WO2023165646A1 - Method for interference-reduced determination and/or monitoring of the ph value of a medium, and corresponding apparatus - Google Patents
Method for interference-reduced determination and/or monitoring of the ph value of a medium, and corresponding apparatus Download PDFInfo
- Publication number
- WO2023165646A1 WO2023165646A1 PCT/DE2023/000012 DE2023000012W WO2023165646A1 WO 2023165646 A1 WO2023165646 A1 WO 2023165646A1 DE 2023000012 W DE2023000012 W DE 2023000012W WO 2023165646 A1 WO2023165646 A1 WO 2023165646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medium
- interference
- value
- frequency
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000012544 monitoring process Methods 0.000 title claims description 8
- 238000005259 measurement Methods 0.000 claims abstract description 24
- 238000001228 spectrum Methods 0.000 claims abstract description 6
- 150000002500 ions Chemical class 0.000 claims description 20
- 239000012212 insulator Substances 0.000 claims description 13
- 230000005684 electric field Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 abstract description 10
- 101150071746 Pbsn gene Proteins 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 239000002800 charge carrier Substances 0.000 description 7
- 238000001139 pH measurement Methods 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000881711 Acipenser sturio Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001827 electrotherapy Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002226 simultaneous effect Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
Definitions
- the present invention relates to a method for determining and/or monitoring the pH value of a medium with reduced interference and an associated device.
- the method according to the invention and the device according to the invention are aimed at reducing the effect of interfering external electric fields that act on the pH measuring system.
- the reduction of internal sources of interference, i. H. the sensor noise, is sufficiently solved in the prior art and is therefore not the subject of this invention.
- glass electrodes have long been used to determine and/or monitor the pH value of a medium, which always have the same structure, even in newer technologies:
- the pH value is determined using the differential voltage between a reference electrode, which is independent of the
- the medium always supplies the same potential and is determined using a measuring electrode that is in direct contact with the medium.
- the electrodes and their leads consist of lines a few centimeters long, some of which (particularly the measuring electrode) are shielded against interfering external electric fields, hereinafter referred to as external interference fields.
- external interference fields interfering external electric fields
- the contact surfaces of the electrodes designed as rod probes are not protected against external interference fields, since they must have direct physical contact (galvanic contact) with the medium being examined. These contact surfaces are therefore permanently exposed to external interference fields.
- ISFET ion-sensitive field effect transistors
- low frequency means the frequency range ⁇ 200 Hz.
- it also includes the 3rd harmonic of the 50 Hz mains frequency, which causes a strong external interference at a frequency of 150 Hz.
- External DC voltage sources not only interfere with fast ISFET pH sensors, but also with pH probes that are equipped with glass electrodes. In this case, the measured pH value shows a systematic error that cannot be detected with the known solutions and therefore cannot be corrected.
- ISFET pH sensors have time constants in the range of 1 ms and are therefore significantly faster and more dynamic than pH sensors based on glass electrodes.
- External sources of interference from the DC voltage and low-frequency range can falsify the pH value measured by ISFET pH sensors by up to 20%.
- Very high-frequency signals e.g. mobile communications, RFID
- RFID can also interfere with ISFET pH probes due to the low-frequency envelope, which becomes effective at the amplifier input due to unwanted, but always present, amplitude demodulation.
- Each amplifier input works like an unwanted amplitude demodulator. This means that high-frequency interference, e.g. g.
- HF interference high-frequency interference
- the measurement signal recorded by a pH value sensor therefore contains two components: a useful signal, which represents the pH measurement value, and an interference signal, which is caused by a mixture of low-frequency interference fields.
- the useful signal and the interference signal are in the same spectral range and are therefore superimposed, so that the pH value represented by the useful signal can have a measurement error of 20% or more.
- EP 3 683 845 A1 [1] describes a graphene field effect transistor (GFET) suitable as a sensor for various external physical quantities, which is equipped with noise suppression means for suppressing the 1/f noise of the GFET, and an associated method for noise suppression.
- the device and method according to EP 3 683 845 A1 are aimed exclusively at the inherent noise of the GFET, but not at reducing external sources of interference, which, as practical experience shows, are at least one order of magnitude greater than the inherent noise of the sensors.
- OHNO et al. [2] describe a measuring arrangement with a GFET, which is designed for measuring the pH value of an electrolyte, whereby the dependence of the active conductance (conductance) on the pH value is used.
- the problem of external or internal interference fields is not addressed.
- ASGARI et al. [3] describe a low-power ISFET sensor for continuous measurement of pH.
- the CMOS-based sensor uses chopper technology to reduce the 1/f noise and offset of the output circuit. In addition, the long-term drift of the ISFET is reduced.
- NEBHEN et al. [4] describe a 5 pW very low power chopper amplifier intended for MEMS-based implantable gas sensors, reducing their 1/f noise and DC offset.
- US 2016 / 0 380 598 A1 [5] also describes a chopper-stabilized amplifier that uses a multi-frequency chopping signal to reduce 1//-noise and DC offset.
- the object of the present invention is to overcome the disadvantages from the known prior art and to provide a method and an associated device for the interference-reduced determination and / or monitoring of the pH value of a medium, with which it is possible to components contained in the pH value sensor to spectrally separate the useful signal and the interference signal caused by external interference fields in order to obtain the pH value with reduced interference.
- the spectrally inseparable from the interference signal useful signal of the pH sensor by modulation of an auxiliary signal, z. B. a harmonic oscillation, to shift spectrally with the useful signal compared to the interference signal and then to win the useful signal by phase-selective demodulation, z. B. with a phase detector.
- an auxiliary signal u G s( is added that is spectrally far from the frequency spectrum of the two superimposed components, the useful signal and the interference signal.
- the auxiliary signal can be a harmonic signal whose frequency is sufficiently far above the frequency range of the interference to be suppressed is chosen.
- the interference to be suppressed extends at least up to the 3rd harmonic of the mains frequency, ie up to 150 Hz.
- An auxiliary signal with a frequency above 200 Hz is therefore suitable.
- the auxiliary signal is a harmonic signal with a frequency of 1000 Hz or more.
- FIG. 1 shows the schematic structure of a conventional ISFET pH sensor.
- Two N-doped islands S-source, D-drain
- P P-doped substrate
- Typical field effect transistors have a metallic gate electrode which is separated from the charge carrier channel by an insulator.
- the gate electrode is replaced by a medium whose pH value is to be measured. The medium can be guided in a fluid channel, so that pH value measurements on the flowing medium are possible.
- the medium is separated from the charge carrier channel by an insulator made of pH-permeable material.
- a reference electrode is in direct contact with the medium.
- Suitable pH-permeable materials e.g. B. special glasses, and suitable reference electrodes are known to those skilled in the art.
- the controllable DC voltage source U GS is located in the input circuit, and the DC voltage source U DS is located in the output circuit.
- This conventional ISFET pH sensor works as follows: A DC voltage UGS is applied to the arrangement of reference electrode, medium and insulator. A contact voltage (-/contact) forms at the interface between the reference electrode and the medium, which serves as a reference voltage for measuring the pH value and is added to the DC voltage UGS.
- the DC voltage UGS acts on the H + ions contained in the medium and pushes them in the direction of the insulator so that the H + ions collect at the interface between the medium and the insulator
- the areal density of the H + ions at the interface between the medium and the insulator depends on the concentration of the H + - ions in the medium
- the electrical field of the H + ions acts on the charge carrier channel via the insulator and thus controls the current in the charge carrier channel, the drain current ID.
- the drain current / D is therefore a measure of the concentration of the H + ions in the medium and thus of the PH value.
- the disadvantage of this conventional ISFET pH sensor is that the DC voltage UGS is overlaid by external low-frequency interference fields that also affect the medium.
- the DC voltage UGS is superimposed with an interference voltage (Jsturb), which influences the areal density of the H + ions at the interface between the medium and the insulator and thus also the measurement signal, the drain current l D .
- the measurement signal, the drain current ID thus has a useful signal /D.NUU, which supplies the measured value for the pH value, and an interference signal ID, sturgeon, which disturbs this measured value.
- a device for determining the pH value there is at least a two-channel signal: a reference signal, formed by the contact voltage ( ⁇ contact, and a measurement signal, comprising a useful signal and an interference that is already present in the measurement signal due to the system.
- FIG. 2 shows the schematic structure of an ISFET pH sensor according to the invention, which overcomes the previously described disadvantages of conventional ISFET pH sensors.
- auxiliary signal UGS preferably selected as the auxiliary signal, the frequency of which is at least one order of magnitude higher than the frequency ranges of the useful signal and the external interference fields, which are concentrated between 0 Hz and 150 Hz.
- UGS(0 is the instantaneous value at a point in time t
- ucs is the amplitude
- f is the frequency of the auxiliary signal
- the amplitude of the auxiliary signal ÜGS(0 must be lower than the DC voltage UGS so that the ISFET pH sensor is not subjected to a voltage of alternating polarity, which would lead to its destruction.
- the auxiliary signal is comparable to a carrier signal in radio technology. But while the phase of the carrier signal is unimportant in broadcasting technology, it is important in the method according to the invention to know the auxiliary signal exactly: the amplitude, the angular frequency (and thus automatically the frequency) and the phase of the auxiliary signal must be detected and recorded.
- the DC voltage UGS and the added harmonic auxiliary signal UGS thus form a pulsating DC voltage (JGS+UGS(() .
- the contact voltage ⁇ contact that forms at the interface between the reference electrode and the medium is superimposed by the auxiliary signal UGS.
- the pulsating DC voltage JGS+UGS(() is injected directly into the medium whose pH value is to be measured, e.g. an electrolyte.
- the H + ions of the medium accumulate due to the action of the DC voltage UGS the interface between medium and insulator and oscillate there synchronously with the frequency of the auxiliary signal UGs(t).
- the amplitude of this oscillation depends on the areal density of the H + -ions at this interface and thus on the concentration of the H + -ions in the medium,
- the auxiliary signal is amplitude-modulated solely by a variable that determines the pH value, namely the concentration of the H + ions in the medium.
- the pulsating electric field of the H + ions oscillating with the frequency of the auxiliary signal acts via the insulator on the charge carrier channel and controls the measurement signal, the drain current ID-
- the drain current there ID flows from the drain to the drain-source voltage source (Jos-
- the measurement signal, the drain current ID is a direct current pulsating with the frequency of the auxiliary signal UGS(0 due to the action of the pulsating electric field of the H + ions, which is caused by the concentration of the H + ions in the medium is amplitude-modulated.
- the amplitude-modulated alternating current component of the pulsating direct current now contains a useful signal free of external interference, which contains information about the pH value.
- the drain current Io is expediently converted into an output voltage UDS , ie a pulsating AC voltage with the frequency of the auxiliary signal, which is superimposed on the drain-source voltage UDS.
- a resistor Ro can be used at the drain for this purpose, through which the drain current flows.
- the resistor RD is therefore to be arranged between the drain and the drain-source voltage source UDS.
- the voltage drop URD across this resistor is proportional to the drain current ID, so it directly provides information about the pH value.
- the method described above thus ensures a spectral separation between the spectrum of the external interference, which remains in the low-frequency range, and the spectrum of the useful signal, which is shifted to a higher-frequency range.
- the measured value of the pH value of the medium is present at the demodulator output.
- the measured value of the The pH value of the medium is thus obtained with reduced interference exclusively from the useful signal, the amplitude-modulated alternating current component of the pulsating direct current.
- H + - ions have a sufficiently high mobility so that they can follow not only the DC field generated by UGS and the low-frequency interference field generated by (Jstor), but also the field generated by the auxiliary signal UGS .
- H + ions are therefore sufficiently fast to be able to influence the level of an auxiliary signal whose frequency is in the decade from 200 Hz to 2 kHz, ie to be able to modulate it.
- An auxiliary signal with a frequency in the decade from 200 Hz to 2 kHz can thus be selected, with a frequency of 1000 Hz being preferred.
- auxiliary signals with an even higher frequency of up to 10 kHz can also be used.
- Harmonic auxiliary signals are advantageous because they are fully described by a few parameters (amplitude, (circular) frequency and phase). But it can other auxiliary signals can also be used. Can be used e.g. B. Auxiliary signals with variable but sufficiently high frequency.
- Stochastic auxiliary signals in particular broadband PRBS (Pseudo Random Binary Sequences, quasi-random binary sequences), are also suitable.
- PRBS Pseudo Random Binary Sequences, quasi-random binary sequences
- An example of PRBS are MLS (Maximum Length Sequences).
- Such stochastic auxiliary signals are neither modulated nor are they themselves modulation signals.
- auxiliary signals In the case of stochastic auxiliary signals, the process analogous to the modulation of harmonic auxiliary signals is referred to as linking, and the process analogous to the demodulation of harmonic auxiliary signals is referred to as decorrelation. Since a stochastic auxiliary signal cannot be completely described by a few parameters, it is important for its use in the method according to the invention to record the auxiliary signal completely so that the same (identical) auxiliary signal is used in the combination and in the decorrelation. The person skilled in the art can easily adapt the method described above for a harmonic auxiliary signal for auxiliary signals with a variable frequency and for stochastic auxiliary signals.
- the method according to the invention can be used particularly advantageously in connection with ISFET pH sensors, which have high temporal dynamics and are therefore particularly susceptible to external interference.
- ISFET pH sensors which have high temporal dynamics and are therefore particularly susceptible to external interference.
- it is not limited to ISFET pH sensors, but can also be used for classic pH sensors equipped with glass electrodes.
- ISFET pH sensors can be used according to the invention, for example from the manufacturers LAQUA, Mettler Toledo, JUMO and Rosemount.
- the inventive method can be supported by a computer z. B. takes over the following functions: recording the selected auxiliary signal, storing the measured values of the pH value in a data memory and graphic display of the measured values on a monitor, in particular a (quasi-)continuous time course of the measured values with continuous monitoring of the pH value of a medium , especially with flowing media.
- FIG. 3 shows an example of an arrangement for therapeutic stimulation of neuronal tissue with electric current and for determining and/or monitoring the pH value in the boundary layer between the electrode and biological tissue.
- the current is introduced into the tissue via electrodes (2) and flows along the current lines (4).
- the current generates potential differences across the electrical tissue impedance, which are represented by equipotential lines (5).
- a pH sensor (8) which contains two electrodes: a reference electrode with electronics (6) and a measuring electrode with electronics (7).
- the potential difference between these two electrodes (6) and (7) is measured.
- the potential differences generated by the stimulation current act on the electrodes (6, 7), represented by the equipotential lines (5), which overlap with the measured pH-related field and thereby affect the pH measurement value.
- auxiliary signal which is modulated by the pH value, is superimposed on the reference voltage. This separates the pH reading from interference and can then be determined by demodulation or decorrelation.
- the principle described in the implementation example according to FIG. 3 can be applied to the reduction of any interference: Strong interference from the network, from machine controls, communication networks, etc. must also be expected, especially in industry. So far, attempts have been made to reduce the problem of interference fields by shielding the measuring electrode and by the low impedance of the reference electrode surrounding it, so that the interference per se should not be effective. However, the sensory parts of the probes are not protected, so that the disturbances affect the measured values in an uncontrolled manner. As a result, measurement errors of up to 20% or more are common, depending on the severity of the interference. Such measurement errors are unacceptable, especially in sensitive areas (pharmacology, medicine, food).
- EP 3 683 845 A1 “AN ELECTRONIC DEVICE AND A METHOD FOR SUPPRESSING NOISE FOR AN ELECTRONIC DEVICE”
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
Beschreibung Description
Verfahren zur störunqsreduzierten Bestimmung und/oder Überwachung des pH-Wertes eines Mediums und dazugehörige Vorrichtung Method for interference-reduced determination and/or monitoring of the pH value of a medium and associated device
Gebiet der Erfindung field of invention
Die vorliegende Erfindung betrifft ein Verfahren zur störungsreduzierten Bestimmung und/oder Überwachung des pH-Wertes eines Mediums und eine dazugehörige Vorrichtung. Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung zielen dabei auf eine Reduzierung der Wirkung störender externer elektrischer Felder, die auf das pH- Messsystem einwirken. Die Verminderung interner Störquellen, d. h. des Sensorrauschens, ist im Stand der Technik hinreichend gelöst und daher nicht Gegenstand dieser Erfindung. The present invention relates to a method for determining and/or monitoring the pH value of a medium with reduced interference and an associated device. The method according to the invention and the device according to the invention are aimed at reducing the effect of interfering external electric fields that act on the pH measuring system. The reduction of internal sources of interference, i. H. the sensor noise, is sufficiently solved in the prior art and is therefore not the subject of this invention.
Stand der Technik State of the art
In Forschung und Industrie werden seit langem zur Bestimmung und/oder Überwachung des pH-Wertes eines Mediums Glaselektroden eingesetzt, die auch in neueren Technologien grundsätzlich immer die gleiche Struktur aufweisen: Der pH-Wert wird an Hand der Differenzspannung zwischen einer Referenzelektrode, die unabhängig vom Medium immer das gleiche Potential liefert, und einer Messelektrode, die direkten Kontakt zum Medium hat, ermittelt. In research and industry, glass electrodes have long been used to determine and/or monitor the pH value of a medium, which always have the same structure, even in newer technologies: The pH value is determined using the differential voltage between a reference electrode, which is independent of the The medium always supplies the same potential and is determined using a measuring electrode that is in direct contact with the medium.
Die Elektroden und ihre Zuleitungen bestehen standardmäßig aus einige Zentimeter langen Leitungen, die zum Teil (insbesondere die Messelektrode) gegen störende externe elektrische Felder, nachfolgend als externe Störfelder bezeichnet, geschirmt sind. Jedoch sind die Kontaktflächen der als Stabsonden ausgeführten Elektroden gegen externe Störfelder nicht geschützt, da sie einen direkten physischen Kontakt (galvanischen Kontakt) zum untersuchten Medium haben müssen. Diese Kontaktflächen sind also permanent externen Störfeldern ausgesetzt. By default, the electrodes and their leads consist of lines a few centimeters long, some of which (particularly the measuring electrode) are shielded against interfering external electric fields, hereinafter referred to as external interference fields. However, the contact surfaces of the electrodes designed as rod probes are not protected against external interference fields, since they must have direct physical contact (galvanic contact) with the medium being examined. These contact surfaces are therefore permanently exposed to external interference fields.
Die oben beschriebenen Effekte bzw. Funktionsweisen betreffen im Wesentlichen auch neuere Technologien wie z. B. die schnelle pH-Wert-Messung mittels ionensensitivem Feldeffekttransistor (im Folgenden ISFET genannt). The effects and functions described above essentially also affect newer technologies such as e.g. B. fast pH value measurement using ion-sensitive field effect transistors (referred to below as ISFET).
Allen bekannten Technologien, sowohl basierend auf Glaselektroden als auch basierend auf ISFETs, ist gemeinsam, dass ihr sensorisch aktiver Teil, d. h. die Kontaktfläche zum Medium, externen Störfeldern ungeschützt ausgesetzt ist. All known technologies, both based on glass electrodes and based on ISFETs, have in common that their sensory active part, i. H. the contact surface to the medium is exposed to external interference fields without protection.
Hinzu kommt, dass externe Störfelder im Medium selbst wirksam sind und somit unabhängig von bekannten Schutzmaßnahmen an der Sonde das Messergebnis beeinflussen. Im Falle der seit langem als Messsonden eingesetzten Glaselektroden wird bisher davon ausgegangen, dass die Frequenzen der externen Störfelder, die meistens aus dem Stromversorgungs- oder Funknetz stammen, spektral weit oberhalb der Dynamik der Messsonden liegen und deshalb nicht wirksam sein können. Glaselektroden weisen nämlich Zeitkonstanten in der Größenordnung von 1 min auf, wobei die Zeitkonstante den Zeitraum vom Inkontaktbringen der Messelektrode mit dem zu untersuchenden Medium bis zur Einstellung des Gleichgewichts an der Kontaktfläche und der Anzeige eines stabilen pH- Werts bezeichnet. Die über einen Zeitraum von ca. 1 min integrierten Störungen sollten sich herausmitteln. Es wird davon ausgegangen, dass dies bspw. bei der Messung des pH- Wertes von Trinkwasser oder bei der Herstellung von Substanzen in der Pharmaindustrie zutrifft. In addition, external interference fields are effective in the medium itself and thus influence the measurement result independently of known protective measures on the probe. In the event of With the glass electrodes that have been used as measuring probes for a long time, it has so far been assumed that the frequencies of the external interference fields, which mostly originate from the power supply or radio network, are spectrally far above the dynamic range of the measuring probes and therefore cannot be effective. Glass electrodes have time constants of the order of 1 min, the time constant designating the period of time from bringing the measuring electrode into contact with the medium to be examined until equilibrium is established at the contact surface and a stable pH value is displayed. The disturbances integrated over a period of approx. 1 minute should be averaged out. It is assumed that this is the case, for example, when measuring the pH value of drinking water or when manufacturing substances in the pharmaceutical industry.
Jedoch gibt es immer mehr Anwendungen in den Bereichen der Gleichspannung und der Niederfrequenz, z. B. Elektromobilität, Gleichstromstimulation in der Elektrotherapie, Batteriebetrieb von mobilen Geräten, mit einer exponentiell anwachsenden Anzahl von als externe Störquellen wirkenden individuellen Geräten, z. B. Elektrofahrzeuge, Mobiltelefone. Unter Niederfrequenz ist in dieser Anmeldung der Frequenzbereich < 200 Hz zu verstehen. Er umfasst insbesondere auch die 3. Harmonische der 50-Hz-Netzfrequenz, die eine starke externe Störung bei einer Frequenz von 150 Hz hervorruft. Externe Gleichspannungsquellen stören nicht nur schnelle ISFET-pH-Sensoren, sondern auch pH-Sonden, die mit Glaselektroden ausgestattet sind. In diesem Fall weist der gemessene pH-Wert einen systematischen Fehler auf, der mit den bekannten Lösungen nicht detektiert und somit nicht korrigiert werden kann. However, there are more and more applications in the fields of DC voltage and low frequency, e.g. B. electromobility, direct current stimulation in electrotherapy, battery operation of mobile devices, with an exponentially growing number of acting as external sources of interference individual devices, z. B. electric vehicles, mobile phones. In this application, low frequency means the frequency range <200 Hz. In particular, it also includes the 3rd harmonic of the 50 Hz mains frequency, which causes a strong external interference at a frequency of 150 Hz. External DC voltage sources not only interfere with fast ISFET pH sensors, but also with pH probes that are equipped with glass electrodes. In this case, the measured pH value shows a systematic error that cannot be detected with the known solutions and therefore cannot be corrected.
Sehr dringlich ist die Lösung des Problems externer Störfelder bei modernen pH-Sensoren auf Basis von ISFETs. Diese ISFET-pH-Sensoren weisen Zeitkonstanten im Bereich von 1 ms auf und sind damit wesentlich schneller und dynamischer als pH-Sensoren auf Basis von Glaselektroden. Externe Störquellen aus dem Gleichspannungs- und Niederfrequenzbereich können den von ISFET-pH-Sensoren gemessenen pH-Wert um bis zu 20 % verfälschen. Auch sehr hochfrequente Signale (z. B. Mobilfunk, RFID) können ISFET-pH-Sonden durch die niederfrequente Einhüllende stören, die am Verstärkereingang durch ungewollte, aber immer vorhandene Amplitudendemodulation wirksam wird. Jeder Verstärkereingang funktioniert wie ein ungewollter Amplitudendemodulator. Das bedeutet, dass auch hochfrequente Störungen, z. B. der Mobilfunk, einen Messverstärker im niederfrequenten Bereich stören bzw. die Messwerte unbrauchbar machen können, wenn sich die Amplitude (also die Einhüllende) der hochfrequenten Störung (HF-Störung) ändert, was in der Realität immer der Fall ist. Dadurch wirken die gewollten und die ungewollten Signale sowie Störungen in Zeit und in Frequenz simultan nebeneinander. The solution to the problem of external interference fields in modern pH sensors based on ISFETs is very urgent. These ISFET pH sensors have time constants in the range of 1 ms and are therefore significantly faster and more dynamic than pH sensors based on glass electrodes. External sources of interference from the DC voltage and low-frequency range can falsify the pH value measured by ISFET pH sensors by up to 20%. Very high-frequency signals (e.g. mobile communications, RFID) can also interfere with ISFET pH probes due to the low-frequency envelope, which becomes effective at the amplifier input due to unwanted, but always present, amplitude demodulation. Each amplifier input works like an unwanted amplitude demodulator. This means that high-frequency interference, e.g. g. mobile communications, can interfere with a measuring amplifier in the low-frequency range or make the measured values unusable if the amplitude (i.e. the envelope) of the high-frequency interference (HF interference) changes, which is always the case in reality. As a result, the wanted and unwanted signals as well as disturbances in terms of time and frequency have a simultaneous effect.
Das von einem pH-Wert-Sensor erfasste Messsignal beinhaltet daher zwei Komponenten: ein Nutzsignal, das den pH-Messwert repräsentiert, und ein Störsignal, das durch ein Gemisch von niederfrequenten Störfeldern hervorgerufen wird. Nutzsignal und Störsignal liegen im selben Spektralbereich und überlagern sich somit, sodass der durch das Nutzsignal repräsentierte pH-Wert einen Messfehler von 20 % und mehr aufweisen kann. The measurement signal recorded by a pH value sensor therefore contains two components: a useful signal, which represents the pH measurement value, and an interference signal, which is caused by a mixture of low-frequency interference fields. The useful signal and the interference signal are in the same spectral range and are therefore superimposed, so that the pH value represented by the useful signal can have a measurement error of 20% or more.
Aus dem Stand der Technik bekannte Lösungen zur Störungsreduktion bei FET-basierten Sensoren, zu denen die ISFET-pH-Sensoren zählen, zielen ausschließlich auf das Eigenrauschen, also auf die Reduktion interner Störungen von FET-basierten Sensoren. Solutions known from the prior art for reducing interference in FET-based sensors, which include ISFET pH sensors, aim exclusively at the inherent noise, ie at reducing internal interference from FET-based sensors.
EP 3 683 845 A1 [1] beschreibt einen als Sensor für verschiedene externe physikalische Größen geeigneten Graphen-Feldeffekttransistor (GFET), der mit Rauschunterdrückungsmitteln zur Unterdrückung des 1/f-Rauschens des GFETs ausgestattet ist, und ein zugehöriges Verfahren zur Rauschunterdrückung. Vorrichtung und Verfahren gemäß EP 3 683 845 A1 richten sich ausschließlich auf das Eigenrauschen des GFET, nicht aber auf eine Reduktion externer Störquellen, welche, wie Praxiserfahrungen zeigen, um mindestens eine Größenordnung stärker sind als das Eigenrauschen der Sensoren. EP 3 683 845 A1 [1] describes a graphene field effect transistor (GFET) suitable as a sensor for various external physical quantities, which is equipped with noise suppression means for suppressing the 1/f noise of the GFET, and an associated method for noise suppression. The device and method according to EP 3 683 845 A1 are aimed exclusively at the inherent noise of the GFET, but not at reducing external sources of interference, which, as practical experience shows, are at least one order of magnitude greater than the inherent noise of the sensors.
OHNO et al. [2] beschreiben eine Messanordnung mit einem GFET, die für die Messung des pH-Werts eines Elektrolyten ausgelegt ist, wobei die Abhängigkeit des Wirkleitwerts (Konduktanz) vom pH-Wert ausgenutzt wird. Das Problem externer oder interner Störfelder wird aber nicht adressiert. OHNO et al. [2] describe a measuring arrangement with a GFET, which is designed for measuring the pH value of an electrolyte, whereby the dependence of the active conductance (conductance) on the pH value is used. However, the problem of external or internal interference fields is not addressed.
Mehrere Quellen beschreiben Chopper-Techniken zur Reduzierung des 1/f-Rauschens von FET-basierten Sensoren und Verstärkern: Several sources describe chopper techniques to reduce 1/f noise from FET-based sensors and amplifiers:
ASGARI et al. [3] beschreiben einen ISFET-Sensor mit geringer Leistungsaufnahme zur kontinuierlichen Messung des pH-Werts. Der auf CMOS-basierte Sensor nutzt eine Chopper- Technologie, um das 1/f-Rauschen und den Offset des Ausgabeschaltkreises zu reduzieren. Zudem wird die Langzeit-Drift des ISFETs vermindert. ASGARI et al. [3] describe a low-power ISFET sensor for continuous measurement of pH. The CMOS-based sensor uses chopper technology to reduce the 1/f noise and offset of the output circuit. In addition, the long-term drift of the ISFET is reduced.
NEBHEN et al. [4] beschreiben einen Chopper-Verstärker mit sehr geringer Leistungsaufnahme von 5 pW, der für MEMS-basierte implantierbare Gassensoren bestimmt ist und deren 1/f-Rauschen sowie den DC-Offset vermindert. Auch US 2016 / 0 380 598 A1 [5] beschreibt einen Chopper-stabilisierten Verstärker, der ein Multifrequenz-Chopping-Signal zur Reduzierung des 1 //-Rauschens und des DC-Offsets nutzt. NEBHEN et al. [4] describe a 5 pW very low power chopper amplifier intended for MEMS-based implantable gas sensors, reducing their 1/f noise and DC offset. US 2016 / 0 380 598 A1 [5] also describes a chopper-stabilized amplifier that uses a multi-frequency chopping signal to reduce 1//-noise and DC offset.
Sämtliche ermittelten Quellen präsentieren somit Lösungen zur Verringerung interner Störungen verschiedenartiger FET-basierter Sensoren, insb. des 1/f-Rauschens und des Offsets. Keine der Quellen richtet sich auf die Reduzierung des Einflusses äußerer Störquellen, die um mindestens eine Größenordnung stärker sind als die internen Störungen. All identified sources thus present solutions for reducing internal interference of various types of FET-based sensors, in particular 1/f noise and offset. None of the sources are aimed at reducing the influence of external sources of interference, which are at least an order of magnitude stronger than the internal ones.
Aufgabe der Erfindung object of the invention
Aufgabe der vorliegenden Erfindung ist es, die aufgezeigten Nachteile aus dem bekannten Stand der Technik zu überwinden und ein Verfahren und eine dazugehörige Vorrichtung zur störungsreduzierten Bestimmung und / oder Überwachung des pH-Wertes eines Mediums bereitzustellen, mit denen es gelingt, die in einem erfassten Messsignal des pH-Wert- Sensors enthaltenen Komponenten, das Nutzsignal und das durch externe Störfelder bedingte Störsignal spektral zu trennen, um den pH-Wert störungsreduziert zu gewinnen. The object of the present invention is to overcome the disadvantages from the known prior art and to provide a method and an associated device for the interference-reduced determination and / or monitoring of the pH value of a medium, with which it is possible to components contained in the pH value sensor to spectrally separate the useful signal and the interference signal caused by external interference fields in order to obtain the pH value with reduced interference.
Lösung der Aufgabe solution of the task
Erfindungsgemäß gelingt die Lösung dieser Aufgabe mit den Merkmalen des ersten und vierten Patentanspruchs. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Lösung sind den Unteransprüchen zu entnehmen. According to the invention, this object is achieved with the features of the first and fourth patent claims. Advantageous configurations of the solution according to the invention can be found in the dependent claims.
Mit der vorliegenden Erfindung wird vorgeschlagen, das spektral nicht vom Störsignal trennbare Nutzsignal des pH-Wert-Sensors mittels Modulation eines Hilfssignals, z. B. einer harmonischen Schwingung, mit dem Nutzsignal gegenüber dem Störsignal spektral zu verschieben und anschließend das Nutzsignal durch phasenselektive Demodulation zu gewinnen, z. B. mit einem Phasendetektor. With the present invention it is proposed that the spectrally inseparable from the interference signal useful signal of the pH sensor by modulation of an auxiliary signal, z. B. a harmonic oscillation, to shift spectrally with the useful signal compared to the interference signal and then to win the useful signal by phase-selective demodulation, z. B. with a phase detector.
Damit das Nutzsignal, das den pH-Messwert repräsentiert, vom Gemisch an Störsignalen, die im selben Frequenzspektrum, dem Bereich zwischen 0 Hz und etwa 150 Hz, liegen, getrennt werden kann, wird zu der gewählten konstanten Betriebsspannung UGS des pH- Wert-Sensors erfindungsgemäß ein Hilfssignal uGs( addiert, das spektral weit ab vom Frequenzspektrum der beiden sich überlagernden Komponenten, des Nutzsignals und des Störsignals, liegt. Das Hilfssignal kann ein harmonisches Signal sein, dessen Frequenz in ausreichendem Abstand oberhalb des Frequenzbereichs der zu unterdrückenden Störungen gewählt wird. Die zu unterdrückenden Störungen reichen zumindest bis zur 3. Harmonischen der Netzfrequenz, also bis 150 Hz. Geeignet ist somit ein Hilfssignal mit einer Frequenz oberhalb 200 Hz. In einer bevorzugten Ausführung ist das Hilfssignal ein harmonisches Signal mit einer Frequenz von 1000 Hz oder mehr. So that the useful signal, which represents the pH value, can be separated from the mixture of interference signals that lie in the same frequency spectrum, the range between 0 Hz and around 150 Hz, the selected constant operating voltage UGS of the pH value sensor According to the invention, an auxiliary signal u G s( is added that is spectrally far from the frequency spectrum of the two superimposed components, the useful signal and the interference signal. The auxiliary signal can be a harmonic signal whose frequency is sufficiently far above the frequency range of the interference to be suppressed is chosen. The interference to be suppressed extends at least up to the 3rd harmonic of the mains frequency, ie up to 150 Hz. An auxiliary signal with a frequency above 200 Hz is therefore suitable. In a preferred embodiment, the auxiliary signal is a harmonic signal with a frequency of 1000 Hz or more.
In Figur 1 ist der schematische Aufbau eines konventionellen ISFET-pH-Sensors dargestellt. Auf einem P-dotierten Substrat (P) werden zwei N-dotierte Inseln (S - Source, D - Drain) geschaffen, zwischen denen sich ein Ladungsträgerkanal aus Minoritätsladungsträgern (in Figur 1 als Kanal bezeichnet) bildet. Typische Feldeffekttransistoren weisen eine metallische Gate-Elektrode auf, die durch einen Isolator vom Ladungsträgerkanal getrennt ist. Beim vorliegenden ISFET-pH-Sensor ist die Gate-Elektrode durch ein Medium ersetzt, dessen pH- Wert zu messen ist. Das Medium kann in einem Fluidkanal geführt werden, sodass pH-Wert- Messungen am strömenden Medium möglich sind. Das Medium ist durch einen Isolator aus pH-durchlässigem Material vom Ladungsträgerkanal getrennt. Eine Referenzelektrode befindet sich in direktem Kontakt zum Medium. Geeignete pH-durchlässige Materialien, z. B. Spezialgläser, sowie geeignete Referenzelektroden sind dem Fachmann bekannt. Im Eingangskreis befindet sich die regelbare Gleichspannungsquelle UGS, im Ausgangskreis befindet sich die Gleichspannungsquelle UDS. FIG. 1 shows the schematic structure of a conventional ISFET pH sensor. Two N-doped islands (S-source, D-drain) are created on a P-doped substrate (P), between which a charge carrier channel of minority charge carriers (referred to as channel in FIG. 1) forms. Typical field effect transistors have a metallic gate electrode which is separated from the charge carrier channel by an insulator. In the present ISFET pH sensor, the gate electrode is replaced by a medium whose pH value is to be measured. The medium can be guided in a fluid channel, so that pH value measurements on the flowing medium are possible. The medium is separated from the charge carrier channel by an insulator made of pH-permeable material. A reference electrode is in direct contact with the medium. Suitable pH-permeable materials, e.g. B. special glasses, and suitable reference electrodes are known to those skilled in the art. The controllable DC voltage source U GS is located in the input circuit, and the DC voltage source U DS is located in the output circuit.
Dieser konventionelle ISFET-pH-Sensor funktioniert wie folgt: Es wird eine Gleichspannung UGS an die Anordnung aus Referenzelektrode, Medium und Isolator angelegt. An der Grenzfläche zwischen Referenzelektrode und Medium bildet sich eine Kontaktspannung (-/Kontakt aus, die als Bezugsspannung für die Messung des pH-Werts dient und sich zur Gleichspannung UGS addiert. Die Gleichspannung UGS wirkt auf die im Medium enthaltenen H+-Ionen ein und drückt diese in Richtung des Isolators, sodass sich die H+-Ionen an der Grenzfläche zwischen Medium und Isolator sammeln. Die Flächendichte der H+-Ionen an der Grenzfläche zwischen Medium und Isolator ist dabei abhängig von der Konzentration der H+- lonen im Medium. Das elektrische Feld der H+-Ionen wirkt über den Isolator auf den Ladungsträgerkanal ein und steuert somit den Strom im Ladungsträgerkanal, den Drainstrom ID. Der Drainstrom /D ist somit ein Maß für Konzentration der H+-Ionen im Medium und damit für den pH-Wert. This conventional ISFET pH sensor works as follows: A DC voltage UGS is applied to the arrangement of reference electrode, medium and insulator. A contact voltage (-/contact) forms at the interface between the reference electrode and the medium, which serves as a reference voltage for measuring the pH value and is added to the DC voltage UGS. The DC voltage UGS acts on the H + ions contained in the medium and pushes them in the direction of the insulator so that the H + ions collect at the interface between the medium and the insulator The areal density of the H + ions at the interface between the medium and the insulator depends on the concentration of the H + - ions in the medium The electrical field of the H + ions acts on the charge carrier channel via the insulator and thus controls the current in the charge carrier channel, the drain current ID. The drain current / D is therefore a measure of the concentration of the H + ions in the medium and thus of the PH value.
Nachteilig an diesem konventionellen ISFET-pH-Sensor ist, dass die Gleichspannung UGS von externen niederfrequenten Störfeldern überlagert wird, die ebenfalls auf das Medium einwirken. Der Gleichspannung UGS überlagert sich dadurch eine Störspannung (Jstör, die die Flächendichte der H+-Ionen an der Grenzfläche zwischen Medium und Isolator und damit auch das Messsignal, den Drainstrom lD, beeinflusst. Das Messsignal, der Drainstrom ID, weist somit ein Nutzsignal /D.NUU, das den Messwert für den pH-Wert liefert, und ein Störsignal ID, stör, das diesen Messwert stört, auf. In einer derartigen Vorrichtung zur pH-Wert- Bestimmung liegt somit ein mindestens zweikanaliges Signal an: ein Referenzsignal, gebildet durch die Kontaktspannung (^Kontakt, und ein Messsignal, umfassend ein Nutzsignal und eine Störung, die systembedingt im Messsignal bereits vorhanden ist. The disadvantage of this conventional ISFET pH sensor is that the DC voltage UGS is overlaid by external low-frequency interference fields that also affect the medium. The DC voltage UGS is superimposed with an interference voltage (Jsturb), which influences the areal density of the H + ions at the interface between the medium and the insulator and thus also the measurement signal, the drain current l D . The measurement signal, the drain current ID, thus has a useful signal /D.NUU, which supplies the measured value for the pH value, and an interference signal ID, sturgeon, which disturbs this measured value. In such a device for determining the pH value, there is at least a two-channel signal: a reference signal, formed by the contact voltage (^contact, and a measurement signal, comprising a useful signal and an interference that is already present in the measurement signal due to the system.
Der pH-Wert kann in einer solchen gestörten Umgebung nicht reproduzierbar gemessen werden. Einzelmessungen des pH-Werts können Fehler bis zu 20 % aufweisen. Der besondere Vorteil der ISFET-pH-Sensoren, ihre hohe zeitliche Dynamik, die sehr kleine Messzeiten im Bereich von 1 ms erlaubt, wird dadurch zunichtegemacht. Es muss über eine Vielzahl von Messungen in einem Zeitintervall von mindestens 1 s gemittelt werden, um den zufälligen Messfehler annähernd zu eliminieren. Systematische Messfehler sind nicht erkennbar und damit nicht eliminierbar. pH cannot be measured reproducibly in such a disturbed environment. Individual pH measurements can have errors of up to 20%. The special advantage of the ISFET pH sensors, their high temporal dynamics, which allows very short measurement times in the range of 1 ms, is thereby nullified. A large number of measurements must be averaged over a time interval of at least 1 s in order to approximately eliminate the random measurement error. Systematic measurement errors are not recognizable and therefore cannot be eliminated.
Figur 2 zeigt den schematischen Aufbau eines erfindungsgemäßen ISFET-pH-Sensors, der die vorab geschilderten Nachteile konventioneller ISFET-pH-Sensoren überwindet. FIG. 2 shows the schematic structure of an ISFET pH sensor according to the invention, which overcomes the previously described disadvantages of conventional ISFET pH sensors.
Hinsichtlich des grundsätzlichen Aufbaus wird auf deren obige Beschreibung verwiesen. With regard to the basic structure, reference is made to the above description.
Erfindungsgemäß wird vorgeschlagen, eine Trennung des Nutzsignals vom Störsignal zu realisieren, indem ein Hilfssignal UGS additiv zur Gleichspannung UGS hinzugefügt wird. Als Hilfssignal wird vorzugsweise ein harmonisches Signal gewählt, dessen Frequenz mindestens eine Größenordnung höher liegt als die Frequenzbereiche des Nutzsignals und der äußeren Störfelder, die sich zwischen 0 Hz und 150 Hz konzentrieren. According to the invention, it is proposed to separate the useful signal from the interference signal by adding an auxiliary signal UGS to the DC voltage UGS. A harmonic signal is preferably selected as the auxiliary signal, the frequency of which is at least one order of magnitude higher than the frequency ranges of the useful signal and the external interference fields, which are concentrated between 0 Hz and 150 Hz.
Ein solches Hilfssignal wird beschrieben durch Such an auxiliary signal is described by
UGs(f)=ÜGs sin(u)t+<po) UGs(f)=ÜGs sin(u)t+<po)
Dabei ist UGS(0 der Momentanwert zu einem Zeitpunkt t, ucs die Amplitude, w=2TTf die Kreisfrequenz, wobei f die Frequenz des Hilfssignals ist. rp0 ist die Phase des Hilfssignals zum Zeitpunkt t=0. Die Amplitude des Hilfssignals ÜGS(0 muss geringer sein als die Gleichspannung UGS, damit der ISFET-pH-Sensor nicht mit einer Spannung wechselnder Polarität beaufschlagt wird, was zu seiner Zerstörung führen würde. Where UGS(0 is the instantaneous value at a point in time t, ucs is the amplitude, w=2TTf is the angular frequency, where f is the frequency of the auxiliary signal. rp 0 is the phase of the auxiliary signal at point in time t=0. The amplitude of the auxiliary signal ÜGS(0 must be lower than the DC voltage UGS so that the ISFET pH sensor is not subjected to a voltage of alternating polarity, which would lead to its destruction.
Das Hilfssignal ist vergleichbar mit einem Trägersignal in der Rundfunktechnik. Während aber in der Rundfunktechnik die Phase des Trägersignals unwichtig ist, ist es bei dem erfindungsgemäßen Verfahren wichtig, das Hilfssignal genau zu kennen: die Amplitude, die Kreisfrequenz (damit automatisch auch die Frequenz) und sowie die Phase des Hilfssignals müssen erfasst und aufgezeichnet werden. Die Gleichspannung UGS und das addierte harmonische Hilfssignal UGS bilden somit eine pulsierende Gleichspannung (JGS+UGS(() . Die sich an der Grenzfläche zwischen Referenzelektrode und Medium ausbildende Kontaktspannung ^Kontakt wird vom Hilfssignal UGS überlagert. The auxiliary signal is comparable to a carrier signal in radio technology. But while the phase of the carrier signal is unimportant in broadcasting technology, it is important in the method according to the invention to know the auxiliary signal exactly: the amplitude, the angular frequency (and thus automatically the frequency) and the phase of the auxiliary signal must be detected and recorded. The DC voltage UGS and the added harmonic auxiliary signal UGS thus form a pulsating DC voltage (JGS+UGS(() . The contact voltage ^contact that forms at the interface between the reference electrode and the medium is superimposed by the auxiliary signal UGS.
Die pulsierende Gleichspannung (JGS+UGS(() wird direkt in das Medium, dessen pH-Wert zu messen ist, z. B. in einen Elektrolyten, eingespeist. Die H+-Ionen des Mediums sammeln sich aufgrund der Einwirkung der Gleichspannung UGS an der Grenzfläche zwischen Medium und Isolator und schwingen dort im Gleichtakt mit der Frequenz des Hilfssignals UGs(t). Die Amplitude dieser Schwingung ist abhängig von Flächendichte der H+-Ionen an dieser Grenzfläche und damit von der Konzentration der H+-Ionen im Medium, also vom pH-Wert. Dadurch wird erreicht, dass das Hilfssignal allein durch eine den pH-Wert bestimmende Größe, nämlich die Konzentration der H+-Ionen im Medium, amplitudenmoduliert wird. The pulsating DC voltage (JGS+UGS(() is injected directly into the medium whose pH value is to be measured, e.g. an electrolyte. The H + ions of the medium accumulate due to the action of the DC voltage UGS the interface between medium and insulator and oscillate there synchronously with the frequency of the auxiliary signal UGs(t).The amplitude of this oscillation depends on the areal density of the H + -ions at this interface and thus on the concentration of the H + -ions in the medium, This means that the auxiliary signal is amplitude-modulated solely by a variable that determines the pH value, namely the concentration of the H + ions in the medium.
Externe Störfelder, also in der Umgebung wirkende Störfelder, haben keinen Einfluss auf das Hilfssignal. External interference fields, i.e. interference fields acting in the environment, have no influence on the auxiliary signal.
Das pulsierende elektrische Feld der mit der Frequenz des Hilfssignals schwingenden H+-Ionen, dessen Feldstärke proportional zur Konzentration der H+-Ionen im Medium ist, wirkt über den Isolator auf den Ladungsträgerkanal ein und steuert dort das Messsignal, den Drainstrom ID- Der Drainstrom ID fließt vom Drain zur Drain-Source-Spannungsquelle (Jos- Das Messsignal, der Drainstrom ID, ist infolge der Einwirkung des pulsierenden elektrischen Feldes der H+-Ionen ein mit der Frequenz des Hilfssignals UGS(0 pulsierender Gleichstrom, der durch die Konzentration der H+-Ionen im Medium amplitudenmoduliert ist. Die amplitudenmodulierte Wechselstromkomponente des pulsierenden Gleichstroms beinhaltet jetzt ein von externen Störungen freies Nutzsignal, das die Information über den pH-Wert enthält. Für die Gewinnung des pH-Messwertes wird der Drainstrom Io zweckmäßigerweise in eine Ausgangsspannung UDS, d. h. eine mit der Frequenz des Hilfssignals pulsierende Wechselspannung, die der Drain-Source-Spannung UDS überlagert ist, umgewandelt. Das geschieht am einfachsten schaltungstechnisch durch Strom-Spannungs-Wandlung. Dafür kann ein Widerstand Ro am Drain verwendet werden, über den der Drainstrom fließt. Der Widerstand RD ist somit zwischen dem Drain und der Drain-Source-Spannungsquelle UDS anzuordnen. Der Spannungsabfall URD über diesem Widerstand ist proportional zum Drainstrom ID, sodass er direkt die Information über den pH-Wert liefert. Das vorab beschriebene Verfahren gewährleistet somit eine spektrale Trennung zwischen dem Spektrum der externen Störungen, welches im niederfrequenten Bereich verbleibt, und dem Spektrum des Nutzsignals, welches in einen höherfrequenten Bereich versetzt wird. The pulsating electric field of the H + ions oscillating with the frequency of the auxiliary signal, whose field strength is proportional to the concentration of the H + ions in the medium, acts via the insulator on the charge carrier channel and controls the measurement signal, the drain current ID- The drain current there ID flows from the drain to the drain-source voltage source (Jos- The measurement signal, the drain current ID, is a direct current pulsating with the frequency of the auxiliary signal UGS(0 due to the action of the pulsating electric field of the H + ions, which is caused by the concentration of the H + ions in the medium is amplitude-modulated. The amplitude-modulated alternating current component of the pulsating direct current now contains a useful signal free of external interference, which contains information about the pH value. To obtain the pH measurement value, the drain current Io is expediently converted into an output voltage UDS , ie a pulsating AC voltage with the frequency of the auxiliary signal, which is superimposed on the drain-source voltage UDS. The easiest way to do this is with circuitry using current-voltage conversion. A resistor Ro can be used at the drain for this purpose, through which the drain current flows. The resistor RD is therefore to be arranged between the drain and the drain-source voltage source UDS. The voltage drop URD across this resistor is proportional to the drain current ID, so it directly provides information about the pH value. The method described above thus ensures a spectral separation between the spectrum of the external interference, which remains in the low-frequency range, and the spectrum of the useful signal, which is shifted to a higher-frequency range.
Da alle Parameter des Hilfssignals UGs(f)=t/Gs sin(cof+q>o) bekannt sind, d. h. Amplitude ÜGS, Frequenz /=W/2TT und Phase cpo, ist es nun möglich, den Messwert des pH-Werts durch eine kombinierte Amplitudendemodulation und Phasendetektion aus dem zeitlichen Verlauf der Ausgangsspannung I/RD ZU gewinnen. Phasendetektion wird auch als phasenselektive Demodulation bezeichnet. Bei dieser kombinierten Amplitudendemodulation und Phasendetektion, d. h. einer phasensynchronen Amplitudendemodulation, werden die Beiträge der niederfrequenten Komponenten UGS und (Jstör zum Messsignal separiert und unterdrückt. Nach der phasensynchronen Amplitudendemodulation mit demselben Hilfssignal wie bei der Amplitudenmodulation liegt am Demodulatorausgang der von Störungen befreite Messwert des pH-Werts des Mediums an. Der Messwert des pH-Werts des Mediums wird somit störungsreduziert ausschließlich aus dem Nutzsignal, der amplitudenmodulierten Wechselstromkomponente des pulsierenden Gleichstroms, gewonnen. Since all parameters of the auxiliary signal UGs(f)=t/Gs sin(cof+q>o) are known, i. H. Amplitude ÜGS, frequency /=W/2TT and phase cpo, it is now possible to obtain the measured value of the pH value from the time profile of the output voltage I/RD ZU using a combined amplitude demodulation and phase detection. Phase detection is also referred to as phase-selective demodulation. With this combined amplitude demodulation and phase detection, i. H. a phase-synchronous amplitude demodulation, the contributions of the low-frequency components UGS and (Jsturgeon to the measuring signal are separated and suppressed. After the phase-synchronous amplitude demodulation with the same auxiliary signal as with the amplitude modulation, the measured value of the pH value of the medium, free of interference, is present at the demodulator output. The measured value of the The pH value of the medium is thus obtained with reduced interference exclusively from the useful signal, the amplitude-modulated alternating current component of the pulsating direct current.
Voraussetzung für die Funktionalität des vorab beschriebenen Verfahrens ist, dass die H+- lonen eine hinreichend große Beweglichkeit aufweisen, sodass sie nicht nur dem von UGS erzeugten Gleichfeld und dem von (Jstor erzeugten niederfrequenten Störfeld, sondern auch dem vom Hilfssignal UGS erzeugten Feld folgen können. A prerequisite for the functionality of the method described above is that the H + - ions have a sufficiently high mobility so that they can follow not only the DC field generated by UGS and the low-frequency interference field generated by (Jstor), but also the field generated by the auxiliary signal UGS .
Einfache Abschätzungen zeigen, dass die erforderliche Beweglichkeit der H+-Ionen gegeben ist: Es ist bekannt, dass Stromstöße mit Na+- oder K+-Ionen eine ionendurchlässige Membran innerhalb einer 1 ms durchqueren [6], H+-Ionen sind aufgrund ihrer geringen Masse um den Faktor 7 bis 8 schneller, Stromstöße von H+-Ionen haben also eine Dauer von 0,1 bis 0,2 ms, sind also wesentlich kürzer als eine Periodendauer T=Mf des Hilfssignals, die ca. 1 ms beträgt. H+-Ionen sind also hinreichend schnell, um ein Hilfssignal, dessen Frequenz in der Dekade 200 Hz bis 2 kHz liegt, in seinem Pegel beeinflussen, d. h. modulieren, zu können. Es kann somit ein Hilfssignal mit einer Frequenz in der Dekade 200 Hz bis 2 kHz gewählt werden, bevorzugt wird eine Frequenz von 1000 Hz. Es sind aber auch Hilfssignale mit einer noch höheren Frequenz bis zu 10 kHz verwendbar. Simple estimates show that the required mobility of the H + ions is given: It is known that current impulses with Na + - or K + ions cross an ion-permeable membrane within 1 ms [6], H + ions are due to their low mass by a factor of 7 to 8 faster, so current surges from H + -ions have a duration of 0.1 to 0.2 ms, so are much shorter than a period T = Mf of the auxiliary signal, which is about 1 ms. H + ions are therefore sufficiently fast to be able to influence the level of an auxiliary signal whose frequency is in the decade from 200 Hz to 2 kHz, ie to be able to modulate it. An auxiliary signal with a frequency in the decade from 200 Hz to 2 kHz can thus be selected, with a frequency of 1000 Hz being preferred. However, auxiliary signals with an even higher frequency of up to 10 kHz can also be used.
Das erfindungsgemäße Verfahren ist nicht auf die Verwendung harmonischer Hilfssignale beschränkt. Harmonische Hilfssignale sind vorteilhaft, da sie durch wenige Parameter vollständig beschrieben werden (Amplitude, (Kreis-)Frequenz und Phase). Es können aber auch andere Hilfssignale verwendet werden. Verwendbar sind z. B. Hilfssignale mit variabler, aber ausreichend hoher Frequenz. Ebenso geeignet sind stochastische Hilfssignale, insbesondere breitbandige PRBS (Pseudo Random Binary Sequences, quasi-zufällige binäre Folgen). Ein Beispiel für PRBS sind MLS (Maximum Length Sequences, Folgen maximaler Länge). Solche stochastischen Hilfssignale werden weder moduliert, noch sind sie selbst Modulationssignale. Im Falle stochastischer Hilfssignale wird der zur Modulation harmonischer Hilfssignale analoge Vorgang als Verknüpfung bezeichnet, der zur Demodulation harmonischer Hilfssignale analoge Vorgang wird als Dekorrelation bezeichnet. Da ein stochastisches Hilfssignal nicht durch wenige Parameter vollständig beschrieben werden kann, ist es für seine Verwendung im erfindungsgemäßen Verfahren wichtig, das Hilfssignal vollständig aufzuzeichnen, damit bei der Verknüpfung und bei der Dekorrelation dasselbe (identische) Hilfssignal verwendet wird. Der Fachmann kann das vorab für ein harmonisches Hilfssignal beschriebene Verfahren problemlos für Hilfssignale mit variabler Frequenz und für stochastische Hilfssignale anpassen. The method according to the invention is not limited to the use of harmonic auxiliary signals. Harmonic auxiliary signals are advantageous because they are fully described by a few parameters (amplitude, (circular) frequency and phase). But it can other auxiliary signals can also be used. Can be used e.g. B. Auxiliary signals with variable but sufficiently high frequency. Stochastic auxiliary signals, in particular broadband PRBS (Pseudo Random Binary Sequences, quasi-random binary sequences), are also suitable. An example of PRBS are MLS (Maximum Length Sequences). Such stochastic auxiliary signals are neither modulated nor are they themselves modulation signals. In the case of stochastic auxiliary signals, the process analogous to the modulation of harmonic auxiliary signals is referred to as linking, and the process analogous to the demodulation of harmonic auxiliary signals is referred to as decorrelation. Since a stochastic auxiliary signal cannot be completely described by a few parameters, it is important for its use in the method according to the invention to record the auxiliary signal completely so that the same (identical) auxiliary signal is used in the combination and in the decorrelation. The person skilled in the art can easily adapt the method described above for a harmonic auxiliary signal for auxiliary signals with a variable frequency and for stochastic auxiliary signals.
Das erfindungsgemäße Verfahren ist besonders vorteilhaft in Verbindung mit ISFET-pH- Sensoren einsetzbar, die eine hohe zeitliche Dynamik aufweisen und daher besonders anfällig für externe Störungen sind. Es ist aber nicht auf ISFET-pH-Sensoren beschränkt, sondern kann auch für klassische pH-Wert-Sensoren, die mit Glaselektroden ausgestattet sind, eingesetzt werden. The method according to the invention can be used particularly advantageously in connection with ISFET pH sensors, which have high temporal dynamics and are therefore particularly susceptible to external interference. However, it is not limited to ISFET pH sensors, but can also be used for classic pH sensors equipped with glass electrodes.
Erfindungsgemäß verwendbar sind alle kommerziell verfügbaren ISFET-pH-Sensoren, beispielsweise von den Herstellern LAQUA, Mettler Toledo, JUMO und Rosemount. All commercially available ISFET pH sensors can be used according to the invention, for example from the manufacturers LAQUA, Mettler Toledo, JUMO and Rosemount.
Das erfindungsgenmäße Verfahren kann durch einen Computer unterstützt werden, der z. B. folgende Funktionen übernimmt: Aufzeichnung des gewählten Hilfssignals, Speicherung der Messwerte des pH-Werts in einem Datenspeicher und graphische Wiedergabe der Messwerte auf einem Monitor, insbesondere eines (quasi-)kontinuierlichen zeitlichen Verlaufs der Messwerte bei kontinuierlicher Überwachung des pH-Werts eines Mediums, insbesondere bei strömenden Medien. The inventive method can be supported by a computer z. B. takes over the following functions: recording the selected auxiliary signal, storing the measured values of the pH value in a data memory and graphic display of the measured values on a monitor, in particular a (quasi-)continuous time course of the measured values with continuous monitoring of the pH value of a medium , especially with flowing media.
Ausführungsbeispiel example
In Figur 3 ist eine Anordnung zur therapeutischen Stimulation von neuronalem Gewebe mit elektrischem Strom und zur Bestimmung und / oder Überwachung des pH-Wertes in der Grenzschicht zwischen Elektrode und biologischem Gewebe beispielhaft dargestellt. Die in einem Gewebe (1 ) befindlichen neuronalen Strukturen werden mit Hilfe eines elektrischen Stromes stimuliert, der von einer Stromquelle (3) bereitgestellt wird. Der Strom wird über Elektroden (2) in das Gewebe eingebracht und fließt entlang der Stromlinien (4). Der Strom erzeugt über der elektrischen Gewebeimpedanz Potentialdifferenzen, die durch Äquipotentiallinien (5) repräsentiert sind. In der Aussparung der Elektrode (2) befindet sich der Kopf eines pH-Sensors (8), der zwei Elektroden enthält: Eine Referenzelektrode mit Elektronik (6) und eine Messelektrode mit Elektronik (7). Zur Ermittlung des pH-Wertes wird die Potentialdifferenz zwischen diesen beiden Elektroden (6) und (7) gemessen. Gleichzeitig wirken auf die Elektroden (6, 7) die vom Stimulationsstrom erzeugten Potentialdifferenzen, repräsentiert durch die Äquipotentiallinien (5), die sich mit dem gemessenen pH-bezogenen Feld überlagern und dadurch den pH-Messwert beeinträchtigen. FIG. 3 shows an example of an arrangement for therapeutic stimulation of neuronal tissue with electric current and for determining and/or monitoring the pH value in the boundary layer between the electrode and biological tissue. The in a tissue (1) located neuronal structures with the help of an electrical Stimulates current provided by a power source (3). The current is introduced into the tissue via electrodes (2) and flows along the current lines (4). The current generates potential differences across the electrical tissue impedance, which are represented by equipotential lines (5). In the recess of the electrode (2) is the head of a pH sensor (8), which contains two electrodes: a reference electrode with electronics (6) and a measuring electrode with electronics (7). To determine the pH value, the potential difference between these two electrodes (6) and (7) is measured. At the same time, the potential differences generated by the stimulation current act on the electrodes (6, 7), represented by the equipotential lines (5), which overlap with the measured pH-related field and thereby affect the pH measurement value.
Wie vorliegend vorgeschlagen, wird der Referenzspannung ein harmonischer oder stochastischer Träger (Hilfssignal) überlagert, der durch den pH-Wert moduliert wird. Dadurch wird der pH-Messwert von Störungen getrennt und kann anschließend durch Demodulation oder Dekorrelation ermittelt werden. As proposed here, a harmonic or stochastic carrier (auxiliary signal), which is modulated by the pH value, is superimposed on the reference voltage. This separates the pH reading from interference and can then be determined by demodulation or decorrelation.
Das im Realisierungsbeispiel nach Figur 3 beschriebene Prinzip kann auf die Reduktion beliebiger Störungen angewandt werden: Auch und vor allem in der Industrie muss man mit starken Störungen vom Netz, von Maschinensteuerungen, Kommunikationsnetzen etc. rechnen. Bisher hat man versucht, das Problem der Störungsfelder dadurch zu reduzieren, dass die Messelektrode geschirmt war und durch die niedrige Impedanz der sie umgebenden Referenzelektrode die Störungen per se nicht wirksam sein sollen. Allerdings sind die sensorischen Teile der Sonden nicht geschützt, so dass die Störungen die Messwerte unkontrolliert beeinträchtigen. Dadurch sind je nach Stärke der Störung Messfehler von bis zu 20% oder mehr üblich. Solche Messfehler sind vor allem in sensitiven Bereichen (Pharmakologie, Medizin, Lebensmittel) nicht hinnehmbar. Allerdings ist es mit der konventionellen Technologie (Glasprobe mit trägen pH-durchlässigen Schichten zur Messung und Diaphragma, große Volumina der Flüssigkeiten für Referenz sowie Messpuffer) gar nicht möglich, die Referenz aktiv gegen die Störungen zu modulieren, so dass die Störungen insbesondere durch ihre niederfrequenten Anteile den Messwert trotz vorhandener Entstörungsmaßnahmen beeinträchtigen. Durch die neue Technologie (ISFET) sowie die Miniaturisierung der Sensorik (Halbleiterchips im Mikrometerbereich, Volumina im Mikroliterbereich) liegen die Zeitkonstanten derzeit in der Dekade von höchstens einer bis zehn Millisekunden, so dass die gängigen Störungen gezielt reduziert werden können. Bezugszeichenliste The principle described in the implementation example according to FIG. 3 can be applied to the reduction of any interference: Strong interference from the network, from machine controls, communication networks, etc. must also be expected, especially in industry. So far, attempts have been made to reduce the problem of interference fields by shielding the measuring electrode and by the low impedance of the reference electrode surrounding it, so that the interference per se should not be effective. However, the sensory parts of the probes are not protected, so that the disturbances affect the measured values in an uncontrolled manner. As a result, measurement errors of up to 20% or more are common, depending on the severity of the interference. Such measurement errors are unacceptable, especially in sensitive areas (pharmacology, medicine, food). However, with the conventional technology (glass sample with sluggish pH-permeable layers for measurement and diaphragm, large volumes of liquids for reference and measurement buffer) it is not possible to actively modulate the reference against the interference, so that the interference, in particular due to its low-frequency Shares affect the measured value despite existing interference suppression measures. Due to the new technology (ISFET) and the miniaturization of the sensors (semiconductor chips in the micrometer range, volumes in the microliter range), the time constants are currently in the decade of at most one to ten milliseconds, so that the common disturbances can be reduced in a targeted manner. Reference List
1 - Gewebe 1 - tissue
2 - Elektroden zur Stimulation von biologischem Gewebe 2 - electrodes for stimulation of biological tissue
3 - Stromquelle 3 - power source
4 - Stromlinien 4 - streamlines
5 - Äquipotentiallinien 5 - equipotential lines
6 - Referenzelektrode mit Elektronik 6 - reference electrode with electronics
7 - Messelektrode mit Elektronik 7 - measuring electrode with electronics
8 - pH-Sensor 8 - pH sensor
Quellenverzeichnis bibliography
[1 ] EP 3 683 845 A1 : „AN ELECTRONIC DEVICE AND A METHOD FOR SUPPRESSING NOISE FOR AN ELECTRONIC DEVICE” [1 ] EP 3 683 845 A1: “AN ELECTRONIC DEVICE AND A METHOD FOR SUPPRESSING NOISE FOR AN ELECTRONIC DEVICE”
(ELEKTRONISCHE VORRICHTUNG UND VERFAHREN ZUR RAUSCHUNTERDRÜCKUNG FÜR EINE ELEKTRONISCHE VORRICHTUNG) (ELECTRONIC DEVICE AND NOISE REDUCING METHOD FOR AN ELECTRONIC DEVICE)
[2] OHNO, Y. [et al.]: Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Letters, Vol. 9, 2009, No. 9, S. 3318-3322. DOI: 10.1021/nl901596m [2] OHNO, Y. [et al.]: Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Letters, Vol. 9, 2009, no. 9, pp. 3318-3322. DOI: 10.1021/nl901596m
[3] ASGARI, M. [et al.]: A Single-Ended Chopper-Stabilized ISFET Amplifier for Continuous pH Measurement Applications. 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS). DOI: 10.1109/MWSCAS.2015.7282183 [3] ASGARI, M. [et al.]: A Single-Ended Chopper-Stabilized ISFET Amplifier for Continuous pH Measurement Applications. 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS). DOI: 10.1109/MWSCAS.2015.7282183
[4] NEBHEN, J. [et al.]: Low Noise Micro-Power Chopper Amplifier for MEMS Gas Sensor. Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011. [4] NEBHEN, J. [et al.]: Low Noise Micro-Power Chopper Amplifier for MEMS Gas Sensor. Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011.
[5] US 2016 / 0 380 598 A1 : PSEUDO-RANDOM CHOPPER AMPLIFIER [5] US 2016 / 0 380 598 A1 : PSEUDO-RANDOM CHOPPER AMPLIFIER
[6] HUSAR, P: Elektrische Biosignale in der Medizintechnik. Springer-Verlag GmbH Deutschland, 2. Auflage, 2020, S. 6, https://doi.org/10.1007/978-3-662-59641-8_1 [6] HUSAR, P: Electrical biosignals in medical technology. Springer-Verlag GmbH Germany, 2nd edition, 2020, p. 6, https://doi.org/10.1007/978-3-662-59641-8_1
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112023001185.0T DE112023001185A5 (en) | 2022-03-02 | 2023-03-02 | Method for the interference-reduced determination and/or monitoring of the pH value of a medium and associated device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022104919 | 2022-03-02 | ||
DE102022104919.1 | 2022-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023165646A1 true WO2023165646A1 (en) | 2023-09-07 |
Family
ID=86657600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2023/000012 WO2023165646A1 (en) | 2022-03-02 | 2023-03-02 | Method for interference-reduced determination and/or monitoring of the ph value of a medium, and corresponding apparatus |
Country Status (2)
Country | Link |
---|---|
DE (2) | DE112023001185A5 (en) |
WO (1) | WO2023165646A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119240899A (en) * | 2024-12-02 | 2025-01-03 | 南京庸和环境科技有限公司 | Modular intelligent sewage treatment regulation device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701253A (en) * | 1983-11-03 | 1987-10-20 | Sentron V.O.F. | ISFET-based measuring device and method for correcting drift |
US20150212039A1 (en) * | 2012-09-12 | 2015-07-30 | President And Fellows Of Harvard College | Nanoscale field-effect transistors for biomolecular sensors and other applications |
EP3683845A1 (en) | 2019-01-16 | 2020-07-22 | Fundació Institut de Ciències Fotòniques | An electronic device and a method for suppressing noise for an electronic device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10038408B2 (en) | 2015-06-26 | 2018-07-31 | Cactus Semiconductor, Inc. | Pseudo-random chopper amplifier |
-
2023
- 2023-03-02 DE DE112023001185.0T patent/DE112023001185A5/en not_active Withdrawn
- 2023-03-02 DE DE102023000854.0A patent/DE102023000854A1/en active Pending
- 2023-03-02 WO PCT/DE2023/000012 patent/WO2023165646A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701253A (en) * | 1983-11-03 | 1987-10-20 | Sentron V.O.F. | ISFET-based measuring device and method for correcting drift |
US20150212039A1 (en) * | 2012-09-12 | 2015-07-30 | President And Fellows Of Harvard College | Nanoscale field-effect transistors for biomolecular sensors and other applications |
EP3683845A1 (en) | 2019-01-16 | 2020-07-22 | Fundació Institut de Ciències Fotòniques | An electronic device and a method for suppressing noise for an electronic device |
Non-Patent Citations (5)
Title |
---|
ASGARI, M: "A Single-Ended Chopper-Stabilized ISFET Amplifier for Continuous pH Measurement Applications", IEEE 58TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS). DOI: 10.1109/MWSCAS.2015.7282183, 2015 |
HUSAR, P: "Elektrische Biosignale in der Medizintechnik", 2020, SPRINGER-VERLAG GMBH, pages: 6 |
MAILLY-GIACCHETTI BENJAMIN ET AL: "pH sensing properties of graphene solution-gated field-effect transistors", JOURNAL OF APPLIED PHYSICS, vol. 114, no. 8, 28 August 2013 (2013-08-28), 2 Huntington Quadrangle, Melville, NY 11747, XP093071951, ISSN: 0021-8979, Retrieved from the Internet <URL:https://dspace.mit.edu/bitstream/handle/1721.1/87110/KOng_Ph%20sensing.pdf?sequence=1&isAllowed=y> DOI: 10.1063/1.4819219 * |
NEBHEN, J: "Low Noise Micro-Power Chopper Amplifier for MEMS Gas Sensor", PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS - MIXDES, 2011 |
OHNO, Y: "Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption", NANO LETTERS, vol. 9, no. 9, 2009, pages 3318 - 3322, XP055043758, DOI: 10.1021/nl901596m |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119240899A (en) * | 2024-12-02 | 2025-01-03 | 南京庸和环境科技有限公司 | Modular intelligent sewage treatment regulation device and method |
Also Published As
Publication number | Publication date |
---|---|
DE102023000854A1 (en) | 2023-09-07 |
DE112023001185A5 (en) | 2025-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112005001781B4 (en) | Method and device for measuring a time-variable current flowing through an ion channel with a capacitive measuring electrode | |
DE60207185T2 (en) | Biosensor device and associated method for detecting the type and volume of a sample | |
KR100868071B1 (en) | Contact monitoring method of electrode using relative measurement of differential electrode impedance | |
DE102018110575A1 (en) | Systems and methods for determining the condition of a gas sensor | |
DE3116884A1 (en) | METHOD AND CIRCUIT FOR MEASURING ION ACTIVITY IN LIQUIDS | |
DE102015202447A1 (en) | Suppression of the common-mode signal component in the measurement of bioelectric signals | |
EP1636599A1 (en) | Potentiostatic circuit arrangement on a biosensor for digitisation of the measured current | |
EP2567459A1 (en) | Detection of a dielectric object | |
DE10204652B4 (en) | Circuit arrangement, electrochemical sensor, sensor arrangement and method for processing a current signal provided via a sensor electrode | |
WO2023165646A1 (en) | Method for interference-reduced determination and/or monitoring of the ph value of a medium, and corresponding apparatus | |
DE19755418A1 (en) | Sensor measuring complex impedances | |
EP3066459B1 (en) | Apparatus and method for measuring small voltages and potentials at a biological, chemical or other sample | |
AT515744B1 (en) | A method and apparatus for determining zeta potential for characterizing a solid-liquid phase boundary with controlled pressure profile loading | |
EP1143239A1 (en) | Method for monitoring the quality of electrochemical measuring sensors and measuring device with an electrochemical sensor | |
DE102014210122B4 (en) | Device for determining a value of a property of a fluid to be measured, method for operating a device for determining a value of a property of a fluid to be measured | |
DE102011085841A1 (en) | Method for determining and / or monitoring at least one process variable of a medium, electrochemical sensor and system | |
DE3239572A1 (en) | Apparatus for measuring ion concentrations | |
WO2025002505A1 (en) | Measuring method for sensors based on polymer nanocomposites, and sensor based on polymer nanocomposites | |
EP0922963A2 (en) | Evaluation circuit for determining complex impedances, apparatus for measuring complex impedance and use of the apparatus | |
DE102021107762A1 (en) | Sensor circuit, electrochemical sensor, and method for testing the electrochemical sensor | |
DE202007015737U1 (en) | Arrangement for real-time measurement of the current density in an electrolyte bath | |
EP2887860B1 (en) | Sensor device for detection of bioelectrical signals | |
DE102021107764A1 (en) | Sensor circuit, electrochemical sensor, and method of protecting the electrochemical sensor | |
DE102012205097B4 (en) | Capacitive tracking device | |
DE102018124092A1 (en) | Electronic circuit for an electrochemical sensor and method for functional analysis of the electrochemical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23727919 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112023001185 Country of ref document: DE |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: R225 Ref document number: 112023001185 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23727919 Country of ref document: EP Kind code of ref document: A1 |