[go: up one dir, main page]

WO2023164885A1 - 轭部笼形线圈感应转子 - Google Patents

轭部笼形线圈感应转子 Download PDF

Info

Publication number
WO2023164885A1
WO2023164885A1 PCT/CN2022/079044 CN2022079044W WO2023164885A1 WO 2023164885 A1 WO2023164885 A1 WO 2023164885A1 CN 2022079044 W CN2022079044 W CN 2022079044W WO 2023164885 A1 WO2023164885 A1 WO 2023164885A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
rotor
coil
rotor core
radial
Prior art date
Application number
PCT/CN2022/079044
Other languages
English (en)
French (fr)
Inventor
罗灿
Original Assignee
罗灿
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗灿 filed Critical 罗灿
Priority to PCT/CN2022/079044 priority Critical patent/WO2023164885A1/zh
Publication of WO2023164885A1 publication Critical patent/WO2023164885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/18Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors

Definitions

  • the invention relates to a cage-shaped induction rotor of an AC induction motor.
  • the rotor core is set in a cylindrical shape, and a yoke cage-shaped induction coil composed of an outer guide bar, a front end ring, an inner guide bar and a rear end ring surrounds the yoke of the rotor iron core. This is the yoke cage induction rotor.
  • the main components of the motor include stators, rotors, poles, supporting components and casings. All motors strive to reduce volume and weight and improve efficiency. The motor can be improved by improving the rotor, the key component of the motor.
  • Traditional AC induction motors including multi-phase AC induction motors and single-phase AC induction motors, are mature technologies. Their cage-shaped induction rotors use cylindrical rotor cores, and the radial direction composed of guide bars, front-end rings and rear-end rings The coil surrounds the cylindrical rotor core, and the induced magnetic field generated by the radial coil is a radial induced magnetic field, which interacts with the stator magnetic field to cause the rotor to rotate.
  • Cylindrical rotor iron core has a large self-weight and a large rotor inertia. If it is changed to a cylindrical rotor core and the yoke of the rotor protrudes, the weight of the rotor can be reduced, the inertia of the rotor can be reduced, the response speed of the rotor can be improved, and the efficiency of the motor can be improved.
  • the specific improvement is that the rotor core is set in a cylindrical shape, and the cage induction coil is changed to a yoke cage induction coil.
  • the yoke cage induction coil is composed of an outer guide bar, a front end ring, an inner guide bar and a rear end ring.
  • the AC used by the AC induction motor is a current in which the current potential of each phase changes according to a sinusoidal distribution over time, and is divided into multi-phase AC and single-phase AC, including sinusoidal AC, close to sinusoidal AC, and analog sinusoidal AC generated by the inverter. All are mature technologies.
  • the control of alternating current adopts mature technologies, such as current hysteresis control, space vector control, variable voltage variable frequency control, field oriented control, direct torque control, optimal efficiency control, pulse width modulation control and sensorless control, etc.
  • the invention proposes a yoke cage-shaped coil induction rotor for an AC induction motor, improves the motor by improving the rotor, reduces the self-weight and inertia of the rotor, and improves the response speed and efficiency of the motor.
  • the electric motor industry needs the yoke cage coil induction rotor of the present invention to improve electric motors.
  • the yoke cage coil induction rotor of the present invention is composed of a rotor iron core and a yoke cage coil; it can be used as a component to form an AC induction motor with components such as a stator, electrodes, supporting components, and a casing.
  • the stator, electrodes, supporting parts and casing adopt mature technology, and the composed AC induction motor adopts mature technology.
  • the present invention is characterized in that:
  • the rotor core is set in a cylindrical shape and is manufactured with high magnetic flux materials using mature technology. For example, silicon steel, laminated silicon steel, etc. are used.
  • the portion of the cylindrical rotor core that is connected to each other in the circumferential direction is the yoke.
  • the yoke cage coil is composed of outer guide bar, front end ring, inner guide bar and rear end ring, all of which are made of conductive materials.
  • the outer guide bars are distributed axially and embedded under the outer surface of the rotor iron core, and the inner guide bars are distributed axially and embedded under the inner surface of the rotor iron core.
  • Outer guide bars and inner guide bars are distributed axially and embedded under the surface of the rotor core.
  • the front-end ring short-circuits the front ends of each guide bar in front of the rotor iron core, and the rear-end ring short-circuits the rear ends of each guide bar behind the rotor iron core.
  • the shorts are interconnected for electrical conduction.
  • the outer guide bar, front end ring, inner guide bar and rear end ring form a coil around the yoke, which is called a yoke cage coil;
  • the outer guide bar, front end ring and rear end ring form a radial coil, and the yoke cage coil and Both radial coils can be used to induce current to form a current loop.
  • the present invention can be applied to following AC induction motor as rotor:
  • the present invention forms multiphase AC induction motor with components such as multiphase AC stator, referring to Fig.
  • the end ring is not cut, and the electrodes, supporting parts and casing are not drawn.
  • 1 is the stator yoke
  • 2 is the stator pole
  • 3 is the armature winding.
  • 1, 2 and 3 together indicate the three-phase AC two
  • the phase number of the armature winding around the pole is marked on the stator pole.
  • the armature winding and phase number adopt mature technology
  • 4 is the cylindrical rotor core
  • 5 is the outer guide bar
  • 6 It is an inner guide bar
  • 7 is a rotor shaft
  • the rotor shaft can be a light material body, a solid body or a non-solid body.
  • the present invention forms a two-phase AC induction motor with components such as a two-phase AC stator. Referring to FIG. The shell is not shown.
  • 1 is the stator yoke
  • 2 is the stator pole
  • 3 is the armature winding.
  • 1, 2 and 3 jointly indicate the two-phase alternating current pair of magnetic poles.
  • the stator is marked on the stator pole.
  • the phase number of the armature winding around the pole, the armature winding and the phase number adopt mature technology 4 is the cylindrical rotor core, 5 is the outer guide bar, 6 is the inner guide bar, and 7 is the rotor shaft.
  • the invention forms a single-phase AC induction motor with components such as a single-phase AC stator, including a split-phase AC induction motor, a shaded pole induction motor, and the like.
  • a single-phase AC stator including a split-phase AC induction motor, a shaded pole induction motor, and the like.
  • the traditional cage-shaped induction rotor adopts a cylindrical rotor core with only guide bars on the outside of the rotor core and no inner guide bars.
  • the guide bars and the front and rear end rings can only form radial coils around the radial part of the rotor core.
  • the deep-slot cage-shaped induction rotor closest to the rotor of the present invention adopts a rotor core with deep slots, and sets upper and lower guide bars close to each other, but the upper and lower guide bars do not form a yoke cage coil with the front and rear end rings.
  • the deep-slot rotor core does not have a yoke surrounded by yoke coils specially provided for the flow of tangentially induced magnetic fields.
  • the yoke cage coil induction rotor adopts a cylindrical iron core, which has both outer guide bars and inner guide bars.
  • the outer guide bar, front end ring, inner guide bar and rear end ring form a yoke cage coil around the rotor core, which has A specially designed yoke surrounded by a yoke cage coil for the flow of a tangentially induced magnetic field.
  • the special setting refers to: in the radial section including the axis of the rotor shaft, the cross-sectional area of the yoke of the rotor core surrounded by the cage coil of the yoke is not less than the maximum cross-sectional area of the rotor core without guide bars in other radial sections 50%.
  • the yoke cage coil induction rotor is an innovation of the cage induction rotor structure. .
  • the traditional induction rotor only has radial coils. After the motor is composed, the stator magnetic field radially enters the rotor to form a radial magnetic flux. The rotating stator magnetic field causes the radial magnetic flux to change. The changing radial magnetic flux passes through the radial coils, and the radial magnetic flux An induced current is generated to the coil, and the induced current generates a radially induced magnetic field, which interacts with the stator magnetic field to cause the rotor to rotate.
  • the yoke cage coil induces the rotor.
  • the stator magnetic field first enters the rotor core in the radial direction to form a radial magnetic flux, and then flows along the yoke of the rotor core to form a tangential yoke magnetic flux.
  • both the radial magnetic flux and the tangential yoke magnetic flux are changing, and the changing radial magnetic flux passes through the radial coil formed by the outer bar, the front end ring and the rear end ring to generate an induced current, and the radial coil generates the first
  • the changing tangential yoke magnetic flux passes through the yoke cage coil to generate an induced current around the yoke, and the yoke tangentially induced magnetic field generated by the yoke cage coil gathers to form the first Two radially induced magnetic fields; these two radially induced magnetic fields interact with the stator field, causing the rotor to rotate.
  • the yoke cage coil induction rotor not only innovates the structure of the cage induction rotor, but also leads to the innovation of the induction operation mechanism of the motor; the invention innovates the operation mechanism of the motor and improves the efficiency of the motor. There was no cage induction rotor of the same construction prior to the present invention.
  • the yoke cage coil induction rotor is beneficial in that the cylindrical iron core is lighter in weight than the traditional rotor cylindrical iron core, the rotor inertia is small, the motor responds quickly, and the efficiency is high. It can be proved that the yoke cage coil surrounding the yoke of the cylindrical iron core also saves material and reduces its own weight compared with the cage coil of the traditional cage induction rotor.
  • the invention innovates the structure of the cage-shaped induction rotor and the operating mechanism of the motor, reduces the self-weight and inertia of the rotor, and improves the response speed and efficiency of the motor.
  • the rotor, rotor core, high magnetic flux material, yoke, aggregation, radial flux, radial induced magnetic field, stator, poles, rotor pole pairs, stator pole pairs and stator magnetic field are all mature technologies.
  • the guide bar, front end ring, rear end ring, conductive material, radial coil, induced current, short circuit and current loop are all mature technologies.
  • FIG. 1 is one of the cross-sectional views of a three-phase AC induction motor with two pairs of magnetic poles, and is also one of the schematic diagrams of Embodiment 1.
  • 1 is the stator yoke
  • 2 is the stator pole
  • 3 is the armature winding
  • (+a, -c, +b, -a, +c, -b, +a', -c', +b ', -a', +c' and -b') are twelve groups in total
  • 4 is the rotor core
  • 5 is the outer guide bar
  • 6 is the inner guide bar
  • 7 is the rotor shaft.
  • Fig. 2 is the second cross-sectional view of a three-phase AC induction motor with two pairs of magnetic poles, which is also the second schematic diagram of embodiment 1.
  • 1 is the stator yoke
  • 2 is the stator pole
  • 3 is the armature winding
  • (+a, -c, +b, -a, +c, -b, +a', -c', +b ', -a', +c' and -b') are twelve groups in total
  • 4 is the rotor core
  • 5 is the outer guide bar
  • 6 is the inner guide bar
  • 7 is the rotor shaft.
  • Fig. 3 is one of the sectional views of a two-phase AC induction motor with a pair of magnetic poles, which is also one of the schematic diagrams of Embodiment 2 of the present invention.
  • 1 is the stator yoke
  • 2 is the stator pole
  • 3 is the armature winding
  • 4 is the rotor core
  • 5 is the outer guide bar
  • 6 is the inner guide bar
  • 7 is the rotor shaft.
  • Fig. 4 is the second cross-sectional view of a two-phase AC induction motor with a pair of magnetic poles, which is also the second schematic diagram of embodiment 2 of the present invention.
  • 1 is the stator yoke
  • 2 is the stator pole
  • 3 is the armature winding
  • 4 is the rotor core
  • 5 is the outer guide bar
  • 6 is the inner guide bar
  • 7 is the rotor shaft.
  • the electrodes, supporting parts, casing, etc. are not shown, and the front end ring and the rear end ring are not shown.
  • Each component only shows the mutual relationship, and does not reflect the actual size.
  • the armature winding is indicated by a small number of wires, and the actual number of wire turns is set according to actual needs.
  • the quantity of outer guide bar and inner guide bar is for reference only, and the actual number is set according to actual needs.
  • Embodiment 1 The yoke cage-shaped coil induction rotor is composed of the rotor core and the yoke cage-shaped coil; as a component and a three-phase AC stator, electrodes, supporting components, and a casing to form two pairs of three-phase AC poles Induction motor, see Figure 1.
  • the rotor core 4 is set in a cylindrical shape, and is made of laminated silicon steel with mature technology.
  • the rotor core is punched and embedded with outer guide bars and inner guide bars. It is a slotless rotor core.
  • the portion of the cylindrical rotor core that is connected to each other in the circumferential direction is the yoke.
  • the yoke cage coil is formed by an outer guide bar 5, a front end ring, an inner guide bar 6 and a rear end ring, all of which are made of aluminum.
  • the outer guide bars 5 are distributed axially and embedded under the outer surface of the rotor core 4
  • the inner guide bars 6 are distributed axially and embedded under the inner surface of the rotor core 4 .
  • the front-end ring short-circuits the front ends of each guide bar in front of the rotor core 4
  • the rear-end ring short-circuits the rear ends of each guide bar behind the rotor core 4 .
  • the outer guide bar 5, the front end ring, the inner guide bar 6 and the rear end ring form a coil around the yoke, called the yoke cage coil;
  • the outer guide bar, the front end ring and the rear end ring form a radial coil, and the yoke is cage-shaped Both the coil and the radial coil can be used for induction current to form a current loop.
  • Figure 1 is a cross-sectional view of the motor, the front end ring and the rear end ring are not cut out, the electrodes, supporting parts and casing are not drawn
  • the stator yoke 2 is the stator pole
  • 3 is the armature winding
  • 1, 2 and 3 jointly mark the two pairs of magnetic pole pairs of the three-phase alternating current stator
  • the phase number of the armature winding 3 surrounding the pole 2 is marked on the stator pole 2
  • 7 is the rotor shaft
  • the rotor shaft adopts the non-solid body of high-strength steel.
  • the cage-shaped coil induction rotor at the yoke is induced by the magnetic field of the stator to generate two pairs of rotor magnetic poles.
  • the stator is fed with three-phase alternating current to form a rotating stator magnetic field.
  • the yoke circulates to form a tangential yoke magnetic flux.
  • the rotating stator magnetic field causes both the radial magnetic flux and the tangential yoke magnetic flux to change, and the changing radial magnetic flux passes through the outer guide bar 5, the front ring and the rear end
  • the radial coil formed by the ring generates an induced current
  • the radial coil generates the first radial induced magnetic field
  • the changing tangential yoke magnetic flux passes through the yoke cage coil to generate an induced current around the yoke
  • the tangential induced magnetic field of the yoke generated by the yoke cage coil gathers to form the second radially induced magnetic field; these two radially induced magnetic fields interact with the stator magnetic field to cause the rotor to rotate.
  • the rotor core 4 is provided with a plurality of shallow grooves embedded in the guide bars.
  • the profile of the formed slotted rotor is shown in Fig. 2. Compared with Fig. 1, other components in Fig. 2 remain unchanged, and the operation of the motor remains unchanged.
  • Embodiment 2 The yoke cage coil induction rotor is composed of the rotor core and the yoke cage coil, and is used as a component to form a pair of magnetic pole pairs with two-phase AC stators, electrodes, supporting components, and casings. Induction motor, see Figure 3.
  • the rotor core 4 is set in a cylindrical shape, made of laminated silicon steel with mature technology, and the outer guide bar and the inner guide bar are drilled and embedded under the surface of the rotor core, which is a slotless rotor core.
  • the portion of the cylindrical rotor core that is connected to each other in the circumferential direction is the yoke.
  • the yoke cage coil is formed by an outer guide bar 5, a front end ring, an inner guide bar 6 and a rear end ring, all of which are made of aluminum.
  • the outer guide bars 5 are distributed axially and embedded under the outer surface of the rotor core 4
  • the inner guide bars 6 are distributed axially and embedded under the inner surface of the rotor core 4 .
  • the front-end ring short-circuits the front ends of each guide bar in front of the rotor core 4
  • the rear-end ring short-circuits the rear ends of each guide bar behind the rotor core 4 .
  • the outer guide bar 5, the front end ring, the inner guide bar 6 and the rear end ring form a coil around the yoke, called the yoke cage coil;
  • the outer guide bar, the front end ring and the rear end ring form a radial coil, and the yoke is cage-shaped Both the coil and the radial coil can be used for induction current to form a current loop.
  • Figure 3 is a sectional view of the motor, in which the front end ring and the rear end ring are not cut, and the electrodes, supporting parts and casing are not drawn.
  • 1 is the stator yoke
  • 2 is the stator pole
  • 3 is the armature winding
  • 1, 2 and 3 jointly mark the two-phase alternating current pair of magnetic poles on the stator
  • the phase number of the armature winding 3 surrounding the pole 2 is marked on the stator pole 2
  • 7 is the rotor shaft, and the rotor shaft adopts the non-solid body of high-strength steel.
  • the cage-shaped coil induction rotor at the yoke is induced by the magnetic field of the stator to generate a pair of rotor magnetic pole pairs.
  • the stator is fed with two-phase alternating current to form a rotating stator magnetic field.
  • the yoke circulates to form a tangential yoke magnetic flux.
  • the rotating stator magnetic field causes both the radial magnetic flux and the tangential yoke magnetic flux to change, and the changing radial magnetic flux passes through the outer guide bar 5, the front ring and the rear end
  • the radial coil formed by the ring generates an induced current
  • the radial coil generates the first radial induced magnetic field
  • the changing tangential yoke magnetic flux passes through the yoke cage coil to generate an induced current around the yoke
  • the tangential induced magnetic field of the yoke generated by the yoke cage coil gathers to form the second radially induced magnetic field; these two radially induced magnetic fields interact with the stator magnetic field to cause the rotor to rotate.
  • the rotor core 4 is provided with a plurality of shallow grooves embedded in the guide bars.
  • Fig. 4 for the composition of the rotor section. Compared with Fig. 3, other components in Fig. 4 are unchanged, and the operation of the motor remains unchanged.
  • the two embodiments describe both inner rotor motors, and the corresponding outer rotor motors, disc rotor motors and linear motors can be easily deduced according to the existing mature topology technology.
  • the yoke cage induction inner rotor, the yoke cage induction outer rotor, the yoke cage induction disc rotor and the yoke cage induction linear rotor all belong to the scope of the claimed invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Induction Machinery (AREA)

Abstract

轭部笼形线圈感应转子,由转子铁芯和轭部笼形线圈组成;与定子、电极、支承部件和机壳等部件组成感应电机。转子铁芯设置为圆筒状,外导条和内导条分别分布嵌在转子铁芯外表面和内表面下,前端环短接各导条的前端,后端环短接各导条的后端,外导条、前端环、内导条和后端环形成围绕轭部的轭部笼形线圈;外导条、前端环和后端环形成径向线圈,轭部笼形线圈与径向线圈均可供感应电流形成电流回路。轭部笼形线圈感应转子专门设置轭部,轭部笼形线圈包围的轭部截面面积不小于其他径向剖面中最大转子铁芯截面面积的50%。

Description

轭部笼形线圈感应转子 技术领域
本发明涉及一种交流感应电机的笼形感应转子。具体是转子铁芯设置为圆筒状,由外导条、前端环、内导条和后端环组成的轭部笼形感应线圈围绕转子铁芯的轭部。这就是轭部笼形线圈感应转子。
背景技术
电机的主要部件包括定子、转子、电极、支承部件和机壳等。电机都努力减小体积重量,提高效率。改进电机的关键部件转子,就可以改进电机。传统交流感应电机,包括多相交流感应电机和单相交流感应电机,均为成熟技术,它们的笼形感应转子采用圆柱状转子铁芯,由导条、前端环和后端环组成的径向线圈围绕圆柱状转子铁芯,径向线圈产生的感应磁场是径向感应磁场,径向感应磁场与定子磁场相互作用导致转子转动。圆柱状转子铁芯自重较大,转子惯量较大。如改为圆筒状转子铁芯,突出转子的轭部,可以减小转子自重,减小转子惯量,提高转子响应速度,提高电机效率。具体改进是,把转子铁芯设置为圆筒状,把笼形感应线圈改为轭部笼形感应线圈,轭部笼形感应线圈由外导条、前端环、内导条和后端环组成,外导条沿轴向分布嵌在转子铁芯外表面下,内导条沿轴向分布嵌在转子铁芯内表面下,前端环在转子铁芯前面短接各个导条的前端,后端环在转子铁芯后面短接各个导条的后端。所述交流感应电机所用交流电是每相电流电势随时间按正弦分布变化的电流,分为多相交流电和单相交流电,包括正弦交流电、接近正弦的交流电、逆变器产生的模拟正弦交流电等,均为成熟技术。对交流电的控制采用成熟技术,例如电流滞环控制、空间矢量控制、变压变频控制、磁场定向控制、直接转矩控制、最优效率控制、脉宽调制控制和无传感器控制等。
本发明提出用于交流感应电机的轭部笼形线圈感应转子,通过改进转子来改进电机,减小转子自重和转子惯量,提高电机响应速度和效率。电机行业需要本发明轭部笼形线圈感应转子来改进电机。
发明内容
本发明轭部笼形线圈感应转子,由转子铁芯和轭部笼形线圈组成;可作为部件与定子、电极、支承部件和机壳等部件组成交流感应电机。所述定子、电极、支承部件和机壳采用成熟技术,所述组成交流感应电机采用成熟技术。本发明特征在于:
转子铁芯设置为圆筒状,采用成熟技术采用高磁通材料制造。例如采用硅钢、层叠硅钢 等。圆筒状转子铁芯中沿周向相互连接的部分就是轭部。
轭部笼形线圈由外导条、前端环、内导条和后端环组成,均采用导电材料。外导条沿轴向分布嵌在转子铁芯外表面下,内导条沿轴向分布嵌在转子铁芯内表面下。外导条、内导条沿轴向分布嵌入转子铁芯表面下有转子铁芯开槽和转子铁芯打孔两种方式,均为成熟技术。前端环在转子铁芯前面短接各个导条的前端,后端环在转子铁芯后面短接各个导条的后端。所述短接是为导电而相互连接。外导条、前端环、内导条和后端环形成围绕轭部的线圈,称为轭部笼形线圈;外导条、前端环和后端环形成径向线圈,轭部笼形线圈与径向线圈均可供感应电流形成电流回路。
本发明作为转子可应用于下述交流感应电机:本发明与多相交流定子等部件组成多相交流感应电机,参见图1,这是三相交流感应电机的剖面图,图中前端环和后端环没有被剖到,电极、支撑部件和机壳没有画出,图中1为定子轭部,2为定子极柱,3为电枢绕组,1、2和3共同标示了三相交流电二对磁极对定子,在定子极柱上标示的是围绕该极柱的电枢绕组的相位序号,电枢绕组和相位序号采用成熟技术,4为圆柱状转子铁芯,5为外导条,6为内导条,7为转子轴,转子轴可以是轻型材料体、实心体或非实心体。本发明与两相交流定子等部件组成两相交流感应电机,参见图3,这是两相交流感应电机的剖面图,图中前端环和后端环没有被剖到,电极、支撑部件和机壳没有画出,图中1为定子轭部,2为定子极柱,3为电枢绕组,1、2和3共同标示了两相交流电一对磁极对定子,在定子极柱上标示的是围绕该极柱的电枢绕组的相位序号,电枢绕组和相位序号采用成熟技术,4为圆柱状转子铁芯,5为外导条,6为内导条,7为转子轴。本发明与单相交流定子等部件组成单相交流感应电机,包括裂相交流感应电机、罩极感应电动机等。在组成交流感应电机时,轭部笼形线圈感应转子受定子磁场感应,生成的转子极对数等于定子极对数,这个性能与传统笼形感应转子的对应性能是相同的。本说明书和各附图只描述了转子铁芯、外导条、内导条、前端环、后端环和转子轴的基本形状和相互关系,未描述这些零件的具体尺寸参数。这些零件的具体尺寸参数要根据电机具体需求来优化设计,优化设计采用成熟技术。
传统笼形感应转子采用圆柱状转子铁芯,只有位于转子铁芯外侧的导条,没有内导条。导条与前后端环只能形成围绕转子铁芯径向部分的径向线圈。最接近本发明转子的深槽笼形感应转子采用设置有深槽的转子铁芯,设置相互位置接近的上下两层导条,但上下两层导条没有与前后端环形成轭部笼形线圈,深槽转子铁芯没有为切向感应磁场流通而专门设置的被轭部线圈围绕的轭部。轭部笼形线圈感应转子采用圆筒状铁芯,既有外导条也有内导条,外导条、前端环、内导条和后端环形成轭部笼形线圈围绕转子铁芯,具有为切向感应磁场流通而专门设置的被轭部笼形线圈围绕的轭部。所述专门设置是指:在包含转子轴轴线的径向剖 面中,轭部笼形线圈包围的转子铁芯轭部截面面积不小于其他径向剖面中无导条的最大转子铁芯截面面积的50%。从转子铁芯更改形状、区分外导条与内导条和专设轭部形成轭部笼形线圈这三个方面可以看出,轭部笼形线圈感应转子是对笼形感应转子结构的创新。
传统感应转子只有径向线圈,组成电机后,定子磁场径向进入转子形成径向磁通,转动的定子磁场导致径向磁通在变化,变化中的径向磁通穿过径向线圈,径向线圈生成感应电流,感应电流产生径向感应磁场,径向感应磁场与定子磁场相互作用导致转子转动。轭部笼形线圈感应转子,组成感应电机后,定子磁场先沿径向进入转子铁芯形成径向磁通,后沿转子铁芯轭部流通,形成切向轭部磁通,转动的定子磁场导致径向磁通和切向轭部磁通都在变化,变化的径向磁通穿过外导条、前端环和后端环形成的径向线圈,生成感应电流,径向线圈产生第一种径向感应磁场;与此同时,变化的切向轭部磁通穿过轭部笼形线圈,生成围绕轭部的感应电流,轭部笼形线圈产生的轭部切向感应磁场聚集形成第二种径向感应磁场;这两种径向感应磁场与定子磁场相互作用,导致转子转动。所以,轭部笼形线圈感应转子既是对笼形感应转子的结构的创新,也导致对电机感应运行机制的创新;本发明创新了电机运行机制,提高了电机效率。在本发明之前没有相同结构的笼形感应转子。
轭部笼形线圈感应转子,有益之处在于:圆筒状铁芯比传统转子的圆柱状铁芯自重轻、转子惯量小,电机响应速度快,效率高。可以证明,围绕圆筒状铁芯轭部的轭部笼形线圈也比传统笼形感应转子的笼形线圈节约材料,减小自重。本发明创新了笼形感应转子的结构和电机运行机制,减小了转子自重和惯量,提高了电机响应速度和效率。
所述转子、转子铁芯、高磁通材料、轭部、聚集、径向磁通、径向感应磁场、定子、极柱、转子极对数、定子极对数和定子磁场均为成熟技术。所述导条、前端环、后端环、导电材料、径向线圈、感应电流、短接和电流回路均为成熟技术。
附图说明
图1为二对磁极对的三相交流感应电机剖面图之一,也是实施例1示意图之一。图中1为定子轭部,2为定子极柱,3为电枢绕组,有(+a,-c,+b,-a,+c,-b,+a′,-c′,+b′,-a′,+c′和-b′)共十二组,4为转子铁芯,5为外导条,6为内导条,7为转子轴。
图2为二对磁极对的三相交流感应电机剖面图之二,也是实施例1示意图之二。图中1为定子轭部,2为定子极柱,3为电枢绕组,有(+a,-c,+b,-a,+c,-b,+a′,-c′,+b′,-a′,+c′和-b′)共十二组,4为转子铁芯,5为外导条,6为内导条,7为转子轴。
图3为一对磁极对的两相交流感应电机剖面图之一,也是本发明实施例2示意图之一。图中1为定子轭部,2为定子极柱,3为电枢绕组,有(+a,+b,-a,和-b)共四组,4为转子铁 芯,5为外导条,6为内导条,7为转子轴。
图4为一对磁极对的两相交流感应电机剖面图之二,也是本发明实施例2示意图之二。图中1为定子轭部,2为定子极柱,3为电枢绕组,有(+a,+b,-a,和-b)共四组,4为转子铁芯,5为外导条,6为内导条,7为转子轴。
各图中,电极、支承部件和机壳等未画出,前端环和后端环未画出。各部件只示意相互关系,未反映实际尺寸。电枢绕组以少数电线示意,实际电线匝数按实际需要设置。外导条和内导条的数量仅供参考,实际数量按实际需要设置。
具体实施方式
实施例1:轭部笼形线圈感应转子,由转子铁芯和轭部笼形线圈组成;作为部件与三相交流电定子、电极、支承部件和机壳等部件组成二对磁极对的三相交流感应电机,参见图1。
转子铁芯4设置为圆筒状,采用成熟技术层叠硅钢制造,转子铁芯上打孔嵌入外导条、内导条,是无槽式转子铁芯。圆筒状转子铁芯中沿周向相互连接的部分就是轭部。
轭部笼形线圈由外导条5、前端环、内导条6和后端环形成,均采用铝材料。外导条5沿轴向分布嵌在转子铁芯4外表面下,内导条6沿轴向分布嵌在转子铁芯4内表面下。前端环在转子铁芯4前面短接各个导条的前端,后端环在转子铁芯4后面短接各个导条的后端。外导条5、前端环、内导条6和后端环形成围绕轭部的线圈,称为轭部笼形线圈;外导条、前端环和后端环形成径向线圈,轭部笼形线圈与径向线圈均可供感应电流形成电流回路。
图1是电机剖面图,图中前端环和后端环没有被剖到,电极、支撑部件和机壳没有画出,图中1为定子轭部,2为定子极柱,3为电枢绕组,1、2和3共同标示了三相交流电二对磁极对定子,在定子极柱2上标示的是围绕该极柱的电枢绕组3的相位序号,电枢绕组3和相位序号采用成熟技术,7为转子轴,转子轴采用高强度钢材非实心体。在本实施例电机中,轭部笼形线圈感应转子受定子磁场感应,生成二对转子磁极对。
本实施例中感应电机的运行:定子通入三相交流电,形成转动的定子磁场,磁极对为二对,定子磁场先沿径向进入转子铁芯4形成径向磁通,后沿转子铁芯轭部流通,形成切向轭部磁通,转动的定子磁场导致径向磁通和切向轭部磁通都在变化,变化的径向磁通穿过外导条5、前端环和后端环形成的径向线圈,生成感应电流,径向线圈产生第一种径向感应磁场;与此同时,变化的切向轭部磁通穿过轭部笼形线圈,生成围绕轭部的感应电流,轭部笼形线圈产生的轭部切向感应磁场聚集形成第二种径向感应磁场;这两种径向感应磁场与定子磁场相互作用,导致转子转动。
如果把转子铁芯换成有槽式转子铁芯,转子铁芯4上设置多个浅槽嵌入导条。组成的有 槽式转子剖面参见图2,图2中其他部件与图1相比均不变,电机的运行不变。
实施例2:轭部笼形线圈感应转子,由转子铁芯和轭部笼形线圈组成,作为部件与两相交流电定子、电极、支承部件和机壳等部件组成一对磁极对的两相交流感应电机,参见图3。
转子铁芯4设置为圆筒状,采用成熟技术层叠硅钢制造,在转子铁芯表面下打孔嵌入外导条、内导条,是无槽式转子铁芯。圆筒状转子铁芯中沿周向相互连接的部分就是轭部。
轭部笼形线圈由外导条5、前端环、内导条6和后端环形成,均采用铝材料。外导条5沿轴向分布嵌在转子铁芯4外表面下,内导条6沿轴向分布嵌在转子铁芯4内表面下。前端环在转子铁芯4前面短接各个导条的前端,后端环在转子铁芯4后面短接各个导条的后端。外导条5、前端环、内导条6和后端环形成围绕轭部的线圈,称为轭部笼形线圈;外导条、前端环和后端环形成径向线圈,轭部笼形线圈与径向线圈均可供感应电流形成电流回路。
图3是电机剖面图,图中前端环和后端环没有被剖到,电极、支撑部件和机壳没有画出,图中1为定子轭部,2为定子极柱,3为电枢绕组,1、2和3共同标示了两相交流电一对磁极对定子,在定子极柱2上标示的是围绕该极柱的电枢绕组3的相位序号,电枢绕组3和相位序号采用成熟技术,7为转子轴,转子轴采用高强度钢材非实心体。在本实施例电机中,轭部笼形线圈感应转子受定子磁场感应,生成一对转子磁极对。
本实施例中感应电机的运行:定子通入两相交流电,形成转动的定子磁场,磁极对为一对,定子磁场先沿径向进入转子铁芯4形成径向磁通,后沿转子铁芯轭部流通,形成切向轭部磁通,转动的定子磁场导致径向磁通和切向轭部磁通都在变化,变化的径向磁通穿过外导条5、前端环和后端环形成的径向线圈,生成感应电流,径向线圈产生第一种径向感应磁场;与此同时,变化的切向轭部磁通穿过轭部笼形线圈,生成围绕轭部的感应电流,轭部笼形线圈产生的轭部切向感应磁场聚集形成第二种径向感应磁场;这两种径向感应磁场与定子磁场相互作用,导致转子转动。
如果把转子铁芯换成有槽式转子铁芯,转子铁芯4上设置多个浅槽嵌入导条。组成的转子剖面参见图4,图4中其他部件与图3相比均不变,电机的运行不变。
以上描述了本发明基本原理、主要特征和优点,两个实施例描述的都是内转子电机,按现有成熟的拓扑技术容易推导出相对应的外转子电机、盘式转子电机和直线电机。轭部笼形线圈感应内转子、轭部笼形线圈感应外转子、轭部笼形线圈感应盘式转子和轭部笼形线圈感应直线转子都属于要求保护的本发明范围。本行业技术人员应该了解,本发明不限于上述实施例,在不脱离本发明精神和范围的前提下,本发明的变化与改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求及同等物界定。

Claims (2)

  1. 轭部笼形线圈感应转子,包括转子铁芯和轭部笼形线圈;可作为部件与定子、电极、支承部件和机壳等部件组成感应电机,特征在于:
    转子铁芯设置为圆筒状,采用成熟技术制造;
    轭部笼形线圈由外导条、前端环、内导条和后端环组成,外导条沿轴向分布嵌在转子铁芯外表面下,内导条沿轴向分布嵌在转子铁芯内表面下,前端环在转子铁芯前面短接各个导条的前端,后端环在转子铁芯后面短接各个导条的后端,外导条、前端环、内导条和后端环形成围绕轭部的线圈,称为轭部笼形线圈;外导条、前端环和后端环形成径向线圈,轭部笼形线圈与径向线圈均可供感应电流形成电流回路;
    轭部笼形线圈感应转子具有为切向感应磁场流通而专门设置的转子铁芯轭部,在包含转子轴轴线的径向剖面中,轭部笼形线圈包围的转子铁芯轭部截面面积不小于其他径向剖面中最大转子铁芯截面面积的50%。
  2. 如权利要求1所述的轭部笼形线圈感应转子,作为部件与定子、电极、支撑部件和机壳等部件组成感应电机,感应电机的运行:定子磁场先沿径向进入转子铁芯形成径向磁通,后沿转子铁芯轭部流通,形成切向轭部磁通,转动的定子磁场导致径向磁通和切向轭部磁通都在变化,变化的径向磁通穿过外导条、前端环和后端环形成的径向线圈,生成感应电流,径向线圈产生第一种径向感应磁场;与此同时,变化的切向轭部磁通穿过轭部笼形线圈,生成围绕轭部的感应电流,轭部笼形线圈产生的轭部切向感应磁场聚集形成第二种径向感应磁场;这两种径向感应磁场与定子磁场相互作用,导致转子转动。
PCT/CN2022/079044 2022-03-03 2022-03-03 轭部笼形线圈感应转子 WO2023164885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079044 WO2023164885A1 (zh) 2022-03-03 2022-03-03 轭部笼形线圈感应转子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079044 WO2023164885A1 (zh) 2022-03-03 2022-03-03 轭部笼形线圈感应转子

Publications (1)

Publication Number Publication Date
WO2023164885A1 true WO2023164885A1 (zh) 2023-09-07

Family

ID=87882858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079044 WO2023164885A1 (zh) 2022-03-03 2022-03-03 轭部笼形线圈感应转子

Country Status (1)

Country Link
WO (1) WO2023164885A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH162829A (de) * 1932-01-04 1933-07-15 Schwarz Benno Ing Dr Läufer für Asynchronmotoren.
JPH104658A (ja) * 1996-06-13 1998-01-06 Hitachi Ltd 誘導電動機
US20100247347A1 (en) * 2008-01-25 2010-09-30 Mitsubishi Electric Corporation Induction motor and hermetic compressor
CN103219842A (zh) * 2013-04-28 2013-07-24 哈尔滨工业大学 双机械端口机电能量变换器
CN104600932A (zh) * 2015-01-16 2015-05-06 广东美芝制冷设备有限公司 电机转子
CN104871415A (zh) * 2012-12-14 2015-08-26 西门子公司 可靠的笼形转子
CN108347109A (zh) * 2018-02-12 2018-07-31 北京融信雅德科技有限公司 一种电动机转子及三相异步电动机
CN110994830A (zh) * 2019-12-31 2020-04-10 泛仕达机电股份有限公司 一种双笼型转子冲片、双笼型转子及电机
CN215733969U (zh) * 2021-06-08 2022-02-01 江苏大学 一种对转式双转子无轴承异步电机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH162829A (de) * 1932-01-04 1933-07-15 Schwarz Benno Ing Dr Läufer für Asynchronmotoren.
JPH104658A (ja) * 1996-06-13 1998-01-06 Hitachi Ltd 誘導電動機
US20100247347A1 (en) * 2008-01-25 2010-09-30 Mitsubishi Electric Corporation Induction motor and hermetic compressor
CN104871415A (zh) * 2012-12-14 2015-08-26 西门子公司 可靠的笼形转子
CN103219842A (zh) * 2013-04-28 2013-07-24 哈尔滨工业大学 双机械端口机电能量变换器
CN104600932A (zh) * 2015-01-16 2015-05-06 广东美芝制冷设备有限公司 电机转子
CN108347109A (zh) * 2018-02-12 2018-07-31 北京融信雅德科技有限公司 一种电动机转子及三相异步电动机
CN110994830A (zh) * 2019-12-31 2020-04-10 泛仕达机电股份有限公司 一种双笼型转子冲片、双笼型转子及电机
CN215733969U (zh) * 2021-06-08 2022-02-01 江苏大学 一种对转式双转子无轴承异步电机

Similar Documents

Publication Publication Date Title
US6924574B2 (en) Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
US20150236575A1 (en) Magnetic shield for hybrid motors
US6566778B1 (en) Cage-type induction motor for high rotational speeds
US20140306565A1 (en) Coaxial Motor
CN101981785A (zh) 旋转电机
US10749385B2 (en) Dual magnetic phase material rings for AC electric machines
WO2008044020A1 (en) Improvements in and relating to electromotive machines
CN106451967B (zh) 电机
CN103683771A (zh) 一种隐含凸极的同性极式感应子电机
US3016482A (en) Two speed synchronous induction motor
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
US1708909A (en) Rotor for induction motors
JP2018516061A (ja) 平行な磁束経路を有するスイッチトリラクタンス機(srm)
CN104505961B (zh) 一种外转子电动发电机
El-Kharashi Improving the energy conversion process in the switched reluctance motors
CN107659102A (zh) 一种环形绕组双转子永磁同步电机
CN110120732B (zh) 一种感应串联式无刷励磁电机
JP6755435B1 (ja) 回転子および回転電機
CN1830129B (zh) 包含细长转子轴的装置和系统及相应的方法
WO2023164885A1 (zh) 轭部笼形线圈感应转子
KR20210137550A (ko) 영구 자석 보조 동기 릴럭턴스 기계
JPH04210758A (ja) 永久磁石回転子
CN119652046A (zh) 一种分数槽集中绕组的双鼠笼永磁电机及变极切换方法
CN209692560U (zh) 一种低速大扭矩电机
CN208028753U (zh) 一种环形绕组双转子永磁同步电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22929334

Country of ref document: EP

Kind code of ref document: A1