WO2023169068A1 - 一种基于金属诱导有机界面层的有机光电器件及制备方法 - Google Patents
一种基于金属诱导有机界面层的有机光电器件及制备方法 Download PDFInfo
- Publication number
- WO2023169068A1 WO2023169068A1 PCT/CN2022/144386 CN2022144386W WO2023169068A1 WO 2023169068 A1 WO2023169068 A1 WO 2023169068A1 CN 2022144386 W CN2022144386 W CN 2022144386W WO 2023169068 A1 WO2023169068 A1 WO 2023169068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- organic
- metal
- interface
- induced
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 55
- 239000002184 metal Substances 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 238000012986 modification Methods 0.000 claims abstract description 50
- 230000004048 modification Effects 0.000 claims abstract description 50
- 239000002131 composite material Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000004528 spin coating Methods 0.000 claims abstract description 12
- 230000006698 induction Effects 0.000 claims abstract description 4
- 230000005693 optoelectronics Effects 0.000 claims description 57
- 239000000463 material Substances 0.000 claims description 33
- 239000011521 glass Substances 0.000 claims description 30
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 11
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 239000003599 detergent Substances 0.000 claims description 6
- 238000002207 thermal evaporation Methods 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical group 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- 238000007650 screen-printing Methods 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 239000000075 oxide glass Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000007790 scraping Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims 44
- 239000012044 organic layer Substances 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 abstract description 13
- 230000008020 evaporation Effects 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 4
- 238000012546 transfer Methods 0.000 abstract description 4
- 230000004888 barrier function Effects 0.000 abstract description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000011368 organic material Substances 0.000 abstract 2
- 125000003277 amino group Chemical group 0.000 abstract 1
- 230000003993 interaction Effects 0.000 abstract 1
- 125000001246 bromo group Chemical group Br* 0.000 description 51
- 230000000052 comparative effect Effects 0.000 description 30
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000370 acceptor Substances 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 238000011056 performance test Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- DKLWRIQKXIBVIS-UHFFFAOYSA-N 1,1-diiodooctane Chemical compound CCCCCCCC(I)I DKLWRIQKXIBVIS-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- -1 9,9-bis(3'-(N,N-dimethylamino)propyl)fluorenyl-2,7-diyl Chemical group 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical group [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the invention belongs to the technical field of organic optoelectronic devices and mainly relates to an organic optoelectronic device based on a metal-induced organic interface layer and a preparation method.
- Organic optoelectronic devices have been widely studied due to their wide source of materials, solution processing, and good mechanical properties, and have good application potential. With the synthesis and application of new materials with excellent properties and the continuous improvement of device preparation methods, the device performance of organic optoelectronic devices has been continuously improved. Since its development, the photoelectric conversion efficiency of organic optoelectronic devices has been greatly improved, which has greatly promoted the commercialization process of organic optoelectronic devices.
- Interface modification is the main means to improve the interface connection performance in organic optoelectronic devices.
- device stability has become a major problem that limits the commercial use of organic optoelectronic devices.
- the structural stability of the device can be improved through material design or interface structure optimization.
- PEDOT:PSS Advanced Energy Materials, 2020, 10, 2000743 commonly used in organic optoelectronic devices is acidic, which will reduce the stability of the device structure.
- PFN-Br a cathode interface material used in organic optoelectronic devices
- water-soluble ZnO is widely used in the preparation of organic optoelectronic devices and is currently one of the most commonly used interface materials (Nature Photonics 2012, 6 (2), 115-120).
- the preparation method of ZnO solution is cumbersome and cannot be stored for a long time. High-temperature heating is required when preparing devices.
- Water-alcoholic cathode interface modification material PFN-Br (poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)fluorenyl-2,7-diyl)-ALT-[( 9,9-Di-n-octylfluorenyl 2,7-diyl)-bromo) is often used in the preparation of organic optoelectronic devices and exhibits excellent performance (Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene. Chemistry of Materials 2004, 16, 708-716).
- the present invention proposes a method for preparing a metal-induced organic dipole multifunctional interface layer, and successfully applies it to the solution method to prepare organic solar cells, organic photodetectors and other devices, achieving efficient and stable of organic optoelectronic devices.
- the invention provides an organic photoelectric device based on a metal-induced organic interface layer.
- the device structure includes a cathode, a cathode interface modification layer, an active layer, an anode interface modification layer and an anode.
- the cathode is indium tin oxide glass (ITO).
- ITO is a transparent and conductive substrate material.
- the cathode interface modification layer is a metal layer/organic interface layer multifunctional composite interface layer.
- the cathode interface modification layer is a metal/PFN-Br composite interface.
- the metal is preferably Ag, which is evaporated on the ITO surface, and PFN-Br is spin-coated on the metal surface to form a film.
- the thickness of the metal layer is 0.5-10nm, and the thickness of the PFN-Br organic interface layer is 10nm.
- the active layer material is PM6:Y6, PTB7-Th:PCBM or PTB7-Th:COTIC-4F.
- the molecular structure of donor PM6 and acceptor Y6 can be found in the literature Joule, 2019, 3(4):1140-1151; the molecular structure of the donor PTB7-Th and acceptor PCBM can be found in the literature Advanced Energy Materials, 2019, 9(19): 1803394;
- the molecular structures of donor PTB7-Th and acceptor COTIC-4F please refer to the literature Advanced Energy Materials, 2018, 8(24): 1801212.
- the optimal thickness of the active layer is 100nm.
- the active layer is made of PM6:Y6, and the optimal thickness is 100nm.
- the anode interface modification layer is made of metal oxide, and the optimal thickness is 10 nm.
- the anode interface modification layer is molybdenum oxide MoO 3 , with an optimal thickness of 10 nm.
- the anode is a metal, which is deposited on the anode modification layer through thermal evaporation, with a thickness of 100 nm.
- the anode is metal Al or Ag, with a thickness of 100 nm.
- the organic optoelectronic device includes an organic solar cell and an organic photodetector.
- the invention provides a method for preparing an organic optoelectronic device based on a metal-induced organic interface layer, which includes the following steps:
- the cathode interface modification layer and active layer are sequentially prepared using a solution method
- the cathode substrate is treated as follows: put the ITO glass into deionized water, add an appropriate amount of detergent, and ultrasonic for 20 minutes. Repeat this 2-3 times, and then clean it with deionized water for 2-3 times. times; then ultrasonically clean the ITO glass twice with isopropyl alcohol for 20 minutes each time; finally put the ITO glass into an oven at 70 ⁇ C for 8-12 hours before use.
- the preparation method of the cathode interface modification layer is: move the processed ITO glass into the evaporation system, and evaporate the metal layer under a pressure of 1 ⁇ 10 -4 Pa to 4 ⁇ 10 -4 Pa. Then put it into a nitrogen glove box, and prepare the prepared organic interface layer material solution on the surface of the metal layer through spin coating, spray coating, scraping, screen printing and other methods to form a metal layer/organic interface layer multifunctional composite interface layer.
- the preparation method of the active layer is: dissolve the active layer material in a solvent, and prepare it on the multifunctional composite interface layer by spin coating, spray coating, scraping, screen printing and other methods to form an active layer. layer.
- the solvent is chloroform, chlorobenzene or chlorobenzene plus 3% diiodooctane.
- the preparation method of the anode interface modification layer is: the metal oxide is prepared as the anode interface modification layer by thermal evaporation or nanoparticle solution deposition, and then metal Al is evaporated on the anode interface modification layer or Ag serves as the anode top electrode.
- a thermal evaporation method is used to evaporate a metal oxide as the anode interface modification layer under a pressure range of 1 ⁇ 10 -4 Pa to 4 ⁇ 10 -4 Pa, and then the metal is evaporated as the anode. top electrode.
- the present invention has the following advantages and beneficial effects:
- the invention solves the problem of instability of water-alcohol-soluble interface materials such as PFN-Br in organic optoelectronic devices. Moreover, the preparation process of metal/PFN-Br does not require high-temperature heating, and the production method is simple and easy to operate. As a typical case, the present invention prepares a multifunctional organic composite interface of Ag/PFN-Br. When PFN-Br and Ag come into contact, there is strong chemical adsorption between the two, effectively avoiding the spin coating of PFN-Br on the active layer. destroyed in the process. In addition, the metal/PFN-Br composite interface can effectively reduce the work function of the ITO surface (the work function of ITO is 4.8eV.
- the surface work function of the substrate is reduced to 4.0eV. ) to better match the LUMO energy level of the acceptor, reduce the charge transfer barrier between the active layer and the electrode, facilitate the transmission and collection of electrons, effectively improve the charge transfer efficiency, and ultimately prepare organic optoelectronic devices with excellent comprehensive performance .
- the organic optoelectronic device based on the Ag/PFN-Br composite interface prepared by the present invention has good stability. After being placed in the glove box for more than 900 hours, the device efficiency still maintains 90% of the initial efficiency, which is far more than simply using PFN-Br. Device efficiency of Br.
- Figure 1 is a schematic structural diagram of an organic optoelectronic device based on a metal/PFN-Br composite interface prepared in the present invention
- Figure 2 is a preparation flow chart of an organic optoelectronic device based on a metal/PFN-Br composite interface prepared in the present invention
- Figure 3 is a graph showing the relationship between current density and voltage under illumination conditions of the organic optoelectronic devices prepared in Example 1 and Comparative Example 1;
- Figure 4 is a graph showing the relationship between current density and voltage under dark conditions for the organic optoelectronic devices prepared in Example 1 and Comparative Example 1;
- Figure 5 is a graph showing the relationship between device efficiency and time in a nitrogen glove box for the organic optoelectronic devices prepared in Example 1 and Comparative Example 1.
- the following examples prepare an efficient and stable organic optoelectronic device based on metal-induced organic dipole interface materials.
- the device structure mainly includes cathode 01, cathode interface modification layer 02, active layer 03, anode interface modification layer 04 and anode 05. Its structural schematic diagram is as follows As shown in Figure 1.
- the cathode is indium tin oxide glass (ITO), and the cathode interface modification layer is a metal/PFN-Br composite interface material.
- the metal is evaporated on the ITO surface, and PFN-Br is spin-coated on the metal surface to form a film.
- the thickness of the metal layer is 0.5 -10nm, the optimal value is 1nm, and the thickness of PFN-Br spin coating is about 10nm.
- the active layer uses PM6:Y6, PTB7-Th:PCBM or PTB7-Th:COTIC-4F, and the thickness of the active layer is 100nm.
- the anode interface modification layer is MoO 3 with a thickness of 10 nm; the anode is 100 nm metal Al or Ag, which is obtained by evaporation method.
- the preparation flow chart of the organic optoelectronic device is shown in Figure 2.
- This embodiment applies the Ag/PFN-Br composite interface to the preparation of organic optoelectronic devices, and the organic optoelectronic devices are organic solar cells.
- the specific preparation steps are as follows:
- the main feature of the organic optoelectronic device in Example 1 is that the cathode interface modification layer is an Ag/PFN-Br composite interface prepared at room temperature, the average evaporation thickness of Ag is 1 nm, and the PFN-Br spin-coated film is formed. The average thickness is 8nm.
- Comparative Example 1 and Example 1 are basically the same, except that the cathode interface modification layer is ZnO, and the device structure is ITO/ZnO/PM6: Y6/MoO 3 /Al.
- ZnO is spin-coated on the ITO surface by spin coating.
- Example 3 and 4 are respectively graphs showing the relationship between current density and voltage of the devices of Example 1 and Comparative Example 1 under light and dark conditions.
- the device structure of Example 1 is ITO/Ag/PFN-Br/PM6:Y6/MoO 3 /Al
- the device structure of Comparative Example 1 is ITO/ZnO/PM6:Y6/MoO 3 /Al.
- Curve 1 represents the data measured on the device structure of Comparative Example 1
- curve 2 represents the data measured on the device structure of Embodiment 1.
- Table 1 is the performance test data of the devices of Example 1 and Comparative Example 1 under light conditions.
- Comparative Example 1 uses ZnO as the cathode modification layer, the open circuit voltage of the device is 0.832 V, and the short circuit current is 25.27 mA/cm 2 ;
- Example 1 uses Ag/PFN-Br as the cathode interface modification The open circuit voltage of the layer device is 0.829 V, and the short circuit current is 26.12 mA/cm 2 .
- organic optoelectronic devices using metal-induced water-alcoholic composite interface can effectively improve charge transfer efficiency, thereby increasing short-circuit current density.
- This embodiment still applies the Ag/PFN-Br composite interface to the preparation of a flip-chip organic optoelectronic device.
- the organic optoelectronic device is an organic solar cell, and its device structure is ITO/Ag/PFN-Br/PTB7-Th:PCBM. /MoO 3 /Ag.
- the specific preparation steps are as follows:
- the preparation method of Comparative Example 2 is basically the same as that of Example 2, except that the material used for the cathode interface layer is ZnO, and its device structure is ITO/ZnO/PTB7-Th:PCBM/MoO 3 /Ag.
- the preparation steps of the ZnO precursor solution are the same as step (2) of Comparative Example 1.
- Example 2 The performance test data of the devices of Example 2 and Comparative Example 2 are shown in Table 2. It can be found that Ag/PFN-Br still has a good device modification effect in the fullerene system. The filling factor and device efficiency of the device in Example 2 are both better than those in Comparative Example 2, which illustrates that the Ag/PFN-Br composite interface has good applicability in the preparation of flip-chip organic optoelectronic devices.
- This embodiment applies the Ag/PFN-Br composite interface to the preparation of high-performance organic photodetectors.
- the preparation process is basically the same as the preparation method of the previous organic optoelectronic device (organic solar cell).
- the device structure is ITO/Ag/PFN-Br/PTB7-Th:COTIC-4F/MoO 3 /Al.
- the preparation method of Comparative Example 3 is basically the same as that of Example 3, except that the cathode interface layer uses ZnO, and the preparation steps of the ZnO precursor solution are the same as step (2) of Comparative Example 1.
- the device structure is ITO/ZnO/PTB7-Th:COTIC-4F/MoO 3 /Al.
- the performance test data of the device of Comparative Example 3 is shown in Table 3. It can be seen from the data in Table 3 that the Ag:PFN-Br composite interface has smaller dark current under zero bias and has a larger rectification ratio.
- the specific detection rate of the device of Example 3 is more than twice that of Comparative Example 3. It shows that the Ag/PFN-Br composite interface not only has a good device modification effect in the organic solar cells in Example 1 and Example 2, but also has good performance in organic photodetectors.
- This embodiment still applies the Ag/PFN-Br composite interface to the preparation of a flip-chip organic optoelectronic device.
- the organic optoelectronic device is an organic solar cell, and its device structure is ITO/Ag (3nm)/PFN-Br/PTB7- Th:PCBM/MoO 3 /Ag. Specific preparation steps:
- step (3) Spin-coat the active layer based on the previous steps.
- the specific operation is the same as step (3) of Embodiment 2.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种基于金属诱导有机界面层的有机光电器件及制备方法。所述金属诱导有机界面层是通过在导电电极表面预蒸镀金属薄层作为诱导层,在室温下旋涂含有氨基基团或者其他极性基团的有机材料(如PFN-Br),通过金属与有机材料之间的相互作用产生诱导偶极,制备出多功能复合界面,应用于溶液法制备有机太阳能电池、有机光电探测器等有机光电器件中。作为典型例子,本发明采用Ag/PFN-Br作为阴极界面修饰层应用于有机光电器件,通过Ag的诱导作用,PFN-Br在电极表面形成了强烈的化学吸附排列,从而形成强烈的界面偶极调控电极表面电势,降低活性层和电极间的电荷传输势垒,最终实现高效且稳定的有机光电器件的制备。
Description
本发明属于有机光电器件技术领域,主要涉及一种基于金属诱导有机界面层的有机光电器件及制备方法。
有机光电器件由于其材料来源广,可溶液加工,良好的机械性能等特点被广泛研究,具有良好的应用潜力。随着性能优异的新材料的合成与应用,器件制备方法的不断完善,有机光电器件的器件性能得到了不断的提升。发展至今,有机光电器件的光电转换效率获得了极大的提升,大大推动了有机光电器件的商业化进程。
作为多层材料叠加而成的器件,不同材料间的界面接触性能是影响器件效率的重要因素。界面修饰是提升有机光电器件中界面连接性能的主要手段。随着有机光电器件效率的不断提升,器件稳定性成为了限制有机光电器件商用需要解决的主要问题。一般来讲,可以通过材料设计或者界面结构优化来提升器件的结构稳定性。例如有机光电器件中常用的阳极界面修饰材料PEDOT:PSS(Advanced Energy Materials, 2020, 10, 2000743)溶液呈酸性,会降低器件结构的稳定性。用于有机光电器件的阴极界面材料PFN-Br会展现出明显的不稳定性。水溶性ZnO作为阴极界面修饰材料被广泛应用于有机光电器件的制备,是目前最常用的界面材料之一(Nature Photonics
2012, 6 (2), 115-120)。但是ZnO溶液的制备方法比较麻烦,而且不能长时间保存,制备器件时还需要高温加热。水醇溶性阴极界面修饰材料PFN-Br(聚[(9,9-二(3'-(N,N-二甲氨基)丙基)芴基-2,7-二基)-ALT-[(9,9-二正辛基芴基2,7-二基)-溴)经常应用于有机光电器件的制备,并展现出优异的性能(Novel
Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene.
Chemistry of Materials 2004, 16, 708-716)。然而,对于PFN-Br作为阴极界面应用于倒装有机光电器件的应用却鲜有报道,而且正装器件的稳定性也较差。因此,将这类水/醇溶性界面材料用于制备高效且稳定的有机光电器件中是很有意义的。
基于上述研究背景,本发明提出了一种金属诱导有机偶极多功能界面层的制备方法,并成功将其应用于溶液法制备有机太阳能电池、有机光电探测器等器件中,得到了高效且稳定的有机光电器件。
本发明采用如下技术方案:
本发明提供了一种基于金属诱导有机界面层的有机光电器件,其器件结构包括阴极、阴极界面修饰层、活性层、阳极界面修饰层和阳极。
进一步地,所述阴极为氧化铟锡玻璃(ITO)。ITO是一种透明且具有良好导电性的衬底材料。
进一步地,所述阴极界面修饰层为金属层/有机界面层多功能复合界面层。
更进一步地,所述阴极界面修饰层为金属/PFN-Br复合界面。其中,金属优选为Ag,蒸镀在ITO表面,PFN-Br在金属表面旋涂成膜。金属层厚度为0.5-10nm,PFN-Br有机界面层厚度为10nm。
进一步地,所述活性层材料为PM6:Y6,PTB7-Th:PCBM或PTB7-Th:COTIC-4F。其中,供体PM6和受体Y6的分子结构参见文献Joule, 2019, 3(4):1140-1151;供体PTB7-Th和受体PCBM的分子结构参见文献Advanced Energy
Materials, 2019, 9(19): 1803394;供体PTB7-Th和受体COTIC-4F分子结构参见文献Advanced Energy
Materials, 2018, 8(24): 1801212。活性层厚度最优值为100nm。
优选地,所述活性层采用PM6:Y6,厚度最优值为100nm。
进一步地,所述阳极界面修饰层为金属氧化物,厚度最优值为10nm。
优选地,所述阳极界面修饰层为氧化钼MoO
3,厚度最优值为10nm。
进一步地,所述阳极为金属,通过热蒸镀法沉积在阳极修饰层上,厚度为100nm。
优选地,所述阳极为金属Al或者Ag,厚度为100nm。
进一步地,所述有机光电器件包括有机太阳能电池和有机光电探测器。
本发明提供了一种基于金属诱导有机界面层的有机光电器件的制备方法,包括以下步骤:
(1)处理阴极基底材料;
(2)在ITO表面采用热蒸镀法沉积金属层作为诱导层后,依次采用溶液法制备阴极界面修饰层和活性层;
(3)依次制备阳极界面修饰层和阳极,最终得到所述有机光电器件。
进一步地,步骤(1)中,阴极基底的处理方法为:将ITO玻璃放入去离子水中加入适量的清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70˚C的烘箱中8-12个小时后备用。
进一步地,步骤(2)中,阴极界面修饰层的制备方法为:将处理好的ITO玻璃移入蒸镀系统,在1×10
-4Pa至4×10
-4Pa的压强下蒸镀金属层后放入氮气手套箱,将配制好的有机界面层材料溶液通过旋涂、喷涂、刮图、丝网印刷等方法制备在金属层表面,形成金属层/有机界面层多功能复合界面层。
进一步地,步骤(2)中,活性层的制备方法为:将活性层材料溶于溶剂中,通过旋涂、喷涂、刮图、丝网印刷等方法制备在多功能复合界面层上,形成活性层。
进一步地,所述的溶剂为氯仿、氯苯或者氯苯加3%的二碘辛烷。
进一步地,步骤(3)中,阳极界面修饰层制备方法为:金属氧化物通过热蒸镀法或者纳米颗粒溶液沉积法制备作为阳极界面修饰层,随后在阳极界面修饰层上蒸镀金属Al或者Ag作为阳极顶电极。
优选地,步骤(3)中,采用热蒸镀法在1×10
-4Pa到4×10
-4Pa的压强范围下蒸镀金属氧化物作为阳极界面修饰层,随后再蒸镀金属作为阳极顶电极。
与现有技术相比,本发明具有如下优点和有益效果:
本发明解决了PFN-Br这类水醇溶性界面材料在有机光电器件中不稳定的问题。而且,金属/PFN-Br的制备过程不需要高温加热,制作方法简单易操作。作为典型案例,本发明制备了Ag/PFN-Br的多功能有机复合界面,当PFN-Br和Ag接触时,两者之间属于强烈的化学吸附,有效避免了PFN-Br在活性层旋涂过程中被破坏。此外,金属/PFN-Br复合界面能够有效降低ITO表面的功函数(ITO的功函数为4.8eV,当在ITO表面添加Ag/PFN-Br界面层时,基底的表面功函数降为4.0eV。),使其与受体的LUMO能级更加匹配,降低活性层和电极间的电荷传输势垒,有利于电子的传输和收集,有效提升电荷传输效率,最终制备出综合性能优异的有机光电器件。同时,本发明制备的基于Ag/PFN-Br复合界面的有机光电器件具有良好的稳定性,在手套箱中放置超过900小时后器件效率依旧保持初始效率的90%,远远超过单纯使用PFN-Br的器件效率。
图1为本发明制备的基于金属/PFN-Br复合界面的有机光电器件的结构示意图;
图2为本发明制备的基于金属/PFN-Br复合界面的有机光电器件的制备流程图;
图3为实施例1和对比例1制备的有机光电器件在光照条件下的电流密度和电压的关系图;
图4为实施例1和对比例1制备的有机光电器件在黑暗条件下的电流密度和电压的关系图;
图5为实施例1和对比例1制备的有机光电器件在氮气手套箱内器件效率和时间的关系图。
以下实施例制备了基于金属诱导有机偶极界面材料的高效稳定有机光电器件,器件结构主要包括阴极01、阴极界面修饰层02、活性层03、阳极界面修饰层04和阳极05,其结构示意图如图1所示。
其中,阴极为氧化铟锡玻璃(ITO),阴极界面修饰层为金属/PFN-Br复合界面材料,其中金属蒸镀在ITO表面,PFN-Br在金属表面旋涂成膜,金属层厚度为0.5-10nm,最优值为1nm,PFN-Br旋涂的厚度为10nm左右。活性层采用PM6:Y6,PTB7-Th:PCBM或者PTB7-Th:COTIC-4F,活性层厚度为100nm。所述阳极界面修饰层为MoO
3,其厚度为10nm;阳极为100nm金属Al或者Ag,通过蒸镀法获得。所述有机光电器件的制备流程图如图2所示。
下面结合附图,对本发明较优的实施例进行详细的描述。
实施例
1
本实施例是将Ag/PFN-Br复合界面应用于有机光电器件的制备,所述有机光电器件为有机太阳能电池。具体制备步骤如下:
(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70˚C的烘箱中12个小时后备用。
(2)将处理好的ITO玻璃移入蒸镀系统,在4×10
-4Pa的压强下蒸镀1nm的Ag后放入氮气手套箱。将预先配制好的PFN-Br溶液(将称量好的PFN-Br粉末加入甲醇中溶解,55˚C加热搅拌4小时即可,溶液浓度为1mg/mL)以3000r/min的速度旋涂在Ag表面。无需其他处理。
(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PM6和Y6,质量比为1:1.2,总浓度为16mg/mL,溶剂为CF(氯仿)。将活性层以3000r/min的速度旋涂在阴极界面修饰层上表面。
(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10
-4Pa的压强下蒸镀10nm的MoO
3作为阳极界面修饰层。之后再蒸镀100nm的金属Al作为阳极顶电极。至此,一个基于Ag诱导有机偶极界面材料的高效稳定有机光电器件就制备完成,该器件结构为ITO/Ag/PFN-Br/PM6:Y6/MoO
3/Al。
实施例1中的有机光电器件主要特征是,所述的阴极界面修饰层是在室温下制备的Ag/PFN-Br复合界面,Ag的平均蒸镀厚度为1nm,PFN-Br旋涂成膜的平均厚度为8nm。
对比例
1
对比例1和实施例1的制备方法基本相同,区别在于阴极界面修饰层为ZnO,其器件结构为ITO/ZnO/PM6: Y6/MoO
3/Al。
(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70˚C的烘箱中12个小时后备用。
(2)接着通过旋涂法将ZnO旋涂在ITO表面。首先配制ZnO前驱体溶液,步骤为:称量1g的醋酸锌,然后依次加入10mL乙二醇甲醚和280uL乙醇胺,60˚C加热搅拌8小时以上至溶液完全澄清透明。取60μL ZnO溶液,以2500r/min的转速旋涂在ITO表面,然后将ITO玻璃放在200˚C热台上加热60分钟。至此阴极界面修饰层制备完毕。
(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PM6:Y6,质量比为1:1.2,总浓度为16mg/mL,溶剂为CF(氯仿)。将活性层以3000r/min的速度旋涂在阴极界面修饰层上表面。
(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10
-4Pa的压强下蒸镀10nm的MoO
3作为阳极界面修饰层。之后再蒸镀100nm的金属Al作为阳极顶电极。至此,一个基于ZnO阴极界面材料的有机光电器件就制备完成,该器件结构为ITO/ZnO/PM6:Y6/MoO
3/Al。
图3和图4分别是实施例1和对比例1的器件在光照和黑暗条件下的电流密度和电压之间的关系图。实施例1的器件结构为ITO/Ag/PFN-Br/PM6:Y6/MoO
3/Al,对比例1的器件结构为ITO/ZnO/PM6:Y6/MoO
3/Al。曲线1代表的是对比例1的器件结构测得的数据,曲线2代表的是实施例1器件结构测得的数据。表1是实施例1和对比例1在光照条件下的器件的性能测试数据。从图3和表1可以看出:对比例1采用ZnO为阴极修饰层的器件的开路电压为0.832 V,短路电流为25.27
mA/cm
2;实施例1采用Ag/PFN-Br为阴极界面修饰层的器件的开路电压为0.829
V,短路电流为26.12 mA/cm
2。由此可见,采用金属诱导的水醇溶性复合界面(Ag/PFN-Br)的有机光电器件能有效提升电荷传输效率,从而提升短路电流密度。
黑暗条件下的电流密度和电压曲线关系(图4)进一步证明了实施例1和对比例1的器件性能存在差异的原因:实施例1基于Ag/PFN-Br的器件在正向偏压下有更大的电流密度,说明了界面接触电阻要小于对比例1,前者拥有更好的界面接触。从表1的数据可以发现:实施例1的器件的光电转换效率达到15.75%,也优于对比例1的15.23%。值得一提的是,如图5所示,从实施例1(曲线2)和对比例1(曲线1)在氮气手套箱内的器件稳定性研究结果可以发现,实施例1的器件效率在超过900h后依旧可以保持初始效率的90%以上,稳定性明显优于对比例1。
表1 实施例1和对比例1器件的主要性能表征参数
开路电压(V) | 短路电流(mA/cm 2) | 填充因子FF(%) | 转换效率PCE(%) | |
实施例1 | 0.829 | 26.12 | 72.69 | 15.75 |
对比例1 | 0.832 | 25.27 | 72.43 | 15.23 |
实施例
2
本实施例依旧是将Ag/PFN-Br复合界面应用于倒装有机光电器件的制备,所述有机光电器件为有机太阳能电池,其器件结构为ITO/Ag/PFN-Br/PTB7-Th:PCBM/MoO
3/Ag。具体制备步骤如下:
(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70˚C的烘箱中12个小时后备用。
(2)将处理好的ITO玻璃移入蒸镀系统,在4×10
-4Pa的压强下蒸镀1nm的Ag后放入氮气手套箱。将预先配制好的PFN-Br溶液(将称量好的PFN-Br粉末加入甲醇中溶解,55˚C加热搅拌4小时即可,溶液浓度为1mg/mL)以3000r/min的速度旋涂在Ag表面。无需其他处理。
(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PTB7-Th和PCBM,质量比为1:1.5,总浓度为25mg/mL,溶剂为CB(氯苯)加3%的DIO(二碘辛烷)。将活性层以3000r/min的速度旋涂在阴极界面修饰层上表面,然后移入真空仓抽大约3小时的DIO。
(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10
-4Pa的压强下蒸镀10nm的MoO
3作为阳极界面修饰层。之后再蒸镀100nm的金属Ag作为阳极顶电极。至此,器件结构为ITO/Ag/PFN-Br/
PTB7-Th:PCBM/MoO
3/Ag的有机光电器件就制备完成了。
对比例
2
对比例2与实施例2制备方法基本相同,区别在于阴极界面层采用材料的是ZnO,其器件结构为ITO/ZnO/PTB7-Th:PCBM/MoO
3/Ag。其中ZnO前驱体溶液的配制步骤同对比例1的步骤(2)。
实施例2和对比例2的器件的性能测试数据见表2,可以发现Ag/PFN-Br在富勒烯体系里依旧拥有良好的器件修饰效果。实施例2器件的填充因子和器件效率都要优于对比例2,从而说明Ag/PFN-Br复合界面在倒装有机光电器件的制备中具有良好的适用性。
表2 实施例2和对比例2器件的主要性能表征参数
开路电压(V) | 短路电流(mA/cm 2) | 填充因子FF(%) | 转换效率PCE(%) | |
实施例2 | 0.80 | 15.9 | 68.83 | 8.85 |
对比例2 | 0.782 | 15.94 | 67.9 | 8.46 |
实施例
3
本实施例是将Ag/PFN-Br复合界面应用于高性能有机光电探测器的制备。其制备流程和前面的有机光电器件(有机太阳能电池)的制备方法基本一样。器件结构为ITO/Ag/PFN-Br/PTB7-Th:COTIC-4F/MoO
3/Al。
(1)首先清洗ITO玻璃,确保其表面没有任何污染物。将ITO玻璃放入去离子水中加入15mL清洁剂之后超声20分钟,如此反复2-3次,然后用去离子水清洗2-3次;之后将ITO玻璃用异丙醇超声清洗两次,每次20分钟;最后将ITO玻璃放入70˚C的烘箱中12个小时后备用。
(2)将处理好的ITO玻璃移入蒸镀系统,在4×10
-4Pa的压强下蒸镀1nm的Ag后放入氮气手套箱。将预先配制好的PFN-Br溶液(将称量好的PFN-Br粉末加入甲醇中溶解,55˚C加热搅拌4小时即可,溶液浓度为1mg/mL)以3000r/min的速度旋涂在Ag表面。无需其他处理。
(3)在前面步骤的基础上旋涂活性层。将活性层材料溶于溶剂中,其中活性层的给受体分别为PTB7-Th和COTIC-4F,质量比为1:1.5,总浓度为40mg/mL,溶剂为CB(氯苯)。将活性层以2000r/min的速度旋涂在阴极界面修饰层上表面。
(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10
-4Pa的压强下蒸镀10nm的MoO
3作为阳极界面修饰层。之后再蒸镀100nm的金属Al作为阳极顶电极。至此,器件结构为ITO/Ag/PFN-Br/PTB7-Th:COTIC-4F/MoO
3/Al的有机光电器件就制备完成了。器件的性能表征结果见表3。
对比例
3
对比例3与实施例3制备方法基本相同,区别在于阴极界面层采用的是ZnO,其中ZnO前驱体溶液的配制步骤同对比例1的步骤(2)。其器件结构为ITO/ZnO/ PTB7-Th:COTIC-4F/MoO
3/Al,对比例3的器件的性能测试数据见表3。从表3的数据可以看出:采用Ag:PFN-Br复合界面的在零偏压下具有更小的暗电流,而且拥有更大的整流比。实施例3器件的比探测率是对比例3的两倍多。说明Ag/PFN-Br复合界面除了在实施例1和实施例2中的有机太阳能电池中拥有良好的器件修饰效果,在有机光电探测器中依旧拥有良好的性能表现。
表3 实施例3和对比例3器件的主要性能表征参数
实施例
4
本实施例依旧是将Ag/PFN-Br复合界面应用于倒装有机光电器件的制备,所述有机光电器件为有机太阳能电池,其器件结构为ITO/Ag(3nm)/PFN-Br/PTB7-Th:PCBM/MoO
3/Ag。具体制备步骤:
(1)首先清洗ITO玻璃,确保其表面没有任何污染物。具体操作与实施例2步骤(1)相同。
(2)将处理好的ITO玻璃移入蒸镀系统,在4×10
-4Pa的压强下蒸镀3nm的Ag后放入氮气手套箱。将预先配制好的PFN-Br溶液(将称量好的PFN-Br粉末加入甲醇中溶解,55˚C加热搅拌4小时即可,溶液浓度为1mg/mL)以3000r/min的速度旋涂在Ag表面。无需其他处理。
(3)在前面步骤的基础上旋涂活性层。具体操作与实施例2步骤(3)相同。
(4)完成活性层的旋涂之后将器件移入蒸镀仓,在4×10
-4Pa的压强下蒸镀10nm的MoO
3作为阳极界面修饰层。之后再蒸镀100nm的金属Ag作为阳极顶电极。至此,器件结构为ITO/Ag(3nm)/PFN-Br/
PTB7-Th:PCBM/MoO
3/Ag的有机光电器件就制备完成了。器件性能表征结果见表4。与实施例2器件性能参数相比较,可以发现当ITO表面的Ag/PFN-Br复合界面层的金属层厚度为3nm时依旧可以起到良好的修饰效果。
表4 实施例4器件的主要性能表征参数
开路电压(V) | 短路电流(mA/cm 2) | 填充因子FF(%) | 转换效率PCE(%) | |
实施例4 | 0.781 | 15.7 | 67.6 | 8.32 |
上述实施例主要是本发明的几种较优的实施形式,并进行了比较详细的描述。对于金属/PFN-Br复合界面应用于有机光电器件的应用不仅限于这些实施例。对于从事本领域的研究人员来说,在没有脱离本专利设计的主体思路下,进行若干变化和改进应当都属于本专利的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种基于金属诱导有机界面层的有机光电器件,其特征在于,所述器件结构包括阴极、阴极界面修饰层、活性层、阳极界面修饰层和阳极;所述阴极界面修饰层为金属层/有机界面层多功能复合界面层。
- 根据权利要求1所述的一种基于金属诱导有机界面层的有机光电器件,其特征在于,所述阴极为氧化铟锡玻璃ITO。
- 根据权利要求1所述的一种基于金属诱导有机界面层的有机光电器件,其特征在于,所述金属层/有机界面层多功能复合界面层为金属/PFN-Br复合界面,其中,金属层厚度为0.5-10nm,PFN-Br有机界面层厚度为10nm。
- 根据权利要求1所述的一种基于金属诱导有机界面层的有机光电器件,其特征在于,所述活性层为PM6:Y6,PTB7-Th:PCBM或PTB7-Th:COTIC-4F,活性层厚度为100nm。
- 根据权利要求1所述的一种基于金属诱导有机界面层的有机光电器件,其特征在于,所述阳极界面修饰层为金属氧化物,厚度为10nm;所述阳极为金属Al或者Ag,厚度为100nm。
- 根据权利要求1所述的一种基于金属诱导有机界面层的有机光电器件,其特征在于,所述有机光电器件包括有机太阳能电池和有机光电探测器。
- 权利要求1-6任一项所述的一种基于金属诱导有机界面层的有机光电器件的制备方法,其特征在于,包括以下步骤:(1)处理阴极基底材料:将ITO玻璃放入去离子水中加入清洁剂之后超声,然后用去离子水清洗,之后将ITO玻璃用异丙醇超声清洗,最后将ITO玻璃放入烘箱中8-12个小时后备用;(2)在ITO表面采用热蒸镀法沉积金属层作为诱导层后,依次采用溶液法制备阴极界面修饰层和活性层;(3)依次制备阳极界面修饰层和阳极,最终得到所述有机光电器件。
- 根据权利要求7所述的一种基于金属诱导有机界面层的有机光电器件的制备方法,其特征在于,步骤(2)中,阴极界面修饰层的制备方法为:将处理好的ITO玻璃移入蒸镀系统,在1×10 -4Pa至4×10 -4Pa的压强下蒸镀金属层后放入氮气手套箱,将配制好的有机界面层材料溶液通过旋涂、喷涂、刮图或丝网印刷的方法制备在金属层表面,形成金属层/有机界面层多功能复合界面层。
- 根据权利要求7所述的一种基于金属诱导有机界面层的有机光电器件的制备方法,其特征在于,步骤(2)中,活性层的制备方法为:将活性层材料溶于溶剂中,通过旋涂、喷涂、刮图或丝网印刷的方法在多功能复合界面层上形成活性层。
- 根据权利要求7所述的一种基于金属诱导有机界面层的有机光电器件的制备方法,其特征在于,步骤(3)中,阳极界面修饰层的制备方法为:金属氧化物通过热蒸镀法或者纳米颗粒溶液沉积法制备作为阳极界面修饰层,随后在阳极界面修饰层上蒸镀金属Al或者Ag作为阳极顶电极。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210225682.0 | 2022-03-07 | ||
CN202210225682.0A CN114784193A (zh) | 2022-03-07 | 2022-03-07 | 一种基于金属诱导有机界面层的有机光电器件及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023169068A1 true WO2023169068A1 (zh) | 2023-09-14 |
Family
ID=82423586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/144386 WO2023169068A1 (zh) | 2022-03-07 | 2022-12-31 | 一种基于金属诱导有机界面层的有机光电器件及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114784193A (zh) |
WO (1) | WO2023169068A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114784193A (zh) * | 2022-03-07 | 2022-07-22 | 华南理工大学 | 一种基于金属诱导有机界面层的有机光电器件及制备方法 |
CN116443921B (zh) * | 2023-03-24 | 2024-12-10 | 华南理工大学 | 一种低缺陷TixZn1-xO复合阴极界面材料及其制备方法与在有机光电器件中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108039414A (zh) * | 2017-11-22 | 2018-05-15 | 华南理工大学 | 一种基于金属薄膜衬底的大面积有机太阳电池及其制备方法 |
CN114784193A (zh) * | 2022-03-07 | 2022-07-22 | 华南理工大学 | 一种基于金属诱导有机界面层的有机光电器件及制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102329411B (zh) * | 2011-07-25 | 2013-07-03 | 华南理工大学 | 含可交联基团的水醇溶共轭聚合物材料及其应用 |
CN103794727A (zh) * | 2014-01-18 | 2014-05-14 | 西安电子科技大学 | 一种基于AZO/Ca阴极的有机太阳能电池及其制备方法 |
CN108269919A (zh) * | 2017-01-01 | 2018-07-10 | 泰山学院 | 一种基于全光波段吸收的高效共混三元有机太阳能电池 |
CN108242506B (zh) * | 2018-01-08 | 2020-07-28 | 吉林大学 | 一种带有银/金纳米粒子和光子晶体的半透明聚合物太阳能电池及其制备方法 |
-
2022
- 2022-03-07 CN CN202210225682.0A patent/CN114784193A/zh active Pending
- 2022-12-31 WO PCT/CN2022/144386 patent/WO2023169068A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108039414A (zh) * | 2017-11-22 | 2018-05-15 | 华南理工大学 | 一种基于金属薄膜衬底的大面积有机太阳电池及其制备方法 |
CN114784193A (zh) * | 2022-03-07 | 2022-07-22 | 华南理工大学 | 一种基于金属诱导有机界面层的有机光电器件及制备方法 |
Non-Patent Citations (2)
Title |
---|
"Doctoral Dissertation", 1 June 2018, NORTH CHINA ELECTRIC POWER UNIVERSITY (BEIJING), CN, article SHI, ZHENZHEN: "Polymer Tandem Solar Cells", pages: 1 - 130, XP009548966 * |
SHI ZHENZHEN, LIU HAO, LI JINYAN, WANG FUZHI, BAI YIMING, BIAN XINGMING, ZHANG BING, ALSAEDI AHMED, HAYAT TASAWAR, TAN ZHAN’AO: "Engineering the interconnecting layer for efficient inverted tandem polymer solar cells with absorption complementary fullerene and nonfullerene acceptors", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL, vol. 180, 1 June 2018 (2018-06-01), NL , pages 1 - 9, XP093091357, ISSN: 0927-0248, DOI: 10.1016/j.solmat.2018.02.010 * |
Also Published As
Publication number | Publication date |
---|---|
CN114784193A (zh) | 2022-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106129251A (zh) | 一种柔性钙钛矿电池的结构及其制备方法 | |
JP6051170B2 (ja) | 光電セル | |
CN103594627A (zh) | 一种反型有机薄膜太阳能电池及其制备方法 | |
CN111211230B (zh) | 一种全光谱吸收的多层钙钛矿/量子点太阳能电池器件及制备方法 | |
WO2023169068A1 (zh) | 一种基于金属诱导有机界面层的有机光电器件及制备方法 | |
CN111092157A (zh) | 一种高效稳定钙钛矿太阳能电池的制备方法 | |
CN111081883B (zh) | 一种高效稳定的平面异质结钙钛矿太阳能电池及制备方法 | |
CN113363279A (zh) | 一种高效互联层及其双结钙钛矿/有机叠层太阳能电池 | |
CN114512613A (zh) | 一种钙钛矿/钙钛矿两端叠层太阳电池的中间连接层结构及其制备方法和应用 | |
CN107994121A (zh) | 一种修饰电子传输层改善钙钛矿太阳能电池性能的方法 | |
CN116669443B (zh) | 一种图形化电子传输层的叠层太阳能电池及制备方法 | |
CN107394044A (zh) | 一种高性能透明导电电极和电子传输层的钙钛矿太阳电池及其制备方法 | |
CN106356457A (zh) | 一种加速电子过滤的钙钛矿光电探测器 | |
WO2020077710A1 (zh) | 一种聚合物-金属螯合物阴极界面材料及其应用 | |
CN108511606B (zh) | 一种高短路电流、高转化效率的钙钛矿太阳能电池制备方法及产品 | |
CN116782675A (zh) | 一种钙钛矿太阳能电池及其制备方法 | |
CN110416413B (zh) | 一种高性能梯度电子传输层的钙钛矿太阳电池及其制备方法 | |
CN106025078B (zh) | 一种平面异质结钙钛矿光伏电池及其制备方法 | |
CN114914365A (zh) | 一种具有倒置结构的钙钛矿/钙钛矿叠层太阳电池 | |
CN112490298B (zh) | 硒化镉类单晶薄膜制备方法、太阳能电池制备方法及产物 | |
CN103872249B (zh) | 一种极性溶剂修饰的有机薄膜太阳能电池及其制备方法 | |
CN108807696B (zh) | 一种改善有机太阳能电池界面修饰的方法 | |
CN110556433A (zh) | 一种碲化镉纳米晶太阳电池及其制备方法 | |
CN103346259B (zh) | 一种有机太阳能电池 | |
CN116514667A (zh) | 一种钙钛矿表面缺陷钝化材料及利用其制备的钙钛矿太阳能电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22930687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22930687 Country of ref document: EP Kind code of ref document: A1 |