WO2023165562A1 - 含氮杂环类化合物及其应用 - Google Patents
含氮杂环类化合物及其应用 Download PDFInfo
- Publication number
- WO2023165562A1 WO2023165562A1 PCT/CN2023/079304 CN2023079304W WO2023165562A1 WO 2023165562 A1 WO2023165562 A1 WO 2023165562A1 CN 2023079304 W CN2023079304 W CN 2023079304W WO 2023165562 A1 WO2023165562 A1 WO 2023165562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- optionally substituted
- pharmaceutically acceptable
- och
- acceptable salt
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
Definitions
- the present invention relates to a class of nitrogen-containing heterocyclic compounds and applications thereof, specifically disclosing compounds represented by formula (I) and pharmaceutically acceptable salts thereof.
- Janus kinase is a cytoplasmic protein non-receptor tyrosine kinase, the family includes JAK1, JAK2, JAK3 and TYK2 four members, which play a key role in the regulation of cell functions in the lympho-hematopoietic system.
- JAK1 JAK2, JAK3 and TYK2 four members, which play a key role in the regulation of cell functions in the lympho-hematopoietic system.
- the biological effects of more than 50 cytokines and growth factors are mediated through JAK kinases and their JAK-STAT pathway. Ligand binding can induce multimerization of receptor subunits, thereby inducing intracellular activation.
- JAK/STAT signaling is known to be associated with allergy, asthma, autoimmune diseases (e.g. transplant rejection, rheumatoid arthritis, amyotrophic lateral sclerosis, multiple sclerosis, etc.), solid cancers, blood cancers (e.g. leukemia,
- JAK1, JAK2, and TYK2 have been found to be widely expressed in humans, whereas JAK3 expression is restricted to lymphocytes and interacts with IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 receptor members ⁇ -chains, especially the common ⁇ -chains of the IL-2 family, are involved in signal transduction.
- JAK3 expression is restricted to lymphocytes and interacts with IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 receptor members ⁇ -chains, especially the common ⁇ -chains of the IL-2 family, are involved in signal transduction.
- immunosuppression can be effectively controlled with little impact on other target pathways, thereby reducing the side effects of inhibitors.
- Alopecia areata is the second-highest hair loss symptom in the world. There are about 114 million patients in the world, and about 4 million patients in China. It is an autoimmune disease that causes partial or complete loss of hair on the scalp, face or other parts of the body as the immune system attacks hair follicles. Alopecia areata often has its first onset in childhood and can affect people of any age, gender, and ethnicity. There are currently no approved treatments for alopecia areata.
- a variety of JAKi have been clinically proven to be effective in the treatment of AA, and all of these JAKi have JAK1 inhibitory activity except ritlecitinib.
- Ritlecitinib is a JAK3/TEC inhibitor with high clinical efficiency and can regenerate hair in patients. The drug has been awarded the title of FDA Breakthrough Therapy, and its clinical progress is relatively fast. It is currently in phase 3 clinical trials.
- JAK inhibitors whether they are non-selective or JAK1-selective inhibitors, have JAK1 inhibitory activity, which involves serious side effects such as severe infection, mortality, malignancy, cardiovascular adverse events and thrombosis risk, so the FDA There are black box warnings for JAK inhibitors used to treat chronic inflammation (such as: tofacitinib, baricitinib, upadacitinib and abrocitinib).
- the compound invented in this study is a JAK3/TEC inhibitor with high selectivity to JAK3, and has certain inhibitory activity on five kinases of the TEC family, and is expected to treat autoimmune diseases such as AA, RA and SLE mediated by B and T cells To achieve better clinical treatment, so that patients with AA, RA and SLE can enjoy better treatment effects and have less toxic side effects.
- the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
- L is selected from -O- and -NH-;
- R is selected from C 2-4 alkenyl and C 2-4 alkynyl, said C 2-4 alkenyl and C 2-4 alkynyl are independently optionally substituted by 1, 2 or 3 halogens;
- R b and R c are independently selected from F, Cl, Br and I;
- Each R d is independently selected from H, F, Cl, Br, I, C 1-3 alkyl and C 1-3 alkoxy, and the C 1-3 alkyl and C 1-3 alkoxy are respectively are independently optionally substituted with 1, 2 or 3 halogens.
- the present invention also provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
- L is selected from -O- and -NH-;
- R 3 and R 5 are independently selected from H, F, Cl, Br, I, C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1-3 alkoxy The groups are independently optionally substituted by 1, 2 or 3 R c ;
- R 3 and R 4 together with the carbon atoms they are connected to form a C 3-5 cycloalkyl group, the C 3-5 cycloalkyl group is optionally substituted by 1, 2 or 3 R d ;
- R 4 and R 5 together with their connected carbon atoms form a C 3-5 cycloalkyl group, the C 3-5 cycloalkyl group is optionally substituted by 1, 2 or 3 R d ;
- R a is selected from C 2-4 alkenyl and C 2-4 alkynyl, said C 2-4 alkenyl and C 2-4 alkynyl are independently optionally substituted by 1, 2 or 3 halogens;
- R b and R c are independently selected from F, Cl, Br and I;
- R d is selected from F, Cl, Br, I, C 1-3 alkyl and C 1-3 alkoxy, and said C 1-3 alkyl and C 1-3 alkoxy are independently optionally replaced by 1 , 2 or 3 halogen substitutions.
- each R d mentioned above is independently selected from H, F, Cl, CH 3 and OCH 3 , and the CH 3 and OCH 3 are independently optionally substituted by 1, 2 or 3 halogens, Other variables are as defined herein.
- each R d mentioned above is independently selected from H and F, and other variables are as defined in the present invention.
- each R d mentioned above is independently selected from H, F, Cl, Br and I, and other variables are as defined in the present invention.
- R 2 is selected from H, NH 2 and -NHCH 3 , and other variables are as defined in the present invention.
- R 5 is selected from H, F, Cl, Br, I, CH 3 and OCH 3
- R 5 is selected from H, F, Cl, Br, I, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally substituted by 1, 2 or 3 R c , R 3 and R 4 together with the carbon atoms to which they are attached form cyclopropyl optionally substituted by 1, 2 or 3 R d , other variables as defined herein.
- R 5 is selected from H, F, Cl, Br, I, CH 3 and OCH 3 , and R 3 and R 4 form a joint structure with the carbon atoms connected to them.
- Other variables are as defined herein.
- R 3 is selected from H, F, Cl, Br, I, CH 3 and OCH 3
- said cyclopropyl is optionally substituted by 1, 2 or 3 R d
- R 3 is selected from H, F, Cl, Br, I, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally substituted by 1, 2 or 3 R c , R 4 and R 5 together with the carbon atoms to which they are attached form cyclopropyl optionally substituted by 1, 2 or 3 R d , other variables as defined herein.
- R3 is selected from H, and R4 and R5 form together with the carbon atoms connected to them
- Other variables are as defined herein.
- R 3 is selected from H, F, Cl, Br, I, CH 3 and OCH 3 , and R 4 and R 5 together form the carbon atoms connected to them
- Other variables are as defined herein.
- the above compound or a pharmaceutically acceptable salt thereof is selected from:
- L, R 1 , R 2 , R 3 , R 5 and R d are as defined in the present invention.
- the above compound or a pharmaceutically acceptable salt thereof is selected from:
- R 1 , R 2 , R 3 , R 5 and each R d are as defined herein;
- the carbon atom with "*" is a chiral carbon atom, which exists in the form of (R) or (S) single enantiomer or enriched form of one enantiomer;
- R 3 is not H
- the carbon atom with "&" is a chiral carbon atom, present in (R) or (S) single enantiomer or enriched in one enantiomer;
- the carbon atom with "#" is a chiral carbon atom, present as (R) or (S) single enantiomer or enriched in one enantiomer.
- R 3 is selected from H and CH 3 , and other variables are as defined in the present invention.
- R 5 is selected from H and CH 3 , and other variables are as defined in the present invention.
- R 3 and R 5 are independently selected from H, F, Cl, Br, I, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally replaced by 1, 2 or 3 R c is substituted, and other variables are as defined herein.
- R 3 and R 5 are independently selected from H, F, Cl, Br, I, CH 3 and OCH 3 , and other variables are as defined in the present invention.
- R 3 and R 4 and the carbon atoms they are connected together form a cyclopropyl group, and the cyclopropyl group is optionally substituted by 1, 2 or 3 R d , and other variables are as defined in the present invention .
- R 4 and R 5 and the carbon atoms they are connected together form a cyclopropyl group, and the cyclopropyl group is optionally substituted by 1, 2 or 3 R d , and other variables are as defined in the present invention .
- R 1 , R 2 and R d are as defined herein.
- the present invention also provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof,
- the above compound or a pharmaceutically acceptable salt thereof is selected from:
- the present invention also provides the use of the above compound or a pharmaceutically acceptable salt thereof in the preparation of a medicament for treating diseases related to JAK3/TEC inhibitors.
- the compound of the present invention has significant JAK3 inhibitory activity and high selectivity, has a certain inhibitory activity on the TEC kinase family, and has balanced pharmacokinetic properties, and is expected to show better drug efficacy in animal autoimmune models (such as AA, RA, and SLE, etc.) .
- pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms, which are suitable for use in contact with human and animal tissues within the scope of sound medical judgment , without undue toxicity, irritation, allergic reaction or other problems or complications, commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable salt refers to a salt of a compound of the present invention, which is prepared from a compound having a specific substituent found in the present invention and a relatively non-toxic acid or base.
- base addition salts can be obtained by contacting such compounds with a sufficient amount of base, either neat solution or in a suitable inert solvent.
- acid addition salts can be obtained by contacting such compounds with a sufficient amount of the acid, either neat solution or in a suitable inert solvent.
- Certain specific compounds of the present invention contain basic and acidic functional groups and can thus be converted into either base or acid addition salts.
- the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing acid groups or bases by conventional chemical methods.
- such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of both.
- the compounds of the invention may exist in particular geometric or stereoisomeric forms.
- the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and their racemic and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which are subject to the present within the scope of the invention.
- Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
- enantiomer or “optical isomer” refer to stereoisomers that are mirror images of each other.
- cis-trans isomers or “geometric isomers” arise from the inability to rotate freely due to the double bond or the single bond of the carbon atoms forming the ring.
- diastereoisomer refers to stereoisomers whose molecules have two or more chiral centers and which are not mirror images of the molecules.
- keys with wedge-shaped solid lines and dotted wedge keys Indicates the absolute configuration of a stereocenter, with a straight solid-line bond and straight dashed keys Indicates the relative configuration of the stereocenter, with a wavy line Indicates wedge-shaped solid-line bond or dotted wedge key or with tilde Indicates a straight solid line key or straight dotted key
- the terms “enriched in an isomer”, “enriched in an isomer”, “enriched in an enantiomer” or “enantiomerically enriched” refer to one of the isomers or enantiomers
- the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
- the terms “isomer excess” or “enantiomeric excess” refer to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the other isomer or enantiomer is 10%, then the isomer or enantiomeric excess (ee value) is 80% .
- Optically active (R)- and (S)-isomers as well as D and L-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, wherein the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
- a diastereoisomeric salt is formed with an appropriate optically active acid or base, and then a diastereomeric salt is formed by a conventional method known in the art. Diastereomeric resolution is performed and the pure enantiomers are recovered. Furthermore, the separation of enantiomers and diastereomers is usually accomplished by the use of chromatography using chiral stationary phases, optionally in combination with chemical derivatization methods (e.g. amines to amino groups formate).
- the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compounds.
- compounds may be labeled with radioactive isotopes such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
- radioactive isotopes such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
- heavy hydrogen can be used to replace hydrogen to form deuterated drugs.
- the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
- deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All changes in isotopic composition of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
- substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable.
- any variable eg, R
- its definition is independent at each occurrence.
- said group may optionally be substituted with up to two R, with independent options for each occurrence of R.
- substituents and/or variations thereof are permissible only if such combinations result in stable compounds.
- linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
- a substituent can be bonded to any atom on a ring when the bond of a substituent can cross-link two or more atoms on the ring, e.g., structural unit It means that the substituent R can be substituted at any position on cyclohexyl or cyclohexadiene. When the enumerated substituent does not indicate which atom it is connected to the substituted group, this substituent can be bonded through any atom, for example, pyridyl as a substituent can be connected to any atom on the pyridine ring. The carbon atom is attached to the group being substituted.
- linking group listed does not indicate its linking direction
- its linking direction is arbitrary, for example,
- the connecting group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right to form It can also be formed by connecting loop A and loop B in the opposite direction to the reading order from left to right
- any one or more sites of the group can be linked to other groups through chemical bonds.
- connection method of the chemical bond is not positioned, and there is an H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will decrease correspondingly with the number of chemical bonds connected to become the corresponding valence group.
- the chemical bonds that the site is connected with other groups can use straight solid line bonds Straight dotted key or tilde express.
- the straight-shaped solid-line bond in -OCH3 indicates that it is connected to other groups through the oxygen atom in the group;
- the straight dotted line bond indicates that the two ends of the nitrogen atom in the group are connected to other groups;
- the wavy lines in indicate that the 1 and 2 carbon atoms in the phenyl group are connected to other groups;
- the number of atoms in a ring is generally defined as the number of ring members, e.g., a “5-7 membered ring” means a ring with 5-7 atoms arranged around "ring”.
- halogen or halogen by itself or as part of another substituent means a fluorine, chlorine, bromine or iodine atom.
- C 1-3 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
- the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
- Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n - propyl and isopropyl), and the like.
- C 1-3 alkoxy denotes those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through an oxygen atom. It may be monovalent, divalent or polyvalent.
- the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like. Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
- C 1-3 alkylamino denotes those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through a nitrogen atom. It may be monovalent, divalent or polyvalent.
- the C 1-3 alkylamino group includes C 1-2 , C 3 and C 2 alkylamino groups and the like. Examples of C 1-3 alkylamino include, but are not limited to, -NHCH 3 , -N(CH 3 ) 2 , -NHCH 2 CH 3 , -N(CH 3 )CH 2 CH 3 , -NHCH 2 CH 2 CH 3 , -NHCH 2 CH 2 CH 3 , -NHCH 2 CH 2 CH 3 , -NHCH 2 (CH 3 ) 2 etc.
- C2-4alkenyl is used to denote a straight or branched chain hydrocarbon group consisting of 2 to 4 carbon atoms containing at least one carbon-carbon double bond, a carbon-carbon double bond can be located anywhere in the group.
- the C 2-4 alkenyl includes C 2-3 , C 4 , C 3 and C 2 alkenyl, etc.; the C 2-4 alkenyl can be monovalent, divalent or multivalent. Examples of C alkenyl include, but are not limited to, ethenyl, propenyl, butenyl, butadienyl, and the like.
- C2-4 alkynyl is used to denote a straight or branched chain hydrocarbon group consisting of 2 to 4 carbon atoms containing at least one carbon-carbon triple bond, the carbon-carbon triple bond can be located anywhere in the group.
- the C 2-4 alkynyl includes C 2-3 , C 4 , C 3 and C 2 alkynyl and the like. It may be monovalent, divalent or polyvalent. Examples of C alkynyl include, but are not limited to, ethynyl, propynyl, butynyl, and the like.
- C 3-5 cycloalkyl means a saturated cyclic hydrocarbon group composed of 3 to 5 carbon atoms, which is a monocyclic ring system, and the C 3-5 cycloalkyl includes C 3 -4 and C 4-5 cycloalkyl, etc.; it can be monovalent, divalent or multivalent.
- Examples of C 3-5 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, and the like.
- the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and the methods well known to those skilled in the art Equivalent alternatives, preferred embodiments include but are not limited to the examples of the present invention.
- the structure of the compounds of the present invention can be confirmed by conventional methods known to those skilled in the art. If the present invention involves the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, in single crystal X-ray diffraction (SXRD), the cultured single crystal is collected with a Bruker D8 venture diffractometer to collect diffraction intensity data, the light source is CuK ⁇ radiation, and the scanning method is: After scanning and collecting relevant data, the absolute configuration can be confirmed by further analyzing the crystal structure by direct method (Shelxs97).
- SXRD single crystal X-ray diffraction
- the solvent used in the present invention is commercially available.
- Compounds are named according to the conventional naming principles in this field or using The software is named, and the commercially available compounds adopt the supplier catalog name.
- reaction solution was quenched with 20% aqueous ammonium chloride solution (300 mL), and extracted with ethyl acetate (300 mL x 5). The combined organic phases were washed with saturated brine (300 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain compound 1-4.
- Compound 1A and 2A chiral purity detection method chromatographic column Chiralpak IG-3 100mm*4.6mm ID, 3 ⁇ m; mobile phase A: CO 2 B: ethanol (0.05% diethylamine); gradient 5%-40% mobile phase B; flow rate 2.8 mL/min.
- Compound 3A and 4A chiral purity detection method chromatographic column Chiralpak AS-3 150mm*4.6mm ID, 3 ⁇ m; mobile phase A: CO 2 B: ethanol (0.05% diethylamine); gradient 5%-40% mobile phase B; flow rate 2.5 mL/min.
- SFC chromatographic column: DAICEL CHIRALPAK IG (250mm*30mm, 10 ⁇ m); mobile phase: [0.1% NH 3 H 2 O isopropanol] ; B%: 30%-30%).
- a mixture of compounds 7B and 8A/8B was obtained.
- Compound 7A and 7B chiral purity detection method chromatographic column Chiralcel OD-3 150mm*4.6mm ID, 3 ⁇ m; mobile phase A: CO 2 B: isopropanol (0.05% diethylamine); gradient 5%-40% Mobile phase B; flow rate 2.5 mL/min.
- Compound 8A and 8B chiral purity detection method chromatographic column Chiralpak AD-3 150mm*4.6mm ID, 3 ⁇ m; mobile phase A: CO 2 B: methanol (0.05% diethylamine); gradient 5%-40% mobile phase B; flow rate 2.5 mL/min.
- Trifluoroacetic acid (1.54 g, 13.46 mmol, 1 mL, 29.56 eq) was added to a solution of compound 9-15 (150 mg, 455.38 ⁇ mol, 1 eq) in dichloromethane (2 mL), and the resulting reaction solution was stirred at 15° C. for 0.5 hours. The reaction solution was concentrated under reduced pressure to obtain the trifluoroacetic acid salt of compound 9-16.
- Step 14 Synthesis of Compounds 9A, 9B, 10A and 10B
- Compound 9 was separated by SFC (chromatographic column: DAICEL CHIRALCEL OD-H (250mm*30mm, 5 ⁇ m) and mobile phase: [CO 2 -EtOH (0.1%NH 3 H 2 O)]; B%: 20%) to obtain 9A and 9B, compound 10 was separated by SFC (chromatographic column: DAICEL CHIRALPAK AD (250mm*30mm, 10 ⁇ m) and mobile phase: [CO 2 -EtOH (0.1%NH 3 H 2 O)]; B%: 30%) to obtain compound 10A and 10B.
- SFC chromatographic column: DAICEL CHIRALCEL OD-H (250mm*30mm, 5 ⁇ m) and mobile phase: [CO 2 -EtOH (0.1%NH 3 H 2 O)]; B%: 30%
- Compound 9A and 9B, 10A and 10B chiral purity detection method Chromatographic column Chiralcel OD-3 150mm*4.6mm ID, 3 ⁇ m; mobile phase A: CO 2 , B: ethanol (0.05% diethylamine); gradient 5%- 40%, mobile phase B; flow rate 2.5mL/min.
- Trifluoroacetic acid (767.50mg, 6.73mmol, 0.5mL, 18.92eq) was added dropwise to a solution of compound 11-6 (0.13g, 355.80 ⁇ mol, 1eq) in dichloromethane (2mL) and stirred at 20°C for 0.5 hours .
- the reaction solution was concentrated under reduced pressure to obtain the trifluoroacetic acid salt of compound 11-7.
- Compound 11A and 11B chiral purity detection method chromatographic column Chiralcel OJ-3 150mm*4.6mm ID, 3 ⁇ m.; mobile phase A: CO 2 B: ethanol (0.05% diethylamine); gradient 5%-40%, Mobile phase B; flow rate 2.5 mL/min.
- Test 1 Compounds were characterized by IC50 at 10 concentrations.
- the IC 50 of the compound against JAK/TEC family kinases was evaluated at 10 concentrations, in a single well, with an initial concentration of 10 ⁇ M, and a 3-fold serial dilution.
- Buffer composition 20mM Hepes (pH 7.5), 10mM MgCl 2 , 1mM EGTA, 0.01% Brij35, 0.02mg/mL BSA, 0.1mM Na 3 VO 4 , 2mM DTT, 1% DMSO
- the compound of the present invention has significant JAK3 inhibitory activity and high selectivity, and has certain inhibitory activity on TEC kinase family.
- mice Male CD-1 mice were used as test animals, and the drug concentration in plasma at different times after the mice were administered intravenously and intragastrically with the test compound was determined by LC/MS/MS method. Study its pharmacokinetic behavior in mice and evaluate its pharmacokinetic characteristics.
- Test drug test compound.
- mice Four male CD-1 mice were divided into two groups. After fasting for one night, one group was administered intravenously, and the other group was administered intragastrically.
- LC/MS/MS method was used to determine the content of the compound to be tested in the blood plasma of mice after intravenous and intragastric administration.
- the linear range of the method is 2.00-6000nmol/L; plasma samples are analyzed after being treated with acetonitrile to precipitate proteins.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
一种含取代的含氮杂环类化合物及其应用,具体公开了式(I)所示化合物及其药学上可接受的盐。
Description
本申请主张如下优先权
申请号:CN202210200342.2,申请日:2022年03月02日;
申请号:CN202211538698.3,申请日:2022年12月01日。
本发明涉及一类含氮杂环类化合物及其应用,具体公开了式(I)所示化合物及其药学上可接受的盐。
Janus kinase(JAK)是细胞质蛋白非受体酪氨酸激酶,该家族包含JAK1、JAK2、JAK3和TYK2四个成员,其在调节淋巴-造血系统中的细胞功能中起关键作用。有超过50种细胞因子和生长因子的生物学效应是通过JAK激酶及其JAK-STAT途径介导。当配体结合时可以诱导受体亚基的多聚化,由此诱发细胞内激活。已知JAK/STAT信号传导与过敏、哮喘、自身免疫疾病(例如移植排斥、类风湿性关节炎、肌萎缩侧索硬化、多发性硬化等)、实体癌、血癌(例如白血病、淋巴瘤等)有关。
已发现JAK1、JAK2和TYK2在人体广泛分布表达,而JAK3的表达则局限于淋巴细胞并且与IL-2、IL-4、IL-7、IL-9、IL-15和IL-21受体成员的γ链,特别是IL-2家族的常见γ链的信号传导相关。通过选择性抑制JAK3可以有效控制免疫抑制且对其它靶点通路影响小,从而可降低抑制剂的毒副作用。
斑秃(AA)是全球发病率第二高的脱发症状,世界上大约有1.14亿患者,中国患者约有400万。它是一种自身免疫性疾病,由于免疫系统攻击毛囊,导致患者头皮、脸部或身体其他部分的毛发部分或全部脱落。斑秃患者经常在儿童时期就会首次发作,任何年龄、性别和种族的人群均可患病。目前尚无针对斑秃的批准疗法。多种JAKi在临床上证实对AA治疗有效,除了ritlecitinib以外这些JAKi均具有JAK1抑制活性。Ritlecitinib是JAK3/TEC抑制剂临床上有效率高,可以使患者毛发再生,该药获得FDA突破疗法称号,临床进展较快,目前正在开展临床3期。
已上市的JAK抑制剂不论是非选择性或是JAK1选择性的抑制剂,都有JAK1抑制活性,涉及严重感染、死亡率、恶性肿瘤、心血管不良事件和血栓形成风险等严重毒副作用,因此FDA对用于治疗慢性炎症的JAK抑制剂均有黑框警告(如:tofacitinib、baricitinib、upadacitinib及abrocitinib)。
本研究发明的化合物是JAK3/TEC抑制剂对JAK3选择性高,对TEC家族的五种激酶有一定的抑制活性,有望对由B、T细胞介导的AA、RA及SLE等自身免疫性疾病实现更优临床治疗,让AA、RA及SLE等患者在享有更佳治疗效果的同时具有更小的毒副作用。
发明内容
本发明提供了式(I)所示化合物或其药学上可接受的盐,
其中,
L选自-O-和-NH-;
R1选自-C(=O)Ra;
R2选自H、F、Cl、Br、I、OH、NH2、C1-3烷基、C1-3烷氧基、-NH-C1-3烷氧基、-NH-C3-5环烷基、-NH-C(=O)-C1-3烷基和C1-3烷氨基,所述C1-3烷基、C1-3烷氧基、-NH-C1-3烷氧基、-NH-C3-5环烷基、-NH-C(=O)-C1-3烷基和和C1-3烷氨基分别独立地任选被1、2或3个Rb取代;
R5选自H、F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个Rc取代,R3和R4与它们相连的碳原子共同构成C3-5环烷基或-CH=CH-,所述C3-5环烷基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代;
或者,R3选自H、F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个Rc取代,R4和R5与它们相连的碳原子共同构成C3-5环烷基或-CH=CH-,所述C3-5环烷基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代;
Ra选自C2-4烯基和C2-4炔基,所述C2-4烯基和C2-4炔基分别独立地任选被1、2或3个卤素取代;
各Rb和Rc分别独立地选自F、Cl、Br和I;
各Rd分别独立地选自H、F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个卤素取代。
本发明还提供了式(I)所示化合物或其药学上可接受的盐,
其中,
L选自-O-和-NH-;
R1选自-C(=O)Ra;
R2选自H、F、Cl、Br、I、OH、NH2、C1-3烷基、C1-3烷氧基、-NH-C1-3烷氧基、-NH-C3-5环烷基、-NH-C(=O)-C1-3烷基和C1-3烷氨基,所述C1-3烷基、C1-3烷氧基、-NH-C1-3烷氧基、-NH-C3-5环烷基、-NH-C(=O)-C1-3烷基和和C1-3烷氨基分别独立地任选被1、2或3个Rb取代;
R3和R5分别独立地选自H、F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个Rc取代;
R3和R4与它们相连的碳原子共同构成C3-5环烷基,所述C3-5环烷基任选被1、2或3个Rd取代;
或者,R4和R5与它们相连的碳原子共同构成C3-5环烷基,所述C3-5环烷基任选被1、2或3个Rd取代;Ra选自C2-4烯基和C2-4炔基,所述C2-4烯基和C2-4炔基分别独立地任选被1、2或3个卤素取代;
Rb和Rc分别独立地选自F、Cl、Br和I;
Rd选自F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个卤素取代。
本发明的一些方案中,上述Ra选自-CH=CH2和-C≡CH,所述-CH=CH2和-C≡CH分别独立地任选被1、2或3个卤素取代,其他变量如本发明所定义。
本发明的一些方案中,上述Ra选自-CH=CH2、-CH=CHF和-C≡CH,其他变量如本发明所定义。
本发明的一些方案中,上述Ra选自-CH=CH2,其他变量如本发明所定义。
本发明的一些方案中,上述各Rd分别独立地选自H、F、Cl、CH3和OCH3,所述CH3和OCH3分别独立地任选被1、2或3个卤素取代,其他变量如本发明所定义。
本发明的一些方案中,上述各Rd分别独立地选自H和F,其他变量如本发明所定义。
本发明的一些方案中,上述各Rd分别独立地选自H、F、Cl、Br和I,其他变量如本发明所定义。
本发明的一些方案中,上述R1选自-C(=O)-CH=CH2,其他变量如本发明所定义。
本发明的一些方案中,上述R2选自H、F、Cl、Br、I、OH、NH2、CH3、OCH3、-NH-OCH3、-NH-环丁基、-NH-C(=O)-CH3、-NHCH3和-NHCH2CH3,所述CH3、OCH3、-NH-OCH3、-NH-环丁基、-NH-C(=O)-CH3、-NHCH3和-NHCH2CH3分别独立地任选被1、2或3个Rb取代,其他变量如本发明所定义。
本发明的一些方案中,上述R2选自H、F、Cl、Br、I、OH、NH2、CH3、OCH3、-NH-OCH3、-NH-环丁基、-NH-C(=O)-CH3、-NHCH3、-NHCH2CH3和-NHCH2CF3,其他变量如本发明所定义。
本发明的一些方案中,上述R2选自H、NH2、CH3、OCH3、-NH-OCH3、-NH-C(=O)-CH3、-NHCH3、-NHCH2CH3和-NHCH2CF3,其他变量如本发明所定义。
本发明的一些方案中,上述R2选自H、NH2和-NHCH3,其他变量如本发明所定义。
本发明的一些方案中,上述R5选自H、F、Cl、Br、I、CH3和OCH3,所述CH3和OCH3任选被1、2或3个Rc取代,R3和R4与它们相连的碳原子共同构成环丙基或-CH=CH-,所述环丙基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代,其他变量如本发明所定义。
本发明的一些方案中,上述R5选自H、F、Cl、Br、I、CH3和OCH3,所述CH3和OCH3任选被1、2或3个Rc取代,R3和R4与它们相连的碳原子共同构成环丙基,所述环丙基任选被1、2或3个Rd取代,其他变量如本发明所定义。
本发明的一些方案中,上述R5选自H、F、Cl、Br、I、CH3和OCH3,R3和R4与它们相连的碳原子共同构成或-CH=CH-,其他变量如本发明所定义。
本发明的一些方案中,上述R5选自H和CH3,R3和R4与它们相连的碳原子共同构成或-CH=CH-,其他变量如本发明所定义。
本发明的一些方案中,上述R5选自H、F、Cl、Br、I、CH3和OCH3,R3和R4与它们相连的碳原子共同构
成其他变量如本发明所定义。
本发明的一些方案中,上述R3选自H、F、Cl、Br、I、CH3和OCH3,所述CH3和OCH3任选被1、2或3个Rc取代,R4和R5与它们相连的碳原子共同构成环丙基或-CH=CH-,所述环丙基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代,其他变量如本发明所定义。
本发明的一些方案中,上述R3选自H、F、Cl、Br、I、CH3和OCH3,所述CH3和OCH3任选被1、2或3个Rc取代,R4和R5与它们相连的碳原子共同构成环丙基,所述环丙基任选被1、2或3个Rd取代,其他变量如本发明所定义。
本发明的一些方案中,上述R3选自H、F、Cl、Br、I、CH3和OCH3,R4和R5与它们相连的碳原子共同构成或-CH=CH-,其他变量如本发明所定义。
本发明的一些方案中,上述R3选自H,R4和R5与它们相连的碳原子共同构成其他变量如本发明所定义。
本发明的一些方案中,上述R3选自H、F、Cl、Br、I、CH3和OCH3,R4和R5与它们相连的碳原子共同构成其他变量如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
其中,L、R1、R2、R3、R5和Rd如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
其中,
L、R1、R2、R3、R5和各Rd如本发明所定义;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在;
当R3不为H时,带“&”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在;
当R5不为H时,带“#”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
本发明的一些方案中,上述R3选自H和CH3,其他变量如本发明所定义。
本发明的一些方案中,上述R5选自H和CH3,其他变量如本发明所定义。
本发明的一些方案中,上述R3和R5分别独立地选自H、F、Cl、Br、I、CH3和OCH3,所述CH3和OCH3任选被1、2或3个Rc取代,其他变量如本发明所定义。
本发明的一些方案中,上述R3和R5分别独立地选自H、F、Cl、Br、I、CH3和OCH3,其他变量如本发明所定义。
本发明的一些方案中,上述R3和R4与它们相连的碳原子共同构成环丙基,所述环丙基任选被1、2或3个Rd取代,其他变量如本发明所定义。
本发明的一些方案中,上述R3和R4与它们相连的碳原子共同构成其他变量如本发明所定义。
本发明的一些方案中,上述R4和R5与它们相连的碳原子共同构成环丙基,所述环丙基任选被1、2或3个Rd取代,其他变量如本发明所定义。
本发明的一些方案中,上述R4和R5与它们相连的碳原子共同构成其他变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,
其中,
L、R1、R2和Rd如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供了下式所示化合物或其药学上可接受的盐,
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
本发明还提供了上述化合物或其药学上可接受的盐在制备治疗JAK3/TEC抑制剂相关疾病的药物中的应用。
技术效果
本发明化合物具有显著的JAK3抑制活性和高选择性,对TEC激酶家族一定的抑制活性,药代性质均衡,有望在动物自身免疫模型(如AA、RA及SLE等)中展现较好的药效。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键和楔形虚线键表示一个立体中心的绝对构型,用直形实线键和直形虚线键表示立体中心的相对构型,用波浪线表示楔形实线键
或楔形虚线键或用波浪线表示直形实线键或直形虚线键
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚(3H),碘-125(125I)或C-14(14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。
术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR)0-,表示该连接基团为单键。
当一个取代基数量为0时,表示该取代基是不存在的,比如-A-(R)0表示该结构实际上是-A。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结
构实际上是A-Z。
当一个取代基的键可以交叉连接到一个环上的两一个以上原子时,这种取代基可以与这个环上的任意原子相键合,例如,结构单元表示其取代基R可在环己基或者环己二烯上的任意一个位置发生取代。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键直形虚线键或波浪线表示。例如-OCH3中的直形实线键表示通过该基团中的氧原子与其他基团相连;中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
这4种连接方式,即使-N-上画出了H原子,但是仍包括这种连接方式的基团,只是在连接1个化学键时,该位点的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的
“环”。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
除非另有规定,术语“C1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C1-3烷基包括C1-2和C2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C1-
3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。其可以是一价、二价或者多价。所述C1-3烷氧基包括C1-2、C2-3、C3和C2烷氧基等。C1-
3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“C1-3烷氨基”表示通过一个氮原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。其可以是一价、二价或者多价。所述C1-3烷氨基包括C1-2、C3和C2烷氨基等。C1-3烷氨基的实例包括但不限于-NHCH3、-N(CH3)2、-NHCH2CH3、-N(CH3)CH2CH3、-NHCH2CH2CH3、-NHCH2(CH3)2等。
除非另有规定,“C2-4烯基”用于表示直链或支链的包含至少一个碳-碳双键的由2至4个碳原子组成的碳氢基团,碳-碳双键可以位于该基团的任何位置上。所述C2-4烯基包括C2-3、C4、C3和C2烯基等;所述C2-4烯基可以是一价、二价或者多价。C2-4烯基的实例包括但不限于乙烯基、丙烯基、丁烯基、丁间二烯基等。
除非另有规定,“C2-4炔基”用于表示直链或支链的包含至少一个碳-碳三键的由2至4个碳原子组成的碳氢基团,碳-碳三键可以位于该基团的任何位置上。所述C2-4炔基包括C2-3、C4、C3和C2炔基等。其可以是一价、二价或者多价。C2-4炔基的实例包括但不限于乙炔基、丙炔基、丁炔基等。
除非另有规定,“C3-5环烷基”表示由3至5个碳原子组成的饱和环状碳氢基团,其为单环体系,所述C3-5环烷基包括C3-4和C4-5环烷基等;其可以是一价、二价或者多价。C3-5环烷基的实例包括,但不限于,环丙基、环丁基、环戊基等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明采用下述缩略词:aq代表水;eq代表当量、等量;DCM代表二氯甲烷;PE代表石油醚;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;DMF代表N,N-二甲基甲酰胺;Cbz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;r.t.代表室温;Pd2(dba)3代表三二亚苄基丙酮二钯;Xantphos代表4,5-双(二苯基膦)-9,9-二甲基氧杂蒽;TFA代表三氟乙酸;Grubbs catalyst2nd generation代表1,3-双(2,4,6-三甲基苯基)-2-(咪唑烷亚基)(二氯苯亚甲基)(三环己基膦)钌。
本发明所使用的溶剂可经市售获得。化合物依据本领域常规命名原则或者使用软件命名,市售化合物采用供应商目录名称。
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1
合成路线:
步骤1:化合物1-2的合成
反应瓶中加入化合物1-1(50g,295.47mmol,1eq)和四氢呋喃(500mL)。加入三甲基硅基三氟甲磺酸酯(105.04g,738.68mmol,2.5eq)和碘化钠(8.86g,59.09mmol,0.2eq)。氮气保护下加热至70℃,搅拌12小时。应冷却至室温,减压浓缩,加入二氯甲烷(400mL)及饱和硫代硫酸钠水溶液(100mL)搅拌,分层后水相用二氯甲烷(200mL)萃取,合并的有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,
滤液减压浓缩。粗品加入正戊烷(50mL),氮气保护下降温至0℃,搅拌1小时,有固体析出。抽滤,滤饼用冷却至0℃的正戊烷(20mL)洗涤,滤饼干燥得到化合物1-2。1H NMR(400MHz,CDCl3)δppm 3.82-3.79(m,1H),3.73-3.71(m,1H),3.59-3.55(m,2H),2.25-2.21(m,2H),1.46(s,9H).
步骤2:化合物1-3的合成
反应瓶中加入化合物1-2(12g,54.74mmol,1eq),乙酸乙酯(250mL),水(250mL)。加入三氯化钌一水合物(1.23g,5.47mmol,0.1eq)和高碘酸钠(29.27g,136.84mmol,7.58mL,2.5eq),20℃搅拌12小时。往反应液中加入饱和硫代硫酸钠水溶液(100mL)搅拌0.5小时后过滤,用乙酸乙酯(400mL)洗涤滤饼。滤液分层,水相用乙酸乙酯(500mL)萃取,合并的有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物1-3。1H NMR(400MHz,CDCl3)δppm 4.03-3.93(m,2H),2.84-2.79(m,1H),2.54-2.50(m,1H),1.53(s,9H).
步骤3:化合物1-4的合成
反应瓶中加入化合物三甲基碘化亚砜(22.18g,100.77mmol,2.5eq),四氢呋喃(180mL)和DMSO(280mL),20℃下加入叔丁醇钾(9.95g,88.67mmol,2.2eq)。氮气保护下20℃搅拌1小时后降温至0℃,加入化合物1-3(9.4g,40.31mmol,1eq)的四氢呋喃(50mL)溶液,0℃搅拌1小时。反应液用20%氯化铵水溶液(300mL)淬灭,用乙酸乙酯(300mL x 5)萃取。合并的有机相用饱和食盐水(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物1-4。1H NMR(400MHz,DMSO-d6)δppm 7.12-6.83(m,1H),4.95-4.93(m,1H),3.51-3.44(m,6H),3.36-3.32(m,1H),3.25-3.06(s,1H),2.34-2.31(m,1H),2.06-2.03(m,1H),1.38(s,9H).
步骤4:化合物1-5的合成
反应瓶中加入化合物1-4(13g,39.95mmol,1eq),1,5-辛二烯氯化铱二聚物(268.37mg,399.54μmol,0.01eq)和甲苯(325mL),20℃搅拌下往溶液中鼓吹氮气10分钟,后加热至85℃,搅拌2小时。反应降温至40℃,减压浓缩。粗品经硅胶柱(乙酸乙酯/石油醚=0-40%)纯化,得到化合物1-5。1H NMR(400MHz,CDCl3)δppm 4.42-4.18(m,2H),3.77-3.59(m,2H),2.63-2.56(m,1H),2.37(s,1H),1.50(s,9H).
步骤5:化合物1-6的合成
反应瓶中加入化合物1-5(2.8g,11.33mmol,1eq)和甲醇(35mL),氮气保护下降温至0℃。0-5℃分5批加入硼氢化钠(856.86mg,22.65mmol,2eq),反应液在20℃搅拌1小时。反应用饱和氯化铵水溶液(50mL)淬灭,用乙酸乙酯(50mL x 4)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经硅胶柱纯化(乙酸乙酯/石油醚=0-40%),得到化合物1-6。1H NMR(400MHz,CDCl3)δppm 4.19-3.75(m,3H),3.33-3.20(m,1H),2.75(s,1H),2.05-1.77(m,3H),1.46(s,9H);LCMS(ESI)m/z:194[M-55]+。
步骤6:化合物1-7的合成
0℃氮气保护下往化合物4-氯-7(H)-吡咯并[2,3-D]嘧啶(200mg,1.30mmol,1eq)和化合物1-6(300mg,1.20mmol,0.92eq)的无水THF(5mL)溶液中慢慢滴加NaH(200mg,5.00mmol,60%含量,3.84eq),加料完成后在27℃搅拌0.5小时,然后反应在100℃微波下搅拌10小时。反应液过滤,滤液直接减压浓缩,残留物加乙酸乙酯(10mL)溶解并依次用水(10mL)及饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物1-7。LCMS(ESI)m/z:367.0[M+1]+。
步骤7:化合物1-8的合成
往化合物1-7(450mg,1.23mmol,1eq)的DCM(10mL)溶液中加入TFA(2mL),反应在27℃下搅拌
3小时。反应液直接减压浓缩,得到化合物1-8的三氟乙酸盐。
步骤8:化合物1A和2A的合成
0℃下往化合物1-8(300mg,1.13mmol,1eq,三氟乙酸盐)的THF(2mL)溶液中加入NaHCO3(375.00mg,4.46mmol,173.61μL,3.96eq)的H2O(0.5mL)溶液,然后再慢慢加入丙烯酰氯(150.00mg,1.66mmol,135.14μL,1.47eq),反应在27℃下搅拌3小时。反应液加乙酸乙酯(20mL)稀释并依次用水(10mL)及饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩。粗品经硅胶柱纯化(甲醇/二氯甲烷=0-10%)后进一步经SFC分离(色谱柱:DAICEL CHIRALPAK IG(250mm*30mm,10μm);流动相:[0.1%NH3H2O乙醇];B%:30%-30%),得到化合物1A和2A。
化合物1A:1H NMR(400MHz,CDCl3)δppm 9.80(s,1H),8.39(s,1H),7.14(s,1H),6.58-6.53(m,2H),6.34-6.30(m,1H),5.70(m,2H),4.54-4.43(m,1H),4.13-4.08(m,1H),3.41-3.27(m,2H),2.34-2.27(m,1H),2.14-2.11(m,1H);LCMS(ESI)m/z:321.1[M+1]+;ee%=100%,保留时间Rt=3.058min。
化合物2A:1H NMR(400MHz,CDCl3)δppm 9.99(s,1H),8.39(s,1H),7.14(s,1H),6.65-6.53(m,2H),6.34-6.30(m,1H),5.70(m,2H),4.54-4.53(m,1H),4.13-4.08(m,1H),3.41-3.27(m,2H),2.51-2.35(m,1H),2.16-2.08(m,1H);LCMS(ESI)m/z:321.0[M+1]+;ee%=98.82%,保留时间Rt=3.329min:
化合物1A和2A手性纯度检测方法:色谱柱Chiralpak IG-3 100mm*4.6mm I.D.,3μm;流动相A:CO2B:乙醇(0.05%二乙基胺);梯度5%-40%流动相B;流速2.8mL/min。
实施例2
合成路线:
步骤1:化合物3-2的合成
反应瓶中加入化合物3-1(1g,3.14mmol,1eq),化合物1-6(743.99mg,2.98mmol,0.95eq),四氢呋喃(10mL)和叔丁醇钾(1M,3.77mL,1.2eq),反应在20℃搅拌12小时。反应用饱和氯化铵水溶液(5mL)淬灭,用乙酸乙酯(5mL x 2)萃取。滤液减压浓缩,粗品经硅胶柱纯化(洗脱剂:乙酸乙酯/石油醚=0-20%),得到化合物3-2。1H NMR(400MHz,CDCl3)δppm 7.18(d,J=3.6Hz,1H),6.60(d,J=3.6Hz,1H),5.73-5.69(m,1H),5.57(s,2H),4.24(s,1H),4.15-4.10(m,1H),3.55-3.51(m,2H),3.35(s,1H),3.12-3.06(m,1H),2.40-2.36(m,1H),2.15(s,1H),1.47(s,9H),0.92-0.88(m,2H),-0.02(s,9H);LCMS(ESI)m/z:531[M+1]+。
步骤2:化合物3-3的合成
往化合物3-2(600mg,1.13mmol,1eq)和氨基甲酸叔丁酯(200mg,1.71mmol,37.04μL,1.51eq)的二氧六环(50mL)溶液中加入碳酸铯(780mg,2.39mmol,2.12eq),Pd2(dba)3(200mg,218.41μmol,0.19eq)及Xantphos(60mg,103.69μmol,0.1eq),反应在100℃下搅拌4小时。反应液直接过滤,滤饼用乙酸乙酯(30mL)洗涤,滤液减压浓缩。粗品经硅胶柱(乙酸乙酯/石油醚=0-30%)纯化,得到化合物3-3。LCMS(ESI)m/z:612.2[M+1]+。
步骤3:化合物3-4的合成
往化合物3-3(0.6g,980.79μmol,1eq)的DCM(10mL)溶液中加入TFA(2mL)反应在25℃下搅拌5小时。反应液直接减压浓缩,得到化合物3-4的三氟乙酸盐。
步骤4:化合物3-5的合成
往化合物3-4(320mg,1.03mmol,1eq,三氟乙酸盐)的THF(10mL)溶液中加入NaOH(200mg,5.00mmol,4.86eq)的H2O(2mL)溶液,反应在65℃下搅拌1小时。反应液体加乙酸乙酯(20mL)及水(10mL)用1N HCl调节水相pH=6,分离有机相,水相用乙酸乙酯(20mL x 5)萃取,合并有机相用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩。粗品经硅胶柱纯化(甲醇/二氯甲烷=0-30%)得到化合物3-5。LCMS(ESI)m/z:282.1[M+1]+。
步骤4:化合物3A和4A的合成
0℃下往化合物3-5(100mg,355.54μmol,1eq)的THF(6mL)溶液中加入NaHCO3(220mg,2.62mmol,101.85μL,7.37eq)的H2O(2mL)溶液,反应搅拌0.1小时后慢慢滴加丙烯酰氯(60mg,662.92μmol,54.05μL,1.86eq),反应继续搅拌0.5小时。反应液加乙酸乙酯(20mL)稀释后用水(10mL)及饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩。粗品经层析板纯化(甲醇/二氯甲烷=1/10)后进一步用SFC分离(色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH3H2O乙醇];B%:35%-35%),得到化合物3A和4A。
化合物3A:1H NMR(400MHz,CDCl3)δppm 8.42(s,1H),6.85(s,1H),6.67-6.60(m,1H),6.47-6.38(m,2H),5.79-5.61(m,2H),4.73-4.66(m,3H),4.15-4.11(m,1H),3.43-3.27(m,2H),2.41-2.36(m,1H),2.21-2.15(m,1H);LCMS(ESI)m/z:336.1[M+1]+;ee%=99.0%,保留时间Rt=3.468min。
化合物4A:1H NMR(400MHz,CDCl3)δppm 8.56(s,1H),6.85(s,1H),6.67-6.60(m,1H),6.43-6.37(m,2H),5.79-5.65(m,2H),4.77-4.63(m,3H),4.16-4.12(m,1H),3.43-3.30(m,2H),2.41-2.36(m,1H),2.21-2.15(m,1H);LCMS(ESI)m/z:336.1[M+1]+;ee%=96.3%,保留时间Rt=3.706min。
化合物3A和4A手性纯度检测方法:色谱柱Chiralpak AS-3 150mm*4.6mm I.D.,3μm;流动相A:CO2B:乙醇(0.05%二乙基胺);梯度5%-40%流动相B;流速2.5mL/min。
实施例3
合成路线:
步骤1:化合物5-1的合成
将化合物3-2(600mg,1.13mmol,1eq)和甲胺甲醇溶液(含量28-30%,1mL)加入到微波管中,然后在100℃下搅拌1.5小时。反应液直接减压浓缩。粗品经硅胶柱纯化(乙酸乙酯/石油醚=0-30%),得到化合物5-1。LCMS(ESI)m/z:526.2[M+H]+。
步骤2:化合物5-2的合成
往化合物5-1(470mg,894.11μmol,1eq)的DCM(8mL)溶液中加入TFA(2mL)反应在26℃下搅拌4小时。反应直接减压浓缩,得到化合物5-2的三氟乙酸盐。LCMS(ESI)m/z:326.1[M+H]+。
步骤3:化合物5-3的合成
往化合物5-2(300mg,922.19μmol,1eq,三氟乙酸盐)的THF(10mL)溶液中加入NaOH(150mg,3.75mmol,4.07eq)的H2O(2mL)溶液,反应在65℃下搅拌1小时。反应液加乙酸乙酯(20mL)稀释后用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩。粗品经硅胶柱纯化(甲醇/二氯甲烷=0~10%),得到化合物5-3。LCMS(ESI)m/z:296.1[M+H]+。
步骤4:化合物5A和6A的合成
0℃下往化合物5-3(140mg,474.11μmol,1eq)的四氢呋喃(6mL)溶液中加入碳酸氢钠(300mg,3.57mmol,138.89μL,7.53eq)的H2O(2mL)溶液,反应搅拌0.1小时后慢慢滴加丙烯酰氯(80mg,883.90μmol,
72.07μL,1.86eq),反应继续搅拌0.5小时。反应液加乙酸乙酯(20mL)稀释后用水(10mL)及饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩。粗品经层析板纯化(甲醇/二氯甲烷=1/10)后进一步经SFC分离(色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH3H2O乙醇];B%:30%-30%),得到化合物5A和6A。
化合物5A:1H NMR(400MHz,CDCl3)δppm 9.14(s,1H),6.73(s,1H),6.70-6.46(m,1H),6.32-6.23(m,2H),5.69-5.58(m,2H),5.04-4.89(m,1H),4.72-4.55(m,1H),4.16-3.99(m,1H),3.45-3.18(m,2H),2.97(s,3H),2.32-2.27(m,1H),2.12-2.07(m,1H);LCMS(ESI)m/z:350.1[M+1]+;ee%=99.5%,保留时间Rt=2.577min。
化合物6A:1H NMR(400MHz,CDCl3)δppm 9.23(s,1H),6.84(s,1H),6.70-6.63(m,1H),6.41-6.38(m,2H),5.78-5.66(m,2H),4.87-4.64(m,2H),4.20-4.12(m,1H),3.41-3.26(m,2H),3.05(d,J=4Hz,3H),2.46-2.39(m,1H),2.23-2.15(m,1H);LCMS(ESI)m/z:350.1[M+1]+;ee%=100%,保留时间Rt=2.769min。
化合物5A和6A手性纯度检测方法:色谱柱Chiralpak AS-3 100mm*4.6mm I.D.,3μm;流动相A:CO2B:乙醇(0.05%二乙基胺);梯度5%-40%流动相B;流速2.8mL/min。
实施例4
合成路线:
步骤1:化合物7-1的合成
往化合物1-6(2.5g,10.03mmol,1eq)的无水二氯甲烷(50mL)溶液中加入三乙胺(2.76g,27.30mmol,3.8mL,2.72eq)及甲磺酰氯(2.28g,19.90mmol,1.54mL,1.98eq),反应在26℃下搅拌3小时。反应液加二氯甲烷(50mL)稀释后依次用水(20mL)及饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩,得到化合物7-1。1H NMR(400MHz,CDCl3)δppm 5.04-5.02(m,1H),4.06-3.95(m,2H),3.21-3.15
(m,1H),3.03(s,3H),2.91-2.85(m,1H),2.15-2.05(m,2H),1.40(s,9H).
步骤2:化合物7-2的合成
往化合物7-1(3.5g,10.69mmol,1eq)的DMF(100mL)溶液中加入邻苯二甲酰亚胺钾盐(2.6g,14.04mmol,1.31eq),反应在100℃下反应15小时。反应液加水(200mL)搅拌0.5小时,有固体析出,过滤,滤饼干燥,得到化合物7-2。LCMS(ESI)m/z:401.0[M+23]+。
步骤3:化合物7-3的合成
往化合物7-2(2.3g,6.08mmol,1eq)的THF(60mL)和MeOH(60mL)的溶液中加入水合肼(3.16g,63.10mmol,3.07mL,10.38eq,98%纯度)反应在70℃下搅拌5小时。反应液直接过滤,滤饼加乙酸乙酯(5mL)洗涤,滤液减压浓缩,得到化合物7-3。1H NMR(400MHz,CDCl3)3.65-3.50(m,2H),3.12-3.07(m,1H),1.70-1.54(m,4H),1.38(s,9H).
步骤4:化合物7-4的合成
往化合物4-氯吡咯并[2,3-d]嘧啶(1g,6.51mmol,1eq)和化合物7-3(1.25g,5.03mmol,7.73e-1eq)的正丁醇(10mL)溶液中滴加二异丙基乙胺(4.45g,34.45mmol,6.00mL,5.29eq),反应在微波135℃下搅拌15小时。粗品经硅胶柱纯化(甲醇/二氯甲烷=0~20%)得到化合物7-4。LCMS(ESI)m/z:366.1[M+1]+。
步骤5:化合物7-5的合成
往化合物7-4(90mg,246.32μmol,1eq)的二氯甲烷(3mL)溶液中加入TFA(1mL),反应在24℃下搅拌3小时。反应液直接减压浓缩,得到化合物7-5的三氟乙酸盐。
步骤6:化合物7A和8A的合成
0℃下往化合物7-5(95mg,358.14μmol,1eq,三氟乙酸盐)的THF(6mL)溶液中加入碳酸氢钠(240mg,2.86mmol,111.11μL,7.98eq)的H2O(2mL)溶液,反应搅拌0.1小时后慢慢滴加丙烯酰氯(57mg,629.78μmol,51.35μL,1.76eq),反应继续搅拌0.5小时。反应液加乙酸乙酯(20mL)稀释后用水(10mL)及饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩。粗品经硅胶柱纯化(甲醇/二氯甲烷=0~20%)进一步经SFC纯化分离(色谱柱:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:[0.1%NH3H2O异丙醇];B%:30%-30%)。得到化合物7A和化合物7B/8A/8B的混合物,该混合物进一步用SFC分离纯化(色谱柱:DAICEL CHIRALPAK IG(250mm*30mm,10μm);流动相:[0.1%NH3H2O异丙醇];B%:30%-30%)。得到化合物7B和8A/8B的混合物。再次用SFC分离纯化(色谱柱:DAICEL CHIRALPAK AD(250mm*30mm,10μm);流动相:[0.1%NH3H2O甲醇];B%:30%-30%)得到化合物8A和8B。
化合物7A:1H NMR(400MHz,CDCl3)10.07-9.94(m,1H),8.33-8.26(m,1H),7.02(s,1H),6.71-6.50(m,1H),6.42-6.36(m,1H),6.25-6.19(m,1H),5.36-5.31(m,1H),4.56-4.78(m,1H),4.30-4.12(m,1H),3.88-3.84(m,1H),3.59-3.56(m,1H),3.36-3.26(m,1H),3.15-3.05(m,1H),2.31-2.28(m,1H),1.98-1.84(m,1H);LCMS(ESI)m/z:320.1[M+1]+;ee%=92.08%,保留时间Rt=4.085min。
化合物7B:1H NMR(400MHz,CDCl3)9.42-9.32(m,1H),8.39(s,1H),8.13-8.07(m,1H),7.13(s,1H),6.62(s,1H),6.31-6.24(m,1H),6.13-6.05(m,1H),5.75-5.66(m,1H),4.83-4.75(m,1H),4.50-4.45(m,2H),3.88-3.85(m,1H),3.37-3.32(m,1H),2.21-2.12(m,1H),2.01-1.96(m,1H);LCMS(ESI)m/z:320.1[M+1]+;ee%=98.4%,保留时间Rt=3.696min。
化合物8A:1H NMR(400MHz,CDCl3)9.47-9.39(m,1H),8.38(s,1H),8.19-8.15(m,1H),7.15(s,1H),6.62(s,1H),6.32-6.26(m,1H),6.13-6.05(m,1H),5.70-5.63(m,1H),4.85-4.75(m,1H),4.50-4.43(m,2H),3.88-3.85
(m,1H),3.34-3.29(m,1H),2.21-2.12(m,1H),2.03-1.96(m,1H);LCMS(ESI)m/z:320.1[M+1]+;ee%=99.6%,保留时间Rt=3.632min。
化合物8B:1H NMR(400MHz,CDCl3)11.56-11.37(m,1H),8.37-8.28(m,1H),7.03(s,1H),6.68-6.47(m,1H),6.36-6.15(m,3H),5.77-5.27(m,1H),4.81-4.69(m,1H),4.35-4.11(m,1H),3.89-3.82(m,1H),3.68-3.58(m,1H),3.37-3.21(m,1H),2.31-2.28(m,1H),1.85-1.76(m,1H);LCMS(ESI)m/z:320.1[M+1]+;ee%=93.2%,保留时间Rt=4.004min。
化合物7A和7B手性纯度检测方法:色谱柱Chiralcel OD-3 150mm*4.6mm I.D.,3μm;流动相A:CO2B:异丙醇(0.05%二乙基胺);梯度5%-40%流动相B;流速2.5mL/min。
化合物8A和8B手性纯度检测方法:色谱柱Chiralpak AD-3 150mm*4.6mm I.D.,3μm;流动相A:CO2B:甲醇(0.05%二乙基胺);梯度5%-40%流动相B;流速2.5mL/min。
实施例5
合成路线:
步骤1:化合物9-2的合成
向PPh3(12.15g,46.32mmol,1eq)的甲苯(100mL)溶液中加入化合物9-1(10.0g,46.32mmol,1eq),所得反应液20℃搅拌16小时。将反应液过滤,收集滤饼。向得到的滤饼中加入300mL甲醇和200mL水,加入10g碳酸钠固体,室温搅拌30分钟,过滤,收集滤饼。将得到滤饼溶于四氢呋喃(300mL),加入无水硫酸钠干燥,过滤,滤液减压浓缩。得到化合物9-2。LCMS(ESI)m/z:397.0[M+1]+
步骤2:化合物9-5的合成
向化合物9-4(17.7g,95.56mmol,1eq)的DMF(180mL)溶液中加入碳酸钾(2.64g,19.13mmol,0.2eq)和9-3(11.25g,124.23mmol,12.50mL,1.3eq),所得反应液加热到120℃搅拌5小时。将反应液倒入水(500mL)
中,搅拌30分钟,过滤,收集滤饼。将滤饼溶于乙酸乙酯(300mL)中,用无水硫酸钠干燥,过滤,滤液减压浓缩。得到化合物9-5。1HNMR(400MHz,DMSO-d6)δ7.91-7.81(m,4H),6.11(ddd,J=5.8,10.3,17.3Hz,1H),5.21-5.09(m,2H),4.88-4.77(m,1H),1.51(d,J=7.0Hz,3H);LCMS(ESI)m/z:202.1[M+1]+
步骤3:化合物9-6的合成
向化合物9-5(15.0g,74.54mmol,1eq)的四氢呋喃(15mL)溶液中加入乙醇胺(18.18g,297.63mmol,18mL,3.99eq),所得反应液20℃搅拌6小时。将反应液蒸馏,收集40~55℃馏分,得到化合物9-6(含溶剂四氢呋喃)。
步骤4:化合物9-7的合成
向向步骤3中得到的化合物9-6(含溶剂四氢呋喃)(5.3g,74.52mmol,1eq)的四氢呋喃(50mL)溶液中加入三乙胺(9.05g,89.43mmol,12.45mL,1.2eq)和(Boc)2O(16.26g,74.52mmol,17.12mL,1eq),所得反应液20℃搅拌16小时。向反应液中加入水(100mL)和二氯甲烷(150mL),分液。有机相经饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经硅胶柱(石油醚/四氢呋喃=1/0~5/1)纯化。得到化合物9-7。1HNMR(400MHz,CDCl3)δ5.75(ddd,J=5.0,10.5,17.1Hz,1H),5.12-4.91(m,2H),4.41(brs,1H),4.24-4.03(m,1H),1.38(s,9H),1.14(d,J=6.8Hz,3H).
步骤5:化合物9-8的合成
氮气保护下,向500mL三口瓶中加入化合物9-7(6.50g,37.96mmol,1.51eq)的四氢呋喃(50mL)溶液,冷却至0℃,加入n-BuLi(2.5M,20mL,1.99eq)和化合物9-2(10.0g,25.17mmol,1eq)的四氢呋喃(150mL)溶液,所得反应液升至20℃搅拌16小时。将反应液倒入饱和NH4Cl水溶液(300mL)中,乙酸乙酯(300mL*2)萃取。有机相经水(300mL)和饱和食盐水(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经硅胶柱(石油醚/四氢呋喃=5/1~1/2)纯化得到化合物9-8。LCMS(ESI)m/z:488.2[M+1]+
步骤6:化合物9-9的合成
向化合物9-8(7.5g,15.38mmol,1eq)的四氢呋喃(100mL)溶液中加入多聚甲醛(30g,999.14mmol,27.52mL,64.95eq),所得反应液20℃搅拌16小时。将反应液过滤,滤液减压浓缩。粗品经硅胶柱(石油醚/四氢呋喃=1/0~1/1)纯化得到化合物9-9。LCMS(ESI)m/z:262.1[M+Na]+
步骤7:化合物9-10的合成
向化合物9-9(1.89g,7.90mmol,1eq)的四氢呋喃(20mL)溶液中加入Grubbs catalyst 2nd generation(135mg,159.02μmol,0.02eq),所得反应液加热到65℃搅拌2小时。向反应液中补加Grubbs catalyst 2nd generation(135mg,159.02μmol,0.02eq),反应液加热到65℃继续搅拌2小时。将反应液减压浓缩。粗品经硅胶柱(石油醚:四氢呋喃=1:0~1:1)纯化得到化合物9-10。
步骤8:化合物9-11的合成
20℃下,向100ml三口瓶中加入化合物9-10(0.85g,4.02mmol,1eq),甲醇(4mL)和四氢呋喃(8mL)的溶液,加入CeCl3.7H2O(1.80g,4.84mmol,459.69μL,1.2eq),搅拌10分钟后冷至-78℃,加入NaBH4(0.14g,3.70mmol,0.92eq),所得反应液缓慢升至0℃,搅拌2小时。向反应液中加入饱和NH4Cl水溶液(30mL),乙酸乙酯(30mL*3)萃取。有机相经饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。得到化合物9-11。1HNMR(400MHz,CDCl3)δ5.73-5.65(m,1H),5.63-5.54(m,1H),4.42-4.13(m,3H),2.62-2.44(m,1H),1.40(s,9H),1.12(d,J=6.8Hz,3H).
步骤9:化合物9-12的合成
氮气保护下,向9-11(0.9g,4.22mmol,1eq)的二氯甲烷(10mL)溶液中加入三乙胺(1.15g,11.35mmol,1.58mL,2.69eq)和MsCl(1.5g,13.09mmol,1.01mL,3.10eq),所得反应液25℃搅拌16小时。向反应液中加入二氯甲烷(30mL)稀释,依次用水(20mL)及饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤后减压浓缩。得到化合物9-12。1HNMR(400MHz,CDCl3)δ5.83(brd,J=5.5Hz,1H),5.79-5.71(m,1H),4.68-4.26(m,3H),3.64-3.58(m,3H),3.35-3.12(m,1H),1.42(s,9H),1.10(d,J=7.0Hz,3H).
步骤10:化合物9-13的合成
向化合物9-12(1.2g,4.12mmol,1eq)的DMF(12mL)溶液中加入化合物9-4(1.0g,5.40mmol,1.31eq),所得反应液加热到110℃搅拌16小时。将反应液倒入水(50mL)中,搅拌0.5小时,乙酸乙酯(50mL*3)萃取,有机相经饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经硅胶柱(石油醚/乙酸乙酯=1/0~0/1)纯化得到化合物9-13。LCMS(ESI)m/z:365.1[M+Na]+
步骤11:化合物9-14的合成
向化合物9-13(0.3g,876.20μmol,1eq),四氢呋喃(3mL)和MeOH(3mL)的溶液中加入水合肼(515mg,10.29mmol,0.5mL,11.74eq),所得反应液加热到70℃搅拌4小时。将反应液过滤,用乙酸乙酯(5mL)洗涤滤饼,滤液减压浓缩。向粗品中加入乙酸乙酯(10mL),过滤,滤液减压浓缩。得到化合物9-14。LCMS(ESI)m/z:213.1[M+1]+
步骤12:化合物9-15的合成
向4-氯-7(H)-吡咯并[2,3-D]嘧啶(160mg,1.04mmol,2.21eq)和化合物9-14(100mg,471.06μmol,1eq)的正丁醇(2mL)溶液中加入N,N-二异丙基乙胺(0.3g,2.32mmol,404.31μL,4.93eq),所得反应液加热到135℃微波反应13小时。将反应液减压浓缩。得到化合物9-15。LCMS(ESI)m/z:330.1[M+1]+。
步骤13:化合物9-16的合成
向化合物9-15(150mg,455.38μmol,1eq)的二氯甲烷(2mL)溶液中加入三氟乙酸(1.54g,13.46mmol,1mL,29.56eq),所得反应液15℃搅拌0.5小时。将反应液减压浓缩得化合物9-16的三氟乙酸盐。LCMS(ESI)m/z:230.1[M+1]+。
步骤14:化合物9A、9B、10A和10B的合成
0℃下,向化合物9-16(210mg,459.19μmol,1eq,三氟乙酸盐)的四氢呋喃(3mL)溶液中加入Na2CO3(292mg,2.75mmol,6.00eq)的H2O(1.5mL)溶液,搅拌5分钟后滴加入丙烯酰氯(50mg,552.44μmol,44.88μL,1.20eq),所得反应液继续搅拌15分钟。向反应液中加入乙酸乙酯(20mL)和水(10mL),分液。有机相经饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩干。经制备高效液相色谱(色谱柱:Phenomenex C1880*40mm*3μm;流动相:[水(NH3H2O+NH4HCO3)-ACN];乙腈%:24%-54%,8min)得到化合物9和化合物10。化合物9用SFC分离(色谱柱:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm)和流动相:[CO2-EtOH(0.1%NH3H2O)];B%:20%)得到9A和9B,化合物10用SFC分离(色谱柱:DAICEL CHIRALPAK AD(250mm*30mm,10μm)和流动相:[CO2-EtOH(0.1%NH3H2O)];B%:30%)得到化合物10A和10B。
化合物9A:1HNMR(400MHz,CDCl3)δ10.93(brs,1H),8.40-8.09(m,1H),7.01(brs,1H),6.64-6.26(m,2H),6.24-5.82(m,4H),5.79-4.98(m,2H),4.92-4.15(m,2H),3.49-3.07(m,1H),1.22(brd,J=6.5Hz,3H).LCMS:MS(ESI)m/z(M+H)+:284.1LCMS(ESI)m/z:320.1[M+1]+;ee%=73.0%,保留时间Rt=2.941min。化合物9B:1HNMR(400MHz,CDCl3)δ10.33(brs,1H),8.33(s,1H),7.00(brd,J=2.3Hz,1H),6.24(brd,J=3.0Hz,1H),6.22-6.03(m,2H),5.97-5.85(m,2H),5.30(dd,J=2.1,9.9Hz,1H),5.10(brs,1H),4.96(brd,J=7.3Hz,1H),4.78(brs,1H),4.24(brd,J=14.1Hz,1H),3.37(brd,J=12.3Hz,1H),1.22(d,J=6.8Hz,3H).LCMS(ESI)m/z:284.2[M+1]+;ee%=98.7%,保留时间Rt=3.143min。
化合物10A:1HNMR(400MHz,CDCl3)δ9.55(brs,1H),8.30(brs,1H),7.04(brs,1H),6.74-6.21(m,3H),5.91-5.67(m,3H),4.91(brs,3H),4.44(brs,1H),2.97-2.47(m,1H),1.19(brd,J=2.0Hz,3H).LCMS(ESI)m/z:284.1[M+1]+;ee%=89.5%,保留时间Rt=3.855min。
化合物10B:1HNMR(400MHz,CDCl3)δ9.55(brs,1H),8.30(brs,1H),7.03(d,J=3.0Hz,1H),6.78-6.20(m,3H),5.90-5.66(m,3H),4.92(brs,3H),4.47(brs,1H),3.00-2.44(m,1H),1.23(brd,J=10.3Hz,3H).LCMS(ESI)m/z:284.1[M+1]+;ee%=73.0%,保留时间Rt=4.074min。
化合物9A和9B,10A和10B手性纯度检测方法:色谱柱Chiralcel OD-3 150mm*4.6mm I.D.,3μm;流动相A:CO2,B:乙醇(0.05%二乙胺);梯度5%-40%,流动相B;流速2.5mL/min。
实施例6
合成路线:
步骤1:化合物11-2的合成
在氮气保护下,将LiF(1g,38.55mmol,1.03eq)加到化合物11-1(12.5g,37.61mmol,1eq)的甲苯(150mL)溶液中,升温110℃,然后滴加三甲硅烷基2,2-二氟-2-(氟磺酰)醋酸盐(27.94g,111.64mmol,22mL,2.97eq),滴1小时完毕后,将反应液加热至110℃搅拌16小时。将反应液冷却至室温后减压浓缩,经硅胶柱(石油醚/乙酸乙酯=1:9~1:1)纯化得到化合物11-2。LCMS(ESI)m/z:405.1[M+Na]+。
步骤2:化合物11-3的合成
在氩气保护下,将湿Pd/C(0.5g,10%含量)加到化合物11-2(0.8g,2.09mmol,1eq)的甲醇(30mL)溶液中,氢气置换3次后,在25℃,50Psi下搅拌32小时。反应液过滤,浓缩得到化合物11-3。
步骤3:化合物11-5的合成
将碳酸铯(900.00mg,2.76mmol,2.29eq),Pd2(dba)3(0.2g,218.41μmol,1.81e-1eq),Xantphos(0.15g,259.24μmol,2.15e-1eq)加到化合物11-3(0.3g,1.21mmol,1eq)和化合物11-4(1g,3.25mmol,2.69eq)的二氧六环(10mL)溶液中,氮气置换3次后在100℃下搅拌1小时。将反应液冷却至室温,过滤,滤液浓缩。粗品经制备薄层色谱硅胶板纯化(石油醚:乙酸乙酯=1:1),得到化合物11-5。LCMS(ESI)m/z:520.2[M+Na]+
步骤4:化合物11-6的合成
将碳酸钾(90.00mg,651.20μmol,2.26eq)加到化合物11-5(0.15g,288.70μmol,1eq)的甲醇(10mL)溶液中,氮气置换3次后在50℃下搅拌1小时。反应液冷却至室温,过滤,滤液浓缩得到化合物11-6。
步骤5:化合物11-7的合成
将三氟乙酸(767.50mg,6.73mmol,0.5mL,18.92eq)滴加到化合11-6(0.13g,355.80μmol,1eq)的二氯甲烷(2mL)溶液中,在20℃下搅拌0.5小时。将反应液减压浓缩得到化合物11-7的三氟乙酸盐。
步骤6:化合物11A和12B的合成
将丙烯酰氯(33.42mg,369.25μmol,30.00μL,1.17eq)滴加到碳酸氢钠(120.00mg,1.43mmol,55.58μL,4.51eq)和化合物11-7的三氟乙酸盐(0.12g,316.39μmol,1eq)的四氢呋喃(2mL)和H2O(1mL)混合溶液中,在20℃下搅拌10min。向反应液加水(10ml),用二氯甲烷萃取(10ml*2),合并有机相无水硫酸钠干燥,过滤滤液浓缩。粗品经制备薄层色谱硅胶板纯化(二氯甲烷:乙酸乙酯=1:2)纯化后再经制备高效液相色谱(色谱柱:Phenomenex C18 80*40mm*3μm;流动相:[水(NH3H2O+NH4HCO3)-ACN];乙腈%:27%-57%,8min)纯化得到11A和11B。
化合物11A:1HNMR(400MHz,CDCl3)δ9.96(brs,1H),9.55(brs,1H),8.31(s,1H),7.05-7.02(m,1H),6.79-6.60(m,1H),6.58-6.56(m,1H),6.48-6.48(m,1H),5.84-5.81(m,1H),4.71-4.66(m,1H),4.17-4.15(m,1H),3.47-3.45(m,1H),2.65-2.59(m,1H),2.24-2.20(m,1H),1.96-1.90(m,2H);LCMS(ESI)m/z:320.1[M+1]+;ee%=86.6%,保留时间Rt=2.728min。
化合物11B:1HNMR(400MHz,CDCl3)δ10.15(brs,1H),9.55(brs,1H),8.25(s,1H),7.03-7.02(m,1H),6.61-6.56(m,1H),6.47-6.46(m,1H),6.43-6.42(m,1H),5.80-5.73(m,1H),4.68-4.66(m,1H),4.17-4.12(m,1H),3.47-3.43(m,1H),3.16-3.10(m,1H),2.43-2.38(m,1H),2.14-2.10(m,2H);LCMS(ESI)m/z:320.1[M+1]+;ee%=52.8%,保留时间Rt=2.609min。
化合物11A和11B手性纯度检测方法:色谱柱Chiralcel OJ-3 150mm*4.6mm I.D.,3μm.;流动相A:CO2B:乙醇(0.05%二乙基胺);梯度5%-40%,流动相B;流速2.5mL/min。
生物测试
实验例一、本发明化合物的JAK/TEC家族激酶生化活性检测
1.实验准备
测试1:对化合物进行10个浓度的IC50表征。
评价化合物在10个浓度下对JAK/TEC家族激酶的IC50,单孔,起始浓度10μM,3倍梯度稀释。
2.测试条件
缓冲液成分:20mM Hepes(pH 7.5)、10mM MgCl2、1mM EGTA、0.01%Brij35、0.02mg/mL BSA、0.1mM Na3VO4、2mM DTT、1%DMSO
实验过程:
2.1用新制备的反应缓冲液中制备底物溶液
2.2向上述底物溶液加入所需的辅助因子
2.3将指定的激酶加入到底物溶液中并轻轻混合
2.4通过声学技术(Echo550;纳升范围)将化合物的100%DMSO溶液加入到激酶反应混合物中,在室温下孵育20分钟
2.5将33P-ATP加入到反应混合物中启动反应。
2.6在室温下孵育激酶反应2小时
2.7通过P81过滤器结合方法检测激酶活性。
3.实验结果见表1。
表1激酶检测IC50测试结果(IC50(nM))
结论:本发明的化合物具有显著的JAK3抑制活性和高选择性,对TEC激酶家族有一定的抑制活性。
实验例二、本发明化合物的药代动力学研究
1.实验目的
1.1以雄性CD-1小鼠为受试动物,应用LC/MS/MS法测定小鼠静脉和灌胃分别给与测试化合物后不同时刻血浆中的药物浓度。研究其在小鼠体内的药代动力学行为,评价其药动学特征。
2.实验方案
2.1试验药品:测试化合物。
2.2药物配制
称取适量样品,加入溶媒,搅拌超声至澄清状态用于静脉给药。
称取适量样品,加入溶媒,搅拌超声至澄清状态用于灌胃给药。
2.3给药
雄性CD-1小鼠4只,分成2组,禁食一夜后,其中一组进行静脉给药,另外一组进行灌胃给药。
3.操作
雄性CD-1小鼠静脉给予测试化合物后,分别在0.0833,0.25,0.5,1,2,4,8及24小时采血30μL,置于含有EDTA-K2的商业化试管中。灌胃给药组给予测试化合物后,分别在0.25,0.5,1,2,4,6,8及24小时采血30μL,置于含有EDTA-K2的商业化试管中。试管在3000g离心15分钟分离血浆,并于-60℃保存。给药2小时后动物可进食。
用LC/MS/MS法测定小鼠静脉和灌胃给药后,血浆中待测化合物的含量。方法的线性范围为2.00~6000nmol/L;血浆样品经乙腈沉淀蛋白处理后进行分析。
4.药代动力学参数结果见表2。
表2药代动力学参数数据汇总
“--”:无;
实验结论:本发明化合物的半衰期较短,血浆外分布较广,生物利用度适中。
Claims (14)
- 式(I)所示化合物或其药学上可接受的盐,
其中,L选自-O-和-NH-;R1选自-C(=O)Ra;R2选自H、F、Cl、Br、I、OH、NH2、C1-3烷基、C1-3烷氧基、-NH-C1-3烷氧基、-NH-C3-5环烷基、-NH-C(=O)-C1-3烷基和C1-3烷氨基,所述C1-3烷基、C1-3烷氧基、-NH-C1-3烷氧基、-NH-C3-5环烷基、-NH-C(=O)-C1-3烷基和C1-3烷氨基分别独立地任选被1、2或3个Rb取代;R5选自H、F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个Rc取代,R3和R4与它们相连的碳原子共同构成C3-5环烷基或-CH=CH-,所述C3-5环烷基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代;或者,R3选自H、F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个Rc取代,R4和R5与它们相连的碳原子共同构成C3-5环烷基或-CH=CH-,所述C3-5环烷基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代;Ra选自C2-4烯基和C2-4炔基,所述C2-4烯基和C2-4炔基分别独立地任选被1、2或3个卤素取代;Rb和Rc分别独立地选自F、Cl、Br和I;各Rd分别独立地选自H、F、Cl、Br、I、C1-3烷基和C1-3烷氧基,所述C1-3烷基和C1-3烷氧基分别独立地任选被1、2或3个卤素取代。 - 根据权利要求1所述化合物或其药学上可接受的盐,其中,Ra选自-CH=CH2和-C≡CH,所述-CH=CH2和-C≡CH分别独立地任选被1、2或3个卤素取代。
- 根据权利要求2所述化合物或其药学上可接受的盐,其中,Ra选自-CH=CH2、-CH=CHF和-C≡CH。
- 根据权利要求1所述化合物或其药学上可接受的盐,其中,各Rd分别独立地选自H、F、Cl、Br和I。
- 根据权利要求1所述化合物或其药学上可接受的盐,其中,R1选自-C(=O)-CH=CH2。
- 根据权利要求1所述化合物或其药学上可接受的盐,其中,R2选自H、F、Cl、Br、I、OH、NH2、CH3、OCH3、-NH-OCH3、-NH-环丁基、-NH-C(=O)-CH3、-NHCH3和-NHCH2CH3,所述CH3、OCH3、-NH-OCH3、-NH-环丁基、-NH-C(=O)-CH3、-NHCH3和-NHCH2CH3分别独立地任选被1、2或3个Rb取代。
- 根据权利要求6所述化合物或其药学上可接受的盐,其中,R2选自H、F、Cl、Br、I、OH、NH2、CH3、 OCH3、-NH-OCH3、-NH-环丁基、-NH-C(=O)-CH3、-NHCH3、-NHCH2CH3和-NHCH2CF3。
- 根据权利要求1所述化合物或其药学上可接受的盐,其中,R5选自H、F、Cl、Br、I、CH3和OCH3,所述CH3和OCH3任选被1、2或3个Rc取代,R3和R4与它们相连的碳原子共同构成环丙基或-CH=CH-,所述环丙基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代。
- 根据权利要求8所述化合物或其药学上可接受的盐,其中,R5选自H、F、Cl、Br、I、CH3和OCH3,R3和R4与它们相连的碳原子共同构成或-CH=CH-。
- 根据权利要求1所述化合物或其药学上可接受的盐,其中,R3选自H、F、Cl、Br、I、CH3和OCH3,所述CH3和OCH3任选被1、2或3个Rc取代,R4和R5与它们相连的碳原子共同构成环丙基或-CH=CH-,所述环丙基任选被1、2或3个Rd取代,所述-CH=CH-任选被1或2个Rd取代。
- 根据权利要求10所述化合物或其药学上可接受的盐,其中,R3选自H、F、Cl、Br、I、CH3和OCH3,R4和R5与它们相连的碳原子共同构成或-CH=CH-。
- 根据权利要求1所述化合物或其药学上可接受的盐,其选自:
其中,L、R1、R2、R3、R5和Rd如权利要求1所定义。 - 下式所示化合物或其药学上可接受的盐,
- 根据权利要求13所述化合物或其药学上可接受的盐,其选自:
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210200342 | 2022-03-02 | ||
CN202210200342.2 | 2022-03-02 | ||
CN202211538698.3 | 2022-12-01 | ||
CN202211538698 | 2022-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023165562A1 true WO2023165562A1 (zh) | 2023-09-07 |
Family
ID=87883062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/079304 WO2023165562A1 (zh) | 2022-03-02 | 2023-03-02 | 含氮杂环类化合物及其应用 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023165562A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111032646A (zh) * | 2017-08-01 | 2020-04-17 | 施万生物制药研发Ip有限责任公司 | 作为jak激酶抑制剂的吡唑并和三唑并双环化合物 |
CN111527091A (zh) * | 2017-12-28 | 2020-08-11 | 株式会社大熊制药 | 作为激酶抑制剂的氧基-氟哌啶衍生物 |
CN111527088A (zh) * | 2017-12-28 | 2020-08-11 | 株式会社大熊制药 | 作为激酶抑制剂的氨基-甲基哌啶衍生物 |
CN111566095A (zh) * | 2017-11-03 | 2020-08-21 | 阿克拉瑞斯治疗股份有限公司 | 被取代的吡咯并吡啶jak抑制剂及其制造方法和使用方法 |
CN111620878A (zh) * | 2020-06-10 | 2020-09-04 | 中国药科大学 | 吡咯并嘧啶类衍生物作为蛋白激酶抑制剂及其应用 |
WO2022002210A1 (zh) * | 2020-07-02 | 2022-01-06 | 南京明德新药研发有限公司 | 嘧啶并吡咯基类氘代化合物 |
WO2022199599A1 (zh) * | 2021-03-23 | 2022-09-29 | 凯复(苏州)生物医药有限公司 | 丙烯酰基取代的化合物、包含其的药物组合物及其用途 |
-
2023
- 2023-03-02 WO PCT/CN2023/079304 patent/WO2023165562A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111032646A (zh) * | 2017-08-01 | 2020-04-17 | 施万生物制药研发Ip有限责任公司 | 作为jak激酶抑制剂的吡唑并和三唑并双环化合物 |
CN111566095A (zh) * | 2017-11-03 | 2020-08-21 | 阿克拉瑞斯治疗股份有限公司 | 被取代的吡咯并吡啶jak抑制剂及其制造方法和使用方法 |
CN111527091A (zh) * | 2017-12-28 | 2020-08-11 | 株式会社大熊制药 | 作为激酶抑制剂的氧基-氟哌啶衍生物 |
CN111527088A (zh) * | 2017-12-28 | 2020-08-11 | 株式会社大熊制药 | 作为激酶抑制剂的氨基-甲基哌啶衍生物 |
CN111620878A (zh) * | 2020-06-10 | 2020-09-04 | 中国药科大学 | 吡咯并嘧啶类衍生物作为蛋白激酶抑制剂及其应用 |
WO2022002210A1 (zh) * | 2020-07-02 | 2022-01-06 | 南京明德新药研发有限公司 | 嘧啶并吡咯基类氘代化合物 |
WO2022199599A1 (zh) * | 2021-03-23 | 2022-09-29 | 凯复(苏州)生物医药有限公司 | 丙烯酰基取代的化合物、包含其的药物组合物及其用途 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022166890A1 (zh) | 取代的哒嗪苯酚类衍生物 | |
JP7168149B2 (ja) | Fgfr阻害剤としてのピラジン-2(1h)-オン系化合物 | |
EP4206197A1 (en) | Preparation method for novel rho-related protein kinase inhibitor and intermediate in preparation method | |
CN113453680A (zh) | 二氢乳清酸脱氢酶抑制剂 | |
JP2023509001A (ja) | Khk阻害効果を有する化合物 | |
WO2022247757A1 (zh) | 氟取代的嘧啶并吡啶类化合物及其应用 | |
WO2023208127A1 (zh) | 杂芳基取代的双环化合物及其应用 | |
WO2023208244A1 (zh) | 大环类化合物及其应用 | |
CN115403594A (zh) | 含氮三并环类化合物及其应用 | |
WO2023165562A1 (zh) | 含氮杂环类化合物及其应用 | |
WO2018054549A1 (en) | 6-membered cyclic amines or lactames substituted with urea and phenyl | |
TWI808786B (zh) | 酮類衍生物 | |
WO2023083200A1 (zh) | 吡唑并环化合物及其应用 | |
CN117279923A (zh) | 六元杂芳并脲环的衍生物及其应用 | |
WO2022206924A1 (zh) | 含氮三并环双功能化合物及其制备方法和应用 | |
CN117534663A (zh) | 稠合的三并环衍生物及其在药学上的应用 | |
WO2022199635A1 (zh) | 苄氨基喹唑啉类衍生物 | |
JP7026852B2 (ja) | チアジアゾール誘導体及びgls1阻害剤としてのその使用 | |
WO2022261427A1 (en) | (4-(6-((2-octahydrocyclopenta[c]pyrrol-5-yl)amino)pyridazin-3-yl)phenyl)(imino)(methyl)-lambda6- sulfanone derivatives and similar compounds as muscarinic acetylcholine receptor m4 antagonists for the treatment of neurodegenerative disorders | |
WO2022179578A1 (zh) | 含有亚磺酰基吡啶结构的化合物以及应用 | |
WO2021233349A1 (zh) | 吡啶类衍生物及其应用 | |
WO2022037680A1 (zh) | 硼酸类化合物 | |
JP2023515720A (ja) | ベンゾスルタムを含む化合物 | |
CN114746089A (zh) | 噻唑甲酰胺化合物及其用于治疗分枝杆菌感染的用途 | |
JP7549439B2 (ja) | フェニルプロピオンアミド系化合物及びその使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23762960 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23762960 Country of ref document: EP Kind code of ref document: A1 |