WO2023166855A1 - Control device, moving body, and control method of moving body - Google Patents
Control device, moving body, and control method of moving body Download PDFInfo
- Publication number
- WO2023166855A1 WO2023166855A1 PCT/JP2023/000303 JP2023000303W WO2023166855A1 WO 2023166855 A1 WO2023166855 A1 WO 2023166855A1 JP 2023000303 W JP2023000303 W JP 2023000303W WO 2023166855 A1 WO2023166855 A1 WO 2023166855A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turning
- wheel group
- wheels
- moving body
- ground contact
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 6
- 230000033001 locomotion Effects 0.000 claims description 61
- 238000005516 engineering process Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 101000686227 Homo sapiens Ras-related protein R-Ras2 Proteins 0.000 description 5
- 102100025003 Ras-related protein R-Ras2 Human genes 0.000 description 5
- 230000005021 gait Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D11/00—Steering non-deflectable wheels; Steering endless tracks or the like
- B62D11/02—Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
- B62D11/04—Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D61/00—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
- B62D61/10—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with more than four wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D61/00—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
- B62D61/12—Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with variable number of ground engaging wheels, e.g. with some wheels arranged higher than others, or with retractable wheels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present disclosure relates to a control device, a moving body, and a control method for the moving body.
- Patent Document 1 discloses a four-legged wheeled robot having wheels at the tip of each leg.
- the leg-wheeled robot disclosed in Patent Literature 1 can compactly turn on the spot by controlling the axle direction of the wheel at the tip of the foot around the yaw axis.
- each leg wheel is provided with a motor for controlling the axle direction of the wheel around the yaw axis. Therefore, in the leg-wheeled robot disclosed in Patent Document 1, the cost increases due to the motor that controls the axle direction of the wheels around the yaw axis, and the increased weight of the toes increases the consumption for driving the legs. Power consumption will also increase.
- the present disclosure proposes a new and improved control device, a moving body, and a control method for the moving body that enable the moving body to turn more compactly at a lower cost.
- a first drive wheel group capable of turning at a first turning center is grounded, and a second driving wheel group capable of turning at a second turning center different from the first turning center is provided.
- a control device is provided that includes a grounding control unit that switches and controls the grounding of the drive wheel group.
- a first driving wheel group capable of turning about a first turning center a second driving wheel group capable of turning about a second turning center different from the first turning center
- a mobile body comprising: a ground contact control unit that switches and controls ground contact of the first drive wheel group and ground contact of the second drive wheel group in a series of turning motions.
- the computing device determines that a first driving wheel group that is capable of turning at a first turning center touches the ground, and a second turning center different from the first turning center.
- a moving body control method is provided for switching and controlling a second drive wheel group that can turn with the ground contact.
- FIG. 1 is a perspective view showing an appearance of a moving object to which technology according to the present disclosure is applied; FIG. It is the bottom view which looked at the mobile body shown in FIG. 1 from the running surface side.
- 1 is a block diagram showing a functional configuration of a mobile body control device according to an embodiment of the present disclosure;
- FIG. 2 is an explanatory diagram showing the relationship between the grounding of wheels and the turning center in the mobile body shown in FIG. 1;
- FIG. 11 is an explanatory diagram showing an example of controlling the average position of the turning center in a series of turning motions by controlling the turning time of each turning with different turning centers.
- FIG. 2 is a graph showing in chronological order a turning angle, a turning speed, and whether or not a wheel is on the ground when the mobile body shown in FIG.
- FIG. 1 turns; 1 is a schematic cross-sectional view showing a configuration of a moving body according to a first application example to which technology according to the present disclosure is applied;
- FIG. FIG. 8 is a schematic bottom view of the moving body shown in FIG. 7 as viewed from the running surface side;
- FIG. 10 is a schematic cross-sectional view showing the configuration of a moving body according to a second application example to which the technology according to the present disclosure is applied;
- FIG. 10 is a schematic bottom view of the moving body shown in FIG. 9 as seen from the running surface side;
- FIG. 4 is a schematic cross-sectional view showing the configuration of a moving body according to a first comparative example to which the technology according to the present disclosure is not applied;
- FIG. 12 is a schematic bottom view of the moving body shown in FIG.
- FIG. 10 is a schematic cross-sectional view showing the configuration of a moving body according to a second comparative example to which the technology according to the present disclosure is not applied;
- 14 is a schematic bottom view of the moving body shown in FIG. 13 as viewed from the running surface side;
- FIG. 1 is a perspective view showing the appearance of a moving body 1 to which technology according to the present disclosure is applied.
- FIG. 2 is a bottom view of the moving body 1 shown in FIG. 1 as viewed from the running surface side.
- turning means rotating the traveling direction of the moving body 1 around an axis perpendicular to the running surface.
- the moving body 1 includes a main body 12, a plurality of legs 11A, 11B, 11C, 11D, 11E, and 11F, and wheels 13A, 13B, 13C, 13D, 13E, and 13F.
- the moving body 1 is, for example, a six-legged wheeled robot device.
- legs 11A, 11B, 11C, 11D, 11E, and 11F are not distinguished from each other, they are collectively referred to as the leg 11.
- wheels 13A, 13B, 13C, 13D, 13E, and 13F are not distinguished from each other, they are collectively referred to as the wheels 13 .
- the body part 12 corresponds to the body part of the moving body 1.
- the main unit 12 includes, for example, a control device that controls the overall operation of the mobile body 1, a sensor device that senses the external environment of the mobile body 1, a power supply device that supplies power to each part of the mobile body 1, and the like.
- the leg portion 11 is rotatably attached to the body portion 12 at one end side (hereinafter also referred to as the rear end side). Further, the leg portion 11 supports the body portion 12 by contacting the running surface via the wheel 13 at the other end side (hereinafter also referred to as the tip end side).
- the leg portion 11 is composed of a plurality of links that are connected to each other so as to be able to move linearly, and is provided rotatably on an axis perpendicular to the traveling direction SD on the rear end side.
- the leg portion 11 can be expanded and contracted in one direction by expanding and contracting a plurality of connected links. Therefore, the moving body 1 can walk using the legs 11 by alternately rotating and expanding and contracting the plurality of legs 11 that support the main body 12 . According to this, the moving body 1 can walk using the legs 11 on a running surface having unevenness such as stairs or an unpaved road.
- the wheels 13 are provided on the tip side of each leg 11 .
- the wheels 13 are driven by a motor or the like, or rotated by being driven by the movement of the mobile body 1 , so that the mobile body 1 can travel on wheels. According to this, the moving body 1 can run on wheels on a flat running surface such as a paved road by rotating the wheels 13 while maintaining the postures of the legs 11 .
- legs 11A, 11B, and 11C there are provided three legs, ie, a leg portion 11A, a leg portion 11B, and a leg portion 11C.
- legs 11D, a leg 11E, and a leg 11F there are provided three legs, ie, a leg 11D, a leg 11E, and a leg 11F.
- Wheels 13A and 13C (driving wheels) that rotate around fixed axles driven by a motor or the like are provided on the left and right legs 11A and 11C on the front side.
- a wheel 13B (driven wheel) that rotates as the moving body 1 moves is provided on the leg 11B provided between the leg 11A and the leg 11C.
- the legs 11D and 11F provided on the left and right sides of the back side are provided with wheels 13D and 13F (driving wheels) that rotate around fixed axles driven by a motor or the like.
- a wheel 13E (driven wheel) that rotates as the moving body 1 moves is provided on the leg 11E provided between the leg 11D and the leg 11F.
- the wheels 13B and 13E may be provided as wheels capable of translating in all directions.
- the wheels 13B and 13E may be provided so as to be translatable in all directions by having pivots for turning the directions of the wheels.
- the moving body 1 can travel by grounding only the wheels 13B provided on the traveling direction SD side and the wheels 13D and 13F provided on the opposite side to the traveling direction SD side. By doing so, it is possible to turn without a steering mechanism. That is, since the wheel 13B, which is a driven wheel, can turn in all directions, the moving body 1 can turn right or left by varying the number of rotations of the wheels 13D and 13F, which are driving wheels. can be done freely.
- the moving body 1 performs wheel travel by grounding only the wheels 13E provided on the side opposite to the direction of travel SD and the wheels 13A and 13C provided on the side of the direction of travel SD. It is possible to turn without providing a mechanism. That is, since the wheel 13E, which is the driven wheel, can turn in all directions, the moving body 1 can turn right or left by varying the number of revolutions of the wheels 13A and 13C, which are driving wheels. can be done freely.
- the moving body 1 alternately grounds the wheels 13B, 13D, and 13F, and the wheels 13A, 13C, and 13E, so that the moving body 1 can ascend and descend steps such as stairs by legged walking. It is possible. Specifically, the moving body 1 lifts the three wheels 13B, 13D, and 13F from a state in which the six wheels 13A, 13B, 13C, 13D, 13E, and 13F are grounded, and grounds them on a step. After that, the moving body 1 can climb up the step by lifting the three wheels 13A, 13C, and 13E that are grounded under the step and grounding them on the step.
- the three points of wheel 13B, wheel 13D, and wheel 13F and the three points of wheel 13A, wheel 13C, and wheel 13E are the vertices of an isosceles triangle containing the center of gravity of moving body 1. It is possible to stably support the moving body 1 at points. Therefore, the moving body 1 alternately contacts the three points of the wheels 13B, 13D, and 13F and the three points of the wheels 13A, 13C, and 13E, thereby stably performing legged walking. Is possible.
- FIG. 3 is a block diagram showing the functional configuration of the control device 100 of the moving body 1 according to this embodiment.
- the control device 100 is, for example, a control device that controls movement and turning of a leg-wheeled robot device as shown in FIG.
- the control device 100 includes a self-position estimation unit 101, a route planning unit 102, a drive control unit 103, and a ground control unit 104.
- the control device 100 can control the drive units 131 provided in each of the legs 11 and each of the wheels 13 based on inputs from the external sensor unit 111 and the internal sensor unit 112 .
- the external sensor unit 111 includes, for example, an external sensor that measures the external environment of the mobile object 1, and outputs the sensing result of the external sensor to the self-position estimation unit 101.
- the external sensor unit 111 may include external sensors such as an imaging device, a range sensor, an atmospheric pressure sensor, a contact sensor, a temperature sensor, a humidity sensor, a geomagnetic sensor, a vibration sensor, an optical sensor, or a sound sensor.
- imaging devices included in the external sensor unit 111 include various imaging devices such as an RGB camera, a grayscale camera, an infrared camera, a monocular camera, a stereo camera, and a depth camera.
- Ranging sensors included in the external sensor unit 111 include various ranging sensors such as a ToF (Time of Flight) sensor, a LiDAR (Light Detection And Ranging) sensor, a Radar (Radio Detecting And Ranging) sensor, an ultrasonic sensor, or a sonar.
- a sensor can be exemplified.
- the external sensor unit 111 may also include a GNSS sensor that measures the latitude, longitude, and altitude of the mobile object 1 by receiving GNSS (Global Navigation Satellite System) signals.
- GNSS Global Navigation Satellite System
- the internal sensor unit 112 includes an internal sensor that measures the internal state of the moving body 1 and outputs the sensing result of the internal sensor to the self-position estimation unit 101 .
- the internal sensor unit 112 may include an internal sensor such as an encoder, voltmeter, ammeter, strain gauge, pressure gauge, gyro sensor, acceleration sensor, or inertial measurement unit (IMU). Information measured by the internal sensor is used, for example, to estimate the position and attitude of the mobile object 1 .
- IMU inertial measurement unit
- the self-position estimation unit 101 creates a map of the external environment based on the sensing results of the external world sensor unit 111 and the internal world sensor unit 112, and at the same time estimates the position and orientation of the moving body 1 within the created map. Specifically, the self-position estimation unit 101 creates a two-dimensional or three-dimensional environmental map of the external environment based on the sensing result of the external sensor unit 111 . At the same time, the self-position estimation unit 101 sequentially estimates the moving direction and the amount of movement of the moving object 1 based on the sensing results of the internal sensor unit 112, thereby estimating the moving object 1 on the created environment map. Estimate self-location. Performing such environmental mapping and self-localization simultaneously is called SLAM (Simultaneous Localization and Mapping).
- SLAM Simultaneous Localization and Mapping
- the route planning unit 102 plans the movement route of the moving object 1 to the target position specified by the user or to the target position set based on the task. Specifically, based on the environment map created by the self-position estimating unit 101, the route planning unit 102 may plan a movement route for the moving object 1 to reach from the current position to the target position while avoiding obstacles. good. For example, when the environment map is represented by an occupancy grid map, the route planning unit 102 calculates the movement cost of the moving body 1 from the current position to the target position while avoiding grids occupied by obstacles. You may plan the route of movement that minimizes .
- the route planning unit 102 may further plan a target speed and a target gait for movement on the planned movement route. For example, if there is a step on the movement route, the route planning unit 102 may plan the desired gait so that the step is crossed by legged walking. Alternatively, the route planning unit 102 may plan the desired gait so that the vehicle runs on wheels on a flat surface.
- the ground control unit 104 controls the turning center position of the mobile body 1 by controlling whether the wheels 13 that support the mobile body 1 are grounded or not grounded when the mobile body 1 is turning. Specifically, in a series of turning motions, the ground contact control unit 104 causes the wheels 13 supporting the moving body 1 to rotate around the first turning center and the wheels 13 capable of turning the moving body 1 around the turning center different from the first turning center. At the second turning center, the moving body 1 is switched to wheels 13 capable of turning. As a result, the ground contact control unit 104 can control the position of the turning center of the moving body 1 in a series of turning operations by mixing turns at different turning centers.
- FIG. FIG. 4 is an explanatory diagram showing the relationship between the grounding of the wheels 13 and the turning center in the moving body 1 shown in FIG.
- FIG. 5 is an explanatory diagram showing an example of controlling the average position of the turning center in a series of turning motions by controlling the turning time of each turning with different turning centers.
- wheels 13B and 13E are driven wheels, and wheels 13A, 13C, 13D, and 13F are drive wheels. Therefore, as shown on the left side of FIG. 4, when the moving body 1 is in contact with the ground at three points of the wheels 13B, 13D, and 13F, the moving body 1 rotates the wheels 13D and 13F, which are driving wheels, to the ground. By rotating in the direction, it is possible to turn around the middle point TC1 between the wheels 13D and 13F. Also, as shown on the right side of FIG. 4, when the moving body 1 is in contact with the ground at three points of the wheels 13A, 13C, and 13E, the moving body 1 rotates the wheels 13A and 13C, which are driving wheels, in the opposite direction. By rotating in the direction, it is possible to turn around the middle point TC2 between the wheels 13A and 13C.
- the ground contact control unit 104 controls the ground contact at three points of the wheels 13B, 13D, and 13F and the contact at three points of the wheels 13A, 13C, and 13E in a series of turning motions. switch. According to this, in a series of turning motions, the moving body 1 turns centering on the middle point TC1 when the wheels 13B, 13D, and 13F touch the ground, and rotates around the middle point TC2 when the wheels 13A, 13C, and 13E touch the ground. It is possible to turn while switching between turning with the center of turning.
- the ground contact control unit 104 causes the moving body 1 to alternately switch between a turn centered at the intermediate point TC1 and a turn centered at the intermediate point TC2 in a short period of time.
- the center can be controlled to a point between midpoint TC1 and midpoint TC2. Therefore, the moving body 1 can control an arbitrary point on the line segment connecting the intermediate points TC1 and TC2 to be the average center of rotation and perform a series of turning operations.
- the ground control unit 104 controls the ratio of the turning time by the wheels 13B, 13D, and 13F and the turning time by the wheels 13A, 13C, and 13E in a series of turning motions, thereby achieving an average
- the position of the center of rotation may be controlled.
- hatched periods indicate non-grounded periods, and non-hatched periods indicate grounded periods.
- wheels 13B, 13D, and 13F are defined as a first wheel group
- wheels 13A, 13C, and 13E are defined as a second wheel group.
- the moving body 1 can turn around the center point TC1 between the wheels 13D and 13F.
- the moving body 1 can turn around the middle point TC2 between the wheels 13A and 13C.
- the ground contact control unit 104 internally divides the turning time by the first wheel group and the turning time by the second wheel group to obtain an average
- the turning center can be controlled to the internal division point BC between the intermediate points TC1 and TC2. That is, the ground contact control unit 104 divides the ground contact time (turning time) of the first wheel group and the ground contact time (turning time) of the second wheel group in a series of turning motions. can control the position of the average center of rotation in .
- the ground contact control unit 104 internally divides the ground contact time of the first wheel group and the ground contact time of the second wheel group by a predetermined ratio, thereby setting the average center of turning in a series of turning motions to the middle point. It can be controlled to the internal division point BC of the reciprocal of a predetermined ratio between TC1 and the midpoint TC2.
- the ground contact control unit 104 controls the internal ratio between the turning angle of the first wheel group and the turning angle of the second wheel group in a series of turning motions, thereby achieving an average turning angle in the series of turning motions. You may control the position of the center. According to this, even if the turning speed is not constant, the ground contact control unit 104 performs a series of turning operations by dividing the turning by the first wheel group and the turning by the second wheel group. can control the position of the average center of rotation in .
- the ground contact control unit 104 alternately switches between the ground contact turning by the first wheel group and the ground contact turning by the second wheel group in a short period of time, thereby substantially It is possible to control the position of the center of rotation.
- the ground contact control unit 104 can, for example, substantially match the center of the average turning center in a series of turning motions with the center of the body part 12 of the moving body 1, so that the moving body 1 can be made smaller. It is possible to swivel on the footprint. Further, the ground contact control unit 104 can turn the moving body 1 around a turning center that makes it easier to avoid obstacles, for example, by referring to information about obstacles in the external environment acquired from the external sensor unit 111 . be.
- the grounding/non-grounding switching of the wheels 13 by the grounding control unit 104 may be performed in parallel with the translational movement of the moving body 1 by legged walking or wheel running. In other words, the switching between grounding and non-grounding of the wheels 13 by the grounding control unit 104 can be performed independently of the translational speed of the wheels 13 or the legs 11 at the timing when the turning speed of the wheels 13 is 0. good.
- the driving control unit 103 controls the driving unit 131 of the moving body 1 based on the movement route planned by the route planning unit 102 and the grounding control by the grounding control unit 104 .
- the moving body 1 can move from the current position to the target position.
- the drive control unit 103 may control the drive unit 131 to move the moving body 1 along the movement route planned by the route planning unit 102 .
- the drive control unit 103 may control the turning center of the moving body 1 by controlling the wheels 13 that contact the ground based on the control by the grounding control unit 104 when the moving body 1 turns.
- the drive unit 131 is a motor that drives each joint of the leg 11 and a motor that rotates each of the wheels 13 .
- the drive unit 131 drives based on the control of the drive control unit 103 so that the moving body 1 can perform legged walking using the legs 11 or wheel running using the wheels 13 .
- the drive unit 131 can control the grounding or non-grounding of each of the wheels 13 by controlling the attitude of the leg 11 based on the control of the grounding control unit 104 . .
- FIG. 6 is a graph showing in time series the turning angle, turning speed, and whether or not the wheels 13 are on the ground when the mobile body 1 turns.
- "1" indicates that the wheel group is grounded, and "0" indicates that the wheel group is not grounded.
- the ground contact control unit 104 controls a first wheel group (for example, wheel 13B, wheel 13D, and wheel 13F) and a second wheel group (wheel 13A, wheel 13C, and wheel 13E). is controlled by alternately switching between grounding and non-grounding.
- a first wheel group for example, wheel 13B, wheel 13D, and wheel 13F
- a second wheel group wheel 13A, wheel 13C, and wheel 13E
- the ground contact control unit 104 can switch between the ground contact of the first wheel group and the contact of the second wheel group at the timing when the turning speed is zero. Therefore, the ground contact control unit 104 can suppress the slippage of the non-driven wheels 13 when the first wheel group and the second wheel group touch the ground at the same time. Damage to the wheel 13 can be suppressed.
- the moving body 1 alternately and repeatedly performs turning when the first wheel group touches the ground and turning when the second wheel group touches the ground, so that the moving body 1 turns while monotonically increasing the turning angle as a whole. can be done.
- the grounding of the first wheel group and the grounding of the second wheel group may be switched, for example, in a period of 0.3 seconds to 1.0 seconds.
- the ground contact control unit 104 alternately switches between the ground-contact turning by the first wheel group and the ground-contact turning by the second wheel group in a short period of time, so that the turning center of the moving body 1 is adjusted during the turning operation. can be suppressed from fluctuating greatly.
- FIG. 7 a moving body to which the technology according to the present disclosure is applied will be described in comparison with a comparative example with reference to FIGS. 7 to 14.
- FIG. The technology according to the present disclosure is not limited to the mobile object 1 shown in FIGS. 1 and 2, and can be applied to mobile objects having various configurations.
- FIG. 7 is a schematic cross-sectional view showing the configuration of the moving body 2 according to the first application example to which the technology according to the present disclosure is applied.
- FIG. 8 is a schematic bottom view of the moving body 2 shown in FIG. 7 as viewed from the running surface side.
- the moving body 2 includes a main body 22, legs 21A, and wheels 23A, 23B, 23C, 23D, 23E, 23F, and 23G.
- the main body part 22 corresponds to the body part of the moving body 2.
- the main unit 22 includes, for example, a control device that controls the overall operation of the mobile body 2, a sensor device that senses the external environment of the mobile body 2, a power supply device that supplies power to each part of the mobile body 2, and the like.
- the leg portion 21A is attached to the main body portion 22 on one end side, and is grounded on the running surface via the wheel 23E, the wheel 23F, and the wheel 23G on the other end side, so that the main body portion 22 support.
- the leg portion 21A is configured by a plurality of links that are connected to each other so as to be able to move linearly, and can be expanded and contracted in one direction by expanding and contracting the plurality of connected links.
- the wheels 23F and 23G are drive wheels that rotate around fixed axles driven by a motor or the like.
- the wheels 23E are driven wheels that rotate in accordance with the movement of the moving body 2 and are capable of translating in all directions.
- the main body 22 is provided with wheels 23A, 23B, 23C, and 23D.
- the wheels 23A, 23B, 23C, and 23D support the main body 22 by coming into contact with the running surface when the legs 21A contract.
- the wheels 23A and 23B are drive wheels that rotate around fixed axles driven by a motor or the like.
- the wheels 23C and 23D are driven wheels that rotate as the moving body 2 moves and are capable of translating in all directions.
- the moving body 2 when the leg 21A is extended, the wheels 23E, 23F, and 23G are in contact with the running surface, and the wheels 23A, 23B, 23C, and 23D are not in contact with the running surface. In such a case, the moving body 2 can turn about the middle point TC22 of the wheels 23F and 23G by rotating the wheels 23F and 23G, which are driving wheels, in opposite directions.
- the moving body 2 when the leg portion 21A contracts, the wheels 23A, 23B, 23C, and 23D are in contact with the running surface, and the wheels 23E, 23F, and 23G are not in contact with the running surface. Become. In such a case, the moving body 2 can turn about the middle point TC21 of the wheels 23A and 23B by rotating the wheels 23A and 23B, which are driving wheels, in opposite directions.
- the control device 100 By extending and contracting the leg portion 21A, the control device 100 causes the wheels 23A, 23B, 23C, and 23D to be grounded at four points and the wheels 23E, 23F, and 23G to be grounded in a series of turning motions. It can switch between grounding at three points. As a result, in a series of turning motions, the moving body 2 turns around the middle point TC21 when the wheels 23A, 23B, 23C, and 23D touch the ground, and rotates the wheels 23E, 23F, and 23G. It is possible to turn while switching between turning centering on the middle point TC22 at the time of ground contact.
- the control device 100 causes the moving body 2 to alternately switch between turning with the intermediate point TC21 as the turning center and turning with the intermediate point TC22 as the turning center. It can be controlled to a point between TC21 and a midpoint TC22. Therefore, the moving body 2 can perform a series of turning motions with an arbitrary point on the line connecting the middle point TC21 and the middle point TC22 as the average turning center.
- FIG. 9 is a schematic cross-sectional view showing the configuration of a moving body 3 according to a second application example to which the technology according to the present disclosure is applied.
- FIG. 10 is a schematic bottom view of the moving body 3 shown in FIG. 9 as viewed from the running surface side.
- the moving body 3 includes a main body 32, legs 31A, 31B, 31C, and wheels 33A, 33B, 33C, 33D, 33E, 33F.
- the body part 32 corresponds to the body part of the moving body 3.
- the main unit 32 includes, for example, a control device that controls the overall operation of the mobile body 3, a sensor device that senses the external environment of the mobile body 3, a power supply device that supplies power to each part of the mobile body 3, and the like.
- the leg part 31A is attached to the main body part 32 on one end side, and supports the main body part 32 by being grounded on the running surface via the wheels 33A and 33B on the other end side.
- the leg portion 31A is configured by a plurality of links that are connected to each other so as to be able to move linearly, and can be expanded and contracted in one direction by expanding and contracting the plurality of connected links.
- the wheels 33A and 33B are drive wheels that rotate around fixed axles driven by a motor or the like. Since the wheels 33A and 33B rotate on the same axle, they rotate in the same direction.
- the leg portion 31B is attached to the main body portion 32 at one end side, and supports the main body portion 32 by being grounded on the running surface via the wheels 33C and 33D at the other end side.
- the leg portion 31B is configured by a plurality of links that are connected to each other so as to be able to move linearly, and can be expanded and contracted in one direction by expanding and contracting the plurality of connected links.
- the wheels 33C and 33D are driving wheels that rotate around fixed axles by being driven by a motor or the like. Since the wheels 33C and 33D rotate on the same axle, they rotate in the same direction.
- the leg portion 31C is attached to the main body portion 32 at one end side, and supports the main body portion 32 by being grounded on the running surface via the wheels 33E and 33F at the other end side.
- the leg portion 31C is configured by a plurality of links that are connected to each other so as to be able to move linearly, and can be expanded and contracted in one direction by expanding and contracting the plurality of connected links.
- the wheels 33E and 33F are drive wheels that rotate around fixed axles driven by a motor or the like. Since the wheels 33E and 33F rotate on the same axle, they rotate in the same direction.
- the moving body 3 when the leg portions 31A and 31B are extended and the leg portion 31C is contracted, the wheels 33A, 33B, 33C, and 33D are in contact with the running surface, and the wheels 33E and 33F are running. It becomes ungrounded on the surface. In such a case, the moving body 3 rotates the wheels 33A and 33B and the wheels 33C and 33D in opposite directions, thereby turning about the intersection point TC31 of the axles of both wheels.
- the moving body 3 when the leg portions 31B and 31C are extended and the leg portion 31A is contracted, the wheels 33C, 33D, 33E, and 33F are in contact with the traveling surface, and the wheels 33A and 33B are grounded. is not grounded on the running surface. In such a case, the moving body 3 rotates the wheels 33C and 33D and the wheels 33E and 33F in opposite directions, thereby turning about the intersection point TC32 of the axles of both wheels.
- the moving body 3 when the leg portions 31A and 31C are extended and the leg portion 31B is contracted, the wheels 33A, 33B, 33E, and 33F are in contact with the running surface, and the wheels 33C and 33D is not grounded on the running surface. In such a case, the moving body 3 rotates the wheels 33A and 33B and the wheels 33E and 33F in opposite directions, thereby turning about the intersection point TC33 of the axles of both wheels.
- the control device 100 controls the expansion and contraction of the legs 31A, 31B, and 31C, so that the wheels 33A, 33B, 33C, and 33D are grounded at four points in a series of turning motions. , the wheels 33C, 33D, 33E, and 33F and the four points of the wheels 33A, 33B, 33E, and 33F.
- the moving body 3 can turn while switching between turning with the intersection TC31 as the turning center, turning with the intersection TC32 as the turning center, and turning with the intersection TC33 as the turning center. can.
- the control device 100 can control the substantial turning center in a series of turning operations to be a point inside the triangle with the intersection points TC31, TC32, and TC33 as vertices. Therefore, the moving body 3 can perform a series of turning motions with an arbitrary point inside the triangle having the vertexes of the intersection points TC31, TC32, and TC33 as the average turning center.
- FIG. 11 is a schematic cross-sectional view showing the configuration of a moving body 4 according to a first comparative example to which the technology according to the present disclosure is not applied.
- FIG. 12 is a schematic bottom view of the moving body 4 shown in FIG. 11 as viewed from the running surface side.
- the moving body 4 includes a main body 42, legs 41A, and wheels 43A, 43B, 43C, 43D, 43E, and 43F.
- the body part 42 corresponds to the body part of the moving body 4 .
- the main unit 42 includes, for example, a control device that controls the overall operation of the mobile body 4, a sensor device that senses the external environment of the mobile body 4, a power supply device that supplies power to each part of the mobile body 4, and the like.
- the leg part 41A is attached to the main body part 42 on one end side, and supports the main body part 42 by being grounded on the running surface via the wheels 43E and 43F on the other end side.
- the leg portion 41A is composed of a plurality of links that are connected to each other so as to be able to move linearly, and can be expanded and contracted in one direction by expanding and contracting the plurality of connected links.
- the wheels 43E and 43F are drive wheels that rotate around fixed axles driven by a motor or the like.
- the main body 42 is provided with wheels 43A, 43B, 43C, and 43D.
- the wheels 43A, 43B, 43C, and 43D support the main body 42 by coming into contact with the running surface when the legs 41A contract.
- Wheel 43A, wheel 43B, wheel 43C, and wheel 43D are driven wheels that rotate in accordance with the movement of mobile body 4 and are capable of translating in all directions.
- the moving body 4 when the leg 41A is extended, the wheels 43E and 43F are in contact with the running surface, and the wheels 43A, 43B, 43C, and 43D are not in contact with the running surface. In such a case, the moving body 4 can turn about the middle point TC42 of the wheels 43E and 43F by rotating the wheels 43E and 43F, which are driving wheels, in opposite directions.
- the moving body 4 By extending and contracting the leg portion 41A, the moving body 4 can switch between grounding at four points, wheels 43A, 43B, 43C, and 43D, and grounding at two points, wheels 43E and 43F. can.
- the moving body 4 does not have a plurality of turning centers, it is difficult to switch the turning center by expanding and contracting the leg portion 41A. Therefore, it is difficult to control the moving body 4 to an average turning center in a series of turning motions by the technology according to the present disclosure.
- FIG. 13 is a schematic cross-sectional view showing the configuration of a moving body 5 according to a second comparative example to which the technology according to the present disclosure is not applied.
- FIG. 14 is a schematic bottom view of the moving body 5 shown in FIG. 13 as viewed from the running surface side.
- the moving body 5 includes a main body 52, legs 51A and 51B, and wheels 53A, 53B, 53C and 53D.
- the main body part 52 corresponds to the body part of the moving body 5 .
- the main unit 52 includes, for example, a control device that controls the overall operation of the mobile body 5, a sensor device that senses the external environment of the mobile body 5, a power supply device that supplies power to each part of the mobile body 5, and the like.
- the leg portion 51A is attached to the body portion 52 on one end side, and supports the body portion 52 by contacting the running surface via the wheels 53A and 53B on the other end side.
- the leg portion 51A is configured by a plurality of links that are connected to each other so as to be able to move linearly, and can be expanded and contracted in one direction by expanding and contracting the plurality of connected links.
- the wheels 53A and 53B are drive wheels that rotate around fixed axles driven by a motor or the like.
- the leg part 51B is attached to the main body part 52 at one end side, and supports the main body part 52 by being grounded on the running surface via the wheels 53C and 53D at the other end side.
- the leg portion 51B is configured by a plurality of links that are connected to each other so as to be able to move linearly, and can be expanded and contracted in one direction by expanding and contracting the plurality of connected links.
- the wheels 53C and 53D are driving wheels that rotate around fixed axles by being driven by a motor or the like.
- the moving body 5 when the leg 51A is extended and the leg 51B is contracted, the wheels 53A and 53B are in contact with the running surface, and the wheels 53C and 53D are not in contact with the running surface. In such a case, the moving body 5 can turn about the middle point TC51 of the wheels 53A and 53B by rotating the wheels 53A and 53B, which are driving wheels, in opposite directions.
- the moving body 5 when the leg portion 51B is extended and the leg portion 51A is contracted, the wheels 53C and 53D are in contact with the running surface, and the wheels 53A and 53B are not in contact with the running surface. In such a case, the moving body 5 can turn about the center point TC52 of the wheels 53C and 53D by rotating the wheels 53C and 53D, which are driving wheels, in opposite directions.
- the moving body 5 can switch between grounding at the two points of the wheels 53A and 53B and grounding at the two points of the wheels 53C and 53D.
- the two points of the wheels 53A and 53B or the two points of the wheels 53C and 53D are far from the center of gravity of the main body 52 of the moving body 5 and are unstable, so that the main body 52 can be stabilized. difficult to support.
- the moving body 5 performs a turn centered on a midpoint TC51 when the wheels 53A and 53B touch the ground, and a turn centered on a midpoint TC52 when the wheels 53C and 53D touch the ground. Difficult to do independently. Therefore, it is difficult to control the moving body 5 to an average turning center in a series of turning motions by the technology according to the present disclosure.
- the technology according to the present disclosure has a movement wheel group including a plurality of drive wheel groups that have different turning centers and are capable of supporting or not supporting the main body independently of each other. It can be suitably applied to the body.
- a first driving wheel group capable of turning at a first turning center is grounded and a second driving wheel group capable of turning at a second turning center different from the first turning center is grounded.
- a control device comprising a ground control unit that switches and controls between and.
- the ground contact control unit controls an internal division ratio between turning by the first drive wheel group and turning by the second drive wheel group in the series of turning movements, so that an average
- the ground contact control unit controls an average turning center in the series of turning motions by controlling an internal ratio between a ground contact time of the first drive wheel group and a ground contact time of the second drive wheel group.
- the ground contact control unit switches between the ground contact of the first drive wheel group and the contact contact of the second drive wheel group when the turning speed of the series of turning motions is 0, the above (1) to ( 3)
- the control device according to any one of items.
- Device. (6)
- the control device according to (5), wherein the ground contact control unit controls an average turning center in the series of turning operations so as to substantially match the center of the main body.
- a moving body comprising: (16) In a series of turning motions, the computing device causes a first driving wheel group that can turn at a first turning center to touch the ground and a second drive that can turn at a second turning center that is different from the first turning center.
- a control method for a moving object that switches between and controls a group of wheels.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
Description
本開示は、制御装置、移動体、及び移動体の制御方法に関する。 The present disclosure relates to a control device, a moving body, and a control method for the moving body.
近年、複数の脚部によって階段又は未舗装路等の凹凸面を自由に歩行移動することが可能な脚式の移動体又はロボットの開発が進められている。また、複数の脚部の先端にモータ等で駆動する車輪を設けることで、脚部にて凹凸面を歩行移動すると共に、舗装路などの平坦面を車輪で走行することが可能な脚車輪式の移動体も注目されている。 In recent years, there has been progress in the development of legged moving bodies or robots that can walk freely on uneven surfaces such as stairs or unpaved roads with multiple legs. In addition, by providing wheels driven by a motor or the like at the tips of multiple legs, the leg-wheel type robot can walk on uneven surfaces using the legs and can run on flat surfaces such as paved roads. are also attracting attention.
下記特許文献1には、脚部の足先に車輪を有する4脚の脚車輪型ロボットが開示されている。特許文献1に開示された脚車輪型ロボットは、足先の車輪の車軸方向をヨー軸回りに制御することで、その場でコンパクトに旋回することが可能である。
上記特許文献1に開示された脚車輪型ロボットでは、車輪の車軸方向をヨー軸回りに制御するモータが足先の車輪の各々に設けられる。そのため、特許文献1に開示された脚車輪型ロボットでは、車輪の車軸方向をヨー軸回りに制御するモータのためにコストが増加すると共に、足先の重量増加により脚部を駆動させるための消費電力も増加してしまう。
In the leg-wheeled robot disclosed in
そこで、本開示では、移動体をより低コストでコンパクトに旋回させることが可能な、新規かつ改良された制御装置、移動体、及び移動体の制御方法を提案する。 Therefore, the present disclosure proposes a new and improved control device, a moving body, and a control method for the moving body that enable the moving body to turn more compactly at a lower cost.
本開示によれば、一連の旋回動作において、第1の旋回中心で旋回可能な第1の駆動輪群の接地と、前記第1の旋回中心と異なる第2の旋回中心で旋回可能な第2の駆動輪群の接地とを切り替えて制御する接地制御部を備える、制御装置が提供される。 According to the present disclosure, in a series of turning motions, a first drive wheel group capable of turning at a first turning center is grounded, and a second driving wheel group capable of turning at a second turning center different from the first turning center is provided. A control device is provided that includes a grounding control unit that switches and controls the grounding of the drive wheel group.
また、本開示によれば、第1の旋回中心で旋回可能な第1の駆動輪群と、前記第1の旋回中心と異なる第2の旋回中心で旋回可能な第2の駆動輪群と、一連の旋回動作において、前記第1の駆動輪群の接地と、前記第2の駆動輪群の接地とを切り替えて制御する接地制御部と、を備える、移動体が提供される。 Further, according to the present disclosure, a first driving wheel group capable of turning about a first turning center, a second driving wheel group capable of turning about a second turning center different from the first turning center, A mobile body is provided, comprising: a ground contact control unit that switches and controls ground contact of the first drive wheel group and ground contact of the second drive wheel group in a series of turning motions.
さらに、本開示によれば、演算装置によって、一連の旋回動作において、第1の旋回中心で旋回可能な第1の駆動輪群の接地と、前記第1の旋回中心と異なる第2の旋回中心で旋回可能な第2の駆動輪群の接地とを切り替えて制御する、移動体の制御方法が提供される。 Furthermore, according to the present disclosure, in a series of turning motions, the computing device determines that a first driving wheel group that is capable of turning at a first turning center touches the ground, and a second turning center different from the first turning center. A moving body control method is provided for switching and controlling a second drive wheel group that can turn with the ground contact.
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
なお、説明は以下の順序で行うものとする。
1.移動体の構成
2.制御装置の構成
3.制御装置の旋回動作
4.適用例
4.1.第1の適用例
4.2.第2の適用例
4.3.比較例
Note that the description will be given in the following order.
1. Configuration of moving
<1.移動体の構成>
まず、図1及び図2を参照して、本開示に係る技術が適用される移動体の構成について説明する。図1は、本開示に係る技術が適用される移動体1の外観を示す斜視図である。図2は、図1に示す移動体1を走行面側から見た下面図である。
<1. Configuration of moving body>
First, with reference to FIGS. 1 and 2, the configuration of a moving object to which the technology according to the present disclosure is applied will be described. FIG. 1 is a perspective view showing the appearance of a moving
なお、本明細書では、移動体1のヨー軸(すなわち、走行面に垂直な軸)を中心軸とした回転を「旋回」と称する。すなわち、移動体1を旋回させるとは、走行面に垂直な軸回りで移動体1の進行方向を回転させることを意味する。
In this specification, rotation about the yaw axis (that is, the axis perpendicular to the running surface) of the
図1及び図2に示すように、移動体1は、本体部12と、複数の脚部11A,11B,11C,11D,11E,11Fと、車輪13A,13B,13C,13D,13E,13Fとを備える。移動体1は、例えば、6脚の脚車輪式のロボット装置である。
As shown in FIGS. 1 and 2, the moving
以下では、脚部11A,11B,11C,11D,11E,11Fの各々を互いに区別しない場合、これらをまとめて脚部11と称する。また、車輪13A,13B,13C,13D,13E,13Fの各々を互いに区別しない場合、これらをまとめて車輪13と称する。
Hereinafter, when the
本体部12は、移動体1の胴体部に相当する。本体部12は、例えば、移動体1の動作全般を制御する制御装置、移動体1の外部環境をセンシングするセンサ装置、及び移動体1の各部に電力を供給する電源装置などを備える。
The
脚部11は、一方の端部側(以下、後端側とも称する)にて本体部12に回動可能に取り付けられる。また、脚部11は、他方の端部側(以下、先端側とも称する)にて車輪13を介して走行面に接地することで本体部12を支持する。
The leg portion 11 is rotatably attached to the
具体的には、脚部11は、互いに直動可能に連結された複数のリンクにて構成され、後端側にて進行方向SDと直交する軸で回動可能に設けられる。脚部11は、連結された複数のリンクを互いに伸縮させることで、一方向に伸縮することができる。したがって、移動体1は、本体部12を支持する複数の脚部11を交互に回動させつつ、伸縮させることで、脚部11を用いた歩行を行うことができる。これによれば、移動体1は、階段又は未舗装路等の凹凸が存在する走行面では、脚部11を用いた歩行を行うことができる。
Specifically, the leg portion 11 is composed of a plurality of links that are connected to each other so as to be able to move linearly, and is provided rotatably on an axis perpendicular to the traveling direction SD on the rear end side. The leg portion 11 can be expanded and contracted in one direction by expanding and contracting a plurality of connected links. Therefore, the moving
車輪13は、脚部11の各々の先端側に設けられる。車輪13は、モータ等による駆動、又は移動体1の移動に伴う従動によって回転することで、移動体1を車輪走行させることができる。これによれば、移動体1は、舗装路等の平坦な走行面では、脚部11の各々の姿勢を維持したまま車輪13を回転させることで、車輪走行を行うことができる。
The wheels 13 are provided on the tip side of each leg 11 . The wheels 13 are driven by a motor or the like, or rotated by being driven by the movement of the
より具体的には、移動体1の進行方向SD側に向いた正面には、脚部11A、脚部11B、及び脚部11Cの3脚が設けられる。また、進行方向SD側に向いた正面と反対側の背面には、脚部11D、脚部11E、及び脚部11Fの3脚が設けられる。
More specifically, on the front facing the moving direction SD side of the moving
正面側の左右に設けられた脚部11A及び脚部11Cには、固定された車軸まわりにモータ等による駆動にて回転する車輪13A及び車輪13C(駆動輪)がそれぞれ設けられる。脚部11A及び脚部11Cの間に設けられた脚部11Bには、移動体1の移動に伴って回転する車輪13B(従動輪)が設けられる。
また、背面側の左右に設けられた脚部11D及び脚部11Fには、固定された車軸まわりにモータ等による駆動にて回転する車輪13D及び車輪13F(駆動輪)が設けられる。脚部11D及び脚部11Fの間に設けられた脚部11Eには、移動体1の移動に伴って回転する車輪13E(従動輪)が設けられる。
In addition, the
なお、車輪13B及び車輪13Eは、全方位に並進移動可能な車輪として設けられてもよい。例えば、車輪13B及び車輪13Eは、車輪の向きを旋回させる旋回軸を有することで、全方位に並進移動可能に設けられてもよい。
It should be noted that the
このような構成によれば、移動体1は、進行方向SD側に設けられた車輪13Bと、進行方向SD側と反対側に設けられた車輪13D及び車輪13Fとをのみ接地させて車輪走行を行うことで、ステアリング機構を備えずとも旋回を行うことが可能である。すなわち、従動輪である車輪13Bの車軸方向は全方位に旋回自在であるため、移動体1は、駆動輪である車輪13D及び車輪13Fの回転数に差をつけることで右旋回又は左旋回を自在に行うことが可能である。
According to such a configuration, the moving
同様に、移動体1は、進行方向SD側と反対側に設けられた車輪13Eと、進行方向SD側に設けられた車輪13A及び車輪13Cとをのみ接地させて車輪走行を行うことで、ステアリング機構を備えずとも旋回を行うことが可能である。すなわち、従動輪である車輪13Eの車軸方向は全方位に旋回自在であるため、移動体1は、駆動輪である車輪13A及び車輪13Cの回転数に差をつけることで右旋回又は左旋回を自在に行うことが可能である。
Similarly, the moving
また、移動体1は、車輪13B、車輪13D、及び車輪13Fと、車輪13A、車輪13C、及び車輪13Eとを交互に接地させることで、階段等の段差を脚式歩行にて昇降することが可能である。具体的には、移動体1は、車輪13A,13B,13C,13D,13E,13Fの6つを接地した状態から、車輪13B,13D,13Fの3つを持ち上げて段差の上に接地させる。その後、移動体1は、段差の下に接地した車輪13A,13C,13Eの3つを持ち上げて段差の上に接地させることで、段差を昇ることができる。
In addition, the moving
車輪13B、車輪13D、及び車輪13Fの3点と、車輪13A、車輪13C、及び車輪13Eの3点とは、それぞれ移動体1の重心位置を内側に含む二等辺三角形の頂点であるため、3点にて移動体1を安定して支持することが可能である。したがって、移動体1は、車輪13B、車輪13D、及び車輪13Fの3点と、車輪13A、車輪13C、及び車輪13Eの3点とを交互に接地させることで、安定して脚式歩行を行うことが可能である。
The three points of
<2.制御装置の構成>
続いて、図3を参照して、本開示の一実施形態に係る移動体1の制御装置について説明する。図3は、本実施形態に係る移動体1の制御装置100の機能構成を示すブロック図である。制御装置100は、例えば、図1に示すような脚車輪式のロボット装置の移動及び旋回を制御する制御装置である。
<2. Configuration of Control Device>
Next, with reference to FIG. 3, a control device for the moving
図3に示すように、制御装置100は、自己位置推定部101と、経路計画部102と、駆動制御部103と、接地制御部104とを備える。制御装置100は、外界センサ部111及び内界センサ部112からの入力に基づいて、脚部11の各々、及び車輪13の各々に備えられた駆動部131を制御することができる。
As shown in FIG. 3, the
外界センサ部111は、例えば、移動体1の外部環境を測定する外界センサを含み、外界センサのセンシング結果を自己位置推定部101に出力する。例えば、外界センサ部111は、撮像装置、測距センサ、気圧センサ、接触センサ、温度センサ、湿度センサ、地磁気センサ、振動センサ、光センサ、又は音センサなどの外界センサを含んでもよい。外界センサ部111に含まれる撮像装置としては、RGBカメラ、グレースケールカメラ、赤外線カメラ、単眼カメラ、ステレオカメラ、又はデプスカメラなどの各種撮像装置を例示することができる。外界センサ部111に含まれる測距センサとしては、ToF(Time of Flight)センサ、LiDAR(Light Detection And Ranging)センサ、Radar(Radio Detecting And Ranging)センサ、超音波センサ、又はソナーなどの各種測距センサを例示することができる。また、外界センサ部111は、GNSS(Global Navigation Satellite System)信号を受信することで、移動体1の緯度、経度、及び高度を測定するGNSSセンサを含んでもよい。
The
内界センサ部112は、移動体1の内部状態を測定する内界センサを含み、内界センサのセンシング結果を自己位置推定部101に出力する。例えば、内界センサ部112は、エンコーダ、電圧計、電流計、歪みゲージ、圧力計、ジャイロセンサ、加速度センサ、又は慣性測定装置(Inertial Measurement Unit: IMU)などの内界センサを含んでもよい。内界センサにて測定された情報は、例えば、移動体1の位置及び姿勢を推定するために用いられる。
The
自己位置推定部101は、外界センサ部111及び内界センサ部112のセンシング結果に基づいて外部環境の地図を作成すると同時に、作成した地図内での移動体1の位置及び姿勢を推定する。具体的には、自己位置推定部101は、外界センサ部111のセンシング結果に基づいて外部環境の二次元又は三次元の環境地図を作成する。同時に、自己位置推定部101は、内界センサ部112のセンシング結果に基づいて移動体1の移動方向及び移動量を逐次的に推定することで、作成された環境地図上での移動体1の自己位置を推定する。このような環境地図作成と自己位置推定とを同時に行うことは、SLAM(Simultaneous Localization and Mapping)と称される。
The self-
経路計画部102は、ユーザから指示された目標位置、又はタスクに基づいて設定された目標位置への移動体1の移動経路を計画する。具体的には、経路計画部102は、自己位置推定部101が作成した環境地図に基づいて、現在位置から目標位置まで障害物を回避しながら移動体1を到達させる移動経路を計画してもよい。例えば、環境地図が占有格子地図(Occupancy Grid Map)で表現される場合、経路計画部102は、障害物に占有された格子を回避しつつ、現在位置から目標位置までの移動体1の移動コストが最も小さくなるような移動経路を計画してもよい。
The
また、経路計画部102は、計画した移動経路における移動の目標速度及び目標歩容をさらに計画してもよい。例えば、経路計画部102は、移動経路上に段差等が存在する場合、脚式歩行にて段差を越えるように目標歩容を計画してもよい。また、経路計画部102は、平坦面では車輪走行するように目標歩容を計画してもよい。
In addition, the
接地制御部104は、移動体1の旋回時に移動体1を支持する車輪13の接地又は非接地を制御することで、移動体1の旋回中心の位置を制御する。具体的には、接地制御部104は、一連の旋回動作において、移動体1を支持する車輪13を第1の旋回中心で移動体1を旋回可能な車輪13と、第1の旋回中心と異なる第2の旋回中心で移動体1を旋回可能な車輪13とに切り替える。これにより、接地制御部104は、異なる旋回中心での旋回を混合して行うことで、一連の旋回動作における移動体1の旋回中心の位置を制御することができる。
The
図4及び図5を参照して、接地制御部104の機能についてさらに説明する。図4は、図1に示す移動体1における車輪13の接地と、旋回中心との関係を示す説明図である。図5は、旋回中心の異なる旋回の各々の旋回時間を制御することで、一連の旋回動作における平均的な旋回中心の位置を制御する例を示す説明図である。
The function of the
図1に示す移動体1では、車輪13B及び車輪13Eが従動輪であり、車輪13A、車輪13C、車輪13D、及び車輪13Fが駆動輪である。そのため、図4に正対して左に示すように、移動体1が車輪13B,13D,13Fの3点で接地している場合、移動体1は、駆動輪である車輪13D及び車輪13Fを反対方向に回転させることで、車輪13D及び車輪13Fの中間点TC1を旋回中心として旋回することができる。また、図4に正対して右に示すように、移動体1が車輪13A,13C,13Eの3点で接地している場合、移動体1は、駆動輪である車輪13A及び車輪13Cを反対方向に回転させることで、車輪13A及び車輪13Cの中間点TC2を旋回中心として旋回することができる。
In the moving
本実施形態に係る制御装置100では、接地制御部104は、一連の旋回動作において、車輪13B,13D,13Fの3点での接地と、車輪13A,13C,13Eの3点での接地とを切り替える。これによれば、移動体1は、一連の旋回動作において、車輪13B,13D,13Fの接地時の中間点TC1を旋回中心とする旋回と、車輪13A,13C,13Eの接地時の中間点TC2を旋回中心とする旋回とを切り替えながら旋回することができる。
In the
例えば、接地制御部104は、中間点TC1を旋回中心とする旋回と、中間点TC2を旋回中心とする旋回とを短時間に交互に切り替えて移動体1に実行させることで、実質的な旋回中心を中間点TC1及び中間点TC2の間の点に制御することができる。したがって、移動体1は、中間点TC1と中間点TC2とを結ぶ線分上の任意の点を平均的な旋回中心に制御して一連の旋回動作を行うことができる。
For example, the ground
図5に示すように、接地制御部104は、一連の旋回動作における車輪13B,13D,13Fによる旋回時間と、車輪13A,13C,13Eによる旋回時間との割合を制御することで、平均的な旋回中心の位置を制御してもよい。図5では、ハッチングされた期間が非接地の期間を示し、非ハッチングの期間が接地の期間を示す。
As shown in FIG. 5, the
図5では、車輪13B、車輪13D、及び車輪13Fを第1の車輪群と定義し、車輪13A、車輪13C、及び車輪13Eを第2の車輪群と定義する。ここで、第1の車輪群が接地、かつ第2の車輪群が非接地の場合、移動体1は、車輪13D及び車輪13Fの間の中間点TC1を旋回中心として旋回することができる。一方、第2の車輪群が接地、かつ第1の車輪群が非接地の場合、移動体1は、車輪13A及び車輪13Cの間の中間点TC2を旋回中心として旋回することができる。
In FIG. 5,
よって、旋回速度が一定である場合、接地制御部104は、第1の車輪群による旋回時間と、第2の車輪群による旋回時間とを内分することで、一連の旋回動作における平均的な旋回中心を中間点TC1と中間点TC2との間の内分点BCに制御することができる。すなわち、接地制御部104は、一連の旋回動作における第1の車輪群による接地時間(旋回時間)と、第2の車輪群による接地時間(旋回時間)とを分割することで、一連の旋回動作における平均的な旋回中心の位置を制御することができる。例えば、接地制御部104は、第1の車輪群による接地時間と、第2の車輪群による接地時間とを所定比率で内分することで、一連の旋回動作における平均的な旋回中心を中間点TC1と中間点TC2との間の所定比率の逆数の内分点BCに制御することができる。
Therefore, when the turning speed is constant, the ground
また、接地制御部104は、一連の旋回動作における第1の車輪群による旋回角度と、第2の車輪群による旋回角度との内分比を制御することで一連の旋回動作における平均的な旋回中心の位置を制御してもよい。これによれば、接地制御部104は、旋回速度が一定ではない場合でも、第1の車輪群による旋回と、第2の車輪群による旋回とを内分して行うことで、一連の旋回動作における平均的な旋回中心の位置を制御することができる。
Further, the ground
上述したように、接地制御部104は、第1の車輪群による接地旋回と、第2の車輪群による接地旋回とを短時間に交互に切り替えて実行することで、一連の旋回動作における実質的な旋回中心の位置を制御することができる。これによれば、接地制御部104は、例えば、一連の旋回動作における平均的な旋回中心を移動体1の本体部12の中心と略一致させることが可能であるため、移動体1をより小さなフットプリントで旋回させることが可能である。また、接地制御部104は、例えば、外界センサ部111から取得した外部環境における障害物の情報を参照することで、障害物をより回避しやすい旋回中心で移動体1を旋回させることが可能である。
As described above, the ground
なお、接地制御部104による車輪13の接地又は非接地の切り替えは、移動体1の脚式歩行又は車輪走行による並進移動と並行して行われてもよい。すなわち、接地制御部104による車輪13の接地又は非接地の切り替えは、車輪13による旋回速度が0であるタイミングで、車輪13又は脚部11による並進移動の速度とは独立して行われてもよい。
The grounding/non-grounding switching of the wheels 13 by the
駆動制御部103は、経路計画部102にて計画された移動経路、及び接地制御部104による接地制御に基づいて移動体1の駆動部131を制御する。これにより、移動体1は、現在位置から目標位置まで移動することができる。例えば、駆動制御部103は、経路計画部102にて計画された移動経路に沿って移動体1を移動させるように駆動部131を制御してもよい。また、駆動制御部103は、移動体1の旋回時には、接地制御部104による制御に基づいて接地する車輪13を制御することで、移動体1の旋回中心を制御してもよい。
The driving
駆動部131は、脚部11の関節の各々を駆動させるモータ、及び車輪13の各々を回転させるモータである。駆動部131は、駆動制御部103の制御に基づいて駆動することで、移動体1に脚部11による脚式歩行、又は車輪13による車輪走行を行わせることができる。また、駆動部131は、移動体1の旋回時には、接地制御部104の制御に基づいて、脚部11の姿勢を制御することで、車輪13の各々の接地又は非接地を制御することができる。
The
<3.移動体の旋回動作>
次に、図6を参照して、制御装置100による移動体1の旋回動作について説明する。図6は、移動体1の旋回時の旋回角度、旋回速度、及び車輪13の接地有無を時系列に示すグラフ図である。なお、図6に示すグラフ図では、車輪群の接地を「1」で表し、車輪群の非接地を「0」で表す。
<3. Rotating Operation of Moving Body>
Next, referring to FIG. 6, the turning operation of the moving
図6に示すように、接地制御部104は、第1の車輪群(例えば、車輪13B、車輪13D、及び車輪13F)と、第2の車輪群(車輪13A、車輪13C、及び車輪13E)との接地又は非接地を交互に切り替えて制御する。
As shown in FIG. 6, the ground
具体的には、接地制御部104は、現在角度θcurrentと、目標旋回速度ωrefと、接地又は非接地の切り替え時間ΔTとから「θnext1=θcurrent+ωrefΔT」によって旋回速度θnext1を決定する。さらに、接地制御部104は、次回に接地している車輪群から次回の旋回速度θnext2を決定する。例えば、次回に接地している車輪群と現在接地している車輪群とが同一の場合、接地制御部104は、旋回速度θnext2を「θnext2=ωref」と決定する。また、次回に接地している車輪群と現在接地している車輪群とが異なる場合、接地制御部104は、旋回速度θnext2を「θnext2=0」と決定する。
Specifically, the ground contact control unit 104 calculates the turning speed θ next1 from the current angle θ current , the target turning speed ω ref , and the contact/non-contact switching time ΔT by “θ next1 =θ current +ω ref ΔT”. decide. Furthermore, the ground
これによれば、接地制御部104は、旋回速度が0であるタイミングで、第1の車輪群の接地と、第2の車輪群の接地とを切り替えることができる。したがって、接地制御部104は、第1の車輪群と第2の車輪群とが同時に接地した際に旋回し、駆動していない車輪13に滑りが生じることを抑制することができるため、滑りによる車輪13へのダメージを抑制することができる。
According to this, the ground
さらに、移動体1は、第1の車輪群の接地時の旋回と、第2の車輪群の接地時の旋回とを交互に繰り返し行うことで、全体として旋回角度を単調増加させつつ旋回することができる。第1の車輪群の接地と、第2の車輪群の接地とは、例えば、0.3秒~1.0秒の周期で切り替えられてもよい。これによれば、接地制御部104は、第1の車輪群による接地旋回と、第2の車輪群による接地旋回とを短時間に交互に切り替えることで、旋回動作中に移動体1の旋回中心が大きく変動することを抑制することができる。
Further, the moving
<4.適用例>
続いて、図7~図14を参照して、本開示に係る技術が適用される移動体について、比較例と対比して説明する。本開示に係る技術は、図1及び図2に示す移動体1に限定されず、種々の構成の移動体に適用することが可能である。
<4. Application example>
Next, a moving body to which the technology according to the present disclosure is applied will be described in comparison with a comparative example with reference to FIGS. 7 to 14. FIG. The technology according to the present disclosure is not limited to the
(4.1.第1の適用例)
図7は、本開示に係る技術が適用される第1の適用例に係る移動体2の構成を示す模式的な断面図である。図8は、図7に示す移動体2を走行面側から見た模式的な下面図である。
(4.1. First application example)
FIG. 7 is a schematic cross-sectional view showing the configuration of the moving
図7及び図8に示すように、移動体2は、本体部22と、脚部21Aと、車輪23A,23B,23C,23D,23E,23F,23Gとを備える。
As shown in FIGS. 7 and 8, the moving
本体部22は、移動体2の胴体部に相当する。本体部22は、例えば、移動体2の動作全般を制御する制御装置、移動体2の外部環境をセンシングするセンサ装置、及び移動体2の各部に電力を供給する電源装置などを備える。
The
脚部21Aは、一方の端部側にて本体部22に取り付けられると共に、他方の端部側にて車輪23E、車輪23F、及び車輪23Gを介して走行面に接地することで、本体部22を支持する。脚部21Aは、互いに直動可能に連結された複数のリンクにて構成され、連結された複数のリンクを互いに伸縮させることで一方向に伸縮することができる。車輪23F及び車輪23Gは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。車輪23Eは、移動体2の移動に伴って回転する全方位に並進移動可能な従動輪である。
The
本体部22には、車輪23A、車輪23B、車輪23C、及び車輪23Dが設けられる。車輪23A、車輪23B、車輪23C、及び車輪23Dは、脚部21Aが収縮した際に走行面に接地することで、本体部22を支持する。車輪23A及び車輪23Bは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。車輪23C及び車輪23Dは、移動体2の移動に伴って回転する全方位に並進移動可能な従動輪である。
The
移動体2では、脚部21Aが伸長した場合、車輪23E、車輪23F、及び車輪23Gが走行面に接地し、車輪23A、車輪23B、車輪23C、及び車輪23Dが走行面に非接地となる。このような場合、移動体2は、駆動輪である車輪23F及び車輪23Gを反対方向に回転させることで、車輪23F及び車輪23Gの中間点TC22を旋回中心として旋回することができる。
In the moving
一方、移動体2では、脚部21Aが収縮した場合、車輪23A、車輪23B、車輪23C、及び車輪23Dが走行面に接地し、車輪23E、車輪23F、及び車輪23Gが走行面に非接地となる。このような場合、移動体2は、駆動輪である車輪23A及び車輪23Bを反対方向に回転させることで、車輪23A及び車輪23Bの中間点TC21を旋回中心として旋回することができる。
On the other hand, in the moving
制御装置100は、脚部21Aを伸縮させることで、一連の旋回動作において、車輪23A、車輪23B、車輪23C、及び車輪23Dの4点での接地と、車輪23E、車輪23F、及び車輪23Gの3点での接地とを切り替えることができる。これにより、移動体2は、一連の旋回動作において、車輪23A、車輪23B、車輪23C、及び車輪23Dの接地時の中間点TC21を旋回中心とする旋回と、車輪23E、車輪23F、及び車輪23Gの接地時の中間点TC22を旋回中心とする旋回とを切り替えながら旋回することができる。
By extending and contracting the
したがって、制御装置100は、中間点TC21を旋回中心とする旋回と、中間点TC22を旋回中心とする旋回とを交互に切り替えて移動体2に実行させることで、実質的な旋回中心を中間点TC21及び中間点TC22の間の点に制御することができる。したがって、移動体2は、中間点TC21と中間点TC22とを結ぶ線分上の任意の点を平均的な旋回中心として一連の旋回動作を行うことができる。
Therefore, the
(4.2.第2の適用例)
図9は、本開示に係る技術が適用される第2の適用例に係る移動体3の構成を示す模式的な断面図である。図10は、図9に示す移動体3を走行面側から見た模式的な下面図である。
(4.2. Second application example)
FIG. 9 is a schematic cross-sectional view showing the configuration of a moving
図9及び図10に示すように、移動体3は、本体部32と、脚部31A,31B,31Cと、車輪33A,33B,33C,33D,33E,33Fとを備える。
As shown in FIGS. 9 and 10, the moving
本体部32は、移動体3の胴体部に相当する。本体部32は、例えば、移動体3の動作全般を制御する制御装置、移動体3の外部環境をセンシングするセンサ装置、及び移動体3の各部に電力を供給する電源装置などを備える。
The
脚部31Aは、一方の端部側にて本体部32に取り付けられると共に、他方の端部側にて車輪33A及び車輪33Bを介して走行面に接地することで、本体部32を支持する。脚部31Aは、互いに直動可能に連結された複数のリンクにて構成され、連結された複数のリンクを互いに伸縮させることで一方向に伸縮することができる。車輪33A及び車輪33Bは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。車輪33A及び車輪33Bは、同一の車軸にて回転するため、同一方向に回転する。
The
脚部31Bは、一方の端部側にて本体部32に取り付けられると共に、他方の端部側にて車輪33C及び車輪33Dを介して走行面に接地することで、本体部32を支持する。脚部31Bは、互いに直動可能に連結された複数のリンクにて構成され、連結された複数のリンクを互いに伸縮させることで一方向に伸縮することができる。車輪33C及び車輪33Dは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。車輪33C及び車輪33Dは、同一の車軸にて回転するため、同一方向に回転する。
The
脚部31Cは、一方の端部側にて本体部32に取り付けられると共に、他方の端部側にて車輪33E及び車輪33Fを介して走行面に接地することで、本体部32を支持する。脚部31Cは、互いに直動可能に連結された複数のリンクにて構成され、連結された複数のリンクを互いに伸縮させることで一方向に伸縮することができる。車輪33E及び車輪33Fは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。車輪33E及び車輪33Fは、同一の車軸にて回転するため、同一方向に回転する。
The
移動体3では、脚部31A及び脚部31Bが伸長し、脚部31Cが収縮した場合、車輪33A、車輪33B、車輪33C、及び車輪33Dが走行面に接地し、車輪33E及び車輪33Fが走行面に非接地となる。このような場合、移動体3は、車輪33A及び車輪33Bと、車輪33C及び車輪33Dとを反対方向に回転させることで、両者の車軸の交点TC31を旋回中心として旋回することができる。
In the moving
また、移動体3では、脚部31B及び脚部31Cが伸長し、脚部31Aが収縮した場合、車輪33C、車輪33D、車輪33E、及び車輪33Fが走行面に接地し、車輪33A及び車輪33Bが走行面に非接地となる。このような場合、移動体3は、車輪33C及び車輪33Dと、車輪33E及び車輪33Fとを反対方向に回転させることで、両者の車軸の交点TC32を旋回中心として旋回することができる。
Further, in the moving
さらに、移動体3では、脚部31A及び脚部31Cが伸長し、脚部31Bが収縮した場合、車輪33A、車輪33B、車輪33E、及び車輪33Fが走行面に接地し、車輪33C及び車輪33Dが走行面に非接地となる。このような場合、移動体3は、車輪33A及び車輪33Bと、車輪33E及び車輪33Fとを反対方向に回転させることで、両者の車軸の交点TC33を旋回中心として旋回することができる。
Furthermore, in the moving
制御装置100は、脚部31A、脚部31B、及び脚部31Cの伸縮を制御することで、一連の旋回動作において、車輪33A、車輪33B、車輪33C、及び車輪33Dの4点での接地と、車輪33C、車輪33D、車輪33E、及び車輪33Fの4点での接地と、車輪33A、車輪33B、車輪33E、及び車輪33Fの4点での接地とを切り替えることができる。これにより、移動体3は、一連の旋回動作において、交点TC31を旋回中心とする旋回と、交点TC32を旋回中心とする旋回と、交点TC33を旋回中心とする旋回とを切り替えながら旋回することができる。
The
これによれば、制御装置100は、一連の旋回動作における実質的な旋回中心を交点TC31、交点TC32、及び交点TC33を頂点とする三角形の内部の点に制御することができる。したがって、移動体3は、交点TC31、交点TC32、及び交点TC33を頂点とする三角形の内部の任意の点を平均的な旋回中心として一連の旋回動作を行うことができる。
According to this, the
(4.3.比較例)
図11は、本開示に係る技術が適用されない第1の比較例に係る移動体4の構成を示す模式的な断面図である。図12は、図11に示す移動体4を走行面側から見た模式的な下面図である。
(4.3. Comparative example)
FIG. 11 is a schematic cross-sectional view showing the configuration of a moving
図11及び図12に示すように、移動体4は、本体部42と、脚部41Aと、車輪43A,43B,43C,43D,43E,43Fとを備える。
As shown in FIGS. 11 and 12, the moving
本体部42は、移動体4の胴体部に相当する。本体部42は、例えば、移動体4の動作全般を制御する制御装置、移動体4の外部環境をセンシングするセンサ装置、及び移動体4の各部に電力を供給する電源装置などを備える。
The
脚部41Aは、一方の端部側にて本体部42に取り付けられると共に、他方の端部側にて車輪43E及び車輪43Fを介して走行面に接地することで、本体部42を支持する。脚部41Aは、互いに直動可能に連結された複数のリンクにて構成され、連結された複数のリンクを互いに伸縮させることで一方向に伸縮することができる。車輪43E及び車輪43Fは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。
The
本体部42には、車輪43A、車輪43B、車輪43C、及び車輪43Dが設けられる。車輪43A、車輪43B、車輪43C、及び車輪43Dは、脚部41Aが収縮した際に走行面に接地することで、本体部42を支持する。車輪43A、車輪43B、車輪43C、及び車輪43Dは、移動体4の移動に伴って回転する全方位に並進移動可能な従動輪である。
The
移動体4では、脚部41Aが伸長した場合、車輪43E及び車輪43Fが走行面に接地し、車輪43A、車輪43B、車輪43C、及び車輪43Dが走行面に非接地となる。このような場合、移動体4は、駆動輪である車輪43E及び車輪43Fを反対方向に回転させることで、車輪43E及び車輪43Fの中間点TC42を旋回中心として旋回することができる。
In the moving
一方、移動体4では、脚部41Aが収縮した場合、車輪43A、車輪43B、車輪43C、及び車輪43Dが走行面に接地し、車輪43E及び車輪43Fが走行面に非接地となる。このような場合、車輪43A、車輪43B、車輪43C、及び車輪43Dが従動輪であるため、移動体4は、車輪走行及び旋回を行うことが困難である。
On the other hand, in the
移動体4は、脚部41Aを伸縮させることで、車輪43A、車輪43B、車輪43C、及び車輪43Dの4点での接地と、車輪43E及び車輪43Fの2点での接地とを切り替えることができる。しかしながら、移動体4は、複数の旋回中心を有さないため、脚部41Aの伸縮によって旋回中心を切り替えることが困難である。したがって、移動体4は、本開示に係る技術によって一連の旋回動作における平均的な旋回中心に制御することが困難である。
By extending and contracting the
図13は、本開示に係る技術が適用されない第2の比較例に係る移動体5の構成を示す模式的な断面図である。図14は、図13に示す移動体5を走行面側から見た模式的な下面図である。
FIG. 13 is a schematic cross-sectional view showing the configuration of a moving
図13及び図14に示すように、移動体5は、本体部52と、脚部51A,51Bと、車輪53A,53B,53C,53Dとを備える。
As shown in FIGS. 13 and 14, the moving
本体部52は、移動体5の胴体部に相当する。本体部52は、例えば、移動体5の動作全般を制御する制御装置、移動体5の外部環境をセンシングするセンサ装置、及び移動体5の各部に電力を供給する電源装置などを備える。
The
脚部51Aは、一方の端部側にて本体部52に取り付けられると共に、他方の端部側にて車輪53A及び車輪53Bを介して走行面に接地することで、本体部52を支持する。脚部51Aは、互いに直動可能に連結された複数のリンクにて構成され、連結された複数のリンクを互いに伸縮させることで一方向に伸縮することができる。車輪53A及び車輪53Bは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。
The
脚部51Bは、一方の端部側にて本体部52に取り付けられると共に、他方の端部側にて車輪53C及び車輪53Dを介して走行面に接地することで、本体部52を支持する。脚部51Bは、互いに直動可能に連結された複数のリンクにて構成され、連結された複数のリンクを互いに伸縮させることで一方向に伸縮することができる。車輪53C及び車輪53Dは、固定された車軸まわりにモータ等による駆動にて回転する駆動輪である。
The
移動体5では、脚部51Aが伸長し、脚部51Bが収縮した場合、車輪53A及び車輪53Bが走行面に接地し、車輪53C及び車輪53Dが走行面に非接地となる。このような場合、移動体5は、駆動輪である車輪53A及び車輪53Bを反対方向に回転させることで、車輪53A及び車輪53Bの中間点TC51を旋回中心として旋回することができる。
In the moving
また、移動体5では、脚部51Bが伸長し、脚部51Aが収縮した場合、車輪53C及び車輪53Dが走行面に接地し、車輪53A及び車輪53Bが走行面に非接地となる。このような場合、移動体5は、駆動輪である車輪53C及び車輪53Dを反対方向に回転させることで、車輪53C及び車輪53Dの中間点TC52を旋回中心として旋回することができる。
Also, in the moving
移動体5は、脚部51A及び脚部51Bを伸縮させることで、車輪53A及び車輪53Bの2点での接地と、車輪53C及び車輪53Dの2点での接地とを切り替えることができる。しかしながら、車輪53A及び車輪53Bの2点、又は車輪53C及び車輪53Dの2点は、移動体5の本体部52の重心から離れており、かつ不安定であるため、本体部52を安定して支持することが困難である。
By extending and contracting the
このような場合、移動体5は、車輪53A及び車輪53Bの接地時の中間点TC51を旋回中心とする旋回と、車輪53C及び車輪53Dの接地時の中間点TC52を旋回中心とする旋回とを独立して行うことが困難である。したがって、移動体5は、本開示に係る技術によって一連の旋回動作における平均的な旋回中心に制御することが困難である。
In such a case, the moving
すなわち、上記の比較例からわかるように、本開示に係る技術は、互いに異なる旋回中心を有し、互いに独立して本体部を支持又は非支持することが可能な複数の駆動輪群を備える移動体に対して好適に適用することが可能である。 That is, as can be seen from the above comparative example, the technology according to the present disclosure has a movement wheel group including a plurality of drive wheel groups that have different turning centers and are capable of supporting or not supporting the main body independently of each other. It can be suitably applied to the body.
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can conceive of various modifications or modifications within the scope of the technical idea described in the claims. are naturally within the technical scope of the present disclosure.
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Also, the effects described in this specification are merely descriptive or exemplary, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification in addition to or instead of the above effects.
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
一連の旋回動作において、第1の旋回中心で旋回可能な第1の駆動輪群の接地と、前記第1の旋回中心と異なる第2の旋回中心で旋回可能な第2の駆動輪群の接地とを切り替えて制御する接地制御部
を備える、制御装置。
(2)
前記接地制御部は、前記一連の旋回動作における前記第1の駆動輪群による旋回と、前記第2の駆動輪群による旋回との内分比を制御することで、前記一連の旋回動作における平均旋回中心を制御する、前記(1)に記載の制御装置。
(3)
前記接地制御部は、前記第1の駆動輪群の接地時間と、前記第2の駆動輪群の接地時間との内分比を制御することで、前記一連の旋回動作における平均旋回中心を制御する、前記(2)に記載の制御装置。
(4)
前記接地制御部は、前記一連の旋回動作の旋回速度が0の場合に、前記第1の駆動輪群の接地と、前記第2の駆動輪群の接地とを切り替える、前記(1)~(3)のいずれか一項に記載の制御装置。
(5)
前記第1の駆動輪群、及び前記第2の駆動輪群は、移動体の本体部を支持する支持脚にそれぞれ設けられる、前記(1)~(4)のいずれか一項に記載の制御装置。
(6)
前記接地制御部は、前記本体部の中心と略一致するように前記一連の旋回動作における平均旋回中心を制御する、前記(5)に記載の制御装置。
(7)
前記接地制御部は、前記移動体が備えるセンサのセンシング結果に基づいて、前記一連の旋回動作における平均旋回中心を制御する、前記(5)に記載の制御装置。
(8)
前記接地制御部は、接地する前記支持脚を切り替えることで、前記第1の駆動輪群の接地と、前記第2の駆動輪群の接地とを切り替える、前記(5)~(7)のいずれか一項に記載の制御装置。
(9)
前記支持脚は、鉛直方向に伸縮又は屈曲可能な関節を含む、前記(5)~(8)のいずれか一項に記載の制御装置。
(10)
前記一連の旋回動作は、前記支持脚による歩行動作と並行して行われる、前記(5)~(9)のいずれか一項に記載の制御装置。
(11)
前記第1の駆動輪群、及び前記第2の駆動輪群に含まれる駆動輪の各々は、固定された車軸まわりに回転可能な車輪である、前記(1)~(10)のいずれか一項に記載の制御装置。
(12)
前記接地制御部は、全方向に並進移動が可能な従動輪の接地をさらに制御する、前記(1)~(11)のいずれか一項に記載の制御装置。
(13)
前記一連の旋回動作は、前記第1の駆動輪群、又は前記第2の駆動輪群による並進動作と並行して行われる、前記(1)~(12)のいずれか一項に記載の制御装置。
(14)
前記接地制御部は、前記一連の旋回動作において、前記第1の駆動輪群の接地と、前記第2の駆動輪群の接地と、前記第1の旋回中心、及び前記第2の旋回中心とそれぞれ異なる第3の旋回中心で旋回可能な第3の駆動輪群の接地とを切り替えて制御する、前記(1)~(13)のいずれか一項に記載の制御装置。
(15)
第1の旋回中心で旋回可能な第1の駆動輪群と、
前記第1の旋回中心と異なる第2の旋回中心で旋回可能な第2の駆動輪群と、
一連の旋回動作において、前記第1の駆動輪群の接地と、前記第2の駆動輪群の接地とを切り替えて制御する接地制御部と、
を備える、移動体。
(16)
演算装置によって、一連の旋回動作において、第1の旋回中心で旋回可能な第1の駆動輪群の接地と、前記第1の旋回中心と異なる第2の旋回中心で旋回可能な第2の駆動輪群の接地とを切り替えて制御する、移動体の制御方法。
Note that the following configuration also belongs to the technical scope of the present disclosure.
(1)
In a series of turning motions, a first driving wheel group capable of turning at a first turning center is grounded and a second driving wheel group capable of turning at a second turning center different from the first turning center is grounded. A control device comprising a ground control unit that switches and controls between and.
(2)
The ground contact control unit controls an internal division ratio between turning by the first drive wheel group and turning by the second drive wheel group in the series of turning movements, so that an average The control device according to (1), which controls the turning center.
(3)
The ground contact control unit controls an average turning center in the series of turning motions by controlling an internal ratio between a ground contact time of the first drive wheel group and a ground contact time of the second drive wheel group. The control device according to (2) above.
(4)
The ground contact control unit switches between the ground contact of the first drive wheel group and the contact contact of the second drive wheel group when the turning speed of the series of turning motions is 0, the above (1) to ( 3) The control device according to any one of items.
(5)
The control according to any one of (1) to (4), wherein the first driving wheel group and the second driving wheel group are respectively provided on support legs that support the main body of the moving body. Device.
(6)
The control device according to (5), wherein the ground contact control unit controls an average turning center in the series of turning operations so as to substantially match the center of the main body.
(7)
The control device according to (5), wherein the ground control unit controls an average turning center in the series of turning motions based on a sensing result of a sensor provided in the moving body.
(8)
Any one of (5) to (7) above, wherein the grounding control unit switches grounding of the first driving wheel group and grounding of the second driving wheel group by switching the support leg to be grounded. or the control device according to
(9)
The control device according to any one of (5) to (8), wherein the support leg includes a joint that can be vertically stretched or bent.
(10)
The control device according to any one of (5) to (9), wherein the series of turning motions is performed in parallel with a walking motion by the support legs.
(11)
Any one of (1) to (10) above, wherein each of the drive wheels included in the first drive wheel group and the second drive wheel group is a wheel rotatable around a fixed axle. A control device according to any one of the preceding paragraphs.
(12)
The control device according to any one of (1) to (11), wherein the ground contact control unit further controls ground contact of a driven wheel capable of translational movement in all directions.
(13)
The control according to any one of (1) to (12) above, wherein the series of turning motions is performed in parallel with the translational motion by the first drive wheel group or the second drive wheel group. Device.
(14)
The ground contact control unit controls ground contact of the first drive wheel group, ground contact of the second drive wheel group, the first turning center, and the second turning center in the series of turning operations. The control device according to any one of the above (1) to (13), wherein the third drive wheel group capable of turning at different third turning centers is controlled by switching between grounding and grounding.
(15)
a first driving wheel group capable of turning at a first turning center;
a second drive wheel group capable of turning at a second turning center different from the first turning center;
a grounding control unit that switches and controls grounding of the first driving wheel group and grounding of the second driving wheel group in a series of turning operations;
A moving body comprising:
(16)
In a series of turning motions, the computing device causes a first driving wheel group that can turn at a first turning center to touch the ground and a second drive that can turn at a second turning center that is different from the first turning center. A control method for a moving object that switches between and controls a group of wheels.
1 移動体
11,11A,11B,11C,11D,11E,11F 脚部
12 本体部
13,13A,13B,13C,13D,13E,13F 車輪
100 制御装置
101 自己位置推定部
102 経路計画部
103 駆動制御部
104 接地制御部
111 外界センサ部
112 内界センサ部
131 駆動部
1 moving
Claims (16)
を備える、制御装置。 In a series of turning motions, a first driving wheel group capable of turning at a first turning center is grounded and a second driving wheel group capable of turning at a second turning center different from the first turning center is grounded. A control device comprising a ground control unit that switches and controls between and.
前記第1の旋回中心と異なる第2の旋回中心で旋回可能な第2の駆動輪群と、
一連の旋回動作において、前記第1の駆動輪群の接地と、前記第2の駆動輪群の接地とを切り替えて制御する接地制御部と、
を備える、移動体。 a first driving wheel group capable of turning at a first turning center;
a second drive wheel group capable of turning at a second turning center different from the first turning center;
a grounding control unit that switches and controls grounding of the first driving wheel group and grounding of the second driving wheel group in a series of turning operations;
A moving body comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024504387A JPWO2023166855A1 (en) | 2022-03-04 | 2023-01-10 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022033386 | 2022-03-04 | ||
JP2022-033386 | 2022-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166855A1 true WO2023166855A1 (en) | 2023-09-07 |
Family
ID=87883699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/000303 WO2023166855A1 (en) | 2022-03-04 | 2023-01-10 | Control device, moving body, and control method of moving body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023166855A1 (en) |
WO (1) | WO2023166855A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH038078U (en) * | 1989-06-12 | 1991-01-25 | ||
JP2018188013A (en) * | 2017-05-02 | 2018-11-29 | Bbjハイテック株式会社 | Omnidirectional mobile body |
-
2023
- 2023-01-10 WO PCT/JP2023/000303 patent/WO2023166855A1/en active Application Filing
- 2023-01-10 JP JP2024504387A patent/JPWO2023166855A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH038078U (en) * | 1989-06-12 | 1991-01-25 | ||
JP2018188013A (en) * | 2017-05-02 | 2018-11-29 | Bbjハイテック株式会社 | Omnidirectional mobile body |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023166855A1 (en) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11654985B2 (en) | Mechanically-timed footsteps for a robotic device | |
US11319005B2 (en) | Achieving a target gait behavior in a legged robot | |
US11027415B1 (en) | Generalized coordinate surrogates for integrated estimation and control | |
US9969086B1 (en) | Achieving a target gait in a legged robot based on steering commands | |
KR101380260B1 (en) | Self-controlling movement device | |
Goel et al. | Robust localization using relative and absolute position estimates | |
JP4246696B2 (en) | Self-position estimation device for legged mobile robot | |
JP2019089200A (en) | Natural pitch and roll | |
US10196104B1 (en) | Terrain Evaluation for robot locomotion | |
JP4738472B2 (en) | Mobility control device having obstacle avoidance function | |
Ben-Ari et al. | Robotic motion and odometry | |
US9833899B1 (en) | Adaptive response to load | |
US10719085B2 (en) | Mobile robot sitting and standing | |
Belter et al. | Optimization-based legged odometry and sensor fusion for legged robot continuous localization | |
Balaram | Kinematic state estimation for a Mars rover | |
Zhao et al. | A real-time low-computation cost human-following framework in outdoor environment for legged robots | |
Gassmann et al. | Localization of walking robots | |
Skobeleva et al. | Extended Kalman Filter for indoor and outdoor localization of a wheeled mobile robot | |
Görner et al. | A leg proprioception based 6 DOF odometry for statically stable walking robots | |
US20230211842A1 (en) | Autonomous walking vehicle | |
WO2023166855A1 (en) | Control device, moving body, and control method of moving body | |
Tan et al. | Research on omnidirectional indoor mobile robot system based on multi-sensor fusion | |
Dettmann et al. | Towards a generic navigation and locomotion control system for legged space exploration | |
Walas et al. | Control and environment sensing system for a six-legged robot | |
JP2008023700A (en) | Force sensor installation structure of leg-type robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23763118 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024504387 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23763118 Country of ref document: EP Kind code of ref document: A1 |