[go: up one dir, main page]

WO2023145776A1 - Polymer film and laminated glass - Google Patents

Polymer film and laminated glass Download PDF

Info

Publication number
WO2023145776A1
WO2023145776A1 PCT/JP2023/002295 JP2023002295W WO2023145776A1 WO 2023145776 A1 WO2023145776 A1 WO 2023145776A1 JP 2023002295 W JP2023002295 W JP 2023002295W WO 2023145776 A1 WO2023145776 A1 WO 2023145776A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
laminated glass
mass
less
peaks
Prior art date
Application number
PCT/JP2023/002295
Other languages
French (fr)
Japanese (ja)
Inventor
敦 野原
和彦 中山
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2023518818A priority Critical patent/JPWO2023145776A1/ja
Publication of WO2023145776A1 publication Critical patent/WO2023145776A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds

Definitions

  • the present invention relates to a polymer film and a laminated glass having a polymer film.
  • Laminated glass is safe because it does not scatter glass fragments even if it is damaged by an external impact, so it is widely used for the window glass of various vehicles such as automobiles and the window glass of buildings.
  • Laminated glass is widely known in which an interlayer film for laminated glass containing a resin component such as polyvinyl acetal resin is interposed between a pair of glasses to integrate them.
  • interlayer films for laminated glass are generally mixed with UV absorbers.
  • various polymer films are blended with antioxidants for the purpose of improving durability.
  • polymer films such as interlayer films for laminated glass are blended with various additives according to their purpose.
  • An interlayer film for laminated glass containing fullerene is disclosed.
  • Patent Document 1 indicates that the fullerene improves the heat shielding property, it does not indicate a compounding that can prevent deterioration of the polymer film due to the fullerene.
  • an object of the present invention is to provide a polymer film that is sufficiently prevented from deterioration and has excellent durability even when used in an environment exposed to ultraviolet rays.
  • the present inventors found that the durability of polymer films is excellent when the radical peak in electron spin nuclear magnetic resonance (ESR) at the time of ultraviolet irradiation satisfies predetermined conditions. completed. That is, the present invention provides the following [1] to [17].
  • [1] When irradiated with ultraviolet rays having a wavelength of 365 nm, a peak in electron spin nuclear magnetic resonance (ESR) is detected, and four peaks are not detected, or even if four peaks are detected, the irradiation intensity is 100%.
  • polymer film [3] The polymer film according to [1] or [2] above, which contains a polyvinyl acetal resin.
  • the present invention it is possible to provide a polymer film that is sufficiently prevented from being deteriorated and has excellent durability even when used in an environment exposed to ultraviolet rays.
  • Example 3 The ESR spectrum of Example 3 is shown.
  • An example of the ESR spectrum of Example 5 is shown.
  • ⁇ Polymer film> When the polymer film of the present invention is irradiated with ultraviolet rays having a wavelength of 365 nm, a peak is detected in electron spin nuclear magnetic resonance (ESR). Even if the irradiation intensity is 100%, the intensity ratios of the peaks when the irradiation intensity is 60% and 20% are both 0.6 or more and 1.4 or less.
  • the peak in the electron spin nuclear magnetic resonance (ESR) is the peak of radicals (radical peak) generated when irradiated with ultraviolet rays.
  • the radical peak satisfies the above requirements, so that the polymer film has excellent durability even when used in an environment exposed to ultraviolet rays.
  • the peaks are considered to be peaks derived from radicals for trapping peroxy radicals, for example, peaks derived from antioxidants.
  • the peak height is considered to represent the radical scavenging performance, and the closer the intensity ratio is to 1, the more constant it is regardless of the irradiation intensity of ultraviolet rays, for example, even when the irradiation intensity is high. It is considered that the radical scavenging performance of Therefore, when four peaks are detected, the intensity ratio of the peaks at irradiation intensities of 60% and 20% with respect to the irradiation intensity of 100% is 0.6 or more and 1.4 or less. is less likely to deteriorate when exposed to UV light.
  • the detected peaks are considered to be peaks derived from radicals for trapping alkyl radicals, and are considered peaks derived from compounds other than antioxidants.
  • the alkyl radicals are appropriately captured, and a certain radical capturing performance is exhibited regardless of the intensity ratio of the peaks. difficult to proceed.
  • protons are abstracted by the ultraviolet rays to generate alkyl radicals, which then react with oxygen to generate peroxy radicals. While the peroxy radical extracts more protons, it itself becomes hydroperoxide, and deterioration progresses.
  • the capture of alkyl radicals that occurs when four peaks are not detected suppresses the degradation reaction on the upstream side in the degradation scheme. performance is expected to be demonstrated.
  • “4 peaks are detected” means that at least 4 peaks are detected, and 5 or more peaks may be detected, but typically 4 peaks are detected. be done. Also, “4 peaks are not detected” means that 1 to 3 peaks are detected, but typically 2 peaks are detected. Although the number of detected peaks does not change depending on the irradiation intensity, it is preferable to detect the number of peaks when the irradiation intensity is 100%. The number of detected peaks means the number of peak divisions.
  • the peaks in electron spin nuclear magnetic resonance appear symmetrically on the plus side and the minus side. It is assumed that the peak of is detected. A pair of peaks has continuous waveforms on the plus side and the minus side, and the intensity difference between the peaks is 0.04 or more. Therefore, the ESR spectrum shown in FIG. 1 has four peaks detected. Also, the ESR spectrum shown in FIG. 2 has two peaks detected. Furthermore, the "peak intensity ratio" is the ratio of the maximum height of the peak when the irradiation intensity is 60% or 20% to the maximum height of the peak when the irradiation intensity is 100%. , the maximum height M of the peak at 100% irradiation intensity. The maximum height M of the peak is obtained by reading the maximum height of the peak on the positive side.
  • the intensity ratio of the peak when the irradiation intensity is 60% to the irradiation intensity of 100% may be 0.6 or more and 1.4 or less. , preferably 0.7 to 1.3, more preferably 0.8 to 1.2, still more preferably 0.85 to 1.15, from the viewpoint of further improving durability.
  • the intensity ratio of the peaks when the irradiation intensity is 20% to the irradiation intensity of 100% may be 0.6 or more and 1.4 or less, but from the viewpoint of further improving durability. Therefore, it is preferably 0.65 or more and 1.3 or less, more preferably 0.7 or more and 1.2 or less, and still more preferably 0.78 or more and 1.1 or less.
  • the intensity ratio of the peak when the irradiation intensity is 60% to the irradiation intensity of 100% is not particularly limited, and is, for example, 0.2 or more and 5 or less, but preferably 0.2 or more and 2 or less. , more preferably 0.5 or more and 1.5 or less. Further, when four peaks are not detected, the intensity ratio of the peaks when the irradiation intensity is 20% to the irradiation intensity of 100% is not particularly limited. It is 2 or more and 2 or less, more preferably 0.25 or more and 1 or less.
  • the polymer film should contain a durability improver.
  • a durability improver compounds having radical scavenging properties are preferable, and specific examples thereof include antioxidants, light stabilizers, carbon materials, and the like, which will be described later. In the present invention, one or a combination of two or more of these may be appropriately adjusted so that the radical peak satisfies the above requirements.
  • the polymeric film of the present invention contains a resin as a polymeric material (polymer).
  • the resin may be either a thermosetting resin or a thermoplastic resin, but a thermoplastic resin is preferred. Also, the resin may be an elastomer.
  • the polymer film can easily function as an adhesive film, and when used as an interlayer film for laminated glass, for example, the adhesiveness to laminated glass members is improved.
  • resins include, but are not limited to, polyvinyl acetal resins, olefin resins, ionomer resins, ethylene-vinyl acetate copolymer (EVA) resins, polyurethane resins, and acrylic resins. By using these resins, it becomes easier to ensure adhesion to other members such as laminated glass members. These resins are typically thermoplastic resins. Among the above resins, polyvinyl acetal resins are preferable, and polyvinyl butyral resins are particularly preferable, because they exhibit excellent adhesiveness to inorganic glass when used in combination with a plasticizer.
  • Polymer film WHEREIN The said resin may be used individually by 1 type, and may be used together 2 or more types.
  • the polyvinyl acetal resin is not particularly limited as long as it is a polyvinyl acetal resin obtained by acetalizing polyvinyl alcohol (PVA) with an aldehyde.
  • PVA polyvinyl alcohol
  • aldehyde aldehydes having 1 to 10 carbon atoms are generally preferably used.
  • the aldehyde having 1 to 10 carbon atoms is not particularly limited, and examples thereof include n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde and n-nonylaldehyde. , n-decylaldehyde, formaldehyde, acetaldehyde, benzaldehyde and the like. These aldehydes may be used alone or in combination of two or more.
  • polyvinyl butyral resin is suitable for polyvinyl acetal resin.
  • Polyvinyl alcohol is obtained, for example, by saponifying a polyvinyl ester such as polyvinyl acetate.
  • the degree of saponification of polyvinyl alcohol is generally 70-99.9 mol %.
  • Polyvinyl acetal resin may be used individually by 1 type, and may use 2 or more types together.
  • the average degree of polymerization of PVA is preferably 200 or higher, more preferably 500 or higher, still more preferably 1000 or higher, and even more preferably 1500 or higher. When the average degree of polymerization is equal to or higher than the above lower limit, the penetration resistance of the laminated glass becomes high when used for the laminated glass.
  • the average degree of polymerization of PVA is preferably 5,000 or less, more preferably 4,000 or less, even more preferably 3,500 or less, and still more preferably 2,500 or less.
  • the average degree of polymerization of polyvinyl alcohol is determined by a method conforming to JIS K6726 "Polyvinyl alcohol test method".
  • the hydroxyl group content of the polyvinyl acetal resin is preferably 15 mol % or more and preferably 38 mol % or less.
  • the amount of hydroxyl groups is more preferably 20 mol % or more, still more preferably 25 mol % or more, from the viewpoint of adhesion to glass members such as laminated glass members.
  • the amount of hydroxyl groups is more preferably 35% or less, and still more preferably 33 mol% or less.
  • the amount of hydroxyl groups is 15 mol % or more, preferably 38 mol % or less, more preferably 20 mol % or more, and still more preferably 25 mol % or more, from the same viewpoint. It is mol % or more, more preferably 35 mol % or less, still more preferably 33 mol % or less.
  • the amount of hydroxyl groups in the polyvinyl acetal resin is the molar fraction obtained by dividing the amount of ethylene groups to which hydroxyl groups are bonded by the total amount of ethylene groups in the main chain, expressed as a percentage.
  • the amount of ethylene groups to which the hydroxyl groups are bonded can be measured according to, for example, JIS K6728 "Polyvinyl butyral test method".
  • the degree of acetalization of the polyvinyl acetal resin is preferably 47 mol % or more and preferably 85 mol % or less.
  • the degree of acetalization is more preferably 55 mol % or more, still more preferably 60 mol % or more, and more preferably 80 mol % or less, still more preferably 75 mol % or less.
  • the degree of acetalization means the degree of butyralization when the acetal group is a butyral group and the polyvinyl acetal resin (A) is a polyvinyl butyral resin.
  • the degree of acetalization is the total amount of ethylene groups in the main chain minus the amount of ethylene groups to which hydroxyl groups are bonded and the amount of ethylene groups to which acetyl groups are bonded. It is a value showing the mole fraction obtained by dividing by the percentage.
  • the degree of acetalization may be calculated, for example, from the results measured by a method conforming to JIS K6728 "Polyvinyl butyral test method".
  • the degree of acetylation of the polyvinyl acetal resin is preferably 30 mol % or less, more preferably 20 mol % or less, even more preferably 10 mol % or less, and even more preferably 2 mol % or less.
  • the degree of acetylation is equal to or less than the upper limit, the moisture resistance of the polymer film is enhanced.
  • the degree of acetylation is not particularly limited, it is preferably 0.01 mol % or more, more preferably 0.1 mol % or more.
  • the degree of acetylation is the molar fraction obtained by dividing the amount of ethylene groups to which acetyl groups are bonded by the total amount of ethylene groups in the main chain, expressed as a percentage.
  • the amount of ethylene groups to which the acetyl groups are bonded can be measured according to, for example, JIS K6728 "Polyvinyl butyral test method".
  • olefin resin examples include polymers or copolymers of olefins such as ethylene, propylene, 1-butene, 4-methylpentene-1, 1-hexene, 1-octene, 1-decene, and 1-dodecene. Specific examples include polyethylene resin, polypropylene resin, polybutene resin, poly(4-methylpentene-1) resin, and the like.
  • the ionomer resin is not particularly limited, and various ionomer resins can be used. Specific examples include ethylene-based ionomers, styrene-based ionomers, perfluorocarbon-based ionomers, telechelic ionomers, polyurethane ionomers, and the like. Among these, ethylene-based ionomers are preferable from the viewpoint of improving the mechanical strength, durability, transparency, etc. of laminated glass and from the viewpoint of excellent adhesion to laminated glass members.
  • an ethylene/unsaturated carboxylic acid copolymer ionomer is preferably used because of its excellent transparency and toughness.
  • the ethylene/unsaturated carboxylic acid copolymer is a copolymer having at least structural units derived from ethylene and structural units derived from unsaturated carboxylic acid, and may have structural units derived from other monomers.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, etc. Acrylic acid and methacrylic acid are preferred, and methacrylic acid is particularly preferred.
  • Other monomers include acrylic acid esters, methacrylic acid esters, 1-butene, and the like.
  • the ethylene/unsaturated carboxylic acid copolymer preferably has 75 to 99 mol% of ethylene-derived structural units when the total structural units of the copolymer are 100 mol%, and unsaturated carboxylic acid-derived It preferably has 1 to 25 mol % of structural units.
  • the ionomer of the ethylene/unsaturated carboxylic acid copolymer is an ionomer resin obtained by neutralizing or crosslinking at least part of the carboxyl groups of the ethylene/unsaturated carboxylic acid copolymer with metal ions.
  • the degree of neutralization of carboxyl groups is usually 1-90%, preferably 5-85%.
  • Ion sources for ionomer resins include alkali metals such as lithium, sodium, potassium, rubidium and cesium, and polyvalent metals such as magnesium, calcium and zinc, with sodium and zinc being preferred.
  • the method for producing the ionomer resin is not particularly limited, and it can be produced by a conventionally known production method.
  • an ionomer of an ethylene/unsaturated carboxylic acid copolymer for example, ethylene and an unsaturated carboxylic acid are subjected to radical copolymerization at high temperature and high pressure to form an ethylene/unsaturated carboxylic acid. to produce a copolymer;
  • an ionomer of the ethylene/unsaturated carboxylic acid copolymer can be produced.
  • the ethylene-vinyl acetate copolymer resin may be a non-crosslinked ethylene-vinyl acetate copolymer resin or a high-temperature crosslinked ethylene-vinyl acetate copolymer resin.
  • ethylene-vinyl acetate copolymer resin ethylene-vinyl acetate modified resins such as ethylene-vinyl acetate copolymer saponified products and ethylene-vinyl acetate hydrolysates can also be used.
  • the ethylene-vinyl acetate copolymer resin preferably has a vinyl acetate content of 10 to 50% by mass, more preferably 10 to 50% by mass, as measured according to JIS K 6730 "Ethylene-vinyl acetate resin test method" or JIS K 6924-2:1997. is 20 to 40% by mass.
  • a vinyl acetate content 10 to 50% by mass, more preferably 10 to 50% by mass, as measured according to JIS K 6730 "Ethylene-vinyl acetate resin test method" or JIS K 6924-2:1997. is 20 to 40% by mass.
  • polyurethane resin examples include polyurethanes obtained by reacting an isocyanate compound with a diol compound, polyurethanes obtained by reacting an isocyanate compound with a diol compound, and a chain extender such as polyamine. Moreover, the polyurethane resin may contain a sulfur atom. In that case, part or all of the diols may be selected from polythiols and sulfur-containing polyols. Polyurethane resin can improve adhesion to organic glass. Therefore, it is preferably used when the laminated glass member is made of organic glass.
  • acrylic resins examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl methacrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, (meth)acrylic acid 2 - Ethylhexyl, n-octyl (meth)acrylate, lauryl (meth)acrylate, n-tridecyl (meth)acrylate, myristyl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, ( meth)allyl acrylate, vinyl (meth)acrylate,
  • (Meth)acrylic monomers such as trimethylolpropane tetra(meth)acrylate, (meth)acrylonitrile, (meth)acrylamide, dimethyl(meth)acrylamide, diethylaminoethyl (meth)acrylate, and polyethylene glycol di(meth)acrylate polymer. These (meth)acrylic monomers may be used alone, or two or more of them may be used in combination to form a copolymer.
  • (Meth)acrylic monomers itaconic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinyllauryllactam, styrene, and other (meth) ) It may be a copolymer with a monomer other than an acrylic monomer.
  • (meth)acryl means either one or both of acrylic and methacryl.
  • the polymer film preferably contains at least one of an antioxidant and a light stabilizer, more preferably contains at least an antioxidant, and preferably contains both an antioxidant and a light stabilizer. More preferred.
  • an antioxidant it becomes easier to capture peroxy radicals, making it easier to detect four radical peaks.
  • a light stabilizer is contained, alkyl radicals are likely to be captured, and four radical peaks are not detected, and two peaks are likely to be detected.
  • Antioxidant include phenol compounds, phosphoric compounds, sulfur compounds, and the like. Antioxidants prevent oxidative deterioration of the polymer film and improve durability. Among the above antioxidants, phenolic compounds are suitable.
  • Phenolic compounds include, for example, 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2'-methylenebis-(4-methyl-6-butylphenol), 2,2'-methylenebis-(4-ethyl-6- t-butylphenol), 4,4′-butylidene-bis-(3-methyl-6-t-butylphenol), 1,1,3-tris-(2-methyl-hydroxy-5-t-butylphenyl)butane, tetrakis[methylene-3-(3′,5′-butyl-4-hydroxyphenyl)propionate]methane, 1,3,3-tris-(2-methyl-4-hydroxy-5-t-butylphenol)butane, 1 , 3,5
  • Examples of the phosphoric acid compound include trisnonylphenyl phosphite, tridecyl phosphite, 2-ethyl-2-butylpropylene-4,6-tri-tert-butylphenol phosphite, 9,10-dihydro-9-oxa- 10-phosphaphenanthrene, tetra(tridecyl)isopropylidenediphenol diphosphite, tris[2-tert-butyl-4-(3-tert-hydroxy-5-methylphenylthio)-5-methylphenyl]phosph fight and the like.
  • Examples of the above sulfur compounds include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra( ⁇ -dodecylmercaptopropionate), etc.
  • dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra( ⁇ -dodecylmercaptopropionate), etc.
  • ⁇ -alkylmercaptopropionate esters of polyols and the like are included.
  • An antioxidant may be used individually by 1 type, and may use 2 or more types together.
  • the content of the antioxidant in the polymer film is preferably 0.01% by mass or more and 2% by mass or less based on the total amount of the polymer film. By making it 0.01% by mass or more, peroxy radicals can be appropriately captured even in an environment exposed to ultraviolet rays, oxidative deterioration of the resin film can be appropriately prevented, and durability can be enhanced. Moreover, by making it 2 mass % or less, it becomes easy to exhibit the effect commensurate with the content.
  • the content of the antioxidant is more preferably 0.03% by mass or more and 1.5% by mass or less, still more preferably 0.05% by mass or more and 1.0% by mass or less, and 0.07% by mass or more and 0 0.5% by mass or less is even more preferable.
  • the light stabilizers are preferably hindered amine light stabilizers.
  • Hindered amine light stabilizers for example, scavenge alkyl radicals to prevent deterioration of polymer films due to irradiation with ultraviolet rays contained in sunlight.
  • the hindered amine light stabilizer include hindered amine light stabilizers in which an alkyl group, an alkoxy group, or a hydrogen atom is bonded to the nitrogen atom of the piperidine structure. From the viewpoint of further suppressing deterioration, hindered amine light stabilizers in which an alkyl group or an alkoxy group is bonded to the nitrogen atom of the piperidine structure are preferred.
  • the hindered amine light stabilizer is preferably a hindered amine light stabilizer in which an alkyl group is bonded to the nitrogen atom of the piperidine structure, and is a hindered amine light stabilizer in which an alkoxy group is bonded to the nitrogen atom of the piperidine structure. is also preferred. Only one kind of light stabilizer may be used, or two or more kinds thereof may be used in combination.
  • Examples of the hindered amine light stabilizer having an alkyl group bonded to the nitrogen atom of the piperidine structure include “Tinuvin 765" and “Tinuvin 622SF” manufactured by BASF, and “ADEKA STAB LA-52" manufactured by ADEKA. Further, as hindered amine light stabilizers in which an alkoxy group is bonded to the nitrogen atom of the piperidine structure, BASF's “TinuvinXT-850FF" and “TinuvinXT-855FF", and ADEKA's "ADEKA STAB LA-81", etc. mentioned. Examples of the hindered amine light stabilizer in which a hydrogen atom is bonded to the nitrogen atom of the piperidine structure include “Tinuvin 770DF” manufactured by BASF and "Hostavin N24" manufactured by Clariant.
  • the content of the light stabilizer in the polymer film is preferably 0.001% by mass or more and 0.5% by mass or less based on the total amount of the polymer film. By making it 0.001% by mass or more, alkyl radicals are easily captured, four radical peaks are not detected and two peaks are easily detected, and deterioration of the polymer film due to ultraviolet rays etc. It can be prevented and durability can be improved. Moreover, by making it 0.5 mass % or less, it becomes easy to exhibit the effect commensurate with the content.
  • the content of the light stabilizer is more preferably 0.003% by mass or more and 0.4% by mass or less, further preferably 0.005% by mass or more and 0.2% by mass or less, and 0.007% by mass or more. 0.1% by mass or less is even more preferable.
  • the polymer film of the invention preferably contains a carbon material.
  • the carbon material traps radicals such as peroxy radicals and alkyl radicals, making it easier for the peaks detected in the ESR of the polymer film to satisfy the above requirements.
  • the carbon material may be any material that can capture radicals such as peroxy radicals and alkyl radicals, but fullerenes are preferred. Fullerenes trap both peroxy radicals and alkyl radicals, making it easier for peaks detected in ESR to satisfy the above requirements. Moreover, even if the polymer film is used in an environment where it is exposed to ultraviolet rays, the durability is likely to be improved.
  • Fullerenes include fullerenes and fullerene derivatives.
  • Fullerene consists of carbon atoms and has a closed shell structure.
  • a closed-shell structure is typically a combination of a 5-membered ring and a 6-membered ring.
  • Specific examples of fullerene include C60 , C70 , C76 , C78 , C84 , C90 , C96 , C180 , C240 , C320 , etc. Among these, C60 is preferred.
  • Fullerene derivatives are those in which the carbon atoms of the above-mentioned fullerenes are modified with inorganic atoms or atoms forming a part of an organic compound. is preferred.
  • hydrogenated fullerene by using hydrogenated fullerene, the above-described relative peak height tends to approach 1, and the durability of the polymer film under ultraviolet exposure environment is further improved.
  • the use of hydrogenated fullerene makes it possible to increase the transparency of the polymer film, and also makes it easier to suppress tinting due to the carbon material.
  • Fullerenes may be used individually by 1 type, and may use 2 or more types together. For example, when hydrogenated fullerene is used, hydrogenated fullerene may be used alone as fullerenes, or hydrogenated fullerene and other fullerenes such as fullerene may be used in combination.
  • the content of the carbon material in the polymer film is preferably 0.005% by mass or more and 0.1% by mass or less based on the total amount of the polymer film.
  • radicals such as alkyl radicals and peroxy radicals are properly captured by the carbon material, and the peak detected in the ESR of the polymer film easily satisfies the above requirements.
  • by setting the content to 0.1% by mass or less it becomes easier to exhibit an effect commensurate with the content.
  • the transparency of the polymer film can be increased, and it is possible to prevent the carbon material from imparting a tint.
  • the content of the carbon material in the polymer film is more preferably 0.006% by mass or more and 0.07% by mass or less, further preferably 0.007% by mass or more and 0.04% by mass or less. 01% by mass or more and 0.025% by mass or less is even more preferable.
  • carbon materials such as fullerenes are preferably used in combination with one or both of an antioxidant and a light stabilizer, more preferably in combination with at least an antioxidant.
  • the combined use of a carbon material such as fullerenes and at least one of an antioxidant and a light stabilizer makes it easier for the peak detected in ESR to satisfy the above requirements.
  • the function of scavenging radicals of antioxidants and light stabilizers is enhanced, and the durability of the polymer film under an environment exposed to ultraviolet rays can be further improved.
  • the mass ratio of the carbon material and the antioxidant contained in the polymer film is preferably 1:40 to 1:1.
  • the mass ratio of the carbon material and the antioxidant is within the above range, the function of scavenging radicals is further enhanced by the carbon material and the antioxidant. It also makes it easier for the peaks detected in the ESR to satisfy the above requirements. From these viewpoints, the mass ratio of the carbon material and the antioxidant in the polymer film is more preferably 1:30 to 1:2, more preferably 1:20 to 1:4, and more preferably 1:15 to 1:5. More preferred.
  • the polymer film it is also preferable to use a light stabilizer and an antioxidant in combination as described above. :20 to 1:1 is preferred.
  • the mass ratio of the light stabilizer and the antioxidant is within the above range, the function of scavenging peroxy radicals and alkyl radicals is enhanced in a well-balanced manner, making it easier to improve durability when exposed to ultraviolet rays. Also, two peaks detected in ESR are likely to be detected instead of being detected four. From these viewpoints, the mass ratio of the light stabilizer and the antioxidant in the polymer film is more preferably 1:18 to 1:2, more preferably 1:15 to 1:3, and 1:12 to 1:4. Even more preferable.
  • the carbon material and the light stabilizer may be used together.
  • the mass ratio of the carbon material and light stabilizer contained in the polymer film is preferably 1:20 to 10:1.
  • the carbon material and the light stabilizer further enhance the function of trapping alkyl.
  • the weight ratio of the carbon material to the light stabilizer in the polymer film is more preferably 1:10 to 5:1, more preferably 1:5 to 2:1, even more preferably 1:3 to 1:1.
  • the mass ratio of the carbon material, antioxidant and light stabilizer contained in the polymer film is preferably 1:1:1 to 1:40:10, and 1:2:1 to 1:1:1. 20:10 is more preferred, 1:3:1 to 1:15:5 is more preferred, and 1:4:1 to 1:15:3 is even more preferred.
  • the polymer film preferably contains an ultraviolet absorber.
  • the UV absorber absorbs UV rays contained in sunlight or the like, reduces the amount of UV rays that directly irradiate the polymer in the polymer film, and further improves the durability under an UV exposure environment.
  • Examples of UV absorbers include compounds having a malonate skeleton, compounds having an anilide oxalate skeleton, compounds having a benzotriazole skeleton, compounds having a benzophenone skeleton, compounds having a triazine skeleton, compounds having a benzoate skeleton, and hindered amines.
  • a compound or the like having a skeleton can be used. Among these, compounds having a benzotriazole skeleton (benzotriazole compounds) are preferred.
  • benzotriazole compounds include compounds represented by the following general formula (1).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxycarbonylalkyl group having 4 to 20 carbon atoms
  • R 2 represents a hydrogen atom or a represents an alkyl group of ⁇ 8
  • X is a halogen atom or a hydrogen atom
  • Y 1 and Y 2 are each independently a hydroxyl group or a hydrogen atom, and at least one of Y 1 and Y 2 is a hydroxyl group.
  • the alkyl groups of R 1 and R 2 may have a linear structure or a branched structure.
  • the alkoxycarbonylalkyl group may have a linear structure or a branched structure.
  • R 1 and R 2 include hydrogen atom, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group and octyl group.
  • R 1 includes a methoxycarbonylpropyl group, an octyloxycarbonylpropyl group, and the like.
  • R 1 is preferably a hydrogen atom or an alkyl group, particularly a hydrogen atom, a methyl group, a tert-butyl group, a pentyl group or an octyl group.
  • R 1 and R 2 may be the same or different.
  • the halogen atom of X includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom.
  • Either one of Y 1 and Y 2 may be a hydroxyl group, or both of them may be a hydroxyl group.
  • Y2 is at least a hydroxyl group.
  • specific examples of the compound represented by formula (1) include 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di- t-Butyl-2-hydroxyphenyl)-5-chlorobenzotriazole, Octyl 3-[3-tert-butyl-5-(5-chloro-2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate , 3-(5-chloro-2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenylpropionate methyl, 2-(3,5-di-tert-amyl- 2-hydroxyphenyl)benzotriazole, 2-(2,4-dihydroxyphenyl)-2H-benzotriazole and the like.
  • One type of ultraviolet absorber may be used alone, or two or more types may be used in combination.
  • the content of the ultraviolet absorber in the polymer film is preferably 0.01% by mass or more and 2% by mass or less based on the total amount of the polymer film.
  • the content of the ultraviolet absorber in the polymer film is preferably 0.01% by mass or more and 2% by mass or less based on the total amount of the polymer film.
  • the content of the ultraviolet absorber is more preferably 0.03% by mass or more and 1.5% by mass or less, still more preferably 0.05% by mass or more and 1.2% by mass or less, and 0.1% by mass or more. 0.9% by mass or less is even more preferable.
  • the polymeric film may further contain a plasticizer.
  • a polymer film becomes flexible by containing a plasticizer. Therefore, when used for an interlayer film for laminated glass, for example, it improves the flexibility of the laminated glass and also improves the penetration resistance. Furthermore, it is also possible to improve the adhesiveness to other members such as laminated glass members.
  • the plasticizer is particularly effective when a polyvinyl acetal resin is used as the resin.
  • plasticizers include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and phosphorus plasticizers such as organic phosphate plasticizers and organic phosphite plasticizers. etc. Among them, organic ester plasticizers are preferred.
  • Organic ester plasticizers include, for example, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, 1,2-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate , diethylene glycol di-2-ethylhexanoate,
  • Mixed adipates include adipates prepared from two or more alcohols selected from alkyl alcohols having 4 to 9 carbon atoms and cyclic alcohols having 4 to 9 carbon atoms.
  • adipates prepared from two or more alcohols selected from alkyl alcohols having 4 to 9 carbon atoms and cyclic alcohols having 4 to 9 carbon atoms are particularly preferably used.
  • the content of the plasticizer in the polymer film is not particularly limited, but is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin contained in the polymer film.
  • the content of the plasticizer is 10 parts by mass or more, the polymer film becomes moderately flexible and has good adhesiveness, etc., and when used as an interlayer film for laminated glass, the laminated glass has good penetration resistance. becomes.
  • the content of the plasticizer is 100 parts by mass or less, separation of the plasticizer from the polymer film is prevented.
  • the content of the plasticizer is more preferably 20 parts by mass or more, still more preferably 30 parts by mass or more, still more preferably 35 parts by mass or more, and more preferably 70 parts by mass or less, still more preferably is 63 parts by mass or less.
  • the polymer film of the present invention may contain additives other than those described above, and may contain additives such as coloring agents, adhesive strength modifiers, heat shielding agents, fluorescent whitening agents, and crystal nucleating agents. good. 1 type of these additives may be used and 2 or more types may be used.
  • the polymer film of the present invention contains at least one of an antioxidant, a light stabilizer, a carbon material, an ultraviolet absorber, a plasticizer, and other additives, which are optionally blended as described above, in addition to the resin. It is preferably made of a resin composition containing
  • the polymer film is mainly composed of a resin, or a resin and a plasticizer, and the total amount of the resin and the plasticizer in the polymer film is usually 70% by mass or more, preferably 70% by mass or more, based on the total amount of the polymer film. is 80% by mass or more, more preferably 90% by mass or more and less than 100% by mass.
  • the polymer film can contain additives such as antioxidants, light stabilizers, carbon materials, and ultraviolet absorbers.
  • the polymer film of the present invention may constitute a monolayer film consisting of one layer, or may constitute a multilayer film having two or more layers.
  • the multilayer film may have at least one layer of the above polymer film of the present invention. That is, the multilayer film is preferably a laminated film obtained by integrating the polymer film of the present invention and a film other than the polymer film of the present invention.
  • the multilayer film may be a laminated film having two or more layers of the polymer film of the present invention, and even in that case, the multilayer film may have films other than the polymer film of the present invention.
  • the film other than the polymer film of the present invention is not particularly limited as long as it is a film containing the above resin, and may be composed of the resin alone. It is preferably made of a resin composition containing at least one of an agent, a carbon material, an ultraviolet absorber, a plasticizer, and other additives.
  • the multilayer film may have a two-layer structure in which two or more films are laminated in the thickness direction, a three-layer structure in which three or more films are laminated, or four or more films. may be laminated.
  • a multilayer film having a 2- to 5-layer structure is preferred, and a multilayer film having a 2- to 3-layer structure is more preferred.
  • the thickness of the polymer film is not particularly limited, and is, for example, 0.05 mm or more and 2.5 mm or less, preferably 0.1 mm or more and 2.0 mm or less, more preferably 0.2 mm or more and 1.0 mm or less.
  • the thickness of the multilayer film including the polymer film is not particularly limited, and is, for example, 0.1 mm or more and 3 mm or less, preferably 0.15 mm or more and 2.5 mm or less, more preferably 0.2 mm or more and 1.5 mm or less. .
  • the visible light transmittance (Tv) of the laminated glass produced by bonding two clear glass plates via the polymer film is 50% or more from the viewpoint of transparency. is preferred.
  • the visible light transmittance (Tv) is more preferably 70% or more, further preferably 80% or more, further preferably 85% or more from the viewpoint of being easy to apply to automobile window glass when laminated glass is made. Even more preferable.
  • a carbon material is preferably used, and high transparency can be ensured by suppressing the amount used.
  • the visible light transmittance (Tv) is preferably as high as possible, for example, 99% or less.
  • the visible light transmittance (Tv) can be measured according to JIS R3212 (2015).
  • the polymer film of the present invention preferably has a yellowness index (YI) of 20 or less for laminated glass produced by bonding two clear glass plates via a polymer film.
  • YI yellowness index
  • the yellowness index (YI) is 20 or less, it is possible to suppress coloration and obtain a highly designed polymer film.
  • the yellowness index (YI) is more preferably 15 or less, still more preferably 10 or less, and even more preferably 5 or less.
  • a carbon material is preferably used, but a low yellowness can be ensured by using fullerenes and suppressing the amount used.
  • the yellowness index (YI) is preferably as low as possible, and should be 0 or more, but practically, for example, 0.5 or more is sufficient.
  • the yellowness index (YI) can be measured using a spectrophotometer according to JIS K7105.
  • a multilayer film having the polymer film of the present invention may also have the above optical properties. That is, the preferred upper limit or lower limit of the visible light transmittance (Tv) and the yellowness index (YI) of laminated glass produced by bonding two clear glass plates via a multilayer film, and The lower limit or upper limit is the same as the values described for the visible light transmittance (Tv) and yellowness (YI) of the laminated glass produced by bonding via the polymer film.
  • the clear glass plate used in the above measurements of visible light transmittance (Tv) and yellowness index (YI) has a thickness of 2.5 mm and a visible light transmittance of 90 measured in accordance with JIS R 3106:1998. 0.5%.
  • the above clear glass plate is also referred to as reference clear glass.
  • the polymer film of the present invention can be obtained, for example, by mixing a resin and various additives that are optionally blended, and molding the resulting resin composition by extrusion molding, press molding, or the like.
  • the carbon material such as fullerenes, for example, when using a plasticizer, should be mixed with the plasticizer and sufficiently dispersed in the plasticizer. and may be mixed with the resin.
  • a dispersant or the like may be appropriately added to the plasticizer.
  • additives other than carbon materials depending on the type of additive, additives other than carbon materials may be mixed with the resin after being blended with the plasticizer and sufficiently dispersed in the plasticizer. .
  • the polymer film may be obtained by molding each layer by extrusion molding, press molding, etc., and laminating them, as in the case of a single-layer structure.
  • a method of preparing two or more extruders and attaching a multi-layer feed block to the tips of the plurality of extruders for co-extrusion is preferred.
  • two or more layers having the same composition may be extruded from one extruder.
  • the multilayer film is prepared by preparing a plurality of films, placing the plurality of films between a pair of laminated glass members, and performing thermocompression bonding (press molding) to produce a laminated glass and a plurality of films.
  • a multilayer film formed by integrating films may also be produced together.
  • the polymer film of the present invention can be used in various applications without any particular limitation, but is preferably used in applications exposed to light including ultraviolet light such as sunlight.
  • the polymer film of the present invention may be used, for example, in various vehicles such as automobiles, vehicles such as aircraft and ships, construction, solar cells, electronic devices, foods, and the like.
  • the polymer film of the present invention may be used as an adhesive film, a protective film, an optical film, a gas barrier film, etc., and is preferably used as an adhesive film.
  • An adhesive film is generally placed between two members and may be used to adhere the two members together.
  • the polymer film of the present invention can be easily adhered to other members by thermocompression bonding, so that it can be suitably used as an adhesive film.
  • the polymer film of the present invention is preferably used as an interlayer for laminated glass that is placed between two glass members.
  • the polymeric film may be used as a monolayer film or as a multilayer film.
  • the present invention further provides laminated glass.
  • the polymer film of the present invention is preferably used as an interlayer film for laminated glass.
  • the laminated glass comprises two laminated glass members (first and second laminated glass members) and a polymer film disposed between the laminated glass members.
  • a single layer film made of a polymer film may be arranged between two laminated glass members, or a multilayer film containing a polymer film may be arranged.
  • Two laminated glass members are bonded via a polymer film or a multilayer film containing a polymer film.
  • the polymeric film or multilayer film adheres on one side to one laminated glass member and on the other side to the other laminated glass member.
  • Laminated glass may be produced by disposing the polymer film or multilayer film described above between two laminated glass members and integrating them by thermocompression bonding or the like.
  • a plurality of films including a polymer film are prepared, the plurality of films are stacked between a pair of laminated glass members, and the plurality of films and the laminated glass member are integrated by thermocompression bonding or the like. It may be manufactured by
  • a laminated glass member used in laminated glass includes a glass plate, and the glass plate may be either inorganic glass or organic glass, but inorganic glass is preferred.
  • inorganic glass include, but are not limited to, clear glass, float plate glass, polished plate glass, figured glass, wired plate glass, lined plate glass, green glass, and the like.
  • organic glass what is generally called resin glass is used, and it is not particularly limited, but examples thereof include organic glass composed of resins such as polycarbonate, acrylic resin, acrylic copolymer resin, and polyester.
  • the two laminated glass members may be made of the same material, or may be made of different materials.
  • each laminated glass member is not particularly limited, but is, for example, approximately 0.1 to 15 mm, preferably 0.5 to 5 mm.
  • the thickness of each laminated glass member may be the same or different, but preferably the same.
  • the laminated glass of the present invention preferably has optical properties similar to those described for the polymer film. That is, the visible light transmittance (Tv) of the laminated glass is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, even more preferably 85% or more, and is, for example, 99% or less. .
  • the yellowness index (YI) of the laminated glass is preferably 20 or less, more preferably 15 or less, still more preferably 10 or less, even more preferably 5 or less, and may be 0 or more, but practical may be, for example, 0.5 or more.
  • the laminated glass of the present invention can be used for various vehicles such as automobiles, vehicles such as aircraft and ships, and window glass for buildings, etc., but is preferably used as laminated glass for automobiles.
  • Laminated glass for automobiles may be windshield glass (front glass), side glass, rear glass, or roof glass.
  • the measurement method and evaluation method in this example are as follows.
  • ESR Electrostatic spin nuclear magnetic resonance
  • Electron spin resonance spectrometer (manufactured by Bruker, "Bruker E500") Measurement mode: cw mode Microwave frequency: about 9.4 GHz Microwave intensity: 2.0mW Sweep magnetic field range: 20mT (200 Gauss) Modulation magnetic field amplitude: 0.3 mT (3.0 Gauss) Measurement temperature: room temperature (294K) Standard sample: DPPH (1,1-diphenyl-2-picrylhydrazyl) solution Wavelength, light source: 365 nm (manufactured by Hamamatsu Photonics, “LIGHTNINGCURE spot light source LC8 L9566-01A”), output (irradiation intensity) set at 100% 100mW/ cm2
  • Tv Transparency
  • Visible light transmittance was measured using a spectrophotometer ("U-4100" manufactured by Hitachi High Technology) in accordance with JIS R3212 (2015). At the time of measurement, it was placed 13 cm away from the integrating sphere on the optical path between the light source and the integrating sphere and parallel to the normal to the optical axis so that only the parallel light transmitted through the laminated glass was received by the integrating sphere. A laminated glass was installed, and the spectral transmittance was measured. Visible light transmittance was calculated from the obtained spectral transmittance. The measurement conditions were a scan speed of 300 nm/min and a slit width of 8 nm, and other conditions were measured according to JIS R 3212 (2015).
  • the yellowness index (YI) of the laminated glass was measured according to JIS K7105 using a spectrophotometer ("U-4100" manufactured by Hitachi High-Technology Co., Ltd.).
  • the molecular weight of the polymer film is the number average molecular weight, measured by gel permeation chromatography (GPC), and calculated by polystyrene conversion.
  • GPC measurement used Shodex KF-806L (manufactured by Showa Denko KK) as a column. Tetrahydrofuran (THF) was used as the solvent and mobile phase. Furthermore, the GPC measurement conditions were a flow rate of 1.0 ml/min and a measurement temperature of 40°C.
  • the molecular weight of the resin contained in the polymer film is obtained from the peak of the resin that appears on the high molecular weight side, excluding the additive peak. rice field.
  • Resin PVB Polyvinyl butyral resin, degree of acetalization 69 mol%, amount of hydroxyl groups 30 mol%, degree of acetylation 1 mol%, average degree of polymerization of PVA used for synthesis 1700
  • plasticizer 3GO triethylene glycol di-2-ethylhexanoate
  • antioxidant BHT 2,6-di-t-butyl-p-cresol
  • Irganox 1010 pentaerythritol tetrakis [3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate], product name “Irganox 1010”, manufactured by BASF Corporation
  • UV absorber T326 represented by formula (1), and X is a chlorine atom, R 1 is a methyl group, R 2 is a tert-butyl group, Y 1 is a hydrogen atom, and Y 2 is a hydroxyl group
  • Examples 1 to 6 Preparation of polymer film
  • PVB polyvinyl butyral resin
  • each component was put into an extruder, and each component was kneaded and extruded by the extruder to obtain a polymer film having a thickness of 760 ⁇ m and a thickness of 100 ⁇ m.
  • ESR measurement and durability evaluation were performed in the same manner as in Example 1 for the obtained polymer film.
  • a laminated glass was produced, and each optical characteristic of the obtained laminated glass was measured. Table 1 shows the results.
  • Examples 1 to 4 peaks in electron spin nuclear magnetic resonance (ESR) were detected, and as shown in FIG. The intensity ratios of the peaks when the intensity was 60% and 20% were both 0.6 or more and 1.4 or less.
  • ESR electron spin nuclear magnetic resonance
  • Examples 5 and 6 electron spin nuclear magnetic resonance (ESR) peaks were detected, but four peaks were not detected as shown in FIG. Therefore, in Examples 1 to 6, the durability in an environment exposed to ultraviolet rays was improved, and the molecular weight retention rate was high even when accelerated deterioration was caused by irradiation with xenon light.
  • Comparative Examples 1 and 2 peaks in electron spin nuclear magnetic resonance (ESR) were detected, and the number of the peaks was four. Any of the intensity ratios of the peaks was less than 0.6. Therefore, the durability under the ultraviolet exposure environment was not sufficiently improved, and the molecular weight retention rate was lowered when accelerated deterioration was caused by irradiation with xenon light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

A polymer film wherein, when irradiation is performed with UV light that has a wavelength of 365 nm, a peak is detected at an electron spin nuclear magnetic resonance (ESR), and four such peaks are not detected, or if four peaks are detected, the intensity ratios of the peaks at irradiation intensities of 60% and 20%, relative to at an irradiation intensity of 100%, are each 0.6 to 1.4.

Description

高分子フィルム、及び合わせガラスPolymer film and laminated glass

 本発明は、高分子フィルム、及び高分子フィルムを有する合わせガラスに関する。 The present invention relates to a polymer film and a laminated glass having a polymer film.

 合わせガラスは、外部衝撃を受けて破損してもガラスの破片が飛散することが少なく安全であるため、自動車等の各種乗り物の窓ガラスや、建築物等の窓ガラスに広く使用されている。合わせガラスとしては、一対のガラス間に、ポリビニルアセタール樹脂などの樹脂成分を含む合わせガラス用中間膜を介在させ、一体化させたものが広く知られている。 Laminated glass is safe because it does not scatter glass fragments even if it is damaged by an external impact, so it is widely used for the window glass of various vehicles such as automobiles and the window glass of buildings. Laminated glass is widely known in which an interlayer film for laminated glass containing a resin component such as polyvinyl acetal resin is interposed between a pair of glasses to integrate them.

 合わせガラス用中間膜などの太陽光に照射される環境下で使用される高分子フィルムは、一般的に紫外線吸収剤が配合されることが知られている。また、各種の高分子フィルムは、耐久性を向上させることを目的として、酸化防止剤が配合されることが広く知られている。さらに、合わせガラス用中間膜などの高分子フィルムは、その目的に応じて様々な添加剤が配合されており、例えば、特許文献1には、遮熱性を良好にするために、ポリビニルブチラール樹脂にフラーレンが配合された合わせガラス用中間膜が開示されている。 It is known that polymer films used in environments exposed to sunlight, such as interlayer films for laminated glass, are generally mixed with UV absorbers. In addition, it is widely known that various polymer films are blended with antioxidants for the purpose of improving durability. Furthermore, polymer films such as interlayer films for laminated glass are blended with various additives according to their purpose. An interlayer film for laminated glass containing fullerene is disclosed.

特開2004-75433号公報JP-A-2004-75433

 しかし、従来の紫外線吸収剤や酸化防止剤が配合された高分子フィルムは、紫外線暴露による劣化を十分に防止できないことがあり、耐久性向上のためには、更なる劣化防止が求められている。また、特許文献1では、フラーレンによって遮熱性が改善されることが示されるが、フラーレンによって高分子フィルムの劣化を防止できる配合が示されるわけではない。 However, polymer films containing conventional UV absorbers and antioxidants may not be able to sufficiently prevent deterioration due to UV exposure, and further deterioration prevention is required to improve durability. . Moreover, although Patent Document 1 indicates that the fullerene improves the heat shielding property, it does not indicate a compounding that can prevent deterioration of the polymer film due to the fullerene.

 そこで、本発明は、紫外線暴露環境下で使用しても、劣化が十分に防止され、優れた耐久性を有する高分子フィルムを提供することを課題とする。 Therefore, an object of the present invention is to provide a polymer film that is sufficiently prevented from deterioration and has excellent durability even when used in an environment exposed to ultraviolet rays.

 本発明者らは、鋭意検討の結果、紫外線照射時の電子スピン核磁気共鳴(ESR)におけるラジカルピークが所定の条件を満たすことで高分子フィルムの耐久性が優れることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の[1]~[17]を提供する。
[1]波長365nmの紫外線を照射した際に、電子スピン核磁気共鳴(ESR)におけるピークが検出され、かつ該ピークが4本検出されないか、又は4本検出されても、照射強度100%に対して照射強度を60%及び20%とした際のピークの強度比がいずれも0.6以上1.4以下である、高分子フィルム。
[2]ポリビニルアセタール樹脂、オレフィン樹脂、アイオノマー樹脂、エチレン-酢酸ビニル共重合体樹脂、ポリウレタン樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂を含む、上記[1]に記載の高分子フィルム。
[3]ポリビニルアセタール樹脂を含む、上記[1]又は[2]に記載の高分子フィルム。
[4]炭素材料を含む、上記[1]~[3]のいずれか1項に記載の高分子フィルム。
[5]前記炭素材料の含有量が、0.005質量%以上0.1質量%以下である、上記[4]に記載の高分子フィルム。
[6]前記炭素材料がフラーレン類である、上記[4]又は[5]に記載の高分子フィルム。
[7]前記フラーレン類が水素化フラーレンを含む、上記[6]に記載の高分子フィルム。
[8]酸化防止剤及び光安定剤からなる群から選択される少なくとも1種を含む、上記[1]~[7]のいずれか1項に記載の高分子フィルム。
[9]前記酸化防止剤の含有量は、高分子フィルム全量基準で、0.01質量%以上2質量%以下である、上記[8]に記載の高分子フィルム。
[10]前記光安定剤がヒンダードアミン光安定剤である、上記[8]又は[9]に記載の高分子フィルム。
[11]前記高分子フィルムにおける前記光安定剤の含有量が、高分子フィルム全量基準で、0.001質量%以上0.5質量%以下である、上記[8]~[10]のいずれか1項に記載の高分子フィルム。
[12]前記光安定剤と酸化防止剤との質量比が、1:20~1:1である、上記[8]~[11]のいずれか1項に記載の高分子フィルム。
[13]炭素材料と酸化防止剤を含み、かつ前記炭素材料と前記酸化防止剤との質量比が、1:40~1:1である、上記[1]~[12]のいずれか1項に記載の高分子フィルム。
[14]紫外線吸収剤を含む、上記[1]~[13]のいずれか1項に記載の高分子フィルム。
[15]前記紫外線吸収剤がベンゾトリアゾール骨格を有する化合物である、上記[14]に記載の高分子フィルム。
[16]前記紫外線吸収剤の含有量が、高分子フィルム全量基準で、0.01質量%以上2質量%以下である、上記[14]又は[15]に記載の高分子フィルム。
[17]第1の合わせガラス部材と、第2の合わせガラス部材と、上記[1]~[16]のいずれか1項に記載の高分子フィルムとを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記高分子フィルムが配置される、合わせガラス。
As a result of intensive studies, the present inventors found that the durability of polymer films is excellent when the radical peak in electron spin nuclear magnetic resonance (ESR) at the time of ultraviolet irradiation satisfies predetermined conditions. completed. That is, the present invention provides the following [1] to [17].
[1] When irradiated with ultraviolet rays having a wavelength of 365 nm, a peak in electron spin nuclear magnetic resonance (ESR) is detected, and four peaks are not detected, or even if four peaks are detected, the irradiation intensity is 100%. On the other hand, a polymer film having a peak intensity ratio of 0.6 or more and 1.4 or less when the irradiation intensity is 60% and 20%.
[2] The above [1], comprising at least one resin selected from the group consisting of polyvinyl acetal resins, olefin resins, ionomer resins, ethylene-vinyl acetate copolymer resins, polyurethane resins, and acrylic resins. polymer film.
[3] The polymer film according to [1] or [2] above, which contains a polyvinyl acetal resin.
[4] The polymer film according to any one of [1] to [3] above, which contains a carbon material.
[5] The polymer film according to [4] above, wherein the content of the carbon material is 0.005% by mass or more and 0.1% by mass or less.
[6] The polymer film according to [4] or [5] above, wherein the carbon material is a fullerene.
[7] The polymer film according to [6] above, wherein the fullerenes include hydrogenated fullerenes.
[8] The polymer film according to any one of [1] to [7] above, containing at least one selected from the group consisting of antioxidants and light stabilizers.
[9] The polymer film according to [8] above, wherein the content of the antioxidant is 0.01% by mass or more and 2% by mass or less based on the total amount of the polymer film.
[10] The polymer film of [8] or [9] above, wherein the light stabilizer is a hindered amine light stabilizer.
[11] Any one of [8] to [10] above, wherein the content of the light stabilizer in the polymer film is 0.001% by mass or more and 0.5% by mass or less based on the total amount of the polymer film. 2. The polymer film according to item 1.
[12] The polymer film as described in any one of [8] to [11] above, wherein the weight ratio of the light stabilizer to the antioxidant is 1:20 to 1:1.
[13] Any one of the above [1] to [12], containing a carbon material and an antioxidant, and wherein the mass ratio of the carbon material and the antioxidant is 1:40 to 1:1. The polymer film described in .
[14] The polymer film of any one of [1] to [13] above, which contains an ultraviolet absorber.
[15] The polymer film of [14] above, wherein the ultraviolet absorber is a compound having a benzotriazole skeleton.
[16] The polymer film according to [14] or [15] above, wherein the content of the ultraviolet absorber is 0.01% by mass or more and 2% by mass or less based on the total amount of the polymer film.
[17] A first laminated glass member, a second laminated glass member, and the polymer film according to any one of [1] to [16] above, wherein the first laminated glass member and A laminated glass, wherein the polymer film is arranged between the second laminated glass member.

 本発明によれば、紫外線暴露環境下で使用しても、劣化が十分に防止され、優れた耐久性を有する高分子フィルムを提供できる。 According to the present invention, it is possible to provide a polymer film that is sufficiently prevented from being deteriorated and has excellent durability even when used in an environment exposed to ultraviolet rays.

実施例3のESRスペクトルを示す。The ESR spectrum of Example 3 is shown. 実施例5のESRスペクトルの一例を示す。An example of the ESR spectrum of Example 5 is shown.

 以下、本発明についてより詳細に説明する。
<高分子フィルム>
 本発明の高分子フィルムは、波長365nmの紫外線を照射した際に、電子スピン核磁気共鳴(ESR)においてピークが検出されるものであり、該ピークは、4本検出されないか、又は4本検出されても照射強度100%に対して照射強度を60%及び20%とした際のピークの強度比がいずれも0.6以上1.4以下となるものである。
 上記電子スピン核磁気共鳴(ESR)おけるピークは、紫外線を照射した際に発生するラジカルのピーク(ラジカルピーク)である。本発明では、ラジカルピークが、以上の要件を満たすことで、高分子フィルムは、紫外線暴露環境下で使用されても、耐久性が優れたものとなる。
The present invention will be described in more detail below.
<Polymer film>
When the polymer film of the present invention is irradiated with ultraviolet rays having a wavelength of 365 nm, a peak is detected in electron spin nuclear magnetic resonance (ESR). Even if the irradiation intensity is 100%, the intensity ratios of the peaks when the irradiation intensity is 60% and 20% are both 0.6 or more and 1.4 or less.
The peak in the electron spin nuclear magnetic resonance (ESR) is the peak of radicals (radical peak) generated when irradiated with ultraviolet rays. In the present invention, the radical peak satisfies the above requirements, so that the polymer film has excellent durability even when used in an environment exposed to ultraviolet rays.

 ESRにおけるピークが4本検出される場合、該ピークは、ペルオキシラジカルを捕捉するためのラジカル由来のピークと考えられ、例えば酸化防止剤由来のピークと考えられる。ピークが4本検出される場合、そのピーク高さは、ラジカル捕捉性能を表すと考えられ、上記強度比が1に近いほうが、紫外線の照射強度によらず、例えば照射強度が高い場合でも、一定のラジカル捕捉性能が発揮されると考えられる。したがって、ピークが4本検出される場合、照射強度100%に対する、照射強度60%及び20%のときのピークの強度比がいずれも0.6以上1.4以下となることで、高分子フィルムが紫外線に暴露されても劣化が進行しにくくなる。 When four peaks are detected in ESR, the peaks are considered to be peaks derived from radicals for trapping peroxy radicals, for example, peaks derived from antioxidants. When four peaks are detected, the peak height is considered to represent the radical scavenging performance, and the closer the intensity ratio is to 1, the more constant it is regardless of the irradiation intensity of ultraviolet rays, for example, even when the irradiation intensity is high. It is considered that the radical scavenging performance of Therefore, when four peaks are detected, the intensity ratio of the peaks at irradiation intensities of 60% and 20% with respect to the irradiation intensity of 100% is 0.6 or more and 1.4 or less. is less likely to deteriorate when exposed to UV light.

 一方で、ESRにおけるピークが4本検出されない場合、検出されるピークは、アルキルラジカルを捕捉するためのラジカル由来のピークと考えられ、酸化防止剤以外の化合物由来のピークと考えられる。すなわち、ピークが4本検出されない場合、アルキルラジカルが適切に捕捉されることにより、ピークの強度比に関わらず、一定のラジカル捕捉性能が発揮されると考えられ、紫外線に暴露されても劣化が進行しにくくなる。
 なお、一般的に、ポリマーに紫外線が暴露されると、紫外線によるプロトンの引き抜きが生じてアルキルラジカルが発生し、次いで、アルキルラジカルが酸素と反応して、ペルオキシラジカルが発生する。ペルオキシラジカルは、さらなるプロトンの引き抜きを行いつつ、自身はハイドロパーオキサイドとなって、劣化が進行することになる。すなわち、ピークが4本検出されない場合に生じるアルキルラジカルの捕捉は、劣化スキームにおいて上流側の劣化反応を抑制しているともいえ、そのため、ピークの強度比の大きさに関わらず、一定のラジカル捕捉性能が発揮されると考えられる。
On the other hand, when four ESR peaks are not detected, the detected peaks are considered to be peaks derived from radicals for trapping alkyl radicals, and are considered peaks derived from compounds other than antioxidants. In other words, when four peaks are not detected, it is considered that the alkyl radicals are appropriately captured, and a certain radical capturing performance is exhibited regardless of the intensity ratio of the peaks. difficult to proceed.
In general, when a polymer is exposed to ultraviolet rays, protons are abstracted by the ultraviolet rays to generate alkyl radicals, which then react with oxygen to generate peroxy radicals. While the peroxy radical extracts more protons, it itself becomes hydroperoxide, and deterioration progresses. In other words, it can be said that the capture of alkyl radicals that occurs when four peaks are not detected suppresses the degradation reaction on the upstream side in the degradation scheme. performance is expected to be demonstrated.

 なお、「ピークが4本検出される」とは、ピークが少なくとも4本検出されることを意味し、5本以上のピークが検出されてもよいが、典型的には4本のピークが検出される。また、「ピークが4本検出されない」とは、ピークが1~3本検出されることを意味するが、典型的には2本のピークが検出される。検出されるピークの本数は、照射強度によって変化するものではないが、照射強度100%の際にピーク本数を検出するとよい。なお、検出されたピーク本数は、ピーク分裂数を意味する。 In addition, "4 peaks are detected" means that at least 4 peaks are detected, and 5 or more peaks may be detected, but typically 4 peaks are detected. be done. Also, "4 peaks are not detected" means that 1 to 3 peaks are detected, but typically 2 peaks are detected. Although the number of detected peaks does not change depending on the irradiation intensity, it is preferable to detect the number of peaks when the irradiation intensity is 100%. The number of detected peaks means the number of peak divisions.

 また、電子スピン核磁気共鳴(ESR)におけるピークは、図1に示すとおりに、対称的にプラス側とマイナス側に出るものであり、プラス側のピークとマイナス側の一対のピークで、1本のピークが検出されたものとみなす。なお、一対のピークは、プラス側とマイナス側に連続した波形を有しており、その強度差が0.04以上となるものをピークとする。
 従って、図1に示すESRスピクトルは、ピークが4本検出されたものとなる。また、図2に示すESRスピクトルは、ピークが2本検出されたものとなる。
 さらに、「ピークの強度比」とは、照射強度100%のときのピークの最大高さに対する、照射強度60%又は20%のときのピークの最大高さの比であり、図1、2では、照射強度100%のときのピークの最大高さMが示される。なお、ピークの最大高さMは、プラス側のピークの最大高さを読み取ることで得られる。
In addition, as shown in FIG. 1, the peaks in electron spin nuclear magnetic resonance (ESR) appear symmetrically on the plus side and the minus side. It is assumed that the peak of is detected. A pair of peaks has continuous waveforms on the plus side and the minus side, and the intensity difference between the peaks is 0.04 or more.
Therefore, the ESR spectrum shown in FIG. 1 has four peaks detected. Also, the ESR spectrum shown in FIG. 2 has two peaks detected.
Furthermore, the "peak intensity ratio" is the ratio of the maximum height of the peak when the irradiation intensity is 60% or 20% to the maximum height of the peak when the irradiation intensity is 100%. , the maximum height M of the peak at 100% irradiation intensity. The maximum height M of the peak is obtained by reading the maximum height of the peak on the positive side.

 ピークが4本検出される際、照射強度100%に対する照射強度60%のときのピークの強度比(「相対ピーク高さ」ともいう)は、0.6以上1.4以下であればよいが、耐久性をより向上させる観点から、好ましくは0.7以上1.3以下、より好ましくは0.8以上1.2以下、さらに好ましくは0.85以上1.15以下である。
 また、ピークが4本検出される際、照射強度100%に対する照射強度20%のときのピークの強度比は、0.6以上1.4以下であればよいが、耐久性をより向上させる観点から、好ましくは0.65以上1.3以下、より好ましくは0.7以上1.2以下、さらに好ましくは0.78以上1.1以下である。
When four peaks are detected, the intensity ratio of the peak when the irradiation intensity is 60% to the irradiation intensity of 100% (also referred to as “relative peak height”) may be 0.6 or more and 1.4 or less. , preferably 0.7 to 1.3, more preferably 0.8 to 1.2, still more preferably 0.85 to 1.15, from the viewpoint of further improving durability.
In addition, when four peaks are detected, the intensity ratio of the peaks when the irradiation intensity is 20% to the irradiation intensity of 100% may be 0.6 or more and 1.4 or less, but from the viewpoint of further improving durability. Therefore, it is preferably 0.65 or more and 1.3 or less, more preferably 0.7 or more and 1.2 or less, and still more preferably 0.78 or more and 1.1 or less.

 ピークが4本検出されない際、照射強度100%に対する照射強度60%のときのピークの強度比は、特に限定されず、例えば0.2以上5以下であるが、好ましくは0.2以上2以下、より好ましくは0.5以上1.5以下である。
 また、ピークが4本検出されない際、照射強度100%に対する照射強度20%のときのピークの強度比は、特に限定されず、例えば0.1以上5以下であればよいが、好ましくは0.2以上2以下、より好ましくは0.25以上1以下である。
When four peaks are not detected, the intensity ratio of the peak when the irradiation intensity is 60% to the irradiation intensity of 100% is not particularly limited, and is, for example, 0.2 or more and 5 or less, but preferably 0.2 or more and 2 or less. , more preferably 0.5 or more and 1.5 or less.
Further, when four peaks are not detected, the intensity ratio of the peaks when the irradiation intensity is 20% to the irradiation intensity of 100% is not particularly limited. It is 2 or more and 2 or less, more preferably 0.25 or more and 1 or less.

 ラジカルピークが上記要件を満たすためには、高分子フィルムには耐久性向上剤を含有させるとよい。耐久性向上剤としては、ラジカル捕捉性能を有する化合物が好ましく、具体的には、後述する酸化防止剤、光安定剤、炭素材料などが挙げられる。本発明では、これらを1種又は2種以上を組み合わせて、ラジカルピークが上記要件を満たすように適宜調整すればよい。 In order for the radical peak to satisfy the above requirements, the polymer film should contain a durability improver. As the durability improver, compounds having radical scavenging properties are preferable, and specific examples thereof include antioxidants, light stabilizers, carbon materials, and the like, which will be described later. In the present invention, one or a combination of two or more of these may be appropriately adjusted so that the radical peak satisfies the above requirements.

[樹脂]
 本発明の高分子フィルムは、高分子材料(ポリマー)として樹脂を含有する。樹脂としては、熱硬化性樹脂及び熱可塑性樹脂のいずれでもよいが、熱可塑性樹脂が好ましい。また、樹脂はエラストマーであってもよい。高分子フィルムは、熱可塑性樹脂を含有することで、接着フィルムとしての機能を果たしやすくなり、例えば合わせガラス用中間膜として使用されると、合わせガラス部材との接着性が良好になる。
[resin]
The polymeric film of the present invention contains a resin as a polymeric material (polymer). The resin may be either a thermosetting resin or a thermoplastic resin, but a thermoplastic resin is preferred. Also, the resin may be an elastomer. By containing a thermoplastic resin, the polymer film can easily function as an adhesive film, and when used as an interlayer film for laminated glass, for example, the adhesiveness to laminated glass members is improved.

 樹脂としては、特に限定されないが、ポリビニルアセタール樹脂、オレフィン樹脂、アイオノマー樹脂、エチレン-酢酸ビニル共重合体(EVA)樹脂、ポリウレタン樹脂、及びアクリル樹脂などが挙げられる。これら樹脂を使用することで、合わせガラス部材などの他の部材への接着性を確保しやすくなる。これら樹脂は、典型的には熱可塑性樹脂である。上記の中では、可塑剤と併用した場合に、無機ガラスに対して優れた接着性を発揮する点から、ポリビニルアセタール樹脂が好ましく、特に、ポリビニルブチラール樹脂がより好ましい。
 高分子フィルムにおいて、上記樹脂は、1種単独で使用してもよいし、2種以上併用されてもよい。
Examples of resins include, but are not limited to, polyvinyl acetal resins, olefin resins, ionomer resins, ethylene-vinyl acetate copolymer (EVA) resins, polyurethane resins, and acrylic resins. By using these resins, it becomes easier to ensure adhesion to other members such as laminated glass members. These resins are typically thermoplastic resins. Among the above resins, polyvinyl acetal resins are preferable, and polyvinyl butyral resins are particularly preferable, because they exhibit excellent adhesiveness to inorganic glass when used in combination with a plasticizer.
Polymer film WHEREIN: The said resin may be used individually by 1 type, and may be used together 2 or more types.

(ポリビニルアセタール樹脂)
 ポリビニルアセタール樹脂は、ポリビニルアルコール(PVA)をアルデヒドでアセタール化して得られるポリビニルアセタール樹脂であれば特に限定されない。
 上記アルデヒドは特に限定されないが、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドは特に限定されず、例えば、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。これらのアルデヒドは単独で用いてもよく、2種以上を併用してもよい。
 上記したなかでも、n-ブチルアルデヒド、n-ヘキシルアルデヒド、n-バレルアルデヒドが好ましく、n-ブチルアルデヒドがより好ましい。したがって、ポリビニルアセタール樹脂は、ポリビニルブチラール樹脂が好適である。
(polyvinyl acetal resin)
The polyvinyl acetal resin is not particularly limited as long as it is a polyvinyl acetal resin obtained by acetalizing polyvinyl alcohol (PVA) with an aldehyde.
Although the above aldehyde is not particularly limited, aldehydes having 1 to 10 carbon atoms are generally preferably used. The aldehyde having 1 to 10 carbon atoms is not particularly limited, and examples thereof include n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde and n-nonylaldehyde. , n-decylaldehyde, formaldehyde, acetaldehyde, benzaldehyde and the like. These aldehydes may be used alone or in combination of two or more.
Among the above, n-butyraldehyde, n-hexylaldehyde and n-valeraldehyde are preferred, and n-butyraldehyde is more preferred. Therefore, polyvinyl butyral resin is suitable for polyvinyl acetal resin.

 ポリビニルアルコール(PVA)は、例えば、ポリ酢酸ビニルなどのポリビニルエステルをけん化することにより得られる。ポリビニルアルコールのけん化度は、一般に70~99.9モル%である。ポリビニルアセタール樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
 PVAの平均重合度は、好ましくは200以上、より好ましくは500以上、さらに好ましくは1000以上、よりさらに好ましくは1500以上である。平均重合度を上記下限以上とすると、合わせガラスに使用した場合に合わせガラスの耐貫通性が高くなる。また、PVAの平均重合度は、好ましくは5000以下、より好ましくは4000以下、さらに好ましくは3500以下、よりさらに好ましくは2500以下である。
 なお、ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。
Polyvinyl alcohol (PVA) is obtained, for example, by saponifying a polyvinyl ester such as polyvinyl acetate. The degree of saponification of polyvinyl alcohol is generally 70-99.9 mol %. Polyvinyl acetal resin may be used individually by 1 type, and may use 2 or more types together.
The average degree of polymerization of PVA is preferably 200 or higher, more preferably 500 or higher, still more preferably 1000 or higher, and even more preferably 1500 or higher. When the average degree of polymerization is equal to or higher than the above lower limit, the penetration resistance of the laminated glass becomes high when used for the laminated glass. Also, the average degree of polymerization of PVA is preferably 5,000 or less, more preferably 4,000 or less, even more preferably 3,500 or less, and still more preferably 2,500 or less.
The average degree of polymerization of polyvinyl alcohol is determined by a method conforming to JIS K6726 "Polyvinyl alcohol test method".

 ポリビニルアセタール樹脂の水酸基量は、好ましくは15モル%以上であり、また、好ましくは38モル%以下である。水酸基量を15モル%以上とすることで、接着性が良好になりやすく、また、合わせガラスに使用した場合に合わせガラスの耐貫通性などを良好にさせやすくなる。また、水酸基量を38モル%以下とすることで、合わせガラスが硬くなり過ぎたりすることを防止する。上記水酸基量は合わせガラス部材などのガラス部材との接着性などの観点から、より好ましくは20モル%以上であり、さらに好ましくは25モル%以上である。また、上記水酸基量は、より好ましくは35%以下、さらに好ましくは33モル%以下である。
 ポリビニルアセタール樹脂としてポリビニルブチラール樹脂を用いる場合も、同様の観点から、水酸基量は15モル%以上であり、また、好ましくは38モル%以下であり、より好ましくは20モル%以上、さらに好ましくは25モル%以上であり、より好ましくは35%モル以下、さらに好ましくは33モル%以下である。
 ポリビニルアセタール樹脂の水酸基量は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
The hydroxyl group content of the polyvinyl acetal resin is preferably 15 mol % or more and preferably 38 mol % or less. When the hydroxyl group content is 15 mol % or more, the adhesiveness tends to be good, and when used in laminated glass, the penetration resistance of the laminated glass tends to be improved. Also, by setting the hydroxyl group content to 38 mol % or less, the laminated glass is prevented from becoming too hard. The amount of hydroxyl groups is more preferably 20 mol % or more, still more preferably 25 mol % or more, from the viewpoint of adhesion to glass members such as laminated glass members. Moreover, the amount of hydroxyl groups is more preferably 35% or less, and still more preferably 33 mol% or less.
When polyvinyl butyral resin is used as polyvinyl acetal resin, the amount of hydroxyl groups is 15 mol % or more, preferably 38 mol % or less, more preferably 20 mol % or more, and still more preferably 25 mol % or more, from the same viewpoint. It is mol % or more, more preferably 35 mol % or less, still more preferably 33 mol % or less.
The amount of hydroxyl groups in the polyvinyl acetal resin is the molar fraction obtained by dividing the amount of ethylene groups to which hydroxyl groups are bonded by the total amount of ethylene groups in the main chain, expressed as a percentage. The amount of ethylene groups to which the hydroxyl groups are bonded can be measured according to, for example, JIS K6728 "Polyvinyl butyral test method".

 上記ポリビニルアセタール樹脂のアセタール化度は、好ましくは47モル%以上、また好ましくは85モル%以下である。上記アセタール化度は、より好ましくは55モル%以上、さらに好ましくは60モル%以上であり、また、より好ましくは80モル%以下、さらに好ましくは75モル%以下である。
 なお、アセタール化度とは、アセタール基がブチラール基であり、ポリビニルアセタール樹脂(A)がポリビニルブチラール樹脂の場合には、ブチラール化度を意味する。
The degree of acetalization of the polyvinyl acetal resin is preferably 47 mol % or more and preferably 85 mol % or less. The degree of acetalization is more preferably 55 mol % or more, still more preferably 60 mol % or more, and more preferably 80 mol % or less, still more preferably 75 mol % or less.
The degree of acetalization means the degree of butyralization when the acetal group is a butyral group and the polyvinyl acetal resin (A) is a polyvinyl butyral resin.

 上記アセタール化度は、主鎖の全エチレン基量から、水酸基が結合しているエチレン基量と、アセチル基が結合しているエチレン基量とを差し引いた値を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。アセタール化度(ブチラール化度)は、例えばJIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出するとよい。 The degree of acetalization is the total amount of ethylene groups in the main chain minus the amount of ethylene groups to which hydroxyl groups are bonded and the amount of ethylene groups to which acetyl groups are bonded. It is a value showing the mole fraction obtained by dividing by the percentage. The degree of acetalization (degree of butyralization) may be calculated, for example, from the results measured by a method conforming to JIS K6728 "Polyvinyl butyral test method".

 ポリビニルアセタール樹脂のアセチル化度は、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下、よりさらに好ましくは2モル%以下である。上記アセチル化度が上記上限以下であると、高分子フィルムの耐湿性が高くなる。また、上記アセチル化度は、特に限定されないが、好ましくは0.01モル%以上であり、より好ましくは0.1モル%以上である。
 上記アセチル化度は、アセチル基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセチル基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
The degree of acetylation of the polyvinyl acetal resin is preferably 30 mol % or less, more preferably 20 mol % or less, even more preferably 10 mol % or less, and even more preferably 2 mol % or less. When the degree of acetylation is equal to or less than the upper limit, the moisture resistance of the polymer film is enhanced. Although the degree of acetylation is not particularly limited, it is preferably 0.01 mol % or more, more preferably 0.1 mol % or more.
The degree of acetylation is the molar fraction obtained by dividing the amount of ethylene groups to which acetyl groups are bonded by the total amount of ethylene groups in the main chain, expressed as a percentage. The amount of ethylene groups to which the acetyl groups are bonded can be measured according to, for example, JIS K6728 "Polyvinyl butyral test method".

(オレフィン樹脂)
 オレフィン樹脂としては、エチレン、プロピレン、1-ブテン、4-メチルペンテン-1、1-ヘキセン、1-オクテン、1-デセン、1-ドデセンなどのオレフィンの重合体又は共重合体が挙げられ、具体的には、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブテン樹脂、ポリ(4-メチルペンテン-1)樹脂などが挙げられる。
(olefin resin)
Examples of olefin resins include polymers or copolymers of olefins such as ethylene, propylene, 1-butene, 4-methylpentene-1, 1-hexene, 1-octene, 1-decene, and 1-dodecene. Specific examples include polyethylene resin, polypropylene resin, polybutene resin, poly(4-methylpentene-1) resin, and the like.

(アイオノマー樹脂)
 アイオノマー樹脂としては、特に限定はなく、様々なアイオノマー樹脂を用いることができる。具体的には、エチレン系アイオノマー、スチレン系アイオノマー、パーフルオロカーボン系アイオノマー、テレケリックアイオノマー、ポリウレタンアイオノマー等が挙げられる。これらの中では、合わせガラスの機械強度、耐久性、透明性などが良好になる点、合わせガラス部材への接着性に優れる点から、エチレン系アイオノマーが好ましい。
(ionomer resin)
The ionomer resin is not particularly limited, and various ionomer resins can be used. Specific examples include ethylene-based ionomers, styrene-based ionomers, perfluorocarbon-based ionomers, telechelic ionomers, polyurethane ionomers, and the like. Among these, ethylene-based ionomers are preferable from the viewpoint of improving the mechanical strength, durability, transparency, etc. of laminated glass and from the viewpoint of excellent adhesion to laminated glass members.

 エチレン系アイオノマーとしては、エチレン・不飽和カルボン酸共重合体のアイオノマーが透明性と強靭性に優れるため好適に用いられる。エチレン・不飽和カルボン酸共重合体は、少なくともエチレン由来の構成単位および不飽和カルボン酸由来の構成単位を有する共重合体であり、他のモノマー由来の構成単位を有していてもよい。
 不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸等が挙げられ、アクリル酸、メタクリル酸が好ましく、メタクリル酸が特に好ましい。また、他のモノマーとしては、アクリル酸エステル、メタクリル酸エステル、1-ブテン等が挙げられる。
 エチレン・不飽和カルボン酸共重合体としては、該共重合体が有する全構成単位を100モル%とすると、エチレン由来の構成単位を75~99モル%有することが好ましく、不飽和カルボン酸由来の構成単位を1~25モル%有することが好ましい。
 エチレン・不飽和カルボン酸共重合体のアイオノマーは、エチレン・不飽和カルボン酸共重合体が有するカルボキシル基の少なくとも一部を金属イオンで中和または架橋することにより得られるアイオノマー樹脂であるが、該カルボキシル基の中和度は、通常は1~90%であり、好ましくは5~85%である。
As the ethylene ionomer, an ethylene/unsaturated carboxylic acid copolymer ionomer is preferably used because of its excellent transparency and toughness. The ethylene/unsaturated carboxylic acid copolymer is a copolymer having at least structural units derived from ethylene and structural units derived from unsaturated carboxylic acid, and may have structural units derived from other monomers.
Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, etc. Acrylic acid and methacrylic acid are preferred, and methacrylic acid is particularly preferred. Other monomers include acrylic acid esters, methacrylic acid esters, 1-butene, and the like.
The ethylene/unsaturated carboxylic acid copolymer preferably has 75 to 99 mol% of ethylene-derived structural units when the total structural units of the copolymer are 100 mol%, and unsaturated carboxylic acid-derived It preferably has 1 to 25 mol % of structural units.
The ionomer of the ethylene/unsaturated carboxylic acid copolymer is an ionomer resin obtained by neutralizing or crosslinking at least part of the carboxyl groups of the ethylene/unsaturated carboxylic acid copolymer with metal ions. The degree of neutralization of carboxyl groups is usually 1-90%, preferably 5-85%.

 アイオノマー樹脂におけるイオン源としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属、マグネシウム、カルシウム、亜鉛等の多価金属が挙げられ、ナトリウム、亜鉛が好ましい。 Ion sources for ionomer resins include alkali metals such as lithium, sodium, potassium, rubidium and cesium, and polyvalent metals such as magnesium, calcium and zinc, with sodium and zinc being preferred.

 アイオノマー樹脂の製造方法としては特に限定はなく、従来公知の製造方法によって、製造することが可能である。例えばアイオノマー樹脂として、エチレン・不飽和カルボン酸共重合体のアイオノマーを用いる場合には、例えば、エチレンと不飽和カルボン酸とを、高温、高圧下でラジカル共重合を行い、エチレン・不飽和カルボン酸共重合体を製造する。そして、そのエチレン・不飽和カルボン酸共重合体と、上記のイオン源を含む金属化合物とを反応させることにより、エチレン・不飽和カルボン酸共重合体のアイオノマーを製造することができる。 The method for producing the ionomer resin is not particularly limited, and it can be produced by a conventionally known production method. For example, when an ionomer of an ethylene/unsaturated carboxylic acid copolymer is used as the ionomer resin, for example, ethylene and an unsaturated carboxylic acid are subjected to radical copolymerization at high temperature and high pressure to form an ethylene/unsaturated carboxylic acid. to produce a copolymer; By reacting the ethylene/unsaturated carboxylic acid copolymer with the metal compound containing the ion source, an ionomer of the ethylene/unsaturated carboxylic acid copolymer can be produced.

(エチレン-酢酸ビニル共重合体(EVA)樹脂)
 エチレン-酢酸ビニル共重合体樹脂としては、非架橋型のエチレン-酢酸ビニル共重合体樹脂であってもよいし、また、高温架橋型のエチレン-酢酸ビニル共重合体樹脂であってもよい。また、エチレン-酢酸ビニル共重合体樹脂としては、エチレン-酢酸ビニル共重合体けん化物、エチレン-酢酸ビニルの加水分解物などのようなエチレン-酢酸ビニル変性体樹脂も用いることができる。
 エチレン-酢酸ビニル共重合体樹脂は、JIS K 6730「エチレン・酢酸ビニル樹脂試験方法」またはJIS K 6924-2:1997に準拠して測定される酢酸ビニル含量が好ましく10~50質量%、より好ましくは20~40質量%である。酢酸ビニル含量をこれら下限値以上とすることで、合わせガラス部材などの他の部材への接着性が高くなり、また、合わせガラスの耐貫通性が良好になりやすくなる。また、酢酸ビニル含量をこれら上限値以下とすることで、高分子フィルムの破断強度が高くなり、合わせガラスの耐衝撃性が良好になる。
(Ethylene-vinyl acetate copolymer (EVA) resin)
The ethylene-vinyl acetate copolymer resin may be a non-crosslinked ethylene-vinyl acetate copolymer resin or a high-temperature crosslinked ethylene-vinyl acetate copolymer resin. As the ethylene-vinyl acetate copolymer resin, ethylene-vinyl acetate modified resins such as ethylene-vinyl acetate copolymer saponified products and ethylene-vinyl acetate hydrolysates can also be used.
The ethylene-vinyl acetate copolymer resin preferably has a vinyl acetate content of 10 to 50% by mass, more preferably 10 to 50% by mass, as measured according to JIS K 6730 "Ethylene-vinyl acetate resin test method" or JIS K 6924-2:1997. is 20 to 40% by mass. By setting the vinyl acetate content to these lower limit values or more, the adhesiveness to other members such as laminated glass members is enhanced, and the penetration resistance of the laminated glass tends to be improved. Also, by setting the vinyl acetate content to these upper limits or less, the breaking strength of the polymer film is increased, and the impact resistance of the laminated glass is improved.

(ポリウレタン樹脂)
 ポリウレタン樹脂としては、イソシアネート化合物と、ジオール化合物とを反応して得られるポリウレタン、イソシアネート化合物と、ジオール化合物、さらに、ポリアミンなどの鎖長延長剤を反応させることにより得られるポリウレタンなどが挙げられる。また、ポリウレタン樹脂は、硫黄原子を含有するものでもよい。その場合には、上記ジオールの一部又は全部を、ポリチオール及び含硫黄ポリオールから選択されるものとするとよい。ポリウレタン樹脂は、有機ガラスとの接着性を良好にすることができる。そのため、合わせガラス部材が有機ガラスである場合に好適に使用される。
(polyurethane resin)
Examples of polyurethane resins include polyurethanes obtained by reacting an isocyanate compound with a diol compound, polyurethanes obtained by reacting an isocyanate compound with a diol compound, and a chain extender such as polyamine. Moreover, the polyurethane resin may contain a sulfur atom. In that case, part or all of the diols may be selected from polythiols and sulfur-containing polyols. Polyurethane resin can improve adhesion to organic glass. Therefore, it is preferably used when the laminated glass member is made of organic glass.

(アクリル樹脂)
 アクリル樹脂としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、メタクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-へキシル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸n-トリデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸セチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸2-ナフチル、(メタ)アクリル酸2,4,6-トリクロロフェニル、(メタ)アクリル酸2,4,6-トリブロモフェニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸ジエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリエチレングリコールモノメチルエーテル、(メタ)アクリル酸ポリプロピレングリコールモノメチルエーテル、(メタ)アクリル酸テトラヒドロフルオリル、(メタ)アクリル酸2,3-ジブロモプロピル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸ヘキサフルオロイソプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3-トリメトキシシリルプロピル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチル、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエイチルヘキサヒドロフタル酸、ネオペンチルジ(メタ)アクリレート、ジメチロルトリシクロデカンジ(メタ)アクリレート等のアクリル、二官能エポキシ(メタ)アクリレート、カプロラクトン変性(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、(メタ)アクリロニトリル、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、(メタ)アクリル酸ジエチルアミノエチル、ポリエチレングリコールジ(メタ)アクリレート等の(メタ)アクリル系単量体の重合体が挙げられる。これら(メタ)アクリル系単量体は、単独で用いられてもよいし、二種以上が併用され共重合体として用いられてもよい。また、(メタ)アクリル系単量体と、イタコン酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルラウリロラクタム、スチレンなどの(メタ)アクリル系単量体以外の単量体との共重合体であってもよい。なお本発明において、(メタ)アクリルとは、アクリル又はメタクリルの何れか一方又は双方を意味する。
(acrylic resin)
Examples of acrylic resins include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl methacrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, (meth)acrylic acid 2 - Ethylhexyl, n-octyl (meth)acrylate, lauryl (meth)acrylate, n-tridecyl (meth)acrylate, myristyl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, ( meth)allyl acrylate, vinyl (meth)acrylate, benzyl (meth)acrylate, phenyl (meth)acrylate, 2-naphthyl (meth)acrylate, 2,4,6-trichlorophenyl (meth)acrylate, 2,4,6-tribromophenyl (meth)acrylate, isobornyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, diethylene glycol monomethyl ether (meth)acrylate , polyethylene glycol monomethyl ether (meth)acrylate, polypropylene glycol monomethyl ether (meth)acrylate, tetrahydrofluoryl (meth)acrylate, 2,3-dibromopropyl (meth)acrylate, 2-chloroethyl (meth)acrylate , 2,2,2-trifluoroethyl (meth)acrylate, hexafluoroisopropyl (meth)acrylate, glycidyl (meth)acrylate, 3-trimethoxysilylpropyl (meth)acrylate, (meth)acrylic acid 2 -Diethylaminoethyl, 2-dimethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate ) acrylate, (meth)acrylic acid, 2-(meth)acryloyloxyethyl succinic acid, 2-(meth)acryloyloxyethyl hexahydrophthalic acid, neopentyl di(meth)acrylate, dimethyloltricyclodecane di(meth)acrylate Acrylic, bifunctional epoxy (meth)acrylate, caprolactone-modified (meth)acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, trimethylolpropane triacrylate, etc. (Meth)acrylic monomers such as trimethylolpropane tetra(meth)acrylate, (meth)acrylonitrile, (meth)acrylamide, dimethyl(meth)acrylamide, diethylaminoethyl (meth)acrylate, and polyethylene glycol di(meth)acrylate polymer. These (meth)acrylic monomers may be used alone, or two or more of them may be used in combination to form a copolymer. (Meth)acrylic monomers, itaconic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinyllauryllactam, styrene, and other (meth) ) It may be a copolymer with a monomer other than an acrylic monomer. In the present invention, (meth)acryl means either one or both of acrylic and methacryl.

[酸化防止剤/光安定剤]
 高分子フィルムは、酸化防止剤及び光安定剤の少なくともいずれかを含有することが好ましく、中でも酸化防止剤を少なくとも含有することがより好ましく、酸化防止剤及び光安定剤の両方を含有することがさらに好ましい。高分子フィルムは、酸化防止剤を含有することで、ペルオキシラジカルを捕捉しやすくなり、ラジカルピークが4本検出されるやすくなる。一方で、光安定剤を含有させると、アルキルラジカルを捕捉しやすくなり、ラジカルピークが4本検出されず2本のピークが検出されやすくなる。
[Antioxidant/light stabilizer]
The polymer film preferably contains at least one of an antioxidant and a light stabilizer, more preferably contains at least an antioxidant, and preferably contains both an antioxidant and a light stabilizer. More preferred. When the polymer film contains an antioxidant, it becomes easier to capture peroxy radicals, making it easier to detect four radical peaks. On the other hand, if a light stabilizer is contained, alkyl radicals are likely to be captured, and four radical peaks are not detected, and two peaks are likely to be detected.

(酸化防止剤)
 酸化防止剤としては、フェノール系化合物、リン酸系化合物、硫黄系化合物などが挙げられる。酸化防止剤は、高分子フィルムが酸化劣化することを防止して、耐久性を向上させる。酸化防止剤としては、上記の中では、フェノール系化合物が好適である。
(Antioxidant)
Antioxidants include phenol compounds, phosphoric compounds, sulfur compounds, and the like. Antioxidants prevent oxidative deterioration of the polymer film and improve durability. Among the above antioxidants, phenolic compounds are suitable.

 フェノール系化合物は、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチル化ヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、及びビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]等が挙げられる。 Phenolic compounds include, for example, 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl-β -(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2'-methylenebis-(4-methyl-6-butylphenol), 2,2'-methylenebis-(4-ethyl-6- t-butylphenol), 4,4′-butylidene-bis-(3-methyl-6-t-butylphenol), 1,1,3-tris-(2-methyl-hydroxy-5-t-butylphenyl)butane, tetrakis[methylene-3-(3′,5′-butyl-4-hydroxyphenyl)propionate]methane, 1,3,3-tris-(2-methyl-4-hydroxy-5-t-butylphenol)butane, 1 , 3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene and bis(3,3′-t-butylphenol)butyric acid glycol ester and pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate].

 上記リン酸系化合物は、例えば、トリスノニルフェニルホスファイト、トリデシルフォスファイト、2-エチル-2-ブチルプロピレン-4,6-トリ第三ブチルフェノールホスファイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、トリス[2-第三ブチル-4-(3-第三ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル]ホスファイト等が挙げられる。 Examples of the phosphoric acid compound include trisnonylphenyl phosphite, tridecyl phosphite, 2-ethyl-2-butylpropylene-4,6-tri-tert-butylphenol phosphite, 9,10-dihydro-9-oxa- 10-phosphaphenanthrene, tetra(tridecyl)isopropylidenediphenol diphosphite, tris[2-tert-butyl-4-(3-tert-hydroxy-5-methylphenylthio)-5-methylphenyl]phosph fight and the like.

 上記硫黄系化合物は、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類や、ペンタエリスリトールテトラ(β-ドデシルメルカプトプロピオネート)等のポリオールのβ-アルキルメルカプトプロピオン酸エステル等が挙げられる。
 酸化防止剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
Examples of the above sulfur compounds include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiodipropionate, and pentaerythritol tetra(β-dodecylmercaptopropionate), etc. β-alkylmercaptopropionate esters of polyols and the like are included.
An antioxidant may be used individually by 1 type, and may use 2 or more types together.

 高分子フィルムにおける酸化防止剤の含有量は、高分子フィルム全量基準で、0.01質量%以上2質量%以下であることが好ましい。0.01質量%以上とすることで、紫外線暴露環境下でも、ペルオキシラジカルを適切に捕捉して、樹脂フィルムの酸化劣化を適切に防止でき、耐久性を高めることができる。また、2質量%以下とすることで、含有量に見合った効果も発揮しやすくなる。酸化防止剤の含有量は、0.03質量%以上1.5質量%以下であることがより好ましく、0.05質量%以上1.0質量%以下が更に好ましく、0.07質量%以上0.5質量%以下であることがよりさらに好ましい。 The content of the antioxidant in the polymer film is preferably 0.01% by mass or more and 2% by mass or less based on the total amount of the polymer film. By making it 0.01% by mass or more, peroxy radicals can be appropriately captured even in an environment exposed to ultraviolet rays, oxidative deterioration of the resin film can be appropriately prevented, and durability can be enhanced. Moreover, by making it 2 mass % or less, it becomes easy to exhibit the effect commensurate with the content. The content of the antioxidant is more preferably 0.03% by mass or more and 1.5% by mass or less, still more preferably 0.05% by mass or more and 1.0% by mass or less, and 0.07% by mass or more and 0 0.5% by mass or less is even more preferable.

(光安定剤)
 光安定剤(HALS)は、ヒンダードアミン光安定剤であることが好ましい。ヒンダードアミン光安定剤は、例えばアルキルラジカルを捕捉して、太陽光などに含まれる紫外線などの照射により高分子フィルムが劣化することを防止する。
 上記ヒンダードアミン光安定剤としては、ピペリジン構造の窒素原子にアルキル基、アルコキシ基又は水素原子が結合しているヒンダードアミン光安定剤等が挙げられる。劣化をより一層抑える観点からは、ピペリジン構造の窒素原子にアルキル基又はアルコキシ基が結合しているヒンダードアミン光安定剤が好ましい。上記ヒンダードアミン光安定剤は、ピペリジン構造の窒素原子にアルキル基が結合しているヒンダードアミン光安定剤であることが好ましく、ピペリジン構造の窒素原子にアルコキシ基が結合しているヒンダードアミン光安定剤であることも好ましい。
 光安定剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
(light stabilizer)
The light stabilizers (HALS) are preferably hindered amine light stabilizers. Hindered amine light stabilizers, for example, scavenge alkyl radicals to prevent deterioration of polymer films due to irradiation with ultraviolet rays contained in sunlight.
Examples of the hindered amine light stabilizer include hindered amine light stabilizers in which an alkyl group, an alkoxy group, or a hydrogen atom is bonded to the nitrogen atom of the piperidine structure. From the viewpoint of further suppressing deterioration, hindered amine light stabilizers in which an alkyl group or an alkoxy group is bonded to the nitrogen atom of the piperidine structure are preferred. The hindered amine light stabilizer is preferably a hindered amine light stabilizer in which an alkyl group is bonded to the nitrogen atom of the piperidine structure, and is a hindered amine light stabilizer in which an alkoxy group is bonded to the nitrogen atom of the piperidine structure. is also preferred.
Only one kind of light stabilizer may be used, or two or more kinds thereof may be used in combination.

 上記ピペリジン構造の窒素原子にアルキル基が結合しているヒンダードアミン光安定剤としては、BASF社製「Tinuvin765」及び「Tinuvin622SF」、並びにADEKA社製「アデカスタブ LA-52」等が挙げられる。
 また、上記ピペリジン構造の窒素原子にアルコキシ基が結合しているヒンダードアミン光安定剤としては、BASF社製「TinuvinXT-850FF」及び「TinuvinXT-855FF」、並びにADEKA社製「アデカスタブ LA-81」等が挙げられる。
 上記ピペリジン構造の窒素原子に水素原子が結合しているヒンダードアミン光安定剤としては、BASF社製「Tinuvin770DF」、及びクラリアント社製「Hostavin N24」等が挙げられる。
Examples of the hindered amine light stabilizer having an alkyl group bonded to the nitrogen atom of the piperidine structure include "Tinuvin 765" and "Tinuvin 622SF" manufactured by BASF, and "ADEKA STAB LA-52" manufactured by ADEKA.
Further, as hindered amine light stabilizers in which an alkoxy group is bonded to the nitrogen atom of the piperidine structure, BASF's "TinuvinXT-850FF" and "TinuvinXT-855FF", and ADEKA's "ADEKA STAB LA-81", etc. mentioned.
Examples of the hindered amine light stabilizer in which a hydrogen atom is bonded to the nitrogen atom of the piperidine structure include "Tinuvin 770DF" manufactured by BASF and "Hostavin N24" manufactured by Clariant.

 高分子フィルムにおける光安定剤の含有量は、高分子フィルム全量基準で、0.001質量%以上0.5質量%以下であることが好ましい。0.001質量%以上とすることで、アルキルラジカルを捕捉しやすくなり、ラジカルピークが4本検出されず2本のピークが検出されやすくなり、また、高分子フィルムの紫外線などによる劣化を適切に防止でき、耐久性を高めることができる。また、0.5質量%以下とすることで、含有量に見合った効果も発揮しやすくなる。
 光安定剤の上記含有量は、0.003質量%以上0.4質量%以下であることがより好ましく、0.005質量%以上0.2質量%以下がさらに好ましく、0.007質量%以上0.1質量%以下がよりさらに好ましい。
The content of the light stabilizer in the polymer film is preferably 0.001% by mass or more and 0.5% by mass or less based on the total amount of the polymer film. By making it 0.001% by mass or more, alkyl radicals are easily captured, four radical peaks are not detected and two peaks are easily detected, and deterioration of the polymer film due to ultraviolet rays etc. It can be prevented and durability can be improved. Moreover, by making it 0.5 mass % or less, it becomes easy to exhibit the effect commensurate with the content.
The content of the light stabilizer is more preferably 0.003% by mass or more and 0.4% by mass or less, further preferably 0.005% by mass or more and 0.2% by mass or less, and 0.007% by mass or more. 0.1% by mass or less is even more preferable.

[炭素材料]
 本発明の高分子フィルムは、炭素材料を含有することが好ましい。炭素材料は、ペルオキシラジカル、アルキルラジカルなどのラジカルを捕捉して、高分子フィルムのESRにおいて検出されるピークが上記した要件を充足させやすくする。炭素材料は、ペルオキシラジカル、アルキルラジカルなどのラジカルを捕捉できる材料であればよいが、フラーレン類が好ましい。フラーレン類は、ペルオキシラジカル及びアルキルラジカルの両方を捕捉して、ESRにおいて検出されるピークが上記した要件をより一層充足させやすくなる。また、高分子フィルムが紫外線に暴露される環境下で使用されても、耐久性が向上しやすくなる。
[Carbon material]
The polymer film of the invention preferably contains a carbon material. The carbon material traps radicals such as peroxy radicals and alkyl radicals, making it easier for the peaks detected in the ESR of the polymer film to satisfy the above requirements. The carbon material may be any material that can capture radicals such as peroxy radicals and alkyl radicals, but fullerenes are preferred. Fullerenes trap both peroxy radicals and alkyl radicals, making it easier for peaks detected in ESR to satisfy the above requirements. Moreover, even if the polymer film is used in an environment where it is exposed to ultraviolet rays, the durability is likely to be improved.

 フラーレン類としては、フラーレン、及びフラーレン誘導体が挙げられる。フラーレンは、炭素原子からなり、閉殻構造を有する。閉殻構造は、典型的には5員環と6員環とが組み合わされてなるものである。フラーレンの具体例としては、C60、C70、C76、C78、C84、C90、C96、C180、C240、C320などが挙げられ、これらの中でもC60が好ましい。 Fullerenes include fullerenes and fullerene derivatives. Fullerene consists of carbon atoms and has a closed shell structure. A closed-shell structure is typically a combination of a 5-membered ring and a 6-membered ring. Specific examples of fullerene include C60 , C70 , C76 , C78 , C84 , C90 , C96 , C180 , C240 , C320 , etc. Among these, C60 is preferred.

 フラーレン誘導体は、上記したフラーレンの炭素原子に無機原子、又は有機化合物の一部を成す原子が修飾されたものであり、中でも水素化フラーレンが好ましく、特にC60に水素が修飾された水素化フラーレンが好ましい。本発明では、水素化フラーレンを使用することで、上記した相対ピーク高さが1に近づきやすくなり、また、紫外線暴露環境下における高分子フィルムの耐久性をより一層向上させる。さらに、水素化フラーレンを使用すると、高分子フィルムの透明性を高くでき、かつ炭素材料に起因して色味が付いたりすることも抑制しやすくなる。
 フラーレン類は、1種単独で使用してもよいし、2種以上を併用してもよい。例えば、水素化フラーレンを使用する場合、フラーレン類として水素化フラーレンを単独で使用してもよいし、水素化フラーレンとフラーレンなどの他のフラーレン類とを併用してもよい。
Fullerene derivatives are those in which the carbon atoms of the above-mentioned fullerenes are modified with inorganic atoms or atoms forming a part of an organic compound. is preferred. In the present invention, by using hydrogenated fullerene, the above-described relative peak height tends to approach 1, and the durability of the polymer film under ultraviolet exposure environment is further improved. Furthermore, the use of hydrogenated fullerene makes it possible to increase the transparency of the polymer film, and also makes it easier to suppress tinting due to the carbon material.
Fullerenes may be used individually by 1 type, and may use 2 or more types together. For example, when hydrogenated fullerene is used, hydrogenated fullerene may be used alone as fullerenes, or hydrogenated fullerene and other fullerenes such as fullerene may be used in combination.

 高分子フィルムにおける炭素材料の含有量は、高分子フィルム全量基準で、0.005質量%以上0.1質量%以下であることが好ましい。含有量を0.005質量%以上とすると、炭素材料によりアルキルラジカル、ペルオキシラジカルなどのラジカルを適切に捕捉して、高分子フィルムのESRにおいて検出されるピークが上記した要件を充足しやすくする。また、紫外線暴露時の耐久性を向上させやすくなる。
 一方で、含有量を0.1質量%以下とすることで、含有量に見合った効果を発揮しやすくなる。また、高分子フィルムの透明性を高くでき、かつ炭素材料に起因して色味がついたりすることも防止できる。
 以上の観点から、高分子フィルムにおける炭素材料の含有量は、0.006質量%以上0.07質量%以下がより好ましく、0.007質量%以上0.04質量%以下がさらに好ましく、0.01質量%以上0.025質量%以下がよりさらに好ましい。
The content of the carbon material in the polymer film is preferably 0.005% by mass or more and 0.1% by mass or less based on the total amount of the polymer film. When the content is 0.005% by mass or more, radicals such as alkyl radicals and peroxy radicals are properly captured by the carbon material, and the peak detected in the ESR of the polymer film easily satisfies the above requirements. Moreover, it becomes easy to improve the durability at the time of ultraviolet exposure.
On the other hand, by setting the content to 0.1% by mass or less, it becomes easier to exhibit an effect commensurate with the content. In addition, the transparency of the polymer film can be increased, and it is possible to prevent the carbon material from imparting a tint.
From the above viewpoints, the content of the carbon material in the polymer film is more preferably 0.006% by mass or more and 0.07% by mass or less, further preferably 0.007% by mass or more and 0.04% by mass or less. 01% by mass or more and 0.025% by mass or less is even more preferable.

 本発明の高分子フィルムにおいて、フラーレン類などの炭素材料は、酸化防止剤及び光安定剤の一方又は両方と併用することが好ましく、少なくとも酸化防止剤と併用することがより好ましい。フラーレン類などの炭素材料と、酸化防止剤及び光安定剤の少なくとも一方とを併用することで、ESRにおいて検出されるピークが上記した要件を充足しやすくする。また、酸化防止剤や光安定剤のラジカルを捕捉する機能が高められ、紫外線暴露環境下における高分子フィルムの耐久性をより一層向上させることができる。 In the polymer film of the present invention, carbon materials such as fullerenes are preferably used in combination with one or both of an antioxidant and a light stabilizer, more preferably in combination with at least an antioxidant. The combined use of a carbon material such as fullerenes and at least one of an antioxidant and a light stabilizer makes it easier for the peak detected in ESR to satisfy the above requirements. In addition, the function of scavenging radicals of antioxidants and light stabilizers is enhanced, and the durability of the polymer film under an environment exposed to ultraviolet rays can be further improved.

 高分子フィルムにおいて、炭素材料と酸化防止剤とを併用する場合、高分子フィルムに含有される炭素材料と酸化防止剤の質量比は、1:40~1:1が好ましい。炭素材料と酸化防止剤の質量比が上記範囲内となることで、炭素材料と酸化防止剤により、ラジカルを捕捉する機能がより一層高められる。また、ESRにおいて検出されるピークが上記した要件を充足しやすくする。これら観点から、高分子フィルムにおける炭素材料と酸化防止剤の質量比は、1:30~1:2がより好ましく、1:20~1:4がさらに好ましく、1:15~1:5がよりさらに好ましい。 When the carbon material and the antioxidant are used together in the polymer film, the mass ratio of the carbon material and the antioxidant contained in the polymer film is preferably 1:40 to 1:1. When the mass ratio of the carbon material and the antioxidant is within the above range, the function of scavenging radicals is further enhanced by the carbon material and the antioxidant. It also makes it easier for the peaks detected in the ESR to satisfy the above requirements. From these viewpoints, the mass ratio of the carbon material and the antioxidant in the polymer film is more preferably 1:30 to 1:2, more preferably 1:20 to 1:4, and more preferably 1:15 to 1:5. More preferred.

 高分子フィルムにおいては、上記の通り光安定剤と酸化防止剤とを併用することも好ましく、これらを併用する場合、高分子フィルムに含有される光安定剤と酸化防止剤の質量比は、1:20~1:1が好ましい。光安定剤と酸化防止剤の質量比が上記範囲内となることで、ペルオキシラジカルとアルキルラジカルを捕捉する機能がバランス良く高められ、紫外線暴露時の耐久性を向上させやすくなる。また、ESRにおいて検出されるピークは、4本検出されずに2本検出されやすくなる。
 これら観点から、高分子フィルムにおける光安定剤と酸化防止剤の質量比は、1:18~1:2がより好ましく、1:15~1:3がさらに好ましく、1:12~1:4がよりさらに好ましい。
In the polymer film, it is also preferable to use a light stabilizer and an antioxidant in combination as described above. :20 to 1:1 is preferred. When the mass ratio of the light stabilizer and the antioxidant is within the above range, the function of scavenging peroxy radicals and alkyl radicals is enhanced in a well-balanced manner, making it easier to improve durability when exposed to ultraviolet rays. Also, two peaks detected in ESR are likely to be detected instead of being detected four.
From these viewpoints, the mass ratio of the light stabilizer and the antioxidant in the polymer film is more preferably 1:18 to 1:2, more preferably 1:15 to 1:3, and 1:12 to 1:4. Even more preferable.

 高分子フィルムにおいては、上記の通り炭素材料と光安定剤を併用してもよい。これらを併用する場合、高分子フィルムに含有される炭素材料と光安定剤の質量比は、1:20~10:1が好ましい。光安定剤と炭素材料の質量比が上記範囲内となることで、炭素材料と光安定剤により、アルキルルを捕捉する機能がより一層高められる。高分子フィルムにおける炭素材料と光安定剤の質量比は、1:10~5:1がより好ましく、1:5~2:1がさらに好ましく、1:3~1:1がよりさらに好ましい。 In the polymer film, as described above, the carbon material and the light stabilizer may be used together. When these are used together, the mass ratio of the carbon material and light stabilizer contained in the polymer film is preferably 1:20 to 10:1. When the mass ratio of the light stabilizer and the carbon material is within the above range, the carbon material and the light stabilizer further enhance the function of trapping alkyl. The weight ratio of the carbon material to the light stabilizer in the polymer film is more preferably 1:10 to 5:1, more preferably 1:5 to 2:1, even more preferably 1:3 to 1:1.

 高分子フィルムにおいては、上記のとおり、炭素材料と酸化防止剤と光安定剤を併用することも好ましい。これらを併用する場合、高分子フィルムに含有される炭素材料と酸化防止剤と光安定剤の質量比は、1:1:1~1:40:10が好ましく、1:2:1~1:20:10がより好ましく、1:3:1~1:15:5がさらに好ましく、1:4:1~1:15:3がよりさらに好ましい。 In the polymer film, as described above, it is also preferable to use a carbon material, an antioxidant, and a light stabilizer in combination. When these are used together, the mass ratio of the carbon material, antioxidant and light stabilizer contained in the polymer film is preferably 1:1:1 to 1:40:10, and 1:2:1 to 1:1:1. 20:10 is more preferred, 1:3:1 to 1:15:5 is more preferred, and 1:4:1 to 1:15:3 is even more preferred.

(紫外線吸収剤)
 高分子フィルムは、紫外線吸収剤を含有することが好ましい。紫外線吸収剤は、太陽光などに含まれる紫外線を吸収して、高分子フィルム中のポリマーに直接照射される紫外線の照射量を低減し、紫外線暴露環境下における耐久性をより一層向上させる。
 紫外線吸収剤としては、例えば、マロン酸エステル骨格を有する化合物、シュウ酸アニリド骨格を有する化合物、ベンゾトリアゾール骨格を有する化合物、ベンゾフェノン骨格を有する化合物、トリアジン骨格を有する化合物、ベンゾエート骨格を有する化合物、ヒンダードアミン骨格を有する化合物等を使用できる。これらのなかでは、ベンゾトリアゾール骨格を有する化合物(ベンゾトリアゾール系化合物)が好ましい。
(Ultraviolet absorber)
The polymer film preferably contains an ultraviolet absorber. The UV absorber absorbs UV rays contained in sunlight or the like, reduces the amount of UV rays that directly irradiate the polymer in the polymer film, and further improves the durability under an UV exposure environment.
Examples of UV absorbers include compounds having a malonate skeleton, compounds having an anilide oxalate skeleton, compounds having a benzotriazole skeleton, compounds having a benzophenone skeleton, compounds having a triazine skeleton, compounds having a benzoate skeleton, and hindered amines. A compound or the like having a skeleton can be used. Among these, compounds having a benzotriazole skeleton (benzotriazole compounds) are preferred.

 ベンゾトリアゾール系化合物の好ましい具体例としては、以下の一般式(1)で表される化合物が挙げられる。

Figure JPOXMLDOC01-appb-C000001

(式(1)において、Rは、水素原子、炭素数が1~8のアルキル基、又は炭素数4~20のアルコキシカルボニルアルキル基を表し、Rは、水素原子、又は炭素数が1~8のアルキル基を表す。Xはハロゲン原子又は水素原子である。Y及びYはそれぞれ独立に水酸基又は水素原子であり、Y及びYの少なくともいずれか1つが水酸基である。) Preferred specific examples of benzotriazole compounds include compounds represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001

(In formula (1), R 1 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxycarbonylalkyl group having 4 to 20 carbon atoms, and R 2 represents a hydrogen atom or a represents an alkyl group of ∼8, X is a halogen atom or a hydrogen atom, Y 1 and Y 2 are each independently a hydroxyl group or a hydrogen atom, and at least one of Y 1 and Y 2 is a hydroxyl group.)

 式(1)において、R、Rのアルキル基は、直鎖構造を有するものであってもよく、分岐構造を有するものであってもよい。アルコキシカルボニルアルキル基は、直鎖構造を有するものであってもよく、分岐構造を有するものであってもよい。R、Rとして、例えば、水素原子、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基が挙げられる。Rは、これらに加えて、メトキシカルボニルプロピル基、オクチルオキシカルボニルプロピル基等が挙げられる。なかでも、Rは、水素原子又はアルキル基、特に、水素原子、メチル基、tert-ブチル基、ペンチル基、オクチル基であることが好ましい。RとRとは同一であってもよく、異なっていてもよい。
 Xのハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、塩素原子が好ましい。
 Y及びYはいずれか一方のみが水酸基でもよいし、両方が水酸基でもよい。また、Yが少なくとも水酸基であることが好ましい。
 また、式(1)で示される化合物の具体例としては、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、3-[3-tert-ブチル-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオン酸オクチル、3-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシフェニルプロピオン酸メチル、2-(3,5-ジ-tert-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2,4-ジヒドロキシフェニル)-2H-ベンゾトリアゾールなどが挙げられる。
 紫外線吸収剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
In Formula (1), the alkyl groups of R 1 and R 2 may have a linear structure or a branched structure. The alkoxycarbonylalkyl group may have a linear structure or a branched structure. Examples of R 1 and R 2 include hydrogen atom, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group and octyl group. In addition to these, R 1 includes a methoxycarbonylpropyl group, an octyloxycarbonylpropyl group, and the like. Among them, R 1 is preferably a hydrogen atom or an alkyl group, particularly a hydrogen atom, a methyl group, a tert-butyl group, a pentyl group or an octyl group. R 1 and R 2 may be the same or different.
The halogen atom of X includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom.
Either one of Y 1 and Y 2 may be a hydroxyl group, or both of them may be a hydroxyl group. Moreover, it is preferable that Y2 is at least a hydroxyl group.
Further, specific examples of the compound represented by formula (1) include 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di- t-Butyl-2-hydroxyphenyl)-5-chlorobenzotriazole, Octyl 3-[3-tert-butyl-5-(5-chloro-2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate , 3-(5-chloro-2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxyphenylpropionate methyl, 2-(3,5-di-tert-amyl- 2-hydroxyphenyl)benzotriazole, 2-(2,4-dihydroxyphenyl)-2H-benzotriazole and the like.
One type of ultraviolet absorber may be used alone, or two or more types may be used in combination.

 高分子フィルムにおける紫外線吸収剤の含有量は、高分子フィルム全量基準で、0.01質量%以上2質量%以下であることが好ましい。0.01質量%以上とすることで、太陽光などに含まれる紫外線を適切に吸収でき、屋外で使用されても紫外線によって高分子フィルムが劣化することを適切に防止でき、耐久性を高めることができる。また、2質量%以下とすることで、紫外線吸収剤により、高分子フィルムに色味がついたりすること防止でき、含有量に見合った効果も発揮しやすくなる。
 紫外線吸収剤の上記含有量は、0.03質量%以上1.5質量%以下であることがより好ましく、0.05質量%以上1.2質量%以下が更に好ましく、0.1質量%以上0.9質量%以下がより更に好ましい。
The content of the ultraviolet absorber in the polymer film is preferably 0.01% by mass or more and 2% by mass or less based on the total amount of the polymer film. By making it 0.01% by mass or more, it is possible to appropriately absorb ultraviolet rays contained in sunlight and the like, appropriately prevent deterioration of the polymer film due to ultraviolet rays even when used outdoors, and improve durability. can be done. Moreover, by setting the content to 2% by mass or less, it is possible to prevent the polymer film from being tinted by the ultraviolet absorber, and it becomes easy to exhibit an effect commensurate with the content.
The content of the ultraviolet absorber is more preferably 0.03% by mass or more and 1.5% by mass or less, still more preferably 0.05% by mass or more and 1.2% by mass or less, and 0.1% by mass or more. 0.9% by mass or less is even more preferable.

(可塑剤)
 高分子フィルムは、さらに可塑剤を含有してもよい。高分子フィルムは、可塑剤を含有することにより柔軟となる。そのため、例えば合わせガラス用中間膜に使用される場合には、合わせガラスの柔軟性を向上させ、耐貫通性も向上させる。さらには、合わせガラス部材などの他の部材に対する接着性を向上させることも可能になる。可塑剤は、樹脂としてポリビニルアセタール樹脂を使用する場合に含有させると特に効果的である。
 可塑剤としては、例えば、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸エステル系可塑剤及び有機亜リン酸エステル系可塑剤などのリン系可塑剤等が挙げられる。なかでも、有機エステル可塑剤が好ましい。
(Plasticizer)
The polymeric film may further contain a plasticizer. A polymer film becomes flexible by containing a plasticizer. Therefore, when used for an interlayer film for laminated glass, for example, it improves the flexibility of the laminated glass and also improves the penetration resistance. Furthermore, it is also possible to improve the adhesiveness to other members such as laminated glass members. The plasticizer is particularly effective when a polyvinyl acetal resin is used as the resin.
Examples of plasticizers include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and phosphorus plasticizers such as organic phosphate plasticizers and organic phosphite plasticizers. etc. Among them, organic ester plasticizers are preferred.

 有機エステル可塑剤は、例えば、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-2-エチルヘキサノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、1,2-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、トリエチレングリコールジ-2-エチルブチレート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ジイソノニル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、リン酸エステルとアジピン酸エステルとの混合物、混合型アジピン酸エステルなどが挙げられる。混合型アジピン酸エステルとしては、炭素数4~9のアルキルアルコール及び炭素数4~9の環状アルコールから選択される2種以上のアルコールから作製されたアジピン酸エステルが挙げられる。
 上記可塑剤のなかでも、トリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)が特に好適に用いられる。
Organic ester plasticizers include, for example, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, 1,2-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate , diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicapriate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, triethylene glycol di-2-ethylbutyrate, dihexyl adipate, dioctyl adipate, hexyl cyclohexyl adipate, diisononyl adipate, heptylnonyl adipate, dibutyl sebacate, oil-modified alkyd sebacate, mixture of phosphate and adipate, mixed adipate and the like. Mixed adipates include adipates prepared from two or more alcohols selected from alkyl alcohols having 4 to 9 carbon atoms and cyclic alcohols having 4 to 9 carbon atoms.
Among the above plasticizers, triethylene glycol-di-2-ethylhexanoate (3GO) is particularly preferably used.

 高分子フィルムにおける可塑剤の含有量は、特に限定されないが、高分子フィルムに含有される樹脂100質量部に対して、好ましくは10質量部以上100質量部以下である。可塑剤の含有量を10質量部以上とすると、高分子フィルムが適度に柔軟になり、接着性等が良好になり、合わせガラス用中間膜として使用した場合には合わせガラスの耐貫通性が良好となる。また、可塑剤の含有量を100質量部以下とすると、高分子フィルムから可塑剤が分離することが防止される。可塑剤の上記含有量は、より好ましくは20質量部以上であり、さらに好ましくは30質量部以上であり、さらに好ましくは35質量部以上であり、また、より好ましくは70質量部以下、さらに好ましくは63質量部以下である。 The content of the plasticizer in the polymer film is not particularly limited, but is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin contained in the polymer film. When the content of the plasticizer is 10 parts by mass or more, the polymer film becomes moderately flexible and has good adhesiveness, etc., and when used as an interlayer film for laminated glass, the laminated glass has good penetration resistance. becomes. Also, when the content of the plasticizer is 100 parts by mass or less, separation of the plasticizer from the polymer film is prevented. The content of the plasticizer is more preferably 20 parts by mass or more, still more preferably 30 parts by mass or more, still more preferably 35 parts by mass or more, and more preferably 70 parts by mass or less, still more preferably is 63 parts by mass or less.

[その他の添加剤]
 本発明の高分子フィルムは、上記以外の添加剤を含有してもよく、着色剤、接着力調整剤、遮熱剤、蛍光増白剤、結晶核剤等の各添加剤を含有してもよい。これら添加剤は、1種使用されてもよいし、2種以上が使用されてもよい。
[Other additives]
The polymer film of the present invention may contain additives other than those described above, and may contain additives such as coloring agents, adhesive strength modifiers, heat shielding agents, fluorescent whitening agents, and crystal nucleating agents. good. 1 type of these additives may be used and 2 or more types may be used.

 本発明の高分子フィルムは、樹脂に加えて、上記の通り、必要に応じて配合される酸化防止剤、光安定剤、炭素材料、紫外線吸収剤、可塑剤、及びその他の添加剤の少なくともいずれかを含有する樹脂組成物からなるものであるとよい。
 また、高分子フィルムは、樹脂、又は樹脂及び可塑剤が主成分となるものであり、高分子フィルムにおいて樹脂及び可塑剤の合計量は、高分子フィルム全量基準で、通常70質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上100質量%未満である。上記合計量を100質量%未満とすることで、高分子フィルムは、酸化防止剤、光安定剤、炭素材料、紫外線吸収剤などの添加剤を含有できる。
In addition to the resin, the polymer film of the present invention contains at least one of an antioxidant, a light stabilizer, a carbon material, an ultraviolet absorber, a plasticizer, and other additives, which are optionally blended as described above, in addition to the resin. It is preferably made of a resin composition containing
In addition, the polymer film is mainly composed of a resin, or a resin and a plasticizer, and the total amount of the resin and the plasticizer in the polymer film is usually 70% by mass or more, preferably 70% by mass or more, based on the total amount of the polymer film. is 80% by mass or more, more preferably 90% by mass or more and less than 100% by mass. By setting the total amount to less than 100% by mass, the polymer film can contain additives such as antioxidants, light stabilizers, carbon materials, and ultraviolet absorbers.

 本発明の高分子フィルムは、1層からなる単層フィルムを構成してもよいし、2層以上の層を有する多層フィルムを構成してもよい。多層フィルムは、上記した本発明の高分子フィルムを少なくとも1層有すればよい。すなわち、多層フィルムは、上記した本発明の高分子フィルムと、本発明の高分子フィルム以外のフィルムとを一体化した積層フィルムであるとよい。また、多層フィルムは、上記した本発明の高分子フィルムを2層以上有する積層フィルムであってもよく、その場合でも、多層フィルムは本発明の高分子フィルム以外のフィルムを有してもよい。 The polymer film of the present invention may constitute a monolayer film consisting of one layer, or may constitute a multilayer film having two or more layers. The multilayer film may have at least one layer of the above polymer film of the present invention. That is, the multilayer film is preferably a laminated film obtained by integrating the polymer film of the present invention and a film other than the polymer film of the present invention. Moreover, the multilayer film may be a laminated film having two or more layers of the polymer film of the present invention, and even in that case, the multilayer film may have films other than the polymer film of the present invention.

 本発明の高分子フィルム以外のフィルムは、特に限定されず、上記樹脂を含むフィルムであればよく、樹脂単独で構成されていてもよいし、樹脂に加えて、上記した酸化防止剤、光安定剤、炭素材料、紫外線吸収剤、可塑剤、及びその他の添加剤の少なくともいずれかを含有する樹脂組成物からなるものであるとよい。 The film other than the polymer film of the present invention is not particularly limited as long as it is a film containing the above resin, and may be composed of the resin alone. It is preferably made of a resin composition containing at least one of an agent, a carbon material, an ultraviolet absorber, a plasticizer, and other additives.

 多層フィルムは、厚み方向に2つ以上のフィルムが積層された2層構造であってもよいし、3つ以上のフィルムが積層された3層構造であってもよいし、4つ以上のフィルムが積層されたものでもよい。これらの中では2~5層構造の多層フィルムが好ましく、2~3層構造の多層フィルムがより好ましい。 The multilayer film may have a two-layer structure in which two or more films are laminated in the thickness direction, a three-layer structure in which three or more films are laminated, or four or more films. may be laminated. Among these, a multilayer film having a 2- to 5-layer structure is preferred, and a multilayer film having a 2- to 3-layer structure is more preferred.

 高分子フィルムの厚みは、特に限定されず、例えば0.05mm以上2.5mm以下、好ましくは0.1mm以上2.0mm以下、さらに好ましくは0.2mm以上1.0mm以下である。
 また、高分子フィルムを含む多層フィルムの厚みは、特に限定されず、例えば0.1mm以上3mm以下、好ましくは0.15mm以上2.5mm以下、さらに好ましくは0.2mm以上1.5mm以下である。
The thickness of the polymer film is not particularly limited, and is, for example, 0.05 mm or more and 2.5 mm or less, preferably 0.1 mm or more and 2.0 mm or less, more preferably 0.2 mm or more and 1.0 mm or less.
The thickness of the multilayer film including the polymer film is not particularly limited, and is, for example, 0.1 mm or more and 3 mm or less, preferably 0.15 mm or more and 2.5 mm or less, more preferably 0.2 mm or more and 1.5 mm or less. .

[高分子フィルムの光学特性]
 本発明の高分子フィルムは、2枚のクリアガラス板が高分子フィルムを介して接着されることで作製された合わせガラスの可視光線透過率(Tv)が、透明性の観点から、50%以上が好ましい。また、上記可視光線透過率(Tv)は、合わせガラスにした際に自動車用の窓ガラスに適用しやすいなどの観点から、70%以上がより好ましく、80%以上がさらに好ましく、85%以上がよりさらに好ましい。本発明では、上記の通り、好適には炭素材料を使用するが、その使用量を抑えることで高い透明性が確保できる。
 上記可視光線透過率(Tv)は、透明性の観点からは高ければ高いほどよく、例えば99%以下である。なお、可視光線透過率(Tv)は、JIS R3212(2015)に準拠して測定できる。
[Optical Properties of Polymer Film]
In the polymer film of the present invention, the visible light transmittance (Tv) of the laminated glass produced by bonding two clear glass plates via the polymer film is 50% or more from the viewpoint of transparency. is preferred. In addition, the visible light transmittance (Tv) is more preferably 70% or more, further preferably 80% or more, further preferably 85% or more from the viewpoint of being easy to apply to automobile window glass when laminated glass is made. Even more preferable. In the present invention, as described above, a carbon material is preferably used, and high transparency can be ensured by suppressing the amount used.
From the viewpoint of transparency, the visible light transmittance (Tv) is preferably as high as possible, for example, 99% or less. The visible light transmittance (Tv) can be measured according to JIS R3212 (2015).

 本発明の高分子フィルムは、2枚のクリアガラス板が高分子フィルムを介して接着されることで作製された合わせガラスの黄色度(YI)が、好ましくは20以下である。黄色度(YI)が20以下であることで、色味が付くことが抑えられ、意匠性の高い高分子フィルムを得ることができる。また、上記黄色度(YI)は、15以下がより好ましく、10以下がさらに好ましく、5以下がよりさらに好ましい。本発明では、上記の通り、好適には炭素材料を使用するが、フラーレン類を使用し、かつその使用量を抑えることで低い黄色度を確保できる。黄色度(YI)は、低ければ低いほどよく、0以上であればよいが、実用的には例えば0.5以上であればよい。なお、黄色度(YI)は、分光光度計を用いて、JIS K7105に準拠して測定できる。 The polymer film of the present invention preferably has a yellowness index (YI) of 20 or less for laminated glass produced by bonding two clear glass plates via a polymer film. When the yellowness index (YI) is 20 or less, it is possible to suppress coloration and obtain a highly designed polymer film. Moreover, the yellowness index (YI) is more preferably 15 or less, still more preferably 10 or less, and even more preferably 5 or less. In the present invention, as described above, a carbon material is preferably used, but a low yellowness can be ensured by using fullerenes and suppressing the amount used. The yellowness index (YI) is preferably as low as possible, and should be 0 or more, but practically, for example, 0.5 or more is sufficient. The yellowness index (YI) can be measured using a spectrophotometer according to JIS K7105.

 また、本発明の高分子フィルムを有する多層フィルムも上記光学特性を有するよい。つまり、2枚のクリアガラス板が多層フィルムを介して接着されることで作製された合わせガラスの可視光線透過率(Tv)及び黄色度(YI)の好適な各上限値又は各下限値、及びその下限値又は上限値は、上記高分子フィルムを介して接着されることで作製された合わせガラスの可視光線透過率(Tv)及び黄色度(YI)で説明した値と同じである。 A multilayer film having the polymer film of the present invention may also have the above optical properties. That is, the preferred upper limit or lower limit of the visible light transmittance (Tv) and the yellowness index (YI) of laminated glass produced by bonding two clear glass plates via a multilayer film, and The lower limit or upper limit is the same as the values described for the visible light transmittance (Tv) and yellowness (YI) of the laminated glass produced by bonding via the polymer film.

 なお、以上の可視光線透過率(Tv)、及び黄色度(YI)の測定で使用されるクリアガラス板は、厚み2.5mmでJIS R 3106:1998に準拠した測定した可視光線透過率が90.5%である。また、該クリアガラス板は、JIS Z 8781-1(2012)、JIS Z 8781-2(2012)、及びJIS Z 8781-4(2013)で規定される、CIE標準イルミナントD65、及び10°視野等色関数を用いて得た、a*=-0.6、b*=0.2、ヘイズが0.2%以下である。以上のクリアガラス板は、基準クリアガラスともいう。 The clear glass plate used in the above measurements of visible light transmittance (Tv) and yellowness index (YI) has a thickness of 2.5 mm and a visible light transmittance of 90 measured in accordance with JIS R 3106:1998. 0.5%. In addition, the clear glass plate is specified in JIS Z 8781-1 (2012), JIS Z 8781-2 (2012), and JIS Z 8781-4 (2013), CIE standard illuminant D65, 10 ° field of view, etc. a*=−0.6, b*=0.2, haze is less than 0.2%, obtained using the color function. The above clear glass plate is also referred to as reference clear glass.

(高分子フィルムの製造方法)
 本発明の高分子フィルムは、例えば、樹脂、必要に応じて配合される各種添加剤を混合し、得られた樹脂組成物を押出成形、プレス成形などして成形して得ればよい。
 ここで、フラーレン類などの炭素材料は、樹脂組成物における分散性を高める観点から、例えば可塑剤を使用する場合には、炭素材料を可塑剤に配合して可塑剤に十分に分散させたうえで、樹脂と混合してもよい。この際、可塑剤には適宜分散剤などを加えてもよい。また、炭素材料以外の添加剤を使用する場合、添加剤の種類によって炭素材料以外の添加剤を、可塑剤に配合して可塑剤に十分に分散させたうえで、樹脂と混合してもよい。
(Method for producing polymer film)
The polymer film of the present invention can be obtained, for example, by mixing a resin and various additives that are optionally blended, and molding the resulting resin composition by extrusion molding, press molding, or the like.
Here, from the viewpoint of enhancing the dispersibility in the resin composition, the carbon material such as fullerenes, for example, when using a plasticizer, should be mixed with the plasticizer and sufficiently dispersed in the plasticizer. and may be mixed with the resin. At this time, a dispersant or the like may be appropriately added to the plasticizer. In addition, when using additives other than carbon materials, depending on the type of additive, additives other than carbon materials may be mixed with the resin after being blended with the plasticizer and sufficiently dispersed in the plasticizer. .

 高分子フィルムは、多層フィルムを構成する場合も、単層構造である場合と同様に、押出成形、プレス成形などで各層を成形し、かつ積層することで得ればよい。例えば、2つ以上の押出機を用意し、複数の押出機の先端に多層用フィードブロックを取り付けて共押出する方法が好ましい。また、複数の層を設け、かつ、同じ組成を有する層が2以上ある場合には、1つの押出機から2以上の同じ組成を有する層を押し出してもよい。
 また、多層フィルムは、複数のフィルムを用意し、かつその複数のフィルムを一対の合わせガラス部材の間に配置させて、熱圧着(プレス成形)することで、合わせガラスを製造しつつ、複数のフィルムを一体化してなる多層フィルムも合わせて製造してもよい。
In the case of constructing a multilayer film, the polymer film may be obtained by molding each layer by extrusion molding, press molding, etc., and laminating them, as in the case of a single-layer structure. For example, a method of preparing two or more extruders and attaching a multi-layer feed block to the tips of the plurality of extruders for co-extrusion is preferred. Moreover, when a plurality of layers are provided and there are two or more layers having the same composition, two or more layers having the same composition may be extruded from one extruder.
In addition, the multilayer film is prepared by preparing a plurality of films, placing the plurality of films between a pair of laminated glass members, and performing thermocompression bonding (press molding) to produce a laminated glass and a plurality of films. A multilayer film formed by integrating films may also be produced together.

 本発明の高分子フィルムは、様々な用途に使用可能であり特に制限はないが、太陽光など紫外線を含む光に暴露される用途で使用されることが好ましい。本発明の高分子フィルムは、例えば自動車などの各種車両、航空機、船舶などの乗り物、建築用、太陽電池、電子機器、食品などの用途で使用されるとよい。また、本発明の高分子フィルムは、接着フィルム、保護フィルム、光学フィルム、ガスバリアフィルムなどとして使用するとよく、接着フィルムとして使用することが好ましい。接着フィルムは、一般的には2つの部材の間に配置され、2つの部材を接着するために使用されるとよい。
 本発明の高分子フィルムは、樹脂として熱可塑性樹脂を使用することで、熱圧着により容易に他の部材に接着できるので、接着フィルムとして好適に使用できる。また、本発明の高分子フィルムは、2つのガラス部材の間に配置されて使用される合わせガラス用中間膜として使用されることが好ましい。各用途において、高分子フィルムは、単層フィルムで使用されてもよいし、多層フィルムで使用されてもよい。
The polymer film of the present invention can be used in various applications without any particular limitation, but is preferably used in applications exposed to light including ultraviolet light such as sunlight. The polymer film of the present invention may be used, for example, in various vehicles such as automobiles, vehicles such as aircraft and ships, construction, solar cells, electronic devices, foods, and the like. Moreover, the polymer film of the present invention may be used as an adhesive film, a protective film, an optical film, a gas barrier film, etc., and is preferably used as an adhesive film. An adhesive film is generally placed between two members and may be used to adhere the two members together.
By using a thermoplastic resin as the resin, the polymer film of the present invention can be easily adhered to other members by thermocompression bonding, so that it can be suitably used as an adhesive film. Moreover, the polymer film of the present invention is preferably used as an interlayer for laminated glass that is placed between two glass members. In each application, the polymeric film may be used as a monolayer film or as a multilayer film.

<合わせガラス>
 本発明は、さらに合わせガラスを提供する。合わせガラスにおいて、本発明の上記高分子フィルムは、合わせガラス用中間膜として使用されるとよい。合わせガラスは、2枚の合わせガラス部材(第1及び第2の合わせガラス部材)と、これら合わせガラス部材の間に配置される高分子フィルムを備える。合わせガラスにおいて、2枚の合わせガラス部材の間には、高分子フィルムからなる単層フィルムを配置してもよいし、高分子フィルムを含む多層フィルムを配置してもよい。
 2枚の合わせガラス部材は高分子フィルム、又は高分子フィルムを含む多層フィルムを介して接着される。高分子フィルム又は多層フィルムは、一方の面が一方の合わせガラス部材に接着し、他方の面が他方の合わせガラス部材に接着する。なお、高分子フィルム及び多層フィルムの構成は、上記の通りである。
 合わせガラスは、2枚の合わせガラス部材の間に、上記した高分子フィルム又は多層フィルムを配置して、これらを熱圧着などすることで一体化することで製造すればよい。また、高分子フィルムを含む複数のフィルムを用意し、かつその複数のフィルムを一対の合わせガラス部材の間に重ねて配置させ、複数のフィルムと合わせガラス部材を熱圧着などすることで一体化することで製造してもよい。
<Laminated glass>
The present invention further provides laminated glass. In laminated glass, the polymer film of the present invention is preferably used as an interlayer film for laminated glass. The laminated glass comprises two laminated glass members (first and second laminated glass members) and a polymer film disposed between the laminated glass members. In the laminated glass, a single layer film made of a polymer film may be arranged between two laminated glass members, or a multilayer film containing a polymer film may be arranged.
Two laminated glass members are bonded via a polymer film or a multilayer film containing a polymer film. The polymeric film or multilayer film adheres on one side to one laminated glass member and on the other side to the other laminated glass member. The structures of the polymer film and multilayer film are as described above.
Laminated glass may be produced by disposing the polymer film or multilayer film described above between two laminated glass members and integrating them by thermocompression bonding or the like. Alternatively, a plurality of films including a polymer film are prepared, the plurality of films are stacked between a pair of laminated glass members, and the plurality of films and the laminated glass member are integrated by thermocompression bonding or the like. It may be manufactured by

(合わせガラス部材)
 合わせガラスで使用する合わせガラス部材としては、ガラス板が挙げられ、ガラス板は、無機ガラス、有機ガラスのいずれでもよいが、無機ガラスが好ましい。無機ガラスとしては、特に限定されないが、クリアガラス、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、グリーンガラス等が挙げられる。
 また、有機ガラスとしては、一般的に樹脂ガラスと呼ばれるものが使用され、特に限定されないが、ポリカーボネート、アクリル樹脂、アクリル共重合体樹脂、ポリエステルなどの樹脂から構成される有機ガラスが挙げられる。
 2枚の合わせガラス部材は、互いに同種の材質から構成されてもよいし、別の材質から構成されてもよい。例えば、一方が無機ガラスで、他方が有機ガラスであってもよいが、2枚の合わせガラス部材の両方が無機ガラスであるか、又は有機ガラスであることが好ましい。
 また、各合わせガラス部材の厚みは、特に限定されないが、例えば、0.1~15mm程度、好ましくは0.5~5mmである。各合わせガラス部材の厚みは、互いに同一であってもよいし、異なっていてもよいが、同一であることが好ましい。
(Laminated glass member)
A laminated glass member used in laminated glass includes a glass plate, and the glass plate may be either inorganic glass or organic glass, but inorganic glass is preferred. Examples of inorganic glass include, but are not limited to, clear glass, float plate glass, polished plate glass, figured glass, wired plate glass, lined plate glass, green glass, and the like.
Also, as the organic glass, what is generally called resin glass is used, and it is not particularly limited, but examples thereof include organic glass composed of resins such as polycarbonate, acrylic resin, acrylic copolymer resin, and polyester.
The two laminated glass members may be made of the same material, or may be made of different materials. For example, one may be inorganic glass and the other may be organic glass, but it is preferable that both of the two laminated glass members are inorganic glass or organic glass.
The thickness of each laminated glass member is not particularly limited, but is, for example, approximately 0.1 to 15 mm, preferably 0.5 to 5 mm. The thickness of each laminated glass member may be the same or different, but preferably the same.

[合わせガラスの光学特性]
 本発明の合わせガラスは、上記と同様の観点から、高分子フィルムで説明した光学特性と同様の光学特性を有するとよい。すなわち、合わせガラスの可視光線透過率(Tv)は、50%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、85%以上がよりさらに好ましく、また、例えば99%以下である。
 また、合わせガラスの黄色度(YI)は、好ましくは20以下であり、15以下がより好ましく、10以下がさらに好ましく、5以下がよりさらに好ましく、また、0以上であればよいが、実用的には例えば0.5以上であればよい。
[Optical properties of laminated glass]
From the same viewpoint as above, the laminated glass of the present invention preferably has optical properties similar to those described for the polymer film. That is, the visible light transmittance (Tv) of the laminated glass is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, even more preferably 85% or more, and is, for example, 99% or less. .
In addition, the yellowness index (YI) of the laminated glass is preferably 20 or less, more preferably 15 or less, still more preferably 10 or less, even more preferably 5 or less, and may be 0 or more, but practical may be, for example, 0.5 or more.

 本発明の合わせガラスは、自動車などの各種車両、航空機、船舶などの乗り物、建築物等の窓ガラスなどとして使用可能であるが、自動車用合わせガラスとして使用することが好ましい。自動車用合わせガラスは、ウィンドシールドガラス(フロントガラス)、サイドガラス、リアガラス、ルーフガラスのいずれでもよい。 The laminated glass of the present invention can be used for various vehicles such as automobiles, vehicles such as aircraft and ships, and window glass for buildings, etc., but is preferably used as laminated glass for automobiles. Laminated glass for automobiles may be windshield glass (front glass), side glass, rear glass, or roof glass.

 本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited by these examples.

 本実施例における測定方法及び評価方法は、以下の通りである。 The measurement method and evaluation method in this example are as follows.

[電子スピン核磁気共鳴(ESR)測定]
 高分子フィルムから約10mgを切断して、ESR測定試料とし、以下の条件でESR測定を行い、ESRスペクトルを得た。なお、各試料に対して、出力20%、60%、100%の順で波長365nmの紫外線を照射して、各出力においてESRスペクトルを得た。得られたESRスペクトルそれぞれにおいて、ピーク本数(ピーク分裂数)、及び最大ピーク高さを検出した。
(ESR分析条件)
 測定装置:電子スピン共鳴分析装置(Bruker社製、「Bruker E500」)
 測定モード:cwモード
 マイクロ波周波数:約9.4GHz
 マイクロ波強度:2.0mW
 掃引磁場範囲:20mT(200Gauss)
 変調磁場振幅:0.3mT(3.0Gauss)
 測定温度:室温(294K)
 標準試料:DPPH(1,1-ジフェニル-2-ピクリルヒドラジル)溶液
 波長、光源:365nm(浜松ホトニクス社製、「LIGHTNINGCURE スポット光源LC8 L9566-01A」)、出力(照射強度)100%設定で100mW/cm
[Electron spin nuclear magnetic resonance (ESR) measurement]
About 10 mg was cut from the polymer film to prepare an ESR measurement sample, and ESR measurement was performed under the following conditions to obtain an ESR spectrum. Each sample was irradiated with ultraviolet light having a wavelength of 365 nm in the order of 20%, 60%, and 100% output, and an ESR spectrum was obtained at each output. The number of peaks (number of peak divisions) and the maximum peak height were detected in each of the obtained ESR spectra.
(ESR analysis conditions)
Measuring device: Electron spin resonance spectrometer (manufactured by Bruker, "Bruker E500")
Measurement mode: cw mode Microwave frequency: about 9.4 GHz
Microwave intensity: 2.0mW
Sweep magnetic field range: 20mT (200 Gauss)
Modulation magnetic field amplitude: 0.3 mT (3.0 Gauss)
Measurement temperature: room temperature (294K)
Standard sample: DPPH (1,1-diphenyl-2-picrylhydrazyl) solution Wavelength, light source: 365 nm (manufactured by Hamamatsu Photonics, “LIGHTNINGCURE spot light source LC8 L9566-01A”), output (irradiation intensity) set at 100% 100mW/ cm2

[Tv(透明性)]
 JIS R3212(2015)に準拠して、分光光度計(日立ハイテクノロジー社製「U-4100」)を用いて、可視光透過率(Tv)を測定した。測定の際、合わせガラスを透過した平行光のみが積分球へ受光するように、光源と積分球との光路上で且つ光軸の法線に平行となるように積分球から13cm離れた位置に合わせガラスを設置し、分光透過率を測定した。得られた分光透過率から可視光透過率を算出した。また測定条件は、スキャンスピードを300nm/min、スリット巾を8nmとし、それ以外の条件はJIS R 3212(2015)に準拠して測定を行った。
[Tv (transparency)]
Visible light transmittance (Tv) was measured using a spectrophotometer ("U-4100" manufactured by Hitachi High Technology) in accordance with JIS R3212 (2015). At the time of measurement, it was placed 13 cm away from the integrating sphere on the optical path between the light source and the integrating sphere and parallel to the normal to the optical axis so that only the parallel light transmitted through the laminated glass was received by the integrating sphere. A laminated glass was installed, and the spectral transmittance was measured. Visible light transmittance was calculated from the obtained spectral transmittance. The measurement conditions were a scan speed of 300 nm/min and a slit width of 8 nm, and other conditions were measured according to JIS R 3212 (2015).

[YI(色味)]
 合わせガラスの黄色度(YI)は、分光光度計(日立ハイテクノロジー社製「U-4100」)を用いて、JIS K7105に準拠して測定した。
[YI (color)]
The yellowness index (YI) of the laminated glass was measured according to JIS K7105 using a spectrophotometer ("U-4100" manufactured by Hitachi High-Technology Co., Ltd.).

[耐久性評価]
 1cm×2.5mmにカットしたサンプルをクリアガラスに貼り付け、サンプル側がキセノン照射側になるように耐光性試験機(スガ試験機社製「SX-75」)にセットして、ブラックパネル温度83℃、槽内温度50℃及び湿度50%RHの条件で、放射強度180W/mのキセノン光を25時間照射した。キセノン光照射前の高分子フィルムの分子量(M1)、及びキセノン光照射後の高分子フィルムの分子量(M2)を測定した。M2/M1×100により分子量維持率(%)を算出した。
(分子量測定)
 高分子フィルムの分子量は、数平均分子量であり、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求めた。GPC測定は、カラムとしてShodex KF-806L(昭和電工社製)を使用した。また、溶媒及び移動相としては、テトラヒドロフラン(THF)を使用した。さらに、GPCの測定条件としては流速1.0ml/min、測定温度40℃であった。本測定においては、低分子量側に樹脂以外の添加剤のピークが現れるため、添加剤のピークを除いて、高分子量側に現れる樹脂のピークから、高分子フィルムに含有される樹脂の分子量を求めた。
[Durability evaluation]
A sample cut to 1 cm x 2.5 mm is attached to clear glass, and set in a light resistance tester ("SX-75" manufactured by Suga Test Instruments Co., Ltd.) so that the sample side is on the xenon irradiation side, and the black panel temperature is 83. C., a temperature inside the chamber of 50.degree . The molecular weight (M1) of the polymer film before irradiation with xenon light and the molecular weight (M2) of the polymer film after irradiation with xenon light were measured. A molecular weight retention rate (%) was calculated from M2/M1×100.
(molecular weight measurement)
The molecular weight of the polymer film is the number average molecular weight, measured by gel permeation chromatography (GPC), and calculated by polystyrene conversion. GPC measurement used Shodex KF-806L (manufactured by Showa Denko KK) as a column. Tetrahydrofuran (THF) was used as the solvent and mobile phase. Furthermore, the GPC measurement conditions were a flow rate of 1.0 ml/min and a measurement temperature of 40°C. In this measurement, since the peak of additives other than the resin appears on the low molecular weight side, the molecular weight of the resin contained in the polymer film is obtained from the peak of the resin that appears on the high molecular weight side, excluding the additive peak. rice field.

 なお、実施例、比較例で使用した各成分は、以下の通りである。
(1)樹脂
PVB:ポリビニルブチラール樹脂、アセタール化度69モル%、水酸基量30モル%、アセチル化度1モル%、合成に用いたPVAの平均重合度1700
(2)可塑剤
3GO:トリエチレングリコールジ-2-エチルヘキサノエート
(3)酸化防止剤
BHT:2,6-ジ-t-ブチル-p-クレゾール
Irganox1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、製品名「Irganox 1010」、BASF社製
(4)紫外線吸収剤
T326:式(1)で表され、かつXが塩素原子、Rがメチル基、Rはtert-ブチル基、Y1が水素原子、Y2が水酸基で表される化合物。商品名「Tinuvin 326」、BASF社製
(5)光安定剤(HALS)
HS765:ヒンダードアミン光安定剤、BASF社製、製品名「Tinuvin765」
(6)炭素材料
 フラーレン:フラーレンC60、フロンティアカーボン社製、製品名「nanоm purpule ST」
 水素化フラーレン:水素化フラーレンC60、フロンティアカーボン社製、製品名「nanom spectra A100」
Components used in Examples and Comparative Examples are as follows.
(1) Resin PVB: Polyvinyl butyral resin, degree of acetalization 69 mol%, amount of hydroxyl groups 30 mol%, degree of acetylation 1 mol%, average degree of polymerization of PVA used for synthesis 1700
(2) plasticizer 3GO: triethylene glycol di-2-ethylhexanoate (3) antioxidant BHT: 2,6-di-t-butyl-p-cresol Irganox 1010: pentaerythritol tetrakis [3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate], product name “Irganox 1010”, manufactured by BASF Corporation (4) UV absorber T326: represented by formula (1), and X is a chlorine atom, R 1 is a methyl group, R 2 is a tert-butyl group, Y 1 is a hydrogen atom, and Y 2 is a hydroxyl group. Trade name "Tinuvin 326", manufactured by BASF (5) light stabilizer (HALS)
HS765: hindered amine light stabilizer, manufactured by BASF, product name "Tinuvin765"
(6) Carbon material Fullerene: Fullerene C60 , manufactured by Frontier Carbon, product name “nanom purple ST”
Hydrogenated fullerene: Hydrogenated fullerene C60 , manufactured by Frontier Carbon, product name "nanom spectra A100"

[実施例1~6]
(高分子フィルムの作製)
 表1の配合に従って、炭素材料を可塑剤に混合して分散させたうえで、ポリビニルブチラール樹脂(PVB)及びその他の添加剤とともに押出機に投入し、これらを混練して得られた樹脂組成物を押出機から押し出して、厚み760μmの高分子フィルムを得た。得られた高分子フィルムに対して、ESR測定を行った。また、押し出された樹脂組成物をさらにプレス成形して厚み100μmの高分子フィルムを得て耐久性を評価した。
[Examples 1 to 6]
(Preparation of polymer film)
A resin composition obtained by mixing and dispersing a carbon material in a plasticizer according to the formulation shown in Table 1, then charging it into an extruder together with polyvinyl butyral resin (PVB) and other additives, and kneading them. was extruded from an extruder to obtain a polymer film with a thickness of 760 μm. ESR measurement was performed on the resulting polymer film. Further, the extruded resin composition was further press-molded to obtain a polymer film having a thickness of 100 μm, and the durability was evaluated.

(合わせガラスの作製)
 それぞれが縦100mm×横100mm×厚み2.5mmの2枚のクリアガラスを用意した。クリアガラスとしては明細書記載の基準クリアガラスを使用した。上記で得られた厚み760μmの高分子フィルムを、2枚のクリアガラスの間に挟持し、真空バック法によって仮圧着した。その仮圧着された積層体を、オートクレーブ内で、温度140℃、圧力1.2MPaの条件下で20分間保持した後、20℃まで温度を下げ大気圧に戻すことにより本圧着を終了して、高分子フィルム(中間膜)により2枚のクリアガラスが接着された合わせガラスを得た。得られた合わせガラスについて光学特性を測定した。その結果を表1に示す。
(Production of laminated glass)
Two sheets of clear glass each measuring 100 mm long×100 mm wide×2.5 mm thick were prepared. As the clear glass, the standard clear glass described in the specification was used. The polymer film having a thickness of 760 μm obtained above was sandwiched between two sheets of clear glass, and temporarily press-bonded by a vacuum bag method. The temporarily pressure-bonded laminate is held in an autoclave under conditions of a temperature of 140 ° C. and a pressure of 1.2 MPa for 20 minutes, and then the temperature is lowered to 20 ° C. and returned to atmospheric pressure to complete the main pressure bonding. A laminated glass was obtained in which two sheets of clear glass were adhered by a polymer film (intermediate film). The optical properties of the obtained laminated glass were measured. Table 1 shows the results.

[比較例1、2]
 表1の配合に従って、各成分を押出機に投入し、押出機で各成分を混練して押し出して、実施例1と同様に、厚み760μm及び厚み100μmの高分子フィルムを得た。得られた高分子フィルムに対して、実施例1と同様にESR測定及び耐久性評価を行った。その後、実施例1と同様に、合わせガラスを作製して、得られた合わせガラスについて各光学特性を測定した。その結果を表1に示す。
[Comparative Examples 1 and 2]
According to the composition of Table 1, each component was put into an extruder, and each component was kneaded and extruded by the extruder to obtain a polymer film having a thickness of 760 μm and a thickness of 100 μm. ESR measurement and durability evaluation were performed in the same manner as in Example 1 for the obtained polymer film. After that, similarly to Example 1, a laminated glass was produced, and each optical characteristic of the obtained laminated glass was measured. Table 1 shows the results.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表1に示すとおり、実施例1~4では、電子スピン核磁気共鳴(ESR)におけるピークが検出され、図1に示す通り該ピークが4本であったが、照射強度100%に対して照射強度を60%及び20%とした際のピークの強度比がいずれも0.6以上1.4以下であった。また、実施例5,6では、電子スピン核磁気共鳴(ESR)におけるピークが検出されたが、図2に示す通り4本検出されなかった。したがって、実施例1~6では、紫外線暴露環境下での耐久性が向上し、キセノン光の照射により加速劣化されても、分子量維持率が高くなった。
 それに対して、比較例1、2では、電子スピン核磁気共鳴(ESR)におけるピークが検出され、該ピークが4本であったが、照射強度100%に対して照射強度を60%及び20%とした際のピークの強度比のいずれかが、0.6未満となった。そのため、紫外線暴露環境下での耐久性が十分に向上せず、キセノン光の照射により加速劣化させると、分子量維持率が低くなった。

 
As shown in Table 1, in Examples 1 to 4, peaks in electron spin nuclear magnetic resonance (ESR) were detected, and as shown in FIG. The intensity ratios of the peaks when the intensity was 60% and 20% were both 0.6 or more and 1.4 or less. In Examples 5 and 6, electron spin nuclear magnetic resonance (ESR) peaks were detected, but four peaks were not detected as shown in FIG. Therefore, in Examples 1 to 6, the durability in an environment exposed to ultraviolet rays was improved, and the molecular weight retention rate was high even when accelerated deterioration was caused by irradiation with xenon light.
On the other hand, in Comparative Examples 1 and 2, peaks in electron spin nuclear magnetic resonance (ESR) were detected, and the number of the peaks was four. Any of the intensity ratios of the peaks was less than 0.6. Therefore, the durability under the ultraviolet exposure environment was not sufficiently improved, and the molecular weight retention rate was lowered when accelerated deterioration was caused by irradiation with xenon light.

Claims (11)

 波長365nmの紫外線を照射した際に、電子スピン核磁気共鳴(ESR)におけるピークが検出され、かつ該ピークが4本検出されないか、又は4本検出されても、照射強度100%に対して照射強度を60%及び20%とした際のピークの強度比がいずれも0.6以上1.4以下である、高分子フィルム。 When irradiated with ultraviolet light having a wavelength of 365 nm, a peak in electron spin nuclear magnetic resonance (ESR) is detected, and 4 peaks are not detected, or even if 4 peaks are detected, the irradiation intensity is 100%. A polymer film having a peak intensity ratio of 0.6 or more and 1.4 or less when the intensity is 60% and 20%.  ポリビニルアセタール樹脂、オレフィン樹脂、アイオノマー樹脂、エチレン-酢酸ビニル共重合体樹脂、ポリウレタン樹脂、及びアクリル樹脂からなる群から選択される少なくとも1種の樹脂を含む、請求項1に記載の高分子フィルム。 The polymer film according to claim 1, comprising at least one resin selected from the group consisting of polyvinyl acetal resins, olefin resins, ionomer resins, ethylene-vinyl acetate copolymer resins, polyurethane resins, and acrylic resins.  ポリビニルアセタール樹脂を含む、請求項1又は2に記載の高分子フィルム。 The polymer film according to claim 1 or 2, which contains a polyvinyl acetal resin.  炭素材料を含む、請求項1~3のいずれか1項に記載の高分子フィルム。 The polymer film according to any one of claims 1 to 3, which contains a carbon material.  前記炭素材料の含有量が、0.005質量%以上0.1質量%以下である、請求項4に記載の高分子フィルム。 The polymer film according to claim 4, wherein the content of the carbon material is 0.005% by mass or more and 0.1% by mass or less.  前記炭素材料がフラーレン類である、請求項4又は5に記載の高分子フィルム。 The polymer film according to claim 4 or 5, wherein the carbon material is a fullerene.  前記フラーレン類が水素化フラーレンを含む、請求項6に記載の高分子フィルム。 The polymer film according to claim 6, wherein the fullerenes include hydrogenated fullerenes.  酸化防止剤及び光安定剤からなる群から選択される少なくとも1種を含む、請求項1~7のいずれか1項に記載の高分子フィルム。 The polymer film according to any one of claims 1 to 7, comprising at least one selected from the group consisting of antioxidants and light stabilizers.  前記光安定剤と酸化防止剤との質量比が、1:20~1:1である、請求項8に記載の高分子フィルム。 The polymer film according to claim 8, wherein the mass ratio of the light stabilizer and the antioxidant is 1:20 to 1:1.  炭素材料と酸化防止剤を含み、かつ前記炭素材料と前記酸化防止剤との質量比が、1:40~1:1である、請求項1~9のいずれか1項に記載の高分子フィルム。 The polymer film according to any one of claims 1 to 9, comprising a carbon material and an antioxidant, and wherein the mass ratio of the carbon material and the antioxidant is 1:40 to 1:1. .  第1の合わせガラス部材と、第2の合わせガラス部材と、請求項1~10のいずれか1項に記載の高分子フィルムとを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記高分子フィルムが配置される、合わせガラス。 A first laminated glass member, a second laminated glass member, and the polymer film according to any one of claims 1 to 10, wherein the first laminated glass member and the second laminated glass A laminated glass in which the polymer film is arranged between members.
PCT/JP2023/002295 2022-01-27 2023-01-25 Polymer film and laminated glass WO2023145776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518818A JPWO2023145776A1 (en) 2022-01-27 2023-01-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022011275 2022-01-27
JP2022-011275 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023145776A1 true WO2023145776A1 (en) 2023-08-03

Family

ID=87472078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002295 WO2023145776A1 (en) 2022-01-27 2023-01-25 Polymer film and laminated glass

Country Status (3)

Country Link
JP (1) JPWO2023145776A1 (en)
TW (1) TW202342282A (en)
WO (1) WO2023145776A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075433A (en) * 2002-08-13 2004-03-11 Sekisui Chem Co Ltd Interlayer film for laminated glass, and laminated glass
JP2007051173A (en) * 2005-08-15 2007-03-01 Shin Etsu Polymer Co Ltd Antistatic tackifier, antistatic tackifier layer and protecting material
JP2012218972A (en) * 2011-04-08 2012-11-12 Bridgestone Corp Intermediate film for heat ray shielding laminated glass, and the heat ray shielding laminated glass
JP2014152275A (en) * 2013-02-09 2014-08-25 Mitsubishi Plastics Inc Base-less double-sided adhesive sheet
JP2015000985A (en) * 2013-06-14 2015-01-05 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツングKuraray Europe GmbH PVB film with UV protection and low yellowness for laminated safety glass
WO2018030435A1 (en) * 2016-08-09 2018-02-15 積水化学工業株式会社 Adhesive composition, cured body, electronic component, and assembly component
WO2018182030A1 (en) * 2017-03-31 2018-10-04 積水化学工業株式会社 Thermoplastic resin film and glass plate-containing laminate
WO2019049943A1 (en) * 2017-09-06 2019-03-14 積水化学工業株式会社 Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075433A (en) * 2002-08-13 2004-03-11 Sekisui Chem Co Ltd Interlayer film for laminated glass, and laminated glass
JP2007051173A (en) * 2005-08-15 2007-03-01 Shin Etsu Polymer Co Ltd Antistatic tackifier, antistatic tackifier layer and protecting material
JP2012218972A (en) * 2011-04-08 2012-11-12 Bridgestone Corp Intermediate film for heat ray shielding laminated glass, and the heat ray shielding laminated glass
JP2014152275A (en) * 2013-02-09 2014-08-25 Mitsubishi Plastics Inc Base-less double-sided adhesive sheet
JP2015000985A (en) * 2013-06-14 2015-01-05 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツングKuraray Europe GmbH PVB film with UV protection and low yellowness for laminated safety glass
WO2018030435A1 (en) * 2016-08-09 2018-02-15 積水化学工業株式会社 Adhesive composition, cured body, electronic component, and assembly component
WO2018182030A1 (en) * 2017-03-31 2018-10-04 積水化学工業株式会社 Thermoplastic resin film and glass plate-containing laminate
WO2019049943A1 (en) * 2017-09-06 2019-03-14 積水化学工業株式会社 Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass

Also Published As

Publication number Publication date
TW202342282A (en) 2023-11-01
JPWO2023145776A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
KR20160020425A (en) Intermediate film for laminated glass and laminated glass
KR20200010167A (en) Interlayer and Laminated Glass for Laminated Glass
WO2006025484A1 (en) Intermediate film for glass laminate and glass laminate
WO2018212331A1 (en) Intermediate film for laminated glass, and laminated glass
US11034137B2 (en) Interlayer film for laminated glass, and laminated glass
JPWO2019022000A1 (en) Laminate containing resin film and glass plate
JPWO2018182030A1 (en) Thermoplastic resin film and laminate containing glass plate
TW202110642A (en) Interlayer film for laminated glass, and laminated glass
US11833784B2 (en) Thermoplastic film and laminated glass
CN115768803A (en) ionomer resin
WO2023145776A1 (en) Polymer film and laminated glass
JP7286537B2 (en) Interlayer film for laminated glass and laminated glass
US11590737B2 (en) Intermediate film for laminated glass, rolled body, and laminated glass
EP4410757A1 (en) Interlayer film for laminated glass, and laminated glass
TW201936540A (en) Laminated glass
WO2020031557A1 (en) Intermediate film for laminated glasses, and laminated glass
EP3943289A1 (en) Thermoplastic film and laminated glass
US20220242095A1 (en) Resin composition, resin film, and glass laminate
JPWO2020031558A1 (en) Laminated glass interlayer film and laminated glass
JP7385513B2 (en) Thermoplastic films and laminated glass
JP2007039300A (en) Interlayer for laminated glass and laminated glass
WO2021002032A1 (en) Interlayer film for laminated glass, and laminated glass
CN120344491A (en) Resin composition for laminated glass interlayer film, laminated glass interlayer film and laminated glass
CN117425634A (en) Resin film, laminated glass and screen
JPWO2020067083A1 (en) Laminated film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023518818

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23746987

Country of ref document: EP

Kind code of ref document: A1