[go: up one dir, main page]

WO2023145961A1 - Cells expressing pre-pro-precursor form chimeric antigen receptor targeting igf1r - Google Patents

Cells expressing pre-pro-precursor form chimeric antigen receptor targeting igf1r Download PDF

Info

Publication number
WO2023145961A1
WO2023145961A1 PCT/JP2023/003012 JP2023003012W WO2023145961A1 WO 2023145961 A1 WO2023145961 A1 WO 2023145961A1 JP 2023003012 W JP2023003012 W JP 2023003012W WO 2023145961 A1 WO2023145961 A1 WO 2023145961A1
Authority
WO
WIPO (PCT)
Prior art keywords
igf
cells
car
cancer
igf1r
Prior art date
Application number
PCT/JP2023/003012
Other languages
French (fr)
Japanese (ja)
Inventor
洋三 中沢
耕一 平林
悠太 丸山
茂希 柳生
修治 三島
公裕 清水
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Priority to JP2023577086A priority Critical patent/JPWO2023145961A1/ja
Publication of WO2023145961A1 publication Critical patent/WO2023145961A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/65Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes

Definitions

  • the present invention relates to a polynucleotide encoding a chimeric antigen receptor, a vector containing the same, a genetically modified cell expressing the chimeric antigen receptor, and a method for producing the same, which are useful in the field of adoptive immunotherapy.
  • IGF1R Insulin-like growth factor-1 receptor
  • INSR insulin receptor
  • IGF1R binds its ligands (primarily IGF-1 and IGF-2) with varying affinities depending on the cell type and context in which it is expressed, and is responsible for Ras/Raf/MEK/ERK or PI3K/Akt/mTor signaling. It regulates proliferation, differentiation, survival, and metabolism of various cells through pathways.
  • IGF1R can also form hybrid receptors with INSR-A or INSR-B (IGF1R/INSR-A, IGF1R/INSR-B, respectively), and these hybrid receptors are IGF-1, IGF-2 , can bind to insulin. Binding of these hybrid receptors to their ligands results in a signaling cascade similar to that of IGF1R binding of its ligands. Protein groups formed by IGF1R, INSR, their hybrid receptors (IGF1R/INSR-A, IGF1R/INSR-B), and their ligands (IGF-1, IGF-2, insulin), etc. is called
  • IGF1R and high levels of circulating IGF ligands have been confirmed in a wide range of cancer types, including sarcoma, breast cancer, prostate cancer, pancreatic cancer, and melanoma. have been reported to be correlated with Furthermore, signals from IGF1R have been shown to be essential for malignant transformation. In addition to IGF-1 and IGF1R, high expression of IGF-2 and INSR-A has also been reported in a wide range of cancer types, and the IGF axis is considered an ideal cancer therapeutic target (non-patent literature 1 and 2).
  • Non-Patent Documents 1 and 2 Various drugs targeting the IGF axis have been attempted to develop, and anti-IGF1R antibodies, IGF1R tyrosine kinase inhibitors, and anti-IGF-1/IGF-2 inhibitory antibodies have been reported to be effective in Ewing's sarcoma, osteosarcoma, and neuropathy. It has been evaluated in clinical trials for various cancer types such as endocrine tumors, small cell lung cancer, head and neck squamous cell carcinoma, hepatocellular carcinoma, colorectal cancer, breast cancer, and ovarian cancer. is insufficient and has not yet been put to practical use (Non-Patent Documents 1 and 2).
  • IGF1R, INSR, and IGF ligands are expressed at high levels in cancer cells, and it is thought that resistance to anti-IGF1R antibodies, etc. occurs because they act complementary to the suppression of IGF1R by anti-IGF1R antibodies, etc. It is In addition, anti-IGF1R antibodies, IGF1R tyrosine kinase inhibitors, etc. have been reported to cause severe and frequent hyperglycemia. (IGF1R/INSR-B) disorder may be a factor. Therefore, the emergence of new modalities targeting the IGF axis with excellent efficacy and safety is expected.
  • CAR-T cells chimeric antigen receptor-expressing T cells
  • CAR-T cells chimeric antigen receptor-expressing T cells
  • scFv-type CAR-T cells using a single-chain antibody (scFv) derived from an antibody against IGF1R as a target-binding domain exhibited specific immune responses and in vitro antitumor effects against IGF1R-high-expressing sarcoma.
  • Non-Patent Document 3 a xenograft mouse model in which sarcoma cells were injected intraperitoneally showed tumor shrinkage and survival effects, and a xenograft mouse model in which sarcoma cells were injected intravenously also showed tumor shrinkage.
  • IGF1R CAR-T cells As mentioned above, there are no IGF1R CAR-T cells that have reached clinical trials. Therefore, further development of IGF1R CAR-T cells expected to be effective against IGF1R-expressing tumors is desired.
  • the present inventors considered the possibility that CAR-T cells that use IGF1R ligands as target-binding domains instead of scFv could be applied as adoptive immunotherapeutic agents for IGF1R-expressing tumors, and conducted intensive studies.
  • CAR-T cells were prepared using the natural ligand mature IGF-1 as the target-binding domain, the CAR expression rate disappeared over time in the T cells transfected with the CAR gene, and CAR-T It was found that the cells could hardly kill IGF1R-expressing tumor cells. Therefore, the present inventors generated CAR-T cells using its precursor, pre-pro-IGF-1, as the target-binding domain instead of mature IGF-1.
  • the CAR expression rate was was maintained and the antitumor effect was improved.
  • the CAR expression rate was higher than when wild-type pre-pro-IGF-1 was used. and antitumor effect are shown, and further, when pre-pro-IGF-2 is used as a target binding domain, CAR expression rate is maintained and antitumor effect is shown, and to complete the present invention Arrived.
  • the present invention includes the following.
  • [1] Encodes a chimeric antigen receptor (CAR) protein with a target-binding domain that binds to the insulin-like growth factor-1 receptor (IGF1R), a transmembrane domain, and an intracellular signaling domain
  • IGF insulin-like growth factor-1 receptor
  • a vector comprising the polynucleotide according to any one of [1] to [5].
  • [7] A genetically modified cell into which the polynucleotide of any one of [1] to [5] or the vector of [6] has been introduced.
  • a method for producing a CAR protein-expressing cell which comprises introducing the polynucleotide of any one of [1] to [5] or the vector of [6] into a cell.
  • a therapeutic agent for diseases involving IGF1R-expressing cells comprising the cells of [7].
  • a pharmaceutical composition comprising the therapeutic agent of [9] and a pharmaceutically acceptable carrier.
  • IGF1R-expressing cells include leukemia, multiple myeloma, lymphoma, lung cancer, head and neck squamous cell carcinoma, liver cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and colon. cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, renal cancer, adrenal cancer, melanoma, neuroendocrine tumors, retinoblastoma, and sarcoma
  • the therapeutic agent of [9] or the composition of [10] which is selected from the group consisting of: [12]
  • the present invention provides genetically modified cells that bind to IGF1R-expressing target cells and exhibit antitumor effects.
  • FIG. 1 shows mature IGF-1, pre-pro-IGF-1 (IGF-1 Ea, IGF-1 Eb, IGF-1 Ec) and pre-pro, which were used as CAR target-binding domains in the Examples of the present application.
  • - shows the structure of the E domain-deleted fragment of IGF-1 (IGF-1 w/oE).
  • Figure 2 shows the vector map of the mature IGF-1 type CAR expression plasmid.
  • FIG. 3 shows the vector map of the IGF-1 Ea-type CAR expression plasmid.
  • FIG. 4 shows the vector map of the IGF-1 Eb-type CAR expression plasmid.
  • FIG. 5 shows the vector map of the IGF-1 Ec-type CAR expression plasmid.
  • FIG. 6 shows the vector map of the IGF-1 w/oE type CAR expression plasmid.
  • Figure 7 shows the CAR expression rate in mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells on days 1, 3, 6 and 10 after gene transfer (Days 1, 3, 6 and 10). indicates Figure 8.
  • Flow cytometry showing anti-tumor cell activity of control T cells when co-cultured with E:T ratios of 4:1, 2:1, 1:1 or 1:2 for 4 days. Shows the results of the metric.
  • Figure 9 shows the IGF-1 Ea CAR when IGF-1 Ea CAR-T cells and tumor cells were co-cultured at an E:T ratio of 4:1, 2:1, 1:1 or 1:2 for 4 days.
  • FIG. 10 shows mature IGF-1 CAR when mature IGF-1 CAR-T cells and tumor cells were co-cultured at an E:T ratio of 4:1, 2:1, 1:1 or 1:2 for 4 days.
  • - shows flow cytometry results demonstrating the anti-tumor cell activity of T cells.
  • FIG. 11 shows the CAR expression rate in IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE type CAR-T cells 10 days after gene transfer (Day 10).
  • FIG. 12 depicts IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/o E CAR-T cells or control T cells at an E:T ratio of 2:1, 1:1 or 1:1. 2 shows the number of tumor cells after 4 days of co-culture with tumor cells.
  • FIG. 13 shows IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/o E CAR-T cells or control T cells at E:T ratios of 2:1, 1:1 or 1:1:1. 2 shows the number of T cells after co-culture with tumor cells for 4 days.
  • Figure 14 shows the vector map of the pre-pro-IGF-2 type CAR expression plasmid.
  • FIG. 15 shows the results of flow cytometry showing the results of CAR expression analysis of pre-pro-IGF-2 type CAR-T cells and control T cells on day 10 after gene transfer.
  • Figure 16 shows flow cytometry results showing the anti-tumor cell activity of control T cells when control T cells and tumor cells were co-cultured at an E:T ratio of 2:1, 1:1 or 1:2 for 4 days. show.
  • FIG. 17 shows pre-pro-IGF-2 levels when pre-pro-IGF-2 type CAR-T cells and tumor cells were co-cultured for 4 days at an E:T ratio of 2:1, 1:1 or 1:2.
  • Fig. 2 shows flow cytometry results showing anti-tumor cell activity of type CAR-T cells.
  • FIG. 18 shows IGF-1 w/o E-type CAR-T cells or control T cells at an E:T ratio of 4:1, 2:1, 1:1, 1:2, or 1:4 for 4 days ( Tumor cell numbers after co-culture with A) breast cancer cell line MX-1, (B) lung adenocarcinoma cell line H1568, (C) endometrial cancer cell line ARK-1.
  • FIG. 19 depicts IGF-1 w/o E-type CAR-T cells or control T cells at E:T ratios of 4:1, 2:1, or 1:1 for 4 days, (A) cervical cancer cell lines. HeLa, (B) Tumor cell numbers after co-culture with the ovarian cancer cell line RMG-1.
  • FIG. 21 shows the IGFBP3 binding rate of IGF-1 w/o E type CAR-T cells and IGF-1 w/o E des1-3 type CAR-T cells.
  • Figure 22 shows IGF-1 w/oE type CAR-T cells and IGF-1 w/oE des1-3 type CAR-T cells after stimulation with IGFBP3 or IGFBP3+IGF1R IFN ⁇ concentration in the culture supernatant. .
  • the present invention encodes a chimeric antigen receptor (CAR) protein having a target binding domain that binds to insulin-like growth factor-1 receptor (IGF1R), a transmembrane domain, and an intracellular signaling domain.
  • the target binding domain is an insulin-like growth factor (IGF) pre-pro precursor or an E domain deleted fragment thereof.
  • chimeric antigen receptor refers to targeting specificity of T cells (e.g., naive T cells, stem cell memory T cells, central memory T cells, effector memory T cells, or combinations thereof). It refers to a modified receptor that can be transplanted into cells such as T cells). CARs are also known as artificial T-cell receptors, chimeric T-cell receptors, or chimeric immune receptors.
  • CAR-T cell means a T cell expressing a chimeric antigen receptor (CAR) on its cell surface.
  • domain refers to a region within a polypeptide that folds into a specific structure independently of other regions.
  • polynucleotide includes natural or synthetic DNA and RNA, such as genomic DNA, cDNA (complementary DNA), mRNA (messenger RNA), rRNA (ribosomal RNA), shRNA (small hairpin RNA), snRNA (small nuclear RNA), snoRNA (small nucleolar RNA), miRNA (microRNA), and/or tRNA.
  • encoding means that a given nucleotide sequence encodes amino acid sequence information of a given protein or (poly)peptide, as commonly used in the art. In the text both the sense and antisense strands are used in the context of "encoding”.
  • IGF1R insulin-like growth factor-1 receptor
  • IGF1R is known to be expressed in a wide range of tumors.
  • IGF1R-expressing tumors include, for example, hematological tumors such as leukemia, multiple myeloma, and lymphoma, lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, e.g., lung adenocarcinoma, etc.), head and neck squamous cell carcinoma, liver cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, colorectal cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, kidney Solid tumors such as cancer, adrenal carcinoma, melanoma, neuroendocrine tumors, and retinoblastoma, and sarcomas (eg, Ewing's sarcoma, osteosarcoma, etc.).
  • lung cancer e.g., small cell lung cancer, non-small cell lung cancer, e.g.,
  • the amino acid sequence of the IGF1R protein has been registered, for example, as Uniprot accession number P08069.
  • IGFBP insulin-like growth factor binding protein
  • IGF insulin-like growth factor
  • IGFs include two molecular species, IGF-1 and IGF-2. Both IGF-1 and IGF-2 have been reported to be overexpressed in a wide range of cancers and associated with poor prognosis.
  • Amino acid sequences of naturally occurring mature IGF-1 include, for example, that shown in SEQ ID NO: 2, and the base sequences encoding it that are codon-optimized for expression in human cells include: For example, SEQ ID NO:1 can be mentioned.
  • the amino acid sequence of naturally occurring mature IGF-2 includes, for example, that shown in SEQ ID NO: 12; , for example, SEQ ID NO: 11.
  • IGF-1 and IGF-2 are known to become mature proteins by removing the N-terminal and C-terminal portions after being synthesized as precursor proteins. Specifically, IGF-1 is first translated from the N-terminal side as a signal peptide, mature IGF-1, and pre-pro-IGF-1, which is a precursor protein containing an E domain. It is known that pro-IGF-1 is formed by removal, and mature IGF-1 is formed by separation of the E domain by protease cleavage. Similarly, IGF-2 is translated from the N-terminal side as a signal peptide, mature IGF-2 peptide, and pre-pro-IGF-2, which is a precursor protein containing an E domain. It is known that it becomes IGF-2 and then mature IGF-2 by separating the E domain by protease cleavage (Brisson BK and Barton E, frontiers in ENDOCRINOLOGY, 2013, 4(42): 1-6) .
  • the CAR protein contains a target binding domain that binds to IGF1R.
  • the target binding domain exhibits binding to IGF1R (preferably its extracellular ligand binding domain) and enables an immune response against target cells expressing IGF1R on the cell surface.
  • a pre-pro precursor of IGF which is a ligand of IGF1R, or a fragment lacking the E domain thereof can be used as the target-binding domain.
  • pre-pro precursor of IGF refers to an IGF precursor containing a signal peptide, mature IGF, and E domain before the N-terminal and C-terminal portions are removed. means.
  • Pre-pro precursors of IGF can be used in humans, domestic animals (horses, cattle, sheep, goats, pigs, etc.), pets (dogs, cats, rabbits, etc.), experimental animals (mice, rats, monkeys, etc.), etc. can be derived from any mammal, but is preferably derived from humans.
  • the pre-pro precursor of IGF includes the pre-pro precursor of IGF-1 (pre-pro-IGF-1) and the pre-pro precursor of IGF-2 (pre-pro-IGF-2). .
  • an "E domain-deleted fragment" of the pre-pro precursor of IGF refers to a pre-pro precursor of IGF lacking the E domain. means a fragment obtained by depletion (removal).
  • the term "E domain” refers to the domain present at the C-terminus in the pre-pro precursor that is removed by the proprotein convertase.
  • the E domain of pre-pro-IGF-1 may start at the amino acid position corresponding to amino acid 119 of SEQ ID NO: 4, 6, or 8, for example.
  • the E domain of pre-pro-IGF-2 may start at the amino acid position corresponding to the 92nd amino acid of SEQ ID NO: 14, for example.
  • IGF-1 Ea The IGF-1 gene contains six exons, and in humans, alternative splicing is known to give rise to three different types of mRNA variants termed IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec.
  • IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec mRNAs have in common that they contain exons 1 or 2 (encoding signal peptide) and exons 3 and 4 (encoding mature IGF).
  • IGF-1 Ea mRNA contains exon 6 but not exon 5
  • IGF-1 Eb mRNA contains exon 5 but not exon 6
  • IGF-1Ec mRNA contains both exons 5 and 6.
  • Pre-pro-IGF-1 includes IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec (class 1 IGF-1 Ea, IGF-1 Eb), including the signal peptide encoded by exon 1 , and IGF-1 Ec) proteins, and IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec, including the signal peptide encoded by exon 2 (class 2 IGF-1 Ea, IGF-1 Ec).
  • IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec. proteins, preferably those selected from class 1 IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec proteins.
  • pre-pro-IGF-1 may be naturally occurring full-length pre-pro-IGF-1 (IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec).
  • a naturally occurring full-length form of class 1 IGF-1 Ea includes, for example, one consisting of the amino acid sequence shown in SEQ ID NO: 4, which encodes codon-optimized for expression in human cells. Examples of base sequences include those shown in SEQ ID NO:3.
  • a naturally occurring full-length class 1 IGF-1 Eb includes, for example, those consisting of the amino acid sequence shown in SEQ ID NO: 6, which encodes codon-optimized for expression in human cells. Examples of base sequences include those shown in SEQ ID NO:5.
  • Naturally occurring full-length forms of class 1 IGF-1 Ec include, for example, those consisting of the amino acid sequence shown in SEQ ID NO: 8, which encodes codon-optimized for expression in human cells.
  • Examples of base sequences include those shown in SEQ ID NO:7.
  • a fragment lacking the E domain of pre-pro-IGF-1 (also referred to herein as "IGF-1 w/oE” or "pre-IGF-1”) is naturally occurring It may be full-length pre-pro-IGF-1 with the E domain deleted.
  • Such fragments include, for example, those consisting of the amino acid sequence shown in SEQ ID NO: 10, and examples of the base sequence encoding it, codon-optimized for expression in human cells, include SEQ ID NO: 9 can be mentioned.
  • the target-binding domain includes the naturally occurring full-length pre-pro-IGF-1 or its E domain-deleted fragment, as well as variants thereof, such as SEQ ID NOS: 4, 6, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the amino acid sequence shown in 8 or 10
  • a sequence consisting of amino acid sequences with % sequence identity can also be used.
  • amino acid mutation means a change to a natural amino acid sequence, and includes insertion, deletion, substitution, addition, etc. of the amino acid sequence.
  • Amino acid mutations in the mature IGF-1 portion that the above variants may have include, for example, 1, 2, 3, 4 or 5 amino acid mutations in the region corresponding to positions 1 to 5 of SEQ ID NO: 2.
  • Deletion, insertion, and/or substitution for example, deletion of 1, 2, or 3 amino acids in the region corresponding to positions 1 to 3 of SEQ ID NO: 2, preferably SEQ ID NO: 2 It may be a deletion of 3 amino acids in the region corresponding to positions 1-3 (particularly a deletion of 3 amino acids corresponding to amino acids 1-3 of SEQ ID NO:2).
  • a fragment lacking the E domain of pre-pro-IGF-1 having a deletion of three amino acids in the region corresponding to positions 1 to 3 of SEQ ID NO: 2 has, for example, the amino acid sequence shown in SEQ ID NO: 27. can have.
  • region corresponding to 1 to “x”th of SEQ ID NO: 2 refers to 1 to 1 of the amino acid sequence of SEQ ID NO: 2 in the amino acid sequence aligned with the amino acid sequence of SEQ ID NO: 2 Refers to the region aligned to the xth region.
  • the present inventors used a fragment lacking the E domain of pre-pro-IGF-1 (IGF-1 w/oE) as a target binding domain in CAR-T cells ( IGF-1 w/oE-type CAR-T cells) and the mature IGF-1 portion of IGF-1 w/oE (SEQ ID NO: 2) with the first to third three amino acids (GPE) removed (IGF -1 w/oE des1-3) as a target binding domain (IGF-1 w/oE des1-3 type CAR-T cells) were generated, and the latter was more effective against IGFBP3-expressing tumors than the former. It was found to have high antitumor activity.
  • IGF-1 w/oE pre-pro-IGF-1
  • CAR-T cells using pre-pro-IGF-1 having a deletion of 3 amino acids corresponding to the 1st to 3rd amino acids of SEQ ID NO: 2 or a fragment lacking the E domain thereof as a target binding domain may have higher antitumor activity in the presence of IGFBP3 compared to CAR-T cells using pre-pro-IGF-1 without the deletion or a fragment lacking its E domain as the target binding domain.
  • Such CAR-T cells which have high antitumor activity in the presence of IGFBP3, are used in cancers that secrete IGFBP3 (renal cancer, melanoma, pancreatic cancer, breast cancer, lung adenocarcinoma, head and neck squamous cell carcinoma, etc.). ) may be particularly useful in treating
  • CAR-T cells with high anti-tumor activity in the presence of IGFBP3 may be particularly useful in the treatment of blood cancers and in the case of intravenous administration.
  • IGF-1 w/oE des1-3 with the above-described three amino acid deletions was transformed into IGF-1 w without the deletions, as shown in Example 11 below. It was found to have IGFBP3-binding ability more than three times that of /oE.
  • a previous study reported that deletion of the above three amino acids markedly reduced the ability of IGF-1 to bind to IGFBP3 (Sara VR et al., Annals New York Academy of Sciences, 1993, 692 :183-91, Ballard F et al., Int. J. Biochem. Cell Biol., 1996, 28(10):1085-1087), so this result was unexpected.
  • IGF-1 w/oE des1-3 type CAR-T cells are not only activated by binding to IGF1R, but also bind to IGFBP3, as shown in Example 12 below. I found that it is also activated by
  • pre-pro-IGF-1 having a deletion of three amino acids corresponding to amino acids 1 to 3 of SEQ ID NO: 2, or a fragment thereof lacking the E domain, is used in the target binding domain.
  • CAR-T cells used as T cells are believed to be activated not only by binding to IGF1R but also by binding to IGFBP3, thereby exhibiting high antitumor activity in the presence of IGFBP3.
  • pre-pro-IGF-2 may be naturally occurring full-length pre-pro-IGF-2.
  • a naturally occurring full-length form of pre-pro-IGF-2 includes, for example, one consisting of the amino acid sequence shown in SEQ ID NO: 14, which encodes codon-optimized for expression in human cells. Examples of such nucleotide sequences include those shown in SEQ ID NO: 13.
  • a fragment lacking the E domain of pre-pro-IGF-2 (also referred to herein as "IGF-2 w/oE” or "pre-IGF-2”) is naturally occurring It may be full-length pre-pro-IGF-2 with the E domain deleted.
  • Such fragments include, for example, those consisting of the 1st to 91st amino acid sequences of SEQ ID NO:14.
  • the target-binding domain includes the naturally occurring full-length pre-pro-IGF-2 or its E domain-deleted fragment, as well as variants thereof, such as the amino acid shown in SEQ ID NO: 14. have at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the sequence consisting of an amino acid sequence, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96% of the amino acid sequence shown in the 1st to 91st amino acid sequences of SEQ ID NO: 14
  • a sequence consisting of amino acid sequences having %, at least 97%, at least 98%, or at least 99% sequence identity can also be used.
  • the above-mentioned naturally occurring full-length pre-pro-IGF-2 or its E domain deleted fragment variant may have an amino acid mutation at any position of the mature IGF-2 portion, e.g. , may have 1-10 or 1-5 amino acid mutations at any position in the mature IGF-2 portion.
  • Amino acid mutations in the mature IGF-2 portion that the above variants may have include, for example, 1, 2, 3, 4, 5, or 6 in the region corresponding to positions 1 to 6 of SEQ ID NO: 12. deletions, insertions, and/or substitutions of single amino acids.
  • region corresponding to positions 1 to 6 of SEQ ID NO: 12 refers to regions 1 to 6 of the amino acid sequence of SEQ ID NO: 12 in the amino acid sequence aligned with the amino acid sequence of SEQ ID NO: 12. refers to the region that is aligned with the region of
  • the CAR containing the above IGF pre-pro precursor or fragment thereof as a target binding domain is expressed in target cells, after the signal peptide in the IGF pre-pro precursor or fragment thereof is removed in the cell
  • CAR may be displayed on the cell surface, for convenience herein the above pre-pro precursor of IGF or fragment thereof containing the signal peptide is referred to as the "target binding domain”.
  • the target-binding domain itself may bind to IGF1R.
  • the target binding domain may also bind IGF1R after the signal peptide has been removed from it.
  • the binding ability of the target-binding domain or the target-binding domain from which the signal peptide has been removed to IGF1R is intended to have a KD value of, for example, 100 nM or less, preferably 10 nM or less, more preferably 5 nM or less.
  • This binding capacity may be a relatively weak binding compared to the binding capacity between the antigen and the antibody.
  • the target-binding domain can increase the CAR expression rate in a cell population into which a polynucleotide encoding a CAR containing it has been introduced, compared to when mature IGF is used as the target-binding domain.
  • the term "CAR expression rate" in a cell population means the ratio of specific cells (eg, T cells) expressing CAR on the cell surface in the cell population.
  • the CAR expression rate can be, for example, the CAR expression rate 1 to 10 days (eg, 1, 3, 6, or 10 days) after gene (polynucleotide encoding CAR) introduction.
  • the CAR expression rate is determined, for example, by staining a cell population with a fluorescently labeled antibody that detects a T cell marker and a fluorescently labeled antibody that detects a CAR, and subjecting the cell population to flow cytometry, and confirming that both the T cell marker and CAR are positive. It can be determined by measuring the cell rate as the CAR expression rate.
  • the CAR expression rate is increased (e.g., 10% or more, statistically significant increase) compared to the CAR expression rate in the cell population into which a polynucleotide encoding a CAR containing the target binding domain has been introduced It can be determined that the CAR expression rate in .
  • the CAR protein can optionally contain an "extracellular spacer domain" between the extracellular target-binding domain and the transmembrane domain.
  • the extracellular spacer domain is desirably a sequence that promotes binding of CAR to an antigen and enhances intracellular signal transduction.
  • an antibody Fc fragment, or a fragment or derivative thereof, an antibody hinge region, or a fragment or derivative thereof, an antibody CH2 region, an antibody CH3 region, an artificial spacer sequence, or a combination thereof can be used.
  • the extracellular spacer domain includes (i) IgG4 hinge, CH2, and CH3 regions, (ii) IgG4 hinge region, (iii) IgG4 hinge and CH2, and (iv) CD8a hinge region. , (v) the hinge, CH2, and CH3 regions of IgG1, (vi) the hinge region of IgG1, or (vii) the hinge and CH2 of IgG1, or combinations thereof.
  • the hinge region of IgG1 one having the following amino acid sequence (SEQ ID NO: 15) can be preferably used, but it is not limited to this.
  • CH2 region of IgG1 one having the amino acid sequence shown in SEQ ID NO: 16, and as the CH3 region, one having the amino acid sequence shown in SEQ ID NO: 17 can be preferably used.
  • the extracellular spacer domain can use the hinge, CH2, and CH3 regions of human IgG1 or a portion thereof.
  • the extracellular spacer domain is composed of (i) human IgG1 hinge region alone (SEQ ID NO: 15), (ii) human IgG1 hinge region (SEQ ID NO: 15) and CH2 region (SEQ ID NO: 16) and CH3 region (SEQ ID NO: 17), (iii) hinge region (SEQ ID NO: 15) and CH3 region (SEQ ID NO: 17) of human IgG1, (iv) CH3 region alone (SEQ ID NO: 17). can.
  • a spacer sequence represented by the formula (G4S)n can be used as an artificial spacer sequence for use in the extracellular spacer domain.
  • a spacer having such a spacer sequence is sometimes called a peptide linker.
  • Peptide linkers suitably used in the art can be appropriately used in the present invention. In this case, the configuration and chain length of the peptide linker can be appropriately selected within the range that does not impair the function of the resulting CAR protein.
  • the extracellular spacer domain is not particularly limited, but can be appropriately selected from those exemplified above, or further modified based on the common technical knowledge in the field, and used for the present invention.
  • the extracellular spacer domain can be present between the target-binding domain and the transmembrane domain by ligating the base sequences encoding the amino acid sequences of the respective domains, inserting them into a vector, and expressing them in host cells. can be done.
  • the extracellular spacer domain can be modified using a previously prepared polynucleotide encoding a plasmid CAR protein as a template.
  • Modification of the extracellular spacer domain improves the CAR gene expression rate in host cells of CAR-T cells introduced with a polynucleotide encoding CAR, signal transduction, cell senescence, distribution to tumors, antigen recognition or in It is useful when considering the effect on in vivo activity.
  • a CAR protein comprises an extracellular domain comprising a target binding domain and optionally an extracellular spacer domain, a transmembrane domain, an intracellular domain comprising an intracellular signaling domain and optionally a co-stimulatory domain.
  • the "transmembrane domain” is a domain having affinity for the lipid bilayer that constitutes the cell membrane, whereas both the extracellular domain and the intracellular domain are hydrophilic domains. be.
  • the transmembrane domain is not particularly limited as long as the CAR protein can exist on the cell membrane and does not impair the functions of the target binding domain and the intracellular signaling domain, but it is a polypeptide derived from the same protein as the co-stimulatory domain described later. may serve as a transmembrane domain.
  • Transmembrane domains such as CD28, CD3 ⁇ , CD8 ⁇ , CD3, CD4 or 4-1BB can be used as transmembrane domains.
  • the transmembrane domain can be human CD28 (Uniprot No.: P10747 (153-179)).
  • those having the amino acid sequence encoded by the nucleotide sequence of NCBI Accession No.: NM_006139.3 (679-759) can be preferably used as the transmembrane domain.
  • CAR proteins can optionally contain a "co-stimulatory domain".
  • a co-stimulatory domain specifically binds a co-stimulatory ligand, thereby triggering a co-stimulatory response by the cell, such as, but not limited to, CAR-T cell proliferation, cytokine production, functional differentiation, and target cell death. is mediated.
  • Costimulatory domains include, for example, CD27, CD28, 4-1BB (CD137), CD134 (OX40), Dap10, CD27, CD2, CD5, CD30, CD40, PD-1, ICAM-1, LFA-1 (CD11a/ CD18), TNFR-1, TNFR-II, Fas, Lck can be used.
  • the co-stimulatory domain can be human CD28 (Uniprot No.: P10747 (180-220)) or 4-1BB (GenBank: U03397.1). Specifically, those having the amino acid sequence encoded by the nucleotide sequence of NCBI Accession No.: NM_006139.3 (760-882) can be preferably used as co-stimulatory domains.
  • transmembrane domain and the co-stimulatory domain derived from human CD28 for example, one having the amino acid sequence shown in SEQ ID NO: 18 can be used.
  • the CAR protein contains an "intracellular signaling domain".
  • Intracellular signaling domains transmit the signals necessary for the exertion of immune cell effector functions.
  • the intracellular signaling domain can be, for example, the human CD3 zeta chain, Fc ⁇ RIII, Fc ⁇ RI, the cytoplasmic tail of an Fc receptor, a cytoplasmic receptor with an immunoreceptor tyrosine activation motif (ITAM), or a combination thereof.
  • the intracellular signaling domain can use the human CD3 zeta chain (eg nucleotides 299-637 of NCBI Accession No. NM_000734.3).
  • one having the amino acid sequence shown in SEQ ID NO: 19 can be preferably used as the intracellular signaling domain.
  • the N-terminus of the protein appropriately contains a leader sequence that guides protein translocation during or after translation.
  • useful leader sequences include, but are not limited to, human immunoglobulin (Ig) heavy chain signal peptide, CD8 ⁇ signal peptide, or human GM-CSF receptor ⁇ signal peptide. be able to.
  • Ig heavy chain signal peptides derived from, for example, IgG1, IgG2, IgG3, IgA1, and IgM can be preferably used.
  • the CAR protein can impart cytolytic activity against IGF1R-expressing cells to cells expressing the CAR protein.
  • the target polynucleotide can be easily produced according to a conventional method. It is possible to obtain the nucleotide sequence encoding the amino acid sequence from the NCBI RefSeq ID indicating the amino acid sequence of each domain or the GenBank Accession number, and the present invention uses standard molecular biological and / or chemical procedures. of polynucleotides can be generated. For example, based on these nucleotide sequences, nucleic acids can be synthesized, and DNA fragments obtained from a cDNA library using the polymerase chain reaction (PCR) are combined to produce the polynucleotide of the present invention. be able to.
  • PCR polymerase chain reaction
  • a polynucleotide encoding a CAR protein can be produced by ligating polynucleotides encoding each of the above domains, and introducing this polynucleotide into a suitable cell produces a genetically modified cell. be able to.
  • a CAR protein can also be produced by using, as a template, a polynucleotide encoding an existing CAR protein having the same structural components other than the target-binding domain, and recombining the target-binding domain according to a conventional method.
  • one or more domains can be modified using the inverse PCR (iPCR) method, etc., using a polynucleotide encoding an existing CAR protein as a template.
  • iPCR inverse PCR
  • the method of introducing polynucleotides for producing genetically modified cells may be any method that is commonly used, and is not particularly limited.
  • vectors that can be used include, but are not limited to, lentiviral vectors, retroviral vectors, foamy viral vectors, adeno-associated viral vectors, and the like.
  • introduction of polynucleotides can be performed by non-viral methods such as transposon methods.
  • transposon methods plasmid transposons can be used, and the sleeping beauty transposon system (e.g. Huang X, Guo H, et al. Mol Ther. 2008; 16: 580-9; Singh H, Manuri PR, et al. Cancer Res.
  • a plasmid carrying a gene encoding piggyBac transposase (referred to herein as a piggyBac plasmid) and a polynucleotide encoding a CAR protein contain the piggyBac inverted repeat sequence.
  • a plasmid comprising a structure flanked by the two is introduced (transfected).
  • Various methods such as electroporation, nucleofection, lipofection, and calcium phosphate method can be used for transfection.
  • Both plasmids can contain poly-A added leader sequences, reporter genes, selectable marker genes, enhancer sequences and the like.
  • the device used for electroporation is not limited, but for example, 4D-Nucleofector (Lonza Japan Co., Ltd.), NEPA21 (Neppa Gene Co., Ltd.), Maxcyte GT (Maxcyte, Inc), etc. can be used. , can be operated according to the respective instructions for use.
  • Cells into which the polynucleotide is introduced include mammals, for example, human-derived cells, or non-human mammal-derived T cells such as monkeys, mice, rats, pigs, cows, and dogs, or cell populations containing T cells. Cells that are available and release cytotoxic proteins (perforin, granzyme, etc.) are preferably used. Specifically, for example, a cell population containing T cells, T cell progenitor cells (hematopoietic stem cells, lymphocyte progenitor cells, etc.), and NK-T cells can be used. Furthermore, cells capable of differentiating into these cells include various stem cells such as ES cells and iPS cells.
  • T cells include CD8 positive T cells, CD4 positive T cells, regulatory T cells, cytotoxic T cells, or tumor infiltrating lymphocytes.
  • Cell populations containing T cells and T cell progenitor cells include PBMCs.
  • the above-mentioned cells may be those collected from living organisms, those obtained by expanding culture thereof, or those established as cell lines. When cells expressing the manufactured CAR or cells differentiated from the cells are transplanted into a living body, it is desirable to introduce the nucleic acid into the living body itself or cells collected from the same kind of living body.
  • T cells into which a polynucleotide has been introduced for the genetically modified cells of the present invention and which are used for adoptive immunotherapy T cells expected to have a sustained anti-tumor effect, such as stem cell memory T cells, should be used. can be done. Analysis of stem cell memory T cells can be easily confirmed according to a conventional method, for example, according to (Yang Xu, et al. Blood. 2014; 123:3750-3759).
  • stem cell memory T cells can be, for example, CD45R0-, CD62L+, CD45RA+ and CCR7+ T cells.
  • the present invention also provides a vector comprising the above-described polynucleotide of the present invention.
  • the present invention also provides genetically modified cells into which the polynucleotide of the present invention or the vector of the present invention has been introduced.
  • the genetically modified cells of the present invention express on the cell membrane a CAR protein that uses the pre-pro precursor of IGF or its E domain-deleted fragment as the target binding domain.
  • This target-binding domain contains a signal peptide and mature IGF, and not only IGF1R, but also IGF1R/INSR-A and IGF1R/INSR-B hybrid receptors, before or after removal of the signal peptide. can combine. Therefore, the genetically modified cells of the present invention have a stronger anti-tumor effect than drugs that target only IGF1R-expressing tumor cells.
  • the present invention further provides a method for producing a CAR protein-expressing cell, comprising introducing the polynucleotide of the present invention or the vector of the present invention into a cell.
  • Cultivation and expansion of CAR protein-expressing cells are not particularly limited.
  • Non-specific or CAR-specific stimuli can be applied to cells.
  • the method of cell stimulation is not limited, for example, anti-CD3 antibody and/or anti-CD28 antibody stimulation can be used as non-specific cell stimulation, and K562 etc. can be used as CAR-specific stimulation.
  • CAR-specific stimulation using artificial antigen-presenting cells (aAPCs) that express CAR-binding antigen molecules or co-stimulatory factors in tumor cell lines can be used.
  • the culturing conditions here are not particularly limited, but for example, culturing at 37° C. under 5% CO 2 for 1 to 10 days is suitable.
  • transposon method introduction into cells is preferably performed by the transposon method, although this is not a limitation.
  • the transposon method any of the transposon system described above and other systems suitable for the present invention may be used, and although not particularly limited, the method of the present invention is preferably performed using the piggyBac method. can be implemented.
  • a cell population containing T cells is stimulated with one or more types of viral peptide antigens, and then treated to inactivate virus proliferation by a conventional method as feeder cells. , can promote the activation of CAR-introduced cells.
  • Viral peptide antigens used are, for example, AdV antigenic peptide mixtures, CMV antigenic peptide mixtures, EBV antigenic peptide mixtures, or combinations thereof.
  • PBMCs derived from the same individual from which the CAR-expressing cells are derived are cultured in a medium containing human IL-4 and GM-CSF. co-culture of immature dendritic cells and CAR-expressing cells produced by the method.
  • culture can be performed in the presence of one or more cytokines for the purpose of increasing cell viability/proliferation rate, and is preferably cultured in the presence of cytokines such as IL-7 and IL-15. be.
  • the present invention further provides a kit for producing CAR protein-expressing cells targeting IGF1R-expressing cells, which contains the vector of the present invention.
  • the kit of the present invention can appropriately contain reagents, buffer solutions, reaction vessels, instructions for use, and the like necessary for producing CAR protein-expressing cells.
  • the kit of the present invention can be suitably used for producing the above-described genetically modified cells of the present invention.
  • the cells of the present invention are activated by intracellular signal transmission by triggering a receptor-specific immune response against target cells expressing IGF1R on their surface.
  • Activation of CAR-expressing cells varies depending on the host cell type and the intracellular domain of CAR. can be confirmed as an index. Release of cytotoxic proteins (perforin, granzyme, etc.) leads to destruction of cells expressing the receptor.
  • the genetically modified cells of the present invention can be used as therapeutic agents for diseases involving IGF1R-expressing cells. Therefore, the present invention provides therapeutic agents for diseases involving IGF1R-expressing cells, including the genetically modified cells of the present invention.
  • the disease expected to be treated with the therapeutic agent of the present invention is not limited as long as it is a disease that shows sensitivity to the cells.
  • diseases associated with cells expressing IGF1R on the cell membrane such as cancer
  • hematological tumors such as leukemia, multiple myeloma, and lymphoma
  • lung cancer e.g., small cell lung cancer, non-small cell lung cancer, e.g., lung adenocarcinoma, etc.
  • head and neck squamous cell carcinoma liver cancer, hepatocytes cancer, pancreatic cancer, colorectal cancer, colorectal cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, kidney cancer, adrenal cancer , solid tumors such as melanoma, neuroendocrine tumors, and retinoblastoma, and sarcomas (eg, Ewing's sarcoma, osteosarcoma, etc.).
  • sarcomas eg, Ewing's sarcoma, osteosarcoma, etc.
  • One aspect of the therapeutic agent of the present invention is an anticancer agent against IGF1R-expressing tumor cells such as the above tumors.
  • the therapeutic agent or anticancer agent of the present invention can be used alone, but can also be used in combination with drugs and/or treatments with different mechanisms.
  • the therapeutic agent of the present invention can be in the form of a pharmaceutical composition alone or in combination with other active ingredients.
  • the therapeutic agents or pharmaceutical compositions of the invention can be administered locally or systemically. Specific administration modes include, but are not limited to, intravenous administration, intratumoral administration, and intrathecal administration. The preferred mode of administration is intravenous administration, for example for the treatment of leukemia.
  • pharmaceutical compositions may contain carriers, excipients, buffers, stabilizers, etc. commonly used in the art, depending on the mode of administration. can.
  • a pharmaceutical composition can comprise, for example, a therapeutic agent of the invention and a pharmaceutically acceptable carrier.
  • the dose of the therapeutic agent of the present invention varies depending on the patient's body weight, age , severity of disease, etc., and is not particularly limited. It can be administered once to several times a day, every 2 days, every 3 days, every week, every 2 weeks, every month, every 2 months, every 3 months, within the range of /kg body weight.
  • Subjects to which the therapeutic agent or pharmaceutical composition of the present invention is administered include humans, domestic animals (horses, cows, sheep, goats, pigs, etc.), pets (dogs, cats, rabbits, etc.), experimental animals (mice, rats, etc.). Any mammals including monkeys, etc.) can be mentioned, but humans are preferred.
  • CD45RA + CD62L + cells (stem cell memory T cells) in CD4 + CAR-T cells and/or CD8 + CAR-T cells contained in the therapeutic agent or pharmaceutical composition of the present invention are, for example, 70% or more or 80% or more There may be.
  • the present invention further comprises administering to a patient a therapeutically effective amount of the genetically modified cells, therapeutic agents or pharmaceutical compositions of the present invention described above, diseases involving IGF1R-expressing cells, such as those expressing IGF1R on the cell membrane Diseases related to cells, e.g. hematological tumors such as leukemia, multiple myeloma, lymphoma, lung cancer (e.g. small cell lung cancer, non-small cell lung cancer, e.g.
  • lung adenocarcinoma, etc. head and neck squamous cell carcinoma, liver cancer , hepatocellular carcinoma, pancreatic cancer, colorectal cancer, colorectal cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, renal cancer , solid tumors such as adrenal cancer, melanoma, neuroendocrine tumors, and retinoblastoma, and cancers such as sarcomas (eg, Ewing's sarcoma, osteosarcoma, etc.).
  • a therapeutically effective amount and dosage regimen can be determined as appropriate, taking into consideration various factors such as those described above.
  • Example 1 Preparation of mature IGF-1, IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, or IGF-1 w/oE type CAR expression plasmids
  • Plasmids for expressing these were prepared in International Publication No. 2020/085480. It was prepared by the method described in .
  • Figures 2 to 6 show the vector maps of each of the prepared plasmids.
  • the mature IGF-1 type CAR expression plasmid (SEQ ID NO: 20) comprises a leader sequence (30th to 86th of SEQ ID NO: 20), human mature IGF-1 (87th to 296th of SEQ ID NO: 20), a spacer (SEQ ID NO: 20) 297-1004), CD28 (1005-1208 of SEQ ID NO:20), and CD3 ⁇ (1209-1547 of SEQ ID NO:20) (FIG. 2).
  • IGF-1 Ea, Eb, Ec, w/o E-type CAR expression plasmids SEQ ID NOS: 21, 22, 23, 24, respectively
  • human IGF-1 Ea, Eb, Ec w/o E-type CAR expression plasmids
  • It is the same as the mature IGF-1 type CAR expression plasmid except that it contains a base sequence encoding w/oE (Figs. 3 to 6).
  • the base sequences of human mature IGF-1, IGF-1 Ea, Eb, Ec, and w/oE used in the above CAR expression plasmid are shown in SEQ ID NOs: 1, 3, 5, 7, and 9, respectively. Also, the amino acid sequences encoded by them are shown in SEQ ID NOs: 2, 4, 6, 8 and 10, respectively.
  • Example 2 Culture and expansion of mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells
  • CAR-T cells using mature IGF-1 or IGF-1 Ea as the target binding domain were generated, cultured and expanded.
  • PBMC peripheral blood mononuclear cells
  • Electroporated PBMCs were added to 10 ng/mL human IL-7 (Miltenyi Biotec, Bergisch Gladbach, Germany), 5 ng/mL human IL-15 (Miltenyi Biotec, Bergisch Gladbach, Germany) and 5% artificial serum Animal-free; Cell Science & Technology Institute Inc., Japan) containing ALyS TM 705 culture medium (Cell Science and Technology Institute Inc., Japan), seeded in a 24-well plate, cultured at 37°C, 5% CO 2 for 3 days (Days 0-3).
  • PBMCs isolated in 2-1 above were suspended in ALyS TM 705 culture medium containing 10 ng/mL human IL-4 and 10 ng/mL human GM-CSF, and plated on a 6-well G-REX R cell culture plate ( Wilson Wolf, Saint Paul, Minn.) and cultured at 37° C., 5% CO 2 for 3 days (Days 0-3).
  • PBMCs isolated in 2-1 above were suspended in ALyS TM 705 culture medium containing 5 ng/mL IL-15 and 5% artificial serum, and anti-CD3 antibody and anti-CD28 antibody (Miltenyi Biotec, Auburn, CA) and seeded on a 24-well non-treating plate coated with 37°C and 5% CO 2 (Day 0).
  • Example 3 Evaluation of CAR expression rate in mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells (Days 1, 3, 6 and 10)]
  • the CAR expression rate in mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells obtained in Example 2 was evaluated by flow cytometry analysis.
  • CD3 Antibody anti-human, APC (Miltenyi Biotec, Auburn, Calif.) was used as the APC-labeled anti-CD3 antibody.
  • a FITC-labeled anti-human IgG antibody binds to the spacer portion of CAR and can detect CAR-expressing cells.
  • APC-labeled anti-CD3 antibodies can detect T cells.
  • the stained cells were subjected to a flow cytometer BD Accuri TM C6 Plus (BD Biosciences San Jose, CA) and analyzed using Flowjo (BD Biosciences San Jose, CA), and the CAR positive CD3 positive cell rate was measured as the CAR expression rate. .
  • IGF-1 Ea-type CAR-T cells showed a higher CAR expression rate than mature IGF-1-type CAR-T cells on the day after transfection (Day 1), and continued until 6 days after transfection (Day 6). Although a gradual decrease in the expression rate was observed, the CAR expression rate was maintained at 20% or more at 10 days after gene transfer (Day 10).
  • Example 4 Comparison of antitumor cell activity between mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells.
  • Example 2 CAR-T cells and control T cells cultured until Day 10 in Example 2 were collected and cultured in cytokine-free 5% artificial serum-containing ALyS TM 705 medium.
  • THP-1 human acute monocytic leukemia cell line
  • effector (E) the cultured CAR-T cells or control T cells (effector (E)) were treated with the 24 They were added to the wells of the well plate and co-cultured at 37°C under 5% CO 2 .
  • RPMI1640 medium supplemented with 10% FBS was used as the culture medium.
  • APC-labeled anti-CD3 antibody detected T cells
  • FITC-labeled anti-CD33 antibody detected tumor cells
  • 7-Amino-Actinomycin D 7-AAD
  • CD33 Antibody, anti-human, FITC was used as the FITC-labeled anti-CD33 antibody
  • CD3 Antibody, anti-human, APC was used as the APC-labeled anti-CD3 antibody.
  • IGF-1 Ea-type CAR-T cells (Fig. 9) outperformed control T cells (Fig. 8) at all E:T ratios tested (expressed as percent CD3-negative CD33-positive cells). showed ability to kill tumor cells.
  • mature IGF-1 type CAR-T cells (Fig. 10) did not reduce the tumor cell rate compared to control T cells (Fig. 8) at E:T ratios of 1:1 and 1:2, and killed tumor cells. showed no ability.
  • Example 5 Culture and amplification of IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE type CAR-T cells, and evaluation of CAR expression rate and antitumor cell activity]
  • a CAR using IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE as a target binding domain is prepared in the same manner as in Example 2 using the CAR expression plasmid prepared in Example 1.
  • -T cells IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/oE type CAR-T cells, respectively
  • control T cells T cells activated with anti-CD3 antibody and anti-CD28 antibody
  • IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE CAR-T cells all maintained a high CAR expression rate of over 15% on Day 10.
  • IGF-1 w/oE CAR-T cells showed the highest CAR expression rate among the 4 types of CAR-T cells.
  • IGF-1 w/o E-type CAR-T cells target a peptide from pre-pro-IGF1 with the E domain deleted (i.e., a peptide containing only the signal peptide domain and the mature IGF-1 domain) to target CAR-T. It is used as a binding domain. Therefore, the experimental results of this example show that the CAR expression rate was improved by generating CAR-T cells using the signal peptide and mature IGF-1 portion of pre-pro-IGF-1 as the target binding domain. We show that CAR-T cells can be obtained and that the E domain is dispensable for improving CAR expression rates.
  • CAR-T cells and control T cells cultured up to Day 10 on 5-1 were collected and cultured in cytokine-free 5% artificial serum-containing ALyS TM 705 medium.
  • CAR-T cells or control T cells were added to the tumor cells at an E:T ratio of 2:1, 1:1, or 1:2 two days after the start of culture. were co-cultured and immunostained.
  • CountBright absolute Counting Beads (Invitrogen, Carlsbad, CA) were added to the stained cells followed by flow cytometer BD Accuri TM C6 Plus (BD Biosciences San Jose, CA). and analyzed using Flowjo (BD Biosciences San Jose, Calif.).
  • IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/o E CAR-T cells all showed significant tumor cell number reduction at all co-culture ratios tested.
  • IGF-1 w/oE type CAR-T cells exhibited the strongest tumor suppressive effect among the four types of CAR-T cells (Fig. 12).
  • IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/o E-type CAR-T cells all increased after co-culture.
  • IGF-1 w/oE type CAR-T cells were significantly increased (Fig. 13).
  • pre-pro-IGF-2 type CAR expression plasmid A plasmid for expressing a CAR using pre-pro-IGF-2 as a target-binding domain (pre-pro-IGF-2 type CAR expression plasmid) was constructed by the method described in WO2020/085480.
  • the pre-pro-IGF-2 type CAR expression plasmid (SEQ ID NO: 25) has a leader sequence (30 to 86 of SEQ ID NO: 25), human pre-pro-IGF-2 (87 to 626 of SEQ ID NO: 25), a spacer (627th to 1334th of SEQ ID NO: 25), CD28 (1335th to 1538th of SEQ ID NO: 25), and CD3 ⁇ (1539th to 1877th of SEQ ID NO: 25) (Fig. 14) .
  • pre-pro-IGF-2 used in the above CAR expression plasmid is shown in SEQ ID NO: 13. Also, the amino acid sequence encoded by it is shown in SEQ ID NO:14.
  • Example 7 Culture/amplification of pre-pro-IGF-2 type CAR-T cells and evaluation of CAR expression rate/antitumor cell activity] ⁇ 7-1 Culture and amplification of CAR-T cells> Using the CAR expression plasmid prepared in Example 6, CAR-T cells using pre-pro-IGF-2 as a target binding domain (pre-pro-IGF-2 type CAR- T cells) were generated, cultured and expanded. At the same time, control T cells (T cells activated with anti-CD3 antibody and anti-CD28 antibody) were cultured in the same manner as in Example 2.
  • Pre-pro-IGF-2 type CAR-T cells showed a high CAR expression rate (14.5%) on Day 10. This result indicates that CAR-T cells with maintained CAR expression rate can be obtained by generating CAR-T cells using pre-pro-IGF-2 as the target binding domain.
  • CAR-T cells or control T cells were added to the tumor cells at an E:T ratio of 2:1, 1:1, or 1:2 two days after the start of culture. were co-cultured and immunostained. At the same time, similar manipulations were performed without adding CAR-T cells or control T cells to the tumor cells.
  • CountBright absolute Counting Beads (Invitrogen, Carlsbad, CA) were added to the stained cells followed by flow cytometer BD Accuri TM C6 Plus (BD Biosciences San Jose, CA). and analyzed using Flowjo (BD Biosciences San Jose, Calif.).
  • Example 8 Evaluation of antitumor cell activity of IGF-1 w/oE type CAR-T cells Breast cancer cell line MX-1 (Cell Lines Service), lung adenocarcinoma cell line H1568 (American Type Culture Collection), endometrial cancer cell line ARK-1 (Department of Gynecology and Obstetrics, Kyoto University School of Medicine), cervical cancer IGF1R expression in cell line HeLa (JCRB cell bank) and ovarian cancer cell line RMG-1 (JCRB cell bank) was examined by flow cytometry, and all of these cancer cell lines expressed IGF1R. Therefore, these cell lines were used to evaluate the antitumor activity of IGF-1 w/oE CAR-T cells against breast cancer, lung adenocarcinoma, endometrial cancer, cervical cancer, and ovarian cancer. bottom.
  • IGF-1 w/oE type CAR-T cells were prepared by the same method as in Example 2, cultured and expanded, and control T cells (activated with anti-CD3 antibody and anti-CD28 antibody). T cells) were cultured.
  • control T cells activated with anti-CD3 antibody and anti-CD28 antibody. T cells
  • the above IGF-1 w/oE type CAR-T cells or control T cells and tumor cells (breast cancer cell line MX-1, lung adenocarcinoma cell line H1568, or uterine body Cancer cell line ARK-1) (2 ⁇ 10 5 cells) was co-cultured at an E:T ratio of 4:1, 2:1, 1:1, 1:2 or 1:4 for 5 days. of tumor cells were measured.
  • IGF-1 w/oE type CAR-T cells or control T cells and tumor cells were co-cultured at an E:T ratio of 4:1, 2:1, or 1:1 for 4 days, and the number of tumor cells after co-culture was measured.
  • B7-H3 was used instead of CD33 as a tumor cell marker.
  • 24 hours after the start of co-culture a portion of the culture supernatant was collected, and IFN- ⁇ and IL-2 in the culture supernatant were analyzed using an ELISA kit (R&D Systems, Inc., Minneapolis, MN, USA). Concentration was measured.
  • Figures 18 and 19 show the results of measuring the number of tumor cells after co-culture. For all types of cancer cell lines tested, IGF-1 w/oE CAR-T cells showed a significant reduction in tumor cell numbers.
  • concentrations of IFN- ⁇ and IL-2 in the culture supernatant after 24 h co-culture of IGF-1 w/oE CAR-T cells and tumor cells was significantly higher than the concentrations of IFN- ⁇ and IL-2 in the culture supernatant after co-culture of control T cells and tumor cells, at least 24-fold higher.
  • CD4+ CAR The proportion of CD45RA+CD62L+ cells (stem cell memory T cells) was approximately 80% for both -T cells and CD8+ CAR-T cells.
  • Example 9 Preparation of IGF-1 w/oE des1-3 type CAR expression plasmid
  • IGF-1 w/oE des1-3 A plasmid for expression (IGF-1 w/oE des1-3 type CAR expression plasmid) was prepared by the method described in International Publication No. 2020/085480.
  • the IGF-1 w/oE des1-3 type CAR expression plasmid is similar to the IGF-1 w/oE type CAR except that the nucleotide sequence corresponding to the N-terminal three amino acids of the mature IGF-1 portion is deleted. Identical to the expression plasmid.
  • the nucleotide sequence of the IGF-1 w/oEdes1-3 type CAR expression plasmid is shown in SEQ ID NO: 26, and the amino acid sequence of IGF-1 w/oEdes1-3 is shown in SEQ ID NO:27.
  • Example 10 Culture/amplification of IGF-1 w/oE type CAR-T cells and IGF-1 w/oE des1-3 type CAR-T cells, and comparison of CAR expression rate/antitumor cell activity] ⁇ 10-1.
  • Culture and amplification of CAR-T cells> Using the IGF-1 w/oE type CAR expression plasmid and the IGF-1 w/oE des1-3 type CAR expression plasmid prepared in Examples 1 and 9, in the same manner as in Example 2, IGF-1 w/ CAR-T cells using oE or IGF-1 w/oE des1-3 as the target binding domain (IGF-1 w/oE type CAR-T cells, IGF-1 w/oE des1-3 type CAR-T cells, respectively) ) were prepared, cultured and amplified. At the same time, control T cells (T cells activated with anti-CD3 antibody and anti-CD28 antibody) were cultured in the same manner as in Example 2.
  • the above IGF-1 w/oE CAR-T cells, IGF-1 w/oE des1-3 CAR-T cells, or control T cells Tumor cells (A549) (2 ⁇ 10 5 cells) were co-cultured at an E:T ratio of 1:1, 1:2 or 1:4 for 4 days, and the number of tumor cells after co-culture was measured.
  • tumor cells alone were also cultured in the same manner except that T cells were not added.
  • Fig. 20 shows the measurement results of the dissolution rate.
  • IGF-1 w/oE CAR-T cells exhibited a higher lytic rate compared to control T cells, and IGF-1 w/oE des1-3 CAR-T cells showed IGF-1 w/oE CAR-T It showed an even higher lysis rate than T cells. Therefore, IGF-1 w/oE des1-3 CAR-T cells may have higher antitumor activity than IGF-1 w/oE CAR-T cells against lung adenocarcinoma cell line A549. shown.
  • Example 11 IGFBP3-binding ability of the target-binding domains of IGF-1 w/o E type CAR-T cells and IGF-1 w/o E des1-3 type CAR-T cells]
  • Step 1 His-tagged human IGFBP3 protein (ACROBiosystems, catalog number: IG3-H52H9, 1 ⁇ g/ ⁇ l) was diluted to 0.25 ⁇ g/ ⁇ l by adding PBS.
  • Step 2. Control T cells cultured and expanded in the same manner as in Example 10 (T cells activated with anti-CD3 antibody and anti-CD28 antibody), IGF-1 w/oE type CAR-T cells, or IGF- 1 w/oE des1-3 type CAR-T cells (1M) were collected in a test tube.
  • Step 3 PBS was added to the test tube from step 2 and centrifuged at 1500 rpm (or 400 g) for 10 minutes. This process was repeated twice.
  • Step 4. PBS was added to the test tube from step 2 and centrifuged at 1500 rpm (or 400 g) for 10 minutes. This process was repeated twice.
  • Reagents for staining were prepared as follows.
  • Step 6 The tube incubated in step 4 was centrifuged at 1500 rpm (or 400 g) for 10 minutes and the supernatant was removed. This operation was repeated twice.
  • Step 7. Add reagent A to tubes containing control T cells, add reagent B or C to tubes containing IGF-1 w/oE CAR-T cells, and add IGF-1 w/oE des1 Reagent C was added to tubes containing type-3 CAR-T cells. All tubes were wrapped in aluminum foil and incubated at 4°C for 15 minutes.
  • Step 8. After washing the tubes from step 7 once, 300 ⁇ L of PBS was added to each tube.
  • Step 9. Cells in tube from step 8 were subjected to flow cytometry.
  • IGF-1 w/o E type CAR-T cells and IGF-1 w/o E des1-3 type CAR-T cells showed IGFBP3 binding rates of about 20% and about 60%, respectively. Therefore, IGF-1 w/oE des1-3 showed higher IGFBP3 binding ability than IGF-1 w/oE.
  • IGF-1 a variant of IGF-1 (Des1-3 IGF-1) with a deletion of three amino acids at the N-terminus has a markedly reduced ability to bind to IGFBP (Sara VR et al. J. Biochem. Cell Biol., 1996, 28(10):1085-1087). Therefore, it is expected that IGF-1 w/oE des1-3 having the deletion of the three amino acids showed higher IGFBP3-binding ability than IGF-1 w/oE without the deletion of the three amino acids. outside result.
  • IGF-1 w/oE des1-3 type CAR-T cells by IGFBP3 or IGFBP3 + IGF1R
  • IGFBP3 or IGFBP3 + IGF1R IGF-1 w/oE des1-3 type CAR-T cells by IGFBP3 or IGFBP3 + IGF1R activation of
  • Step 1 500 ⁇ l of PBS with or without 1 ⁇ g of His-tagged human IGF1R protein (ACROBiosystems, catalog number: IGR-H5229) was added to the wells of a 24-well no-treat plate. This plate was incubated overnight in a refrigerator for immobilization.
  • Step 2. After washing the plate in step 1 twice, control T cells (T cells activated with anti-CD3 antibody and anti-CD28 antibody) cultured and expanded in the same manner as in Example 10 or IGF-1 w /oE des1-3 type CAR-T cells (10 6 cells) and 1 ⁇ g of His-tagged human IGFBP3 protein (ACROBiosystems, catalog number: IG3-H52H9) were added to each well of the plate.
  • control T cells T cells activated with anti-CD3 antibody and anti-CD28 antibody
  • Step 3 RPMI was added to each well of the plate from step 2 to bring the total volume to 2 ml. The plate was incubated at 37°C for 24 hours. Step 4. 1 mL of supernatant was collected from each well of the plate after incubation in step 3. Step 5. The concentration of IFN- ⁇ in the supernatant collected in step 4 was measured using an ELISA kit.
  • IGF-1 w/oE des1-3 type CAR-T cells stimulated with IGFBP3+IGF1R was higher than that in control T cells stimulated with IGFBP3+IGF1R. It was significantly higher than the IFN- ⁇ concentration when IGF-1 w/oE des1-3 type CAR-T cells were stimulated with IGFBP3.
  • SEQ ID NO: 1 Nucleotide sequence encoding mature IGF-1 GGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGAGCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCC
  • SEQ ID NO: 2 Amino acid sequence of mature IGF-1 GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA
  • SEQ ID NO: 4 Amino acid sequence of IGF-1 Ea MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKEVHLKNASRGSAGNKNYRM
  • SEQ ID NO: 6 Amino acid sequence of IGF-1 Eb MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKYQPPSTNKNTKSQRRKGWPKTHPGGEQKEGTEASLQIRGKKKEQRREIGSRNAECRGKKGK
  • SEQ ID NO:8 Amino acid sequence of IGF-1 Ec MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKYQPPSTNKNTKSQRRKGSTFEERK
  • SEQ ID NO: 10 Amino acid sequence of IGF-1 w/oE MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA
  • SEQ ID NO: 11 Nucleotide sequence encoding mature IGF-2 GCGTATCGGCCTAGTGAGACCCTGTGTGGTGGTGAACTCTGGACACTCTCCAGTTCGTCTGTGGAGACAGAGGATTTTACTTCAGCAGGCCGGCCTCACGGGTAAGCCGCAGGAGCCGAGGCATTGTAGAAGAATGTTGCTTCCGGTCCTGCGACCTTGCTCTGCTGGAGACGTATTGTGCAACACCCGCAAAATCTGAG

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Sustainable Development (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is an IGF1R CAR-T cell that is expected to be effective against tumors that express IGF1R. Provided is a polynucleotide that encodes a chimeric antigen receptor (CAR) protein having a target-binding domain that binds to the insulin-like growth factor-1 receptor (IGF1R), a transmembrane domain, and an intracellular signaling domain, wherein the target-binding domain is the pre-pro-precursor for insulin-like growth factor (IGF) or its E-domain-deleted fragment. Also provided are a vector containing this polynucleotide and genetically modified cells into which this polypeptide or vector has been introduced.

Description

IGF1Rを標的とするpre-pro前駆体型キメラ抗原受容体発現細胞Pre-pro progenitor-type chimeric antigen receptor-expressing cells targeting IGF1R

 本発明は、養子免疫療法の分野において有用な、キメラ抗原受容体をコードするポリヌクレオチド及びそれを含むベクター、並びにキメラ抗原受容体を発現する遺伝子改変細胞及びその作製方法に関する。 The present invention relates to a polynucleotide encoding a chimeric antigen receptor, a vector containing the same, a genetically modified cell expressing the chimeric antigen receptor, and a method for producing the same, which are useful in the field of adoptive immunotherapy.

 インスリン様成長因子-1受容体(IGF1R)は、インスリン受容体(INSR)ファミリーに属する受容体型チロシンキナーゼであり、リガンド結合ドメインを構成する2つの細胞外αサブユニット、及びキナーゼドメインを有する2つの膜貫通βサブユニットからなるヘテロ4量体を構成する。IGF1Rは、それが発現する細胞の種類や状況によって様々な親和性でそのリガンド(主にIGF-1とIGF-2)と結合し、Ras/Raf/MEK/ERK又はPI3K/Akt/mTorシグナル伝達経路を介して、様々な細胞の増殖・分化・生存・代謝を制御する。IGF1Rは、INSR-A又はINSR-Bとハイブリッド受容体(それぞれ、IGF1R/INSR-A、IGF1R/INSR-B)を構成することもでき、これらのハイブリッド受容体は、IGF-1、IGF-2、インスリンと結合することができる。これらのハイブリッド受容体がそのリガンドと結合した場合も、IGF1Rにそのリガンドが結合した場合と同様のシグナル伝達カスケードが生じる。IGF1R、INSR、これらのハイブリッド受容体(IGF1R/INSR-A、IGF1R/INSR-B)、及びこれらのリガンド(IGF-1、IGF-2、インスリン)等によって形成されるタンパク質群は、IGF軸と称される。 Insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase that belongs to the insulin receptor (INSR) family and consists of two extracellular α subunits that constitute the ligand-binding domain and two kinase domains. It forms a heterotetramer composed of transmembrane β subunits. IGF1R binds its ligands (primarily IGF-1 and IGF-2) with varying affinities depending on the cell type and context in which it is expressed, and is responsible for Ras/Raf/MEK/ERK or PI3K/Akt/mTor signaling. It regulates proliferation, differentiation, survival, and metabolism of various cells through pathways. IGF1R can also form hybrid receptors with INSR-A or INSR-B (IGF1R/INSR-A, IGF1R/INSR-B, respectively), and these hybrid receptors are IGF-1, IGF-2 , can bind to insulin. Binding of these hybrid receptors to their ligands results in a signaling cascade similar to that of IGF1R binding of its ligands. Protein groups formed by IGF1R, INSR, their hybrid receptors (IGF1R/INSR-A, IGF1R/INSR-B), and their ligands (IGF-1, IGF-2, insulin), etc. is called

 肉腫、乳がん、前立腺がん、膵がん、メラノーマを含む広範ながん種においてIGF1Rの高発現や血中IGFリガンドの高値が確認されており、いくつかのがん種では進行速度や予後不良と相関することが報告されている。さらに、IGF1Rからのシグナルは悪性形質転換に必須であることが示されている。IGF-1及びIGF1Rに加えて、IGF-2やINSR-Aの高発現も広範ながん種で報告されており、IGF軸は理想的ながん治療標的と考えられている(非特許文献1及び2)。 High expression of IGF1R and high levels of circulating IGF ligands have been confirmed in a wide range of cancer types, including sarcoma, breast cancer, prostate cancer, pancreatic cancer, and melanoma. have been reported to be correlated with Furthermore, signals from IGF1R have been shown to be essential for malignant transformation. In addition to IGF-1 and IGF1R, high expression of IGF-2 and INSR-A has also been reported in a wide range of cancer types, and the IGF axis is considered an ideal cancer therapeutic target (non-patent literature 1 and 2).

 これまでに、IGF軸を標的とする様々な薬剤の開発が試みられており、抗IGF1R抗体、IGF1Rチロシンキナーゼ阻害剤、抗IGF-1/IGF-2阻害抗体が、ユーイング肉腫、骨肉腫、神経内分泌腫瘍、小細胞肺がん、頭頚部扁平上皮がん、肝細胞がん、大腸がん、乳がん、卵巣がんなどの様々ながん種の臨床試験で評価されてきたが、治療効果又は安全性が不十分で未だ実用化には至っていない(非特許文献1及び2)。がん細胞ではIGF1R、INSR及びIGFリガンドが高レベルで発現し、それらが抗IGF1R抗体等によるIGF1Rの抑制に対して補完的に作用するために、抗IGF1R抗体等に対する抵抗性が生じるものと考えられている。また、抗IGF1R抗体、IGF1Rチロシンキナーゼ阻害剤等については、高血糖が高度かつ高頻度に生じることが報告されているが、これはグルーコース代謝に関わるINSR-B及びそのIGF1Rとのハイブリッド受容体(IGF1R/INSR-B)の障害が要因となって生じている可能性が示唆されている。したがって、効果と安全性に優れたIGF軸を標的とする新しいモダリティーの登場が期待されている。 Various drugs targeting the IGF axis have been attempted to develop, and anti-IGF1R antibodies, IGF1R tyrosine kinase inhibitors, and anti-IGF-1/IGF-2 inhibitory antibodies have been reported to be effective in Ewing's sarcoma, osteosarcoma, and neuropathy. It has been evaluated in clinical trials for various cancer types such as endocrine tumors, small cell lung cancer, head and neck squamous cell carcinoma, hepatocellular carcinoma, colorectal cancer, breast cancer, and ovarian cancer. is insufficient and has not yet been put to practical use (Non-Patent Documents 1 and 2). IGF1R, INSR, and IGF ligands are expressed at high levels in cancer cells, and it is thought that resistance to anti-IGF1R antibodies, etc. occurs because they act complementary to the suppression of IGF1R by anti-IGF1R antibodies, etc. It is In addition, anti-IGF1R antibodies, IGF1R tyrosine kinase inhibitors, etc. have been reported to cause severe and frequent hyperglycemia. (IGF1R/INSR-B) disorder may be a factor. Therefore, the emergence of new modalities targeting the IGF axis with excellent efficacy and safety is expected.

 近年、キメラ抗原受容体(chimeric antigen receptor:CAR)を発現させたT細胞(CAR-T細胞)が、その顕著な細胞傷害活性から、難治性がんに対する有望な次世代モダリティーとして期待されている。その中で、IGF1Rを標的とするCAR-T細胞の研究がHuangらによって報告されている(非特許文献3)。Huangらは、IGF1Rに対する抗体に由来する単鎖抗体(scFv)を標的結合ドメインとして用いたscFv型CAR-T細胞が、IGF1R高発現肉腫に対する特異的な免疫応答及びin vitro抗腫瘍効果を示したこと、肉腫細胞が腹腔内注入された異種移植片マウスモデルにおいて腫瘍縮小効果と延命効果を示したこと、肉腫細胞が静脈内注入された異種移植片マウスモデルでも腫瘍縮小効果を示したことを報告している(非特許文献3)。しかしながら、臨床試験に至ったIGF1R CAR-T細胞はこれまでに存在しない。 In recent years, chimeric antigen receptor (CAR)-expressing T cells (CAR-T cells) have been expected as a promising next-generation modality against intractable cancers due to their remarkable cytotoxic activity. . Among them, research on CAR-T cells targeting IGF1R has been reported by Huang et al. (Non-Patent Document 3). Huang et al. showed that scFv-type CAR-T cells using a single-chain antibody (scFv) derived from an antibody against IGF1R as a target-binding domain exhibited specific immune responses and in vitro antitumor effects against IGF1R-high-expressing sarcoma. In addition, a xenograft mouse model in which sarcoma cells were injected intraperitoneally showed tumor shrinkage and survival effects, and a xenograft mouse model in which sarcoma cells were injected intravenously also showed tumor shrinkage. (Non-Patent Document 3). However, no IGF1R CAR-T cells have entered clinical trials to date.

 一方、本発明者らは、増殖因子受容体を標的とするCAR-T細胞の作製方法として、CARの標的結合ドメインに従来のscFV型ではなく、受容体リガンドを用いるCAR(リガンド型CAR)の設計技術を報告してきた(非特許文献4及び5、特許文献1)。 On the other hand, as a method for producing CAR-T cells that target growth factor receptors, the present inventors developed CAR (ligand-type CAR) that uses receptor ligands instead of conventional scFV-type CAR target-binding domains. We have reported design techniques (Non-Patent Documents 4 and 5, Patent Document 1).

国際公開第2020/085480号WO 2020/085480

Simpson A et al., Target Oncol., 2017, 12(5):571-597, doi: 10.1007/s11523-017-0514-5Simpson A et al., Target Oncol., 2017, 12(5):571-597, doi: 10.1007/s11523-017-0514-5 Anastassios Philippou et al., Mutation Research. Reviews in Mutation Research, 2017, 772:105-122, doi: 10.1016/j.mrrev.2016.09.005Anastassios Philippou et al., Mutation Research. Reviews in Mutation Research, 2017, 772:105-122, doi: 10.1016/j.mrrev.2016.09.005 Huang X et al., PLoS One, 2015, 10(7), doi: 10.1371/journal.pone.0133152Huang X et al., PLoS One, 2015, 10(7), doi: 10.1371/journal.pone.0133152 Nakazawa Y et al., J Hematol Oncol., 2016, 9:27Nakazawa Y et al., J Hematol Oncol., 2016, 9:27 Hasegawa A et al., Clin Transl Immunology., 2021, 10(5):e1282Hasegawa A et al., Clin Transl Immunology., 2021, 10(5):e1282

 上述のように、臨床試験に至ったIGF1R CAR-T細胞はこれまでに存在しない。従って、IGF1Rを発現する腫瘍に対して効果が期待される更なるIGF1R CAR-T細胞の開発が望まれている。 As mentioned above, there are no IGF1R CAR-T cells that have reached clinical trials. Therefore, further development of IGF1R CAR-T cells expected to be effective against IGF1R-expressing tumors is desired.

 本発明者らは、scFvの代わりにIGF1Rのリガンドを標的結合ドメインとして利用したCAR-T細胞が、IGF1R発現腫瘍に対する養子免疫治療剤として適用できる可能性を考え、鋭意検討を行った。その結果、天然のリガンドである成熟IGF-1を標的結合ドメインとして用いるCAR-T細胞を作製した場合には、CAR遺伝子を導入したT細胞においてCAR発現率が経時的に消失し、CAR-T細胞がIGF1R発現腫瘍細胞をほとんど殺傷できないことが判明した。そこで、本発明者らは、成熟IGF-1の代わりにその前駆体であるpre-pro-IGF-1を標的結合ドメインとして用いるCAR-T細胞を作製したところ、驚くべきことに、CAR発現率が維持され抗腫瘍効果が向上することを見い出した。本発明者らはさらに、pre-pro-IGF-1のEドメインを欠失した断片を標的結合ドメインとして用いた場合、野生型pre-pro-IGF-1を用いた場合よりも高いCAR発現率及び抗腫瘍効果が示されること、さらに、pre-pro-IGF-2を標的結合ドメインとして用いた場合も、CAR発現率が維持され抗腫瘍効果が示されることを見い出し、本発明を完成するに至った。 The present inventors considered the possibility that CAR-T cells that use IGF1R ligands as target-binding domains instead of scFv could be applied as adoptive immunotherapeutic agents for IGF1R-expressing tumors, and conducted intensive studies. As a result, when CAR-T cells were prepared using the natural ligand mature IGF-1 as the target-binding domain, the CAR expression rate disappeared over time in the T cells transfected with the CAR gene, and CAR-T It was found that the cells could hardly kill IGF1R-expressing tumor cells. Therefore, the present inventors generated CAR-T cells using its precursor, pre-pro-IGF-1, as the target-binding domain instead of mature IGF-1. Surprisingly, the CAR expression rate was was maintained and the antitumor effect was improved. We also found that when a fragment lacking the E domain of pre-pro-IGF-1 was used as the target binding domain, the CAR expression rate was higher than when wild-type pre-pro-IGF-1 was used. and antitumor effect are shown, and further, when pre-pro-IGF-2 is used as a target binding domain, CAR expression rate is maintained and antitumor effect is shown, and to complete the present invention Arrived.

 すなわち、本発明は以下を包含する。
[1] インスリン様成長因子-1受容体(IGF1R)に結合する標的結合ドメインと、膜貫通ドメインと、細胞内シグナル伝達ドメインとを有するキメラ抗原受容体(chimeric antigen receptor: CAR)タンパク質をコードするポリヌクレオチドであって、標的結合ドメインが、インスリン様成長因子(IGF)のpre-pro前駆体又はそのEドメインを欠失した断片である、ポリヌクレオチド。
[2] 前記IGFが、IGF-1である、[1]に記載のポリヌクレオチド。
[3] 標的結合ドメインが、配列番号4、6、8、若しくは10に示すアミノ酸配列に対して少なくとも90%の配列同一性を有するアミノ酸配列からなる、[1]又は[2]に記載のポリヌクレオチド。
[4] 前記IGFが、IGF-2である、[1]に記載のポリヌクレオチド。
[5] 標的結合ドメインが、配列番号14に示すアミノ酸配列に対して少なくとも90%の配列同一性を有するアミノ酸配列からなる、[1]又は[4]に記載のポリヌクレオチド。
[6] [1]~[5]のいずれかに記載のポリヌクレオチドを含む、ベクター。
[7] [1]~[5]のいずれかに記載のポリヌクレオチド、又は[6]に記載のベクターが導入された、遺伝子改変細胞。
[8] [1]~[5]のいずれかに記載のポリヌクレオチド、又は[6]に記載のベクターを細胞に導入することを含む、CARタンパク質発現細胞の作製方法。
[9] [7]に記載の細胞を含む、IGF1R発現細胞が関与する疾患に対する治療剤。
[10] [9]に記載の治療剤と、医薬上許容される担体とを含む、医薬組成物。
[11] IGF1R発現細胞が関与する疾患が、白血病、多発性骨髄腫、リンパ腫、肺がん、頭頚部扁平上皮がん、肝がん、肝細胞がん、膵がん、結腸直腸がん、大腸がん、結腸がん、乳がん、子宮体がん、子宮頸がん、卵巣がん、前立腺がん、甲状腺がん、腎がん、副腎がん、メラノーマ、神経内分泌腫瘍、網膜芽腫、及び肉腫からなる群から選択される、[9]に記載の治療剤又は[10]に記載の組成物。
[12] [6]に記載のベクターを含む、IGF1R発現細胞を標的とするCARタンパク質発現細胞の作製のためのキット。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2022-012674号の開示内容を包含する。
That is, the present invention includes the following.
[1] Encodes a chimeric antigen receptor (CAR) protein with a target-binding domain that binds to the insulin-like growth factor-1 receptor (IGF1R), a transmembrane domain, and an intracellular signaling domain A polynucleotide, wherein the target binding domain is the pre-pro precursor of insulin-like growth factor (IGF) or a fragment thereof lacking the E domain.
[2] The polynucleotide of [1], wherein the IGF is IGF-1.
[3] The poly of [1] or [2], wherein the target-binding domain consists of an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 4, 6, 8, or 10 nucleotide.
[4] The polynucleotide of [1], wherein the IGF is IGF-2.
[5] The polynucleotide of [1] or [4], wherein the target-binding domain consists of an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO:14.
[6] A vector comprising the polynucleotide according to any one of [1] to [5].
[7] A genetically modified cell into which the polynucleotide of any one of [1] to [5] or the vector of [6] has been introduced.
[8] A method for producing a CAR protein-expressing cell, which comprises introducing the polynucleotide of any one of [1] to [5] or the vector of [6] into a cell.
[9] A therapeutic agent for diseases involving IGF1R-expressing cells, comprising the cells of [7].
[10] A pharmaceutical composition comprising the therapeutic agent of [9] and a pharmaceutically acceptable carrier.
[11] Diseases involving IGF1R-expressing cells include leukemia, multiple myeloma, lymphoma, lung cancer, head and neck squamous cell carcinoma, liver cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and colon. cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, renal cancer, adrenal cancer, melanoma, neuroendocrine tumors, retinoblastoma, and sarcoma The therapeutic agent of [9] or the composition of [10], which is selected from the group consisting of:
[12] A kit for producing CAR protein-expressing cells targeting IGF1R-expressing cells, comprising the vector of [6].
This specification includes the disclosure content of Japanese Patent Application No. 2022-012674, which is the basis of priority of this application.

 本発明により、IGF1Rを発現している標的細胞に結合し、抗腫瘍効果を発揮する遺伝子改変細胞が提供される。 The present invention provides genetically modified cells that bind to IGF1R-expressing target cells and exhibit antitumor effects.

図1は、本願実施例でCARの標的結合ドメインとして用いた、成熟IGF-1、pre-pro-IGF-1(IGF-1 Ea、IGF-1 Eb、IGF-1 Ec)、及びpre-pro-IGF-1のEドメインを欠失した断片(IGF-1 w/oE)の構造を示す。FIG. 1 shows mature IGF-1, pre-pro-IGF-1 (IGF-1 Ea, IGF-1 Eb, IGF-1 Ec) and pre-pro, which were used as CAR target-binding domains in the Examples of the present application. - shows the structure of the E domain-deleted fragment of IGF-1 (IGF-1 w/oE). 図2は、成熟IGF-1型CAR発現プラスミドのベクターマップを示す。Figure 2 shows the vector map of the mature IGF-1 type CAR expression plasmid. 図3は、IGF-1 Ea型CAR発現プラスミドのベクターマップを示す。FIG. 3 shows the vector map of the IGF-1 Ea-type CAR expression plasmid. 図4は、IGF-1 Eb型CAR発現プラスミドのベクターマップを示す。FIG. 4 shows the vector map of the IGF-1 Eb-type CAR expression plasmid. 図5は、IGF-1 Ec型CAR発現プラスミドのベクターマップを示す。FIG. 5 shows the vector map of the IGF-1 Ec-type CAR expression plasmid. 図6は、IGF-1 w/oE型CAR発現プラスミドのベクターマップを示す。FIG. 6 shows the vector map of the IGF-1 w/oE type CAR expression plasmid. 図7は、成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞における遺伝子導入後1、3、6、10日目(Day 1、3、6及び10)のCAR発現率を示す。Figure 7 shows the CAR expression rate in mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells on days 1, 3, 6 and 10 after gene transfer (Days 1, 3, 6 and 10). indicates 図8は、コントロールT細胞及び腫瘍細胞をE:T比4:1、2:1、1:1又は1:2で4日間共培養したときのコントロールT細胞の抗腫瘍細胞活性を表すフローサイトメトリーの結果を示す。Figure 8. Flow cytometry showing anti-tumor cell activity of control T cells when co-cultured with E:T ratios of 4:1, 2:1, 1:1 or 1:2 for 4 days. Shows the results of the metric. 図9は、IGF-1 Ea型CAR-T細胞及び腫瘍細胞をE:T比4:1、2:1、1:1又は1:2で4日間共培養したときのIGF-1 Ea型CAR-T細胞の抗腫瘍細胞活性を表すフローサイトメトリーの結果を示す。Figure 9 shows the IGF-1 Ea CAR when IGF-1 Ea CAR-T cells and tumor cells were co-cultured at an E:T ratio of 4:1, 2:1, 1:1 or 1:2 for 4 days. - shows flow cytometry results demonstrating the anti-tumor cell activity of T cells. 図10は、成熟IGF-1型CAR-T細胞及び腫瘍細胞をE:T比4:1、2:1、1:1又は1:2で4日間共培養したときの成熟IGF-1型CAR-T細胞の抗腫瘍細胞活性を表すフローサイトメトリーの結果を示す。FIG. 10 shows mature IGF-1 CAR when mature IGF-1 CAR-T cells and tumor cells were co-cultured at an E:T ratio of 4:1, 2:1, 1:1 or 1:2 for 4 days. - shows flow cytometry results demonstrating the anti-tumor cell activity of T cells. 図11は、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞における遺伝子導入後10日目(Day 10)のCAR発現率を示す。FIG. 11 shows the CAR expression rate in IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE type CAR-T cells 10 days after gene transfer (Day 10). 図12は、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞又はコントロールT細胞を、E:T比2:1、1:1又は1:2で腫瘍細胞と4日間共培養した後の腫瘍細胞数を示す。FIG. 12 depicts IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/o E CAR-T cells or control T cells at an E:T ratio of 2:1, 1:1 or 1:1. 2 shows the number of tumor cells after 4 days of co-culture with tumor cells. 図13は、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞又はコントロールT細胞を、E:T比2:1、1:1又は1:2で腫瘍細胞と4日間共培養した後のT細胞数を示す。FIG. 13 shows IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/o E CAR-T cells or control T cells at E:T ratios of 2:1, 1:1 or 1:1:1. 2 shows the number of T cells after co-culture with tumor cells for 4 days. 図14は、pre-pro-IGF-2型CAR発現プラスミドのベクターマップを示す。Figure 14 shows the vector map of the pre-pro-IGF-2 type CAR expression plasmid. 図15は、pre-pro-IGF-2型CAR-T細胞及びコントロールT細胞の、遺伝子導入後10日目(Day 10)におけるCAR発現解析結果を表すフローサイトメトリーの結果を示す。FIG. 15 shows the results of flow cytometry showing the results of CAR expression analysis of pre-pro-IGF-2 type CAR-T cells and control T cells on day 10 after gene transfer. 図16は、コントロールT細胞及び腫瘍細胞をE:T比2:1、1:1又は1:2で4日間共培養したときのコントロールT細胞の抗腫瘍細胞活性を表すフローサイトメトリーの結果を示す。Figure 16 shows flow cytometry results showing the anti-tumor cell activity of control T cells when control T cells and tumor cells were co-cultured at an E:T ratio of 2:1, 1:1 or 1:2 for 4 days. show. 図17は、pre-pro-IGF-2型CAR-T細胞及び腫瘍細胞をE:T比2:1、1:1又は1:2で4日間共培養したときのpre-pro-IGF-2型CAR-T細胞の抗腫瘍細胞活性を表すフローサイトメトリーの結果を示す。FIG. 17 shows pre-pro-IGF-2 levels when pre-pro-IGF-2 type CAR-T cells and tumor cells were co-cultured for 4 days at an E:T ratio of 2:1, 1:1 or 1:2. Fig. 2 shows flow cytometry results showing anti-tumor cell activity of type CAR-T cells. 図18は、IGF-1 w/oE型CAR-T細胞又はコントロールT細胞を、E:T比4:1、2:1、1:1、1:2、又は1:4で4日間、(A)乳がん細胞株MX-1、(B)肺腺がん細胞株H1568、(C)子宮体がん細胞株ARK-1と共培養した後の腫瘍細胞数を示す。Figure 18 shows IGF-1 w/o E-type CAR-T cells or control T cells at an E:T ratio of 4:1, 2:1, 1:1, 1:2, or 1:4 for 4 days ( Tumor cell numbers after co-culture with A) breast cancer cell line MX-1, (B) lung adenocarcinoma cell line H1568, (C) endometrial cancer cell line ARK-1. 図19は、IGF-1 w/oE型CAR-T細胞又はコントロールT細胞を、E:T比4:1、2:1、又は1:1で4日間、(A)子宮頸がん細胞株HeLa、(B)卵巣がん細胞株RMG-1と共培養した後の腫瘍細胞数を示す。FIG. 19 depicts IGF-1 w/o E-type CAR-T cells or control T cells at E:T ratios of 4:1, 2:1, or 1:1 for 4 days, (A) cervical cancer cell lines. HeLa, (B) Tumor cell numbers after co-culture with the ovarian cancer cell line RMG-1. 図20は、IGF-1 w/oE型CAR-T細胞、IGF-1 w/oE des1-3型CAR-T細胞、又はコントロールT細胞を、E:T比1:1、1:2、又は1:4で4日間、肺腺がん細胞株A549と共培養した後の腫瘍細胞の溶解率を示す。Figure 20 shows IGF-1 w/o E CAR-T cells, IGF-1 w/o E des1-3 CAR-T cells, or control T cells at an E:T ratio of 1:1, 1:2, or Lysis rate of tumor cells after co-culture with lung adenocarcinoma cell line A549 at 1:4 for 4 days. 図21は、IGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞のIGFBP3結合率を示す。FIG. 21 shows the IGFBP3 binding rate of IGF-1 w/o E type CAR-T cells and IGF-1 w/o E des1-3 type CAR-T cells. 図22は、IGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞をIGFBP3又はIGFBP3+IGF1Rで刺激した後の培養上清中のIFNγ濃度を示す。Figure 22 shows IGF-1 w/oE type CAR-T cells and IGF-1 w/oE des1-3 type CAR-T cells after stimulation with IGFBP3 or IGFBP3+IGF1R IFNγ concentration in the culture supernatant. .

 本発明は、インスリン様成長因子-1受容体(IGF1R)に結合する標的結合ドメインと、膜貫通ドメインと、細胞内シグナル伝達ドメインとを有するキメラ抗原受容体(chimeric antigen receptor: CAR)タンパク質をコードするポリヌクレオチドであって、標的結合ドメインが、インスリン様成長因子(IGF)のpre-pro前駆体又はそのEドメインを欠失した断片である、ポリヌクレオチドを提供する。 The present invention encodes a chimeric antigen receptor (CAR) protein having a target binding domain that binds to insulin-like growth factor-1 receptor (IGF1R), a transmembrane domain, and an intracellular signaling domain. wherein the target binding domain is an insulin-like growth factor (IGF) pre-pro precursor or an E domain deleted fragment thereof.

 本明細書において「キメラ抗原受容体(CAR)」とは、標的特異性をT細胞(例えば、ナイーブT細胞、ステムセルメモリーT細胞、セントラルメモリーT細胞、エフェクターメモリーT細胞、又はそれらの組み合わせ等のT細胞)等の細胞に移植することができる改変受容体を指す。CARはまた、人工T細胞受容体、キメラT細胞受容体、又はキメラ免疫受容体としても知られる。本明細書において「CAR-T細胞」とは、細胞表面にキメラ抗原受容体(CAR)を発現しているT細胞を意味する。 As used herein, the term "chimeric antigen receptor (CAR)" refers to targeting specificity of T cells (e.g., naive T cells, stem cell memory T cells, central memory T cells, effector memory T cells, or combinations thereof). It refers to a modified receptor that can be transplanted into cells such as T cells). CARs are also known as artificial T-cell receptors, chimeric T-cell receptors, or chimeric immune receptors. As used herein, the term "CAR-T cell" means a T cell expressing a chimeric antigen receptor (CAR) on its cell surface.

 本明細書において「ドメイン」とは、ポリペプチド内の領域であって、他の領域とは独立して特定の構造に折りたたまれる領域を示す。 As used herein, the term "domain" refers to a region within a polypeptide that folds into a specific structure independently of other regions.

 本明細書で使用される場合、「ポリヌクレオチド」には、天然又は合成のDNA及びRNA、例えばゲノムDNA、cDNA(相補DNA)、mRNA(メッセンジャーRNA)、rRNA(リボソームRNA)、shRNA(小ヘアピンRNA)、snRNA(核内低分子RNA)、snoRNA(核小体低分子RNA)、miRNA(マイクロRNA)、及び/又はtRNAが含まれるが、これらに限定されない。 As used herein, "polynucleotide" includes natural or synthetic DNA and RNA, such as genomic DNA, cDNA (complementary DNA), mRNA (messenger RNA), rRNA (ribosomal RNA), shRNA (small hairpin RNA), snRNA (small nuclear RNA), snoRNA (small nucleolar RNA), miRNA (microRNA), and/or tRNA.

 本明細書において「コードする」とは、当分野において通常使用されているように、所定のヌクレオチド配列が所定のタンパク質又は(ポリ)ペプチドのアミノ酸配列情報を暗号化していることをいい、本明細書において、センス鎖及びアンチセンス鎖の両方を「コードする」との文脈において使用する。 As used herein, "encoding" means that a given nucleotide sequence encodes amino acid sequence information of a given protein or (poly)peptide, as commonly used in the art. In the text both the sense and antisense strands are used in the context of "encoding".

 本明細書において「インスリン様成長因子-1受容体(IGF1R)」とは、インスリン受容体ファミリーに属する受容体型チロシンキナーゼであり、リガンド結合ドメインを構成する2つの細胞外αサブユニット、及びキナーゼドメインを有する2つの膜貫通βサブユニットからなるものである。IGF1Rはそのリガンド(主にIGF-1とIGF-2)と結合し、Ras/Raf/MEK/ERKあるいはPI3K/Akt/mTorシグナル伝達経路を介して、様々な細胞の増殖・分化・生存・代謝を制御する。 As used herein, the term "insulin-like growth factor-1 receptor (IGF1R)" refers to a receptor tyrosine kinase belonging to the insulin receptor family. It consists of two transmembrane β subunits with IGF1R binds to its ligands (mainly IGF-1 and IGF-2) and regulates proliferation, differentiation, survival, and metabolism of various cells via Ras/Raf/MEK/ERK or PI3K/Akt/mTor signaling pathways. to control.

 IGF1Rは広範な腫瘍において発現していることが知られている。IGF1R発現腫瘍としては、例えば、白血病、多発性骨髄腫、及びリンパ腫等の血液腫瘍、肺がん(例えば小細胞肺がん、非小細胞肺がん、例えば肺腺がん等)、頭頚部扁平上皮がん、肝がん、肝細胞がん、膵がん、結腸直腸がん、大腸がん、結腸がん、乳がん、子宮体がん、子宮頸がん、卵巣がん、前立腺がん、甲状腺がん、腎がん、副腎がん、メラノーマ、神経内分泌腫瘍、及び網膜芽腫等の固形腫瘍、並びに肉腫(例えばユーイング肉腫、骨肉腫等)が挙げられる。  IGF1R is known to be expressed in a wide range of tumors. IGF1R-expressing tumors include, for example, hematological tumors such as leukemia, multiple myeloma, and lymphoma, lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, e.g., lung adenocarcinoma, etc.), head and neck squamous cell carcinoma, liver cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, colorectal cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, kidney Solid tumors such as cancer, adrenal carcinoma, melanoma, neuroendocrine tumors, and retinoblastoma, and sarcomas (eg, Ewing's sarcoma, osteosarcoma, etc.).

 IGF1Rタンパク質のアミノ酸配列は、例えば、Uniprot アクセッション番号P08069として登録されている。 The amino acid sequence of the IGF1R protein has been registered, for example, as Uniprot accession number P08069.

 本明細書において「インスリン様成長因子結合タンパク質(IGFBP)」とは、IGF-1及びIGF-2に結合し、これらの血中半減期を延長するタンパク質である。IGFBPは6種類のタンパク質(IGFBP1~6)を包含しており、そのうちIGFBP3は血液中に最も豊富に存在するIGFBPである(L A Bach et al., Journal of Molecular Endocrinology, 2018, 61, T11-T28)。ヒトIGFBP3タンパク質のアミノ酸配列は、例えば、Uniprot アクセッション番号P17936-1として登録されている。IGFBPは様々な腫瘍により分泌されることが知られている。IGFBP3を分泌する腫瘍としては、腎がん、メラノーマ、膵がん、乳がん、肺腺がん及び頭頚部扁平上皮がん等が挙げられる。 As used herein, "insulin-like growth factor binding protein (IGFBP)" is a protein that binds to IGF-1 and IGF-2 and prolongs their blood half-lives. IGFBP encompasses six proteins (IGFBP1-6), of which IGFBP3 is the most abundant IGFBP in blood (L A Bach et al., Journal of Molecular Endocrinology, 2018, 61, T11- T28). The amino acid sequence of the human IGFBP3 protein is registered under Uniprot Accession No. P17936-1, for example. IGFBP is known to be secreted by various tumors. Tumors that secrete IGFBP3 include renal cancer, melanoma, pancreatic cancer, breast cancer, lung adenocarcinoma, head and neck squamous cell carcinoma, and the like.

 本明細書において「インスリン様成長因子(IGF)」とは、IGF1Rに結合しそれを活性化することにより成長促進作用を示すタンパク質である。IGFには、IGF-1とIGF-2の2つの分子種が含まれる。IGF-1及びIGF-2はいずれも、広範ながんにおいて過剰発現されており予後不良と関連することが報告されている。天然に存在する成熟IGF-1のアミノ酸配列としては、例えば、配列番号2に示されるものが挙げられ、それをコードする、ヒト細胞での発現のためにコドン最適化された塩基配列としては、例えば配列番号1が挙げられる。また、天然に存在する成熟IGF-2のアミノ酸配列としては、例えば、配列番号12に示されるものが挙げられ、それをコードする、ヒト細胞での発現のためにコドン最適化された塩基配列としては、例えば配列番号11が挙げられる。 As used herein, "insulin-like growth factor (IGF)" is a protein that exhibits growth-promoting effects by binding to and activating IGF1R. IGFs include two molecular species, IGF-1 and IGF-2. Both IGF-1 and IGF-2 have been reported to be overexpressed in a wide range of cancers and associated with poor prognosis. Amino acid sequences of naturally occurring mature IGF-1 include, for example, that shown in SEQ ID NO: 2, and the base sequences encoding it that are codon-optimized for expression in human cells include: For example, SEQ ID NO:1 can be mentioned. In addition, the amino acid sequence of naturally occurring mature IGF-2 includes, for example, that shown in SEQ ID NO: 12; , for example, SEQ ID NO: 11.

 生体内では、IGF-1及びIGF-2は、前駆体タンパク質として合成された後、N末端及びC末端部分が除去されることにより成熟タンパク質となることが知られている。具体的には、IGF-1は、まず、N末端側からシグナルペプチド、成熟IGF-1、及びEドメインを含む前駆体タンパク質であるpre-pro-IGF-1として翻訳され、その後、シグナルペプチドが除去されることによってpro-IGF-1となり、さらにプロテアーゼ切断によりEドメインが分離することによって成熟IGF-1となることが知られている。IGF-2も同様に、N末端側からシグナルペプチド、成熟IGF-2ペプチド、及びEドメインを含む前駆体タンパク質であるpre-pro-IGF-2として翻訳され、その後、シグナルペプチドが除去されpro-IGF-2となり、さらにプロテアーゼ切断によりEドメインが分離することによって成熟IGF-2となることが知られている(Brisson BK and Barton E, frontiers in ENDOCRINOLOGY, 2013, 4(42): 1-6)。 In vivo, IGF-1 and IGF-2 are known to become mature proteins by removing the N-terminal and C-terminal portions after being synthesized as precursor proteins. Specifically, IGF-1 is first translated from the N-terminal side as a signal peptide, mature IGF-1, and pre-pro-IGF-1, which is a precursor protein containing an E domain. It is known that pro-IGF-1 is formed by removal, and mature IGF-1 is formed by separation of the E domain by protease cleavage. Similarly, IGF-2 is translated from the N-terminal side as a signal peptide, mature IGF-2 peptide, and pre-pro-IGF-2, which is a precursor protein containing an E domain. It is known that it becomes IGF-2 and then mature IGF-2 by separating the E domain by protease cleavage (Brisson BK and Barton E, frontiers in ENDOCRINOLOGY, 2013, 4(42): 1-6) .

 本発明において、CARタンパク質は、IGF1Rに結合する標的結合ドメインを含む。標的結合ドメインは、IGF1R(好ましくはその細胞外リガンド結合ドメイン)への結合性を示し、IGF1Rを細胞表面上に発現している標的細胞に対する免疫応答を可能にする。 In the present invention, the CAR protein contains a target binding domain that binds to IGF1R. The target binding domain exhibits binding to IGF1R (preferably its extracellular ligand binding domain) and enables an immune response against target cells expressing IGF1R on the cell surface.

 本発明において、標的結合ドメインとしては、IGF1RのリガンドであるIGFのpre-pro前駆体又はそのEドメインを欠失した断片を用いることができる。 In the present invention, a pre-pro precursor of IGF, which is a ligand of IGF1R, or a fragment lacking the E domain thereof can be used as the target-binding domain.

 本明細書において「IGFのpre-pro前駆体(リガンド前駆体)」とは、N末端及びC末端部分が除去される前の、シグナルペプチド、成熟IGF、及びEドメインを含むIGFの前駆体を意味する。IGFのpre-pro前駆体は、ヒト、家畜(ウマ、ウシ、ヒツジ、ヤギ、ブタ等)、愛玩動物(イヌ、ネコ、ウサギ等)、実験動物(マウス、ラット、サル等)等を含む任意の哺乳動物に由来するものであり得るが、好ましくはヒトに由来するものである。IGFのpre-pro前駆体には、IGF-1のpre-pro前駆体(pre-pro-IGF-1)及びIGF-2のpre-pro前駆体(pre-pro-IGF-2)が含まれる。 As used herein, the term "pre-pro precursor of IGF (ligand precursor)" refers to an IGF precursor containing a signal peptide, mature IGF, and E domain before the N-terminal and C-terminal portions are removed. means. Pre-pro precursors of IGF can be used in humans, domestic animals (horses, cattle, sheep, goats, pigs, etc.), pets (dogs, cats, rabbits, etc.), experimental animals (mice, rats, monkeys, etc.), etc. can be derived from any mammal, but is preferably derived from humans. The pre-pro precursor of IGF includes the pre-pro precursor of IGF-1 (pre-pro-IGF-1) and the pre-pro precursor of IGF-2 (pre-pro-IGF-2). .

 本明細書において、IGFのpre-pro前駆体の「Eドメインを欠失した断片」(本明細書において「pre前駆体」とも称する)とは、IGFのpre-pro前駆体からEドメインを欠失させる(除去する)ことによって得られた断片を意味する。本明細書において「Eドメイン」とは、pre-pro前駆体中のC末端に存在する、前駆タンパク質転換酵素により除去されるドメインを意味する。本明細書において、pre-pro-IGF-1のEドメインは、例えば、配列番号4、6、又は8の119番目のアミノ酸に相当するアミノ酸の位置から開始するものであり得る。本明細書において、pre-pro-IGF-2のEドメインは、例えば、配列番号14の92番目のアミノ酸に相当するアミノ酸の位置から開始するものであり得る。 As used herein, an "E domain-deleted fragment" of the pre-pro precursor of IGF (also referred to herein as a "pre precursor") refers to a pre-pro precursor of IGF lacking the E domain. means a fragment obtained by depletion (removal). As used herein, the term "E domain" refers to the domain present at the C-terminus in the pre-pro precursor that is removed by the proprotein convertase. As used herein, the E domain of pre-pro-IGF-1 may start at the amino acid position corresponding to amino acid 119 of SEQ ID NO: 4, 6, or 8, for example. As used herein, the E domain of pre-pro-IGF-2 may start at the amino acid position corresponding to the 92nd amino acid of SEQ ID NO: 14, for example.

 IGF-1遺伝子は6個のエキソンを含有し、ヒトでは、選択的スプライシングによってIGF-1 Ea、IGF-1 Eb、IGF-1 Ecと称される3つの異なるタイプのmRNAバリアントを生じることが知られている(Candice G. T. Tahimic, et al., frontiers in ENDOCRINOLOGY, 2013, 4(6), p. 1-14)。IGF-1 Ea、IGF-1 Eb、IGF-1 Ec mRNAは、エキソン1又は2(シグナルペプチドをコードする)と、エキソン3及び4(成熟IGFをコードする)とを含む点においては共通しているが、C末端エキソン(Eドメインをコードする)が異なっており、IGF-1 Ea mRNAはエキソン5を含まずエキソン6を含み、IGF-1 Eb mRNAはエキソン6を含まずエキソン5を含み、IGF-1Ec mRNAはエキソン5及び6の両方を含む。 The IGF-1 gene contains six exons, and in humans, alternative splicing is known to give rise to three different types of mRNA variants termed IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec. (Candice G. T. Tahimic, et al., frontiers in ENDOCRINOLOGY, 2013, 4(6), p. 1-14). IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec mRNAs have in common that they contain exons 1 or 2 (encoding signal peptide) and exons 3 and 4 (encoding mature IGF). but differ in the C-terminal exon (encoding the E domain), IGF-1 Ea mRNA contains exon 6 but not exon 5, IGF-1 Eb mRNA contains exon 5 but not exon 6, IGF-1Ec mRNA contains both exons 5 and 6.

 本明細書においてpre-pro-IGF-1は、エキソン1によりコードされるシグナルペプチドを含むIGF-1 Ea、IGF-1 Eb、及びIGF-1 Ec(クラス1 IGF-1 Ea、IGF-1 Eb、及びIGF-1 Ecと称することもある。)タンパク質、及びエキソン2によりコードされるシグナルペプチドを含むIGF-1 Ea、IGF-1 Eb、及びIGF-1 Ec(クラス2 IGF-1 Ea、IGF-1 Eb、及びIGF-1 Ecと称することもある。)タンパク質を包含するが、好ましくは、クラス1 IGF-1 Ea、IGF-1 Eb、及びIGF-1 Ecタンパク質から選択されるものである。 Pre-pro-IGF-1, as used herein, includes IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec (class 1 IGF-1 Ea, IGF-1 Eb), including the signal peptide encoded by exon 1 , and IGF-1 Ec) proteins, and IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec, including the signal peptide encoded by exon 2 (class 2 IGF-1 Ea, IGF-1 Ec). -1 Eb, and IGF-1 Ec.) proteins, preferably those selected from class 1 IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec proteins. .

 本発明において、pre-pro-IGF-1は、天然に存在する全長型のpre-pro-IGF-1(IGF-1 Ea、IGF-1 Eb、及びIGF-1 Ec)であってもよい。天然に存在する全長型のクラス1 IGF-1 Eaとしては、例えば配列番号4に示されるアミノ酸配列からなるものが挙げられ、それをコードする、ヒト細胞での発現のためにコドン最適化された塩基配列としては、例えば配列番号3に示されるものが挙げられる。天然に存在する全長型のクラス1 IGF-1 Ebとしては、例えば配列番号6に示されるアミノ酸配列からなるものが挙げられ、それをコードする、ヒト細胞での発現のためにコドン最適化された塩基配列としては、例えば配列番号5に示されるものが挙げられる。天然に存在する全長型のクラス1 IGF-1 Ecとしては、例えば配列番号8に示されるアミノ酸配列からなるものが挙げられ、それをコードする、ヒト細胞での発現のためにコドン最適化された塩基配列としては、例えば配列番号7に示されるものが挙げられる。 In the present invention, pre-pro-IGF-1 may be naturally occurring full-length pre-pro-IGF-1 (IGF-1 Ea, IGF-1 Eb, and IGF-1 Ec). A naturally occurring full-length form of class 1 IGF-1 Ea includes, for example, one consisting of the amino acid sequence shown in SEQ ID NO: 4, which encodes codon-optimized for expression in human cells. Examples of base sequences include those shown in SEQ ID NO:3. A naturally occurring full-length class 1 IGF-1 Eb includes, for example, those consisting of the amino acid sequence shown in SEQ ID NO: 6, which encodes codon-optimized for expression in human cells. Examples of base sequences include those shown in SEQ ID NO:5. Naturally occurring full-length forms of class 1 IGF-1 Ec include, for example, those consisting of the amino acid sequence shown in SEQ ID NO: 8, which encodes codon-optimized for expression in human cells. Examples of base sequences include those shown in SEQ ID NO:7.

 本発明において、pre-pro-IGF-1のEドメインを欠失した断片(本明細書において「IGF-1 w/oE」又は「pre-IGF-1」とも称する。)は、天然に存在する全長型のpre-pro-IGF-1からEドメインを欠失させたものであってもよい。そのような断片としては、例えば、配列番号10に示されるアミノ酸配列からなるものが挙げられ、それをコードする、ヒト細胞での発現のためにコドン最適化された塩基配列としては、例えば配列番号9に示されるものが挙げられる。 In the present invention, a fragment lacking the E domain of pre-pro-IGF-1 (also referred to herein as "IGF-1 w/oE" or "pre-IGF-1") is naturally occurring It may be full-length pre-pro-IGF-1 with the E domain deleted. Such fragments include, for example, those consisting of the amino acid sequence shown in SEQ ID NO: 10, and examples of the base sequence encoding it, codon-optimized for expression in human cells, include SEQ ID NO: 9 can be mentioned.

 本発明において、標的結合ドメインとしては、上記の天然に存在する全長型のpre-pro-IGF-1又はそのEドメインを欠失した断片の他、これらのバリアント、例えば、配列番号4、6、8、若しくは10に示すアミノ酸配列に対して少なくとも90%、少なくとも91%、少なくとも92%、少なくとも93%、少なくとも94%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%の配列同一性を有するアミノ酸配列からなるものも用いることができる。 In the present invention, the target-binding domain includes the naturally occurring full-length pre-pro-IGF-1 or its E domain-deleted fragment, as well as variants thereof, such as SEQ ID NOS: 4, 6, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the amino acid sequence shown in 8 or 10 A sequence consisting of amino acid sequences with % sequence identity can also be used.

 上記の天然に存在する全長型のpre-pro-IGF-1又はそのEドメインを欠失した断片のバリアントは、成熟IGF-1部分の任意の位置にアミノ酸変異を有していてもよく、例えば、成熟IGF-1部分の任意の位置に1~10個又は1~5個のアミノ酸変異を有し得る。本明細書において、「アミノ酸変異」とは天然のアミノ酸配列に対する変化を意味し、アミノ酸配列の挿入、欠失、置換、付加等を包含する。上記バリアントが有し得る成熟IGF-1部分のアミノ酸変異としては、例えば、配列番号2の1~5番目に対応する領域内の1個、2個、3個、4個又は5個のアミノ酸の欠失、挿入、及び/又は置換、例えば、配列番号2の1~3番目に対応する領域内の1個、2個又は3個のアミノ酸の欠失が挙げられるが、好ましくは配列番号2の1~3番目に対応する領域内の3個のアミノ酸の欠失(特に、配列番号2の1~3番目のアミノ酸に対応する3個のアミノ酸の欠失)であり得る。配列番号2の1~3番目に対応する領域内の3個のアミノ酸の欠失を有するpre-pro-IGF-1のEドメインを欠失した断片は、例えば、配列番号27に示すアミノ酸配列を有するものであり得る。なお、本明細書において、「配列番号2の1~"x"番目に対応する領域」とは、配列番号2のアミノ酸配列とアライメントされたアミノ酸配列中で、配列番号2のアミノ酸配列の1~x番目の領域に対してアライメントされる領域を指す。 The above-mentioned naturally occurring full-length pre-pro-IGF-1 or its E domain deleted fragment variant may have an amino acid mutation at any position of the mature IGF-1 portion, e.g. , may have 1-10 or 1-5 amino acid mutations at any position in the mature IGF-1 portion. As used herein, "amino acid mutation" means a change to a natural amino acid sequence, and includes insertion, deletion, substitution, addition, etc. of the amino acid sequence. Amino acid mutations in the mature IGF-1 portion that the above variants may have include, for example, 1, 2, 3, 4 or 5 amino acid mutations in the region corresponding to positions 1 to 5 of SEQ ID NO: 2. Deletion, insertion, and/or substitution, for example, deletion of 1, 2, or 3 amino acids in the region corresponding to positions 1 to 3 of SEQ ID NO: 2, preferably SEQ ID NO: 2 It may be a deletion of 3 amino acids in the region corresponding to positions 1-3 (particularly a deletion of 3 amino acids corresponding to amino acids 1-3 of SEQ ID NO:2). A fragment lacking the E domain of pre-pro-IGF-1 having a deletion of three amino acids in the region corresponding to positions 1 to 3 of SEQ ID NO: 2 has, for example, the amino acid sequence shown in SEQ ID NO: 27. can have. As used herein, the term “region corresponding to 1 to “x”th of SEQ ID NO: 2” refers to 1 to 1 of the amino acid sequence of SEQ ID NO: 2 in the amino acid sequence aligned with the amino acid sequence of SEQ ID NO: 2 Refers to the region aligned to the xth region.

 後述の実施例10に示すように、本発明者らは、pre-pro-IGF-1のEドメインを欠失した断片(IGF-1 w/oE)を標的結合ドメインとして用いるCAR-T細胞(IGF-1 w/oE型CAR-T細胞)と、IGF-1 w/oEの成熟IGF-1部分(配列番号2)の1~3番目の3個のアミノ酸(GPE)を除去したもの(IGF-1 w/oE des1-3)を標的結合ドメインとして用いるCAR-T細胞(IGF-1 w/oE des1-3型CAR-T細胞)を作製し、IGFBP3発現腫瘍に対して後者が前者よりも高い抗腫瘍活性を有することを見い出した。 As shown in Example 10 below, the present inventors used a fragment lacking the E domain of pre-pro-IGF-1 (IGF-1 w/oE) as a target binding domain in CAR-T cells ( IGF-1 w/oE-type CAR-T cells) and the mature IGF-1 portion of IGF-1 w/oE (SEQ ID NO: 2) with the first to third three amino acids (GPE) removed (IGF -1 w/oE des1-3) as a target binding domain (IGF-1 w/oE des1-3 type CAR-T cells) were generated, and the latter was more effective against IGFBP3-expressing tumors than the former. It was found to have high antitumor activity.

 したがって、配列番号2の1~3番目のアミノ酸に対応する3個のアミノ酸の欠失を有するpre-pro-IGF-1又はそのEドメインを欠失した断片を標的結合ドメインとして用いるCAR-T細胞は、当該欠失を有しないpre-pro-IGF-1又はそのEドメインを欠失した断片を標的結合ドメインとして用いるCAR-T細胞に比べ、IGFBP3存在下で高い抗腫瘍活性を有し得る。このようなIGFBP3存在下で高い抗腫瘍活性を有するCAR-T細胞は、IGFBP3を分泌するがん(腎がん、メラノーマ、膵がん、乳がん、肺腺がん及び頭頚部扁平上皮がん等)を治療する場合に特に有用であり得る。また、IGFBP3は血液中に存在するため、IGFBP3存在下で高い抗腫瘍活性を有するCAR-T細胞は、血液がんを治療する場合や静脈内投与する場合にも特に有用であり得る。 Therefore, CAR-T cells using pre-pro-IGF-1 having a deletion of 3 amino acids corresponding to the 1st to 3rd amino acids of SEQ ID NO: 2 or a fragment lacking the E domain thereof as a target binding domain may have higher antitumor activity in the presence of IGFBP3 compared to CAR-T cells using pre-pro-IGF-1 without the deletion or a fragment lacking its E domain as the target binding domain. Such CAR-T cells, which have high antitumor activity in the presence of IGFBP3, are used in cancers that secrete IGFBP3 (renal cancer, melanoma, pancreatic cancer, breast cancer, lung adenocarcinoma, head and neck squamous cell carcinoma, etc.). ) may be particularly useful in treating In addition, since IGFBP3 is present in blood, CAR-T cells with high anti-tumor activity in the presence of IGFBP3 may be particularly useful in the treatment of blood cancers and in the case of intravenous administration.

 本発明者らはまた、後述の実施例11に示すように、上記の3個のアミノ酸の欠失を有するIGF-1 w/oE des1-3が、当該欠失を有さないIGF-1 w/oEの3倍以上ものIGFBP3結合能を有することを見い出した。先行研究では、上記の3個のアミノ酸の欠失によってIGF-1のIGFBP3への結合能が著しく低下することが報告されている(Sara VR et al., Annals New York Academy of Sciences, 1993, 692:183-91、Ballard F et al., Int. J. Biochem. Cell Biol., 1996, 28(10):1085-1087)ため、この結果は予想外であった。 The present inventors also found that IGF-1 w/oE des1-3 with the above-described three amino acid deletions was transformed into IGF-1 w without the deletions, as shown in Example 11 below. It was found to have IGFBP3-binding ability more than three times that of /oE. A previous study reported that deletion of the above three amino acids markedly reduced the ability of IGF-1 to bind to IGFBP3 (Sara VR et al., Annals New York Academy of Sciences, 1993, 692 :183-91, Ballard F et al., Int. J. Biochem. Cell Biol., 1996, 28(10):1085-1087), so this result was unexpected.

 本発明者らはさらに、後述の実施例12に示すように、IGF-1 w/oE des1-3型CAR-T細胞は、IGF1Rに結合して活性化されるだけでなく、IGFBP3に結合することによっても活性化されることを見い出した。 The present inventors further demonstrated that IGF-1 w/oE des1-3 type CAR-T cells are not only activated by binding to IGF1R, but also bind to IGFBP3, as shown in Example 12 below. I found that it is also activated by

 したがって、理論に拘束されないが、配列番号2の1~3番目のアミノ酸に対応する3個のアミノ酸の欠失を有するpre-pro-IGF-1又はそのEドメインを欠失した断片を標的結合ドメインとして用いるCAR-T細胞は、IGF1Rに結合して活性化されるだけでなくIGFBP3に結合することによっても活性化し、それによってIGFBP3存在下で高い抗腫瘍活性を示すと考えられる。 Therefore, without being bound by theory, pre-pro-IGF-1 having a deletion of three amino acids corresponding to amino acids 1 to 3 of SEQ ID NO: 2, or a fragment thereof lacking the E domain, is used in the target binding domain. CAR-T cells used as T cells are believed to be activated not only by binding to IGF1R but also by binding to IGFBP3, thereby exhibiting high antitumor activity in the presence of IGFBP3.

 本発明において、pre-pro-IGF-2は、天然に存在する全長型のpre-pro-IGF-2であってもよい。天然に存在する全長型のpre-pro-IGF-2としては、例えば配列番号14に示されるアミノ酸配列からなるものが挙げられ、それをコードする、ヒト細胞での発現のためにコドン最適化された塩基配列としては、例えば配列番号13に示されるものが挙げられる。 In the present invention, pre-pro-IGF-2 may be naturally occurring full-length pre-pro-IGF-2. A naturally occurring full-length form of pre-pro-IGF-2 includes, for example, one consisting of the amino acid sequence shown in SEQ ID NO: 14, which encodes codon-optimized for expression in human cells. Examples of such nucleotide sequences include those shown in SEQ ID NO: 13.

 本発明において、pre-pro-IGF-2のEドメインを欠失した断片(本明細書において「IGF-2 w/oE」又は「pre-IGF-2」とも称する。)は、天然に存在する全長型のpre-pro-IGF-2からEドメインを欠失させたものであってもよい。そのような断片としては、例えば、配列番号14の1~91番目のアミノ酸配列からなるものが挙げられる。 In the present invention, a fragment lacking the E domain of pre-pro-IGF-2 (also referred to herein as "IGF-2 w/oE" or "pre-IGF-2") is naturally occurring It may be full-length pre-pro-IGF-2 with the E domain deleted. Such fragments include, for example, those consisting of the 1st to 91st amino acid sequences of SEQ ID NO:14.

 本発明において、標的結合ドメインとしては、上記の天然に存在する全長型のpre-pro-IGF-2又はそのEドメインを欠失した断片の他、これらのバリアント、例えば、配列番号14に示すアミノ酸配列に対して少なくとも90%、少なくとも91%、少なくとも92%、少なくとも93%、少なくとも94%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%の配列同一性を有するアミノ酸配列からなるもの、配列番号14の1~91番目のアミノ酸配列に示すアミノ酸配列に対して少なくとも90%、少なくとも91%、少なくとも92%、少なくとも93%、少なくとも94%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、又は少なくとも99%の配列同一性を有するアミノ酸配列からなるものも用いることができる。 In the present invention, the target-binding domain includes the naturally occurring full-length pre-pro-IGF-2 or its E domain-deleted fragment, as well as variants thereof, such as the amino acid shown in SEQ ID NO: 14. have at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the sequence consisting of an amino acid sequence, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96% of the amino acid sequence shown in the 1st to 91st amino acid sequences of SEQ ID NO: 14 A sequence consisting of amino acid sequences having %, at least 97%, at least 98%, or at least 99% sequence identity can also be used.

 上記の天然に存在する全長型のpre-pro-IGF-2又はそのEドメインを欠失した断片のバリアントは、成熟IGF-2部分の任意の位置にアミノ酸変異を有していてもよく、例えば、成熟IGF-2部分の任意の位置に1~10個又は1~5個のアミノ酸変異を有し得る。上記バリアントが有し得る成熟IGF-2部分のアミノ酸変異としては、例えば、配列番号12の1~6番目に対応する領域内の1個、2個、3個、4個、5個、又は6個のアミノ酸の欠失、挿入、及び/又は置換が挙げられる。なお、本明細書において、「配列番号12の1~6番目に対応する領域」とは、配列番号12のアミノ酸配列とアライメントされたアミノ酸配列中で、配列番号12のアミノ酸配列の1~6番目の領域に対してアライメントされる領域を指す。 The above-mentioned naturally occurring full-length pre-pro-IGF-2 or its E domain deleted fragment variant may have an amino acid mutation at any position of the mature IGF-2 portion, e.g. , may have 1-10 or 1-5 amino acid mutations at any position in the mature IGF-2 portion. Amino acid mutations in the mature IGF-2 portion that the above variants may have include, for example, 1, 2, 3, 4, 5, or 6 in the region corresponding to positions 1 to 6 of SEQ ID NO: 12. deletions, insertions, and/or substitutions of single amino acids. In the present specification, the “region corresponding to positions 1 to 6 of SEQ ID NO: 12” refers to regions 1 to 6 of the amino acid sequence of SEQ ID NO: 12 in the amino acid sequence aligned with the amino acid sequence of SEQ ID NO: 12. refers to the region that is aligned with the region of

 上記のIGFのpre-pro前駆体若しくはその断片を標的結合ドメインとして含むCARを標的細胞において発現させた場合、IGFのpre-pro前駆体又はその断片中のシグナルペプチドが細胞内で除去された後に、CARが細胞表面に提示される可能性があるが、本明細書では、便宜上、シグナルペプチドを含む上記のIGFのpre-pro前駆体若しくはその断片を「標的結合ドメイン」と称する。 When the CAR containing the above IGF pre-pro precursor or fragment thereof as a target binding domain is expressed in target cells, after the signal peptide in the IGF pre-pro precursor or fragment thereof is removed in the cell Although CAR may be displayed on the cell surface, for convenience herein the above pre-pro precursor of IGF or fragment thereof containing the signal peptide is referred to as the "target binding domain".

 本発明において、標的結合ドメインは、それ自体がIGF1Rに結合するものであってもよい。標的結合ドメインはまた、それからシグナルペプチドが除去された後に、IGF1Rに結合するものであってもよい。 In the present invention, the target-binding domain itself may bind to IGF1R. The target binding domain may also bind IGF1R after the signal peptide has been removed from it.

 IGF1Rに対する、標的結合ドメイン又はシグナルペプチドが除去された標的結合ドメインの結合能は、KD値が例えば100nM以下、好ましくは10nM以下、より好ましくは5nM以下であることを意図する。この結合能は、抗原と抗体との結合能と比較して相対的に弱い結合であって良い。 The binding ability of the target-binding domain or the target-binding domain from which the signal peptide has been removed to IGF1R is intended to have a KD value of, for example, 100 nM or less, preferably 10 nM or less, more preferably 5 nM or less. This binding capacity may be a relatively weak binding compared to the binding capacity between the antigen and the antibody.

 本発明において、標的結合ドメインは、それを含むCARをコードするポリヌクレオチドを導入した細胞集団におけるCAR発現率を、成熟IGFを標的結合ドメインとして用いた場合に比べて増加させるものであり得る。本明細書において、細胞集団における「CAR発現率」とは、CARを細胞表面に発現している特定の細胞(例えばT細胞)の、細胞集団中の割合を意味する。CAR発現率は、例えば遺伝子(CARをコードするポリヌクレオチド)導入から1~10日後(例えば、1、3、6、又は10日後)のCAR発現率であり得る。CAR発現率は、例えば、T細胞マーカーを検出する蛍光標識抗体とCARを検出する蛍光標識抗体とを用いて細胞集団を染色し、フローサイトメトリーにかけ、T細胞マーカー及びCARの両方が陽性である細胞率をCAR発現率として測定することによって決定することができる。ある標的結合ドメインを含むCARをコードするポリヌクレオチドを導入した細胞集団におけるCAR発現率が、上記標的結合ドメインの代わりに成熟IGFを用いる点を除き同一のCARをコードするポリヌクレオチドを導入した細胞集団におけるCAR発現率に比べ、増加(例えば10%以上増加、統計学的に有意に増加)している場合には、上記標的結合ドメインは、それを含むCARをコードするポリヌクレオチドを導入した細胞集団におけるCAR発現率を、成熟IGFを標的結合ドメインとして用いた場合に比べて増加させると判断できる。 In the present invention, the target-binding domain can increase the CAR expression rate in a cell population into which a polynucleotide encoding a CAR containing it has been introduced, compared to when mature IGF is used as the target-binding domain. As used herein, the term "CAR expression rate" in a cell population means the ratio of specific cells (eg, T cells) expressing CAR on the cell surface in the cell population. The CAR expression rate can be, for example, the CAR expression rate 1 to 10 days (eg, 1, 3, 6, or 10 days) after gene (polynucleotide encoding CAR) introduction. The CAR expression rate is determined, for example, by staining a cell population with a fluorescently labeled antibody that detects a T cell marker and a fluorescently labeled antibody that detects a CAR, and subjecting the cell population to flow cytometry, and confirming that both the T cell marker and CAR are positive. It can be determined by measuring the cell rate as the CAR expression rate. A cell population transfected with a polynucleotide encoding a CAR having the same CAR expression rate in a cell population transfected with a polynucleotide encoding a CAR containing a certain target binding domain, except that mature IGF is used instead of the target binding domain When the CAR expression rate is increased (e.g., 10% or more, statistically significant increase) compared to the CAR expression rate in the cell population into which a polynucleotide encoding a CAR containing the target binding domain has been introduced It can be determined that the CAR expression rate in .

 本発明において、CARタンパク質は、場合によって、細胞外に存在する標的結合ドメインと膜貫通ドメインとの間に「細胞外スペーサードメイン」を含むことができる。細胞外スペーサードメインは、CARと抗原の結合を促進し、細胞内へのシグナル伝達を亢進する配列であることが望ましい。例えば、抗体のFcフラグメント、又はそのフラグメントもしくは誘導体、抗体のヒンジ領域、又はそのフラグメントもしくは誘導体、抗体のCH2領域、抗体のCH3領域、人工スペーサー配列、又はそれらの組み合わせを用いることができる。 In the present invention, the CAR protein can optionally contain an "extracellular spacer domain" between the extracellular target-binding domain and the transmembrane domain. The extracellular spacer domain is desirably a sequence that promotes binding of CAR to an antigen and enhances intracellular signal transduction. For example, an antibody Fc fragment, or a fragment or derivative thereof, an antibody hinge region, or a fragment or derivative thereof, an antibody CH2 region, an antibody CH3 region, an artificial spacer sequence, or a combination thereof can be used.

 本発明の一態様として、細胞外スペーサードメインとして、(i)IgG4のヒンジ、CH2、及びCH3領域、(ii)IgG4のヒンジ領域、(iii)IgG4のヒンジ及びCH2、(iv)CD8aのヒンジ領域、(v)IgG1のヒンジ、CH2、及びCH3領域、(vi)IgG1のヒンジ領域、もしくは(vii)IgG1のヒンジ及びCH2、又はそれらの組み合わせを使用することができる。例えば、IgG1のヒンジ領域として、以下のアミノ酸配列(配列番号15)を有するものを好適に使用することができるが、これに限定されるものではない。

Figure JPOXMLDOC01-appb-I000001
In one aspect of the present invention, the extracellular spacer domain includes (i) IgG4 hinge, CH2, and CH3 regions, (ii) IgG4 hinge region, (iii) IgG4 hinge and CH2, and (iv) CD8a hinge region. , (v) the hinge, CH2, and CH3 regions of IgG1, (vi) the hinge region of IgG1, or (vii) the hinge and CH2 of IgG1, or combinations thereof. For example, as the hinge region of IgG1, one having the following amino acid sequence (SEQ ID NO: 15) can be preferably used, but it is not limited to this.
Figure JPOXMLDOC01-appb-I000001

 また、IgG1のCH2領域として、配列番号16に示すアミノ酸配列を有するもの、CH3領域として、配列番号17に示すアミノ酸配列を有するものをそれぞれ好適に使用することができる。 In addition, as the CH2 region of IgG1, one having the amino acid sequence shown in SEQ ID NO: 16, and as the CH3 region, one having the amino acid sequence shown in SEQ ID NO: 17 can be preferably used.

 好ましい態様として、細胞外スペーサードメインはヒトIgG1のヒンジ、CH2、及びCH3領域又はその一部を使用することができる。 As a preferred embodiment, the extracellular spacer domain can use the hinge, CH2, and CH3 regions of human IgG1 or a portion thereof.

 また、好ましい態様として、細胞外スペーサードメインは、(i)ヒトIgG1のヒンジ領域単独(配列番号15)、(ii)ヒトIgG1のヒンジ領域(配列番号15)及びCH2領域(配列番号16)及びCH3領域(配列番号17)の組み合わせ、(iii)ヒトIgG1のヒンジ領域(配列番号15)及びCH3領域(配列番号17)の組み合わせ、(iv)CH3領域単独(配列番号17)、で使用することができる。 In a preferred embodiment, the extracellular spacer domain is composed of (i) human IgG1 hinge region alone (SEQ ID NO: 15), (ii) human IgG1 hinge region (SEQ ID NO: 15) and CH2 region (SEQ ID NO: 16) and CH3 region (SEQ ID NO: 17), (iii) hinge region (SEQ ID NO: 15) and CH3 region (SEQ ID NO: 17) of human IgG1, (iv) CH3 region alone (SEQ ID NO: 17). can.

 本発明の一態様として、細胞外スペーサードメインに用いる人工スペーサー配列として、式(G4S)nで表されるスペーサー配列を使用することができる。式中、nは、1~10であり、好ましくはn=3である。このようなスペーサー配列を有するスペーサーは、ペプチドリンカーと呼ばれることもある。当分野において好適に使用されるペプチドリンカーを、本発明において適宜使用することができる。この場合、ペプチドリンカーの構成及び鎖長は、得られるCARタンパク質の機能を損なわない範囲で適切なものを選択することができる。 As one aspect of the present invention, a spacer sequence represented by the formula (G4S)n can be used as an artificial spacer sequence for use in the extracellular spacer domain. In the formula, n is 1-10, preferably n=3. A spacer having such a spacer sequence is sometimes called a peptide linker. Peptide linkers suitably used in the art can be appropriately used in the present invention. In this case, the configuration and chain length of the peptide linker can be appropriately selected within the range that does not impair the function of the resulting CAR protein.

 細胞外スペーサードメインは、特に限定するものではないが、上記に例示したものから適宜選択して、又は当分野における技術常識に基づいて更に改変して、本発明のために使用することができる。 The extracellular spacer domain is not particularly limited, but can be appropriately selected from those exemplified above, or further modified based on the common technical knowledge in the field, and used for the present invention.

 細胞外スペーサードメインは、標的結合ドメインと、膜貫通ドメインとの間に存在し得るように、それぞれのドメインのアミノ酸配列をコードする塩基配列を連結してベクターに挿入し、宿主細胞において発現させることができる。あるいはまた、細胞外スペーサードメインは、予め作製したプラスミドCARタンパク質をコードするポリヌクレオチドを鋳型として改変することもできる。 The extracellular spacer domain can be present between the target-binding domain and the transmembrane domain by ligating the base sequences encoding the amino acid sequences of the respective domains, inserting them into a vector, and expressing them in host cells. can be done. Alternatively, the extracellular spacer domain can be modified using a previously prepared polynucleotide encoding a plasmid CAR protein as a template.

 細胞外スペーサードメインの改変は、例えば、CARをコードするポリヌクレオチドを導入したCAR-T細胞の宿主細胞におけるCAR遺伝子発現率の向上、シグナル伝達、細胞の老化、腫瘍への分布、抗原認識又はin vivo活性への影響を考慮した場合に有用である。 Modification of the extracellular spacer domain, for example, improves the CAR gene expression rate in host cells of CAR-T cells introduced with a polynucleotide encoding CAR, signal transduction, cell senescence, distribution to tumors, antigen recognition or in It is useful when considering the effect on in vivo activity.

 本発明において、CARタンパク質は、標的結合ドメイン及び任意に細胞外スペーサードメインを含む細胞外ドメインと、膜貫通ドメインと、細胞内シグナル伝達ドメイン及び任意に共刺激ドメインを含む細胞内ドメインとを含む。当分野において周知であるように、「膜貫通ドメイン」は、細胞外ドメイン及び細胞内ドメインがいずれも親水性ドメインであるのに対して、細胞膜を構成する脂質二重層に対する親和性を有するドメインである。 In the present invention, a CAR protein comprises an extracellular domain comprising a target binding domain and optionally an extracellular spacer domain, a transmembrane domain, an intracellular domain comprising an intracellular signaling domain and optionally a co-stimulatory domain. As is well known in the art, the "transmembrane domain" is a domain having affinity for the lipid bilayer that constitutes the cell membrane, whereas both the extracellular domain and the intracellular domain are hydrophilic domains. be.

 膜貫通ドメインは、CARタンパク質が細胞膜上に存在でき、標的結合ドメインと細胞内シグナル伝達ドメインの機能を損なわない限り、特に限定するものではないが、後述する共刺激ドメインと同じタンパク質由来のポリペプチドが膜貫通ドメインとしての機能を果たす場合もあり得る。膜貫通ドメインは、例えば、CD28、CD3ε、CD8α、CD3、CD4又は4-1BBなどの膜貫通ドメインを用いることができる。例えば、膜貫通ドメインは、ヒトCD28(Uniprot No. :P10747(153‐179))を使用することができる。具体的には、NCBI Accession No.: NM_006139.3 (679-759)のヌクレオチド配列によってコードされるアミノ酸配列を有するものを膜貫通ドメインとして好適に使用することができる。 The transmembrane domain is not particularly limited as long as the CAR protein can exist on the cell membrane and does not impair the functions of the target binding domain and the intracellular signaling domain, but it is a polypeptide derived from the same protein as the co-stimulatory domain described later. may serve as a transmembrane domain. Transmembrane domains such as CD28, CD3ε, CD8α, CD3, CD4 or 4-1BB can be used as transmembrane domains. For example, the transmembrane domain can be human CD28 (Uniprot No.: P10747 (153-179)). Specifically, those having the amino acid sequence encoded by the nucleotide sequence of NCBI Accession No.: NM_006139.3 (679-759) can be preferably used as the transmembrane domain.

 CARタンパク質は、場合によって「共刺激ドメイン」を含むことができる。共刺激ドメインは共刺激リガンドと特異的に結合し、それによって、これらに限定されないが、CAR-T細胞の増殖、サイトカイン産生、機能分化、標的細胞の細胞死のような、細胞による共刺激応答が媒介される。共刺激ドメインとしては、例えば、CD27、CD28、4-1BB (CD137)、CD134 (OX40)、Dap10、CD27、CD2、CD5、CD30、CD40、PD-1、ICAM-1、LFA-1 (CD11a/CD18)、TNFR-1、TNFR-II、Fas、Lckを用いることができる。例えば、共刺激ドメインは、ヒトCD28(Uniprot No. :P10747(180‐220))又は4-1BB(GenBank:U03397.1)等を使用することができる。具体的には、NCBI Accession No.: NM_006139.3 (760-882)のヌクレオチド配列によってコードされるアミノ酸配列を有するものを共刺激ドメインとして好適に使用することができる。 CAR proteins can optionally contain a "co-stimulatory domain". A co-stimulatory domain specifically binds a co-stimulatory ligand, thereby triggering a co-stimulatory response by the cell, such as, but not limited to, CAR-T cell proliferation, cytokine production, functional differentiation, and target cell death. is mediated. Costimulatory domains include, for example, CD27, CD28, 4-1BB (CD137), CD134 (OX40), Dap10, CD27, CD2, CD5, CD30, CD40, PD-1, ICAM-1, LFA-1 (CD11a/ CD18), TNFR-1, TNFR-II, Fas, Lck can be used. For example, the co-stimulatory domain can be human CD28 (Uniprot No.: P10747 (180-220)) or 4-1BB (GenBank: U03397.1). Specifically, those having the amino acid sequence encoded by the nucleotide sequence of NCBI Accession No.: NM_006139.3 (760-882) can be preferably used as co-stimulatory domains.

 膜貫通ドメインと共刺激ドメインとをいずれもヒトCD28由来のものを使用する場合、例えば配列番号18に示すアミノ酸配列を有するものを使用することができる。 When using both the transmembrane domain and the co-stimulatory domain derived from human CD28, for example, one having the amino acid sequence shown in SEQ ID NO: 18 can be used.

 CARタンパク質は「細胞内シグナル伝達ドメイン」を含む。細胞内シグナル伝達ドメインは、免疫細胞のエフェクター機能の発揮に必要なシグナルを伝達する。細胞内シグナル伝達ドメインとしては、例えば、ヒトCD3ζ鎖、FcγRIII、FcεRI、Fc受容体の細胞質末端、免疫受容体チロシン活性化モチーフ(ITAM)を有する細胞質受容体又はそれらの組み合わせを用いることができる。例えば、細胞内シグナル伝達ドメインは、ヒトCD3ζ鎖(例えばNCBI Accession No. NM_000734.3のヌクレオチド299-637)を使用することができる。具体的には配列番号19に示すアミノ酸配列を有するものを細胞内シグナル伝達ドメインとして好適に使用することができる。 The CAR protein contains an "intracellular signaling domain". Intracellular signaling domains transmit the signals necessary for the exertion of immune cell effector functions. The intracellular signaling domain can be, for example, the human CD3 zeta chain, FcγRIII, FcεRI, the cytoplasmic tail of an Fc receptor, a cytoplasmic receptor with an immunoreceptor tyrosine activation motif (ITAM), or a combination thereof. For example, the intracellular signaling domain can use the human CD3 zeta chain (eg nucleotides 299-637 of NCBI Accession No. NM_000734.3). Specifically, one having the amino acid sequence shown in SEQ ID NO: 19 can be preferably used as the intracellular signaling domain.

 CARタンパク質の分泌を促す目的で、タンパク質のN末端に、翻訳時にまたは翻訳後にタンパク質の移行を導くリーダー配列が適宜含まれる。本発明において好適に使用し得る有用なリーダー配列の例としては、これらに限定されないが、ヒトイムノグロブリン(Ig)重鎖シグナルペプチド、CD8αシグナルペプチド、またはヒトGM-CSF受容体αシグナルペプチドを挙げることができる。Ig重鎖シグナルペプチドは例えば、IgG1、IgG2、IgG3、IgA1、IgM由来のもの等を好適に使用することができる。 For the purpose of promoting the secretion of the CAR protein, the N-terminus of the protein appropriately contains a leader sequence that guides protein translocation during or after translation. Examples of useful leader sequences that can be suitably used in the present invention include, but are not limited to, human immunoglobulin (Ig) heavy chain signal peptide, CD8α signal peptide, or human GM-CSF receptor α signal peptide. be able to. Ig heavy chain signal peptides derived from, for example, IgG1, IgG2, IgG3, IgA1, and IgM can be preferably used.

 本発明において、CARタンパク質は、当該CARタンパク質を発現する細胞に対し、IGF1R発現細胞に対する細胞溶解活性を付与するものであり得る。 In the present invention, the CAR protein can impart cytolytic activity against IGF1R-expressing cells to cells expressing the CAR protein.

 目的とするポリヌクレオチドは常法に従い、容易に作製することができる。各ドメインのアミノ酸配列を示すNCBI RefSeq IDやGenBankのAccession番号からアミノ酸配列をコードする塩基配列を取得することが可能であり、標準的な分子生物学的及び/又は化学的手順を用いて本発明のポリヌクレオチドを作製することができる。例えば、これらの塩基配列をもとに、核酸を合成することができ、また、cDNAライブラリーよりポリメラーゼ連鎖反応(PCR)を使用して得られるDNA断片を組み合わせて本発明のポリヌクレオチドを作製することができる。 The target polynucleotide can be easily produced according to a conventional method. It is possible to obtain the nucleotide sequence encoding the amino acid sequence from the NCBI RefSeq ID indicating the amino acid sequence of each domain or the GenBank Accession number, and the present invention uses standard molecular biological and / or chemical procedures. of polynucleotides can be generated. For example, based on these nucleotide sequences, nucleic acids can be synthesized, and DNA fragments obtained from a cDNA library using the polymerase chain reaction (PCR) are combined to produce the polynucleotide of the present invention. be able to.

 従って、CARタンパク質をコードするポリヌクレオチドは、上記のそれぞれのドメインをコードするポリヌクレオチドを連結して作製することができ、このポリヌクレオチドを適切な細胞に導入することによって、遺伝子改変細胞を作製することができる。また、CARタンパク質は、標的結合ドメイン以外の構成成分が同一である既存のCARタンパク質をコードするポリヌクレオチドを鋳型として、常法に従い、標的結合ドメインを組み替えることによっても作製することができる。 Therefore, a polynucleotide encoding a CAR protein can be produced by ligating polynucleotides encoding each of the above domains, and introducing this polynucleotide into a suitable cell produces a genetically modified cell. be able to. A CAR protein can also be produced by using, as a template, a polynucleotide encoding an existing CAR protein having the same structural components other than the target-binding domain, and recombining the target-binding domain according to a conventional method.

 更に、目的に応じて、既存のCARタンパク質をコードするポリヌクレオチドを鋳型として、1以上のドメイン、例えば細胞外スペーサードメインを、inverse PCR(iPCR)法等を使用して、改変することができる。細胞外スペーサードメインの改変技術については、例えばOncoimmunology, 2016, Vol.5, No.12, e1253656等に記載されている。 Furthermore, depending on the purpose, one or more domains, such as the extracellular spacer domain, can be modified using the inverse PCR (iPCR) method, etc., using a polynucleotide encoding an existing CAR protein as a template. Techniques for modifying extracellular spacer domains are described, for example, in Oncoimmunology, 2016, Vol.5, No.12, e1253656.

 遺伝子改変細胞を作製するためのポリヌクレオチドの導入方法は、通常使用されているものであればいずれでも良く、特に限定されるものではない。ベクターを用いて導入する場合、使用され得るベクターとしては、特に限定するものではないが、例えばレンチウイルスベクター、レトロウイルスベクター、泡沫状ウイルスベクター、アデノ随伴ウイルスベクター等が挙げられる。また、ポリヌクレオチドの導入は、トランスポゾン法による非ウイルス性の方法で実施することができる。トランスポゾン法のために、プラスミドトランスポゾンを使用することができ、sleeping beautyトランスポゾンシステム(例えばHuang X, Guo H, et al. Mol Ther. 2008; 16: 580-9;Singh H, Manuri PR, et al. Cancer Res. 2008; 68: 2961-71;Deniger DC, Yu J, et al. PLoS One. 2015; 10: e0128151;Singh H, Moyes JS, et al. Cancer Gene Ther. 2015; 22: 95-100;Hou X, Du Y, et al. Cancer Biol Ther. 2015; 16: 8-16;Singh H, Huls H, et al. Immunol Rev. 2014; 257: 181-90;及びMaiti SN, Huls H, et al. J Immunother. 2013; 36: 112-23に記載)又はpiggyBacトランスポゾンシステム(Nakazawa Y, Huye LE, et al. J Immunother. 2009; 32: 826-36;Galvan DL, Nakazawa Y, et al. J Immunother. 2009; 32: 837-44;Nakazawa Y, Huye LE, et al. Mol Ther. 2011; 19: 2133-43;Huye LE, Nakazawa Y, et al. Mol Ther. 2011; 19: 2239-48;Saha S, Nakazawa Y, et al. J Vis Exp. 2012; (69): e4235;Nakazawa Y, Saha S, et al. J Immunother. 2013; 36: 3-10; Saito S, Nakazawa Y, et al. Cytotherapy. 2014; 16: 1257-69;及びNakazawa et al. Journal of Hematology & Oncology (2016) 9:27に記載)が好適に使用できる。 The method of introducing polynucleotides for producing genetically modified cells may be any method that is commonly used, and is not particularly limited. When introducing using a vector, vectors that can be used include, but are not limited to, lentiviral vectors, retroviral vectors, foamy viral vectors, adeno-associated viral vectors, and the like. In addition, introduction of polynucleotides can be performed by non-viral methods such as transposon methods. For transposon methods, plasmid transposons can be used, and the sleeping beauty transposon system (e.g. Huang X, Guo H, et al. Mol Ther. 2008; 16: 580-9; Singh H, Manuri PR, et al. Cancer Res. 2008; 68: 2961-71; Deniger DC, Yu J, et al. PLoS One. 2015; 10: e0128151; Singh H, Moyes JS, et al. Cancer Gene Ther. Hou X, Du Y, et al. Cancer Biol Ther. 2015; 16: 8-16; Singh H, Huls H, et al. Immunol Rev. 2014; 257: 181-90; and Maiti SN, Huls H, et al 2013; 36: 112-23) or the piggyBac transposon system (Nakazawa Y, Huye LE, et al. J Immunother. 2009; 32: 826-36; Galvan DL, Nakazawa Y, et al. J Immunother 2009; 32: 837-44; Nakazawa Y, Huye LE, et al. Mol Ther. 2011; 19: 2133-43; Huye LE, Nakazawa Y, et al. S, Nakazawa Y, et al. J Vis Exp. 2012; (69): e4235; Nakazawa Y, Saha S, et al. J Immunother. 2013; 36: 3-10; Saito S, Nakazawa Y, et al. 2014; 16: 1257-69; and Nakazawa et al. Journal of Hematology & Oncology (2016) 9:27) can be preferably used.

 piggyBacトランスポゾンシステムを使用する場合、典型的には、piggyBacトランスポザーゼをコードする遺伝子を保持したプラスミド(本明細書中においてpiggyBacプラスミドと記載する)と、CARタンパク質をコードするポリヌクレオチドがpiggyBac逆向き反復配列に挟まれた構造を備えるプラスミドとを導入(トランスフェクション)する。トランスフェクションには、電気穿孔法(エレクトロポレーション)、ヌクレオフェクション、リポフェクション、リン酸カルシウム法等の各種手法が利用できる。双方のプラスミドには、ポリA付加リーダー配列、レポーター遺伝子、選択マーカー遺伝子、エンハンサー配列等を含めることができる。 When the piggyBac transposon system is used, typically, a plasmid carrying a gene encoding piggyBac transposase (referred to herein as a piggyBac plasmid) and a polynucleotide encoding a CAR protein contain the piggyBac inverted repeat sequence. A plasmid comprising a structure flanked by the two is introduced (transfected). Various methods such as electroporation, nucleofection, lipofection, and calcium phosphate method can be used for transfection. Both plasmids can contain poly-A added leader sequences, reporter genes, selectable marker genes, enhancer sequences and the like.

 エレクトロポレーションのために使用する装置としては、限定するものではないが、例えば4D-Nucleofector(ロンザジャパン株式会社)、NEPA21(ネッパジーン株式会社)、Maxcyte GT(Maxcyte, Inc)等を用いることができ、それぞれの使用説明書に従って操作することができる。 The device used for electroporation is not limited, but for example, 4D-Nucleofector (Lonza Japan Co., Ltd.), NEPA21 (Neppa Gene Co., Ltd.), Maxcyte GT (Maxcyte, Inc), etc. can be used. , can be operated according to the respective instructions for use.

 上記の方法により、1×106~2×107個の範囲の細胞に遺伝子導入することが可能である。 By the above method, it is possible to introduce genes into 1×10 6 to 2×10 7 cells.

 上記のポリヌクレオチドが導入される細胞としては、哺乳動物、例えばヒト由来の細胞又はサル、マウス、ラット、ブタ、ウシ、イヌ等の非ヒト哺乳動物由来のT細胞又はT細胞を含む細胞集団が使用でき、細胞傷害性タンパク質(パーフォリン、グランザイム等)を放出する細胞を用いることが好ましい。具体的には、例えばT細胞、T細胞の前駆細胞(造血幹細胞、リンパ球前駆細胞等)、NK-T細胞を含有する細胞集団を使用することができる。さらに、これらの細胞に分化し得る細胞としてES細胞、iPS細胞等の各種幹細胞が含まれる。T細胞には、CD8陽性T細胞、CD4陽性T細胞、制御性T細胞、細胞傷害性T細胞、又は腫瘍浸潤リンパ球が含まれる。T細胞及びT細胞の前駆細胞を含有する細胞集団には、PBMCが含まれる。前記の細胞は生体より採取されたもの、それを拡大培養したもの又は細胞株として樹立されたもののいずれでもよい。製造されたCARを発現する細胞又は当該細胞より分化させた細胞を生体に移植する場合には、その生体自身又は同種の生体から採取された細胞に核酸を導入することが望ましい。 Cells into which the polynucleotide is introduced include mammals, for example, human-derived cells, or non-human mammal-derived T cells such as monkeys, mice, rats, pigs, cows, and dogs, or cell populations containing T cells. Cells that are available and release cytotoxic proteins (perforin, granzyme, etc.) are preferably used. Specifically, for example, a cell population containing T cells, T cell progenitor cells (hematopoietic stem cells, lymphocyte progenitor cells, etc.), and NK-T cells can be used. Furthermore, cells capable of differentiating into these cells include various stem cells such as ES cells and iPS cells. T cells include CD8 positive T cells, CD4 positive T cells, regulatory T cells, cytotoxic T cells, or tumor infiltrating lymphocytes. Cell populations containing T cells and T cell progenitor cells include PBMCs. The above-mentioned cells may be those collected from living organisms, those obtained by expanding culture thereof, or those established as cell lines. When cells expressing the manufactured CAR or cells differentiated from the cells are transplanted into a living body, it is desirable to introduce the nucleic acid into the living body itself or cells collected from the same kind of living body.

 本発明の遺伝子改変細胞のためにポリヌクレオチドが導入され、養子免疫療法に使用されるT細胞としては、持続的な抗腫瘍効果が期待されるT細胞、例えば、ステムセルメモリーT細胞を使用することができる。ステムセルメモリーT細胞の解析は、常法に従い、例えば、(Yang Xu, et al. Blood. 2014; 123:3750-3759)等の記載に従って容易に確認することができる。 As T cells into which a polynucleotide has been introduced for the genetically modified cells of the present invention and which are used for adoptive immunotherapy, T cells expected to have a sustained anti-tumor effect, such as stem cell memory T cells, should be used. can be done. Analysis of stem cell memory T cells can be easily confirmed according to a conventional method, for example, according to (Yang Xu, et al. Blood. 2014; 123:3750-3759).

 実施態様の一つとしては、ステムセルメモリーT細胞は、例えば、CD45R0-、CD62L+、CD45RA+及びCCR7+であるT細胞が使用できる。 In one embodiment, stem cell memory T cells can be, for example, CD45R0-, CD62L+, CD45RA+ and CCR7+ T cells.

 本発明はまた、上記の本発明のポリヌクレオチドを含むベクターを提供する。 The present invention also provides a vector comprising the above-described polynucleotide of the present invention.

 本発明はまた、上記の本発明のポリヌクレオチド、又は上記の本発明のベクターが導入された遺伝子改変細胞を提供する。本発明の遺伝子改変細胞は、IGFのpre-pro前駆体又はそのEドメインを欠失した断片を標的結合ドメインとして用いるCARタンパク質を細胞膜上に発現する。この標的結合ドメインはシグナルペプチド及び成熟IGFを含み、シグナルペプチドが除去される前又は除去された後に、IGF1Rのみならず、IGF1R/INSR-Aハイブリッド受容体及びIGF1R/INSR-Bハイブリッド受容体にも結合し得る。したがって、本発明の遺伝子改変細胞は、IGF1R発現腫瘍細胞のみを標的とする薬剤に比べ、強力な抗腫瘍効果を有する。 The present invention also provides genetically modified cells into which the polynucleotide of the present invention or the vector of the present invention has been introduced. The genetically modified cells of the present invention express on the cell membrane a CAR protein that uses the pre-pro precursor of IGF or its E domain-deleted fragment as the target binding domain. This target-binding domain contains a signal peptide and mature IGF, and not only IGF1R, but also IGF1R/INSR-A and IGF1R/INSR-B hybrid receptors, before or after removal of the signal peptide. can combine. Therefore, the genetically modified cells of the present invention have a stronger anti-tumor effect than drugs that target only IGF1R-expressing tumor cells.

 本発明は更に、上記本発明のポリヌクレオチド、又は上記本発明のベクターを細胞に導入することを含む、CARタンパク質発現細胞の作製方法を提供する。 The present invention further provides a method for producing a CAR protein-expressing cell, comprising introducing the polynucleotide of the present invention or the vector of the present invention into a cell.

 CARタンパク質発現細胞の培養・増幅は、特に限定するものではないが、例えば上記のようにしてCARタンパク質をコードするポリヌクレオチドを細胞に導入した後、CARタンパク質発現細胞の活性化等の目的で、細胞に対して非特異的あるいはCAR特異的な刺激を加えることができる。細胞刺激の方法は限定されるものではないが、例えば、非特異的な細胞刺激として、抗CD3抗体及び/又は抗CD28抗体による刺激を用いることができ、CAR特異的な刺激としては、K562等の腫瘍細胞株にCARに結合する抗原分子や共刺激因子を発現させた人工抗原提示細胞(aAPCs)によるCAR特異的刺激等を用いることができる。ここでの培養条件は、特に限定するものではないが、例えば、37℃、5%CO2下で1~10日間培養することが好適である。 Cultivation and expansion of CAR protein-expressing cells are not particularly limited. Non-specific or CAR-specific stimuli can be applied to cells. Although the method of cell stimulation is not limited, for example, anti-CD3 antibody and/or anti-CD28 antibody stimulation can be used as non-specific cell stimulation, and K562 etc. can be used as CAR-specific stimulation. CAR-specific stimulation using artificial antigen-presenting cells (aAPCs) that express CAR-binding antigen molecules or co-stimulatory factors in tumor cell lines can be used. The culturing conditions here are not particularly limited, but for example, culturing at 37° C. under 5% CO 2 for 1 to 10 days is suitable.

 上記の本発明の方法において、細胞への導入は、限定するものではないが、トランスポゾン法によって行うことが好適である。また、トランスポゾン法としては、上記したトランスポゾンシステム、及び本発明に適した他のシステムのいずれを用いても良く、特に限定するものではないが、piggyBac法を使用することで本発明の方法を好適に実施することができる。 In the method of the present invention described above, introduction into cells is preferably performed by the transposon method, although this is not a limitation. In addition, as the transposon method, any of the transposon system described above and other systems suitable for the present invention may be used, and although not particularly limited, the method of the present invention is preferably performed using the piggyBac method. can be implemented.

 非特異的刺激による別の態様としては、T細胞を含む細胞集団を1種または複数種のウイルスペプチド抗原により刺激を加えた後、常法によりウイルス増殖能を不活化処理した細胞をフィーダー細胞として、CARが導入された細胞の活性化を促すことができる。使用されるウイルスペプチド抗原は、例えばAdV抗原ペプチド混合物、CMV抗原ペプチド混合物又はEBV抗原ペプチド混合物、あるいはこれらの組み合わせが使用される。 In another embodiment of non-specific stimulation, a cell population containing T cells is stimulated with one or more types of viral peptide antigens, and then treated to inactivate virus proliferation by a conventional method as feeder cells. , can promote the activation of CAR-introduced cells. Viral peptide antigens used are, for example, AdV antigenic peptide mixtures, CMV antigenic peptide mixtures, EBV antigenic peptide mixtures, or combinations thereof.

 特異的刺激による別の態様としては、WO 2020/085480に記載されるように、CAR発現細胞が由来する個体と同じ個体由来のPBMCをヒトIL-4及びGM-CSFを含有する培地で培養することにより作製した未熟樹状細胞とCAR発現細胞とを共培養することが挙げられる。 In another embodiment of specific stimulation, as described in WO 2020/085480, PBMCs derived from the same individual from which the CAR-expressing cells are derived are cultured in a medium containing human IL-4 and GM-CSF. co-culture of immature dendritic cells and CAR-expressing cells produced by the method.

 また、細胞の生存率/増殖率を高める目的で1種または複数種のサイトカインの存在下で行うことができ、例えばIL-7及びIL-15等のサイトカインの存在下で培養することが好適である。 In addition, culture can be performed in the presence of one or more cytokines for the purpose of increasing cell viability/proliferation rate, and is preferably cultured in the presence of cytokines such as IL-7 and IL-15. be.

 本発明は更に、上記本発明のベクターを含む、IGF1R発現細胞を標的とするCARタンパク質発現細胞の作製のためのキットを提供する。本発明のキットには、CARタンパク質発現細胞の作製のために必要な試薬、緩衝液、反応容器、使用説明書等を適宜含めることができる。本発明のキットは、上記の本発明の遺伝子改変細胞を作製するために好適に使用することができる。 The present invention further provides a kit for producing CAR protein-expressing cells targeting IGF1R-expressing cells, which contains the vector of the present invention. The kit of the present invention can appropriately contain reagents, buffer solutions, reaction vessels, instructions for use, and the like necessary for producing CAR protein-expressing cells. The kit of the present invention can be suitably used for producing the above-described genetically modified cells of the present invention.

 本発明の細胞は、IGF1Rを表面に発現している標的細胞に対して、受容体特異的免疫応答を引き起こすことによって、細胞内にシグナルが伝達され、活性化される。CARを発現する細胞の活性化は、宿主細胞の種類やCARの細胞内ドメインによって異なるが、例えば、サイトカイン(例えばIFN-γ、IL-2等)の放出、細胞増殖率の向上、細胞表面分子の変化等を指標として確認することができる。細胞傷害性タンパク質の放出(パーフォリン、グランザイムなど)は、受容体を発現している細胞の破壊をもたらす。 The cells of the present invention are activated by intracellular signal transmission by triggering a receptor-specific immune response against target cells expressing IGF1R on their surface. Activation of CAR-expressing cells varies depending on the host cell type and the intracellular domain of CAR. can be confirmed as an index. Release of cytotoxic proteins (perforin, granzyme, etc.) leads to destruction of cells expressing the receptor.

 本発明の遺伝子改変細胞は、IGF1R発現細胞が関与する疾患に対する治療剤として使用することができる。したがって、本発明は、本発明の遺伝子改変細胞を含む、IGF1R発現細胞が関与する疾患に対する治療剤を提供する。本発明の治療剤による治療が期待される疾患としては、当該細胞に感受性を示す疾患であれば良く、限定されないが、例えば、IGF1Rを細胞膜上に発現する細胞が関連する疾患、例えば、がん、例えば、白血病、多発性骨髄腫、リンパ腫等の血液腫瘍、肺がん(例えば小細胞肺がん、非小細胞肺がん、例えば肺腺がん等)、頭頚部扁平上皮がん、肝がん、肝細胞がん、膵がん、結腸直腸がん、大腸がん、結腸がん、乳がん、子宮体がん、子宮頸がん、卵巣がん、前立腺がん、甲状腺がん、腎がん、副腎がん、メラノーマ、神経内分泌腫瘍、及び網膜芽腫等の固形腫瘍、並びに肉腫(例えばユーイング肉腫、骨肉腫等)が挙げられる。 The genetically modified cells of the present invention can be used as therapeutic agents for diseases involving IGF1R-expressing cells. Therefore, the present invention provides therapeutic agents for diseases involving IGF1R-expressing cells, including the genetically modified cells of the present invention. The disease expected to be treated with the therapeutic agent of the present invention is not limited as long as it is a disease that shows sensitivity to the cells. For example, diseases associated with cells expressing IGF1R on the cell membrane, such as cancer , For example, hematological tumors such as leukemia, multiple myeloma, and lymphoma, lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, e.g., lung adenocarcinoma, etc.), head and neck squamous cell carcinoma, liver cancer, hepatocytes cancer, pancreatic cancer, colorectal cancer, colorectal cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, kidney cancer, adrenal cancer , solid tumors such as melanoma, neuroendocrine tumors, and retinoblastoma, and sarcomas (eg, Ewing's sarcoma, osteosarcoma, etc.).

 本発明の治療剤の一態様は、上記腫瘍のようなIGF1R発現腫瘍細胞に対する抗癌剤である。本発明の治療剤又は抗癌剤は、単独で使用することもできるが、異なるメカニズムの薬剤及び/又は治療と組み合わせて使用することができる。 One aspect of the therapeutic agent of the present invention is an anticancer agent against IGF1R-expressing tumor cells such as the above tumors. The therapeutic agent or anticancer agent of the present invention can be used alone, but can also be used in combination with drugs and/or treatments with different mechanisms.

 従って、本発明の治療剤は、単独又は他の有効成分と組み合わせて、医薬組成物の形態とすることができる。本発明の治療剤又は医薬組成物は、局所投与又は全身投与することができる。具体的な投与形態としては、限定されないが、例えば静脈内投与、腫瘍内投与、及び髄腔内投与等が挙げられる。投与形態は、例えば白血病の治療の場合には、静脈内投与とすることが好ましい。医薬組成物には、本発明の治療剤及び他の有効成分の他に、投与形態に応じて、当分野で通常使用される担体、賦形剤、緩衝剤、安定化剤等を含めることができる。本発明の一態様では、医薬組成物は、例えば、本発明の治療剤と、医薬上許容される担体とを含むものであり得る。 Therefore, the therapeutic agent of the present invention can be in the form of a pharmaceutical composition alone or in combination with other active ingredients. The therapeutic agents or pharmaceutical compositions of the invention can be administered locally or systemically. Specific administration modes include, but are not limited to, intravenous administration, intratumoral administration, and intrathecal administration. The preferred mode of administration is intravenous administration, for example for the treatment of leukemia. In addition to the therapeutic agent of the present invention and other active ingredients, pharmaceutical compositions may contain carriers, excipients, buffers, stabilizers, etc. commonly used in the art, depending on the mode of administration. can. In one aspect of the invention, a pharmaceutical composition can comprise, for example, a therapeutic agent of the invention and a pharmaceutically acceptable carrier.

 本発明の治療剤の投与量は、患者の体重、年齢、疾患の重篤度等に応じて変動するものであり、特に限定するものではないが、例えば、104~1010 CAR陽性細胞数/kg体重の範囲で1日1回~数回、2日毎、3日毎、1週間毎、2週間毎、毎月、2カ月毎、3カ月毎に投与することが可能である。 The dose of the therapeutic agent of the present invention varies depending on the patient's body weight, age , severity of disease, etc., and is not particularly limited. It can be administered once to several times a day, every 2 days, every 3 days, every week, every 2 weeks, every month, every 2 months, every 3 months, within the range of /kg body weight.

 本発明の治療剤又は医薬組成物の投与の対象としては、ヒト、家畜(ウマ、ウシ、ヒツジ、ヤギ、ブタ等)、愛玩動物(イヌ、ネコ、ウサギ等)、実験動物(マウス、ラット、サル等)等を含む任意の哺乳動物を挙げることができるが、好ましくはヒトである。 Subjects to which the therapeutic agent or pharmaceutical composition of the present invention is administered include humans, domestic animals (horses, cows, sheep, goats, pigs, etc.), pets (dogs, cats, rabbits, etc.), experimental animals (mice, rats, etc.). Any mammals including monkeys, etc.) can be mentioned, but humans are preferred.

 本発明の治療剤又は医薬組成物中に含まれるCD4+ CAR-T細胞及び/又はCD8+ CAR-T細胞中のCD45RA+CD62L+細胞(ステムセルメモリーT細胞)は、例えば、70%以上又は80%以上であってもよい。 CD45RA + CD62L + cells (stem cell memory T cells) in CD4 + CAR-T cells and/or CD8 + CAR-T cells contained in the therapeutic agent or pharmaceutical composition of the present invention are, for example, 70% or more or 80% or more There may be.

 本発明は更に、上記の本発明の遺伝子改変細胞、治療剤又は医薬組成物を患者に治療的有効量で投与することを含む、IGF1R発現細胞が関与する疾患、例えばIGF1Rを細胞膜上に発現する細胞が関連する疾患、例えば白血病、多発性骨髄腫、リンパ腫等の血液腫瘍、肺がん(例えば小細胞肺がん、非小細胞肺がん、例えば肺腺がん等)、頭頚部扁平上皮がん、肝がん、肝細胞がん、膵がん、結腸直腸がん、大腸がん、結腸がん、乳がん、子宮体がん、子宮頸がん、卵巣がん、前立腺がん、甲状腺がん、腎がん、副腎がん、メラノーマ、神経内分泌腫瘍、及び網膜芽腫等の固形腫瘍、並びに肉腫(例えばユーイング肉腫、骨肉腫等)等のがんの治療方法を提供する。治療的有効量及び投与レジメンは、上記したような様々な因子を考慮して、適宜決定することができる。 The present invention further comprises administering to a patient a therapeutically effective amount of the genetically modified cells, therapeutic agents or pharmaceutical compositions of the present invention described above, diseases involving IGF1R-expressing cells, such as those expressing IGF1R on the cell membrane Diseases related to cells, e.g. hematological tumors such as leukemia, multiple myeloma, lymphoma, lung cancer (e.g. small cell lung cancer, non-small cell lung cancer, e.g. lung adenocarcinoma, etc.), head and neck squamous cell carcinoma, liver cancer , hepatocellular carcinoma, pancreatic cancer, colorectal cancer, colorectal cancer, colon cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, renal cancer , solid tumors such as adrenal cancer, melanoma, neuroendocrine tumors, and retinoblastoma, and cancers such as sarcomas (eg, Ewing's sarcoma, osteosarcoma, etc.). A therapeutically effective amount and dosage regimen can be determined as appropriate, taking into consideration various factors such as those described above.

 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically using examples. However, the technical scope of the present invention is not limited to these examples.

[実施例1 成熟IGF-1、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、又はIGF-1 w/oE型CAR発現プラスミドの作製]
 成熟IGF-1、pre-pro-IGF-1(IGF-1 Ea、IGF-1 Eb、IGF-1 Ec)、又はpre-pro-IGF-1のEドメインを欠失した断片(IGF-1 w/oE)を標的結合ドメインとして用いるCARを設計した(それぞれ、成熟IGF-1、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR)(図1)。
[Example 1 Preparation of mature IGF-1, IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, or IGF-1 w/oE type CAR expression plasmids]
Mature IGF-1, pre-pro-IGF-1 (IGF-1 Ea, IGF-1 Eb, IGF-1 Ec), or a fragment lacking the E domain of pre-pro-IGF-1 (IGF-1 w /oE) as the target binding domain (mature IGF-1, IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/oE-type CARs, respectively) (Fig. 1).

 これらを発現させるためのプラスミド(それぞれ、成熟IGF-1、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR発現プラスミド)を、国際公開第2020/085480号に記載の方法により作製した。 Plasmids for expressing these (mature IGF-1, IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/o E-type CAR expression plasmids, respectively) were prepared in International Publication No. 2020/085480. It was prepared by the method described in .

 作製した各プラスミドのベクターマップを図2~6に示す。  Figures 2 to 6 show the vector maps of each of the prepared plasmids.

 成熟IGF-1型CAR発現プラスミド(配列番号20)は、リーダー配列(配列番号20の30~86番目)、ヒト成熟IGF-1(配列番号20の87~296番目)、スペーサー(配列番号20の297~1004番目)、CD28(配列番号20の1005番目~1208番目)、及びCD3ζ(配列番号20の1209番目~1547番目)をコードする塩基配列からなるCAR構築物を含む(図2)。 The mature IGF-1 type CAR expression plasmid (SEQ ID NO: 20) comprises a leader sequence (30th to 86th of SEQ ID NO: 20), human mature IGF-1 (87th to 296th of SEQ ID NO: 20), a spacer (SEQ ID NO: 20) 297-1004), CD28 (1005-1208 of SEQ ID NO:20), and CD3ζ (1209-1547 of SEQ ID NO:20) (FIG. 2).

 IGF-1 Ea、Eb、Ec、w/oE型CAR発現プラスミド(それぞれ、配列番号21、22、23、24)は、ヒト成熟IGF-1の代わりにそれぞれヒトIGF-1 Ea、Eb、Ec、w/oEをコードする塩基配列を含む点を除いて、上記成熟IGF-1型CAR発現プラスミドと同一である(図3~6)。 IGF-1 Ea, Eb, Ec, w/o E-type CAR expression plasmids (SEQ ID NOS: 21, 22, 23, 24, respectively) were replaced with human IGF-1 Ea, Eb, Ec, respectively, in place of human mature IGF-1. It is the same as the mature IGF-1 type CAR expression plasmid except that it contains a base sequence encoding w/oE (Figs. 3 to 6).

 上記CAR発現プラスミドにおいて用いたヒト成熟IGF-1、IGF-1 Ea、Eb、Ec、w/oEの塩基配列を、それぞれ配列番号1、3、5、7、9に示す。また、それらによりコードされるアミノ酸配列を、それぞれ配列番号2、4、6、8、10に示す。 The base sequences of human mature IGF-1, IGF-1 Ea, Eb, Ec, and w/oE used in the above CAR expression plasmid are shown in SEQ ID NOs: 1, 3, 5, 7, and 9, respectively. Also, the amino acid sequences encoded by them are shown in SEQ ID NOs: 2, 4, 6, 8 and 10, respectively.

[実施例2 成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞の培養・増幅]
 実施例1で作製したCAR発現プラスミドを用いて、成熟IGF-1又はIGF-1 Eaを標的結合ドメインとして用いるCAR-T細胞(それぞれ、成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞)を作製し、培養・増幅した。
[Example 2 Culture and expansion of mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells]
Using the CAR expression plasmid prepared in Example 1, CAR-T cells using mature IGF-1 or IGF-1 Ea as the target binding domain (respectively, mature IGF-1 CAR-T cells and IGF-1 Ea CAR-T cells) were generated, cultured and expanded.

<2-1 PBMCの単離(Day 0)>
 健康なボランティアドナーの末梢血から、Ficoll-PaquePlus(GE Healthcare, Chicago, IL)を用いて末梢血単核細胞(PBMC)を単離した。
<2-1 Isolation of PBMC (Day 0)>
Peripheral blood mononuclear cells (PBMC) were isolated from peripheral blood of healthy volunteer donors using Ficoll-PaquePlus (GE Healthcare, Chicago, Ill.).

<2-2 遺伝子導入及び培養(Day 0~3)>
 上記2-1で単離したPBMC 2×107個に対し、実施例1で作製したCAR発現プラスミド(成熟IGF-1型CAR発現プラスミド又はIGF-1 Ea型CAR発現プラスミド)7.5μg、Super PiggyBacトランスポザーゼ発現ベクター(Super PiggyBac Transposase Expression Vector; System Biosciences)7.5μg、Supplement 1を添加したP3 Primary Cell NucleofectorTM溶液(Lonza, Basel, Switzerland)100μlを加え、4D-Nucleofector装置(program FL-115)を用いてエレクトロポレーションを行った(Day 0)。
<2-2 Gene transfer and culture (Days 0-3)>
7.5 μg of the CAR expression plasmid (mature IGF-1 type CAR expression plasmid or IGF-1 Ea type CAR expression plasmid) prepared in Example 1 for 2×10 7 PBMCs isolated in 2-1 above, Super PiggyBac 7.5 μg of transposase expression vector (Super PiggyBac Transposase Expression Vector; System Biosciences) and 100 μl of P3 Primary Cell Nucleofector TM solution (Lonza, Basel, Switzerland) supplemented with Supplement 1 were added, and 4D-Nucleofector apparatus (program FL-115) was used. electroporation was performed (Day 0).

 エレクトロポレーションしたPBMCを、10ng/mL ヒトIL-7(Miltenyi Biotec, BergischGladbach, Germany)、5ng/mL ヒトIL-15(Miltenyi Biotec, BergischGladbach, Germany)及び5%人工血清(Artificial serum Animal-free; Cell Science & Technology Institute Inc., Japan)含有ALySTM705培養液(Cell Science and Technology Institute Inc., Japan)で懸濁し、24ウェルプレートに播種し、37℃、5%CO2下で3日間培養した(Day 0~3)。 Electroporated PBMCs were added to 10 ng/mL human IL-7 (Miltenyi Biotec, Bergisch Gladbach, Germany), 5 ng/mL human IL-15 (Miltenyi Biotec, Bergisch Gladbach, Germany) and 5% artificial serum Animal-free; Cell Science & Technology Institute Inc., Japan) containing ALyS TM 705 culture medium (Cell Science and Technology Institute Inc., Japan), seeded in a 24-well plate, cultured at 37°C, 5% CO 2 for 3 days (Days 0-3).

<2-3 未熟樹状細胞の作製(Day 0~3)>
 上記2-1で単離したPBMC 3×106個を、10ng/mL ヒトIL-4及び10ng/mL ヒトGM-CSF含有ALySTM705培養液で懸濁し、G‐REXR細胞培養プレート 6well(Wilson Wolf, Saint Paul, MN)に播種し、37℃、5%CO2下で3日間培養した(Day 0~3)。
<2-3 Generation of immature dendritic cells (Days 0-3)>
3×10 6 PBMCs isolated in 2-1 above were suspended in ALyS 705 culture medium containing 10 ng/mL human IL-4 and 10 ng/mL human GM-CSF, and plated on a 6-well G-REX R cell culture plate ( Wilson Wolf, Saint Paul, Minn.) and cultured at 37° C., 5% CO 2 for 3 days (Days 0-3).

<2-4 未熟樹状細胞による遺伝子導入細胞の刺激及び培養(Day 3~10)>
 上記2-3で3日間培養した未熟樹状細胞を含有するG‐REXR細胞培養プレートから上清を除き、10ng/mL ヒトIL-7、5ng/mL ヒトIL-15及び5%人工血清(Artificial serum Animal-free)含有ALySTM705培養液を添加した。このG-REXR細胞培養プレートに、上記2-2で3日間培養した遺伝子導入細胞を加え(Day 3)、さらに7日間培養を継続した。培養期間中、培地は3~4日毎に半量交換し、IL-7及びIL-15をそれぞれ最終濃度10ng/mL、5ng/mLとなるように添加した。
<2-4 Stimulation and culture of gene-introduced cells with immature dendritic cells (Days 3-10)>
Remove the supernatant from the G-REX R cell culture plate containing immature dendritic cells cultured for 3 days in 2-3 above, add 10 ng/mL human IL-7, 5 ng/mL human IL-15 and 5% artificial serum ( Artificial serum Animal-free) containing ALyS 705 medium was added. The transfected cells cultured for 3 days in 2-2 above were added to the G-REX R cell culture plate (Day 3), and the culture was continued for 7 days. During the culture period, half of the medium was replaced every 3 to 4 days, and IL-7 and IL-15 were added to final concentrations of 10 ng/mL and 5 ng/mL, respectively.

<2-5 コントロールT細胞の作製(Day 0~10)>
 上記2-1で単離したPBMC 1.5×106個を、5ng/mL IL-15及び5%人工血清含有ALySTM705培養液で懸濁し、抗CD3抗体及び抗CD28抗体(Miltenyi Biotec, Auburn, CA)でコーティングした24ウェルノントリートプレートに播種し、37℃、5%CO2下で培養を開始した(Day 0)。
<2-5 Generation of control T cells (Days 0-10)>
1.5×10 6 PBMCs isolated in 2-1 above were suspended in ALyS 705 culture medium containing 5 ng/mL IL-15 and 5% artificial serum, and anti-CD3 antibody and anti-CD28 antibody (Miltenyi Biotec, Auburn, CA) and seeded on a 24-well non-treating plate coated with 37°C and 5% CO 2 (Day 0).

 培養開始後2日目(Day 2)に、24ウェルトリートプレートに移し、さらに8日間培養を継続した。培養期間中、培地は3~4日毎に交換した。  On the second day after the start of culture (Day 2), the cells were transferred to a 24-well treat plate and cultured for another 8 days. During the culture period, the medium was changed every 3-4 days.

[実施例3 成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞におけるCAR発現率の評価(Day 1、3、6及び10)]
 実施例2で得られた成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞におけるCAR発現率をフローサイトメトリー解析により評価した。
[Example 3 Evaluation of CAR expression rate in mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells (Days 1, 3, 6 and 10)]
The CAR expression rate in mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells obtained in Example 2 was evaluated by flow cytometry analysis.

 実施例2で遺伝子導入後1、3、6及び10日目(Day 1、3、6及び10)まで培養した成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞を、FITC(フルオレセインイソチオシアネート)標識抗ヒトIgG抗体、及びAPC標識抗CD3抗体で染色した。FITC標識抗ヒトIgG抗体としては、Fluorescein (FITC) AffiniPure F(ab')2 Fragment Goat Anti-Human IgG (H+L)(Jackson ImmunoResearch Inc. West Grove, PA, USA)を用いた。APC標識抗CD3抗体としては、CD3 Antibody, anti-human, APC(Miltenyi Biotec,Auburn, CA)を用いた。FITC標識抗ヒトIgG抗体は、CARのスペーサー部分に結合し、CAR発現細胞を検出することができる。APC標識抗CD3抗体はT細胞を検出することができる。 Mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells cultured until days 1, 3, 6 and 10 after gene transfer in Example 2 (Days 1, 3, 6 and 10) were Stained with FITC (fluorescein isothiocyanate)-labeled anti-human IgG antibody and APC-labeled anti-CD3 antibody. Fluorescein (FITC) AffiniPure F(ab') 2 Fragment Goat Anti-Human IgG (H+L) (Jackson ImmunoResearch Inc. West Grove, PA, USA) was used as the FITC-labeled anti-human IgG antibody. CD3 Antibody, anti-human, APC (Miltenyi Biotec, Auburn, Calif.) was used as the APC-labeled anti-CD3 antibody. A FITC-labeled anti-human IgG antibody binds to the spacer portion of CAR and can detect CAR-expressing cells. APC-labeled anti-CD3 antibodies can detect T cells.

 染色した細胞をフローサイトメーターBD AccuriTM C6 Plus (BD Biosciences San Jose, CA)にかけ、Flowjo (BD Biosciences San Jose, CA)を用いて解析し、CAR陽性CD3陽性細胞率をCAR発現率として測定した。 The stained cells were subjected to a flow cytometer BD Accuri C6 Plus (BD Biosciences San Jose, CA) and analyzed using Flowjo (BD Biosciences San Jose, CA), and the CAR positive CD3 positive cell rate was measured as the CAR expression rate. .

 結果を図7に示す。
 成熟IGF-1型CAR-T細胞では、遺伝子導入の翌日(Day 1)に高いCAR発現率が見られたが、培養中段階的にCAR発現率が低下し、遺伝子導入の10日後(Day 10)にはCARの発現が消失した。
The results are shown in FIG.
In mature IGF-1 type CAR-T cells, a high CAR expression rate was observed the day after gene transfer (Day 1), but the CAR expression rate decreased stepwise during culture, and 10 days after gene transfer (Day 10). ) lost CAR expression.

 一方、IGF-1 Ea型CAR-T細胞では、遺伝子導入の翌日(Day 1)に成熟IGF-1型CAR-T細胞より高いCAR発現率が見られ、遺伝子導入の6日後(Day 6)までは段階的な発現率の低下が見られたものの、遺伝子導入の10日後(Day 10)の時点でCAR発現率は20%以上に維持されていた。 On the other hand, IGF-1 Ea-type CAR-T cells showed a higher CAR expression rate than mature IGF-1-type CAR-T cells on the day after transfection (Day 1), and continued until 6 days after transfection (Day 6). Although a gradual decrease in the expression rate was observed, the CAR expression rate was maintained at 20% or more at 10 days after gene transfer (Day 10).

 これらの結果は、成熟IGF-1でなくpre-pro-IGF-1を標的結合ドメインとして用いてCAR-T細胞を作製することにより、CAR発現率が改善されたCAR-T細胞が得られることを示す。 These results suggest that generating CAR-T cells with pre-pro-IGF-1 rather than mature IGF-1 as the target binding domain yields CAR-T cells with improved CAR expression. indicates

[実施例4 成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞の抗腫瘍細胞活性の比較]
 実施例2で作製した成熟IGF-1型CAR-T細胞及びIGF-1 Ea型CAR-T細胞の抗腫瘍細胞活性を評価するため、CAR-T細胞と腫瘍細胞との共培養試験を行った。
[Example 4 Comparison of antitumor cell activity between mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells]
In order to evaluate the anti-tumor cell activity of the mature IGF-1 type CAR-T cells and IGF-1 Ea type CAR-T cells prepared in Example 2, a co-culture test of CAR-T cells and tumor cells was performed. .

 実施例2でDay 10まで培養したCAR-T細胞及びコントロールT細胞を回収し、サイトカインを含まない5%人工血清含有ALySTM705培地中で培養した。 CAR-T cells and control T cells cultured until Day 10 in Example 2 were collected and cultured in cytokine-free 5% artificial serum-containing ALyS 705 medium.

 培養開始から2日後に、腫瘍細胞(ターゲット(T))としてヒト急性単球性白血病細胞株THP-1(American Type Culture Collection)0.5×106個を24ウェルプレートの各ウェルに添加した。次いで、培養していた上記CAR-T細胞又はコントロールT細胞(エフェクター(E))を、E:T比が4:1、2:1、1:1又は1:2となるように上記の24ウェルプレートのウェルに添加し、37℃、5%CO2下で共培養を行った。培養液としては、10%FBSを添加したRPMI1640培地を使用した。 Two days after the initiation of culture, 0.5×10 6 human acute monocytic leukemia cell line THP-1 (American Type Culture Collection) was added to each well of a 24-well plate as tumor cells (target (T)). Then, the cultured CAR-T cells or control T cells (effector (E)) were treated with the 24 They were added to the wells of the well plate and co-cultured at 37°C under 5% CO 2 . RPMI1640 medium supplemented with 10% FBS was used as the culture medium.

 共培養開始から4日後に細胞を回収し、APC標識抗CD3抗体(T細胞を検出)、FITC標識抗CD33抗体(腫瘍細胞を検出)、及び7-アミノアクチノマイシンD(7-Amino-Actinomycin D; 7-AAD)(死細胞を検出)を用いて染色した。FITC標識抗CD33抗体としては、CD33 Antibody, anti-human, FITC(Miltenyi Biotec,Auburn, CA)を用い、APC標識抗CD3抗体としては、CD3 Antibody, anti-human, APC(Miltenyi Biotec,Auburn, CA)を用いた。 Cells were collected 4 days after the start of co-culture, and APC-labeled anti-CD3 antibody (detected T cells), FITC-labeled anti-CD33 antibody (detected tumor cells), and 7-Amino-Actinomycin D ; 7-AAD) (detects dead cells). CD33 Antibody, anti-human, FITC (Miltenyi Biotec, Auburn, CA) was used as the FITC-labeled anti-CD33 antibody, and CD3 Antibody, anti-human, APC (Miltenyi Biotec, Auburn, CA) was used as the APC-labeled anti-CD3 antibody. ) was used.

 染色した細胞を、フローサイトメーターBD AccuriTM C6 Plus (BD Biosciences San Jose, CA)にかけ、Flowjo (BD Biosciences San Jose, CA)を用いて解析した。 Stained cells were run on a flow cytometer BD Accuri C6 Plus (BD Biosciences San Jose, Calif.) and analyzed using Flowjo (BD Biosciences San Jose, Calif.).

 結果を図8~10に示す。
 IGF-1 Ea型CAR-T細胞(図9)は、試験したすべてのE:T比でコントロールT細胞(図8)に比べ腫瘍細胞率(CD3陰性CD33陽性の細胞率で表される)を低下させ、腫瘍細胞の殺傷能を示した。一方、成熟IGF-1型CAR-T細胞(図10)は、E:T比1:1及び1:2ではコントロールT細胞(図8)に比べ腫瘍細胞率を低下させず、腫瘍細胞の殺傷能を示さなかった。
The results are shown in Figures 8-10.
IGF-1 Ea-type CAR-T cells (Fig. 9) outperformed control T cells (Fig. 8) at all E:T ratios tested (expressed as percent CD3-negative CD33-positive cells). showed ability to kill tumor cells. On the other hand, mature IGF-1 type CAR-T cells (Fig. 10) did not reduce the tumor cell rate compared to control T cells (Fig. 8) at E:T ratios of 1:1 and 1:2, and killed tumor cells. showed no ability.

 これらの結果は、成熟IGF-1でなくpre-pro-IGF-1を標的結合ドメインとして用いてCAR-T細胞を作製することにより、より高い抗腫瘍細胞活性を有するCAR-T細胞が得られることを示す。 These results suggest that generating CAR-T cells with pre-pro-IGF-1 as the target binding domain rather than mature IGF-1 results in CAR-T cells with higher anti-tumor cell activity. indicates that

[実施例5 IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞の培養・増幅と、CAR発現率・抗腫瘍細胞活性の評価]
<5-1 CAR-T細胞の培養・増幅>
 実施例1で作製したCAR発現プラスミドを用いて、実施例2と同様の方法により、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oEを標的結合ドメインとして用いるCAR-T細胞(それぞれ、IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞)を作製し、培養・増幅した。同時に、実施例2と同様の方法によりコントロールT細胞(抗CD3抗体及び抗CD28抗体で活性化させたT細胞)を培養した。
[Example 5 Culture and amplification of IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE type CAR-T cells, and evaluation of CAR expression rate and antitumor cell activity]
<5-1 Culture and amplification of CAR-T cells>
A CAR using IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE as a target binding domain is prepared in the same manner as in Example 2 using the CAR expression plasmid prepared in Example 1. -T cells (IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/oE type CAR-T cells, respectively) were generated, cultured and expanded. At the same time, control T cells (T cells activated with anti-CD3 antibody and anti-CD28 antibody) were cultured in the same manner as in Example 2.

<5-2 CAR発現率の評価>
 5-1で遺伝子導入後10日目(Day 10)まで培養したIGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞におけるCAR発現率を、実施例3に記載の方法に従って、フローサイトメトリー解析により評価した。
<5-2 Evaluation of CAR expression rate>
CAR expression rate in IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 w/oE type CAR-T cells cultured until day 10 after gene transfer in 5-1 It was evaluated by flow cytometry analysis according to the method described in Example 3.

 結果を図11に示す。
 IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞はいずれもDay 10において15%を超える高いCAR発現率を維持した。特に、IGF-1 w/oE型CAR-T細胞は、4種のCAR-T細胞の中で最も高いCAR発現率を示した。
The results are shown in FIG.
IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE CAR-T cells all maintained a high CAR expression rate of over 15% on Day 10. In particular, IGF-1 w/oE CAR-T cells showed the highest CAR expression rate among the 4 types of CAR-T cells.

 IGF-1 w/oE型CAR-T細胞は、pre-pro-IGF1からEドメインを欠失させたペプチド(即ち、シグナルペプチドドメイン及び成熟IGF-1ドメインのみを含むペプチド)をCAR-Tの標的結合ドメインとして用いるものである。従って、本実施例の実験結果は、pre-pro-IGF-1のシグナルペプチド及び成熟IGF-1部分を標的結合ドメインとして用いてCAR-T細胞を作製することにより、CAR発現率が改善されたCAR-T細胞が得られること、EドメインはCAR発現率を改善する上で必須ではないことを示す。 IGF-1 w/o E-type CAR-T cells target a peptide from pre-pro-IGF1 with the E domain deleted (i.e., a peptide containing only the signal peptide domain and the mature IGF-1 domain) to target CAR-T. It is used as a binding domain. Therefore, the experimental results of this example show that the CAR expression rate was improved by generating CAR-T cells using the signal peptide and mature IGF-1 portion of pre-pro-IGF-1 as the target binding domain. We show that CAR-T cells can be obtained and that the E domain is dispensable for improving CAR expression rates.

<5-3 抗腫瘍細胞活性の評価>
 5-1で作製したIGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞の抗腫瘍細胞活性を評価するため、実施例4と同様の方法により、CAR-T細胞と腫瘍細胞との共培養試験を行った。
<5-3 Evaluation of antitumor cell activity>
In order to evaluate the anti-tumor cell activity of IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/oE type CAR-T cells prepared in 5-1, by the same method as in Example 4 , conducted a co-culture study of CAR-T cells and tumor cells.

 5-1でDay 10まで培養したCAR-T細胞及びコントロールT細胞を回収し、サイトカインを含まない5%人工血清含有ALySTM705培地中で培養した。 CAR-T cells and control T cells cultured up to Day 10 on 5-1 were collected and cultured in cytokine-free 5% artificial serum-containing ALyS 705 medium.

 培養開始から2日後に、CAR-T細胞又はコントロールT細胞をE:T比が2:1、1:1又は1:2となるように腫瘍細胞に添加した点を除き、実施例4と同様に共培養及び免疫染色を行った。 Same as Example 4, except that CAR-T cells or control T cells were added to the tumor cells at an E:T ratio of 2:1, 1:1, or 1:2 two days after the start of culture. were co-cultured and immunostained.

 T細胞数及び腫瘍細胞数を定量化するために、染色した細胞にCountBright absolute Counting Beads(Invitrogen, Carlsbad, CA)を添加した後、フローサイトメーターBD AccuriTM C6 Plus (BD Biosciences San Jose, CA)にかけ、Flowjo (BD Biosciences San Jose, CA)を用いて解析した。 To quantify the number of T cells and tumor cells, CountBright absolute Counting Beads (Invitrogen, Carlsbad, CA) were added to the stained cells followed by flow cytometer BD Accuri C6 Plus (BD Biosciences San Jose, CA). and analyzed using Flowjo (BD Biosciences San Jose, Calif.).

 結果を図12及び13に示す。
 IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞はいずれも、試験したすべての共培養比で顕著な腫瘍細胞数の低減効果を示した。特に、IGF-1 w/oE型CAR-T細胞は、4種のCAR-T細胞の中で最も強い腫瘍抑制効果を示した(図12)。
Results are shown in FIGS.
IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/o E CAR-T cells all showed significant tumor cell number reduction at all co-culture ratios tested. In particular, IGF-1 w/oE type CAR-T cells exhibited the strongest tumor suppressive effect among the four types of CAR-T cells (Fig. 12).

 IGF-1 Ea、IGF-1 Eb、IGF-1 Ec、IGF-1 w/oE型CAR-T細胞はいずれも、共培養後に増加していた。特に、IGF-1 w/oE型CAR-T細胞は顕著に増加していた(図13)。  IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, and IGF-1 w/o E-type CAR-T cells all increased after co-culture. In particular, IGF-1 w/oE type CAR-T cells were significantly increased (Fig. 13).

 これらの結果は、pre-pro-IGF-1のシグナルペプチド及び成熟IGF-1部分を標的結合ドメインとして用いてCAR-T細胞を作製することにより、より高い抗腫瘍細胞活性を有するCAR-T細胞が得られること、EドメインはCAR-T細胞の抗腫瘍細胞活性に必須ではないことを示す。 These results suggest that generating CAR-T cells with the signal peptide of pre-pro-IGF-1 and the mature IGF-1 portion as the target binding domain results in CAR-T cells with higher anti-tumor cell activity. , indicating that the E domain is dispensable for the anti-tumor activity of CAR-T cells.

[実施例6 pre-pro-IGF-2型CAR発現プラスミドの作製]
 pre-pro-IGF-2を標的結合ドメインとして用いるCARを発現させるためのプラスミド(pre-pro-IGF-2型CAR発現プラスミド)を、国際公開第2020/085480号に記載の方法により作製した。
[Example 6 Preparation of pre-pro-IGF-2 type CAR expression plasmid]
A plasmid for expressing a CAR using pre-pro-IGF-2 as a target-binding domain (pre-pro-IGF-2 type CAR expression plasmid) was constructed by the method described in WO2020/085480.

 作製したプラスミドのベクターマップを図14に示す。
 pre-pro-IGF-2型CAR発現プラスミド(配列番号25)は、リーダー配列(配列番号25の30~86)、ヒトpre-pro-IGF-2(配列番号25の87~626番目)、スペーサー(配列番号25の627~1334番目)、CD28(配列番号25の1335~1538番目)、及びCD3ζ(配列番号25の1539~1877番目)をコードする塩基配列からなるCAR構築物を含む(図14)。
A vector map of the constructed plasmid is shown in FIG.
The pre-pro-IGF-2 type CAR expression plasmid (SEQ ID NO: 25) has a leader sequence (30 to 86 of SEQ ID NO: 25), human pre-pro-IGF-2 (87 to 626 of SEQ ID NO: 25), a spacer (627th to 1334th of SEQ ID NO: 25), CD28 (1335th to 1538th of SEQ ID NO: 25), and CD3ζ (1539th to 1877th of SEQ ID NO: 25) (Fig. 14) .

 上記CAR発現プラスミドにおいて用いたpre-pro-IGF-2の塩基配列を、配列番号13に示す。また、それによりコードされるアミノ酸配列を、配列番号14に示す。  The base sequence of pre-pro-IGF-2 used in the above CAR expression plasmid is shown in SEQ ID NO: 13. Also, the amino acid sequence encoded by it is shown in SEQ ID NO:14.

[実施例7 pre-pro-IGF-2型CAR-T細胞の培養・増幅と、CAR発現率・抗腫瘍細胞活性の評価]
<7-1 CAR-T細胞の培養・増幅>
 実施例6で作製したCAR発現プラスミドを用いて、実施例2と同様の方法により、pre-pro-IGF-2を標的結合ドメインとして用いるCAR-T細胞(pre-pro-IGF-2型CAR-T細胞)を作製し、培養・増幅した。同時に、実施例2と同様の方法によりコントロールT細胞(抗CD3抗体及び抗CD28抗体で活性化させたT細胞)を培養した。
[Example 7 Culture/amplification of pre-pro-IGF-2 type CAR-T cells and evaluation of CAR expression rate/antitumor cell activity]
<7-1 Culture and amplification of CAR-T cells>
Using the CAR expression plasmid prepared in Example 6, CAR-T cells using pre-pro-IGF-2 as a target binding domain (pre-pro-IGF-2 type CAR- T cells) were generated, cultured and expanded. At the same time, control T cells (T cells activated with anti-CD3 antibody and anti-CD28 antibody) were cultured in the same manner as in Example 2.

<7-2 CAR発現率の評価>
 7-1で遺伝子導入後10日目(Day 10)まで培養したpre-pro-IGF-2型CAR-T細胞におけるCAR発現率を、実施例3に記載の方法に従って、フローサイトメトリー解析により評価した。
<7-2 Evaluation of CAR expression rate>
CAR expression rate in pre-pro-IGF-2 type CAR-T cells cultured until day 10 (Day 10) after gene transfer in 7-1 was evaluated by flow cytometry analysis according to the method described in Example 3. bottom.

 結果を図15に示す。
 pre-pro-IGF-2型CAR-T細胞は、Day 10において高いCAR発現率(14.5%)を示した。この結果は、pre-pro-IGF-2を標的結合ドメインとして用いてCAR-T細胞を作製することにより、CAR発現率が維持されたCAR-T細胞が得られることを示す。
The results are shown in FIG.
Pre-pro-IGF-2 type CAR-T cells showed a high CAR expression rate (14.5%) on Day 10. This result indicates that CAR-T cells with maintained CAR expression rate can be obtained by generating CAR-T cells using pre-pro-IGF-2 as the target binding domain.

<7-3 抗腫瘍活性の評価>
 7-1で作製したpre-pro-IGF-2型CAR-T細胞の抗腫瘍細胞活性を評価するため、実施例4と同様の方法により、CAR-T細胞と腫瘍細胞との共培養試験を行った。
<7-3 Evaluation of antitumor activity>
In order to evaluate the anti-tumor cell activity of the pre-pro-IGF-2 type CAR-T cells prepared in 7-1, a co-culture test of CAR-T cells and tumor cells was conducted in the same manner as in Example 4. gone.

 7-1でDay 10まで培養したCAR-T細胞及びコントロールT細胞を回収し、サイトカインを含まない5%人工血清含有ALySTM705培地中で培養した。 CAR-T cells and control T cells cultured until Day 10 in 7-1 were collected and cultured in cytokine-free 5% artificial serum-containing ALyS 705 medium.

 培養開始から2日後に、CAR-T細胞又はコントロールT細胞をE:T比が2:1、1:1又は1:2となるように腫瘍細胞に添加した点を除き、実施例4と同様に共培養及び免疫染色を行った。同時に、CAR-T細胞又はコントロールT細胞を腫瘍細胞に添加せずに同様の操作を行った。 Same as Example 4, except that CAR-T cells or control T cells were added to the tumor cells at an E:T ratio of 2:1, 1:1, or 1:2 two days after the start of culture. were co-cultured and immunostained. At the same time, similar manipulations were performed without adding CAR-T cells or control T cells to the tumor cells.

 T細胞数及び腫瘍細胞数を定量化するために、染色した細胞にCountBright absolute Counting Beads(Invitrogen, Carlsbad, CA)を添加した後、フローサイトメーターBD AccuriTM C6 Plus (BD Biosciences San Jose, CA)にかけ、Flowjo (BD Biosciences San Jose, CA)を用いて解析した。 To quantify the number of T cells and tumor cells, CountBright absolute Counting Beads (Invitrogen, Carlsbad, CA) were added to the stained cells followed by flow cytometer BD Accuri C6 Plus (BD Biosciences San Jose, CA). and analyzed using Flowjo (BD Biosciences San Jose, Calif.).

 結果を図16及び17に示す。
 pre-pro-IGF-2型CAR-T細胞(図17)は、試験したすべてのE:T比において、コントロールT細胞(図16)に比べ腫瘍細胞率を低下させ、腫瘍細胞の殺傷能を示した。この結果は、pre-pro-IGF-2を標的結合ドメインとして用いてCAR-T細胞を作製することにより、高い抗腫瘍細胞活性を有するCAR-T細胞が得られることを示す。
The results are shown in Figures 16 and 17.
Pre-pro-IGF-2-type CAR-T cells (Fig. 17) reduced the tumor cell percentage compared to control T cells (Fig. 16) at all E:T ratios tested, and demonstrated greater ability to kill tumor cells. Indicated. This result indicates that CAR-T cells with high anti-tumor cell activity can be obtained by generating CAR-T cells using pre-pro-IGF-2 as the target binding domain.

[実施例8 IGF-1 w/oE型CAR-T細胞の抗腫瘍細胞活性の評価]
 乳がん細胞株MX-1(Cell Lines Service)、肺腺がん細胞株H1568(American Type Culture Collection)、子宮体がん細胞株ARK-1(京都大学医学部婦人科学産科学教室)、子宮頸がん細胞株HeLa(JCRB細胞バンク)、及び卵巣がん細胞株RMG-1(JCRB細胞バンク)のIGF1R発現をフローサイトメトリーにより調べたところ、これらのがん細胞株はすべてIGF1Rを発現していた。そのため、これらの細胞株を用いて、乳がん、肺腺がん、子宮体がん、子宮頸がん、及び卵巣がんに対するIGF-1 w/oE型CAR-T細胞の抗腫瘍細胞活性を評価した。
[Example 8 Evaluation of antitumor cell activity of IGF-1 w/oE type CAR-T cells]
Breast cancer cell line MX-1 (Cell Lines Service), lung adenocarcinoma cell line H1568 (American Type Culture Collection), endometrial cancer cell line ARK-1 (Department of Gynecology and Obstetrics, Kyoto University School of Medicine), cervical cancer IGF1R expression in cell line HeLa (JCRB cell bank) and ovarian cancer cell line RMG-1 (JCRB cell bank) was examined by flow cytometry, and all of these cancer cell lines expressed IGF1R. Therefore, these cell lines were used to evaluate the antitumor activity of IGF-1 w/oE CAR-T cells against breast cancer, lung adenocarcinoma, endometrial cancer, cervical cancer, and ovarian cancer. bottom.

 具体的には、実施例2と同様の方法によりIGF-1 w/oE型CAR-T細胞を作製し、培養・増幅し、また、コントロールT細胞(抗CD3抗体及び抗CD28抗体で活性化させたT細胞)を培養した。実施例4及び5と同様の方法により、上記のIGF-1 w/oE型CAR-T細胞又はコントロールT細胞と腫瘍細胞(乳がん細胞株MX-1、肺腺がん細胞株H1568、又は子宮体がん細胞株ARK-1)(2×105個)とをE:T比4:1、2:1、1:1、1:2又は1:4で5日間共培養し、共培養後の腫瘍細胞数を測定した。同様に、上記のIGF-1 w/oE型CAR-T細胞又はコントロールT細胞と腫瘍細胞(子宮頸がん細胞株HeLa、又は卵巣がん細胞株RMG-1)(2×105個)とをE:T比4:1、2:1、又は1:1で4日間共培養し、共培養後の腫瘍細胞数を測定した。ただし、腫瘍細胞のマーカーとしてはCD33ではなくB7-H3を用いた。また、共培養開始から24時間後に培養上清の一部を回収し、ELISAキット(R&D Systems, Inc., Minneapolis, MN, USA)を用いて培養上清中のIFN-γ及びIL-2の濃度を測定した。 Specifically, IGF-1 w/oE type CAR-T cells were prepared by the same method as in Example 2, cultured and expanded, and control T cells (activated with anti-CD3 antibody and anti-CD28 antibody). T cells) were cultured. By the same method as in Examples 4 and 5, the above IGF-1 w/oE type CAR-T cells or control T cells and tumor cells (breast cancer cell line MX-1, lung adenocarcinoma cell line H1568, or uterine body Cancer cell line ARK-1) (2 × 10 5 cells) was co-cultured at an E:T ratio of 4:1, 2:1, 1:1, 1:2 or 1:4 for 5 days. of tumor cells were measured. Similarly, the above IGF-1 w/oE type CAR-T cells or control T cells and tumor cells (cervical cancer cell line HeLa, or ovarian cancer cell line RMG-1) (2 × 10 5 cells) were co-cultured at an E:T ratio of 4:1, 2:1, or 1:1 for 4 days, and the number of tumor cells after co-culture was measured. However, B7-H3 was used instead of CD33 as a tumor cell marker. In addition, 24 hours after the start of co-culture, a portion of the culture supernatant was collected, and IFN-γ and IL-2 in the culture supernatant were analyzed using an ELISA kit (R&D Systems, Inc., Minneapolis, MN, USA). Concentration was measured.

 共培養後の腫瘍細胞数の測定結果を図18及び19に示す。試験したすべての種類のがん細胞株について、IGF-1 w/oE型CAR-T細胞は、腫瘍細胞数の顕著な低減効果を示した。 Figures 18 and 19 show the results of measuring the number of tumor cells after co-culture. For all types of cancer cell lines tested, IGF-1 w/oE CAR-T cells showed a significant reduction in tumor cell numbers.

 また、試験したすべての種類のがん細胞株について、IGF-1 w/oE型CAR-T細胞と腫瘍細胞を24時間共培養した後の培養上清中のIFN-γ及びIL-2の濃度は、コントロールT細胞と腫瘍細胞を共培養した後の培養上清中のIFN-γ及びIL-2の濃度に比べて顕著に高く、最低でも24倍以上高値であった。 In addition, for all types of cancer cell lines tested, concentrations of IFN-γ and IL-2 in the culture supernatant after 24 h co-culture of IGF-1 w/oE CAR-T cells and tumor cells was significantly higher than the concentrations of IFN-γ and IL-2 in the culture supernatant after co-culture of control T cells and tumor cells, at least 24-fold higher.

 これらの結果は、本発明のCAR-T細胞が、IGF1R発現腫瘍である乳がん、肺腺がん、子宮体がん、子宮頸がん、及び卵巣がん等に対し抗腫瘍効果を有することを示す。 These results demonstrate that the CAR-T cells of the present invention have antitumor effects against IGF1R-expressing tumors such as breast cancer, lung adenocarcinoma, endometrial cancer, cervical cancer, and ovarian cancer. show.

 なお、MX-1、H1568、ARK-1に対する抗腫瘍細胞活性の研究のために培養・増幅したIGF-1 w/oE型CAR-T細胞の表現型をフローサイトメトリーにより調べたところ、CD4+ CAR-T細胞、CD8+ CAR-T細胞のいずれについても、CD45RA+CD62L+細胞(ステムセルメモリーT細胞)の割合が約80%であった。 In addition, when the phenotype of IGF-1 w/oE-type CAR-T cells cultured and amplified for the study of anti-tumor cell activity against MX-1, H1568, and ARK-1 was examined by flow cytometry, CD4+ CAR The proportion of CD45RA+CD62L+ cells (stem cell memory T cells) was approximately 80% for both -T cells and CD8+ CAR-T cells.

[実施例9 IGF-1 w/oE des1-3型CAR発現プラスミドの作製]
 IGF-1 w/oEの成熟IGF-1部分のN末端の3つのアミノ酸(GPE)を除去したもの(IGF-1 w/oE des1-3)を標的結合ドメインとして用いるCARを設計し、これを発現させるためのプラスミド(IGF-1 w/oE des1-3型CAR発現プラスミド)を国際公開第2020/085480号に記載の方法により作製した。
[Example 9 Preparation of IGF-1 w/oE des1-3 type CAR expression plasmid]
We designed a CAR that uses the mature IGF-1 portion of IGF-1 w/oE with the N-terminal 3 amino acids (GPE) removed (IGF-1 w/oE des1-3) as the target binding domain. A plasmid for expression (IGF-1 w/oE des1-3 type CAR expression plasmid) was prepared by the method described in International Publication No. 2020/085480.

 IGF-1 w/oE des1-3型CAR発現プラスミドは、成熟IGF-1部分のN末端の3つのアミノ酸に対応する塩基配列が欠失している点を除き、IGF-1 w/oE型CAR発現プラスミドと同一である。 The IGF-1 w/oE des1-3 type CAR expression plasmid is similar to the IGF-1 w/oE type CAR except that the nucleotide sequence corresponding to the N-terminal three amino acids of the mature IGF-1 portion is deleted. Identical to the expression plasmid.

 IGF-1 w/oE des1-3型CAR発現プラスミドの塩基配列を配列番号26に、IGF-1 w/oE des1-3のアミノ酸配列を配列番号27に示す。 The nucleotide sequence of the IGF-1 w/oEdes1-3 type CAR expression plasmid is shown in SEQ ID NO: 26, and the amino acid sequence of IGF-1 w/oEdes1-3 is shown in SEQ ID NO:27.

[実施例10 IGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞の培養・増幅と、CAR発現率・抗腫瘍細胞活性の比較]
<10-1. CAR-T細胞の培養・増幅>
 実施例1及び9で作製したIGF-1 w/oE型CAR発現プラスミド及びIGF-1 w/oE des1-3型CAR発現プラスミドを用いて、実施例2と同様の方法で、IGF-1 w/oE又はIGF-1 w/oE des1-3を標的結合ドメインとして用いるCAR-T細胞(それぞれ、IGF-1 w/oE型CAR-T細胞、IGF-1 w/oE des1-3型CAR-T細胞)を作製し、培養・増幅した。同時に、実施例2と同様の方法によりコントロールT細胞(抗CD3抗体及び抗CD28抗体で活性化させたT細胞)を培養した。
[Example 10 Culture/amplification of IGF-1 w/oE type CAR-T cells and IGF-1 w/oE des1-3 type CAR-T cells, and comparison of CAR expression rate/antitumor cell activity]
<10-1. Culture and amplification of CAR-T cells>
Using the IGF-1 w/oE type CAR expression plasmid and the IGF-1 w/oE des1-3 type CAR expression plasmid prepared in Examples 1 and 9, in the same manner as in Example 2, IGF-1 w/ CAR-T cells using oE or IGF-1 w/oE des1-3 as the target binding domain (IGF-1 w/oE type CAR-T cells, IGF-1 w/oE des1-3 type CAR-T cells, respectively) ) were prepared, cultured and amplified. At the same time, control T cells (T cells activated with anti-CD3 antibody and anti-CD28 antibody) were cultured in the same manner as in Example 2.

<10-2. CAR発現率の比較>
 実施例3に記載の方法に従って、10-1で作製したIGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞におけるCAR発現率(遺伝子導入後14日目)を調べた。その結果、IGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞は同等のCAR発現率を示した。
<10-2. Comparison of CAR expression rate>
According to the method described in Example 3, the CAR expression rate (14 day) was examined. As a result, IGF-1 w/oE type CAR-T cells and IGF-1 w/oE des1-3 type CAR-T cells showed equivalent CAR expression rates.

<10-3. 抗腫瘍活性の比較>
 10-1で作製したIGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞の肺腺がん細胞株A549(JCRB細胞バンク)に対する抗腫瘍細胞活性を調べた。
<10-3. Comparison of antitumor activity>
Antitumor cell activity of IGF-1 w/oE type CAR-T cells and IGF-1 w/oE des1-3 type CAR-T cells prepared in 10-1 against lung adenocarcinoma cell line A549 (JCRB cell bank) examined.

 具体的には、実施例4及び5と同様の方法により、上記のIGF-1 w/oE型CAR-T細胞、IGF-1 w/oE des1-3型CAR-T細胞、又はコントロールT細胞と腫瘍細胞(A549)(2×105個)とをE:T比1:1、1:2又は1:4で4日間共培養し、共培養後の腫瘍細胞数を測定した。ただし、本実験では、T細胞を添加しない点を除き同様の方法で、腫瘍細胞のみの培養も行った。そして、以下の式により腫瘍細胞の溶解率を算出した。
 溶解率(%)={1-(腫瘍細胞とT細胞を共培養した場合の腫瘍細胞数)/(腫瘍細胞のみを培養した場合の腫瘍細胞数)}×100
Specifically, in the same manner as in Examples 4 and 5, the above IGF-1 w/oE CAR-T cells, IGF-1 w/oE des1-3 CAR-T cells, or control T cells Tumor cells (A549) (2×10 5 cells) were co-cultured at an E:T ratio of 1:1, 1:2 or 1:4 for 4 days, and the number of tumor cells after co-culture was measured. However, in this experiment, tumor cells alone were also cultured in the same manner except that T cells were not added. Then, the lysis rate of tumor cells was calculated by the following formula.
Lysis rate (%) = {1 - (number of tumor cells when tumor cells and T cells were co-cultured) / (number of tumor cells when only tumor cells were cultured)} x 100

 また、共培養開始から24時間後に培養上清の一部を回収し、ELISAキット(R&D Systems, Inc., Minneapolis, MN, USA)を用いて培養上清中のIFN-γ及びIL-2の濃度を測定した。 In addition, 24 hours after the start of co-culture, a portion of the culture supernatant was collected, and an ELISA kit (R&D Systems, Inc., Minneapolis, MN, USA) was used to measure IFN-γ and IL-2 in the culture supernatant. Concentration was measured.

 溶解率の測定結果を図20に示す。IGF-1 w/oE型CAR-T細胞は、コントロールT細胞に比べて高い溶解率を示し、IGF-1 w/oE des1-3型CAR-T細胞は、IGF-1 w/oE型CAR-T細胞よりもさらに高い溶解率を示した。したがって、IGF-1 w/oE des1-3型CAR-T細胞は、肺腺がん細胞株A549に対して、IGF-1 w/oE型CAR-T細胞よりも高い抗腫瘍活性を有することが示された。 Fig. 20 shows the measurement results of the dissolution rate. IGF-1 w/oE CAR-T cells exhibited a higher lytic rate compared to control T cells, and IGF-1 w/oE des1-3 CAR-T cells showed IGF-1 w/oE CAR-T It showed an even higher lysis rate than T cells. Therefore, IGF-1 w/oE des1-3 CAR-T cells may have higher antitumor activity than IGF-1 w/oE CAR-T cells against lung adenocarcinoma cell line A549. shown.

 なお、本実施例で用いた肺腺がん細胞株A549を24時間培養した後の培養上清中のIGFBP3濃度をELISA法により測定したところ、約2800pg/mlであった。したがって、A549はIGFBP3を分泌していた。 In addition, when the IGFBP3 concentration in the culture supernatant after culturing the lung adenocarcinoma cell line A549 used in this example for 24 hours was measured by ELISA, it was about 2800 pg/ml. Therefore, A549 was secreting IGFBP3.

[実施例11  IGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞の標的結合ドメインのIGFBP3に対する結合能] [Example 11 IGFBP3-binding ability of the target-binding domains of IGF-1 w/o E type CAR-T cells and IGF-1 w/o E des1-3 type CAR-T cells]

 IGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞の標的結合ドメインのIGFBP3に対する結合能をフローサイトメトリーにより調べた。 The ability of the target-binding domain of IGF-1 w/oE type CAR-T cells and IGF-1 w/oE des1-3 type CAR-T cells to bind to IGFBP3 was examined by flow cytometry.

 具体的な実験手順は以下の通りである。
工程1. Hisタグ付加ヒトIGFBP3タンパク質(ACROBiosystems、カタログ番号:IG3-H52H9、1μg/μl)にPBSを添加して0.25μg/μlに希釈した。
工程2. 実施例10と同様の方法で培養・増幅したコントロールT細胞(抗CD3抗体及び抗CD28抗体で活性化させたT細胞)、IGF-1 w/oE型CAR-T細胞、又はIGF-1 w/oE des1-3型CAR-T細胞(1M)を試験管に回収した。
工程3. 工程2の試験管にPBSを添加して1500rpm(又は400g)で10分間遠心分離した。この工程を2回繰り返した。
工程4. 工程3の試験管から上清を取り除き、IGF-1 w/oE型CAR-T細胞又はIGF-1 w/oE des1-3型CAR-T細胞を含有する試験管に、工程1で調製したHisタグ付加ヒトIGFBP3タンパク質溶液を2μl加えた。すべての試験管を室温で1時間インキュベートした。
工程5. 染色用の試薬(試薬A~C)を以下の通りに調整した。
Specific experimental procedures are as follows.
Step 1. His-tagged human IGFBP3 protein (ACROBiosystems, catalog number: IG3-H52H9, 1 μg/μl) was diluted to 0.25 μg/μl by adding PBS.
Step 2. Control T cells cultured and expanded in the same manner as in Example 10 (T cells activated with anti-CD3 antibody and anti-CD28 antibody), IGF-1 w/oE type CAR-T cells, or IGF- 1 w/oE des1-3 type CAR-T cells (1M) were collected in a test tube.
Step 3. PBS was added to the test tube from step 2 and centrifuged at 1500 rpm (or 400 g) for 10 minutes. This process was repeated twice.
Step 4. Remove the supernatant from the test tube in step 3 and add the 2 μl of the prepared His-tagged human IGFBP3 protein solution was added. All tubes were incubated for 1 hour at room temperature.
Step 5. Reagents for staining (reagents A to C) were prepared as follows.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

工程6. 工程4でインキュベートした試験管を、1500rpm(又は400g)で10分間遠心分離し、上清を除去した。この操作を2回繰り返した。
工程7. コントロールT細胞を含有する試験管に試薬Aを添加し、IGF-1 w/oE型CAR-T細胞を含有する試験管に試薬B又はCを添加し、IGF-1 w/oE des1-3型CAR-T細胞を含有する試験管に試薬Cを添加した。すべての試験管をアルミホイルで包み、4℃で15分間インキュベートした。
工程8. 工程7の試験管を1回洗浄した後、各試験管にPBSを300μL添加した。
工程9. 工程8の試験管中の細胞をフローサイトメトリーにかけた。
工程10.以下の式によりIGFBP3結合率を算出した。
 IGFBP3結合率(%)=(CD3陽性CAR陽性Hisタグ陽性細胞の数)/(CD3陽性CAR陽性細胞の数)×100
Step 6. The tube incubated in step 4 was centrifuged at 1500 rpm (or 400 g) for 10 minutes and the supernatant was removed. This operation was repeated twice.
Step 7. Add reagent A to tubes containing control T cells, add reagent B or C to tubes containing IGF-1 w/oE CAR-T cells, and add IGF-1 w/oE des1 Reagent C was added to tubes containing type-3 CAR-T cells. All tubes were wrapped in aluminum foil and incubated at 4°C for 15 minutes.
Step 8. After washing the tubes from step 7 once, 300 μL of PBS was added to each tube.
Step 9. Cells in tube from step 8 were subjected to flow cytometry.
Step 10. IGFBP3 binding rate was calculated by the following formula.
IGFBP3 binding rate (%) = (number of CD3-positive CAR-positive His-tag positive cells) / (number of CD3-positive CAR-positive cells) x 100

 結果を図21に示す。IGF-1 w/oE型CAR-T細胞及びIGF-1 w/oE des1-3型CAR-T細胞はそれぞれ、約20%、約60%のIGFBP3結合率を示した。したがって、IGF-1 w/oE des1-3は、IGF-1 w/oEよりも高いIGFBP3結合能を示した。 The results are shown in FIG. IGF-1 w/o E type CAR-T cells and IGF-1 w/o E des1-3 type CAR-T cells showed IGFBP3 binding rates of about 20% and about 60%, respectively. Therefore, IGF-1 w/oE des1-3 showed higher IGFBP3 binding ability than IGF-1 w/oE.

 先行研究では、N末端に3つのアミノ酸の欠失を有するIGF-1のバリアント(Des1-3 IGF-1)はIGFBPへの結合能が著しく低下することが知られている(Sara VR et al., Annals New York Academy of Sciences, 1993, 692:183-91、Ballard F et al., Int. J. Biochem. Cell Biol., 1996, 28(10):1085-1087)。したがって、当該3つのアミノ酸の欠失を有するIGF-1 w/oE des1-3が、当該3つのアミノ酸の欠失を有しないIGF-1 w/oEよりも高いIGFBP3結合能を示したことは予想外の結果であった。 Previous studies have shown that a variant of IGF-1 (Des1-3 IGF-1) with a deletion of three amino acids at the N-terminus has a markedly reduced ability to bind to IGFBP (Sara VR et al. J. Biochem. Cell Biol., 1996, 28(10):1085-1087). Therefore, it is expected that IGF-1 w/oE des1-3 having the deletion of the three amino acids showed higher IGFBP3-binding ability than IGF-1 w/oE without the deletion of the three amino acids. outside result.

[実施例12 IGFBP3又はIGFBP3+IGF1RによるIGF-1 w/oE des1-3型CAR-T細胞の活性化]
 IGFBP3又はIGFBP3+IGF1Rでの刺激後のIGF-1 w/oE des1-3型CAR-T細胞のIFNγの放出量を調べることにより、IGFBP3又はIGFBP3+IGF1RによるIGF-1 w/oE des1-3型CAR-T細胞の活性化を調べた。
[Example 12 Activation of IGF-1 w/oE des1-3 type CAR-T cells by IGFBP3 or IGFBP3 + IGF1R]
By examining the amount of IFNγ released from IGF-1 w/oE des1-3 type CAR-T cells after stimulation with IGFBP3 or IGFBP3 + IGF1R, IGF-1 w/oE des1-3 type CAR-T cells by IGFBP3 or IGFBP3 + IGF1R activation of

 具体的な実験手順は以下の通りである。
工程1. 1μg のHisタグ付加ヒトIGF1Rタンパク質(ACROBiosystems、カタログ番号:IGR-H5229)を含有する又は含有しない500μlのPBSを24ウェルノントリートプレートのウェルに添加した。このプレートを冷蔵庫で一晩インキュベートし固相化させた。
工程2. 工程1のプレートを2回洗浄した後、実施例10と同様の方法で培養・増幅したコントロールT細胞(抗CD3抗体及び抗CD28抗体で活性化させたT細胞)又はIGF-1 w/oE des1-3型CAR-T細胞(106個)と、1μgのHisタグ付加ヒトIGFBP3タンパク質(ACROBiosystems、カタログ番号:IG3-H52H9)をプレートの各ウェルに添加した。
工程3. 工程2のプレートの各ウェルにRPMIを添加して総量を2mlとした。このプレートを37℃で24時間インキュベートした。
工程4. 工程3のインキュベート後のプレートの各ウェルから上清を1mL回収した。
工程5. 工程4で回収した上清中のIFN-γの濃度をELISAキットを用いて測定した。
Specific experimental procedures are as follows.
Step 1. 500 μl of PBS with or without 1 μg of His-tagged human IGF1R protein (ACROBiosystems, catalog number: IGR-H5229) was added to the wells of a 24-well no-treat plate. This plate was incubated overnight in a refrigerator for immobilization.
Step 2. After washing the plate in step 1 twice, control T cells (T cells activated with anti-CD3 antibody and anti-CD28 antibody) cultured and expanded in the same manner as in Example 10 or IGF-1 w /oE des1-3 type CAR-T cells (10 6 cells) and 1 μg of His-tagged human IGFBP3 protein (ACROBiosystems, catalog number: IG3-H52H9) were added to each well of the plate.
Step 3. RPMI was added to each well of the plate from step 2 to bring the total volume to 2 ml. The plate was incubated at 37°C for 24 hours.
Step 4. 1 mL of supernatant was collected from each well of the plate after incubation in step 3.
Step 5. The concentration of IFN-γ in the supernatant collected in step 4 was measured using an ELISA kit.

 結果を図22に示す。
 IGF-1 w/oE des1-3型CAR-T細胞をIGFBP3で刺激した場合、コントロールT細胞をIGFBP3で刺激した場合に比べてIFN-γ濃度が高かった。この結果は、IGF-1 w/oE des1-3型CAR-T細胞がIGF1Rに結合して活性化されるだけでなく、IGFBP3に結合することによっても活性化されることを示す。
The results are shown in FIG.
Stimulation of IGF-1 w/oE des1-3 CAR-T cells with IGFBP3 resulted in higher levels of IFN-γ than control T cells stimulated with IGFBP3. This result indicates that IGF-1 w/oE des1-3 type CAR-T cells are activated not only by binding to IGF1R, but also by binding to IGFBP3.

 また、IGF-1 w/oE des1-3型CAR-T細胞をIGFBP3+IGF1Rで刺激した場合のIFN-γ濃度は、コントロールT細胞をIGFBP3+IGF1Rで刺激した場合のIFN-γ濃度に比べて有意に高く、IGF-1 w/oE des1-3型CAR-T細胞をIGFBP3で刺激した場合のIFN-γ濃度に比べても顕著に高かった。これらの結果は、IGF-1 w/oE des1-3型CAR-T細胞がIGFBP3及びIGF1Rの存在下でIGFBP3及びIGF1Rの両方に結合して活性化されることを示す。 In addition, the IFN-γ concentration in IGF-1 w/oE des1-3 type CAR-T cells stimulated with IGFBP3+IGF1R was higher than that in control T cells stimulated with IGFBP3+IGF1R. It was significantly higher than the IFN-γ concentration when IGF-1 w/oE des1-3 type CAR-T cells were stimulated with IGFBP3. These results indicate that IGF-1 w/oEdes1-3 type CAR-T cells are activated by binding to both IGFBP3 and IGF1R in the presence of IGFBP3 and IGF1R.

配列
配列番号1 成熟IGF-1をコードする塩基配列
GGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGAGCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGAGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCC
SEQ ID NO: 1 Nucleotide sequence encoding mature IGF-1
GGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGAGCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCC

配列番号2 成熟IGF-1のアミノ酸配列
GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA
SEQ ID NO: 2 Amino acid sequence of mature IGF-1
GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA

配列番号3 IGF-1 Eaをコードする塩基配列
ATGGGAAAAATCAGCAGTCTTCCAACCCAATTATTTAAGTGCTGCTTTTGTGATTTCTTGAAGGTGAAGATGCACACCATGTCCTCCTCGCATCTCTTCTACCTGGCGCTGTGCCTGCTCACCTTCACCAGCTCTGCCACGGCTGGACCGGAGACGCTCTGCGGGGCTGAGCTGGTGGATGCTCTTCAGTTCGTGTGTGGAGACAGGGGCTTTTATTTCAACAAGCCCACAGGGTATGGCTCCAGCAGTCGGAGGGCGCCTCAGACAGGCATCGTGGATGAGTGCTGCTTCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATTGCGCACCCCTCAAGCCTGCCAAGTCAGCTCGCTCTGTCCGTGCCCAGCGCCACACCGACATGCCCAAGACCCAGAAGGAAGTACATTTGAAGAACGCAAGTAGAGGGAGTGCAGGAAACAAGAACTACAGGATG
SEQ ID NO: 3 Nucleotide sequence encoding IGF-1 Ea
ATGGGAAAAATCAGCAGTCTTCCAACCCAATTATTTAAGTGCTGCTTTGTGATTTCTTGAAGGTGAAGATGCACACCATGTCCTCCTCGCATCTCTTCTACCTGGCGCTGTGCCTGCTCACCTTCACCAGCTCTGCCACGGCTGGACCGGAGACGCTCTGCGGGGCTGAGCTGGTGGATGCTCTTCAGTTCGTGTGTGGAGACAGGGGCTTTTATTTCAACAAGCCCACAGGGTATGGCTCCAGCAGTCG GAGGGCGCCTCAGACAGGCATCGTGGATGAGTGCTGCTTCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATTGCGCACCCCTCAAGCCTGCCAAGTCAGCTCGCTCTGTCCGTGCCCAGCGCCACACCGACATGCCCAAGACCCAGAAGGAAGTACATTTGAAGAACGCAAGTAGAGGGAGTGCAGGAAACAAGAACTACAGGATG

配列番号4 IGF-1 Eaのアミノ酸配列
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKEVHLKNASRGSAGNKNYRM
SEQ ID NO: 4 Amino acid sequence of IGF-1 Ea
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKEVHLKNASRGSAGNKNYRM

配列番号5 IGF-1 Ebをコードする塩基配列
ATGGGGAAAATCTCCTCACTGCCTACACAGCTCTTCAAATGCTGCTTTTGCGACTTTCTGAAGGTGAAGATGCACACGATGAGCTCTTCCCACCTCTTTTACCTGGCCCTTTGTCTGCTGACATTCACTTCCAGTGCTACTGCTGGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGAGCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGAGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCCAGAAGCGTAAGGGCACAACGTCATACCGACATGCCCAAAACCCAGAAGTATCAGCCACCGTCAACCAACAAGAATACCAAGTCTCAACGGCGGAAAGGTTGGCCCAAGACCCATCCTGGAGGTGAACAGAAGGAAGGCACAGAAGCCAGTCTGCAGATACGGGGCAAGAAGAAGGAGCAAAGACGAGAGATTGGGTCTAGGAATGCGGAGTGTCGCGGCAAGAAAGGGAAA
SEQ ID NO: 5 Nucleotide sequence encoding IGF-1 Eb
ATGGGGAAAATCTCCTCACTGCCTACACAGCTCTTCAAATGCTGCTTTGCGACTTTCTGAAGGTGAAGATGCACACGATGAGCTCTTCCCACCTCTTTTACCTGGCCCTTTGTCTGCTGACATTCACTTCCAGTGCTACTGCTGGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGA GCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGAGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCCAGAAGCGTAAGGGCACAACGTCATACCGACATGCCCAAAACCCAGAAGTATCAGCCACCGTCAACCAACAAGAATACCAAGTCTCAACGGCGGAAAGGTTGGCCCAAGACCCATCCTGGAGGTGAACAGAAGGAAGGCACAGAAGCCTGCAGATACGG GGCAAGAAGAAGGAGCAAAGACGAGAGATTGGGTCTAGGAATGCGGAGTGTCGCGGCAAGAAAGGGAAA

配列番号6 IGF-1 Ebのアミノ酸配列
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKYQPPSTNKNTKSQRRKGWPKTHPGGEQKEGTEASLQIRGKKKEQRREIGSRNAECRGKKGK
SEQ ID NO: 6 Amino acid sequence of IGF-1 Eb
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKYQPPSTNKNTKSQRRKGWPKTHPGGEQKEGTEASLQIRGKKKEQRREIGSRNAECRGKKGK

配列番号7 IGF-1 Ecをコードする塩基配列
ATGGGGAAAATCTCCTCACTGCCTACACAGCTCTTCAAATGCTGCTTTTGCGACTTTCTGAAGGTGAAGATGCACACGATGAGCTCTTCCCACCTCTTTTACCTGGCCCTTTGTCTGCTGACATTCACTTCCAGTGCTACTGCTGGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGAGCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGAGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCCAGAAGCGTAAGGGCACAACGTCATACCGACATGCCCAAAACCCAGAAGTATCAGCCACCGTCAACCAACAAGAATACCAAGTCTCAACGGCGGAAAGGTAGCACATTCGAGGAAAGGAAA
SEQ ID NO: 7 Nucleotide sequence encoding IGF-1 Ec
ATGGGGAAAATCTCCTCACTGCCTACACAGCTCTTCAAATGCTGCTTTGCGACTTTCTGAAGGTGAAGATGCACACGATGAGCTCTTCCCACCTCTTTTACCTGGCCCTTTGTCTGCTGACATTCACTTCCAGTGCTACTGCTGGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGA GCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGAGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCCAGAAGCGTAAGGGCACAACGTCATACCGACATGCCCAAAACCCAGAAGTATCAGCCACCGTCAACCAACAAGAATACCAAGTCTCAACGGCGGAAAGGTAGCACATTCGAGGAAAGGAAA

配列番号8 IGF-1 Ecのアミノ酸配列
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKYQPPSTNKNTKSQRRKGSTFEERK
SEQ ID NO:8 Amino acid sequence of IGF-1 Ec
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSARSVRAQRHTDMPKTQKYQPPSTNKNTKSQRRKGSTFEERK

配列番号9 IGF-1 w/oEをコードする塩基配列
ATGGGGAAAATCTCCTCACTGCCTACACAGCTCTTCAAATGCTGCTTTTGCGACTTTCTGAAGGTGAAGATGCACACGATGAGCTCTTCCCACCTCTTTTACCTGGCCCTTTGTCTGCTGACATTCACTTCCAGTGCTACTGCTGGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGAGCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGAGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCC
SEQ ID NO: 9 Nucleotide sequence encoding IGF-1 w/oE
ATGGGGAAAATCTCCTCACTGCCTACACAGCTCTTCAAATGCTGCTTTGCGACTTTCTGAAGGTGAAGATGCACACGATGAGCTCTTCCCACCTCTTTTACCTGGCCCTTTGTCTGCTGACATTCACTTCCAGTGCTACTGCTGGACCCGAAACACTGTGCGGAGCAGAGCTTGTCGATGCCTTGCAGTTCGTTTGTGGCGATCGAGGGTTCTACTTCAACAAACCAACGGGTTATGGCAGCAGCTCAAGGAGA GCACCTCAGACTGGAATCGTGGATGAGTGCTGCTTTCGCTCCTGTGACCTCAGACGCTTGGAGATGTACTGTGCTCCCCTGAAACCAGCCAAAAGCGCC

配列番号10 IGF-1 w/oEのアミノ酸配列
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA
SEQ ID NO: 10 Amino acid sequence of IGF-1 w/oE
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA

配列番号11 成熟IGF-2をコードする塩基配列
GCGTATCGGCCTAGTGAGACCCTGTGTGGTGGTGAACTCGTGGACACTCTCCAGTTCGTCTGTGGAGACAGAGGATTTTACTTCAGCAGGCCGGCCTCACGGGTAAGCCGCAGGAGCCGAGGCATTGTAGAAGAATGTTGCTTCCGGTCCTGCGACCTTGCTCTGCTGGAGACGTATTGTGCAACACCCGCAAAATCTGAG
SEQ ID NO: 11 Nucleotide sequence encoding mature IGF-2
GCGTATCGGCCTAGTGAGACCCTGTGTGGTGGTGAACTCTGGACACTCTCCAGTTCGTCTGTGGAGACAGAGGATTTTACTTCAGCAGGCCGGCCTCACGGGTAAGCCGCAGGAGCCGAGGCATTGTAGAAGAATGTTGCTTCCGGTCCTGCGACCTTGCTCTGCTGGAGACGTATTGTGCAACACCCGCAAAATCTGAG

配列番号12 成熟IGF-2のアミノ酸配列
AYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPAKSE
SEQ ID NO: 12 amino acid sequence of mature IGF-2
AYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPAKSE

配列番号13 pre-pro-IGF-2をコードする塩基配列
ATGGGGATTCCTATGGGGAAGTCCATGCTGGTGCTTCTGACGTTCCTCGCGTTTGCAAGCTGTTGTATAGCCGCCTACCGGCCATCTGAGACTCTGTGTGGAGGAGAACTGGTTGACACTTTGCAATTCGTGTGCGGGGATCGCGGCTTTTACTTTTCTCGCCCGGCTTCCCGGGTAAGCCGCAGATCCAGGGGCATCGTTGAAGAGTGTTGCTTTCGATCTTGCGACTTGGCACTCCTCGAAACCTATTGCGCCACGCCAGCTAAGTCAGAGAGGGACGTCTCCACCCCACCCACCGTCCTGCCTGACAACTTTCCACGGTACCCAGTCGGCAAATTCTTCCAGTATGATACCTGGAAGCAGAGTACACAGAGGCTGCGGCGGGGACTGCCAGCGTTGTTGCGGGCCAGAAGAGGCCACGTTCTTGCTAAGGAACTTGAAGCCTTCAGAGAAGCTAAACGCCACAGACCCCTTATCGCCCTGCCTACACAGGACCCAGCCCATGGAGGCGCACCACCCGAGATGGCCTCCAATAGAAAA
SEQ ID NO: 13 Nucleotide sequence encoding pre-pro-IGF-2
ATGGGGATTCCTATGGGGAAGTCCATGCTGGTGCTTCTGACGTTCCTCGCGTTTGCAAGCTGTTGTATAGCCGCCTACCGGCCATCTGAGACTCTGTGTGGAGGAGAACTGGTTGACACTTTGCAATTCGTGTGCGGGGATCGCGGCTTTTACTTTTCTCGCCCGGCTTCCCGGGTAAGCCGCAGATCCAGGGGCATCGTTGAAGAGTGTTGCTTTCGATCTTGCGACTTGGCACTCCTCGAAACCTATTGC GCCACGCCAGCTAAGTCAGAGAGGGACGTCTCCACCCCACCCACCGTCCTGCCTGACAACTTTCCACGGTACCCAGTCGGCAAATTCTTCCAGTATGATACCTGGAAGCAGAGTACACAGAGGCTGCGGCGGGGACTGCCAGCGTTGTTGCGGGCCAGAAGAGGCCACGTTCTTGCTAAGGAACTTGAAGCCTTCAGAGAAGCTAAACGCCACAGACCCCTTATCGCCCTGCCTACACAGGACCCAGCCCAT GGAGGCGCACCACCCGAGATGGCCTCCAATAGAAAA

配列番号14 pre-pro-IGF-2のアミノ酸配列
MGIPMGKSMLVLLTFLAFASCCIAAYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPAKSERDVSTPPTVLPDNFPRYPVGKFFQYDTWKQSTQRLRRGLPALLRARRGHVLAKELEAFREAKRHRPLIALPTQDPAHGGAPPEMASNRK
SEQ ID NO: 14 amino acid sequence of pre-pro-IGF-2
MGIPMGKSMLVLLTFLAFASCCIAAYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSRGIVEECCFRSCDLALLETYCATPAKSERDVSTPPTVLPDNFPRYPVGKFFQYDTWKQSTQRLRRGLPALLRARRGHVLAKELEAFREAKRHRPLIALPTQDPAHGGAPPEMASNRK

配列番号15 IgG1のヒンジ領域のアミノ酸配列
配列番号16 IgG1のCH2領域のアミノ酸配列
配列番号17 IgG1のCH3領域のアミノ酸配列
配列番号18 ヒトCD28由来膜貫通ドメインと共刺激ドメインのアミノ酸配列
配列番号19 ヒトCD3ζ鎖由来細胞内シグナル伝達ドメインのアミノ酸配列
配列番号20 成熟IGF-1型CAR発現プラスミドの塩基配列
配列番号21 IGF-1 Ea型CAR発現プラスミドの塩基配列
配列番号22 IGF-1 Eb型CAR発現プラスミドの塩基配列
配列番号23 IGF-1 Ec型CAR発現プラスミドの塩基配列
配列番号24 IGF-1 w/oE型CAR発現プラスミドの塩基配列
配列番号25 pre-pro-IGF-2型CAR発現プラスミドの塩基配列
配列番号26 IGF-1 w/oE des1-3型CAR発現プラスミドの塩基配列
配列番号27 IGF-1 w/oE des1-3のアミノ酸配列
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATATLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
SEQ ID NO: 15 amino acid sequence of hinge region of IgG1 SEQ ID NO: 16 amino acid sequence of CH2 region of IgG1 SEQ ID NO: 17 amino acid sequence of CH3 region of IgG1 SEQ ID NO: 18 amino acid sequence of human CD28-derived transmembrane domain and co-stimulatory domain SEQ ID NO: 19 human Amino acid sequence of CD3 zeta chain-derived intracellular signaling domain SEQ ID NO: 20 Nucleotide sequence of mature IGF-1 type CAR expression plasmid SEQ ID NO: 21 Nucleotide sequence of IGF-1 Ea type CAR expression plasmid SEQ ID NO: 22 IGF-1 Eb type CAR expression plasmid Nucleotide sequence SEQ ID NO: 23 Nucleotide sequence of IGF-1 Ec type CAR expression plasmid SEQ ID NO: 24 Nucleotide sequence of IGF-1 w/oE type CAR expression plasmid SEQ ID NO: 26 IGF-1 w/oE des1-3 type CAR expression plasmid nucleotide sequence SEQ ID NO: 27 IGF-1 w/oE des1-3 amino acid sequence
MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATATLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (12)

 インスリン様成長因子-1受容体(IGF1R)に結合する標的結合ドメインと、膜貫通ドメインと、細胞内シグナル伝達ドメインとを有するキメラ抗原受容体(chimeric antigen receptor: CAR)タンパク質をコードするポリヌクレオチドであって、標的結合ドメインが、インスリン様成長因子(IGF)のpre-pro前駆体又はそのEドメインを欠失した断片である、ポリヌクレオチド。 A polynucleotide encoding a chimeric antigen receptor (CAR) protein having a target-binding domain that binds to insulin-like growth factor-1 receptor (IGF1R), a transmembrane domain, and an intracellular signaling domain A polynucleotide, wherein the target binding domain is an insulin-like growth factor (IGF) pre-pro precursor or an E-domain deleted fragment thereof.  前記IGFが、IGF-1である、請求項1に記載のポリヌクレオチド。 The polynucleotide according to claim 1, wherein the IGF is IGF-1.  標的結合ドメインが、配列番号4、6、8、若しくは10に示すアミノ酸配列に対して少なくとも90%の配列同一性を有するアミノ酸配列からなる、請求項1又は2に記載のポリヌクレオチド。 3. The polynucleotide of claim 1 or 2, wherein the target binding domain consists of an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO: 4, 6, 8, or 10.  前記IGFが、IGF-2である、請求項1に記載のポリヌクレオチド。 The polynucleotide according to claim 1, wherein the IGF is IGF-2.  標的結合ドメインが、配列番号14に示すアミノ酸配列に対して少なくとも90%の配列同一性を有するアミノ酸配列からなる、請求項1又は4に記載のポリヌクレオチド。 The polynucleotide according to claim 1 or 4, wherein the target binding domain consists of an amino acid sequence having at least 90% sequence identity to the amino acid sequence shown in SEQ ID NO:14.  請求項1~5のいずれか1項に記載のポリヌクレオチドを含む、ベクター。 A vector comprising the polynucleotide according to any one of claims 1 to 5.  請求項1~5のいずれか1項に記載のポリヌクレオチド、又は請求項6に記載のベクターが導入された、遺伝子改変細胞。 A genetically modified cell into which the polynucleotide according to any one of claims 1 to 5 or the vector according to claim 6 has been introduced.  請求項1~5のいずれか1項に記載のポリヌクレオチド、又は請求項6に記載のベクターを細胞に導入することを含む、CARタンパク質発現細胞の作製方法。 A method for producing a CAR protein-expressing cell, comprising introducing the polynucleotide according to any one of claims 1 to 5 or the vector according to claim 6 into a cell.  請求項7に記載の細胞を含む、IGF1R発現細胞が関与する疾患に対する治療剤。 A therapeutic agent for diseases involving IGF1R-expressing cells, comprising the cells according to claim 7.  請求項9に記載の治療剤と、医薬上許容される担体とを含む、医薬組成物。 A pharmaceutical composition comprising the therapeutic agent according to claim 9 and a pharmaceutically acceptable carrier.  IGF1R発現細胞が関与する疾患が、白血病、多発性骨髄腫、リンパ腫、肺がん、頭頚部扁平上皮がん、肝がん、肝細胞がん、膵がん、結腸直腸がん、大腸がん、結腸がん、乳がん、子宮体がん、子宮頸がん、卵巣がん、前立腺がん、甲状腺がん、腎がん、副腎がん、メラノーマ、神経内分泌腫瘍、網膜芽腫、及び肉腫からなる群から選択される、請求項9に記載の治療剤又は請求項10に記載の組成物。 Diseases involving IGF1R-expressing cells include leukemia, multiple myeloma, lymphoma, lung cancer, head and neck squamous cell carcinoma, liver cancer, hepatocellular carcinoma, pancreatic cancer, colorectal cancer, colorectal cancer, and colon cancer. The group consisting of cancer, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, prostate cancer, thyroid cancer, renal cancer, adrenal cancer, melanoma, neuroendocrine tumor, retinoblastoma, and sarcoma 11. The therapeutic agent of claim 9 or the composition of claim 10, selected from:  請求項6に記載のベクターを含む、IGF1R発現細胞を標的とするCARタンパク質発現細胞の作製のためのキット。 A kit for producing CAR protein-expressing cells targeting IGF1R-expressing cells, comprising the vector according to claim 6.
PCT/JP2023/003012 2022-01-31 2023-01-31 Cells expressing pre-pro-precursor form chimeric antigen receptor targeting igf1r WO2023145961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023577086A JPWO2023145961A1 (en) 2022-01-31 2023-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022012674 2022-01-31
JP2022-012674 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145961A1 true WO2023145961A1 (en) 2023-08-03

Family

ID=87471783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003012 WO2023145961A1 (en) 2022-01-31 2023-01-31 Cells expressing pre-pro-precursor form chimeric antigen receptor targeting igf1r

Country Status (3)

Country Link
JP (1) JPWO2023145961A1 (en)
TW (1) TW202342509A (en)
WO (1) WO2023145961A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539383A (en) * 2006-06-09 2009-11-19 ノバルティス アクチエンゲゼルシャフト Stabilized insulin-like growth factor polypeptide
JP2009542719A (en) * 2006-07-06 2009-12-03 モレキュラー ロジックス,インコーポレイテッド Insulin-like growth factor-I receptor antagonists
WO2019090215A2 (en) * 2017-11-06 2019-05-09 Monticello Daniel J Dominant negative ligand chimeric antigen receptor systems
JP2021512911A (en) * 2018-02-09 2021-05-20 ザ トラスティーズ オブ ダートマス カレッジ Chimeric antigen receptor for the treatment of neurodegenerative diseases and disorders

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539383A (en) * 2006-06-09 2009-11-19 ノバルティス アクチエンゲゼルシャフト Stabilized insulin-like growth factor polypeptide
JP2009542719A (en) * 2006-07-06 2009-12-03 モレキュラー ロジックス,インコーポレイテッド Insulin-like growth factor-I receptor antagonists
WO2019090215A2 (en) * 2017-11-06 2019-05-09 Monticello Daniel J Dominant negative ligand chimeric antigen receptor systems
JP2021512911A (en) * 2018-02-09 2021-05-20 ザ トラスティーズ オブ ダートマス カレッジ Chimeric antigen receptor for the treatment of neurodegenerative diseases and disorders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN HUANG, PARK HAEIN, GREENE JOSEPH, PAO JAMES, MULVEY ERIN, ZHOU SOPHIA, ALBERT CATHERINE, MOY FRED, SACHDEV DEEPALI, YEE DOUGLA: "IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, vol. 10, no. 7, pages e0133152, XP055339394, DOI: 10.1371/journal.pone.0133152 *

Also Published As

Publication number Publication date
JPWO2023145961A1 (en) 2023-08-03
TW202342509A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7566817B2 (en) Bispecific CAR T cells targeting solid tumors
US11905528B2 (en) Compound chimeric antigen receptor (cCAR) targeting multiple antigens, compositions and methods of use thereof
TWI790213B (en) Compositions and methods for tcr reprogramming using fusion proteins
US20230074800A1 (en) Car-t cell therapies with enhanced efficacy
US20200113940A1 (en) Chimeric antigen receptor t cells targeting the tumor microenvironment
JP7696658B2 (en) Immunocompetent cells expressing cell surface molecules that specifically recognize human mesothelin, IL-7, and CCL19
JP2021500894A (en) Method for producing chimeric antigen receptor-expressing cells
US20210338729A1 (en) CHIMERIC ANTIGEN RECEPTORS (CARs) COMPOSITIONS AND METHODS OF USE THEREOF
JP2018518972A (en) Masking chimeric antigen receptor T cells for tumor specific activation
US11299552B2 (en) Eliminating MHC restriction from the T cell receptor as a strategy for immunotherapy
CA2992551A1 (en) Methods for improving the efficacy and expansion of immune cells
CN116057181A (en) Methods and compositions for modifying and delivering lymphocytes
US10683355B2 (en) Genetically-modified cells and method for producing same
JP2021536245A (en) Methods and Compositions for Gene Modification of Lymphocytes in Blood or Concentrated PBMCs
JP7296133B2 (en) GENETICALLY MODIFIED CELL AND METHOD FOR PRODUCING THE SAME
WO2024099265A1 (en) Engineered chimeric antigen receptor immune cell and use thereof
WO2023145961A1 (en) Cells expressing pre-pro-precursor form chimeric antigen receptor targeting igf1r
CA3215822A1 (en) Chimeric antigen receptor (car)-t cells
EP4534676A1 (en) Chimeric antigen receptor-expressing cell that targets egfr
US20250135002A1 (en) Compositions for and method of effecting tumor cell death
JP2025017424A (en) Method for producing a versatile CAR-expressing T cell population
WO2025092690A1 (en) Modified cell and use thereof
WO2020241827A1 (en) Chimeric antigen receptor-expressing cells targeting alk
WO2024193562A1 (en) Modified cell and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23747171

Country of ref document: EP

Kind code of ref document: A1