the entire lens assembly 10 or at least one lens close to the object side can move along the optical axis in the avoidance space to achieve the focusing function and improve imaging quality.
  • the entire lens assembly 10 or at least one lens close to the object side can move toward the image sensor 30 along the optical axis direction, and the lens cover 20 can shrink toward the housing 110 along the optical axis direction, so that the camera module 101 is in the first state.
  • the distance between the lens cover 20 and the lens assembly 10, and the distance between the lens assembly 10 and the image sensor 30 may not be constrained by imaging requirements such as the total optical length, and the distance may be relatively small, so that The size of the entire camera module 101 is reduced, thereby reducing the space occupied by the camera module 101 in the thickness direction of the electronic device 100, and meeting the thinning design requirements of the electronic device 100.
  • the lens assembly 10 of the electronic device 100 by making the lens assembly 10 of the electronic device 100 satisfy the conditional expression 0.7 ⁇ IH/(4*F#) ⁇ 6, the lens assembly 10 has the characteristics of a large aperture and a large target surface.
  • the lens cover 20 extends out of the housing 110 and forms an avoidance space, and the entire lens assembly 10 or at least one lens close to the object side moves along the optical axis direction to achieve Focus to meet high-quality imaging needs.
  • the lens assembly 10 and the lens cover 20 are moved and shrunk along the optical axis direction to reduce the distance between the lens cover 20 and the lens assembly 10 and between the lens assembly 10 and the image.
  • the distance between the sensors 30 reduces the size of the camera module 101 in the thickness direction. That is to say, while achieving a large aperture and meeting the high-quality imaging requirements of a large target surface, it effectively reduces the space occupied by the camera module 101 in the thickness direction when it is not working, which is conducive to the thinning design of the electronic device 100 .
  • the lens assembly 10 has the performance of a large target surface and a large aperture.
  • the camera module 101 including the lens assembly 10 can be used as the main camera of the electronic device 100 and can meet the performance requirements of the main camera.
  • the telescopic ratio of the lens cover 20 may be less than 0.95.
  • the telescopic ratio of the lens cover 20 means that the lens cover 20 and the lens assembly 10 are in a contracted state, that is, the camera module 101 is in a contracted state.
  • the distance SL1 between the object side of the lens cover 20 and the photosensitive surface of the image sensor 30 (see FIG.
  • the lens cover 20 and the lens assembly 10 are in a retracted state. At this time, the lens cover 20 can be in contact with the electronic device 100
  • the back cover 111 is located on the same plane, or the lens cover 20 can be higher or lower than the plane where the back cover 111 is located.
  • the electronic device 100 may further include a cover driving device (not shown in the figure) and a lens driving device (not shown in the figure), wherein the cover driving device is used to drive the lens cover 20 to move along the optical axis direction.
  • the lens driving device is used to drive the entire lens assembly 10 to move along the optical axis direction, or the lens driving device is used to drive at least one lens close to the object side of the lens assembly 10 to move along the optical axis direction.
  • the cover driving device and the lens driving device are two relatively independent driving devices. That is to say, the lens assembly 10 and the lens cover 20 are driven by two driving devices respectively, thereby realizing the mobile driving of the lens cover 20 and the lens assembly.
  • the decoupling between the moving drives of the lens cover 20 and the lens assembly 10 is compared with the related art, which realizes the moving drives of the lens cover 20 and the lens assembly 10 through the same driving device.
  • the lens cover 20 and the lens assembly 10 are controlled separately in a decoupled manner. Moving along the optical axis can effectively reduce the accuracy requirements of the mobile drive, help improve the accuracy of movement, and facilitate control implementation.
  • the cover driving device may be provided on the housing 110 , or the cover driving device may also be provided on other structural components in the electronic device 100 .
  • the cover driving device may be a driving structure with a retractable structure (for example, memory alloy, spring, etc.).
  • the specific structural composition is not limited in the embodiments of the present application. It can drive the cover to extend to the housing 110 along the optical axis direction. It suffices to shrink outward or toward the housing 110 .
  • the lens driving device can also be provided on the housing 110 , or the lens driving device can also be provided on other structural components in the electronic device 100 .
  • the lens driving device may be a driving motor, such as a focus motor, a stepper motor, a voice coil motor, etc.
  • the specific structure is not limited in the embodiments of the present application. It can drive the entire lens assembly 10 or at least one lens close to the object side along the light beam. Just move in the axis direction.
  • the electronic device 100 may also include a locking device (not shown in the figure).
  • the locking device is used to limit the moving position of the lens cover 20.
  • the locking device may limit the movement of the lens when the camera module 101 is in the second state.
  • the position of the lens cover 20 when the cover 20 extends out of the housing 110 .
  • the locking device can also define the position of the lens cover 20 when the camera module 101 is in the first state and the lens cover 20 and the lens assembly 10 are in the retracted state.
  • the locking device may cooperate with the lens driving device.
  • the locking device may be a blocking plate that cooperates with the retractable structure of the lens driving device to achieve position limiting.
  • the specific structure of the locking device may be a limiting member such as a blocking member or a blocking plate, or may be other structural components that can play a limiting role. This is not limited in the embodiments of the present application. It is enough to limit the position of the lens cover 20.
  • the number of cover driving devices can be two or more, and the two or more cover driving devices can be arranged symmetrically to improve the balance of the driving force of the lens cover 20 and ensure that the lens cover 20 precise displacement.
  • the number of locking devices may also be two or more to ensure the strength of the locking device in limiting the moving position of the lens cover 20 and further improve the accuracy of the movement of the lens cover 20 .
  • the cover driving device and the locking device can be arranged at intervals.
  • the equivalent focal length of the lens assembly 10 can be 18 mm to 30 mm, and the equivalent focal length is relatively small. This allows the lens assembly 10 to have a better ability to gather light and help improve the clarity of imaging. and brightness to improve image quality.
  • the number of lenses of the lens assembly 10 may be at least 5. That is, the lens assembly 10 at least includes a first lens 11, a second lens 12, a third lens 13, a fourth lens 14 and a fifth lens arranged in sequence from the object side to the image side.
  • the lens 15 can provide a higher degree of freedom in the design of the lens assembly 10 and help improve the performance of the lens assembly 10 .
  • the lens assembly 10 may also include other numbers of lenses, which can be selected and set according to actual needs.
  • the Abbe number of the first lens 11 and the Abbe number of the second lens 12 can satisfy the conditional expression:
  • the difference in Abbe numbers is relatively large.
  • the first lens 11 can be a lens with a high Abbe number
  • the second lens 12 can be a lens with a low Abbe number, so that the first lens 11 and the second lens 12 can achieve a complementary balance in terms of dispersion capabilities. , reduce the chromatic aberration of imaging and further improve the quality of imaging.
  • the total focal length f of the lens assembly 10 is the system focal length of the lens system formed by N lenses, and the total focal length of the lens assembly 10 is related to the focal length of each lens.
  • the focal length of the first lens 11 and the total focal length of the lens assembly 10 can satisfy the conditional expression: 0.5 ⁇
  • the first lens 11 and the second lens 12 can satisfy the conditional expression: 10 ⁇ CT1(R3+R4)/(R3-R4) ⁇ 40, where CT1 is the thickness of the first lens 11 corresponding to the optical axis, and R3 is the thickness of the first lens 11 and the optical axis.
  • CT1 is the thickness of the first lens 11 corresponding to the optical axis
  • R3 is the thickness of the first lens 11 and the optical axis.
  • the radius of curvature of the object side of the second lens 12, R4 is the radius of curvature of the image side of the second lens 12. In this way, the shapes and positions of the first lens 11 and the second lens 12 can be allocated more reasonably, which facilitates the processing of the first lens 11 and the second lens 12 .
  • the number of lenses of the lens assembly 10 can be 5 to 10, which not only gives the lens assembly 10 a higher degree of design freedom, but also reduces the size of the lens assembly 10 itself, which contributes to the thinning of the electronic device 100 design, and facilitate production implementation.
  • Table 1 below shows the optical parameters of lens assemblies with different numbers of lenses in an electronic device provided by embodiments of the present application.
  • the N lenses of the lens assembly 10 may all be aspherical lenses.
  • Aspheric lenses mean that the curved surface of the lens does not have the same curvature, but is composed of multiple curved surfaces. It can have a good compensation effect on spherical aberration and distortion aberration, and can further help achieve the large aperture performance of the lens assembly 10 .
  • the molding material of the lens can be plastic, or the molding material of the lens can also be glass.
  • the N lenses in the lens assembly 10 can all be plastic lenses, or all the N lenses can be glass lenses, or some of the N lenses can be plastic lenses and some of the lenses can be glass lenses.
  • the lens assembly 10 can also rotate. Specifically, the lens assembly 10 can rotate around the first axis with the first center point as the center of rotation, where the first center point is the same as the center of the image sensor 30 Coincidentally, the first axis passes through the first center point and is parallel to the photosensitive surface of the image sensor 30 .
  • the lens assembly 10 can rotate about the first axis relative to the image sensor 30 , enriching the functions of the lens assembly 10 , making the camera module 101 applicable to more shooting scenes and shooting needs, and meeting the diverse shooting needs of the electronic device 100 sexual and functional needs.
  • the rotation angle of the lens assembly 10 around the first axis may be +10° to -10°.
  • the rotation angle of the lens assembly 10 is 0°, and the lens assembly 10 rotates clockwise 10° around the first axis relative to the image sensor 30, then the rotation angle is +10°, and the lens assembly 10 rotates 10° counterclockwise around the first axis relative to the image sensor 30, then the rotation angle is -10°.
  • Making the rotation angle of the lens assembly 10 within the above range can reduce the increase in the occupied size of the lens assembly 10 in the thickness direction due to the rotation of the lens assembly 10, improve the diversity of shooting functions of the lens assembly 10 and help reduce the size of the lens assembly 10.
  • the size of the lens assembly 10 meets the thinning design requirements of the electronic device 100.
  • the lens assembly 10 can also move in a first direction, where the first direction is parallel to the photosensitive surface of the image sensor 30 , that is, the first direction is perpendicular to the optical axis direction of the lens assembly 10 , such as the y direction in FIG. 3 .
  • the lens assembly 10 can move up and down relative to the image sensor 30 along the first direction, which can also enrich the functions of the lens assembly 10 so that it can be applied to more shooting scenes and better meet the functional requirements of shooting.
  • Electronic Equipment 100 Has better and richer shooting functions.
  • the moving distance of the lens assembly 10 along the first direction may be +1 mm to -1 mm.
  • the moving distance of the lens assembly 10 passes through the first center point, the moving distance of the lens assembly 10 is 0 mm, and the lens assembly 10 moves upward 1 mm along the first direction, then the moving distance of the lens assembly 10 is +1 mm. 10 moves downward by 1 mm along the first direction, then the movement distance of the lens assembly 10 is -1 mm.
  • the movement distance of the lens assembly 10 is within the above range, which can reduce or avoid the impact on imaging quality due to excessive movement distance, ensuring good imaging quality while ensuring that multiple scene shooting requirements are met.
  • the lens assembly 10 can be moved to realize shake compensation during the shooting process, and the electronic device 100 can be given a shooting anti-shake function.
  • the movement of the lens assembly 10 can be driven by a lens driving device, or an anti-shake drive motor can be provided in the electronic device 100, and the anti-shake drive motor drives the lens assembly 10 to move, so that the lens assembly 10 can be moved during the shooting process.
  • an anti-shake drive motor can be provided in the electronic device 100, and the anti-shake drive motor drives the lens assembly 10 to move, so that the lens assembly 10 can be moved during the shooting process.
  • shaking perform shake displacement compensation to achieve anti-shake effect.
  • the image sensor 30 can also be moved to compensate for shake during the shooting process.
  • a sensor driving device may be provided in the electronic device 100 to drive the image sensor 30 to move, thereby realizing shake displacement compensation when shaking occurs during the shooting process, and achieving an anti-shake effect.
  • Figure 4 is a schematic diagram of the simulation structure when the camera module of an electronic device provided in Embodiment 1 of the present application is in the first state.
  • Figure 5 is a schematic diagram of the camera module of an electronic device provided in Embodiment 1 of the present application being in the second state. Schematic diagram of the simulation structure at the time.
  • the number of lenses included in the lens assembly 10 is 7.
  • the lens assembly 10 includes a first lens stacked sequentially from the object side to the image side along the direction of the optical axis (dashed line in the figure).
  • the lens cover 20 is located on the side of the first lens 11 facing the object side, and the image sensor 30 is located on the side of the seventh lens 17 facing the image side.
  • the lens cover 20 and the lens assembly 10 are retracted toward the image side, as shown in FIG. 4 , when the camera module 101 of the electronic device 100 is in the first state (non-working state), the lens cover 20 and the lens assembly 10 are in the retracted state. , the distance between the lens cover 20 and the lens assembly 10, and the distance between the lens assembly 10 and the image sensor 30 is small.
  • the lens cover 20 moves toward the object side and extends out of the housing 110 so that the camera module 101 of the electronic device 100 is in the second state (working state), as shown in FIG. 5 , the lens cover 20 and the image sensor There is an avoidance space between 30 and 30, and the lens assembly 10 can move along the optical axis in the avoidance space to achieve the focusing function and ensure imaging quality.
  • the distance range d from the object side of the lens cover 20 to the subject is >130 mm.
  • the first lens 11 has positive refractive power, the portion of the object side of the first lens 11 corresponding to the optical axis is a convex surface, and the portion of the image side of the first lens 11 corresponding to the optical axis is a concave surface.
  • the focal length f1 of the first lens 11 is 9.46
  • the ratio of the focal length f1 of the first lens 11 to the total focal length f of the lens assembly 10 can be:
  • 1.129.
  • the second lens 12 has negative refractive power.
  • the portion of the object side of the second lens 12 corresponding to the optical axis is a convex surface.
  • the portion of the image side of the sheet 12 corresponding to the optical axis is concave.
  • the ratio of the focal length f2 of the second lens 12 to the total focal length f of the lens assembly 10 may be:
  • 10.18.
  • the Abbe number vd1 of the first lens 11 95.1
  • the Abbe number vd2 of the second lens 12 19.2
  • the third lens 13 has negative refractive power, the part of the object side of the third lens 13 corresponding to the optical axis is a convex surface, and the part of the image side of the third lens 13 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f3 of the third lens 13 to the total focal length f of the lens assembly 10 may be:
  • 3.824.
  • the fourth lens 14 has positive refractive power, the part of the object side of the fourth lens 14 corresponding to the optical axis is convex, and the part of the image side of the fourth lens 14 corresponding to the optical axis is convex.
  • the ratio of the focal length f4 of the fourth lens 14 to the total focal length f of the lens assembly 10 may be:
  • 3.191.
  • the fifth lens 15 has negative refractive power, the part of the object side of the fifth lens 15 corresponding to the optical axis is a convex surface, and the part of the image side of the fifth lens 15 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f5 of the fifth lens 15 to the total focal length f of the lens assembly 10 may be:
  • 4.137.
  • the sixth lens 16 has positive refractive power, the portion of the object side of the sixth lens 16 corresponding to the optical axis is a convex surface, and the portion of the image side of the sixth lens 16 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f6 of the sixth lens 16 to the total focal length f of the lens assembly 10 may be:
  • 1.008.
  • the seventh lens 17 has negative refractive power, the portion of the object side of the seventh lens 17 corresponding to the optical axis is a concave surface, and the portion of the image side of the seventh lens 17 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f7 of the seventh lens 17 to the total focal length f of the lens assembly 10 may be:
  • 0.722.
  • Table 2 below shows the optical parameters of each lens in a camera module of an electronic device provided in Embodiment 1 of the present application.
  • CG represents the lens cover 20
  • L1 is the first lens 11
  • L2 is the second lens 12
  • L3 is the third lens 13
  • L4 is the fourth lens 14
  • L5 is the fifth lens 15
  • L6 is the sixth lens 16.
  • L7 is the seventh lens 17
  • IR is the filter 40.
  • S1 represents the side of the object.
  • the thickness of a mirror surface refers to the distance along the optical axis between the mirror surface and the next adjacent mirror surface in the direction from the object side to the image side.
  • the thickness in the first state or the second state corresponding to S1 indicates that the camera module 101 of the electronic device 100 is in the first state (that is, the non-working state, the lens cover 20 and the lens assembly 10 are contracted) or in the second state.
  • the object side of the optical element such as the lens cover 20, the lens, the diaphragm 50 and the filter 40
  • the thickness in the first state or the second state corresponding to S2 represents the distance between the image side of the optical element and the optical element adjacent to the image side when the camera module 101 of the electronic device 100 is in the first state or the second state.
  • the thickness of the image side S2 of the lens cover 20 in the second state refers to the thickness between the image side S2 of the lens cover 20 and the aperture 50 along the optical axis direction after the lens cover 20 extends out of the housing 110 distance.
  • the thickness of the image side S2 of the lens cover 20 in the first state refers to the distance along the optical axis direction from the image side of the lens cover 20 to the aperture 50 after the lens cover 20 is contracted.
  • the thickness of the image side S2 of the seventh lens 17 in the second state refers to the distance along the optical axis from the image side of the seventh lens 17 to the filter 40 when the camera module 101 is in operation.
  • the seventh lens 17 The thickness of the image side S2 in the first state refers to the distance along the optical axis direction from the image side of the seventh lens 17 to the filter 40 when the camera module 101 is in the non-working state.
  • Table 3 below shows the cone coefficient and aspherical coefficient of each lens of the lens assembly in an electronic device provided in Embodiment 1 of the present application.
  • the first lens 11 to the seventh lens 17 include a total of 14 aspherical surfaces.
  • the aspherical surface type z of each lens in the lens assembly 10 can be calculated by the following aspherical surface formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric surface vertex
  • K is the cone coefficient
  • Ai represents the i-th order aspheric surface coefficient.
  • optical parameters of the camera module 101 composed of the above lenses can be seen in Table 4 below.
  • Table 4 shows the optical parameters of a camera module of an electronic device provided in Embodiment 1 of the present application.
  • the lens assembly 10 provided in Embodiment 1 of the present application has the characteristics of large aperture and large target surface. , and the lens cover 20 has a smaller shrinkage ratio, which meets the thinning design requirements of the electronic device 100 .
  • FIG. 6 is a defocus curve of a lens assembly of an electronic device provided in Embodiment 1 of the present application.
  • Figure 6 shows the defocus curve of the lens assembly 10 at a spatial frequency of 80 lp/mm. It can be seen from Figure 6 that the modulation transfer function (MTF) of the lens assembly 10 in different fields of view is in arc. The sagittal and meridional directions are both greater than 0.6, and the field curvatures of different fields of view in the sagittal and meridional directions are less than 6 ⁇ m.
  • the lens assembly 10 has high imaging quality.
  • FIG. 7 is a distortion curve of a lens assembly of an electronic device provided in Embodiment 1 of the present application.
  • the optical distortion of the lens assembly 10 is controlled within 3%, which meets the deformation difference requirements and has high imaging quality.
  • Figure 8 is a schematic diagram of the simulation structure of a camera module of an electronic device provided in Embodiment 2 of the present application when it is in the first state.
  • Figure 9 is a schematic diagram of a camera module of an electronic device provided in Embodiment 2 of the present application in a second state. Schematic diagram of the simulation structure at the time.
  • the number of lenses included in the lens assembly 10 is 7.
  • the lens assembly 10 includes a first lens stacked sequentially from the object side to the image side along the direction of the optical axis (dashed line in the figure).
  • the lens cover 20 is located on the side of the first lens 11 facing the object side, and the image sensor 30 is located on the side of the seventh lens 17 facing the image side.
  • the lens cover 20 and the lens assembly 10 are retracted toward the image side and the camera module 101 of the electronic device 100 is in the first state (non-working state), as shown in FIG. 8 , the lens cover 20 and the lens assembly 10 are in the retracted state. , the distance between the lens cover 20 and the lens assembly 10, and the distance between the lens assembly 10 and the image sensor 30 is small.
  • the lens cover 20 moves toward the object side and extends out of the housing 110 so that the camera module 101 of the electronic device 100 is in the second state (working state), as shown in FIG. 9 , the lens cover 20 and the image sensor There is an avoidance space between 30 , and the lens assembly 10 can move along the optical axis in the avoidance space to achieve focusing.
  • the distance range d from the object side of the lens cover 20 to the subject is >120 mm.
  • the first lens 11 has positive refractive power, the portion of the object side of the first lens 11 corresponding to the optical axis is a convex surface, and the portion of the image side of the first lens 11 corresponding to the optical axis is a concave surface.
  • the focal length f1 of the first lens 11 is 9.94
  • the total focal length f of the lens assembly 10 is 7.93
  • the ratio of the focal length f1 of the first lens 11 to the total focal length f of the lens assembly 10 can be:
  • 1.2524.
  • the second lens 12 has negative refractive power, the part of the object side of the second lens 12 corresponding to the optical axis is a convex surface, and the part of the image side of the second lens 12 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f2 of the second lens 12 to the total focal length f of the lens assembly 10 may be:
  • 21.6370.
  • the Abbe number vd1 of the first lens 11 95.1
  • the Abbe number vd2 of the second lens 12 19.2
  • the third lens 13 has negative refractive power, the part of the object side of the third lens 13 corresponding to the optical axis is a concave surface, and the part of the image side of the third lens 13 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f3 of the third lens 13 to the total focal length f of the lens assembly 10 may be:
  • 3.0800.
  • the fourth lens 14 has positive refractive power, the part of the object side of the fourth lens 14 corresponding to the optical axis is convex, and the part of the image side of the fourth lens 14 corresponding to the optical axis is convex.
  • the ratio of the focal length f4 of the fourth lens 14 to the total focal length f of the lens assembly 10 may be:
  • 2.7639.
  • the fifth lens 15 has negative refractive power, the part of the object side of the fifth lens 15 corresponding to the optical axis is a convex surface, and the part of the image side of the fifth lens 15 corresponding to the optical axis is a concave surface.
  • 2.344.
  • the sixth lens 16 has positive refractive power, the portion of the object side of the sixth lens 16 corresponding to the optical axis is a convex surface, and the portion of the image side of the sixth lens 16 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f6 of the sixth lens 16 to the total focal length f of the lens assembly 10 may be:
  • 0.7900.
  • the seventh lens 17 has negative refractive power, the portion of the object side of the seventh lens 17 corresponding to the optical axis is a concave surface, and the portion of the image side of the seventh lens 17 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f7 of the seventh lens 17 to the total focal length f of the lens assembly 10 may be:
  • 0.7404.
  • Table 5 below shows the optical parameters of each lens in a camera module of an electronic device provided in Embodiment 2 of the present application.
  • CG represents the lens cover 20
  • L1 is the first lens 11
  • L2 is the second lens 12
  • L3 is the third lens 13
  • L4 is the fourth lens 14
  • L5 is the fifth lens 15
  • L6 is the sixth lens 16.
  • L7 is the seventh lens 17, and IR is the filter 40.
  • S1 represents the object side
  • S2 represents the image side.
  • the thickness corresponding to S1 in the first state or the second state indicates that the camera module 101 of the electronic device 100 is in the first state or in the second state.
  • the thickness in the first state or the second state corresponding to S2 indicates that the camera module 101 of the electronic device 100 is in When in the first state or in the second state, the distance along the optical axis direction between the image side of the optical element and the mirror surface of the optical element adjacent to the image side.
  • Table 6 below shows the cone coefficient and aspherical coefficient of each lens of the lens assembly in an electronic device provided in Embodiment 2 of the present application.
  • the first lens 11 to the seventh lens 17 include a total of 14 aspherical surfaces.
  • the aspherical surface type z of each lens in the lens assembly 10 can be calculated by the following aspherical surface formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric surface vertex
  • K is the cone coefficient
  • Ai represents the i-th order aspheric surface coefficient.
  • optical parameters of the camera module 101 composed of the above lenses can be seen in Table 7 below.
  • Table 7 shows the optical parameters of a camera module of an electronic device provided in Embodiment 2 of the present application.
  • the lens assembly 10 provided in Embodiment 2 of the present application has the characteristics of large aperture and large target surface. , and the lens cover 20 has a smaller shrinkage ratio, which meets the thinning design requirements of the electronic device 100 .
  • FIG. 10 is a defocus curve of a lens assembly of an electronic device provided in Embodiment 2 of the present application.
  • Figure 10 shows the defocus curve of the lens assembly 10 at a spatial frequency of 80lp/mm. It can be seen from Figure 10 that the modulation transfer function (MTF) of the lens assembly 10 under different fields of view is in arc. The sagittal direction and meridional direction are both greater than 0.5, and the field curvature of different fields of view in the sagittal direction and meridional direction are less than 3 ⁇ m. The lens assembly 10 has high imaging quality.
  • MTF modulation transfer function
  • FIG. 11 is a distortion curve of a lens assembly of an electronic device provided in Embodiment 2 of the present application.
  • the optical distortion of the lens assembly 10 is controlled within 3%, which meets the deformation difference requirements and has high imaging quality.
  • Figure 12 is a schematic diagram of the simulation structure when the camera module of an electronic device provided in Embodiment 3 of the present application is in the first state.
  • Figure 13 is a schematic diagram of the camera module of an electronic device provided in Embodiment 3 of the present application being in the second state. Schematic diagram of the simulation structure at the time.
  • the number of lenses included in the lens assembly 10 is 7.
  • the lens assembly 10 includes a first lens stacked sequentially from the object side to the image side along the direction of the optical axis (dashed line in the figure).
  • the lens cover 20 is located on the side of the first lens 11 facing the object side, and the image sensor 30 is located on the side of the seventh lens 17 facing the image side.
  • the lens cover 20 and the lens assembly 10 are retracted toward the image side and the camera module 101 of the electronic device 100 is in the first state (non-working state), as shown in FIG. 12 , the lens cover 20 and the lens assembly 10 are in the retracted state. , the distance between the lens cover 20 and the lens assembly 10, and the distance between the lens assembly 10 and the image sensor 30 is small.
  • the lens cover 20 moves toward the object side and extends out of the housing 110 so that the camera module 101 of the electronic device 100 is in the second state (working state), as shown in FIG. 13 , the lens cover 20 and the image sensor There is an avoidance space between 30 , and the lens assembly 10 can move along the optical axis in the avoidance space to achieve focusing.
  • the distance range d from the object side of the lens cover 20 to the subject is >120 mm.
  • the first lens 11 has positive refractive power, the portion of the object side of the first lens 11 corresponding to the optical axis is a convex surface, and the portion of the image side of the first lens 11 corresponding to the optical axis is a concave surface.
  • the focal length f1 of the first lens 11 is 10.17
  • the ratio of the focal length f1 of the first lens 11 to the total focal length f of the lens assembly 10 can be:
  • 1.2356.
  • the second lens 12 has negative refractive power, the part of the object side of the second lens 12 corresponding to the optical axis is a convex surface, and the part of the image side of the second lens 12 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f2 of the second lens 12 to the total focal length f of the lens assembly 10 may be:
  • 16.0208.
  • the Abbe number vd1 of the first lens 11 81.6
  • the Abbe number vd2 of the second lens 12 19.2
  • the third lens 13 has negative refractive power, the part of the object side of the third lens 13 corresponding to the optical axis is a concave surface, and the part of the image side of the third lens 13 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f3 of the third lens 13 to the total focal length f of the lens assembly 10 may be:
  • 2.5255.
  • the fourth lens 14 has positive refractive power, the part of the object side of the fourth lens 14 corresponding to the optical axis is convex, and the part of the image side of the fourth lens 14 corresponding to the optical axis is convex.
  • the ratio of the focal length f4 of the fourth lens 14 to the total focal length f of the lens assembly 10 may be:
  • 2.8477.
  • the fifth lens 15 has negative refractive power, the part of the object side of the fifth lens 15 corresponding to the optical axis is a convex surface, and the part of the image side of the fifth lens 15 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f5 of the fifth lens 15 to the total focal length f of the lens assembly 10 may be:
  • 1.732.
  • the sixth lens 16 has positive refractive power, the portion of the object side of the sixth lens 16 corresponding to the optical axis is a convex surface, and the portion of the image side of the sixth lens 16 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f6 of the sixth lens 16 to the total focal length f of the lens assembly 10 may be:
  • 0.6561.
  • the seventh lens 17 has negative refractive power.
  • the portion of the object side of the seventh lens 17 corresponding to the optical axis is a convex surface, and the portion of the image side of the seventh lens 17 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f7 of the seventh lens 17 to the total focal length f of the lens assembly 10 may be:
  • 0.8020.
  • Table 8 shows the optical parameters of each lens in a camera module of an electronic device provided in Embodiment 3 of the present application.
  • CG represents the lens cover 20
  • L1 is the first lens 11
  • L2 is the second lens 12
  • L3 is the third lens 13
  • L4 is the fourth lens 14
  • L5 is the fifth lens 15
  • L6 is the sixth lens 16.
  • L7 is the seventh lens 17, and IR is the filter 40.
  • S1 represents the object side
  • S2 represents the image side.
  • the thickness corresponding to S1 in the first state or the second state indicates that the camera module 101 of the electronic device 100 is in the first state or in the second state.
  • the thickness in the first state or the second state corresponding to S2 represents the distance between the image side of the optical element and the optical element adjacent to the image side when the camera module 101 of the electronic device 100 is in the first state or the second state.
  • Table 9 below shows the cone coefficient and aspheric coefficient of each lens of the lens assembly in an electronic device provided in Embodiment 3 of the present application.
  • the first lens 11 to the seventh lens 17 include a total of 14 aspherical surfaces.
  • the aspherical surface type z of each lens in the lens assembly 10 can be calculated by the following aspherical surface formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric surface vertex
  • K is the cone coefficient
  • Ai represents the i-th order aspheric surface coefficient.
  • optical parameters of the camera module 101 composed of the above lenses can be seen in Table 10 below.
  • Table 10 shows the optical parameters of a camera module of an electronic device provided in Embodiment 3 of the present application.
  • the lens assembly 10 provided in the third embodiment of the present application has the characteristics of large aperture and large target surface. , and the lens cover 20 has a smaller shrinkage ratio, which meets the thinning design requirements of the electronic device 100 .
  • FIG. 14 is a defocus curve of a lens assembly of an electronic device provided in Embodiment 3 of the present application.
  • Figure 14 shows the defocus curve of the lens assembly 10 at a spatial frequency of 80 lp/mm. It can be seen from Figure 14 that the modulation transfer function (MTF) of the lens assembly 10 in different fields of view is in arc. The sagittal and meridional directions are both greater than 0.5, and the field curvature of different fields of view in the sagittal and meridional directions is less than 5 ⁇ m.
  • the lens assembly 10 has high imaging quality.
  • FIG. 15 is a distortion curve of a lens assembly of an electronic device provided in Embodiment 3 of the present application.
  • the optical distortion of the lens assembly 10 is controlled within 3%, which meets the deformation difference requirements and has high imaging quality.
  • Figure 16 is a schematic diagram of the simulation structure of a camera module of an electronic device provided in Embodiment 4 of the present application when it is in the first state.
  • Figure 17 is a schematic diagram of a camera module of an electronic device provided in Embodiment 4 of the present application in a second state. Schematic diagram of the simulation structure at the time.
  • the number of lenses included in the lens assembly 10 is 8.
  • the lens assembly 10 includes first lenses arranged in sequence from the object side to the image side along the direction of the optical axis (dashed line in the figure).
  • the lens cover 20 is located on the side of the first lens 11 facing the object side, and the image sensor 30 is located on the side of the eighth lens 18 facing the image side.
  • the lens cover 20 and the lens assembly 10 are retracted toward the image side and the camera module 101 of the electronic device 100 is in the first state (non-working state), as shown in FIG. 16 , the lens cover 20 and the lens assembly 10 are in the retracted state. , the distance between the lens cover 20 and the lens assembly 10, and the distance between the lens assembly 10 and the image sensor 30 is small.
  • the lens cover 20 moves toward the object side and extends out of the housing 110 so that the camera module 101 of the electronic device 100 is in the second state (working state), as shown in FIG. 17 , the lens cover 20 and the image sensor There is an avoidance space between 30 , and the lens assembly 10 can move along the optical axis in the avoidance space to achieve focusing.
  • the distance range d from the object side of the lens cover 20 to the subject is >120 mm.
  • the first lens 11 has positive refractive power, the portion of the object side of the first lens 11 corresponding to the optical axis is a convex surface, and the portion of the image side of the first lens 11 corresponding to the optical axis is a concave surface.
  • the focal length f1 of the first lens 11 is 11.49
  • the total focal length f of the lens assembly 10 is 8.56
  • the ratio of the focal length f1 of the first lens 11 to the total focal length f of the lens assembly 10 can be:
  • 1.3433.
  • the second lens 12 has negative refractive power, the part of the object side of the second lens 12 corresponding to the optical axis is a convex surface, and the part of the image side of the second lens 12 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f2 of the second lens 12 to the total focal length f of the lens assembly 10 may be:
  • 9.0453.
  • the Abbe number vd1 of the first lens 11 81.6
  • the Abbe number vd2 of the second lens 12 20.4
  • the third lens 13 has positive refractive power, the part of the object side of the third lens 13 corresponding to the optical axis is a convex surface, and the part of the image side of the third lens 13 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f3 of the third lens 13 to the total focal length f of the lens assembly 10 may be:
  • 7.8441.
  • the fourth lens 14 has negative refractive power, the portion of the fourth lens 14 corresponding to the object side and the optical axis is a convex surface, and the portion of the fourth lens 14 corresponding to the image side and the optical axis is a concave surface.
  • the ratio of the focal length f4 of the fourth lens 14 to the total focal length f of the lens assembly 10 may be:
  • 2.9070.
  • the fifth lens 15 has positive refractive power, the part of the object side of the fifth lens 15 corresponding to the optical axis is convex, and the part of the image side of the fifth lens 15 corresponding to the optical axis is convex.
  • the ratio of the focal length f5 of the fifth lens 15 to the total focal length f of the lens assembly 10 may be:
  • 3.1719.
  • the sixth lens 16 has negative refractive power, the portion of the object side of the sixth lens 16 corresponding to the optical axis is a convex surface, and the portion of the image side of the sixth lens 16 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f6 of the sixth lens 16 to the total focal length f of the lens assembly 10 may be:
  • 1.5416.
  • the seventh lens 17 has positive refractive power.
  • the portion of the object side of the seventh lens 17 corresponding to the optical axis is a convex surface, and the portion of the image side of the seventh lens 17 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f7 of the seventh lens 17 to the total focal length f of the lens assembly 10 may be:
  • 0.6172.
  • the eighth lens 18 has negative refractive power.
  • the portion of the object side of the eighth lens 18 corresponding to the optical axis is a convex surface, and the portion of the image side of the eighth lens 18 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f8 of the eighth lens 18 to the total focal length f of the lens assembly 10 may be:
  • 0.8010.
  • Table 11 shows the optical parameters of each lens in a camera module of an electronic device provided in Embodiment 4 of the present application.
  • CG represents the lens cover 20
  • L1 is the first lens 11
  • L2 is the second lens 12
  • L3 is the third lens 13
  • L4 is the fourth lens 14
  • L5 is the fifth lens 15
  • L6 is the sixth lens 16.
  • L7 is the seventh lens 17
  • L8 is the eighth lens 18, and
  • IR is the filter 40.
  • S1 represents the object side
  • S2 represents the image side.
  • the thickness corresponding to S1 in the first state or the second state indicates that the camera module 101 of the electronic device 100 is in the first state or in the second state.
  • the thickness in the first state or the second state corresponding to S2 represents the distance between the image side of the optical element and the optical element adjacent to the image side when the camera module 101 of the electronic device 100 is in the first state or the second state.
  • the thickness of the image side S2 of the seventh lens 17 in the second state refers to the distance along the optical axis between the image side of the seventh lens 17 and the object side of the eighth lens 18 when the camera module 101 is in operation.
  • the image side of the seventh lens 17 The thickness of the surface S2 in the first state refers to the distance along the optical axis between the image side of the seventh lens 17 and the object side of the eighth lens 18 when the camera module 101 is in the non-working state.
  • the thickness of the image side S2 of the eighth lens 18 in the second state refers to the distance along the optical axis from the image side of the eighth lens 18 to the filter 40 when the camera module 101 is in operation.
  • the thickness of the image side S2 in the first state refers to the distance along the optical axis direction from the image side of the eighth lens 18 to the filter 40 when the camera module 101 is in the non-working state.
  • Table 12 below shows the cone coefficient and aspherical coefficient of each lens of the lens assembly in an electronic device provided in Embodiment 4 of the present application.
  • the first lens 11 to the eighth lens 18 include a total of 16 aspherical surfaces.
  • the aspherical surface type z of each lens in the lens assembly 10 can be calculated by the following aspherical surface formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric surface vertex
  • K is the cone coefficient
  • Ai represents the i-th order aspheric surface coefficient.
  • optical parameters of the camera module 101 composed of the above lenses can be seen in Table 13 below.
  • Table 13 shows the optical parameters of a camera module of an electronic device provided in Embodiment 4 of the present application.
  • the image height and aperture number of the lens assembly 10 satisfy: 0.7 ⁇ IH/(4*F#) ⁇ 2.64 ⁇ 6.
  • the lens assembly 10 provided in Embodiment 4 of the present application has the characteristics of large aperture and large target surface. , and the lens cover 20 has a smaller shrinkage ratio, which meets the thinning design requirements of the electronic device 100 .
  • FIG. 18 is a defocus curve of a lens assembly of an electronic device provided in Embodiment 4 of the present application.
  • Figure 18 shows the defocus curve of the lens assembly 10 at a spatial frequency of 80 lp/mm. It can be seen from Figure 6 that the modulation transfer function MTF of the lens assembly 10 in different fields of view is greater than 0.6, the field curvature of different fields of view in the sagittal direction and the meridional direction is less than 5 ⁇ m, and the lens assembly 10 has high imaging quality.
  • FIG. 19 is a distortion curve of a lens assembly of an electronic device provided in Embodiment 4 of the present application.
  • the optical distortion of the lens assembly 10 is controlled within 3%, which meets the deformation difference requirements and has high imaging quality.
  • Figure 20 is a schematic diagram of the simulation structure when the camera module of an electronic device provided in Embodiment 5 of the present application is in the first state.
  • Figure 21 is a schematic diagram of the camera module of an electronic device provided in Embodiment 5 of the present application in the second state. Schematic diagram of the simulation structure at the time.
  • the number of lenses included in the lens assembly 10 is 8.
  • the lens assembly 10 includes first lenses stacked sequentially from the object side to the image side along the direction of the optical axis (dashed line in the figure).
  • the lens cover 20 is located on the side of the first lens 11 facing the object side, and the image sensor 30 is located on the side of the eighth lens 18 facing the image side.
  • the lens cover 20 and the lens assembly 10 are retracted toward the image side and the camera module 101 of the electronic device 100 is in the first state (non-working state), as shown in FIG. 20 , the lens cover 20 and the lens assembly 10 are in the retracted state. , the distance between the lens cover 20 and the lens assembly 10, and the distance between the lens assembly 10 and the image sensor 30 is small.
  • the lens cover 20 moves toward the object side and extends out of the housing 110 so that the camera module 101 of the electronic device 100 is in the second state (working state), as shown in FIG. 21 , the lens cover 20 and the image sensor There is an avoidance space between 30 , and the lens assembly 10 can move along the optical axis in the avoidance space to achieve focusing.
  • the telescopic ratio SL1/SL2 of the lens cover 20 0.851.
  • the distance range d from the object side of the lens cover 20 to the subject is >120 mm.
  • the first lens 11 has positive optical power, and the portion of the object side of the first lens 11 corresponding to the optical axis is a convex surface.
  • the portion of the image side of the first lens 11 corresponding to the optical axis is a concave surface.
  • the focal length f1 of the first lens 11 is 11.78
  • the total focal length f of the lens assembly 10 is 8.60
  • the ratio of the focal length f1 of the first lens 11 to the total focal length f of the lens assembly 10 can be:
  • 1.3691.
  • the second lens 12 has negative refractive power, the part of the object side of the second lens 12 corresponding to the optical axis is a convex surface, and the part of the image side of the second lens 12 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f2 of the second lens 12 to the total focal length f of the lens assembly 10 may be:
  • 9.8198.
  • the Abbe number vd1 of the first lens 11 81.6
  • the Abbe number vd2 of the second lens 12 20.4
  • the third lens 13 has positive refractive power, the part of the object side of the third lens 13 corresponding to the optical axis is a convex surface, and the part of the image side of the third lens 13 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f3 of the third lens 13 to the total focal length f of the lens assembly 10 may be:
  • 6.6576.
  • the fourth lens 14 has negative refractive power, the portion of the object side of the fourth lens 14 corresponding to the optical axis is a concave surface, and the portion of the image side of the fourth lens 14 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f4 of the fourth lens 14 to the total focal length f of the lens assembly 10 may be:
  • 2.9026.
  • the fifth lens 15 has positive refractive power, the part of the object side of the fifth lens 15 corresponding to the optical axis is convex, and the part of the image side of the fifth lens 15 corresponding to the optical axis is convex.
  • the ratio of the focal length f5 of the fifth lens 15 to the total focal length f of the lens assembly 10 may be:
  • 3.4018.
  • the sixth lens 16 has negative refractive power.
  • the portion of the object side of the sixth lens 16 corresponding to the optical axis is a convex surface, and the portion of the image side of the sixth lens 16 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f6 of the sixth lens 16 to the total focal length f of the lens assembly 10 may be:
  • 1.5108.
  • the seventh lens 17 has positive refractive power.
  • the portion of the object side of the seventh lens 17 corresponding to the optical axis is a convex surface, and the portion of the image side of the seventh lens 17 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f7 of the seventh lens 17 to the total focal length f of the lens assembly 10 may be:
  • 0.6061.
  • the eighth lens 18 has negative refractive power.
  • the portion of the object side of the eighth lens 18 corresponding to the optical axis is a convex surface, and the portion of the image side of the eighth lens 18 corresponding to the optical axis is a concave surface.
  • the ratio of the focal length f8 of the eighth lens 18 to the total focal length f of the lens assembly 10 may be:
  • 0.8015.
  • Table 14 below shows the optical parameters of each lens in a camera module of an electronic device provided in Embodiment 5 of the present application.
  • CG represents the lens cover 20
  • L1 is the first lens 11
  • L2 is the second lens 12
  • L3 is the third lens 13
  • L4 is the fourth lens 14
  • L5 is the fifth lens 15
  • L6 is the sixth lens 16.
  • L7 is the seventh lens 17
  • L8 is the eighth lens 18, and
  • IR is the filter 40.
  • S1 represents the object side
  • S2 represents the image side.
  • the thickness corresponding to S1 in the first state or the second state indicates that the camera module 101 of the electronic device 100 is in the first state or in the second state.
  • the thickness in the first state or the second state corresponding to S2 represents the distance between the image side of the optical element and the optical element adjacent to the image side when the camera module 101 of the electronic device 100 is in the first state or the second state.
  • Table 15 below shows the cone coefficient and aspherical coefficient of each lens of the lens assembly in an electronic device provided in Embodiment 5 of the present application.
  • the first lens 11 to the eighth lens 18 include a total of 16 aspherical surfaces.
  • the aspherical surface type z of each lens in the lens assembly 10 can be calculated by the following aspherical surface formula:
  • z is the sagittal height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric surface vertex
  • K is the cone coefficient
  • Ai represents the i-th order aspheric surface coefficient.
  • optical parameters of the camera module 101 composed of the above lenses can be seen in Table 16 below.
  • Table 16 shows the optical parameters of a camera module of an electronic device provided in Embodiment 5 of the present application.
  • the lens assembly 10 provided in Embodiment 5 of the present application has the characteristics of large aperture and large target surface. Furthermore, the lens cover 20 has a smaller shrinkage ratio, which meets the thinning design requirements of the electronic device 100 .
  • Figure 22 is a defocus curve of a lens assembly of an electronic device provided in Embodiment 5 of the present application.
  • Figure 22 shows the defocus curve of the lens assembly 10 at a spatial frequency of 80 lp/mm. It can be seen from Figure 22 that the modulation transfer function MTF of the lens assembly 10 under different fields of view is greater than 0.6, the field curvature of different fields of view in the sagittal direction and the meridional direction is less than 5 ⁇ m, and the lens assembly 10 has high imaging quality.
  • Figure 23 is a distortion curve of a lens assembly of an electronic device provided in Embodiment 5 of the present application.
  • the optical distortion of the lens assembly 10 is controlled within 3%, which meets the deformation difference requirements and has high imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

一种电子设备(100),包括壳体(110)、镜头盖板(20)和镜头组件(10),镜头组件(10)满足条件式:0.7<IH/(4*F#)<6,可以实现大光圈兼具大靶面的特性,有效的提升成像质量。而镜头盖板(20)可以沿着光轴方向移动,镜头组件(10)整体或镜头组件(10)中靠近物侧的至少一个镜片也可以沿着光轴方向移动,当摄像头模组(101)处于非工作状态,镜头组件(10)、镜头盖板(20)呈收缩状态,减小镜头组件(10)和镜头盖板(20)的总长度。当摄像头模组(101)处于工作状态时,镜头盖板(20)沿光轴方向移动至壳体(110)外而空出避让空间,镜头组件(10)或镜片在避让空间内移动,以实现对焦,这样在实现大光圈兼顾大靶面的高质量成像需求的同时,降低了非工作状态时摄像头模组(101)的占用空间,有利于电子设备(100)的减薄化设计。

Description

一种电子设备
本申请要求于2022年03月10日提交中国专利局、申请号为202210240794.3、申请名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,特别涉及一种电子设备。
背景技术
近年来,随着摄像头技术的发展,电子消费产品,如手机、平板、笔记本电脑以及穿戴设备等,其上的摄像头模组逐渐向小型化、薄型化发展,拍照的效果以及需求也越来越与单反相机看齐,摄像头模组的体积以及功能效果也逐渐成为终端电子设备的重要特征之一。
目前,摄像头模组包括镜头组件和图像传感器,光线可以通过镜头组件进入摄像头模组内,并照射在图像传感器上,进而成像。为满足人们对成像质量的需求,镜头组件逐渐朝向大光圈、大靶面(图像传感器的靶面)成像的方向发展,例如,用户对于景物细节抓拍的要求逐渐增大,使大光圈的设计变的尤为重要,另外,摄像头模组的光圈还直接影响摄像头的夜景、视频、背景虚化等核心功能。而针对大靶面、大光圈的镜头,通常采用增加光学元件(如镜片)数量等方式提供更高的设计自由度来实现。
然而,大光圈兼顾大靶面的设计会导致镜头组件的光学总长度(Tolal Track Length,简称TTL)增加,增大摄像头模组的占用空间,不利于电子设备的减薄化设计。
发明内容
本申请提供一种电子设备,解决了现有大光圈、大靶面的镜头组件其光学总长度较长而不利于电子设备的减薄化设计的问题。
本申请提供的一种电子设备,包括壳体、镜头盖板和设置在所述壳体内的镜头组件,所述镜头组件包括沿着光轴方向从物侧至像侧依次排列的多个镜片;
所述镜头盖板位于所述镜头组件面向所述物侧的一侧,所述镜头盖板可沿所述光轴方向伸出至所述壳体外以形成避让空间,所述镜头组件整体或所述镜头组件中靠近所述物侧的至少一个镜片沿所述光轴方向在所述避让空间内移动;
所述镜头组件满足条件式:0.7<IH/(4*F#)<6,其中,IH为镜头组件的全像高,F#为镜头组件的光圈数。这样可以使镜头组件具有较小的光圈数和较大的全像高,其中,光圈数越小,光圈越大,也即可以实现镜头组件的大光圈兼具大靶面性能,提升镜头组件的成像性能,提高成像质量。
而镜头盖板可以沿光轴方向移动,当需要使用电子设备进行拍摄操作时,镜头盖板可以沿着光轴方向移动伸出至壳体外,摄像头模组处于工作状态,镜头盖板的移动空出了避 让空间,镜头组件整体或靠近物侧的至少一个镜片可以在该避让空间内,发生沿着光轴方向的移动,实现对焦的功能,提升成像质量。
在拍摄完成后,镜头组件整体或靠近物侧的至少一个镜片可以沿着光轴方向朝向图像传感器移动,摄像头模组处于非工作状态,摄像头模组可以不受光学总长等成像需求的约束,镜头盖板和镜头组件可以处于收缩状态,也即镜头盖板与镜头组件之间、以及镜头组件与图像传感器(或滤光片)之间的距离可以尽可能的接近,减小整个摄像头模组的占用空间,满足电子设备的减薄化设计需求。也就说,本申请提供的电子设备中的摄像头模组,在实现大光圈兼顾大靶面的高质量成像需求的同时,有效的降低了非工作状态时摄像头模组的占用空间,有利于降低摄像头模组在电子设备厚度方向上所需的空间,有利于电子设备的减薄化设计。
在一种可能的实现方式中,还包括盖板驱动装置和镜头驱动装置,所述盖板驱动装置用于驱动所述镜头盖板沿所述光轴方向移动;
所述镜头驱动装置用于驱动所述镜头组件整体沿所述光轴方向移动,或者,所述镜头驱动装置用于驱动所述镜头组件中靠近所述物侧的至少一个镜片沿所述光轴方向移动。盖板驱动装置和镜头驱动装置为两个相对独立的驱动装置,也就是说,镜头组件和镜头盖板分别通过两个驱动装置进行驱动,实现了镜头盖板的移动驱动和镜头组件的移动驱动之间的解耦,以解耦的方式分别控制镜头盖板和镜头组件沿光轴方向移动,能够有效的降低移动驱动的精度要求,有助于提升移动的准确性,且便于控制实现。
在一种可能的实现方式中,所述镜头盖板的伸缩比小于0.95。对镜头盖板具有较好的收缩效果,有助于进一步减小镜头盖板和镜头组件处于收缩状态时,摄像头模组的长度尺寸,进一步有助于电子设备的减薄化。
在一种可能的实现方式中,所述镜头组件的等效焦距为18mm~30mm。这样等效焦距相对较小,使镜头组件具有更佳的聚集光的能力,有助于提升成像的清晰度和亮度,提高成像质量。
在一种可能的实现方式中,多个所述镜片均具有光焦度;
所述镜头组件至少包括沿所述物侧至所述像侧依次排列的第一镜片、第二镜片、第三镜片、第四镜片和第五镜片。镜片数量至少为五个,能够为镜头组件的设计提供更高的自由度,有助于提升镜头组件的性能。
在一种可能的实现方式中,所述第一镜片的阿贝数vd1与所述第二镜片的阿贝数vd2满足条件式:|vd1-vd2|>60。第一镜片的阿贝数和第二镜片的阿贝数相差比较大,第一镜片可以是高阿贝数的镜片,第二镜片可以是低阿贝数的镜片,使第一镜片和第二镜片在色散能力方面能够进行互补平衡,减小成像的色差,进一步提升成像的质量。
在一种可能的实现方式中,所述第一镜片的焦距f1与所述镜头组件的总焦距f满足条件式:0.5≤|f1/f|≤1.4。有助于改善镜头组件的成像色差,进一步有助于提升镜头组件的成像质量。
在一种可能的实现方式中,所述第一镜片与所述第二镜片满足条件式:10<CT1(R3+R4)/(R3-R4)<40;
其中,CT1为所述第一镜片与所述光轴对应部位的厚度,R3为所述第二镜片物侧面的曲率半径,R4为所述第二镜片像侧面的曲率半径。
这样可以更加合理的分配第一镜片和第二镜片的形状以及位置,便于第一镜片和第二镜片的加工实现。
在一种可能的实现方式中,所述镜片的数量为5~10。在赋予镜头组件较高设计自由度的同时,也能减小镜头组件自身的尺寸,有助于电子设备的减薄化设计,且便于生产实现。
在一种可能的实现方式中,所述镜头组件还包括从所述第五镜片至所述像侧依次排列的第六镜片和第七镜片;
所述第一镜片具有正光焦度,所述第二镜片具有负光焦度,所述第三镜片具有负光焦度,所述第四镜片具有正光焦度,所述第五镜片具有负光焦度,所述第六镜片具有正光焦度,所述第七镜片具有负光焦度。
在一种可能的实现方式中,所述第一镜片的物侧面至少与所述光轴对应的部分为凸面,所述第一镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第二镜片的物侧面至少与所述光轴对应的部分为凸面,所述第二镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第三镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第四镜片的物侧面至少与所述光轴对应的部分为凸面;
所述第五镜片的物侧面至少与所述光轴对应的部分为凸面,所述第五镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第六镜片的物侧面至少与所述光轴对应的部分为凸面,所述第六镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第七镜片的像侧面至少与所述光轴对应的部分为凹面。
这样得到的镜头组件具有大光圈、大靶面的特性,显著的提升了镜头组件的成像质量。
在一种可能的实现方式中,所述镜头组件还包括从所述第二镜片至所述像侧依次排列的第三镜片、第四镜片、第五镜片、第六镜片、第七镜片和第八镜片;
所述第一镜片具有正光焦度,所述第二镜片具有负光焦度,所述第三镜片具有正光焦度,所述第四镜片具有负光焦度,所述第五镜片具有正光焦度,所述第六镜片具有负光焦度,所述第七镜片具有正光焦度,所述第八镜片具有负光焦度。
在一种可能的实现方式中,所述第一镜片的物侧面至少与所述光轴对应的部分为凸面,所述第一镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第二镜片的物侧面至少与所述光轴对应的部分为凸面,所述第二镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第三镜片的物侧面至少与所述光轴对应的部分为凸面,所述第三镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第四镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第五镜片的物侧面至少与所述光轴对应的部分为凸面,所述第五镜片的像侧面至少与所述光轴对应的部分为凸面;
所述第六镜片的物侧面至少与所述光轴对应的部分为凸面,所述第六镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第七镜片的物侧面至少与所述光轴对应的部分为凸面,所述第七镜片的像侧面至少与所述光轴对应的部分为凹面;
所述第八镜片的物侧面至少与所述光轴对应的部分为凸面,所述第八镜片的像侧面至少与所述光轴对应的部分为凹面。
这样得到的镜头组件具有大光圈、大靶面的特性,显著的提升了镜头组件的成像质量。
在一种可能的实现方式中,还包括图像传感器,所述图像传感器位于所述镜头组件面向所述像侧的一侧。
在一种可能的实现方式中,所述镜头组件以第一中心点为旋转中心绕第一轴线旋转,所述第一中心点与所述图像传感器的中心重合,所述第一轴线过所述第一中心点,且所述第一轴线与所述图像传感器的感光面平行。这样镜头组件就能够相对于图像传感器发生绕第一轴线的旋转,丰富镜头组件的功能,使摄像头模组可适用于更多的拍摄场景和拍摄需求,满足电子设备的拍摄多样性和功能性需求。
在一种可能的实现方式中,所述镜头组件的旋转角度为+10°~-10°。可以减小由于镜头组件旋转而导致镜头组件在厚度方向上的占用尺寸的增加,提升镜头组件拍摄功能多样性的同时有助于减小镜头组件尺寸,满足电子设备减薄化设计需求。
在一种可能的实现方式中,所述镜头组件沿第一方向移动,所述第一方向与所述图像传感器的感光面平行。也就使镜头组件能够相对图像传感器发生沿第一方向的移动,丰富镜头组件的功能,使其可以适用于更多的拍摄场景,更好的满足拍摄的功能性需求,使电子设备具有更好更丰富的拍摄功能。
在一种可能的实现方式中,所述镜头组件的移动距离为+1mm~-1mm。这样可以减小或避免由于移动距离过多而影响成像质量,在保证满足多场景拍摄需求的同时保证了良好的成像质量。
在一种可能的实现方式中,还包括滤光片,所述滤光片位于所述图像传感器和所述镜头组件之间。从镜头盖板进入的光线,依次经过镜头组件和滤光片后照射在图像传感器上,滤光片可以过滤不利于成像的杂光,提升成像质量。
附图说明
图1为本申请实施例提供的一种电子设备的背面结构示意图;
图2为本申请实施例提供的一种电子设备的摄像头模组处于第一状态的结构示意图;
图3为本申请实施例提供的一种电子设备的摄像头模组处于第二状态的结构示意图;
图4为本申请实施例一提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图;
图5为本申请实施例一提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图;
图6为本申请实施例一提供的一种电子设备的镜头组件的离焦曲线图;
图7为本申请实施例一提供的一种电子设备的镜头组件的畸变曲线图;
图8为本申请实施例二提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图;
图9为本申请实施例二提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图;
图10为本申请实施例二提供的一种电子设备的镜头组件的离焦曲线图;
图11为本申请实施例二提供的一种电子设备的镜头组件的畸变曲线图;
图12为本申请实施例三提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图;
图13为本申请实施例三提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图;
图14为本申请实施例三提供的一种电子设备的镜头组件的离焦曲线图;
图15为本申请实施例三提供的一种电子设备的镜头组件的畸变曲线图;
图16为本申请实施例四提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图;
图17为本申请实施例四提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图;
图18为本申请实施例四提供的一种电子设备的镜头组件的离焦曲线图;
图19为本申请实施例四提供的一种电子设备的镜头组件的畸变曲线图;
图20为本申请实施例五提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图;
图21为本申请实施例五提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图;
图22为本申请实施例五提供的一种电子设备的镜头组件的离焦曲线图;
图23为本申请实施例五提供的一种电子设备的镜头组件的畸变曲线图。
附图标记说明:
100-电子设备;                101-摄像头模组;                 10-镜头组件;
11-第一镜片;                 12-第二镜片;                    13-第三镜片;
14-第四镜片;                 15-第五镜片;                    16-第六镜片;
17-第七镜片;                 18-第八镜片;                    20-镜头盖板;
30-图像传感器;               40-滤光片;                      50-光阑。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
为便于理解,首先对本申请实施例所涉及的相关技术术语进行解释和说明。
焦距,也称为焦长,是光学系统中衡量光的聚集或发射散的度量方式,指无限远的景物通过透镜或透镜组在焦平面结成清晰影像时,透镜或透镜组的光学中心至焦平面的垂直距离。从实用角度可以理解为镜头(镜头组件)中心至像平面的距离。
等效焦距,将不同靶面大小的镜头组件的焦距转化为35mm感光元件所对应的镜头组件的焦距,转化后的焦距即为等效焦距。
光轴,指穿过镜头组件各镜片的中心的直线。
光圈,是用来控制光线透过镜头进入电子设备内部的光量的装置,通常在镜头内,表达光圈大小用F#数值表示。
光圈数F#,是镜头的焦距/镜头通光直径得出的相对值(相对孔径的倒数),光圈数F# 值越小,在同一单位时间内的进光量越多,景深越小,拍照的背景内容将会虚化,产生类似长焦镜头的效果。
光焦度,表征镜片对入射平行光束的屈折能力。
正光焦度,表示镜片有正的焦距,有汇聚光线的效果。
负光焦度,表示镜片有负的焦距,有发散光线的效果。
视场角(Field of View,简称FOV),以镜头组件为顶点,以被摄物体的物象可通过镜头组件的最大范围的两条边缘构成的夹角称为视场角。
物侧,以镜头组件为界,被摄物体所在的一侧为物侧,镜片朝向物侧的一面为镜片的物侧面。
像侧,以镜头组件为界,被摄物体的图像所在的一侧为像侧,镜片朝向像侧的一面为镜片的像侧面。
光学总长度(Total Track Length,简称TTL),指镜头组件中邻近物侧设置的第一镜片的顶点至镜头组件成像面的总长度,也即第一镜片至图像传感器焦平面的距离。
全像高(Image Heigth,简称IH),也称像高,指镜头组件所成图像的全像高度。
靶面,指图像传感器的感光面,靶面越大,图像传感器的感光量越大,成像的像高越大。
阿贝数,也称色散系数,是指光学材料在不同波长下的折射率的差值比,表示材料的色散程度大小。
折射率,光在空气中的速度与光在光学材料中的速度之比率,光学材料的折射率越高,使入射光发生折射的能力越强,镜片越薄。
离焦,是指焦点没有对到被摄物体上而造成的模糊不清的现象。
畸变,也称为失真,通常指镜头组件对物体所成的像相对于物体本身而言的失真程度。不同视场的主光线通过镜头组件后与高斯像面的交点高度不等于理想像高,两者之差就是畸变。
本申请实施例提供一种电子设备,该电子设备可以包括但不限于手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,简称UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,简称PDA)、可穿戴设备、虚拟现实设备、车载装置等具有摄像头模组101的电子设备。
以下以该电子设备为手机为例进行说明。
图1为本申请实施例提供的一种电子设备的背面结构示意图。
参见图1所示,电子设备100可以包括有壳体110和摄像头模组101,摄像头模组101可以设置在壳体110上,摄像头模组101可以用于图像的拍摄。
其中,可以在电子设备100的正面(具有显示屏的一面)上设置有摄像头模组101,用于自拍或拍摄其他物体。或者,也可以在电子设备100的背面(背向显示屏的一面)上设置有摄像头模组101,用于拍摄其他物体,当然也可以用于自拍。
其中,在本申请实施例中,以电子设备100的背面指向电子设备100的正面的方向为电子设备100的厚度方向(如图1中的z方向)。
需要说明的是,该电子设备100还可以包括有其他结构件,例如图1中所示的,在电子设备100的壳体110上可以开设有喇叭孔120,以播放声音。壳体110上还可以开设有 数据接口130,用于连接数据线。
或者,在一些其他示例中,该电子设备100还可以包括其他能够使完整实现其功能的结构件,如传感器、处理器、电路板等,在本申请实施例中不作限定。
其中,以摄像头模组101位于电子设备100的背面为例,摄像头模组101可以包括有镜头盖板20和镜头组件(图中未示出)。其中,镜头组件可以包括有多个沿着光轴方向从物侧至像侧依次排列的镜片,镜片依次的排列方向可以与电子设备100的壳体110的厚度方向相同。
壳体110可以包括有中框112和盖设在中框112上的后盖111,其中,镜头盖板20可以位于后盖111上,镜头组件10可以设置在中框112上,镜头盖板20可以位于镜头组件背向显示屏的一侧,也即镜头盖板20位于镜头组件面向物侧的一侧。
应当理解的是,电子设备100的正面或背面上设置的摄像头模组101的个数可以为一个,如图1所示。或者,也可以为多个。
例如,在一些示例中,在电子设备100的背面上可以设置有多个摄像头模组101,来丰富摄像功能以提升摄像质量,每个摄像头模组均包括有一个镜头组件,多个镜头组件可以共用一个镜头盖板20,也即镜头盖板20位于多个镜头组件面向物侧的一侧,一个镜头盖板20可覆盖多个镜头组件。
其中,镜头组件的性能对成像质量和成像效果具有很大的影响。而光圈数F值是镜头组件的一个关键指标,光圈数直接影响摄像头的夜景、视频、背景虚化、抓拍等核心功能。而且,由于使用大光圈(光圈数F值更小)的镜头组件在拍摄时,可以增加图像的虚化背景以突显拍摄主体,因此可以提升快门速度和对焦速度,并具有较好的成像质量和效果。
同时,靶面的大小也是影响成像质量的关键因素之一,靶面越大,感光量越大,像高越大,其成像品质也越好,因而为获得较佳的成像品质,可以增大感光面的尺寸与像素,从而增大感光量。而且大光圈兼顾大靶面对成像的亮度、解析力也有很大的提升。因此,大光圈、大靶面成像成为手机等电子设备中镜头组件的重要发展趋势之一。
然而,为实现镜头组件的大光圈兼顾大靶面需求,以获得较高的成像质量,通常会采用增加镜头组件中镜片等光学元件数量的方式来提供更高的设计自由度。由于光学元件加工尺寸的限制,增加光学元件数量就会导致整个摄像头模组的光学总长度TTL增大,这样就使摄像头模组在电子设备100的厚度方向上所需的占用空间较大,不利于电子设备100的减薄化设计。
基于此,本申请实施例提供一种电子设备,其摄像头模组的镜头组件具有大光圈以及大靶面的特性,且能够减小电子设备的厚度,满足电子设备的减薄化需求。
图2为本申请实施例提供的一种电子设备的摄像头模组处于第一状态的结构示意图,图3为本申请实施例提供的一种电子设备的摄像头模组处于第二状态的结构示意图。
参见图2所示,电子设备100的摄像头模组101包括有镜头盖板20和镜头组件10。该摄像头模组101还可以包括有图像传感器30,图像传感器30可以利用光电器件的光电转换功能将感光面上的光像转换为与光像成相应比例关系的电信号,从而实现成像。
图像传感器30可以位于镜头组件10面向像侧的一侧,换言之,镜头组件10可以位于镜头盖板20与图像传感器30之间。图像传感器30的感光面面向镜头组件10,光线从镜头盖板20进入电子设备100的摄像头模组101内,经过镜头组件10后照射至图像传感 器30的感光面上,以被图像传感器30接收。
其中,图像传感器30可以是电行耦合元件(Charge-coupled Device,简称CCD),或者,也可以是互补金属氧化物半导体(Compementary MetalOxide Semiconductor,简称CMOS)。或者,也可以是其他能够实现光电转换功能的器件。
该摄像头模组101还可以包括有滤光片40,滤光片40可以位于镜头组件10与图像传感器30之间,滤光片40可以使特定波长范围内的光线通过,从而起到滤光作用,从镜头盖板20进入的光线,依次经过镜头组件10和滤光片40后照射在图像传感器30上,滤光片40可以过滤不利于成像的杂光,提升成像质量。
摄像头模组101还可以包括有光阑50,光阑50可以起到调节光线强弱的作用,以提升成像的清晰度及亮度等,提高成像质量。光阑50可以位于镜头盖板20与镜头组件10之间,或者,光阑50也可以位于镜头组件10中相邻两个镜片之间。
例如,以光阑50位于镜头盖板20与镜头组件10之间为例,参见图2所示,以图2中虚线为镜头组件10的光轴,沿着光轴方向,从物侧至像侧可以依次排列有镜头盖板20、光阑50、镜头组件10、滤光片40和图像传感器30。光线通过镜头盖板20照射至摄像头模组101内,并依次经过光阑50、镜头组件10、滤光片40后照射至图像传感器30的感光面上,以被图像传感器30接收而成像。
其中,镜头组件10包括沿着光轴方向,从物侧至像侧依次排列的多个镜片,多个镜片均具有光焦度。例如,镜头组件10可以包括沿着光轴方向,从物侧至像侧依次排列的第一镜片11、第二镜片12、第三镜片13、……第N镜片,N可以是大于等于3的正整数。其中,位于镜头组件10靠近物侧一端的镜片为第一镜片11,位于第一镜片11朝向像侧一侧的为第二镜片12,第一镜片11与第二镜片12相邻,依次类推排列至第N镜片,位于镜头组件10靠近像侧一端的镜片为第N镜片。
如参见图2所示,以镜头组件10包括有七个镜片为例,即N为7,从物侧至像侧依次排列有第一镜片11、第二镜片12、第三镜片13、第四镜片14、第五镜片15、第六镜片16和第七镜片17。
多个镜片沿着光轴方向依次排列,多个镜片的中心可以相互重合,镜片的排列方向可以与电子设备100的厚度方向一致。
具体的,镜头组件10满足条件式0.7<IH/(4*F#)<6,其中,IH为镜头组件的全像高,F#为镜头组件的光圈数。
使镜头组件10的全像高和光圈数满足上述的条件式,可以使镜头组件10具有较小的光圈数和较大的全像高,其中,光圈数越小,光圈越大,也即可以实现镜头组件10的大光圈兼具大靶面性能,提升镜头组件10的成像性能,提高成像质量。
其中,镜头组件10可以沿着光轴方向移动。具体的,可以是镜头组件10整体沿着光轴方向发生移动,这样就可以调节镜头组件10整体与图像传感器30之间的距离,从而改变像距,实现对焦的功能。
或者,也可以是镜头组件10中的其中一个或多个镜片发生沿着光轴方向的移动,具体的,镜头组件10中靠近物侧的至少一个镜片可以发生沿着光轴方向的移动,也即至少第一镜片11可以沿着光轴方向移动。以第一镜片11沿光轴方向移动为例,第一镜片11发生的移动会改变第一镜片11与图像传感器30之间的距离,同样也能够改变镜头组件10 的像距,实现对焦的功能。
需要说明的是,镜头组件10中可移动的镜片数量可以是一个,或者,也可以是多个,例如,第一镜片11和第二镜片12均可以沿着光轴方向发生移动。其中,多个镜片移动时,可以是多个镜片分别发生移动,或者,也可以是多个镜片一起发生移动。
为减小上述大光圈兼顾大靶面的镜头组件10在电子设备100厚度方向上的占用空间。在本申请实施例中,镜头盖板20也能够发生沿光轴方向的移动,参见图2所示,以不使用电子设备100的摄像头模组101进行拍摄时为摄像头模组101处于第一状态,也即第一状态时,摄像头模组101处于非工作状态。此时,摄像头模组101可以不受光学总长等成像需求的约束,镜头盖板20和镜头组件10可以处于收缩状态,也即镜头盖板20与镜头组件10之间、以及镜头组件10与图像传感器30(或滤光片40)之间的距离可以尽可能的接近,减小整个摄像头模组101的占用空间,进而减小摄像头模组101在电子设备100厚度方向上的占用空间,利于电子设备100的减薄化设计。
当需要使用电子设备100进行拍摄操作时,镜头盖板20可以沿着光轴方向移动并伸出至壳体110外,参见图3所示,摄像头模组101处于第二状态。也即在第二状态时,摄像头模组101处于工作状态,镜头盖板20处于伸出状态。由于镜头盖板20移动并伸出至壳体110外,这样就会在镜头盖板20与图像传感器30(或滤光片40)之间形成有避让空间,镜头组件10整体或镜头组件10中靠近物侧的至少一个镜片就能够在避让空间内发生沿着光轴方向的移动,确保了摄像模组101从无穷远到近物距成像时,镜头组件10有足够长的对焦移动距离,满足上述大光圈兼顾大靶面的镜头组件10成像所需的光学总长度TTL,实现对焦的功能,保证成像质量。
也即当需要使用电子设备100进行拍摄操作时,镜头盖板20可以沿着光轴方向移动伸出至壳体110外,使摄像头模组101处于第二状态,镜头盖板20的移动空出了避让空间,镜头组件10整体或靠近物侧的至少一个镜片可以在该避让空间内,发生沿着光轴方向的移动,实现对焦的功能,提升成像质量。
在拍摄完成后,镜头组件10整体或靠近物侧的至少一个镜片可以沿着光轴方向朝向图像传感器30移动,镜头盖板20可以沿着光轴方向朝向壳体110内收缩,使摄像头模组101处于第一状态,此时镜头盖板20和镜头组件10之间、以及镜头组件10和图像传感器30之间的距离可以不受光学总长等成像需求的约束,距离可以相对较小,这样就使整个摄像头模组101的尺寸减小,从而减小摄像头模组101在电子设备100的厚度方向上的占用空间,满足电子设备100的减薄化设计需求。
也就说,在本申请实施例中,通过使电子设备100的镜头组件10满足条件式0.7<IH/(4*F#)<6,使镜头组件10具有大光圈兼顾大靶面的特性。并且使电子设备100的摄像头模组101在使用时,镜头盖板20伸出至壳体110外并形成避让空间,镜头组件10整体或靠近物侧的至少一个镜片沿光轴方向移动,以实现对焦,满足高质量成像需求。而当电子设备100的摄像头模组101不使用时,使镜头组件10和镜头盖板20沿光轴方向移动并收缩,减小镜头盖板20与镜头组件10之间、以及镜头组件10与图像传感器30之间的距离,减小摄像头模组101在厚度方向上的尺寸。也即在实现大光圈兼顾大靶面的高质量成像需求的同时,有效的降低了非工作状态时摄像头模组101在厚度方向上的占用空间,有利于电子设备100的减薄化设计。
其中,该镜头组件10具有大靶面以及大光圈的性能,包括有该镜头组件10的摄像头模组101可以作为电子设备100的主摄像头使用,能够满足主摄像头的性能需求。
具体的,在本申请实施例中,镜头盖板20的伸缩比可以小于0.95,镜头盖板20的伸缩比是指,镜头盖板20和镜头组件10处于收缩状态,也即摄像头模组101处于第一状态时,镜头盖板20的物侧面至图像传感器30的感光面之间的距离SL1(参照图2所示),与镜头盖板20伸出至壳体110外,也即摄像头模组101处于第二状态时,镜头盖板20的物侧面至图像传感器30的感光面之间的距离SL2(参照图3所示)的比值,也即镜头盖板20的伸缩比SL=SL1/SL2,伸缩比SL<0.95。对镜头盖板20具有较好的收缩效果,有助于进一步减小镜头盖板20和镜头组件10处于收缩状态时,摄像头模组101的长度尺寸,进一步有助于电子设备100的减薄化。
需要说明的是,当电子设备100的摄像头模组101处于非工作状态(第一状态)时,镜头盖板20和镜头组件10处于收缩状态,此时,镜头盖板20可以与电子设备100的后盖111位于同一平面,或者,镜头盖板20也可以高于或低于后盖111所在平面。
为实现镜头组件10和镜头盖板20沿着光轴方向的移动。电子设备100还可以包括有盖板驱动装置(图中未示出)和镜头驱动装置(图中未示出),其中,盖板驱动装置用于驱动镜头盖板20沿着光轴方向移动。镜头驱动装置用于驱动镜头组件10整体沿着光轴方向移动,或者,镜头驱动装置用于驱动镜头组件10中靠近物侧的至少一个镜片发生沿着光轴方向的移动。
盖板驱动装置和镜头驱动装置为两个相对独立的驱动装置,也就是说,镜头组件10和镜头盖板20分别通过两个驱动装置进行驱动,实现了镜头盖板20的移动驱动和镜头组件10的移动驱动之间的解耦,与相关技术中,通过同一驱动装置实现对镜头盖板20和镜头组件10的移动驱动相比,以解耦的方式分别控制镜头盖板20和镜头组件10沿光轴方向移动,能够有效的降低移动驱动的精度要求,有助于提升移动的准确性,且便于控制实现。
其中,盖板驱动装置可以设置在壳体110上,或者,盖板驱动装置也可以设置在电子设备100中的其他结构件上。盖板驱动装置可以是具有可伸缩结构(例如,记忆合金、弹簧等)的驱动结构,具体的结构组成在本申请实施例中不作限制,能够驱动盖板沿光轴方向伸出至壳体110外或朝向壳体110收缩即可。
相应的,镜头驱动装置也可以设置在壳体110上,或者,镜头驱动装置也可以设置在电子设备100中的其他结构件上。镜头驱动装置可以是驱动马达,如对焦马达、步进马达、音圈马达等,具体的结构在本申请实施例中不作限制,能够驱动镜头组件10整体或靠近物侧的至少一个镜片沿着光轴方向移动即可。
电子设备100还可以包括有锁止装置(图中未示出),锁止装置用于限定镜头盖板20的移动位置,例如,锁止装置可以限定当摄像头模组101处于第二状态,镜头盖板20伸出至壳体110外时,镜头盖板20的位置。或者,锁止装置还可以限定当摄像头模组101处于第一状态,镜头盖板20和镜头组件10处于收缩状态时,镜头盖板20的位置。
其中,锁止装置可以与镜头驱动装置配合,例如,锁止装置可以是阻挡板,与镜头驱动装置的可伸缩结构配合,以实现限位。锁止装置的具体结构可以是卡位件、阻挡板等限位件,或者也可以是其他能够起到限位作用的结构组件,在本申请实施例中不作限制,能 够实现对镜头盖板20的限位即可。
另外,盖板驱动装置的数量可以为两个或两个以上,两个或两个以上的盖板驱动装置可以对称设置,以提升对镜头盖板20驱动力的平衡性,保证镜头盖板20的精准位移。
锁止装置的数量也可以为两个或两个以上,以保证锁止装置对镜头盖板20移动位置的限位强度,进一步提升镜头盖板20移动的准确性。其中,盖板驱动装置和锁止装置可以间隔式排布。
在本申请实施例中,镜头组件10的等效焦距可以为18mm~30mm,等效焦距相对较小,这样就使镜头组件10具有更佳的聚集光的能力,有助于提升成像的清晰度和亮度,提高成像质量。
镜头组件10的镜片数量可以为至少5个,也即镜头组件10至少包括沿物侧至像侧依次排列的第一镜片11、第二镜片12、第三镜片13、第四镜片14和第五镜片15,能够为镜头组件10的设计提供更高的自由度,有助于提升镜头组件10的性能。
当然在一些其他示例中,镜头组件10还可以包括其他数量片的镜片,具体的可根据实际需求进行选择设定。
其中,第一镜片11的阿贝数与第二镜片12的阿贝数可以满足条件式:|vd1-vd2|>60,也就是说第一镜片11的阿贝数和第二镜片12的阿贝数相差比较大,第一镜片11可以是高阿贝数的镜片,第二镜片12可以是低阿贝数的镜片,使第一镜片11和第二镜片12在色散能力方面能够进行互补平衡,减小成像的色差,进一步提升成像的质量。
其中,镜头组件10的总焦距f为N个镜片形成的镜片系统的系统焦距,镜头组件10的总焦距与各个镜片的焦距有关。例如,第一镜片11的焦距与镜头组件10的总焦距可以满足条件式:0.5≤|f1/f|≤1.4,其中,f1为第一镜片11的焦距,f为镜头组件10的总焦距,这样有助于改善镜头组件10的成像色差,进一步有助于提升镜头组件10的成像质量。
第一镜片11与第二镜片12可以满足条件式:10<CT1(R3+R4)/(R3-R4)<40,其中,CT1为第一镜片11与光轴对应部位的厚度,R3为第二镜片12物侧面的曲率半径,R4为第二镜片12像侧面的曲率半径。这样可以更加合理的分配第一镜片11和第二镜片12的形状以及位置,便于第一镜片11和第二镜片12的加工实现。
具体的,镜头组件10的镜片数量可以为5~10个,在赋予镜头组件10较高设计自由度的同时,也能减小镜头组件10自身的尺寸,有助于电子设备100的减薄化设计,且便于生产实现。
下表1示出了本申请实施例提供的一种电子设备中不同镜片数量的镜头组件的光学参数。

由表1可知,镜头组件10所包括的镜片数量为5~10个时,镜头组件10的全像高和光圈数能够满足条件式0.7<IH/(4*F#)<6,能够使镜头组件10具有更大的光圈和靶面,实现大光圈兼顾大靶面的设计,提升成像质量。同时,第一镜片11和第二镜片12的设计能够很好的改善像差,进一步提升成像质量。
其中,镜头组件10的N个镜片可以均为非球面的镜片。非球面的镜片是指,镜片的曲面不是同一个曲率,而是由多个曲面构成。可以对球面像差和歪曲像差有很好的补偿效果,能够进一步有利于实现镜头组件10的大光圈性能。
镜片的成型材质可以是塑料,或者,镜片的成型材质也可以是玻璃。例如,镜头组件10中的N个镜片均可以为塑料镜片,或者,N个镜片也均可以为玻璃镜片,或者,N个镜片中可以是部分镜片为塑料镜片,部分镜片为玻璃镜片。
本申请实施例中,镜头组件10还能够发生旋转,具体的,镜头组件10能够发生以第一中心点为旋转中心,绕第一轴线的旋转,其中,第一中心点与图像传感器30的中心重合,第一轴线经过第一中心点,并与图像传感器30的感光面平行。
这样镜头组件10就能够相对于图像传感器30发生绕第一轴线的旋转,丰富镜头组件10的功能,使摄像头模组101可适用于更多的拍摄场景和拍摄需求,满足电子设备100的拍摄多样性和功能性需求。
其中,镜头组件10绕第一轴线的旋转角度可以为+10°~-10°。例如,以镜头组件10的光轴与图像传感器30的感光面垂直时,镜头组件10的旋转角度为0°,镜头组件10绕着第一轴线相对图像传感器30顺时针旋转10°,则旋转角度为+10°,镜头组件10绕第一轴线相对图像传感器30逆时针旋转10°,则旋转角度为-10°。
使镜头组件10的旋转角度在上述范围内,可以减小由于镜头组件10旋转而导致镜头组件10在厚度方向上的占用尺寸的增加,提升镜头组件10拍摄功能多样性的同时有助于减小镜头组件10尺寸,满足电子设备100减薄化设计需求。
另外,镜头组件10还能够沿第一方向发生移动,其中,第一方向与图像传感器30的感光面平行,也即第一方向与镜头组件10的光轴方向垂直,如图3中的y方向。例如,镜头组件10能够沿着第一方向相对图像传感器30上下移动,同样也能够丰富镜头组件10的功能,使其可以适用于更多的拍摄场景,更好的满足拍摄的功能性需求,使电子设备100 具有更好更丰富的拍摄功能。
其中,镜头组件10沿第一方向的移动距离可以为+1mm~-1mm。例如,以镜头组件10的光轴过第一中心点时,镜头组件10的移动距离为0mm,镜头组件10沿着第一方向向上移动1mm,则镜头组件10的移动距离为+1mm,镜头组件10沿着第一方向向下移动1mm,则镜头组件10的移动距离为-1mm。
镜头组件10的移动移动距离在上述范围内,可以减小或避免由于移动距离过多而影响成像质量,在保证满足多场景拍摄需求的同时保证了良好的成像质量。
在本申请实施例中,可以通过移动镜头组件10的方式,来实现对拍摄过程中的抖动补偿,赋予电子设备100的拍摄防抖功能。
其中,镜头组件10的移动可以通过镜头驱动装置来驱动实现,或者,也可以在电子设备100内另外设置防抖驱动马达,通过防抖驱动马达的驱动镜头组件10移动,从而在拍摄过程中发生抖动时,进行抖动位移补偿,实现防抖效果。
或者,也可以通过移动图像传感器30的方式,来实现对拍摄过程中的抖动补偿。
例如,在电子设备100内可以设置传感器驱动装置,通过传感器驱动装置来驱动图像传感器30移动,从而在拍摄过程中发生抖动时实现抖动位移补偿,达到防抖效果。
以下结合具体实施例对本申请提供的镜头组件的镜片及性能参数进行说明。
实施例一
图4为本申请实施例一提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图,图5为本申请实施例一提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图。
本实施例中,参见图4所示,镜头组件10包括的镜片数量为7个,镜头组件10包括沿着光轴(图中虚线)的方向,从物侧至像侧,依次层叠的第一镜片11、第二镜片12、第三镜片13、第四镜片14、第五镜片15、第六镜片16和第七镜片17。
镜头盖板20位于第一镜片11面向物侧的一侧,图像传感器30位于第七镜片17面向像侧的一侧。当镜头盖板20和镜头组件10朝向像侧收缩,参见图4所示,电子设备100的摄像头模组101处于第一状态(非工作状态)时,镜头盖板20和镜头组件10处于收缩状态,镜头盖板20与镜头组件10之间、镜头组件10与图像传感器30之间的距离较小。
当镜头盖板20朝向物侧移动并伸出至壳体110外,使电子设备100的摄像头模组101处于第二状态(工作状态)时,参见图5所示,镜头盖板20与图像传感器30之间空出避让空间,镜头组件10可以在避让空间内发生沿光轴方向的移动,以实现对焦的功能,保证成像质量。
其中,镜头盖板20的伸缩比SL1/SL2=0.889。在拍摄时,镜头盖板20的物侧面至被摄物体的距离范围d>130mm。
其中,第一镜片11具有正光焦度,第一镜片11的物侧面与光轴对应的部分为凸面,第一镜片11的像侧面与光轴对应的部分为凹面。
第一镜片11的焦距f1=9.46,镜头组件10的总焦距f=8.38,第一镜片11的焦距f1与镜头组件10的总焦距f的比值可以为:|f1/f|=1.129。
第二镜片12具有负光焦度,第二镜片12的物侧面与光轴对应的部分为凸面,第二镜 片12的像侧面与光轴对应的部分为凹面。第二镜片12的焦距f2与镜头组件10的总焦距f的比值可以为:|f2/f|=10.18。
其中,第一镜片11的阿贝数vd1=95.1,第二镜片12的阿贝数vd2=19.2,第一镜片11的阿贝数vd1和第二镜片12的阿贝数vd2满足:vd1-vd2=75.9>60。
第一镜片11与光轴对应部位的厚度CT1=1.36,第二镜片12物侧面的曲率半径R3=9.45,第二镜片12像侧面的曲率半径R4=8.02,第一镜片11与第二镜片12满足:10<CT1(R3+R4)/(R3-R4)=16.51<40。
第三镜片13具有负光焦度,第三镜片13的物侧面与光轴对应的部分为凸面,第三镜片13的像侧面与光轴对应的部分为凹面。第三镜片13的焦距f3与镜头组件10的总焦距f的比值可以为:|f3/f|=3.824。
第四镜片14具有正光焦度,第四镜片14的物侧面与光轴对应的部分为凸面,第四镜片14的像侧面与光轴对应的部分为凸面。第四镜片14的焦距f4与镜头组件10的总焦距f的比值可以为:|f4/f|=3.191。
第五镜片15具有负光焦度,第五镜片15的物侧面与光轴对应的部分为凸面,第五镜片15的像侧面与光轴对应的部分为凹面。第五镜片15的焦距f5与镜头组件10的总焦距f的比值可以为:|f5/f|=4.137。
第六镜片16具有正光焦度,第六镜片16的物侧面与光轴对应的部分为凸面,第六镜片16的像侧面与光轴对应的部分为凹面。第六镜片16的焦距f6与镜头组件10的总焦距f的比值可以为:|f6/f|=1.008。
第七镜片17具有负光焦度,第七镜片17的物侧面与光轴对应的部分为凹面,第七镜片17的像侧面与光轴对应的部分为凹面。第七镜片17的焦距f7与镜头组件10的总焦距f的比值可以为:|f7/f|=0.722。
下表2示出了本申请实施例一提供的一种电子设备的摄像头模组中各镜片的光学参数。

其中,CG表示镜头盖板20,L1为第一镜片11,L2为第二镜片12,L3为第三镜片13,L4为第四镜片14,L5为第五镜片15,L6为第六镜片16,L7为第七镜片17,IR为滤光片40。S1表示物侧面。
其中,镜面(例如像侧面或物侧面)的厚度,是指从物侧指向像侧的方向上,该镜面与相邻的下一镜面之间沿光轴方向上的距离。例如,S1对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态(也即非工作状态,镜头盖板20和镜头组件10收缩)时或处于第二状态(也即工作状态,镜头盖板20伸出至壳体110外)时,光学元件(例如镜头盖板20、镜片、光阑50和滤光片40)的物侧面至该光学元件的像侧面之间沿光轴方向上的距离。
S2对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的像侧面至与该像侧面相邻的光学元件的镜面之间沿光轴方向上的距离。
例如,镜头盖板20的像侧面S2在第二状态时的厚度是指,镜头盖板20伸出至壳体110外后,镜头盖板20像侧面至光阑50之间沿光轴方向上的距离。镜头盖板20的像侧面S2在第一状态时的厚度是指,镜头盖板20收缩后,镜头盖板20像侧面至光阑50之间沿光轴方向上的距离。
第七镜片17的像侧面S2在第二状态时的厚度指,摄像头模组101工作状态时,第七镜片17像侧面至滤光片40之间沿光轴方向上的距离,第七镜片17的像侧面S2在第一状态时的厚度指,摄像头模组101非工作状态时,第七镜片17像侧面至滤光片40之间沿光轴方向上的距离。
下表3示出了本申请实施例一提供的一种电子设备中镜头组件的各镜片的圆锥系数和非球面系数。

由表3可知,第一镜片11至第七镜片17,共包含14个非球面。镜头组件10中各镜片的非球面面型z可以通过以下非球面公式计算:
其中,z为非球面矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为圆锥系数,Ai表示第i阶非球面系数。根据获得的非球面矢高可以对各镜片进行仿真最终获得如图2和图3所示的摄像头模组101。
由上述各镜片组成的摄像头模组101的光学参数可以参见下表4所示。
表4示出了本申请实施例一提供的一种电子设备的摄像头模组的光学参数。
由表4可知,镜头组件10的像高和光圈数满足:0.7<IH/(4*F#)=2.41<6,本申请实施例一所提供的镜头组件10具有大光圈、大靶面的特性,且镜头盖板20具有较小的收缩比,满足电子设备100的减薄化设计需求。
图6为本申请实施例一提供的一种电子设备的镜头组件的离焦曲线图。
具体的,图6示出了镜头组件10在空间频率为80lp/mm的离焦曲线,由图6可知,镜头组件10在不同视场下的调制传递函数(Modulation Transfer Function,简称MTF)在弧矢方向和子午方向均大于0.6,不同视场在弧矢方向和子午方向的场曲均小于6μm,该镜头组件10具有高的成像质量。
图7为本申请实施例一提供的一种电子设备的镜头组件的畸变曲线图。
参见图7所示,该镜头组件10的光学畸变控制在3%以内,满足变形差异要求,具有高的成像质量。
实施例二
图8为本申请实施例二提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图,图9为本申请实施例二提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图。
本实施例中,参见图8所示,镜头组件10包括的镜片数量为7个,镜头组件10包括沿着光轴(图中虚线)的方向,从物侧至像侧,依次层叠的第一镜片11、第二镜片12、第三镜片13、第四镜片14、第五镜片15、第六镜片16和第七镜片17。
镜头盖板20位于第一镜片11面向物侧的一侧,图像传感器30位于第七镜片17面向像侧的一侧。当镜头盖板20和镜头组件10朝向像侧收缩,电子设备100的摄像头模组101处于第一状态(非工作状态)时,参见图8所示,镜头盖板20和镜头组件10处于收缩状态,镜头盖板20与镜头组件10之间、镜头组件10与图像传感器30之间的距离较小。
当镜头盖板20朝向物侧移动并伸出至壳体110外,使电子设备100的摄像头模组101处于第二状态(工作状态)时,参见图9所示,镜头盖板20与图像传感器30之间空出避让空间,镜头组件10可以在避让空间内发生沿光轴方向移动,以实现对焦。
其中,镜头盖板20的伸缩比SL1/SL2=0.889。在拍摄时,镜头盖板20的物侧面至被摄物体的距离范围d>120mm。
其中,第一镜片11具有正光焦度,第一镜片11的物侧面与光轴对应的部分为凸面,第一镜片11的像侧面与光轴对应的部分为凹面。
第一镜片11的焦距f1=9.94,镜头组件10的总焦距f=7.93,第一镜片11的焦距f1与镜头组件10的总焦距f的比值可以为:|f1/f|=1.2524。
第二镜片12具有负光焦度,第二镜片12的物侧面与光轴对应的部分为凸面,第二镜片12的像侧面与光轴对应的部分为凹面。第二镜片12的焦距f2与镜头组件10的总焦距f的比值可以为:|f2/f|=21.6370。
其中,第一镜片11的阿贝数vd1=95.1,第二镜片12的阿贝数vd2=19.2,第一镜片11的阿贝数vd1和第二镜片12的阿贝数vd2满足:vd1-vd2=75.9>60。
第一镜片11与光轴对应部位的厚度CT1=1.30,第二镜片12物侧面的曲率半径R3=8.39,第二镜片12像侧面的曲率半径R4=7.70,第一镜片11与第二镜片12满足:10<CT1(R3+R4)/(R3-R4)=30.64<40。
第三镜片13具有负光焦度,第三镜片13的物侧面与光轴对应的部分为凹面,第三镜片13的像侧面与光轴对应的部分为凹面。第三镜片13的焦距f3与镜头组件10的总焦距f的比值可以为:|f3/f|=3.0800。
第四镜片14具有正光焦度,第四镜片14的物侧面与光轴对应的部分为凸面,第四镜片14的像侧面与光轴对应的部分为凸面。第四镜片14的焦距f4与镜头组件10的总焦距f的比值可以为:|f4/f|=2.7639。
第五镜片15具有负光焦度,第五镜片15的物侧面与光轴对应的部分为凸面,第五镜片15的像侧面与光轴对应的部分为凹面。第五镜片15的焦距f5与镜头组件10的总焦距 f的比值可以为:|f5/f|=2.344。
第六镜片16具有正光焦度,第六镜片16的物侧面与光轴对应的部分为凸面,第六镜片16的像侧面与光轴对应的部分为凹面。第六镜片16的焦距f6与镜头组件10的总焦距f的比值可以为:|f6/f|=0.7900。
第七镜片17具有负光焦度,第七镜片17的物侧面与光轴对应的部分为凹面,第七镜片17的像侧面与光轴对应的部分为凹面。第七镜片17的焦距f7与镜头组件10的总焦距f的比值可以为:|f7/f|=0.7404。
下表5示出了本申请实施例二提供的一种电子设备的摄像头模组中各镜片的光学参数。
其中,CG表示镜头盖板20,L1为第一镜片11,L2为第二镜片12,L3为第三镜片13,L4为第四镜片14,L5为第五镜片15,L6为第六镜片16,L7为第七镜片17,IR为滤光片40。S1表示物侧面,S2表示像侧面。
其中,镜面的厚度说明可参见实施例一,具体的,S1对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的物侧面至该光学元件的像侧面之间沿光轴方向上的距离。
S2对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于 第一状态时或处于第二状态时,光学元件的像侧面至与该像侧面相邻的光学元件的镜面之间沿光轴方向上的距离。
下表6示出了本申请实施例二提供的一种电子设备中镜头组件的各镜片的圆锥系数和非球面系数。
由表6可知,第一镜片11至第七镜片17,共包含14个非球面。镜头组件10中各镜片的非球面面型z可以通过以下非球面公式计算:
其中,z为非球面矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为圆锥系数,Ai表示第i阶非球面系数。根据获得的非球面矢高可以对各镜片进行仿真最终获得如图8和图9所示的摄像头模组101。
由上述各镜片组成的摄像头模组101的光学参数可以参见下表7所示。
表7示出了本申请实施例二提供的一种电子设备的摄像头模组的光学参数。
由表7可知,镜头组件10的像高和光圈数满足:0.7<IH/(4*F#)=2.56<6,本申请实施例二所提供的镜头组件10具有大光圈、大靶面的特性,且镜头盖板20具有较小的收缩比,满足电子设备100的减薄化设计需求。
图10为本申请实施例二提供的一种电子设备的镜头组件的离焦曲线图。
具体的,图10示出了镜头组件10在空间频率为80lp/mm的离焦曲线,由图10可知,镜头组件10在不同视场下的调制传递函数(Modulation Transfer Function,简称MTF)在弧矢方向和子午方向均大于0.5,不同视场在弧矢方向和子午方向的场曲均小于3μm,该镜头组件10具有高的成像质量。
图11为本申请实施例二提供的一种电子设备的镜头组件的畸变曲线图。
参见图11所示,该镜头组件10的光学畸变控制在3%以内,满足变形差异要求,具有高的成像质量。
实施例三
图12为本申请实施例三提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图,图13为本申请实施例三提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图。
本实施例中,参见图12所示,镜头组件10包括的镜片数量为7个,镜头组件10包括沿着光轴(图中虚线)的方向,从物侧至像侧,依次层叠的第一镜片11、第二镜片12、第三镜片13、第四镜片14、第五镜片15、第六镜片16和第七镜片17。
镜头盖板20位于第一镜片11面向物侧的一侧,图像传感器30位于第七镜片17面向像侧的一侧。当镜头盖板20和镜头组件10朝向像侧收缩,电子设备100的摄像头模组101处于第一状态(非工作状态)时,参见图12所示,镜头盖板20和镜头组件10处于收缩状态,镜头盖板20与镜头组件10之间、镜头组件10与图像传感器30之间的距离较小。
当镜头盖板20朝向物侧移动并伸出至壳体110外,使电子设备100的摄像头模组101处于第二状态(工作状态)时,参见图13所示,镜头盖板20与图像传感器30之间空出避让空间,镜头组件10可以在避让空间内发生沿光轴方向移动,以实现对焦。
其中,镜头盖板20的伸缩比SL1/SL2=0.867。在拍摄时,镜头盖板20的物侧面至被摄物体的距离范围d>120mm。
其中,第一镜片11具有正光焦度,第一镜片11的物侧面与光轴对应的部分为凸面,第一镜片11的像侧面与光轴对应的部分为凹面。
第一镜片11的焦距f1=10.17,镜头组件10的总焦距f=8.23,第一镜片11的焦距f1与镜头组件10的总焦距f的比值可以为:|f1/f|=1.2356。
第二镜片12具有负光焦度,第二镜片12的物侧面与光轴对应的部分为凸面,第二镜片12的像侧面与光轴对应的部分为凹面。第二镜片12的焦距f2与镜头组件10的总焦距f的比值可以为:|f2/f|=16.0208。
其中,第一镜片11的阿贝数vd1=81.6,第二镜片12的阿贝数vd2=19.2,第一镜片11的阿贝数vd1和第二镜片12的阿贝数vd2满足:vd1-vd2=62.4>60。
第一镜片11与光轴对应部位的厚度CT1=1.30,第二镜片12物侧面的曲率半径R3=9.55,第二镜片12像侧面的曲率半径R4=8.50,第一镜片11与第二镜片12满足:10<CT1(R3+R4)/(R3-R4)=22.31<40。
第三镜片13具有负光焦度,第三镜片13的物侧面与光轴对应的部分为凹面,第三镜片13的像侧面与光轴对应的部分为凹面。第三镜片13的焦距f3与镜头组件10的总焦距f的比值可以为:|f3/f|=2.5255。
第四镜片14具有正光焦度,第四镜片14的物侧面与光轴对应的部分为凸面,第四镜片14的像侧面与光轴对应的部分为凸面。第四镜片14的焦距f4与镜头组件10的总焦距f的比值可以为:|f4/f|=2.8477。
第五镜片15具有负光焦度,第五镜片15的物侧面与光轴对应的部分为凸面,第五镜片15的像侧面与光轴对应的部分为凹面。第五镜片15的焦距f5与镜头组件10的总焦距f的比值可以为:|f5/f|=1.732。
第六镜片16具有正光焦度,第六镜片16的物侧面与光轴对应的部分为凸面,第六镜片16的像侧面与光轴对应的部分为凹面。第六镜片16的焦距f6与镜头组件10的总焦距f的比值可以为:|f6/f|=0.6561。
第七镜片17具有负光焦度,第七镜片17的物侧面与光轴对应的部分为凸面,第七镜片17的像侧面与光轴对应的部分为凹面。第七镜片17的焦距f7与镜头组件10的总焦距f的比值可以为:|f7/f|=0.8020。
下表8示出了本申请实施例三提供的一种电子设备的摄像头模组中各镜片的光学参数。

其中,CG表示镜头盖板20,L1为第一镜片11,L2为第二镜片12,L3为第三镜片13,L4为第四镜片14,L5为第五镜片15,L6为第六镜片16,L7为第七镜片17,IR为滤光片40。S1表示物侧面,S2表示像侧面。
其中,镜面的厚度说明可参见实施例一,具体的,S1对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的物侧面至该光学元件的像侧面之间沿光轴方向上的距离。
S2对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的像侧面至与该像侧面相邻的光学元件的镜面之间沿光轴方向上的距离。
下表9示出了本申请实施例三提供的一种电子设备中镜头组件的各镜片的圆锥系数和非球面系数。

由表9可知,第一镜片11至第七镜片17,共包含14个非球面。镜头组件10中各镜片的非球面面型z可以通过以下非球面公式计算:
其中,z为非球面矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为圆锥系数,Ai表示第i阶非球面系数。根据获得的非球面矢高可以对各镜片进行仿真最终获得如图12和图13所示的摄像头模组101。
由上述各镜片组成的摄像头模组101的光学参数可以参见下表10所示。
表10示出了本申请实施例三提供的一种电子设备的摄像头模组的光学参数。
由表10可知,镜头组件10的像高和光圈数满足:0.7<IH/(4*F#)=2.60<6,本申请实施例三所提供的镜头组件10具有大光圈、大靶面的特性,且镜头盖板20具有较小的收缩比,满足电子设备100的减薄化设计需求。
图14为本申请实施例三提供的一种电子设备的镜头组件的离焦曲线图。
具体的,图14示出了镜头组件10在空间频率为80lp/mm的离焦曲线,由图14可知,镜头组件10在不同视场下的调制传递函数(Modulation Transfer Function,简称MTF)在弧矢方向和子午方向均大于0.5,不同视场在弧矢方向和子午方向的场曲均小于5μm,该镜头组件10具有高的成像质量。
图15为本申请实施例三提供的一种电子设备的镜头组件的畸变曲线图。
参见图15所示,该镜头组件10的光学畸变控制在3%以内,满足变形差异要求,具有高的成像质量。
实施例四
图16为本申请实施例四提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图,图17为本申请实施例四提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图。
本实施例中,参见图16所示,镜头组件10包括的镜片数量为8个,镜头组件10包括沿着光轴(图中虚线)的方向,从物侧至像侧,依次排列的第一镜片11、第二镜片12、第三镜片13、第四镜片14、第五镜片15、第六镜片16、第七镜片17和第八镜片18。
镜头盖板20位于第一镜片11面向物侧的一侧,图像传感器30位于第八镜片18面向像侧的一侧。当镜头盖板20和镜头组件10朝向像侧收缩,电子设备100的摄像头模组101处于第一状态(非工作状态)时,参见图16所示,镜头盖板20和镜头组件10处于收缩状态,镜头盖板20与镜头组件10之间、镜头组件10与图像传感器30之间的距离较小。
当镜头盖板20朝向物侧移动并伸出至壳体110外,使电子设备100的摄像头模组101处于第二状态(工作状态)时,参见图17所示,镜头盖板20与图像传感器30之间空出避让空间,镜头组件10可以在避让空间内发生沿光轴方向移动,以实现对焦。
其中,镜头盖板20的伸缩比SL1/SL2=0.854。在拍摄时,镜头盖板20的物侧面至被摄物体的距离范围d>120mm。
其中,第一镜片11具有正光焦度,第一镜片11的物侧面与光轴对应的部分为凸面,第一镜片11的像侧面与光轴对应的部分为凹面。
第一镜片11的焦距f1=11.49,镜头组件10的总焦距f=8.56,第一镜片11的焦距f1与镜头组件10的总焦距f的比值可以为:|f1/f|=1.3433。
第二镜片12具有负光焦度,第二镜片12的物侧面与光轴对应的部分为凸面,第二镜片12的像侧面与光轴对应的部分为凹面。第二镜片12的焦距f2与镜头组件10的总焦距f的比值可以为:|f2/f|=9.0453。
其中,第一镜片11的阿贝数vd1=81.6,第二镜片12的阿贝数vd2=20.4,第一镜片11的阿贝数vd1和第二镜片12的阿贝数vd2满足:vd1-vd2=61.2>60。
第一镜片11与光轴对应部位的厚度CT1=1.39,第二镜片12物侧面的曲率半径R3=7.20,第二镜片12像侧面的曲率半径R4=6.21,第一镜片11与第二镜片12满足:10<CT1(R3+R4)/(R3-R4)=18.75<40。
第三镜片13具有正光焦度,第三镜片13的物侧面与光轴对应的部分为凸面,第三镜片13的像侧面与光轴对应的部分为凹面。第三镜片13的焦距f3与镜头组件10的总焦距f的比值可以为:|f3/f|=7.8441。
第四镜片14具有负光焦度,第四镜片14的物侧面与光轴对应的部分为凸面,第四镜片14的像侧面与光轴对应的部分为凹面。第四镜片14的焦距f4与镜头组件10的总焦距f的比值可以为:|f4/f|=2.9070。
第五镜片15具有正光焦度,第五镜片15的物侧面与光轴对应的部分为凸面,第五镜片15的像侧面与光轴对应的部分为凸面。第五镜片15的焦距f5与镜头组件10的总焦距f的比值可以为:|f5/f|=3.1719。
第六镜片16具有负光焦度,第六镜片16的物侧面与光轴对应的部分为凸面,第六镜片16的像侧面与光轴对应的部分为凹面。第六镜片16的焦距f6与镜头组件10的总焦距f的比值可以为:|f6/f|=1.5416。
第七镜片17具有正光焦度,第七镜片17的物侧面与光轴对应的部分为凸面,第七镜片17的像侧面与光轴对应的部分为凹面。第七镜片17的焦距f7与镜头组件10的总焦距f的比值可以为:|f7/f|=0.6172。
第八镜片18具有负光焦度,第八镜片18的物侧面与光轴对应的部分为凸面,第八镜片18的像侧面与光轴对应的部分为凹面。第八镜片18的焦距f8与镜头组件10的总焦距f的比值可以为:|f8/f|=0.8010。
下表11示出了本申请实施例四提供的一种电子设备的摄像头模组中各镜片的光学参数。
其中,CG表示镜头盖板20,L1为第一镜片11,L2为第二镜片12,L3为第三镜片13,L4为第四镜片14,L5为第五镜片15,L6为第六镜片16,L7为第七镜片17,L8为第八镜片18,IR为滤光片40。S1表示物侧面,S2表示像侧面。
其中,镜面的厚度说明可参见实施例一,具体的,S1对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的物侧面至该光学元件的像侧面之间沿光轴方向上的距离。
S2对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的像侧面至与该像侧面相邻的光学元件的镜面之间沿光轴方向上的距离。
例如,第七镜片17的像侧面S2在第二状态时的厚度指,摄像头模组101工作状态时,第七镜片17像侧面至第八镜片18物侧面之间沿光轴方向上的距离,第七镜片17的像侧 面S2在第一状态时的厚度指,摄像头模组101非工作状态时,第七镜片17像侧面至第八镜片18物侧面之间沿光轴方向上的距离。
第八镜片18的像侧面S2在第二状态时的厚度指,摄像头模组101工作状态时,第八镜片18像侧面至滤光片40之间沿光轴方向上的距离,第八镜片18的像侧面S2在第一状态时的厚度指,摄像头模组101非工作状态时,第八镜片18像侧面至滤光片40之间沿光轴方向上的距离。
下表12示出了本申请实施例四提供的一种电子设备中镜头组件的各镜片的圆锥系数和非球面系数。
由表12可知,第一镜片11至第八镜片18,共包含16个非球面。镜头组件10中各镜片的非球面面型z可以通过以下非球面公式计算:
其中,z为非球面矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为圆锥系数,Ai表示第i阶非球面系数。根据获得的非球面矢高可以对各镜片进行仿真最终获得如图16和图17所示的摄像头模组101。
由上述各镜片组成的摄像头模组101的光学参数可以参见下表13所示。
表13示出了本申请实施例四提供的一种电子设备的摄像头模组的光学参数。
由表13可知,镜头组件10的像高和光圈数满足:0.7<IH/(4*F#)≈2.64<6,本申请实施例四所提供的镜头组件10具有大光圈、大靶面的特性,且镜头盖板20具有较小的收缩比,满足电子设备100的减薄化设计需求。
图18为本申请实施例四提供的一种电子设备的镜头组件的离焦曲线图。
具体的,图18示出了镜头组件10在空间频率为80lp/mm的离焦曲线,由图6可知,镜头组件10在不同视场下的调制传递函数MTF在弧矢方向和子午方向均大于0.6,不同视场在弧矢方向和子午方向的场曲均小于5μm,该镜头组件10具有高的成像质量。
图19为本申请实施例四提供的一种电子设备的镜头组件的畸变曲线图。
参见图19所示,该镜头组件10的光学畸变控制在3%以内,满足变形差异要求,具有高的成像质量。
实施例五
图20为本申请实施例五提供的一种电子设备的摄像头模组处于第一状态时的仿真结构示意图,图21为本申请实施例五提供的一种电子设备的摄像头模组处于第二状态时的仿真结构示意图。
本实施例中,参见图20所示,镜头组件10包括的镜片数量为8个,镜头组件10包括沿着光轴(图中虚线)的方向,从物侧至像侧,依次层叠的第一镜片11、第二镜片12、第三镜片13、第四镜片14、第五镜片15、第六镜片16、第七镜片17和第八镜片18。
镜头盖板20位于第一镜片11面向物侧的一侧,图像传感器30位于第八镜片18面向像侧的一侧。当镜头盖板20和镜头组件10朝向像侧收缩,电子设备100的摄像头模组101处于第一状态(非工作状态)时,参见图20所示,镜头盖板20和镜头组件10处于收缩状态,镜头盖板20与镜头组件10之间、镜头组件10与图像传感器30之间的距离较小。
当镜头盖板20朝向物侧移动并伸出至壳体110外,使电子设备100的摄像头模组101处于第二状态(工作状态)时,参见图21所示,镜头盖板20与图像传感器30之间空出避让空间,镜头组件10可以在避让空间内发生沿光轴方向移动,以实现对焦。
其中,镜头盖板20的伸缩比SL1/SL2=0.851。在拍摄时,镜头盖板20的物侧面至被摄物体的距离范围d>120mm。
其中,第一镜片11具有正光焦度,第一镜片11的物侧面与光轴对应的部分为凸面, 第一镜片11的像侧面与光轴对应的部分为凹面。
第一镜片11的焦距f1=11.78,镜头组件10的总焦距f=8.60,第一镜片11的焦距f1与镜头组件10的总焦距f的比值可以为:|f1/f|=1.3691。
第二镜片12具有负光焦度,第二镜片12的物侧面与光轴对应的部分为凸面,第二镜片12的像侧面与光轴对应的部分为凹面。第二镜片12的焦距f2与镜头组件10的总焦距f的比值可以为:|f2/f|=9.8198。
其中,第一镜片11的阿贝数vd1=81.6,第二镜片12的阿贝数vd2=20.4,第一镜片11的阿贝数vd1和第二镜片12的阿贝数vd2满足:vd1-vd2=61.2>60。
第一镜片11与光轴对应部位的厚度CT1=1.40,第二镜片12物侧面的曲率半径R3=6.62,第二镜片12像侧面的曲率半径R4=5.81,第一镜片11与第二镜片12满足:10<CT1(R3+R4)/(R3-R4)=21.45<40。
第三镜片13具有正光焦度,第三镜片13的物侧面与光轴对应的部分为凸面,第三镜片13的像侧面与光轴对应的部分为凹面。第三镜片13的焦距f3与镜头组件10的总焦距f的比值可以为:|f3/f|=6.6576。
第四镜片14具有负光焦度,第四镜片14的物侧面与光轴对应的部分为凹面,第四镜片14的像侧面与光轴对应的部分为凹面。第四镜片14的焦距f4与镜头组件10的总焦距f的比值可以为:|f4/f|=2.9026。
第五镜片15具有正光焦度,第五镜片15的物侧面与光轴对应的部分为凸面,第五镜片15的像侧面与光轴对应的部分为凸面。第五镜片15的焦距f5与镜头组件10的总焦距f的比值可以为:|f5/f|=3.4018。
第六镜片16具有负光焦度,第六镜片16的物侧面与光轴对应的部分为凸面,第六镜片16的像侧面与光轴对应的部分为凹面。第六镜片16的焦距f6与镜头组件10的总焦距f的比值可以为:|f6/f|=1.5108。
第七镜片17具有正光焦度,第七镜片17的物侧面与光轴对应的部分为凸面,第七镜片17的像侧面与光轴对应的部分为凹面。第七镜片17的焦距f7与镜头组件10的总焦距f的比值可以为:|f7/f|=0.6061。
第八镜片18具有负光焦度,第八镜片18的物侧面与光轴对应的部分为凸面,第八镜片18的像侧面与光轴对应的部分为凹面。第八镜片18的焦距f8与镜头组件10的总焦距f的比值可以为:|f8/f|=0.8015。
下表14示出了本申请实施例五提供的一种电子设备的摄像头模组中各镜片的光学参数。

其中,CG表示镜头盖板20,L1为第一镜片11,L2为第二镜片12,L3为第三镜片13,L4为第四镜片14,L5为第五镜片15,L6为第六镜片16,L7为第七镜片17,L8为第八镜片18,IR为滤光片40。S1表示物侧面,S2表示像侧面。
其中,镜面的厚度说明可参见实施例一,具体的,S1对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的物侧面至该光学元件的像侧面之间沿光轴方向上的距离。
S2对应的第一状态时或第二状态时的厚度,表示电子设备100的摄像头模组101处于第一状态时或处于第二状态时,光学元件的像侧面至与该像侧面相邻的光学元件的镜面之间沿光轴方向上的距离。
下表15示出了本申请实施例五提供的一种电子设备中镜头组件的各镜片的圆锥系数和非球面系数。

由表15可知,第一镜片11至第八镜片18,共包含16个非球面。镜头组件10中各镜片的非球面面型z可以通过以下非球面公式计算:
其中,z为非球面矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为圆锥系数,Ai表示第i阶非球面系数。根据获得的非球面矢高可以对各镜片进行仿真最终获得如图20和图21所示的摄像头模组101。
由上述各镜片组成的摄像头模组101的光学参数可以参见下表16所示。
表16示出了本申请实施例五提供的一种电子设备的摄像头模组的光学参数。
由表16可知,镜头组件10的像高和光圈数满足:0.7<IH/(4*F#)=2.63<6,本申请实施例五所提供的镜头组件10具有大光圈、大靶面的特性,且镜头盖板20具有较小的收缩比,满足电子设备100的减薄化设计需求。
图22为本申请实施例五提供的一种电子设备的镜头组件的离焦曲线图。
具体的,图22示出了镜头组件10在空间频率为80lp/mm的离焦曲线,由图22可知,镜头组件10在不同视场下的调制传递函数MTF在弧矢方向和子午方向均大于0.6,不同视场在弧矢方向和子午方向的场曲均小于5μm,该镜头组件10具有高的成像质量。
图23为本申请实施例五提供的一种电子设备的镜头组件的畸变曲线图。
参见图23所示,该镜头组件10的光学畸变控制在3%以内,满足变形差异要求,具有高的成像质量。
需要说明的是,本申请实施例涉及的数值和数值范围为近似值,可能会存在一定范围的误差,这部分误差本领域技术人员可以认为忽略不计。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (19)

  1. 一种电子设备,其特征在于,包括壳体、镜头盖板和设置在所述壳体内的镜头组件,所述镜头组件包括沿着光轴方向从物侧至像侧依次排列的多个镜片;
    所述镜头盖板位于所述镜头组件面向所述物侧的一侧,所述镜头盖板可沿所述光轴方向伸出至所述壳体外以形成避让空间,所述镜头组件整体或所述镜头组件中靠近所述物侧的至少一个镜片沿所述光轴方向在所述避让空间内移动;
    所述镜头组件满足条件式:0.7<IH/(4*F#)<6,其中,IH为镜头组件的全像高,F#为镜头组件的光圈数。
  2. 根据权利要求1所述的电子设备,其特征在于,还包括盖板驱动装置和镜头驱动装置,所述盖板驱动装置用于驱动所述镜头盖板沿所述光轴方向移动;
    所述镜头驱动装置用于驱动所述镜头组件整体沿所述光轴方向移动,或者,所述镜头驱动装置用于驱动所述镜头组件中靠近所述物侧的至少一个镜片沿所述光轴方向移动。
  3. 根据权利要求1或2所述的电子设备,其特征在于,所述镜头盖板的伸缩比小于0.95。
  4. 根据权利要求1-3任一所述的电子设备,其特征在于,所述镜头组件的等效焦距为18mm~30mm。
  5. 根据权利要求1-4任一所述的电子设备,其特征在于,多个所述镜片均具有光焦度;
    所述镜头组件至少包括沿所述物侧至所述像侧依次排列的第一镜片、第二镜片、第三镜片、第四镜片和第五镜片。
  6. 根据权利要求5所述的电子设备,其特征在于,所述第一镜片的阿贝数vd1与所述第二镜片的阿贝数vd2满足条件式:|vd1-vd2|>60。
  7. 根据权利要求5或6所述的电子设备,其特征在于,所述第一镜片的焦距f1与所述镜头组件的总焦距f满足条件式:0.5≤|f1/f|≤1.4。
  8. 根据权利要求5-7任一所述的电子设备,其特征在于,所述第一镜片与所述第二镜片满足条件式:10<CT1(R3+R4)/(R3-R4)<40;
    其中,CT1为所述第一镜片与所述光轴对应部位的厚度,R3为所述第二镜片物侧面的曲率半径,R4为所述第二镜片像侧面的曲率半径。
  9. 根据权利要求5-8任一所述的电子设备,其特征在于,所述镜片的数量为5~10。
  10. 根据权利要求5-9任一所述的电子设备,其特征在于,所述镜头组件还包括从所述第五镜片至所述像侧依次排列的第六镜片和第七镜片;
    所述第一镜片具有正光焦度,所述第二镜片具有负光焦度,所述第三镜片具有负光焦度,所述第四镜片具有正光焦度,所述第五镜片具有负光焦度,所述第六镜片具有正光焦度,所述第七镜片具有负光焦度。
  11. 根据权利要求10所述的电子设备,其特征在于,所述第一镜片的物侧面至少与所述光轴对应的部分为凸面,所述第一镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第二镜片的物侧面至少与所述光轴对应的部分为凸面,所述第二镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第三镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第四镜片的物侧面至少与所述光轴对应的部分为凸面;
    所述第五镜片的物侧面至少与所述光轴对应的部分为凸面,所述第五镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第六镜片的物侧面至少与所述光轴对应的部分为凸面,所述第六镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第七镜片的像侧面至少与所述光轴对应的部分为凹面。
  12. 根据权利要求5-9任一所述的电子设备,其特征在于,所述镜头组件还包括从所述第二镜片至所述像侧依次排列的第三镜片、第四镜片、第五镜片、第六镜片、第七镜片和第八镜片;
    所述第一镜片具有正光焦度,所述第二镜片具有负光焦度,所述第三镜片具有正光焦度,所述第四镜片具有负光焦度,所述第五镜片具有正光焦度,所述第六镜片具有负光焦度,所述第七镜片具有正光焦度,所述第八镜片具有负光焦度。
  13. 根据权利要求12所述的电子设备,其特征在于,所述第一镜片的物侧面至少与所述光轴对应的部分为凸面,所述第一镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第二镜片的物侧面至少与所述光轴对应的部分为凸面,所述第二镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第三镜片的物侧面至少与所述光轴对应的部分为凸面,所述第三镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第四镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第五镜片的物侧面至少与所述光轴对应的部分为凸面,所述第五镜片的像侧面至少与所述光轴对应的部分为凸面;
    所述第六镜片的物侧面至少与所述光轴对应的部分为凸面,所述第六镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第七镜片的物侧面至少与所述光轴对应的部分为凸面,所述第七镜片的像侧面至少与所述光轴对应的部分为凹面;
    所述第八镜片的物侧面至少与所述光轴对应的部分为凸面,所述第八镜片的像侧面至少与所述光轴对应的部分为凹面。
  14. 根据权利要求1-13任一所述的电子设备,其特征在于,还包括图像传感器,所述图像传感器位于所述镜头组件面向所述像侧的一侧。
  15. 根据权利要求14所述的电子设备,其特征在于,所述镜头组件以第一中心点为旋转中心绕第一轴线旋转,所述第一中心点与所述图像传感器的中心重合,所述第一轴线过所述第一中心点,且所述第一轴线与所述图像传感器的感光面平行。
  16. 根据权利要求15所述的电子设备,其特征在于,所述镜头组件的旋转角度为+10°~-10°。
  17. 根据权利要求14-16任一所述的电子设备,其特征在于,所述镜头组件沿第一方向移动,所述第一方向与所述图像传感器的感光面平行。
  18. 根据权利要求17所述的电子设备,其特征在于,所述镜头组件的移动距离为+1mm~-1mm。
  19. 根据权利要求14-18任一所述的电子设备,其特征在于,还包括滤光片,所述滤光片位于所述图像传感器和所述镜头组件之间。
PCT/CN2023/080164 2022-03-10 2023-03-07 一种电子设备 WO2023169441A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380026186.5A CN118843814A (zh) 2022-03-10 2023-03-07 一种电子设备
EP23766019.6A EP4468051A1 (en) 2022-03-10 2023-03-07 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210240794.3A CN116774377B (zh) 2022-03-10 2022-03-10 一种电子设备
CN202210240794.3 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023169441A1 true WO2023169441A1 (zh) 2023-09-14

Family

ID=87936009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080164 WO2023169441A1 (zh) 2022-03-10 2023-03-07 一种电子设备

Country Status (3)

Country Link
EP (1) EP4468051A1 (zh)
CN (2) CN116774377B (zh)
WO (1) WO2023169441A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406409A (zh) * 2023-12-11 2024-01-16 江西联益光学有限公司 光学镜头

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117008277A (zh) * 2023-09-28 2023-11-07 荣耀终端有限公司 镜头组件、摄像模组及终端装置
CN117406399B (zh) * 2023-12-14 2024-03-26 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212908A (ja) * 2003-01-09 2004-07-29 Olympus Corp 結像光学系及びそれを用いた撮像装置
JP2010145648A (ja) * 2008-12-17 2010-07-01 Fujinon Corp 3群構成の撮像レンズおよび撮像装置
JP2013195637A (ja) * 2012-03-19 2013-09-30 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置
WO2022001589A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 光学镜头、摄像头模组和电子设备
CN114047595A (zh) * 2021-09-30 2022-02-15 华为技术有限公司 一种镜头组件、摄像头模组及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907417B2 (ja) * 2012-03-16 2016-04-26 株式会社リコー 結像レンズ、撮像装置および情報装置
CN104155744B (zh) * 2013-05-14 2016-12-28 信泰光学(深圳)有限公司 变焦镜头
CN112346208B (zh) * 2019-08-09 2022-08-26 华为技术有限公司 一种大光圈镜头和终端设备
CN113467046B (zh) * 2020-03-30 2022-09-09 华为技术有限公司 一种光学镜头、摄像头模组及探测器
CN113740999B (zh) * 2020-05-29 2023-02-10 华为技术有限公司 光学镜头、镜头模组和电子设备
CN111693142B (zh) * 2020-07-15 2025-02-18 北创光电科技(邵阳)有限公司 一种大光圈的光谱采集镜头
CN112782833A (zh) * 2021-01-22 2021-05-11 江西晶超光学有限公司 成像镜头、取像模组和电子装置
CN214256455U (zh) * 2021-03-29 2021-09-21 维沃移动通信有限公司 电子设备
CN215867304U (zh) * 2021-05-14 2022-02-18 Oppo广东移动通信有限公司 镜头模组及终端
CN113552706A (zh) * 2021-06-30 2021-10-26 Oppo广东移动通信有限公司 电子设备
CN113422898B (zh) * 2021-07-26 2023-10-10 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN215268474U (zh) * 2021-07-26 2021-12-21 Oppo广东移动通信有限公司 可伸缩摄像头组件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212908A (ja) * 2003-01-09 2004-07-29 Olympus Corp 結像光学系及びそれを用いた撮像装置
JP2010145648A (ja) * 2008-12-17 2010-07-01 Fujinon Corp 3群構成の撮像レンズおよび撮像装置
JP2013195637A (ja) * 2012-03-19 2013-09-30 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置
WO2022001589A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 光学镜头、摄像头模组和电子设备
CN114047595A (zh) * 2021-09-30 2022-02-15 华为技术有限公司 一种镜头组件、摄像头模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406409A (zh) * 2023-12-11 2024-01-16 江西联益光学有限公司 光学镜头
CN117406409B (zh) * 2023-12-11 2024-03-26 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN118843814A (zh) 2024-10-25
EP4468051A1 (en) 2024-11-27
CN116774377A (zh) 2023-09-19
CN116774377B (zh) 2024-12-24

Similar Documents

Publication Publication Date Title
KR101811570B1 (ko) 촬영 렌즈 광학계
JP6237106B2 (ja) ズームレンズ及び撮像装置
TW201939093A (zh) 攝像用光學鏡組、取像裝置及電子裝置
CN114047595B (zh) 一种镜头组件、摄像头模组及电子设备
WO2023169441A1 (zh) 一种电子设备
CN114236775A (zh) 取像镜头组、取像装置及电子装置
CN115561881B (zh) 摄像头模组和电子设备
JP2008268977A (ja) ズームレンズ、カメラおよび携帯情報端末装置
CN103513407A (zh) 变焦镜头及变焦镜头模块
CN105527700B (zh) 望远镜头以及具有该望远镜头的摄像装置
WO2023174212A1 (zh) 长焦镜头、摄像头模组及电子设备
WO2025044996A1 (zh) 镜头组件、摄像头模组及电子设备
KR20230003582A (ko) 광학 렌즈, 렌즈 모듈 및 단말
KR102378519B1 (ko) 단초점 렌즈 및 이를 포함한 촬영 장치
CN217561811U (zh) 一种镜头组件、摄像头模组及电子设备
WO2023179607A1 (zh) 光学镜头、摄像头模组及电子设备
WO2022228189A1 (zh) 光学镜头、摄像头模组和电子设备
CN114002814A (zh) 光学镜头、摄像模组及电子设备
WO2024140316A1 (zh) 镜头组件、摄像头模组及电子设备
JP2015060083A (ja) ズームレンズ及び撮像装置
WO2024193297A1 (zh) 镜头组件、摄像头模组及电子设备
WO2021051981A1 (zh) 摄像光学镜头、摄像头模组和电子设备
WO2025026023A1 (zh) 镜头组件、摄像头模组及电子设备
WO2024222578A1 (zh) 镜头组件、摄像头模组及电子设备
CN118534626A (zh) 变焦镜头、摄像头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023766019

Country of ref document: EP

Ref document number: 23766019

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023766019

Country of ref document: EP

Effective date: 20240820

WWE Wipo information: entry into national phase

Ref document number: 18845222

Country of ref document: US

Ref document number: 202380026186.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE