[go: up one dir, main page]

WO2023145419A1 - Dynamo-electric machine unit - Google Patents

Dynamo-electric machine unit Download PDF

Info

Publication number
WO2023145419A1
WO2023145419A1 PCT/JP2023/000351 JP2023000351W WO2023145419A1 WO 2023145419 A1 WO2023145419 A1 WO 2023145419A1 JP 2023000351 W JP2023000351 W JP 2023000351W WO 2023145419 A1 WO2023145419 A1 WO 2023145419A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
electric machine
flow path
positive electrode
conductor
Prior art date
Application number
PCT/JP2023/000351
Other languages
French (fr)
Japanese (ja)
Inventor
皓太 葛城
範之 別芝
憲一 田村
隆洋 伊藤
宏紀 立木
崇▲発▼ ▲謝▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023576746A priority Critical patent/JPWO2023145419A1/ja
Publication of WO2023145419A1 publication Critical patent/WO2023145419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to rotating electric machine units.
  • This application claims priority based on Japanese Patent Application No. 2022-009936 filed in Japan on January 26, 2022, the contents of which are incorporated herein.
  • the power conversion device has a capacitor unit and a plurality of power modules.
  • a positive electrode conductor and a negative electrode conductor of the capacitor unit are formed in a ring shape or an arc shape, and are arranged on the inner peripheral side of the power module.
  • a positive conductor and a negative conductor of the capacitor unit are connected to each of the plurality of power modules via wires.
  • a surge voltage is generated when switching the ON state/OFF state of the switching element of the power module.
  • the surge voltage generated in the power module increases, it becomes difficult to input a large amount of current to the power module, making it difficult to increase the output of the rotary electric machine unit.
  • the present disclosure has been made in view of the circumstances described above, and aims to provide a rotating electric machine unit capable of suppressing the surge voltage generated in the power module and increasing the output.
  • a rotating electrical machine unit includes a rotating electrical machine having a stator, a rotor rotating about an axis with respect to the stator, and an axial direction along the axis of the rotor.
  • a power conversion device arranged in parallel with the rotating electrical machine, the power conversion device comprising: a capacitor unit arranged in a central portion of the power conversion device; a plurality of power modules arranged in a circumferential direction around the axis of the child, wherein the capacitor unit has a capacitor main body, a positive electrode conductor, and a negative electrode conductor, and the plurality of power modules are Each has a power module main body, a positive terminal connected to the positive conductor, and a negative terminal connected to the negative conductor, and the positive terminal and the negative terminal face the capacitor unit.
  • a first connecting portion between the positive electrode conductor and the positive electrode terminal and a second connecting portion between the negative electrode conductor and the negative electrode terminal are positioned between the capacitor main body and the power module main body. are doing.
  • FIG. 1 is a circuit diagram of a rotating electric machine unit according to Embodiment 1.
  • FIG. 1 is a perspective view of a rotating electric machine unit according to Embodiment 1;
  • FIG. FIG. 2 is a perspective view of the rotary electric machine unit according to Embodiment 1, showing a state in which a terminal block cover is removed;
  • 1 is a perspective view of the rotating electric machine unit according to Embodiment 1, showing a state in which a case and a terminal block are removed;
  • FIG. 1 is a plan view of the rotary electric machine unit according to Embodiment 1, showing a state in which a case and a terminal block are removed;
  • FIG. FIG. 6 is a cross-sectional view taken along line AA of FIG.
  • FIG. 5 1 is a perspective view of the rotating electric machine unit according to Embodiment 1, showing a state in which a case, a terminal block, and a control board are removed;
  • FIG. 1 is a plan view of the rotating electric machine unit according to Embodiment 1, showing a state where a case, a terminal block, and a control board are removed;
  • FIG. 9 is a cross-sectional view taken along line BB of FIG. 8;
  • FIG. 9 is a cross-sectional view taken along line CC of FIG. 8;
  • 1 is a perspective view of a capacitor unit according to Embodiment 1;
  • FIG. 1 is a perspective view of a busbar according to Embodiment 1;
  • FIG. 1 is a perspective view of a rotating electrical machine according to Embodiment 1;
  • FIG. 4 is a perspective view of a second plate according to Embodiment 1;
  • FIG. 4 is a perspective view of a first plate according to Embodiment 1;
  • FIG. 3 is a perspective view of a base according to Embodiment 1;
  • FIG. 4 is a perspective view of an inner tubular portion according to Embodiment 1.
  • FIG. 4 is a perspective view of an inner tubular portion according to Embodiment 1.
  • FIG. 10 is a perspective view of the rotary electric machine unit according to Embodiment 2, showing a state in which the case, the terminal block, and the control board are removed;
  • FIG. 1 is a circuit diagram of a rotating electric machine unit 1.
  • FIG. 2 is a perspective view of the rotary electric machine unit 1.
  • the rotating electrical machine unit 1 includes a rotating electrical machine 2, a power conversion device 3, and a cooler 4 (first cooling section).
  • the rotating electric machine 2, the power conversion device 3, and the cooler 4 are integrated.
  • the size of the rotary electric machine unit 1 can be reduced.
  • the direction along the axis of the rotor 22 of the rotary electric machine 2 is called “axial direction”.
  • the direction intersecting with the axis of the rotor 22 is called the "radial direction”
  • the direction around the axis of the rotor 22 is called the "circumferential direction”.
  • the circuit configuration (electrical configuration) of the rotary electric machine unit 1 will be described with reference to FIG.
  • the rotary electric machine unit 1 a six-phase drive type rotary electric machine unit will be described as an example.
  • the rotating electric machine unit 1 is mounted on a vehicle, for example.
  • the rotating electric machine 2 includes six coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 corresponding to six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase). Note that the coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 are also simply referred to as coils 25 in this specification.
  • the power conversion device 3 includes a capacitor unit 34 and six power modules 35U1, 35V1, 35W1, 35U2, and 35V2 respectively corresponding to six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase). , 35W2. Note that the power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are also simply referred to as power modules 35 in this specification.
  • DC power is input to the power converter 3 from a DC power supply E such as a battery.
  • the power conversion device 3 converts the DC power output from the DC power supply E into AC power and supplies the AC power to the rotary electric machine 2 .
  • the capacitor unit 34 is connected between the positive terminal and the negative terminal of the DC power supply E.
  • the capacitor unit 34 has a plurality of capacitor elements 34a connected in parallel. Note that the capacitor unit 34 may have only one capacitor element 34a.
  • the capacitor unit 34 is a smoothing capacitor that stabilizes the voltage against fluctuations in the power of the DC power supply E or power fluctuations on the power module 35 side so that the voltage does not fluctuate greatly.
  • Each power module 35 is connected between the positive terminal and the negative terminal of the DC power supply E. As shown in FIG. Each power module 35 includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side.
  • the switching elements SW1 and SW2 are, for example, IGBTs (Insulated Gate Bipolar Transistors).
  • the switching elements SW1 and SW2 are connected in series.
  • a connection point between the switching element SW1 and the switching element SW2 is connected to the coil 25 of the corresponding phase.
  • the diode D1 is connected in parallel in the opposite direction to the switching element SW1.
  • the diode D2 is connected in parallel in the opposite direction to the switching element SW2.
  • the power conversion device 3 has a case 31 and a terminal block 32 having a cover 32c.
  • FIG. 3 is a perspective view of the rotary electric machine unit 1, showing a state in which the cover 32c of the terminal block 32 is removed.
  • FIG. 4 is a perspective view of the rotary electric machine unit 1, showing a state in which the case 31 and the terminal block 32 are removed.
  • FIG. 5 is a plan view of the rotary electric machine unit 1, showing a state in which the case 31 and the terminal block 32 are removed.
  • FIG. 6 is a cross-sectional view along line AA in FIG. FIG.
  • FIG. 7 is a perspective view of the rotary electric machine unit 1, showing a state in which the case 31, the terminal block 32, and the control board 36 are removed.
  • FIG. 8 is a plan view of the rotating electric machine unit 1, showing a state in which the case 31, the terminal block 32, and the control board 36 are removed.
  • 9 is a cross-sectional view taken along line BB of FIG. 8.
  • FIG. 10 is a cross-sectional view taken along line CC of FIG. 8.
  • the power converter 3 includes a case 31, a terminal block 32, a signal connector 33, a capacitor unit 34, a control board 36, and a plurality of power modules 35. (in the present embodiment, six power modules 35U1, 35V1, 35W1, 35U2, 35V2, 35W2), a plurality of (six in the present embodiment) bus bars 37, and a plurality of (six in the present embodiment) ) current sensor 38 .
  • the case 31 covers electronic components such as the capacitor unit 34, the power module 35, and the control board 36 from above. This ensures insulation between these electronic components and components mounted around the rotary electric machine unit 1 , and prevents foreign matter from entering the rotary electric machine unit 1 from outside.
  • the terminal block 32 is provided on the upper surface of the case 31. As shown in FIGS. The terminal block 32 connects the DC power supply E and the capacitor unit 34 .
  • the terminal block 32 has a positive electrode side connection terminal 32a, a negative electrode side connection terminal 32b, and a cover 32c.
  • the positive side connection terminal 32a is connected to the positive terminal of the DC power supply E and the positive conductor 342 of the capacitor unit 34, which will be described later.
  • the negative connection terminal 32b is connected to the negative terminal of the DC power supply E and the negative conductor 343 of the capacitor unit 34, which will be described later.
  • the cover 32 c covers the positive electrode side connection terminal 32 a and the negative electrode side connection terminal 32 b from above and prevents foreign matter from entering the inside of the power converter 3 .
  • the signal connector 33 is provided on the side surface of the case 31 . Further, as shown in FIG. 4, the signal connector 33 is connected to the control board 36 via a signal connector harness 33a.
  • the signal connector 33 is used to exchange various signals between an external control device mounted on a vehicle or the like and the power conversion device 3 .
  • the side on which the signal connector 33 is arranged with respect to the axial center of the rotor 22 is called the front side, and the opposite side is called the rear side.
  • the terminal block 32 and the signal connector 33 are arranged on the front side of the rotary electric machine unit 1 .
  • FIG. 11 is a perspective view of the capacitor unit 34.
  • the capacitor unit 34 has a body portion 341 (capacitor body portion), a positive electrode conductor 342 and a negative electrode conductor 343 .
  • the capacitor unit 34 is arranged in the central portion of the power conversion device 3 .
  • the capacitor unit 34 is fixed to a first plate 41 of the cooler 4, which will be described later.
  • the body part 341 has a cylindrical shape.
  • the body portion 341 includes a plurality of capacitor elements 34a (see FIG. 1).
  • a harness fixing portion 341 a is formed on the outer peripheral surface of the main body portion 341 .
  • a through-hole extending in the axial direction is formed in the harness fixing portion 341a, and a resolver harness 27c (harness) of the rotary electric machine 2, which will be described later, is inserted through the through-hole.
  • a plurality of attachment portions 341 b for attaching the capacitor unit 34 to the first plate 41 are formed in the lower portion of the body portion 341 .
  • the attachment portion 341b is a protrusion that protrudes radially outward from the outer peripheral surface of the main body portion 341 .
  • a bolt hole 341c through which a bolt 41f2 (see FIGS. 7 and 8) is inserted is formed in the mounting portion 341b.
  • the positive electrode conductor 342 and the negative electrode conductor 343 are plate-like members.
  • the positive conductor 342 is connected to the positive connection terminal 32a of the terminal block 32 and the positive terminal 35b of the power module 35, which will be described later.
  • the negative conductor 343 is connected to the negative connection terminal 32b of the terminal block 32 and the negative terminal 35c of the power module 35, which will be described later.
  • oxygen-free copper is used as the material of the positive electrode conductor 342 and the negative electrode conductor 343 .
  • Tough pitch copper may be used as the material of the positive electrode conductor 342 and the negative electrode conductor 343 in order to reduce material costs, improve availability, and the like.
  • the plate thickness of the positive electrode conductor 342 and the negative electrode conductor 343 is, for example, 0.5 to 2.5 mm.
  • the positive conductor 342 has a positive first end 342 a connected to the positive connection terminal 32 a of the terminal block 32 and a second positive end 342 b connected to the positive terminal 35 b of the power module 35 .
  • the positive electrode side first end portion 342 a is pulled out from the lower end of the main body portion 341 and extends axially toward the positive electrode side connection terminal 32 a of the terminal block 32 . As shown in FIG. 4 , the positive electrode side first end 342 a is inserted through an opening 36 b formed in the central portion of the control board 36 . The positive electrode side first end portion 342 a extends so as not to pass through the axial center of the rotor 22 . That is, the positive electrode side first end portion 342a is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction. The tip of the positive electrode-side first end portion 342a is bent and comes into contact with the positive electrode-side connection terminal 32a from above.
  • a bolt hole 342c through which a bolt 344 (see FIG. 3) is inserted is formed at the tip of the positive electrode side first end 342a.
  • a tip portion of the positive electrode side first end portion 342a is fixed to the positive electrode side connection terminal 32a by a bolt 344 .
  • the positive electrode side second end portion 342b is provided corresponding to the power module 35 of each phase. That is, six positive electrode side second ends 342b are provided.
  • the positive electrode side second end portion 342 b is pulled out from the lower end of the main body portion 341 and extends toward the positive electrode terminal 35 b of the power module 35 .
  • the positive electrode side second end portion 342 b extends so as not to pass through the axial center of the rotor 22 . That is, the positive electrode side second end 342b is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction.
  • the tip of the positive electrode side second end 342b is bent so as to extend in the axial direction.
  • the six positive electrode side second ends 342b are arranged at regular intervals (60° intervals) in the circumferential direction.
  • the six positive electrode side second ends 342b have the same shape.
  • the negative conductor 343 has a negative first end 343 a connected to the negative connection terminal 32 b of the terminal block 32 and a second negative end 343 b connected to the negative terminal 35 c of the power module 35 .
  • the negative electrode side first end portion 343 a is pulled out from the lower end of the main body portion 341 and extends axially toward the negative electrode side connection terminal 32 b of the terminal block 32 . As shown in FIG. 4 , the negative first end 343 a is inserted through the opening 36 b of the control board 36 . The negative electrode side first end portion 343 a extends so as not to pass through the axial center of the rotor 22 . That is, the negative electrode side first end portion 343a is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction. The tip of the negative electrode first end portion 343a is bent and contacts the negative electrode connection terminal 32b from above.
  • a bolt hole 343c through which a bolt 344 (see FIG. 3) is inserted is formed at the tip of the negative electrode-side first end 343a.
  • a tip portion of the negative electrode first end portion 343a is fixed to the negative electrode connection terminal 32b by a bolt 344. As shown in FIG.
  • the negative electrode side second end portion 343b is provided corresponding to the power module 35 of each phase. That is, six negative electrode side second ends 343b are provided.
  • the negative electrode side second end portion 343 b is pulled out from the lower end of the main body portion 341 and extends toward the negative electrode terminal 35 c of the power module 35 .
  • the negative electrode side second end portion 343 b extends so as not to pass through the axial center of the rotor 22 . That is, the negative electrode side second end portion 343b is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction.
  • a tip portion of the negative electrode side second end portion 343b is bent so as to extend in the axial direction.
  • the six negative electrode side second ends 343b are arranged at equal intervals (60° intervals) in the circumferential direction.
  • the six negative electrode side second end portions 343b have the same shape.
  • the six power modules 35 are arranged so as to surround the capacitor unit 34.
  • the six power modules 35 are arranged at regular intervals (60° intervals) in the circumferential direction.
  • Power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are arranged in this order in the circumferential direction. Therefore, the power modules 35 of the same phase (for example, power modules 35U1 and 35U2 of U1 phase and U2 phase) are arranged so as to face each other in the radial direction with the capacitor unit 34 interposed therebetween.
  • Each power module 35 includes a main body portion 35a (power module main body portion), a positive terminal 35b, a negative terminal 35c, an output terminal 35d, a signal terminal 35e on the upper arm side, and a signal terminal 35f on the lower arm side. have.
  • the body portion 35a has a substantially rectangular shape when viewed from the axial direction.
  • the body portion 35a includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side.
  • the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side are plate members.
  • As a material of the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side for example, oxygen-free copper is used.
  • Tough pitch copper is used as the material for the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side in order to reduce material costs and improve availability.
  • the plate thickness of the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side is, for example, 0.5 to 1.5 mm.
  • the positive electrode terminal 35b is arranged to face the positive electrode side second end portion 342b of the positive electrode conductor 342 . Specifically, the positive terminal 35b extends in the axial direction.
  • the positive electrode terminal 35b and the tip portion of the positive electrode-side second end portion 342b face each other in a direction perpendicular to the axial direction (in the present embodiment, substantially in the radial direction) and are in contact with each other.
  • the positive electrode terminal 35b is directly connected to the positive electrode side second end 342b.
  • the direct connection means that the positive electrode terminal 35b and the positive electrode side second end portion 342b are connected in contact with each other without using a wire or the like.
  • Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the positive electrode terminal 35b and the positive electrode side second end portion 342b.
  • first connection portion C1 between the positive electrode side second end portion 342b and the positive electrode terminal 35b is connected to the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35. is located between
  • the negative electrode terminal 35c is arranged to face the negative electrode side second end 343b of the negative electrode conductor 343 . Specifically, the negative terminal 35c extends in the axial direction.
  • the negative electrode terminal 35c and the tip portion of the negative electrode-side second end portion 343b are opposed to each other in a direction perpendicular to the axial direction (in the present embodiment, substantially radial direction) and are in contact with each other.
  • the negative terminal 35c is directly connected to the negative second end 343b.
  • the direct connection means that the negative electrode terminal 35c and the negative electrode side second end portion 343b are connected in contact with each other without using a wire or the like.
  • Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the negative electrode terminal 35c and the negative electrode-side second end portion 343b.
  • the second connection portion C2 between the negative electrode side second end portion 343b and the negative electrode terminal 35c is connected to the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35. is located between
  • the length of the path from the positive conductor 342 of the capacitor unit 34 to the negative conductor 343 of the capacitor unit 34 via the positive terminal 35b and the negative terminal 35c of the power module 35 is A capacitor unit 34 and a power module 35 are provided so as to be substantially the same. That is, the lengths of the connection paths between the capacitor units 34 and the power modules 35 are substantially the same for all the power modules 35 .
  • the fact that the lengths of the paths are substantially the same means that the total length of the path from the positive electrode conductor 342 to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c is is within ⁇ 5%. Thereby, the surge voltage generated in each power module 35 can be equalized.
  • the length of the connection path between the capacitor unit 34 and the power module 35 should be approximately the same for at least two power modules 35 . Even in this case, the surge voltages generated in these two power modules 35 can be equalized. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotary electric machine unit 1.
  • FIG. 1 the length of the connection path between the capacitor unit 34 and the power module 35 should be approximately the same for at least two power modules 35 . Even in this case, the surge voltages generated in these two power modules 35 can be equalized. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotary electric machine unit 1.
  • the wiring resistance of the connection paths from the positive conductor 342 to the coil terminal 25a and from the negative conductor 343 to the coil terminal 25a is uniform. Therefore, it is possible to prevent currents flowing through the power modules 35 from being biased among the plurality of power modules 35 .
  • the capacitor unit 34 and the power module 35 are connected by the shortest route.
  • the inductance of the connection path between the capacitor unit 34 and the power module 35 can be reduced, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1.
  • the output terminal 35d is connected to the coil terminal 25a of the coil 25 via the busbar 37.
  • the signal terminal 35e on the upper arm side is connected to the switching element SW1 and the diode D1 on the upper arm side.
  • the signal terminal 35f on the lower arm side is connected to the switching element SW2 and the diode D2 on the lower arm side.
  • the signal terminal 35 e on the upper arm side and the signal terminal 35 f on the lower arm side are connected to the control board 36 . As shown in FIGS. 4 and 5, the signal terminal 35 e on the upper arm side and the signal terminal 35 f on the lower arm side are directly attached to the control board 36 .
  • Each bus bar 37 connects the power module 35 and the coil 25 of the corresponding phase.
  • 12 is a perspective view of the busbar 37.
  • the bus bar 37 is a substantially L-shaped plate member.
  • Bus bar 37 has a first plate portion 371 and a second plate portion 372 .
  • Oxygen-free copper for example, is used as the material of the bus bar 37 .
  • tough pitch copper may be used for cost reduction and availability improvement of the material.
  • the plate thickness of the bus bar 37 is, for example, 0.5 to 2.5 mm.
  • the busbars 37 are arranged between the power modules 35 adjacent in the circumferential direction.
  • the first plate portion 371 extends in the circumferential direction while the busbar 37 is fixed to the first plate 41 .
  • the second plate portion 372 extends radially while the bus bar 37 is fixed to the first plate 41 .
  • a first terminal 371a connected to the output terminal 35d is formed at the end of the first plate portion 371 .
  • the first terminal 371a is arranged to face the output terminal 35d.
  • the first terminal 371a is directly connected to the output terminal 35d.
  • being directly connected means that the first terminal 371a and the output terminal 35d are connected in contact with each other without using a wire or the like.
  • Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the first terminal 371a and the output terminal 35d.
  • the third connection portion C3 between the first terminal 371a and the output terminal 35d is located radially outside the main body portion 35a of the power module 35 when viewed in the axial direction.
  • a second terminal 372a is formed at the end of the second plate portion 372 to be connected to the coil terminal 25a.
  • the second terminal 372a is arranged to face the coil terminal 25a.
  • the second terminal 372a is directly connected to the coil terminal 25a.
  • the direct connection means that the second terminal 372a and the coil terminal 25a are connected by being in contact with each other without using a wire or the like. Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the second terminal 372a and the coil end 25a.
  • the fourth connection portion C4 between the second terminal 372a and the coil terminal 25a is located radially inside the main body portion 35a of the power module 35 when viewed in the axial direction.
  • the second plate portion 372 has a mounting portion 373 to which the current sensor 38 is mounted.
  • the attachment portion 373 is provided so as to protrude toward the control board 36 from the second terminal 372a in the axial direction.
  • a current sensor 38 is provided on each bus bar 37 .
  • Current sensor 38 detects the current flowing through bus bar 37 .
  • the current sensor 38 is arranged below the control board 36 . That is, the current sensor 38 is arranged closer to the stator 21 of the rotating electrical machine 2 than the control board 36 is.
  • the current sensor 38 has a signal terminal 38 a connected to the control board 36 . As shown in FIG. 4, the signal terminals 38a are attached directly to the control board 36. As shown in FIG. As a result, the noise resistance is improved, and the detection accuracy of the current value of the bus bar 37 by the current sensor 38 is improved.
  • the busbar 37 and current sensor 38 are covered with a resin member 39.
  • a resin member 39 As shown in FIG.
  • As a material of the resin member 39 for example, polyphenylene sulfide (PPS) is used.
  • PPS polyphenylene sulfide
  • the signal terminal 38 a is exposed from the resin member 39 .
  • the resin member 39 is fixed to the first plate 41 by bolts 41f3 and supports 41e.
  • the busbar 37 and the current sensor 38 are thereby fixed to the first plate 41 .
  • the resin member 39 is formed with a bolt hole 39a through which the bolt 41f3 is inserted and a through hole 39b through which the strut 41e is inserted.
  • the control board 36 has a disk shape.
  • An opening 36 b is formed in the central portion of the control board 36 .
  • a capacitor unit 34 is arranged in the opening 36 b of the control board 36 . That is, the capacitor unit 34 is inserted through the opening 36b.
  • the control board 36 is fixed to the first plate 41 by bolts 41f1 and posts 41e.
  • the control board 36 is formed with a bolt hole 36a through which the bolt 41f1 is inserted.
  • the signal terminal 35e on the upper arm side, the signal terminal 35f on the lower arm side, and the signal terminal 38a are directly connected to the control board 36.
  • a signal connector 33 is connected to the control board 36 via a signal connector harness 33a.
  • a resolver 27 of the rotary electric machine 2, which will be described later, is connected to the control board 36 via a resolver harness 27c.
  • the resolver harness 27c is inserted through the opening 36b.
  • the control board 36 controls the power module 35 based on control commands input from an external control device mounted on a vehicle or the like.
  • FIG. 9 is a perspective view of the rotating electric machine 2.
  • the rotary electric machine 2 includes a stator 21, a rotor 22, a shaft 23, a housing 24, and a plurality of coils 25 (six coils 25U1, 25V1, 25W1 in the present embodiment). , 25U2, 25V2, 25W2), first and second bearings 26a and 26b, and a resolver 27.
  • the stator 21 is annular.
  • the stator 21 is provided so as to surround the outer circumference of the rotor 22 .
  • the stator 21 is fixed to the housing 24 .
  • the rotor 22 is provided inside the stator 21.
  • the rotor 22 is rotatable around the axis with respect to the stator 21 .
  • a shaft 23 is arranged at the center of the rotor 22 .
  • One end of the shaft 23 in the axial direction (lower side in FIG. 9) is an output end that transmits the rotation of the rotor 22 to a vehicle or the like.
  • the coil 25 is wound around the stator 21.
  • the coil 25 is distributed around the stator 21, for example.
  • a coil terminal 25 a of the coil 25 of each phase is connected to the power module 35 of the corresponding phase via a bus bar 37 .
  • the six coil terminals 25a are arranged at regular intervals (at intervals of 60°) in the circumferential direction.
  • the coil terminal 25a extends linearly in the axial direction toward the busbar 37 and is directly connected to the busbar 37 .
  • the coil terminal 25a can be connected to the busbar 37 by the shortest path, and the amount of rectangular wire used for the coil 25 can be reduced.
  • the molding process of the coil terminal 25a is unnecessary, the manufacturing cost can be reduced.
  • the resolver 27 detects the rotation angle of the shaft 23.
  • the resolver 27 includes a resolver stator 27a and a resolver rotor 27b.
  • the resolver stator 27 a is fixed to the housing 24 .
  • the resolver rotor 27b is attached to the upper end of the shaft 23 (end on the non-output side).
  • the resolver 27 is connected to the control board 36 via a resolver harness 27c.
  • the resolver harness 27 c is pulled out from the resolver stator 27 a and extends toward the control board 36 .
  • the resolver harness 27c extends to avoid the portion where the power module 35 is arranged. As a result, noise caused by the power module 35 can be prevented from being transmitted to the resolver harness 27c, and the detection accuracy of the rotation angle of the shaft 23 can be improved.
  • the housing 24 accommodates the stator 21, rotor 22, and shaft 23.
  • the housing 24 includes a lid portion 241 , an inner cylinder portion 242 , an outer cylinder portion 243 and a bottom portion 244 .
  • the lid portion 241 is a circular plate-like member.
  • the lid portion 241 is fixed to the upper end of the inner cylindrical portion 242 .
  • the lid portion 241 covers the stator 21 and the rotor 22 from above.
  • the lid portion 241 is formed with a coil through-hole 241a through which the coil end 25a is inserted.
  • the six coil through holes 241a are arranged at equal intervals (at intervals of 60°) in the circumferential direction.
  • the inner cylindrical portion 242 has a cylindrical shape.
  • the inner cylindrical portion 242 covers the stator 21 from the radial outside.
  • the stator 21 is fixed to the inner cylindrical portion 242 by, for example, shrink fitting or press fitting.
  • the outer tube portion 243 has a cylindrical shape.
  • the outer tubular portion 243 covers the inner tubular portion 242 from the radial outside.
  • the outer tubular portion 243 is fixed to the inner tubular portion 242 by, for example, shrink fitting or press fitting.
  • the inner cylindrical portion 242 and the outer cylindrical portion 243 constitute a second cooling portion 6 (see FIG. 9) that cools the rotary electric machine 2 . Details of the second cooling unit 6 will be described later.
  • the bottom part 244 is a circular plate-like member.
  • the bottom portion 244 is fixed to the lower end of the outer cylindrical portion 243 .
  • the bottom portion 244 covers the stator 21 and the rotor 22 from below.
  • the bottom portion 244 is provided with a mounting portion 244a for mounting the rotary electric machine unit 1 to the vehicle.
  • a first bearing 26a is provided at the upper end of the shaft 23 (end on the non-output side).
  • the first bearing 26 a is fixed to the lid portion 241 .
  • a second bearing 26b is provided at the lower end (end on the output side) of the shaft 23 .
  • a second bearing 26 b is fixed to the bottom 244 .
  • the first bearing 26a and the second bearing 26b rotatably support the shaft 23 .
  • the cooler 4 will be described with reference to FIGS. 6, 9, 10, 14 to 16, and the like. Cooler 4 is provided between rotating electric machine 2 and power converter 3 .
  • the cooler 4 has a first plate 41 , a plurality of (six in this embodiment) second plates 42 , and a base 43 .
  • FIG. 14 is a perspective view of the second plate 42.
  • the second plate 42 is a substantially rectangular plate member.
  • a second plate 42 is provided for each power module 35 .
  • the power module 35 is attached to the first surface of the second plate 42 .
  • the power module 35 is fixed to the first surface of the second plate 42 by soldering, for example.
  • the second surface of the second plate 42 is provided with radiation fins 42a (first radiation fins).
  • the second plate 42 is fixed to the first plate 41 by supports 41e.
  • the power module 35 is thereby fixed to the first plate 41 .
  • the second plate 42 is formed with a through hole 42b through which the column 41e is inserted.
  • FIG. 15 is a perspective view of the first plate 41.
  • the first plate 41 is a circular plate-like member.
  • the first plate 41 is formed with a harness through-hole 41a through which the resolver harness 27c is inserted.
  • a coil through-hole 41b through which the coil end 25a is inserted is formed in the first plate 41 .
  • the six coil through-holes 41b are arranged at equal intervals (at intervals of 60°) in the circumferential direction.
  • a plurality of (six in the present embodiment) openings 41 c are formed in the first plate 41 .
  • the radiation fins 42a are arranged inside the opening 41c.
  • the six openings 41c are arranged at equal intervals (at intervals of 60°) in the circumferential direction.
  • the first surface of the first plate 41 is provided with a bottomed first attachment hole 41d1 to which a bolt 41f2 is attached.
  • the first surface of the first plate 41 is provided with a bottomed second attachment hole 41d2 to which the support 41e is attached.
  • the first surface of the first plate 41 is provided with a bottomed third attachment hole 41d3 to which a bolt 41f3 is attached.
  • a second surface of the first plate 41 is fixed to the base 43 .
  • the first mounting hole 41d1 is provided at a position overlapping the bolt hole 341c formed in the capacitor unit 34 when viewed from the axial direction.
  • the capacitor unit 34 is attached to the first plate 41 by inserting the bolt 41f2 through the bolt hole 341c and fastening it to the first attachment hole 41d1.
  • a heat radiating member 44 is provided between the first plate 41 and the capacitor unit 34. As shown in FIG.
  • the second mounting hole 41d2 is provided at a position overlapping the through hole 42b formed in the second plate 42 when viewed from the axial direction.
  • the support 41e attached to the second attachment hole 41d2 is inserted through the through hole 42b formed in the second plate 42. As shown in FIG. Thereby, the second plate 42 is fixed to the first plate 41 .
  • the upper end of the support 41e contacts the control board 36.
  • a bottomed attachment hole 41e1 to which a bolt 41f1 is attached is provided at the upper end of the support 41e.
  • the mounting hole 41e1 is provided at a position overlapping the bolt hole 36a formed in the control board 36 when viewed in the axial direction.
  • the control board 36 is fixed to the first plate 41 by inserting the bolt 41f1 through the bolt hole 36a and fastening it to the mounting hole 41e1 while the control board 36 is in contact with the upper end of the post 41e. .
  • the third mounting hole 41d3 is provided at a position overlapping the bolt hole 39a formed in the resin member 39 when viewed from the axial direction.
  • the resin member 39 is attached to the first plate 41 by inserting the bolt 41f3 through the bolt hole 39a and fastening it to the third attachment hole 41d3.
  • the resin member 39 is formed with a through hole 39b through which the support 41e is inserted. The resin member 39 is more reliably fixed to the first plate 41 by inserting the support 41e into the through hole 39b.
  • FIG. 16 is a perspective view of the base 43.
  • the base 43 has a substantially cylindrical shape.
  • a first plate 41 is fixed to the first surface (upper surface) of the base 43 .
  • a lid portion 241 of the housing 24 is fixed to the second surface (lower surface) of the base 43 .
  • the base 43 is formed with a harness through-hole 43a through which the resolver harness 27c is inserted.
  • the base 43 is formed with a coil through hole 43b through which the coil end 25a is inserted.
  • Six coil through holes 43b are formed at equal intervals (at 60° intervals) in the circumferential direction.
  • a hollow portion 43c in which the resolver 27 is arranged is formed in the lower portion of the base 43.
  • FIG. 6 a hollow portion 43c in which the resolver 27 is arranged is formed in the lower portion of the base 43.
  • the cooler 4 is formed with a first cooling channel through which the coolant flows.
  • the coolant for example, water (cooling water) is used.
  • the first cooling channel has an inlet channel 51, a first channel 52, a second channel 53, a third channel 54, and an outlet channel 55. .
  • Refrigerant is supplied to the inlet channel 51 .
  • a first channel 52 , a second channel 53 , and a third channel 54 branch from the inlet channel 51 .
  • the first flow path 52 is formed at a position overlapping half of the six power modules 35 (specifically, the power modules 35U1, 35V1, 35W1) when viewed from the axial direction.
  • the first flow path 52 extends from the inlet flow path 51 to one side in the circumferential direction.
  • the second flow path 53 is formed at a position overlapping half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2) when viewed from the axial direction.
  • the second flow path 53 extends from the inlet flow path 51 to the other side in the circumferential direction.
  • the third flow path 54 is formed at a position overlapping the capacitor unit 34 when viewed in the axial direction.
  • the refrigerant from the first flow path 52 , the second flow path 53 , and the third flow path 54 merge in the outlet flow path 55 .
  • the outlet channel 55 communicates with a second cooling channel formed inside the second cooling section 6 .
  • a coolant supply port 45 , a groove portion 46 and a coolant discharge port 47 are provided on the base 43 .
  • the coolant supply port 45 is a hole penetrating the peripheral wall of the base 43 in the radial direction.
  • the inside of the coolant supply port 45 is used as the inlet channel 51 .
  • One end of the coolant supply port 45 is connected to a first joint 48 to which coolant is supplied from the outside.
  • the first joint 48 is arranged on the front side of the rotary electric machine unit 1 .
  • the other end of the coolant supply port 45 is connected to the groove portion 46 .
  • the coolant supply port 45 communicates between the first joint 48 and the groove portion 46 .
  • the coolant discharge port 47 is a hole axially penetrating the base 43 .
  • the inside of the coolant outlet 47 is used as an outlet channel 55 .
  • the coolant discharge port 47 is arranged on the opposite side of the coolant supply port 45 in the circumferential direction.
  • One end of the coolant discharge port 47 is connected to the groove portion 46 .
  • the other end of the coolant discharge port 47 is connected to an opening 242c (see FIG. 9) of the inner cylindrical portion 242, which will be described later.
  • the groove 46 is formed on the upper surface of the base 43 .
  • the groove portion 46 includes an annular groove portion 461 , a circular groove portion 462 , an upstream communication groove portion 463 and a downstream communication groove portion 464 .
  • the annular groove portion 461 extends in the circumferential direction and has an annular shape when viewed from the axial direction.
  • the coolant supply port 45 opens to the radially outer side surface of the annular groove portion 461 .
  • the coolant discharge port 47 opens to the bottom surface of the annular groove portion 461 .
  • the annular groove portion 461 is a first annular groove portion 461a which is one side portion sandwiched between the refrigerant supply port 45 and the refrigerant discharge port 47, and the other side portion sandwiched between the refrigerant supply port 45 and the refrigerant discharge port 47. and a second annular groove portion 461b.
  • the first annular groove portion 461a is provided in the lower portion of half of the six power modules 35 (specifically, the power modules 35U1, 35V1, and 35W1).
  • the second annular groove portion 461b is provided in the lower portion of the other half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2).
  • the first flow path 52 is formed by the first annular groove portion 461a, the second surface of the first plate 41, and the second surface of the second plate .
  • a second flow path 53 is formed by the second annular groove portion 461 b , the second surface of the first plate 41 , and the second surface of the second plate 42 .
  • the heat radiating fins 42 a provided on the second surface of the second plate 42 are arranged in the first channel 52 or the second channel 53 .
  • a protrusion 461c is formed at a portion axially facing the power module 35 (second plate 42).
  • the heat radiation fins 42a of the second plate 42 are arranged on the convex portion 461c.
  • a concave portion 461d is formed between the convex portions 461c.
  • the circular groove 462 is arranged inside the annular groove 461 .
  • a circular groove portion 462 is provided in the lower portion of the capacitor unit 34 .
  • the heat radiating member 44 is arranged between the circular groove 462 and the capacitor unit 34 .
  • the upstream communication groove portion 463 is provided between the annular groove portion 461 and the circular groove portion 462 . When viewed from the axial direction, the upstream communication groove portion 463 is provided so as to radially face the coolant supply port 45 .
  • the upstream communication groove portion 463 communicates between the annular groove portion 461 and the circular groove portion 462 .
  • the downstream communication groove portion 464 is provided between the annular groove portion 461 and the circular groove portion 462 .
  • the downstream communication groove portion 464 When viewed from the axial direction, the downstream communication groove portion 464 is provided so as to radially face the coolant discharge port 47 .
  • the downstream communication groove portion 464 communicates between the annular groove portion 461 and the circular groove portion 462 .
  • the circular groove portion 462 , the upstream communication groove portion 463 , the downstream communication groove portion 464 , and the second surface of the first plate 41 form the third flow path 54 .
  • the upstream communication groove portion 463 and the downstream communication groove portion 464 are formed avoiding the harness through hole 43a and the coil through hole 43b.
  • each of the upstream communication groove portion 463 and the downstream communication groove portion 464 is composed of a pair of groove portions provided with the coil through hole 43b interposed therebetween.
  • the coolant supplied from the first joint 48 passes through the inlet channel 51 and branches into the first channel 52 , the second channel 53 and the third channel 54 .
  • Heat generated in the power modules 35U1, 35V1, and 35W1 is heat-exchanged with the coolant flowing through the first flow path 52 via the second plate 42. As shown in FIG. This cools the power modules 35U1, 35V1, and 35W1. Heat generated in the power modules 35U2, 35V2, and 35W2 is heat-exchanged with the coolant flowing through the second flow path 53 via the second plate 42. This cools the power modules 35U2, 35V2, and 35W2.
  • the contact area between the coolant and the second plate 42 can be increased, and the cooling effect of the power module 35 can be enhanced.
  • Heat generated in the capacitor unit 34 (capacitor element 34 a ) is heat-exchanged with the refrigerant flowing through the third flow path 54 via the heat radiating member 44 and the first plate 41 . This cools the capacitor unit 34 (capacitor element 34a). After that, the coolant from the first flow path 52 , the second flow path 53 , and the third flow path 54 joins at the outlet flow path 55 and is discharged toward the second cooling section 6 .
  • the inner cylinder portion 242 and the outer cylinder portion 243 constitute the second cooling portion 6 .
  • a second cooling channel through which a coolant flows is formed in the second cooling portion 6 .
  • the second cooling flow path is formed between the outer peripheral surface of the inner tubular portion 242 and the inner peripheral surface of the outer tubular portion 243 .
  • FIGS. 17A and 17B are perspective views of the inner tubular portion 242.
  • the inner cylinder portion 242 has a cylindrical main body portion 242a and a flange portion 242b protruding radially outward from the upper end of the main body portion 242a.
  • An opening 242c that communicates with the coolant discharge port 47 of the cooler 4 is formed in the flange portion 242b.
  • the coolant discharge port 47 and the opening 242c are connected by a third joint 65. As shown in FIG.
  • the second cooling channel has a communication channel 61 , a fourth channel 62 , a fifth channel 63 and a discharge channel 64 .
  • the communication channel 61 communicates with the outlet channel 55 .
  • the fourth channel 62 and the fifth channel 63 branch from the communication channel 61 .
  • the fourth flow path 62 extends from the communication flow path 61 to one side in the circumferential direction.
  • the fifth flow path 63 extends from the communication flow path 61 to the other side in the circumferential direction.
  • the coolant from the fourth flow path 62 and the fifth flow path 63 merge in the discharge flow path 64 .
  • the coolant is discharged to the outside through the discharge channel 64 .
  • a first groove portion 71, a second groove portion 72, a third groove portion 73, and a fourth groove portion 74 are formed on the outer peripheral surface of the body portion 242a.
  • the first groove portion 71 is formed below the opening portion 242c.
  • the first groove portion 71 extends in the axial direction.
  • the upper end of the first groove portion 71 communicates with the opening portion 242c.
  • the lower end of the first groove portion 71 is closed.
  • a communication passage 61 is formed by the first groove portion 71 and the inner peripheral surface of the outer cylindrical portion 243 .
  • the second groove portion 72 is formed on the opposite side of the first groove portion 71 in the circumferential direction.
  • the second groove portion 72 extends in the axial direction.
  • the upper and lower ends of the second groove portion 72 are closed.
  • a discharge passage 64 is formed by the second groove portion 72 and the inner peripheral surface of the outer cylindrical portion 243 .
  • the third groove portion 73 is connected to the first groove portion 71 and the second groove portion 72 .
  • the third groove portion 73 extends to one side in the circumferential direction from the first groove portion 71 to the second groove portion 72 .
  • a plurality of third grooves 73 are formed at intervals in the axial direction.
  • a fourth flow path 62 is formed by the third groove portion 73 and the inner peripheral surface of the outer cylindrical portion 243 .
  • the fourth groove portion 74 is connected to the first groove portion 71 and the second groove portion 72 .
  • the fourth groove portion 74 extends from the first groove portion 71 to the second groove portion 72 to the other side in the circumferential direction.
  • a plurality of fourth grooves 74 are formed at intervals in the axial direction.
  • a fifth flow path 63 is formed by the fourth groove portion 74 and the inner peripheral surface of the outer cylindrical portion 243 .
  • an opening 243a is formed at the lower end of the outer cylindrical portion 243 so as to penetrate the peripheral wall of the outer cylindrical portion 243 in the radial direction.
  • the opening portion 243a is provided so as to face the second groove portion 72 of the inner cylinder portion 242 in the radial direction.
  • the opening 243 a is connected to the second groove 72 .
  • the opening 243a is connected to a second joint 66 that discharges the coolant to the outside.
  • the opening 243 a communicates the second groove 72 and the second joint 66 .
  • the second joint 66 is arranged on the front side of the rotary electric machine unit 1 .
  • the coolant discharged from the coolant discharge port 47 of the cooler 4 flows into the communication channel 61 through the opening 242c.
  • the coolant flows downward through the communication channel 61 and branches into the fourth channel 62 and the fifth channel 63 .
  • the coolant flowing through the fourth flow path 62 cools one half of the rotating electric machine 2 in the circumferential direction.
  • the coolant flowing through the fifth flow path 63 cools the other half of the rotating electric machine 2 in the circumferential direction. Since the plurality of fourth flow passages 62 and fifth flow passages 63 are provided at intervals in the axial direction, cooling efficiency of the rotating electric machine 2 by the second cooling section 6 is improved. After that, the refrigerant from the fourth flow path 62 and the fifth flow path 63 joins in the discharge flow path 64, flows downward through the discharge flow path 64, and is discharged to the outside through the opening 243a and the second joint 66. be done.
  • the power conversion device 3 includes a capacitor unit 34 arranged in the central portion of the power conversion device 3, and a plurality of capacitor units 34 arranged in the circumferential direction so as to surround the capacitor unit 34. and a power module 35 .
  • the capacitor unit 34 has a body portion 341 , a positive conductor 342 and a negative conductor 343 .
  • Each of the plurality of power modules 35 has a body portion 35 a , a positive terminal 35 b connected to the positive conductor 342 , and a negative terminal 35 c connected to the negative conductor 343 .
  • the positive terminal 35 b and the negative terminal 35 c are arranged to face the capacitor unit 34 .
  • a first connection portion C1 between the positive electrode conductor 342 and the positive electrode terminal 35b and a second connection portion C2 between the negative electrode conductor 343 and the negative electrode terminal 35c are located between the body portion 341 and the body portion 35a.
  • the connection path between the capacitor unit 34 and the power module 35 can be shortened, so the inductance in this connection path can be suppressed, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotary electric machine unit 1.
  • the length of the first path from the positive electrode conductor 342 to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c of the first power module 35 among the plurality of power modules 35 is The length of the second path to the negative conductor 343 via the positive terminal 35b and the negative terminal 35c of the second power module 35 among the plurality of power modules 35 is substantially the same.
  • the length of the first path is substantially the same as the length of the second path means that the difference between the length of the first path and the length of the second path is ⁇ 5% with respect to the total length of the first path. means within the range of Thereby, the surge voltages generated in the first power module 35 and the second power module 35 can be equalized. Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1.
  • the path length from the positive electrode conductor 342 to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c is substantially the same.
  • the surge voltage generated in each power module 35 can be equalized for all the power modules 35 . Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1.
  • the positive conductor 342 and the positive terminal 35b are directly connected, and the negative conductor 343 and the negative terminal 35c are directly connected. Accordingly, since the capacitor unit 34 and the power module 35 can be connected without using wires or the like, the cost of the rotating electric machine unit 1 can be suppressed. Moreover, since the connection path between the capacitor unit 34 and the power module 35 can be shortened, the inductance in this connection path can be suppressed, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1. FIG.
  • the power conversion device 3 further includes a plurality of bus bars 37 that connect the plurality of power modules 35 and the plurality of coils 25, respectively. Thereby, the power module 35 and the coil 25 can be easily connected using the bus bar 37 .
  • the power conversion device 3 further includes a control board 36 that controls the plurality of power modules 35 and a plurality of current sensors 38 that respectively detect currents flowing through the plurality of busbars 37 .
  • Each of the multiple current sensors 38 is directly connected to the control board 36 .
  • the connection path between the signal terminal 38a of the current sensor 38 and the control board 36 can be shortened, so that noise resistance can be improved.
  • the current sensor 38 and the control board 36 are connected without using a harness or the like, the cost and weight of the rotary electric machine unit 1 can be reduced.
  • each of the plurality of bus bars 37 has a first terminal 371 a connected to the corresponding power module 35 among the plurality of power modules 35 and a second terminal 372 a connected to the corresponding coil 25 among the plurality of coils 25 .
  • the first terminals 371a are positioned radially outward of the main body portion 35a of the corresponding power module 35 . Thereby, the power module 35 and the coil 25 can be more easily connected using the bus bar 37 .
  • each of the plurality of bus bars 37 further has an attachment portion 373 to which the current sensor 38 is attached.
  • the attachment portion 373 is provided so as to protrude toward the control board 36 from the second terminal 372a in the axial direction. Thereby, the signal terminal 38 a of the current sensor 38 can be easily connected to the control board 36 .
  • the plurality of bus bars 37 and the plurality of power modules 35 are alternately arranged in the circumferential direction.
  • the mounting density of the power conversion device 3 can be improved, and the size of the rotating electric machine unit 1 can be reduced.
  • the signal terminal 38a of the current sensor 38 can be directly connected to the control board 36 without using a harness or the like. Therefore, the noise resistance is improved, and the detection accuracy of the current value of the bus bar 37 by the current sensor 38 is improved.
  • the rotary electric machine unit 1 also includes a cooler 4 that cools the power conversion device 3 in which a first cooling passage through which a coolant flows is formed.
  • the first cooling channel includes an inlet channel 51 to which a coolant is supplied, and branches from the inlet channel 51.
  • the power modules 35U1 of the first group among the plurality of power modules 35 When viewed from the axial direction, the power modules 35U1 of the first group among the plurality of power modules 35, A first flow path 52 formed at a position overlapping with 35V1 and 35W1, and a second group branching from the inlet flow path 51 and different from the first group among the plurality of power modules 35 when viewed from the axial direction.
  • the outlet passage 55 communicates with a second cooling passage formed inside the second cooling portion 6 that cools the rotating electric machine 2 .
  • the second cooling flow path includes a communication flow path 61 that communicates with the outlet flow path 55, a fourth flow path 62 that branches from the communication flow path 61 and extends to one side in the circumferential direction from the communication flow path 61, and a communication flow path. While branching from the passage 61 and extending to the other side in the circumferential direction from the communication passage 61 , the coolant from the fourth passage 62 and the fifth passage 63 merge, and the second cooling portion 6 and a discharge channel 64 through which the coolant is discharged.
  • the coolant is branched to flow through the first channel 52 and the second channel 53 . Therefore, compared with the case where a plurality of power modules 35 are arranged on one system of cooling flow path, it is possible to suppress unevenness in temperature of the coolant between the upstream side and the downstream side of the cooling flow path. Therefore, the plurality of power modules 35 can be uniformly cooled, and the cooling performance of the rotating electric machine unit 1 can be improved. Further, as a result, it is possible to improve the density of the current input to the power module 35, and it is possible to increase the output of the rotary electric machine unit 1. FIG. Moreover, since the condenser unit 34 can be cooled by the refrigerant flowing through the third flow path 54, the cooling performance of the rotating electric machine unit 1 is further improved.
  • the rotating electrical machine unit 1 can be made smaller. Furthermore, the coolant flowing through the fourth flow path 62 cools half of the rotating electrical machine 2 on one side in the circumferential direction, and the coolant flowing through the fifth flow path 63 cools the other half of the rotating electrical machine 2 in the circumferential direction. can be cooled, the cooling efficiency of the rotating electric machine 2 by the second cooling unit 6 is improved.
  • the terminal block 32 , the signal connector 33 , the first joint 48 , and the second joint 66 are arranged on the front side of the rotary electric machine unit 1 .
  • the terminal block 32, the signal connector 33, the first joint 48, and the second joint 66 can be integrated in one of the circumferential directions of the rotary electric machine unit 1, so that the rotary electric machine unit 1 can be easily mounted on a vehicle or the like. Improve maintainability.
  • the portions extending from the main body portion 341 are arranged so as not to overlap with the axial center.
  • the body portion 341 of the capacitor unit 34 can be arranged on the axis of the rotor 22 .
  • the length of the first path of the negative electrode conductor 343 from the positive electrode conductor 342 via the positive electrode terminal 35b and the negative electrode terminal 35c of the first power module 35 among the plurality of power modules 35 is set to a plurality of lengths from the positive electrode conductor 342
  • the length of the second path to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c of the second power module 35 of the power modules 35 can be substantially the same. Therefore, since the surge voltages generated in the first power module 35 and the second power module 35 can be made uniform, a large amount of current can be input to the power module 35, and the output of the rotary electric machine unit 1 can be increased. becomes possible.
  • An opening 36b through which the capacitor unit 34 is inserted is formed in the central portion of the control board 36.
  • a plurality of current sensors 38 are arranged closer to the stator 21 than the control board 36 is.
  • the control board 36 can be arranged close to the plurality of power modules 35 while avoiding contact between the control board 36 and the capacitor unit 34 .
  • the signal terminal 38a of the current sensor 38 and the control board 36 can be easily and directly connected, so that the noise resistance is improved and the detection accuracy of the current value of the bus bar 37 by the current sensor 38 is improved.
  • the portions extending from the body portion 341 and connected to the DC power source E are provided with the opening portion 36b. is inserted into the A resolver harness 27c that connects the resolver 27 to the control board 36 is inserted through the opening 36b.
  • the path length of the resolver harness 27c can be shortened, so the noise resistance is improved, and the detection accuracy of the rotation angle of the shaft 23 by the resolver 27 is improved.
  • the manufacturing cost of the resolver harness 27c can be reduced.
  • FIG. 18 is a perspective view of the rotary electric machine unit 1, showing a state in which the case 31, the terminal block 32, and the control board 36 are removed.
  • the positive electrode terminal 35b and the negative electrode terminal 35c extend from the body portion 35a in a direction orthogonal to the axial direction (in the present embodiment, substantially radial direction). extends to In the capacitor unit 34, the tip portion of the positive electrode side second end portion 342b of the positive electrode conductor 342 and the tip portion of the negative electrode side second end portion 343b of the negative electrode conductor 343 are arranged in a direction perpendicular to the axial direction (in the present embodiment, approximately radial direction).
  • the positive electrode terminal 35b is arranged so as to axially overlap the tip of the positive electrode side second end 342b.
  • the positive electrode terminal 35b abuts the tip of the positive electrode side second end 342b from above. That is, the upper surface of the positive electrode terminal 35b (that is, the surface of the positive electrode terminal 35b opposite to the stator 21 side) and the lower surface of the tip of the positive electrode-side second end 342b (that is, the positive electrode-side second end 342b)
  • the surface on the side of the stator 21 at the tip portion faces in the axial direction and contacts each other.
  • the thickness of the positive electrode terminal 35b (that is, the size of the positive electrode terminal 35b in the axial direction) is the thickness of the tip of the positive electrode-side second end 342b (that is, the thickness of the tip of the positive electrode-side second end 342b). axial dimension).
  • the positive electrode terminal 35b is directly connected to the positive electrode side second end 342b.
  • the direct connection means that the positive electrode terminal 35b and the positive electrode side second end portion 342b are connected in contact with each other without using a wire or the like.
  • laser welding is used to connect the positive electrode terminal 35b and the positive electrode side second end portion 342b. In this case, laser welding is performed from the positive electrode terminal 35b side.
  • a laser-welded portion between the positive terminal 35b and the positive electrode-side second end portion 342b is a first connection portion C1 between the positive electrode-side second end portion 342b and the positive electrode terminal 35b.
  • a first connecting portion C1 between the positive electrode side second end portion 342b and the positive electrode terminal 35b is positioned between the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35 when viewed from the axial direction.
  • the negative electrode terminal 35c is arranged so as to axially overlap the tip of the negative electrode-side second end 343b.
  • the negative electrode terminal 35c abuts the tip of the negative electrode-side second end 343b from above. That is, the upper surface of the negative electrode terminal 35c (that is, the surface of the negative electrode terminal 35c opposite to the stator 21 side) and the lower surface of the tip of the negative electrode-side second end portion 343b (that is, the negative electrode-side second end portion 343b)
  • the surface on the side of the stator 21 at the tip portion faces in the axial direction and contacts each other.
  • the plate thickness of the negative electrode terminal 35c (that is, the size of the negative electrode terminal 35c in the axial direction) is the thickness of the tip portion of the negative electrode-side second end portion 343b (that is, the thickness of the tip portion of the negative electrode-side second end portion 343b). axial dimension).
  • the negative terminal 35c is directly connected to the negative second end 343b.
  • the direct connection means that the negative electrode terminal 35c and the negative electrode side second end portion 343b are connected in contact with each other without using a wire or the like.
  • Laser welding for example, is used to connect the negative electrode terminal 35c and the negative electrode-side second end portion 343b. In this case, laser welding is performed from the negative electrode terminal 35c side.
  • the laser-welded portion between the negative electrode terminal 35c and the negative electrode-side second end portion 343b is the second connection portion C2 between the negative electrode-side second end portion 343b and the negative electrode terminal 35c.
  • a second connection portion C2 between the negative electrode-side second end portion 343b and the negative electrode terminal 35c is positioned between the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35 when viewed from the axial direction.
  • the positive electrode side second end portion 342b of the positive electrode conductor 342 and the positive electrode terminal 35b are axially opposed to each other and are in contact with each other.
  • the end portion 343b and the negative terminal 35c are axially opposed to each other and are in contact with each other.
  • the tip portion of the positive electrode side second end portion 342b is arranged above the positive electrode terminal 35b. and laser welding may be performed from the tip side of the positive electrode side second end portion 342b.
  • the tip portion of the negative electrode side second end portion 343b is arranged above the negative electrode terminal 35c. and laser welding may be performed from the tip side of the negative electrode side second end portion 343b.
  • laser welding is performed from the tip portion of the positive electrode side second end portion 342b and the positive electrode terminal 35b, whichever is thinner, and the tip portion of the negative electrode side second end portion 343b and the negative electrode terminal 35c are welded. , laser welding from the thinner side.
  • productivity can be improved.
  • Rotating electric machine unit 2 Rotating electric machine 3
  • Power conversion device 4 Cooler (first cooling unit) 6 second cooling unit 21 stator 22 rotor 25 coil 27 resolver 27c harness for resolver (harness) 32 terminal block 33 signal connector 34 capacitor unit 35 power module 35a main body (power module main body) 35b Positive electrode terminal 35c Negative electrode terminal 36 Control board 36b Opening 37 Bus bar 38
  • Current sensor 48 First joint 51 Inlet channel 52 First channel 53 Second channel 54
  • Third channel 55 Outlet channel 61
  • Communication channel 62 4th flow path 63 5th flow path 64 discharge flow path 66 second joint 341 main body (condenser main body) 342 Positive electrode conductor 343 Negative electrode conductor 371a First terminal 372a Second terminal 373 Mounting portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

A dynamo-electric machine unit according to the present disclosure comprises: a dynamo-electric machine having a stator, and a rotor for rotating about the axis thereof relative to the stator; and an electric power conversion device located side-by-side with the dynamo-electric machine in the axial direction along the axis of the rotor. The electric power conversion device has a capacitor unit located in a central portion of the electric power conversion device, and a plurality of power modules arranged in the circumferential direction around the axis of the rotor so as to surround the capacitor unit. The capacitor unit has a capacitor body portion, a positive pole conductor, and a negative pole conductor. Each of the plurality of power modules has a power module body portion, a positive pole terminal connected to the positive pole conductor, and a negative terminal connected to the negative pole conductor. The positive pole terminals and the negative pole terminals are arranged so as to face the capacitor unit, and first connection portions of the positive pole conductor and the positive pole terminals, and second connection portions of the negative pole conductor and the negative pole terminals, are positioned between the capacitor body portion and the power module body portions.

Description

回転電機ユニットRotating electric machine unit

 本開示は、回転電機ユニットに関する。
 本願は、2022年1月26日に、日本に出願された特願2022-009936号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to rotating electric machine units.
This application claims priority based on Japanese Patent Application No. 2022-009936 filed in Japan on January 26, 2022, the contents of which are incorporated herein.

 従来、回転電機と電力変換装置が一体化された回転電機ユニットが知られている。特許文献1においては、電力変換装置は、コンデンサユニットと複数のパワーモジュールとを有している。コンデンサユニットの正極導体及び負極導体は、リング状または円弧形状に形成されており、パワーモジュールの内周部側に配置されている。コンデンサユニットの正極導体及び負極導体は、ワイヤを介して、複数のパワーモジュールのそれぞれと接続される。  Conventionally, a rotary electric machine unit in which a rotary electric machine and a power conversion device are integrated is known. In Patent Literature 1, the power conversion device has a capacitor unit and a plurality of power modules. A positive electrode conductor and a negative electrode conductor of the capacitor unit are formed in a ring shape or an arc shape, and are arranged on the inner peripheral side of the power module. A positive conductor and a negative conductor of the capacitor unit are connected to each of the plurality of power modules via wires.

日本国特許第4708951号公報Japanese Patent No. 4708951

 パワーモジュールのスイッチング素子のON状態/OFF状態を切り替える際に、サージ電圧が発生する。パワーモジュールに発生するサージ電圧が大きくなると、パワーモジュールに大容量の電流を入力することが難しく、回転電機ユニットの高出力化が難しい。 A surge voltage is generated when switching the ON state/OFF state of the switching element of the power module. When the surge voltage generated in the power module increases, it becomes difficult to input a large amount of current to the power module, making it difficult to increase the output of the rotary electric machine unit.

 本開示は、前述した事情に鑑みてなされたものであり、パワーモジュールに発生するサージ電圧を抑制し、高出力化が可能な回転電機ユニットを提供することを目的とする。 The present disclosure has been made in view of the circumstances described above, and aims to provide a rotating electric machine unit capable of suppressing the surge voltage generated in the power module and increasing the output.

 本開示に係る回転電機ユニットの一つの態様は、固定子と、前記固定子に対して軸心回りに回転する回転子と、を有する回転電機と、前記回転子の軸心に沿った軸方向において、前記回転電機と並んで配置される電力変換装置と、を備え、前記電力変換装置は、前記電力変換装置の中央部に配置されるコンデンサユニットと、前記コンデンサユニットを囲むように、前記回転子の軸心回りの周方向に配置される複数のパワーモジュールと、を有し、前記コンデンサユニットは、コンデンサ本体部と、正極導体と、負極導体と、を有し、前記複数のパワーモジュールはそれぞれ、パワーモジュール本体部と、前記正極導体と接続される正極端子と、前記負極導体と接続される負極端子と、を有し、前記正極端子及び前記負極端子は、前記コンデンサユニットと対向するよう配置されており、前記正極導体と前記正極端子との第1接続部、及び前記負極導体と前記負極端子との第2接続部は、前記コンデンサ本体部と前記パワーモジュール本体部との間に位置している。 One aspect of a rotating electrical machine unit according to the present disclosure includes a rotating electrical machine having a stator, a rotor rotating about an axis with respect to the stator, and an axial direction along the axis of the rotor. a power conversion device arranged in parallel with the rotating electrical machine, the power conversion device comprising: a capacitor unit arranged in a central portion of the power conversion device; a plurality of power modules arranged in a circumferential direction around the axis of the child, wherein the capacitor unit has a capacitor main body, a positive electrode conductor, and a negative electrode conductor, and the plurality of power modules are Each has a power module main body, a positive terminal connected to the positive conductor, and a negative terminal connected to the negative conductor, and the positive terminal and the negative terminal face the capacitor unit. A first connecting portion between the positive electrode conductor and the positive electrode terminal and a second connecting portion between the negative electrode conductor and the negative electrode terminal are positioned between the capacitor main body and the power module main body. are doing.

 本開示によれば、パワーモジュールに発生するサージ電圧を抑制し、高出力化が可能な回転電機ユニットを提供することができる。 According to the present disclosure, it is possible to provide a rotating electric machine unit capable of suppressing the surge voltage generated in the power module and increasing the output.

実施の形態1に係る回転電機ユニットの回路図である。1 is a circuit diagram of a rotating electric machine unit according to Embodiment 1. FIG. 実施の形態1に係る回転電機ユニットの斜視図である。1 is a perspective view of a rotating electric machine unit according to Embodiment 1; FIG. 実施の形態1に係る回転電機ユニットの斜視図であって、端子台のカバーを取り外した状態を示す図である。FIG. 2 is a perspective view of the rotary electric machine unit according to Embodiment 1, showing a state in which a terminal block cover is removed; 実施の形態1に係る回転電機ユニットの斜視図であって、ケース及び端子台を取り外した状態を示す図である。1 is a perspective view of the rotating electric machine unit according to Embodiment 1, showing a state in which a case and a terminal block are removed; FIG. 実施の形態1に係る回転電機ユニットの平面図であって、ケース及び端子台を取り外した状態を示す図である。1 is a plan view of the rotary electric machine unit according to Embodiment 1, showing a state in which a case and a terminal block are removed; FIG. 図5のA-A線に沿った断面図である。FIG. 6 is a cross-sectional view taken along line AA of FIG. 5; 実施の形態1に係る回転電機ユニットの斜視図であって、ケース、端子台、及び制御基板を取り外した状態を示す図である。1 is a perspective view of the rotating electric machine unit according to Embodiment 1, showing a state in which a case, a terminal block, and a control board are removed; FIG. 実施の形態1に係る回転電機ユニットの平面図であって、ケース、端子台、及び制御基板を取り外した状態を示す図である。1 is a plan view of the rotating electric machine unit according to Embodiment 1, showing a state where a case, a terminal block, and a control board are removed; FIG. 図8のB-B線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line BB of FIG. 8; 図8のC-C線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line CC of FIG. 8; 実施の形態1に係るコンデンサユニットの斜視図である。1 is a perspective view of a capacitor unit according to Embodiment 1; FIG. 実施の形態1に係るバスバーの斜視図である。1 is a perspective view of a busbar according to Embodiment 1; FIG. 実施の形態1に係る回転電機の斜視図である。1 is a perspective view of a rotating electrical machine according to Embodiment 1; FIG. 実施の形態1に係る第2プレートの斜視図である。4 is a perspective view of a second plate according to Embodiment 1; FIG. 実施の形態1に係る第1プレートの斜視図である。4 is a perspective view of a first plate according to Embodiment 1; FIG. 実施の形態1に係るベースの斜視図である。3 is a perspective view of a base according to Embodiment 1; FIG. 実施の形態1に係る内筒部の斜視図である。4 is a perspective view of an inner tubular portion according to Embodiment 1. FIG. 実施の形態1に係る内筒部の斜視図である。4 is a perspective view of an inner tubular portion according to Embodiment 1. FIG. 実施の形態2に係る回転電機ユニットの斜視図であって、ケース、端子台、及び制御基板を取り外した状態を示す図である。FIG. 10 is a perspective view of the rotary electric machine unit according to Embodiment 2, showing a state in which the case, the terminal block, and the control board are removed;

実施の形態1.
 以下、実施の形態1に係る回転電機ユニット1について、図面を参照して説明する。
 図1は、回転電機ユニット1の回路図である。図2は、回転電機ユニット1の斜視図である。図2に示されるように、回転電機ユニット1は、回転電機2と、電力変換装置3と、冷却器4(第1冷却部)と、を備える。回転電機2と、電力変換装置3と、冷却器4とは、一体化されている。これにより、回転電機ユニット1の小型化を図ることができる。
 なお、本明細書では、回転電機2の回転子22の軸心に沿う方向を「軸方向」という。また、軸方向から見て、回転子22の軸心と交差する方向を「径方向」といい、回転子22の軸心回りに周回する方向を「周方向」という。
Embodiment 1.
A rotating electric machine unit 1 according to Embodiment 1 will be described below with reference to the drawings.
FIG. 1 is a circuit diagram of a rotating electric machine unit 1. As shown in FIG. FIG. 2 is a perspective view of the rotary electric machine unit 1. FIG. As shown in FIG. 2, the rotating electrical machine unit 1 includes a rotating electrical machine 2, a power conversion device 3, and a cooler 4 (first cooling section). The rotating electric machine 2, the power conversion device 3, and the cooler 4 are integrated. As a result, the size of the rotary electric machine unit 1 can be reduced.
In this specification, the direction along the axis of the rotor 22 of the rotary electric machine 2 is called "axial direction". Also, when viewed from the axial direction, the direction intersecting with the axis of the rotor 22 is called the "radial direction", and the direction around the axis of the rotor 22 is called the "circumferential direction".

 最初に、図1を参照して、回転電機ユニット1の回路構成(電気的構成)を説明する。なお、本実施の形態では、回転電機ユニット1として、6相駆動方式の回転電機ユニットを例に説明する。回転電機ユニット1は、例えば、車両に搭載される。 First, the circuit configuration (electrical configuration) of the rotary electric machine unit 1 will be described with reference to FIG. In this embodiment, as the rotary electric machine unit 1, a six-phase drive type rotary electric machine unit will be described as an example. The rotating electric machine unit 1 is mounted on a vehicle, for example.

 回転電機2は、6相(U1相、V1相、W1相、U2相、V2相、W2相)のそれぞれに対応する6つのコイル25U1、25V1、25W1、25U2、25V2、25W2を備える。なお、本明細書では、コイル25U1、25V1、25W1、25U2、25V2、25W2を、単にコイル25とも称する。 The rotating electric machine 2 includes six coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 corresponding to six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase). Note that the coils 25U1, 25V1, 25W1, 25U2, 25V2, and 25W2 are also simply referred to as coils 25 in this specification.

 電力変換装置3は、コンデンサユニット34と、6相(U1相、V1相、W1相、U2相、V2相、W2相)のそれぞれに対応する6つのパワーモジュール35U1、35V1、35W1、35U2、35V2、35W2と、を備える。なお、本明細書では、パワーモジュール35U1、35V1、35W1、35U2、35V2、35W2を、単にパワーモジュール35とも称する。 The power conversion device 3 includes a capacitor unit 34 and six power modules 35U1, 35V1, 35W1, 35U2, and 35V2 respectively corresponding to six phases (U1 phase, V1 phase, W1 phase, U2 phase, V2 phase, W2 phase). , 35W2. Note that the power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are also simply referred to as power modules 35 in this specification.

 電力変換装置3には、バッテリー等の直流電源Eから直流電力が入力される。電力変換装置3は、直流電源Eから出力される直流電力を交流電力に変換して回転電機2に供給する。 DC power is input to the power converter 3 from a DC power supply E such as a battery. The power conversion device 3 converts the DC power output from the DC power supply E into AC power and supplies the AC power to the rotary electric machine 2 .

 コンデンサユニット34は直流電源Eの正極端子と負極端子との間に接続される。コンデンサユニット34は、並列接続された複数のコンデンサ素子34aを有する。なお、コンデンサユニット34は1つのコンデンサ素子34aのみを有してもよい。コンデンサユニット34は、直流電源Eの電力変動、またはパワーモジュール35側の電力変動に対して、電圧が大きく変動しないよう安定化させる平滑コンデンサである。 The capacitor unit 34 is connected between the positive terminal and the negative terminal of the DC power supply E. The capacitor unit 34 has a plurality of capacitor elements 34a connected in parallel. Note that the capacitor unit 34 may have only one capacitor element 34a. The capacitor unit 34 is a smoothing capacitor that stabilizes the voltage against fluctuations in the power of the DC power supply E or power fluctuations on the power module 35 side so that the voltage does not fluctuate greatly.

 各パワーモジュール35は直流電源Eの正極端子と負極端子との間に接続される。各パワーモジュール35は、上アーム側のスイッチング素子SW1及びダイオードD1と、下アーム側のスイッチング素子SW2及びダイオードD2と、を備える。スイッチング素子SW1、SW2は、例えばIGBT(Insulated Gate Bipolar Transistor;絶縁ベースバイポーラトランジスタ)である。スイッチング素子SW1、SW2は直列接続される。
 スイッチング素子SW1とスイッチング素子SW2との接続点は、対応する相のコイル25に接続される。ダイオードD1は、スイッチング素子SW1に逆方向に並列接続される。ダイオードD2は、スイッチング素子SW2に逆方向に並列接続される。
Each power module 35 is connected between the positive terminal and the negative terminal of the DC power supply E. As shown in FIG. Each power module 35 includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side. The switching elements SW1 and SW2 are, for example, IGBTs (Insulated Gate Bipolar Transistors). The switching elements SW1 and SW2 are connected in series.
A connection point between the switching element SW1 and the switching element SW2 is connected to the coil 25 of the corresponding phase. The diode D1 is connected in parallel in the opposite direction to the switching element SW1. The diode D2 is connected in parallel in the opposite direction to the switching element SW2.

 次に、回転電機ユニット1の構造を説明する。
 電力変換装置3は、ケース31と、カバー32cを有する端子台32と、を有する。図3は、回転電機ユニット1の斜視図であって、端子台32のカバー32cを取り外した状態を示す図である。図4は、回転電機ユニット1の斜視図であって、ケース31及び端子台32を取り外した状態を示す図である。図5は、回転電機ユニット1の平面図であって、ケース31及び端子台32を取り外した状態を示す図である。図6は、図5のA-A線に沿った断面図である。図7は、回転電機ユニット1の斜視図であって、ケース31、端子台32、及び制御基板36を取り外した状態を示す図である。図8は、回転電機ユニット1の平面図であって、ケース31、端子台32、及び制御基板36を取り外した状態を示す図である。図9は、図8のB-B線に沿った断面図である。図10は、図8のC-C線に沿った断面図である。
Next, the structure of the rotating electric machine unit 1 will be described.
The power conversion device 3 has a case 31 and a terminal block 32 having a cover 32c. FIG. 3 is a perspective view of the rotary electric machine unit 1, showing a state in which the cover 32c of the terminal block 32 is removed. FIG. 4 is a perspective view of the rotary electric machine unit 1, showing a state in which the case 31 and the terminal block 32 are removed. FIG. 5 is a plan view of the rotary electric machine unit 1, showing a state in which the case 31 and the terminal block 32 are removed. FIG. 6 is a cross-sectional view along line AA in FIG. FIG. 7 is a perspective view of the rotary electric machine unit 1, showing a state in which the case 31, the terminal block 32, and the control board 36 are removed. FIG. 8 is a plan view of the rotating electric machine unit 1, showing a state in which the case 31, the terminal block 32, and the control board 36 are removed. 9 is a cross-sectional view taken along line BB of FIG. 8. FIG. 10 is a cross-sectional view taken along line CC of FIG. 8. FIG.

<電力変換装置>
 図2、図4、図7等に示されるように、電力変換装置3は、ケース31と、端子台32と、信号コネクタ33と、コンデンサユニット34と、制御基板36と、複数のパワーモジュール35(本実施の形態では、6つのパワーモジュール35U1、35V1、35W1、35U2、35V2、35W2)と、複数(本実施の形態では、6つ)のバスバー37と、複数(本実施の形態では、6つ)の電流センサ38と、を備える。
<Power converter>
As shown in FIGS. 2, 4, 7, etc., the power converter 3 includes a case 31, a terminal block 32, a signal connector 33, a capacitor unit 34, a control board 36, and a plurality of power modules 35. (in the present embodiment, six power modules 35U1, 35V1, 35W1, 35U2, 35V2, 35W2), a plurality of (six in the present embodiment) bus bars 37, and a plurality of (six in the present embodiment) ) current sensor 38 .

 ケース31は、コンデンサユニット34、パワーモジュール35、制御基板36等の電子部品を上方から覆う。これにより、これら電子部品と、回転電機ユニット1の周辺に搭載される部品との絶縁性を確保し、回転電機ユニット1の外部から異物が侵入することを防ぐ。 The case 31 covers electronic components such as the capacitor unit 34, the power module 35, and the control board 36 from above. This ensures insulation between these electronic components and components mounted around the rotary electric machine unit 1 , and prevents foreign matter from entering the rotary electric machine unit 1 from outside.

 図2及び図3に示されるように、端子台32は、ケース31の上面に設けられる。端子台32は、直流電源Eとコンデンサユニット34とを接続する。端子台32は、正極側接続端子32aと、負極側接続端子32bと、カバー32cと、を有する。 As shown in FIGS. 2 and 3, the terminal block 32 is provided on the upper surface of the case 31. As shown in FIGS. The terminal block 32 connects the DC power supply E and the capacitor unit 34 . The terminal block 32 has a positive electrode side connection terminal 32a, a negative electrode side connection terminal 32b, and a cover 32c.

 正極側接続端子32aは、直流電源Eの正極端子、及び後述するコンデンサユニット34の正極導体342に接続される。負極側接続端子32bは、直流電源Eの負極端子、及び後述するコンデンサユニット34の負極導体343に接続される。カバー32cは、正極側接続端子32a及び負極側接続端子32bを上方から覆い、電力変換装置3の内部に異物が侵入することを防止する。 The positive side connection terminal 32a is connected to the positive terminal of the DC power supply E and the positive conductor 342 of the capacitor unit 34, which will be described later. The negative connection terminal 32b is connected to the negative terminal of the DC power supply E and the negative conductor 343 of the capacitor unit 34, which will be described later. The cover 32 c covers the positive electrode side connection terminal 32 a and the negative electrode side connection terminal 32 b from above and prevents foreign matter from entering the inside of the power converter 3 .

 信号コネクタ33は、ケース31の側面に設けられる。また、図4に示されるように、信号コネクタ33は、信号コネクタ用ハーネス33aを介して制御基板36に接続される。信号コネクタ33は、車両等に搭載される外部の制御装置と電力変換装置3との間で各種信号の受け渡しに用いられる。
 なお、軸方向から見たときに、回転子22の軸心に対して信号コネクタ33が配置される側を前方側と称し、その反対側を後方側と称する。端子台32及び信号コネクタ33は、回転電機ユニット1の前方側に配置される。
The signal connector 33 is provided on the side surface of the case 31 . Further, as shown in FIG. 4, the signal connector 33 is connected to the control board 36 via a signal connector harness 33a. The signal connector 33 is used to exchange various signals between an external control device mounted on a vehicle or the like and the power conversion device 3 .
When viewed in the axial direction, the side on which the signal connector 33 is arranged with respect to the axial center of the rotor 22 is called the front side, and the opposite side is called the rear side. The terminal block 32 and the signal connector 33 are arranged on the front side of the rotary electric machine unit 1 .

 図11は、コンデンサユニット34の斜視図である。図11に示されるように、コンデンサユニット34は、本体部341(コンデンサ本体部)と、正極導体342と、負極導体343と、を有する。図5に示されるように、コンデンサユニット34は、電力変換装置3の中央部に配置される。コンデンサユニット34は、後述する冷却器4の第1プレート41に固定される。 11 is a perspective view of the capacitor unit 34. FIG. As shown in FIG. 11 , the capacitor unit 34 has a body portion 341 (capacitor body portion), a positive electrode conductor 342 and a negative electrode conductor 343 . As shown in FIG. 5 , the capacitor unit 34 is arranged in the central portion of the power conversion device 3 . The capacitor unit 34 is fixed to a first plate 41 of the cooler 4, which will be described later.

 本体部341は、円筒形状である。本体部341は、複数のコンデンサ素子34a(図1を参照)を備える。本体部341の外周面には、ハーネス固定部341aが形成される。ハーネス固定部341aには軸方向に延びる貫通孔が形成されており、この貫通孔に、後述する回転電機2のレゾルバ用ハーネス27c(ハーネス)が挿通される。本体部341の下部には、コンデンサユニット34を第1プレート41に取り付けるための複数の取付部341bが形成される。取付部341bは、本体部341の外周面から径方向外側に突出する突起である。取付部341bには、ボルト41f2(図7及び図8を参照)が挿通されるボルト穴341cが形成されている。 The body part 341 has a cylindrical shape. The body portion 341 includes a plurality of capacitor elements 34a (see FIG. 1). A harness fixing portion 341 a is formed on the outer peripheral surface of the main body portion 341 . A through-hole extending in the axial direction is formed in the harness fixing portion 341a, and a resolver harness 27c (harness) of the rotary electric machine 2, which will be described later, is inserted through the through-hole. A plurality of attachment portions 341 b for attaching the capacitor unit 34 to the first plate 41 are formed in the lower portion of the body portion 341 . The attachment portion 341b is a protrusion that protrudes radially outward from the outer peripheral surface of the main body portion 341 . A bolt hole 341c through which a bolt 41f2 (see FIGS. 7 and 8) is inserted is formed in the mounting portion 341b.

 正極導体342及び負極導体343は、板状部材である。正極導体342は、端子台32の正極側接続端子32a、及び後述するパワーモジュール35の正極端子35bに接続される。負極導体343は、端子台32の負極側接続端子32b、及び後述するパワーモジュール35の負極端子35cに接続される。 The positive electrode conductor 342 and the negative electrode conductor 343 are plate-like members. The positive conductor 342 is connected to the positive connection terminal 32a of the terminal block 32 and the positive terminal 35b of the power module 35, which will be described later. The negative conductor 343 is connected to the negative connection terminal 32b of the terminal block 32 and the negative terminal 35c of the power module 35, which will be described later.

 正極導体342及び負極導体343の材料として、例えば、無酸素銅が用いられる。材料のコスト削減、入手性の向上等のために、正極導体342及び負極導体343の材料として、タフピッチ銅が用いられてもよい。また、正極導体342及び負極導体343の板厚は、例えば、0.5~2.5mmである。 For example, oxygen-free copper is used as the material of the positive electrode conductor 342 and the negative electrode conductor 343 . Tough pitch copper may be used as the material of the positive electrode conductor 342 and the negative electrode conductor 343 in order to reduce material costs, improve availability, and the like. The plate thickness of the positive electrode conductor 342 and the negative electrode conductor 343 is, for example, 0.5 to 2.5 mm.

 正極導体342は、端子台32の正極側接続端子32aに接続される正極側第1端部342aと、パワーモジュール35の正極端子35bに接続される正極側第2端部342bと、を有する。 The positive conductor 342 has a positive first end 342 a connected to the positive connection terminal 32 a of the terminal block 32 and a second positive end 342 b connected to the positive terminal 35 b of the power module 35 .

 正極側第1端部342aは、本体部341の下端から引き出され、端子台32の正極側接続端子32aに向けて軸方向に延びる。図4に示されるように、正極側第1端部342aは、制御基板36の中央部に形成される開口部36bに挿通される。正極側第1端部342aは、回転子22の軸心を通らないように延びる。すなわち、軸方向から見たときに、正極側第1端部342aは、回転子22の軸心と重ならないよう配置されている。正極側第1端部342aの先端部は屈曲されて、正極側接続端子32aに上方から接触する。正極側第1端部342aの先端部には、ボルト344(図3を参照)が挿通されるボルト穴342cが形成される。正極側第1端部342aの先端部は、正極側接続端子32aに、ボルト344により固定される。 The positive electrode side first end portion 342 a is pulled out from the lower end of the main body portion 341 and extends axially toward the positive electrode side connection terminal 32 a of the terminal block 32 . As shown in FIG. 4 , the positive electrode side first end 342 a is inserted through an opening 36 b formed in the central portion of the control board 36 . The positive electrode side first end portion 342 a extends so as not to pass through the axial center of the rotor 22 . That is, the positive electrode side first end portion 342a is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction. The tip of the positive electrode-side first end portion 342a is bent and comes into contact with the positive electrode-side connection terminal 32a from above. A bolt hole 342c through which a bolt 344 (see FIG. 3) is inserted is formed at the tip of the positive electrode side first end 342a. A tip portion of the positive electrode side first end portion 342a is fixed to the positive electrode side connection terminal 32a by a bolt 344 .

 正極側第2端部342bは、各相のパワーモジュール35に対応して設けられる。すなわち、6つの正極側第2端部342bが設けられる。正極側第2端部342bは、本体部341の下端から引き出され、パワーモジュール35の正極端子35bに向けて延びる。正極側第2端部342bは、回転子22の軸心を通らないように延びる。すなわち、軸方向から見たときに、正極側第2端部342bは、回転子22の軸心と重ならないよう配置されている。正極側第2端部342bの先端部は、軸方向に延びるよう屈曲される。6つの正極側第2端部342bは、周方向に等間隔(60°間隔)に配置される。6つの正極側第2端部342bは、同一形状である。 The positive electrode side second end portion 342b is provided corresponding to the power module 35 of each phase. That is, six positive electrode side second ends 342b are provided. The positive electrode side second end portion 342 b is pulled out from the lower end of the main body portion 341 and extends toward the positive electrode terminal 35 b of the power module 35 . The positive electrode side second end portion 342 b extends so as not to pass through the axial center of the rotor 22 . That is, the positive electrode side second end 342b is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction. The tip of the positive electrode side second end 342b is bent so as to extend in the axial direction. The six positive electrode side second ends 342b are arranged at regular intervals (60° intervals) in the circumferential direction. The six positive electrode side second ends 342b have the same shape.

 負極導体343は、端子台32の負極側接続端子32bに接続される負極側第1端部343aと、パワーモジュール35の負極端子35cに接続される負極側第2端部343bと、を有する。 The negative conductor 343 has a negative first end 343 a connected to the negative connection terminal 32 b of the terminal block 32 and a second negative end 343 b connected to the negative terminal 35 c of the power module 35 .

 負極側第1端部343aは、本体部341の下端から引き出され、端子台32の負極側接続端子32bに向けて軸方向に延びる。図4に示されるように、負極側第1端部343aは、制御基板36の開口部36bに挿通される。負極側第1端部343aは、回転子22の軸心を通らないように延びる。すなわち、軸方向から見たときに、負極側第1端部343aは、回転子22の軸心と重ならないよう配置されている。負極側第1端部343aの先端部は屈曲されて、負極側接続端子32bに上方から接触する。負極側第1端部343aの先端部には、ボルト344(図3を参照)が挿通されるボルト穴343cが形成される。負極側第1端部343aの先端部は、負極側接続端子32bに、ボルト344により固定される。 The negative electrode side first end portion 343 a is pulled out from the lower end of the main body portion 341 and extends axially toward the negative electrode side connection terminal 32 b of the terminal block 32 . As shown in FIG. 4 , the negative first end 343 a is inserted through the opening 36 b of the control board 36 . The negative electrode side first end portion 343 a extends so as not to pass through the axial center of the rotor 22 . That is, the negative electrode side first end portion 343a is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction. The tip of the negative electrode first end portion 343a is bent and contacts the negative electrode connection terminal 32b from above. A bolt hole 343c through which a bolt 344 (see FIG. 3) is inserted is formed at the tip of the negative electrode-side first end 343a. A tip portion of the negative electrode first end portion 343a is fixed to the negative electrode connection terminal 32b by a bolt 344. As shown in FIG.

 負極側第2端部343bは、各相のパワーモジュール35に対応して設けられる。すなわち、6つの負極側第2端部343bが設けられる。負極側第2端部343bは、本体部341の下端から引き出され、パワーモジュール35の負極端子35cに向けて延びる。負極側第2端部343bは、回転子22の軸心を通らないように延びる。すなわち、軸方向から見たときに、負極側第2端部343bは、回転子22の軸心と重ならないよう配置されている。負極側第2端部343bの先端部は、軸方向に延びるよう屈曲される。6つの負極側第2端部343bは、周方向に等間隔(60°間隔)に配置される。6つの負極側第2端部343bは、同一形状である。 The negative electrode side second end portion 343b is provided corresponding to the power module 35 of each phase. That is, six negative electrode side second ends 343b are provided. The negative electrode side second end portion 343 b is pulled out from the lower end of the main body portion 341 and extends toward the negative electrode terminal 35 c of the power module 35 . The negative electrode side second end portion 343 b extends so as not to pass through the axial center of the rotor 22 . That is, the negative electrode side second end portion 343b is arranged so as not to overlap the axial center of the rotor 22 when viewed in the axial direction. A tip portion of the negative electrode side second end portion 343b is bent so as to extend in the axial direction. The six negative electrode side second ends 343b are arranged at equal intervals (60° intervals) in the circumferential direction. The six negative electrode side second end portions 343b have the same shape.

 図7及び図8に示されるように、6つのパワーモジュール35は、コンデンサユニット34を囲むように配置される。6つのパワーモジュール35は、周方向に等間隔(60°間隔)に配置される。パワーモジュール35U1、35V1、35W1、35U2、35V2、35W2は、周方向にこの順に配置される。したがって、同じ相のパワーモジュール35(例えば、U1相とU2相のパワーモジュール35U1、35U2)は、コンデンサユニット34を挟んで径方向に対向するよう配置される。 As shown in FIGS. 7 and 8, the six power modules 35 are arranged so as to surround the capacitor unit 34. The six power modules 35 are arranged at regular intervals (60° intervals) in the circumferential direction. Power modules 35U1, 35V1, 35W1, 35U2, 35V2, and 35W2 are arranged in this order in the circumferential direction. Therefore, the power modules 35 of the same phase (for example, power modules 35U1 and 35U2 of U1 phase and U2 phase) are arranged so as to face each other in the radial direction with the capacitor unit 34 interposed therebetween.

 各パワーモジュール35は、本体部35a(パワーモジュール本体部)と、正極端子35bと、負極端子35cと、出力端子35dと、上アーム側の信号端子35eと、下アーム側の信号端子35fとを有する。 Each power module 35 includes a main body portion 35a (power module main body portion), a positive terminal 35b, a negative terminal 35c, an output terminal 35d, a signal terminal 35e on the upper arm side, and a signal terminal 35f on the lower arm side. have.

 本体部35aは、軸方向から見たときに、略矩形状を有する。本体部35aは、上アーム側のスイッチング素子SW1及びダイオードD1と、下アーム側のスイッチング素子SW2及びダイオードD2と、を備える。 The body portion 35a has a substantially rectangular shape when viewed from the axial direction. The body portion 35a includes a switching element SW1 and a diode D1 on the upper arm side, and a switching element SW2 and a diode D2 on the lower arm side.

 正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fは、板状部材である。
 正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fの材料として、例えば、無酸素銅が用いられる。材料のコスト削減、入手性の向上等のために、正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fの材料として、タフピッチ銅が用いられてもよい。また、正極端子35b、負極端子35c、出力端子35d、上アーム側の信号端子35e、及び下アーム側の信号端子35fの板厚は、例えば、0.5~1.5mmである。
The positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side are plate members.
As a material of the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side, for example, oxygen-free copper is used. Tough pitch copper is used as the material for the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side in order to reduce material costs and improve availability. may be The plate thickness of the positive terminal 35b, the negative terminal 35c, the output terminal 35d, the signal terminal 35e on the upper arm side, and the signal terminal 35f on the lower arm side is, for example, 0.5 to 1.5 mm.

 正極端子35bは、正極導体342の正極側第2端部342bと対向するように配置される。具体的には、正極端子35bは、軸方向に延びる。正極端子35bと、正極側第2端部342bの先端部とは、軸方向に直交する方向(本実施の形態では、略径方向)に対向し、互いに接触する。正極端子35bは、正極側第2端部342bに直接接続される。なお、直接接続されるとは、正極端子35bと正極側第2端部342bとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。正極端子35bと正極側第2端部342bとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、またはレーザー溶接が用いられる。図8に示されるように、軸方向から見て、正極側第2端部342bと正極端子35bとの第1接続部C1は、コンデンサユニット34の本体部341とパワーモジュール35の本体部35aとの間に位置している。 The positive electrode terminal 35b is arranged to face the positive electrode side second end portion 342b of the positive electrode conductor 342 . Specifically, the positive terminal 35b extends in the axial direction. The positive electrode terminal 35b and the tip portion of the positive electrode-side second end portion 342b face each other in a direction perpendicular to the axial direction (in the present embodiment, substantially in the radial direction) and are in contact with each other. The positive electrode terminal 35b is directly connected to the positive electrode side second end 342b. The direct connection means that the positive electrode terminal 35b and the positive electrode side second end portion 342b are connected in contact with each other without using a wire or the like. Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the positive electrode terminal 35b and the positive electrode side second end portion 342b. As shown in FIG. 8, when viewed from the axial direction, the first connection portion C1 between the positive electrode side second end portion 342b and the positive electrode terminal 35b is connected to the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35. is located between

 負極端子35cは、負極導体343の負極側第2端部343bと対向するように配置される。具体的には、負極端子35cは、軸方向に延びる。負極端子35cと、負極側第2端部343bの先端部とは、軸方向に直交する方向(本実施の形態では、略径方向)に対向し、互いに接触する。負極端子35cは、負極側第2端部343bに直接接続される。なお、直接接続されるとは、負極端子35cと負極側第2端部343bとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。負極端子35cと負極側第2端部343bとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、またはレーザー溶接が用いられる。図8に示されるように、軸方向から見て、負極側第2端部343bと負極端子35cとの第2接続部C2は、コンデンサユニット34の本体部341とパワーモジュール35の本体部35aとの間に位置している。 The negative electrode terminal 35c is arranged to face the negative electrode side second end 343b of the negative electrode conductor 343 . Specifically, the negative terminal 35c extends in the axial direction. The negative electrode terminal 35c and the tip portion of the negative electrode-side second end portion 343b are opposed to each other in a direction perpendicular to the axial direction (in the present embodiment, substantially radial direction) and are in contact with each other. The negative terminal 35c is directly connected to the negative second end 343b. The direct connection means that the negative electrode terminal 35c and the negative electrode side second end portion 343b are connected in contact with each other without using a wire or the like. Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the negative electrode terminal 35c and the negative electrode-side second end portion 343b. As shown in FIG. 8, when viewed from the axial direction, the second connection portion C2 between the negative electrode side second end portion 343b and the negative electrode terminal 35c is connected to the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35. is located between

 本実施の形態では、コンデンサユニット34の正極導体342から、パワーモジュール35の正極端子35b及び負極端子35cを経由した、コンデンサユニット34の負極導体343までの経路の長さが、全てのパワーモジュール35で略同一となるように、コンデンサユニット34及びパワーモジュール35が設けられている。すなわち、コンデンサユニット34とパワーモジュール35との接続経路の長さが、全てのパワーモジュール35で略同一となっている。ここで、上記経路の長さが略同一であるとは、正極導体342から、正極端子35b及び負極端子35cを経由した、負極導体343までの経路の全長に対して、各パワーモジュール35間での上記経路長さの差異が、±5%の範囲内であることを意味する。これにより、それぞれのパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。
 なお、本開示では、少なくとも2つのパワーモジュール35について、コンデンサユニット34とパワーモジュール35との接続経路の長さが略同一となっていればよい。この場合であっても、これら2つのパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。
In the present embodiment, the length of the path from the positive conductor 342 of the capacitor unit 34 to the negative conductor 343 of the capacitor unit 34 via the positive terminal 35b and the negative terminal 35c of the power module 35 is A capacitor unit 34 and a power module 35 are provided so as to be substantially the same. That is, the lengths of the connection paths between the capacitor units 34 and the power modules 35 are substantially the same for all the power modules 35 . Here, the fact that the lengths of the paths are substantially the same means that the total length of the path from the positive electrode conductor 342 to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c is is within ±5%. Thereby, the surge voltage generated in each power module 35 can be equalized. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotary electric machine unit 1. FIG.
In addition, in the present disclosure, the length of the connection path between the capacitor unit 34 and the power module 35 should be approximately the same for at least two power modules 35 . Even in this case, the surge voltages generated in these two power modules 35 can be equalized. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotary electric machine unit 1. FIG.

 また、全てのパワーモジュール35において、正極導体342からコイル端末25aまで、及び負極導体343からコイル端末25aまでの接続経路の配線抵抗が均一となっている。したがって、複数のパワーモジュール35の間で、パワーモジュール35を流れる電流に偏りが生じることを防止できる。 Also, in all the power modules 35, the wiring resistance of the connection paths from the positive conductor 342 to the coil terminal 25a and from the negative conductor 343 to the coil terminal 25a is uniform. Therefore, it is possible to prevent currents flowing through the power modules 35 from being biased among the plurality of power modules 35 .

 また、コンデンサユニット34とパワーモジュール35とは、最短経路で接続されている。これにより、コンデンサユニット34とパワーモジュール35との接続経路のインダクタンスを低減でき、パワーモジュール35に発生するサージ電圧を抑制できる。したがって、パワーモジュール35により大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。 Also, the capacitor unit 34 and the power module 35 are connected by the shortest route. As a result, the inductance of the connection path between the capacitor unit 34 and the power module 35 can be reduced, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1. FIG.

 出力端子35dは、バスバー37を介して、コイル25のコイル端末25aに接続される。上アーム側の信号端子35eは、上アーム側のスイッチング素子SW1及びダイオードD1と接続される。下アーム側の信号端子35fは、下アーム側のスイッチング素子SW2及びダイオードD2と接続される。上アーム側の信号端子35e及び下アーム側の信号端子35fは、制御基板36と接続される。図4及び図5に示されるように、上アーム側の信号端子35e及び下アーム側の信号端子35fは、制御基板36に直接取り付けられる。 The output terminal 35d is connected to the coil terminal 25a of the coil 25 via the busbar 37. The signal terminal 35e on the upper arm side is connected to the switching element SW1 and the diode D1 on the upper arm side. The signal terminal 35f on the lower arm side is connected to the switching element SW2 and the diode D2 on the lower arm side. The signal terminal 35 e on the upper arm side and the signal terminal 35 f on the lower arm side are connected to the control board 36 . As shown in FIGS. 4 and 5, the signal terminal 35 e on the upper arm side and the signal terminal 35 f on the lower arm side are directly attached to the control board 36 .

 各バスバー37は、対応する相のパワーモジュール35とコイル25とを接続する。図12は、バスバー37の斜視図である。図12に示されるように、バスバー37は、略L字状の板状部材である。バスバー37は、第1板部371と、第2板部372とを有する。
 バスバー37の材料として、例えば、無酸素銅が用いられる。バスバー37の材料として、材料のコスト削減、入手性の向上等のために、タフピッチ銅が用いられてもよい。バスバー37の板厚は、例えば、0.5~2.5mmである。
Each bus bar 37 connects the power module 35 and the coil 25 of the corresponding phase. 12 is a perspective view of the busbar 37. FIG. As shown in FIG. 12, the bus bar 37 is a substantially L-shaped plate member. Bus bar 37 has a first plate portion 371 and a second plate portion 372 .
Oxygen-free copper, for example, is used as the material of the bus bar 37 . As a material of the bus bar 37, tough pitch copper may be used for cost reduction and availability improvement of the material. The plate thickness of the bus bar 37 is, for example, 0.5 to 2.5 mm.

 図8に示されるように、バスバー37は、周方向に隣り合うパワーモジュール35同士の間に配置される。第1板部371は、バスバー37が第1プレート41に固定された状態で周方向に延びる。第2板部372は、バスバー37が第1プレート41に固定された状態で径方向に延びる。 As shown in FIG. 8, the busbars 37 are arranged between the power modules 35 adjacent in the circumferential direction. The first plate portion 371 extends in the circumferential direction while the busbar 37 is fixed to the first plate 41 . The second plate portion 372 extends radially while the bus bar 37 is fixed to the first plate 41 .

 第1板部371の端部には、出力端子35dと接続される第1端子371aが形成される。第1端子371aは、出力端子35dと対向するように配置される。第1端子371aは、出力端子35dに直接接続される。なお、直接接続されるとは、第1端子371aと出力端子35dとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。
第1端子371aと出力端子35dとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、またはレーザー溶接が用いられる。図8に示されるように、軸方向から見て、第1端子371aと出力端子35dとの第3接続部C3は、パワーモジュール35の本体部35aよりも径方向外側に位置している。
A first terminal 371a connected to the output terminal 35d is formed at the end of the first plate portion 371 . The first terminal 371a is arranged to face the output terminal 35d. The first terminal 371a is directly connected to the output terminal 35d. In addition, being directly connected means that the first terminal 371a and the output terminal 35d are connected in contact with each other without using a wire or the like.
Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the first terminal 371a and the output terminal 35d. As shown in FIG. 8, the third connection portion C3 between the first terminal 371a and the output terminal 35d is located radially outside the main body portion 35a of the power module 35 when viewed in the axial direction.

 第2板部372の端部には、コイル端末25aと接続される第2端子372aが形成される。第2端子372aは、コイル端末25aと対向するように配置される。第2端子372aは、コイル端末25aに直接接続される。なお、直接接続されるとは、第2端子372aとコイル端末25aとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。第2端子372aとコイル端末25aとの接続には、例えば、抵抗溶接、超音波接合、TIG溶接、またはレーザー溶接が用いられる。図8に示されるように、軸方向から見て、第2端子372aとコイル端末25aとの第4接続部C4は、パワーモジュール35の本体部35aよりも径方向内側に位置している。 A second terminal 372a is formed at the end of the second plate portion 372 to be connected to the coil terminal 25a. The second terminal 372a is arranged to face the coil terminal 25a. The second terminal 372a is directly connected to the coil terminal 25a. The direct connection means that the second terminal 372a and the coil terminal 25a are connected by being in contact with each other without using a wire or the like. Resistance welding, ultrasonic bonding, TIG welding, or laser welding, for example, is used to connect the second terminal 372a and the coil end 25a. As shown in FIG. 8, the fourth connection portion C4 between the second terminal 372a and the coil terminal 25a is located radially inside the main body portion 35a of the power module 35 when viewed in the axial direction.

 第2板部372は、電流センサ38が取り付けられる取付部373を有する。取付部373は、軸方向において第2端子372aよりも制御基板36側に突出するよう設けられている。 The second plate portion 372 has a mounting portion 373 to which the current sensor 38 is mounted. The attachment portion 373 is provided so as to protrude toward the control board 36 from the second terminal 372a in the axial direction.

 各バスバー37には、電流センサ38が設けられる。電流センサ38は、バスバー37を流れる電流を検出する。電流センサ38は、制御基板36よりも下方に配置される。すなわち、電流センサ38は、制御基板36よりも、回転電機2の固定子21側に配置される。電流センサ38は、制御基板36と接続される信号端子38aを有する。図4に示されるように、信号端子38aは、制御基板36に直接取り付けられる。これにより、耐ノイズ性が向上し、電流センサ38によるバスバー37の電流値の検出精度が向上する。 A current sensor 38 is provided on each bus bar 37 . Current sensor 38 detects the current flowing through bus bar 37 . The current sensor 38 is arranged below the control board 36 . That is, the current sensor 38 is arranged closer to the stator 21 of the rotating electrical machine 2 than the control board 36 is. The current sensor 38 has a signal terminal 38 a connected to the control board 36 . As shown in FIG. 4, the signal terminals 38a are attached directly to the control board 36. As shown in FIG. As a result, the noise resistance is improved, and the detection accuracy of the current value of the bus bar 37 by the current sensor 38 is improved.

 図7及び図8に示されるように、バスバー37及び電流センサ38は、樹脂部材39に覆われる。樹脂部材39の材料として、例えば、ポリフェニレンサルファイド(PPS)が用いられる。なお、信号端子38aは、樹脂部材39から露出する。
 樹脂部材39は、ボルト41f3及び支柱41eにより第1プレート41に固定される。これにより、バスバー37及び電流センサ38が、第1プレート41に対して固定される。図7に示されるように、樹脂部材39には、ボルト41f3が挿通されるボルト穴39a、及び支柱41eが挿通される貫通孔39bが形成される。
As shown in FIGS. 7 and 8, the busbar 37 and current sensor 38 are covered with a resin member 39. As shown in FIG. As a material of the resin member 39, for example, polyphenylene sulfide (PPS) is used. The signal terminal 38 a is exposed from the resin member 39 .
The resin member 39 is fixed to the first plate 41 by bolts 41f3 and supports 41e. The busbar 37 and the current sensor 38 are thereby fixed to the first plate 41 . As shown in FIG. 7, the resin member 39 is formed with a bolt hole 39a through which the bolt 41f3 is inserted and a through hole 39b through which the strut 41e is inserted.

 図4及び図5に示されるように、制御基板36は、円板形状を有する。制御基板36の中央部には、開口部36bが形成される。制御基板36の開口部36bには、コンデンサユニット34が配置される。すなわち、コンデンサユニット34は、開口部36bに挿通される。図6に示されるように、制御基板36は、ボルト41f1及び支柱41eにより第1プレート41に対して固定される。制御基板36には、ボルト41f1が挿通されるボルト穴36aが形成される。 As shown in FIGS. 4 and 5, the control board 36 has a disk shape. An opening 36 b is formed in the central portion of the control board 36 . A capacitor unit 34 is arranged in the opening 36 b of the control board 36 . That is, the capacitor unit 34 is inserted through the opening 36b. As shown in FIG. 6, the control board 36 is fixed to the first plate 41 by bolts 41f1 and posts 41e. The control board 36 is formed with a bolt hole 36a through which the bolt 41f1 is inserted.

 制御基板36には、上アーム側の信号端子35e、下アーム側の信号端子35f、及び信号端子38aが直接接続される。制御基板36には、信号コネクタ用ハーネス33aを介して、信号コネクタ33が接続される。制御基板36には、レゾルバ用ハーネス27cを介して、後述する回転電機2のレゾルバ27が接続される。レゾルバ用ハーネス27cは、開口部36bに挿通される。制御基板36は、車両等に搭載される外部の制御装置から入力される制御指令に基づいてパワーモジュール35を制御する。 The signal terminal 35e on the upper arm side, the signal terminal 35f on the lower arm side, and the signal terminal 38a are directly connected to the control board 36. A signal connector 33 is connected to the control board 36 via a signal connector harness 33a. A resolver 27 of the rotary electric machine 2, which will be described later, is connected to the control board 36 via a resolver harness 27c. The resolver harness 27c is inserted through the opening 36b. The control board 36 controls the power module 35 based on control commands input from an external control device mounted on a vehicle or the like.

<回転電機>
 図9、図13等を参照して、回転電機2について説明する。図13は、回転電機2の斜視図である。
 図9に示されるように、回転電機2は、固定子21と、回転子22と、シャフト23と、ハウジング24と、複数のコイル25(本実施の形態では、6つのコイル25U1、25V1、25W1、25U2、25V2、25W2)と、第1、第2の軸受26a、26bと、レゾルバ27と、を備える。
<Rotating electric machine>
The rotary electric machine 2 will be described with reference to FIGS. 9, 13, and the like. 13 is a perspective view of the rotating electric machine 2. FIG.
As shown in FIG. 9, the rotary electric machine 2 includes a stator 21, a rotor 22, a shaft 23, a housing 24, and a plurality of coils 25 (six coils 25U1, 25V1, 25W1 in the present embodiment). , 25U2, 25V2, 25W2), first and second bearings 26a and 26b, and a resolver 27.

 固定子21は、環状である。固定子21は、回転子22の外周を囲むように設けられる。固定子21は、ハウジング24に固定されている。 The stator 21 is annular. The stator 21 is provided so as to surround the outer circumference of the rotor 22 . The stator 21 is fixed to the housing 24 .

 回転子22は、固定子21の内側に設けられる。回転子22は、固定子21に対して軸心回りに回転自在である。 The rotor 22 is provided inside the stator 21. The rotor 22 is rotatable around the axis with respect to the stator 21 .

 回転子22の中心には、シャフト23が配置される。シャフト23の軸方向の一方側(図9における紙面下側)の端部は、回転子22の回転を、車両等に伝達する出力端である。 A shaft 23 is arranged at the center of the rotor 22 . One end of the shaft 23 in the axial direction (lower side in FIG. 9) is an output end that transmits the rotation of the rotor 22 to a vehicle or the like.

 コイル25は、固定子21に巻装される。コイル25は、例えば、固定子21に分布巻きされる。コイル25として、例えば、一辺が0.5~6.0mmの四角形状の断面を有する平角線が用いられる。各相のコイル25のコイル端末25aは、バスバー37を介して、対応する相のパワーモジュール35に接続される。図13に示されるように、6つのコイル端末25aは、周方向に等間隔(60°間隔)に配置される。コイル端末25aは、バスバー37に向けて軸方向に直線状に延び、バスバー37に直接接続される。これにより、コイル端末25aを最短経路でバスバー37と接続することができ、コイル25に用いられる平角線の使用量を削減できる。また、コイル端末25aの成形工程が不要であるため、製造コストを削減できる。 The coil 25 is wound around the stator 21. The coil 25 is distributed around the stator 21, for example. As the coil 25, for example, a rectangular wire having a square cross section with a side of 0.5 to 6.0 mm is used. A coil terminal 25 a of the coil 25 of each phase is connected to the power module 35 of the corresponding phase via a bus bar 37 . As shown in FIG. 13, the six coil terminals 25a are arranged at regular intervals (at intervals of 60°) in the circumferential direction. The coil terminal 25a extends linearly in the axial direction toward the busbar 37 and is directly connected to the busbar 37 . As a result, the coil terminal 25a can be connected to the busbar 37 by the shortest path, and the amount of rectangular wire used for the coil 25 can be reduced. Moreover, since the molding process of the coil terminal 25a is unnecessary, the manufacturing cost can be reduced.

 レゾルバ27は、シャフト23の回転角を検出する。レゾルバ27は、レゾルバ固定子27aと、レゾルバ回転子27bと、を備える。レゾルバ固定子27aは、ハウジング24に固定されている。レゾルバ回転子27bは、シャフト23の上端部(非出力側の端部)に取り付けられる。 The resolver 27 detects the rotation angle of the shaft 23. The resolver 27 includes a resolver stator 27a and a resolver rotor 27b. The resolver stator 27 a is fixed to the housing 24 . The resolver rotor 27b is attached to the upper end of the shaft 23 (end on the non-output side).

 レゾルバ27は、レゾルバ用ハーネス27cを介して、制御基板36に接続される。レゾルバ用ハーネス27cは、レゾルバ固定子27aから引き出され、制御基板36に向けて延びる。レゾルバ用ハーネス27cは、パワーモジュール35が配置される部分を避けて延びる。これにより、レゾルバ用ハーネス27cに、パワーモジュール35に起因するノイズが伝わることを防止でき、シャフト23の回転角の検出精度を向上できる。 The resolver 27 is connected to the control board 36 via a resolver harness 27c. The resolver harness 27 c is pulled out from the resolver stator 27 a and extends toward the control board 36 . The resolver harness 27c extends to avoid the portion where the power module 35 is arranged. As a result, noise caused by the power module 35 can be prevented from being transmitted to the resolver harness 27c, and the detection accuracy of the rotation angle of the shaft 23 can be improved.

 ハウジング24は、固定子21、回転子22、及びシャフト23を収容する。ハウジング24は、蓋部241と、内筒部242と、外筒部243と、底部244と、を備える。 The housing 24 accommodates the stator 21, rotor 22, and shaft 23. The housing 24 includes a lid portion 241 , an inner cylinder portion 242 , an outer cylinder portion 243 and a bottom portion 244 .

 蓋部241は、円形状の板状部材である。蓋部241は、内筒部242の上端に固定される。蓋部241は、固定子21及び回転子22を上方から覆う。図13に示されるように、蓋部241には、コイル端末25aが挿通されるコイル貫通穴241aが形成される。6つのコイル貫通穴241aは、周方向に等間隔(60°間隔)に配置される。 The lid portion 241 is a circular plate-like member. The lid portion 241 is fixed to the upper end of the inner cylindrical portion 242 . The lid portion 241 covers the stator 21 and the rotor 22 from above. As shown in FIG. 13, the lid portion 241 is formed with a coil through-hole 241a through which the coil end 25a is inserted. The six coil through holes 241a are arranged at equal intervals (at intervals of 60°) in the circumferential direction.

 内筒部242は、円筒形状である。内筒部242は、固定子21を径方向外側から覆う。固定子21は、内筒部242に、例えば、焼き嵌めまたは圧入により固定される。
 外筒部243は、円筒形状である。外筒部243は、内筒部242を径方向外側から覆う。外筒部243は、内筒部242に、例えば、焼き嵌めまたは圧入により固定される。
 内筒部242及び外筒部243により、回転電機2を冷却する第2冷却部6(図9を参照)が構成される。第2冷却部6の詳細については後述する。
The inner cylindrical portion 242 has a cylindrical shape. The inner cylindrical portion 242 covers the stator 21 from the radial outside. The stator 21 is fixed to the inner cylindrical portion 242 by, for example, shrink fitting or press fitting.
The outer tube portion 243 has a cylindrical shape. The outer tubular portion 243 covers the inner tubular portion 242 from the radial outside. The outer tubular portion 243 is fixed to the inner tubular portion 242 by, for example, shrink fitting or press fitting.
The inner cylindrical portion 242 and the outer cylindrical portion 243 constitute a second cooling portion 6 (see FIG. 9) that cools the rotary electric machine 2 . Details of the second cooling unit 6 will be described later.

 底部244は、円形状の板状部材である。底部244は、外筒部243の下端に固定される。底部244は、固定子21及び回転子22を下方から覆う。底部244には、回転電機ユニット1を車両に取り付けるための取付部244aが設けられる。 The bottom part 244 is a circular plate-like member. The bottom portion 244 is fixed to the lower end of the outer cylindrical portion 243 . The bottom portion 244 covers the stator 21 and the rotor 22 from below. The bottom portion 244 is provided with a mounting portion 244a for mounting the rotary electric machine unit 1 to the vehicle.

 シャフト23の上端部(非出力側の端部)には、第1の軸受26aが設けられる。第1の軸受26aは、蓋部241に固定されている。シャフト23の下端部(出力側の端部)には、第2の軸受26bが設けられる。第2の軸受26bは、底部244に固定されている。第1の軸受26a及び第2の軸受26bは、シャフト23を回転自在に支持する。 A first bearing 26a is provided at the upper end of the shaft 23 (end on the non-output side). The first bearing 26 a is fixed to the lid portion 241 . A second bearing 26b is provided at the lower end (end on the output side) of the shaft 23 . A second bearing 26 b is fixed to the bottom 244 . The first bearing 26a and the second bearing 26b rotatably support the shaft 23 .

<冷却器>
 図6、図9、図10、図14~16等を参照して、冷却器4について説明する。冷却器4は、回転電機2と電力変換装置3との間に設けられる。冷却器4は、第1プレート41と、複数(本実施の形態では、6つ)の第2プレート42と、ベース43と、を有する。
<Cooler>
The cooler 4 will be described with reference to FIGS. 6, 9, 10, 14 to 16, and the like. Cooler 4 is provided between rotating electric machine 2 and power converter 3 . The cooler 4 has a first plate 41 , a plurality of (six in this embodiment) second plates 42 , and a base 43 .

 図14は、第2プレート42の斜視図である。図14に示されるように、第2プレート42は、略矩形の板状部材である。第2プレート42は、パワーモジュール35毎に設けられる。図10に示されるように、第2プレート42の第1面には、パワーモジュール35が取り付けられる。パワーモジュール35は、第2プレート42の第1面に、例えばはんだ付けにより固定される。第2プレート42の第2面には、放熱フィン42a(第1放熱フィン)が設けられる。図7に示されるように、第2プレート42は、支柱41eにより第1プレート41に固定される。これにより、パワーモジュール35は、第1プレート41に対して固定される。第2プレート42には、支柱41eが挿通される貫通孔42bが形成される。 14 is a perspective view of the second plate 42. FIG. As shown in FIG. 14, the second plate 42 is a substantially rectangular plate member. A second plate 42 is provided for each power module 35 . As shown in FIG. 10 , the power module 35 is attached to the first surface of the second plate 42 . The power module 35 is fixed to the first surface of the second plate 42 by soldering, for example. The second surface of the second plate 42 is provided with radiation fins 42a (first radiation fins). As shown in FIG. 7, the second plate 42 is fixed to the first plate 41 by supports 41e. The power module 35 is thereby fixed to the first plate 41 . The second plate 42 is formed with a through hole 42b through which the column 41e is inserted.

 図15は、第1プレート41の斜視図である。図15に示されるように、第1プレート41は、円形の板状部材である。第1プレート41には、レゾルバ用ハーネス27cが挿通されるハーネス貫通穴41aが形成される。第1プレート41には、コイル端末25aが挿通されるコイル貫通穴41bが形成される。6つのコイル貫通穴41bが、周方向に等間隔(60°間隔)に配置される。第1プレート41には、複数(本実施の形態では、6つ)の開口部41cが形成される。図10に示されるように、第2プレート42が第1プレート41に固定された状態で、開口部41cの内側には、放熱フィン42aが配置される。6つの開口部41cが、周方向に等間隔(60°間隔)に配置される。 15 is a perspective view of the first plate 41. FIG. As shown in FIG. 15, the first plate 41 is a circular plate-like member. The first plate 41 is formed with a harness through-hole 41a through which the resolver harness 27c is inserted. A coil through-hole 41b through which the coil end 25a is inserted is formed in the first plate 41 . The six coil through-holes 41b are arranged at equal intervals (at intervals of 60°) in the circumferential direction. A plurality of (six in the present embodiment) openings 41 c are formed in the first plate 41 . As shown in FIG. 10, in a state where the second plate 42 is fixed to the first plate 41, the radiation fins 42a are arranged inside the opening 41c. The six openings 41c are arranged at equal intervals (at intervals of 60°) in the circumferential direction.

 第1プレート41の第1面には、ボルト41f2が取り付けられる有底の第1取付孔41d1が設けられている。第1プレート41の第1面には、支柱41eが取り付けられる有底の第2取付孔41d2が設けられている。第1プレート41の第1面には、ボルト41f3が取り付けられる有底の第3取付孔41d3が設けられている。第1プレート41の第2面は、ベース43に固定される。 The first surface of the first plate 41 is provided with a bottomed first attachment hole 41d1 to which a bolt 41f2 is attached. The first surface of the first plate 41 is provided with a bottomed second attachment hole 41d2 to which the support 41e is attached. The first surface of the first plate 41 is provided with a bottomed third attachment hole 41d3 to which a bolt 41f3 is attached. A second surface of the first plate 41 is fixed to the base 43 .

 第1取付孔41d1は、軸方向から見たときに、コンデンサユニット34に形成されるボルト穴341cと重なる位置に設けられている。ボルト41f2をボルト穴341cに挿通して、第1取付孔41d1に締結することにより、コンデンサユニット34が第1プレート41に取り付けられる。また、図6に示されるように、第1プレート41とコンデンサユニット34との間には、放熱部材44が設けられている。 The first mounting hole 41d1 is provided at a position overlapping the bolt hole 341c formed in the capacitor unit 34 when viewed from the axial direction. The capacitor unit 34 is attached to the first plate 41 by inserting the bolt 41f2 through the bolt hole 341c and fastening it to the first attachment hole 41d1. Further, as shown in FIG. 6, a heat radiating member 44 is provided between the first plate 41 and the capacitor unit 34. As shown in FIG.

 第2取付孔41d2は、軸方向から見たときに、第2プレート42に形成される貫通孔42bと重なる位置に設けられている。第2取付孔41d2に取り付けられた支柱41eは、第2プレート42に形成される貫通孔42bに挿通される。これにより、第2プレート42は、第1プレート41に固定される。 The second mounting hole 41d2 is provided at a position overlapping the through hole 42b formed in the second plate 42 when viewed from the axial direction. The support 41e attached to the second attachment hole 41d2 is inserted through the through hole 42b formed in the second plate 42. As shown in FIG. Thereby, the second plate 42 is fixed to the first plate 41 .

 図6に示されるように、支柱41eの上端は、制御基板36に当接する。支柱41eの上端部には、ボルト41f1が取り付けられる有底の取付孔41e1が設けられている。取付孔41e1は、軸方向から見たときに、制御基板36に形成されるボルト穴36aと重なる位置に設けられている。支柱41eの上端に制御基板36を当接させた状態で、ボルト41f1をボルト穴36aに挿通して、取付孔41e1に締結することにより、制御基板36が第1プレート41に対して固定される。 As shown in FIG. 6, the upper end of the support 41e contacts the control board 36. As shown in FIG. A bottomed attachment hole 41e1 to which a bolt 41f1 is attached is provided at the upper end of the support 41e. The mounting hole 41e1 is provided at a position overlapping the bolt hole 36a formed in the control board 36 when viewed in the axial direction. The control board 36 is fixed to the first plate 41 by inserting the bolt 41f1 through the bolt hole 36a and fastening it to the mounting hole 41e1 while the control board 36 is in contact with the upper end of the post 41e. .

 第3取付孔41d3は、軸方向から見たときに、樹脂部材39に形成されるボルト穴39aと重なる位置に設けられている。ボルト41f3をボルト穴39aに挿通して、第3取付孔41d3に締結することにより、樹脂部材39が第1プレート41に取り付けられる。また、樹脂部材39には、支柱41eが挿通される貫通孔39bが形成されている。貫通孔39bに支柱41eを挿通させることにより、樹脂部材39が第1プレート41に対してより確実に固定される。 The third mounting hole 41d3 is provided at a position overlapping the bolt hole 39a formed in the resin member 39 when viewed from the axial direction. The resin member 39 is attached to the first plate 41 by inserting the bolt 41f3 through the bolt hole 39a and fastening it to the third attachment hole 41d3. Further, the resin member 39 is formed with a through hole 39b through which the support 41e is inserted. The resin member 39 is more reliably fixed to the first plate 41 by inserting the support 41e into the through hole 39b.

 図16は、ベース43の斜視図である。図6、図9、図16等に示されるように、ベース43は、略円筒形状である。ベース43の第1面(上面)には、第1プレート41が固定される。ベース43の第2面(下面)には、ハウジング24の蓋部241が固定される。
 図16に示されるように、ベース43には、レゾルバ用ハーネス27cが挿通されるハーネス貫通穴43aが形成される。ベース43には、コイル端末25aが挿通されるコイル貫通穴43bが形成される。6つのコイル貫通穴43bが、周方向に等間隔(60°間隔)に形成される。また、図6に示されるように、ベース43の下部には、レゾルバ27が配置される空洞部43cが形成される。
16 is a perspective view of the base 43. FIG. As shown in FIGS. 6, 9, 16, etc., the base 43 has a substantially cylindrical shape. A first plate 41 is fixed to the first surface (upper surface) of the base 43 . A lid portion 241 of the housing 24 is fixed to the second surface (lower surface) of the base 43 .
As shown in FIG. 16, the base 43 is formed with a harness through-hole 43a through which the resolver harness 27c is inserted. The base 43 is formed with a coil through hole 43b through which the coil end 25a is inserted. Six coil through holes 43b are formed at equal intervals (at 60° intervals) in the circumferential direction. Further, as shown in FIG. 6, a hollow portion 43c in which the resolver 27 is arranged is formed in the lower portion of the base 43. As shown in FIG.

 ここで、冷却器4には、冷媒が流通する第1冷却流路が形成される。冷媒としては、例えば、水(冷却水)が用いられる。図16に示されるように、第1冷却流路は、入口流路51と、第1流路52と、第2流路53と、第3流路54と、出口流路55と、を有する。入口流路51には、冷媒が供給される。第1流路52、第2流路53、及び第3流路54は、入口流路51から分岐する。第1流路52は、軸方向から見たときに、6つのパワーモジュール35のうち半数のパワーモジュール35(具体的には、パワーモジュール35U1、35V1、35W1)に重なる位置に形成される。第1流路52は、入口流路51から周方向における一方側に延びる。第2流路53は、軸方向から見たときに、6つのパワーモジュール35のうちもう半数のパワーモジュール35(具体的には、パワーモジュール35U2、35V2、35W2)に重なる位置に形成される。第2流路53は、入口流路51から周方向における他方側に延びる。第3流路54は、軸方向から見たときに、コンデンサユニット34に重なる位置に形成される。出口流路55は、第1流路52、第2流路53、及び第3流路54からの冷媒が合流する。出口流路55は、第2冷却部6の内部に形成される第2冷却流路と連通している。 Here, the cooler 4 is formed with a first cooling channel through which the coolant flows. As the coolant, for example, water (cooling water) is used. As shown in FIG. 16, the first cooling channel has an inlet channel 51, a first channel 52, a second channel 53, a third channel 54, and an outlet channel 55. . Refrigerant is supplied to the inlet channel 51 . A first channel 52 , a second channel 53 , and a third channel 54 branch from the inlet channel 51 . The first flow path 52 is formed at a position overlapping half of the six power modules 35 (specifically, the power modules 35U1, 35V1, 35W1) when viewed from the axial direction. The first flow path 52 extends from the inlet flow path 51 to one side in the circumferential direction. The second flow path 53 is formed at a position overlapping half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2) when viewed from the axial direction. The second flow path 53 extends from the inlet flow path 51 to the other side in the circumferential direction. The third flow path 54 is formed at a position overlapping the capacitor unit 34 when viewed in the axial direction. The refrigerant from the first flow path 52 , the second flow path 53 , and the third flow path 54 merge in the outlet flow path 55 . The outlet channel 55 communicates with a second cooling channel formed inside the second cooling section 6 .

 ベース43には、冷媒供給口45と、溝部46と、冷媒排出口47と、が設けられる。 A coolant supply port 45 , a groove portion 46 and a coolant discharge port 47 are provided on the base 43 .

 冷媒供給口45は、ベース43の周壁を径方向に貫通する孔である。冷媒供給口45の内部が、入口流路51として用いられる。冷媒供給口45の一端には、外部から冷媒が供給される第1継手48が接続される。なお、第1継手48は、回転電機ユニット1の前方側に配置される。冷媒供給口45の他端は、溝部46に接続される。冷媒供給口45は、第1継手48と溝部46とを連通する。 The coolant supply port 45 is a hole penetrating the peripheral wall of the base 43 in the radial direction. The inside of the coolant supply port 45 is used as the inlet channel 51 . One end of the coolant supply port 45 is connected to a first joint 48 to which coolant is supplied from the outside. Note that the first joint 48 is arranged on the front side of the rotary electric machine unit 1 . The other end of the coolant supply port 45 is connected to the groove portion 46 . The coolant supply port 45 communicates between the first joint 48 and the groove portion 46 .

 冷媒排出口47は、ベース43を軸方向に貫通する孔である。冷媒排出口47の内部が、出口流路55として用いられる。冷媒排出口47は、冷媒供給口45に対して周方向の反対側に配置される。冷媒排出口47の一端は、溝部46に接続される。冷媒排出口47の他端は、後述する内筒部242の開口部242c(図9を参照)に接続される。 The coolant discharge port 47 is a hole axially penetrating the base 43 . The inside of the coolant outlet 47 is used as an outlet channel 55 . The coolant discharge port 47 is arranged on the opposite side of the coolant supply port 45 in the circumferential direction. One end of the coolant discharge port 47 is connected to the groove portion 46 . The other end of the coolant discharge port 47 is connected to an opening 242c (see FIG. 9) of the inner cylindrical portion 242, which will be described later.

 溝部46は、ベース43の上面に形成される。溝部46は、環状溝部461と、円形溝部462と、上流側連通溝部463と、下流側連通溝部464と、を備える。 The groove 46 is formed on the upper surface of the base 43 . The groove portion 46 includes an annular groove portion 461 , a circular groove portion 462 , an upstream communication groove portion 463 and a downstream communication groove portion 464 .

 環状溝部461は、周方向に延びており、軸方向から見て環状である。冷媒供給口45は、環状溝部461の径方向外側の側面に開口する。冷媒排出口47は、環状溝部461の底面に開口する。 The annular groove portion 461 extends in the circumferential direction and has an annular shape when viewed from the axial direction. The coolant supply port 45 opens to the radially outer side surface of the annular groove portion 461 . The coolant discharge port 47 opens to the bottom surface of the annular groove portion 461 .

 環状溝部461は、冷媒供給口45と冷媒排出口47とに挟まれる一方側の部分である第1環状溝部461aと、冷媒供給口45と冷媒排出口47とに挟まれる他方側の部分である第2環状溝部461bと、を有する。第1環状溝部461aは、6つのパワーモジュール35のうち半数のパワーモジュール35(具体的には、パワーモジュール35U1、35V1、35W1)の下部に設けられる。第2環状溝部461bは、6つのパワーモジュール35のうちもう半数のパワーモジュール35(具体的には、パワーモジュール35U2、35V2、35W2)の下部に設けられる。
 第1環状溝部461aと、第1プレート41の第2面と、第2プレート42の第2面とにより、第1流路52が形成される。第2環状溝部461bと、第1プレート41の第2面と、第2プレート42の第2面とにより、第2流路53が形成される。図10に示されるように、第2プレート42の第2面に設けられる放熱フィン42aは、第1流路52または第2流路53内に配置される。
The annular groove portion 461 is a first annular groove portion 461a which is one side portion sandwiched between the refrigerant supply port 45 and the refrigerant discharge port 47, and the other side portion sandwiched between the refrigerant supply port 45 and the refrigerant discharge port 47. and a second annular groove portion 461b. The first annular groove portion 461a is provided in the lower portion of half of the six power modules 35 (specifically, the power modules 35U1, 35V1, and 35W1). The second annular groove portion 461b is provided in the lower portion of the other half of the six power modules 35 (specifically, the power modules 35U2, 35V2, and 35W2).
The first flow path 52 is formed by the first annular groove portion 461a, the second surface of the first plate 41, and the second surface of the second plate . A second flow path 53 is formed by the second annular groove portion 461 b , the second surface of the first plate 41 , and the second surface of the second plate 42 . As shown in FIG. 10 , the heat radiating fins 42 a provided on the second surface of the second plate 42 are arranged in the first channel 52 or the second channel 53 .

 図10及び図16に示されるように、環状溝部461の底面において、パワーモジュール35(第2プレート42)と軸方向に対向する部分には、凸部461cが形成される。第2プレート42の放熱フィン42aは、凸部461c上に配置されている。凸部461c同士の間には、凹部461dが形成される。このように、凸部461c及び凹部461dを周方向に交互に設けることにより、放熱フィン42aへ向けて流れる冷媒の流通断面積が大きくなり、第1流路52及び第2流路53における冷媒の圧力損失を低減することができる。 As shown in FIGS. 10 and 16, on the bottom surface of the annular groove 461, a protrusion 461c is formed at a portion axially facing the power module 35 (second plate 42). The heat radiation fins 42a of the second plate 42 are arranged on the convex portion 461c. A concave portion 461d is formed between the convex portions 461c. By alternately providing the convex portions 461c and the concave portions 461d in the circumferential direction in this manner, the cross-sectional area of the coolant flowing toward the heat radiation fins 42a is increased, and the coolant flow in the first flow path 52 and the second flow path 53 is increased. Pressure loss can be reduced.

 円形溝部462は、環状溝部461の内側に配置される。円形溝部462は、コンデンサユニット34の下部に設けられる。また、図9に示されるように、円形溝部462とコンデンサユニット34との間には、放熱部材44が配置される。
 上流側連通溝部463は、環状溝部461と円形溝部462との間に設けられる。軸方向から見たときに、上流側連通溝部463は、冷媒供給口45と径方向に対向するよう設けられる。上流側連通溝部463は、環状溝部461と円形溝部462とを連通する。
 下流側連通溝部464は、環状溝部461と円形溝部462との間に設けられる。軸方向から見たときに、下流側連通溝部464は、冷媒排出口47と径方向に対向するよう設けられる。下流側連通溝部464は、環状溝部461と円形溝部462とを連通する。
 円形溝部462、上流側連通溝部463、及び下流側連通溝部464と、第1プレート41の第2面とにより、第3流路54が形成される。
The circular groove 462 is arranged inside the annular groove 461 . A circular groove portion 462 is provided in the lower portion of the capacitor unit 34 . Further, as shown in FIG. 9, the heat radiating member 44 is arranged between the circular groove 462 and the capacitor unit 34 .
The upstream communication groove portion 463 is provided between the annular groove portion 461 and the circular groove portion 462 . When viewed from the axial direction, the upstream communication groove portion 463 is provided so as to radially face the coolant supply port 45 . The upstream communication groove portion 463 communicates between the annular groove portion 461 and the circular groove portion 462 .
The downstream communication groove portion 464 is provided between the annular groove portion 461 and the circular groove portion 462 . When viewed from the axial direction, the downstream communication groove portion 464 is provided so as to radially face the coolant discharge port 47 . The downstream communication groove portion 464 communicates between the annular groove portion 461 and the circular groove portion 462 .
The circular groove portion 462 , the upstream communication groove portion 463 , the downstream communication groove portion 464 , and the second surface of the first plate 41 form the third flow path 54 .

 上流側連通溝部463及び下流側連通溝部464は、ハーネス貫通穴43a及びコイル貫通穴43bを避けて形成される。図示の例では、上流側連通溝部463及び下流側連通溝部464はそれぞれ、コイル貫通穴43bを挟んで設けられる一対の溝部により構成される。 The upstream communication groove portion 463 and the downstream communication groove portion 464 are formed avoiding the harness through hole 43a and the coil through hole 43b. In the illustrated example, each of the upstream communication groove portion 463 and the downstream communication groove portion 464 is composed of a pair of groove portions provided with the coil through hole 43b interposed therebetween.

 第1継手48から供給される冷媒は、入口流路51を通って、第1流路52と、第2流路53と、第3流路54とに分岐される。パワーモジュール35U1、35V1、35W1にて発生する熱は、第2プレート42を介して、第1流路52を流れる冷媒と熱交換される。これにより、パワーモジュール35U1、35V1、35W1が冷却される。パワーモジュール35U2、35V2、35W2にて発生する熱は、第2プレート42を介して、第2流路53を流れる冷媒と熱交換される。これにより、パワーモジュール35U2、35V2、35W2が冷却される。第2プレート42に放熱フィン42aが設けられることで、冷媒と第2プレート42との接触面積を増大させ、パワーモジュール35の冷却効果を高めることができる。コンデンサユニット34(コンデンサ素子34a)にて発生する熱は、放熱部材44及び第1プレート41を介して、第3流路54を流れる冷媒と熱交換される。これにより、コンデンサユニット34(コンデンサ素子34a)が冷却される。その後、第1流路52、第2流路53、及び第3流路54からの冷媒は、出口流路55にて合流し、第2冷却部6へ向けて排出される。 The coolant supplied from the first joint 48 passes through the inlet channel 51 and branches into the first channel 52 , the second channel 53 and the third channel 54 . Heat generated in the power modules 35U1, 35V1, and 35W1 is heat-exchanged with the coolant flowing through the first flow path 52 via the second plate 42. As shown in FIG. This cools the power modules 35U1, 35V1, and 35W1. Heat generated in the power modules 35U2, 35V2, and 35W2 is heat-exchanged with the coolant flowing through the second flow path 53 via the second plate 42. This cools the power modules 35U2, 35V2, and 35W2. By providing the heat radiation fins 42 a on the second plate 42 , the contact area between the coolant and the second plate 42 can be increased, and the cooling effect of the power module 35 can be enhanced. Heat generated in the capacitor unit 34 (capacitor element 34 a ) is heat-exchanged with the refrigerant flowing through the third flow path 54 via the heat radiating member 44 and the first plate 41 . This cools the capacitor unit 34 (capacitor element 34a). After that, the coolant from the first flow path 52 , the second flow path 53 , and the third flow path 54 joins at the outlet flow path 55 and is discharged toward the second cooling section 6 .

<第2冷却部>
 図9に示されるように、内筒部242と外筒部243とにより、第2冷却部6が構成される。第2冷却部6には、冷媒が流通する第2冷却流路が形成される。第2冷却流路は、内筒部242の外周面と外筒部243の内周面との間に形成される。
<Second cooling unit>
As shown in FIG. 9 , the inner cylinder portion 242 and the outer cylinder portion 243 constitute the second cooling portion 6 . A second cooling channel through which a coolant flows is formed in the second cooling portion 6 . The second cooling flow path is formed between the outer peripheral surface of the inner tubular portion 242 and the inner peripheral surface of the outer tubular portion 243 .

 図17A及び図17Bは、内筒部242の斜視図である。図17A及び図17Bに示されるように、内筒部242は、円筒形状の本体部242aと、本体部242aの上端から径方向外側に突出するフランジ部242bとを有する。フランジ部242bには、冷却器4の冷媒排出口47と連通する開口部242cが形成されている。図9に示されるように、冷媒排出口47と開口部242cとは、第3継手65により接続されている。 17A and 17B are perspective views of the inner tubular portion 242. FIG. As shown in FIGS. 17A and 17B, the inner cylinder portion 242 has a cylindrical main body portion 242a and a flange portion 242b protruding radially outward from the upper end of the main body portion 242a. An opening 242c that communicates with the coolant discharge port 47 of the cooler 4 is formed in the flange portion 242b. As shown in FIG. 9, the coolant discharge port 47 and the opening 242c are connected by a third joint 65. As shown in FIG.

 第2冷却流路は、連通流路61と、第4流路62と、第5流路63と、排出流路64と、を有する。連通流路61は、出口流路55と連通する。第4流路62及び第5流路63は、連通流路61から分岐する。第4流路62は、連通流路61から周方向における一方側に延びる。第5流路63は、連通流路61から周方向における他方側に延びる。排出流路64は、第4流路62及び第5流路63からの冷媒が合流する。冷媒は、排出流路64から外部に排出される。 The second cooling channel has a communication channel 61 , a fourth channel 62 , a fifth channel 63 and a discharge channel 64 . The communication channel 61 communicates with the outlet channel 55 . The fourth channel 62 and the fifth channel 63 branch from the communication channel 61 . The fourth flow path 62 extends from the communication flow path 61 to one side in the circumferential direction. The fifth flow path 63 extends from the communication flow path 61 to the other side in the circumferential direction. The coolant from the fourth flow path 62 and the fifth flow path 63 merge in the discharge flow path 64 . The coolant is discharged to the outside through the discharge channel 64 .

 本体部242aの外周面には、第1溝部71と、第2溝部72と、第3溝部73と、第4溝部74と、が形成される。 A first groove portion 71, a second groove portion 72, a third groove portion 73, and a fourth groove portion 74 are formed on the outer peripheral surface of the body portion 242a.

 第1溝部71は、開口部242cの下方に形成される。第1溝部71は、軸方向に延びる。第1溝部71の上端は、開口部242cに連通する。第1溝部71の下端は閉塞されている。第1溝部71と、外筒部243の内周面とにより、連通流路61が形成される。 The first groove portion 71 is formed below the opening portion 242c. The first groove portion 71 extends in the axial direction. The upper end of the first groove portion 71 communicates with the opening portion 242c. The lower end of the first groove portion 71 is closed. A communication passage 61 is formed by the first groove portion 71 and the inner peripheral surface of the outer cylindrical portion 243 .

 第2溝部72は、第1溝部71に対して周方向の反対側に形成される。第2溝部72は、軸方向に延びる。第2溝部72の上端及び下端は閉塞している。第2溝部72と、外筒部243の内周面とにより、排出流路64が形成される。 The second groove portion 72 is formed on the opposite side of the first groove portion 71 in the circumferential direction. The second groove portion 72 extends in the axial direction. The upper and lower ends of the second groove portion 72 are closed. A discharge passage 64 is formed by the second groove portion 72 and the inner peripheral surface of the outer cylindrical portion 243 .

 第3溝部73は、第1溝部71及び第2溝部72と接続される。第3溝部73は、第1溝部71から第2溝部72まで、周方向における一方側に延びる。複数の第3溝部73が、軸方向に間隔をあけて形成される。第3溝部73と、外筒部243の内周面とにより、第4流路62が形成される。 The third groove portion 73 is connected to the first groove portion 71 and the second groove portion 72 . The third groove portion 73 extends to one side in the circumferential direction from the first groove portion 71 to the second groove portion 72 . A plurality of third grooves 73 are formed at intervals in the axial direction. A fourth flow path 62 is formed by the third groove portion 73 and the inner peripheral surface of the outer cylindrical portion 243 .

 第4溝部74は、第1溝部71及び第2溝部72と接続される。第4溝部74は、第1溝部71から第2溝部72まで、周方向における他方側に延びる。複数の第4溝部74が、軸方向に間隔をあけて形成される。第4溝部74と、外筒部243の内周面とにより、第5流路63が形成される。 The fourth groove portion 74 is connected to the first groove portion 71 and the second groove portion 72 . The fourth groove portion 74 extends from the first groove portion 71 to the second groove portion 72 to the other side in the circumferential direction. A plurality of fourth grooves 74 are formed at intervals in the axial direction. A fifth flow path 63 is formed by the fourth groove portion 74 and the inner peripheral surface of the outer cylindrical portion 243 .

 図9に示されるように、外筒部243の下端部には、外筒部243の周壁を径方向に貫通する開口部243aが形成される。開口部243aは、内筒部242の第2溝部72と径方向に対向するように設けられる。開口部243aは、第2溝部72に接続される。開口部243aは、外部へ冷媒を排出する第2継手66に接続される。開口部243aは、第2溝部72と第2継手66とを連通する。なお、第2継手66は、回転電機ユニット1の前方側に配置される。 As shown in FIG. 9, an opening 243a is formed at the lower end of the outer cylindrical portion 243 so as to penetrate the peripheral wall of the outer cylindrical portion 243 in the radial direction. The opening portion 243a is provided so as to face the second groove portion 72 of the inner cylinder portion 242 in the radial direction. The opening 243 a is connected to the second groove 72 . The opening 243a is connected to a second joint 66 that discharges the coolant to the outside. The opening 243 a communicates the second groove 72 and the second joint 66 . The second joint 66 is arranged on the front side of the rotary electric machine unit 1 .

 冷却器4の冷媒排出口47から排出された冷媒は、開口部242cを介して連通流路61に流入する。冷媒は、連通流路61を下方に流れつつ、第4流路62と第5流路63とに分岐される。第4流路62を流れる冷媒は、回転電機2のうち、周方向の一方側の半分を冷却する。第5流路63を流れる冷媒は、回転電機2のうち、周方向の他方側の半分を冷却する。複数の第4流路62及び第5流路63が軸方向に間隔をあけて設けられているため、第2冷却部6による回転電機2の冷却効率が向上する。その後、第4流路62及び第5流路63からの冷媒は、排出流路64にて合流し、排出流路64を下方に流れ、開口部243a及び第2継手66を介して外部に排出される。 The coolant discharged from the coolant discharge port 47 of the cooler 4 flows into the communication channel 61 through the opening 242c. The coolant flows downward through the communication channel 61 and branches into the fourth channel 62 and the fifth channel 63 . The coolant flowing through the fourth flow path 62 cools one half of the rotating electric machine 2 in the circumferential direction. The coolant flowing through the fifth flow path 63 cools the other half of the rotating electric machine 2 in the circumferential direction. Since the plurality of fourth flow passages 62 and fifth flow passages 63 are provided at intervals in the axial direction, cooling efficiency of the rotating electric machine 2 by the second cooling section 6 is improved. After that, the refrigerant from the fourth flow path 62 and the fifth flow path 63 joins in the discharge flow path 64, flows downward through the discharge flow path 64, and is discharged to the outside through the opening 243a and the second joint 66. be done.

 本実施の形態では、回転電機ユニット1において、電力変換装置3は、電力変換装置3の中央部に配置されるコンデンサユニット34と、コンデンサユニット34を囲むように、周方向に配置される複数のパワーモジュール35と、を有する。コンデンサユニット34は、本体部341と、正極導体342と、負極導体343と、を有する。複数のパワーモジュール35はそれぞれ、本体部35aと、正極導体342と接続される正極端子35bと、負極導体343と接続される負極端子35cと、を有する。正極端子35b及び負極端子35cは、コンデンサユニット34と対向するよう配置されている。正極導体342と正極端子35bとの第1接続部C1、及び負極導体343と負極端子35cとの第2接続部C2は、本体部341と本体部35aとの間に位置している。
 これにより、コンデンサユニット34とパワーモジュール35との接続経路を短縮できるため、この接続経路におけるインダクタンスが抑えられ、パワーモジュール35に発生するサージ電圧を抑制できる。したがって、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。
In the present embodiment, in the rotating electric machine unit 1, the power conversion device 3 includes a capacitor unit 34 arranged in the central portion of the power conversion device 3, and a plurality of capacitor units 34 arranged in the circumferential direction so as to surround the capacitor unit 34. and a power module 35 . The capacitor unit 34 has a body portion 341 , a positive conductor 342 and a negative conductor 343 . Each of the plurality of power modules 35 has a body portion 35 a , a positive terminal 35 b connected to the positive conductor 342 , and a negative terminal 35 c connected to the negative conductor 343 . The positive terminal 35 b and the negative terminal 35 c are arranged to face the capacitor unit 34 . A first connection portion C1 between the positive electrode conductor 342 and the positive electrode terminal 35b and a second connection portion C2 between the negative electrode conductor 343 and the negative electrode terminal 35c are located between the body portion 341 and the body portion 35a.
As a result, the connection path between the capacitor unit 34 and the power module 35 can be shortened, so the inductance in this connection path can be suppressed, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a large amount of current to the power module 35, and it becomes possible to increase the output of the rotary electric machine unit 1. FIG.

 また、正極導体342から、複数のパワーモジュール35のうち第1のパワーモジュール35の正極端子35b及び負極端子35cを経由した、負極導体343までの第1経路の長さが、正極導体342から、複数のパワーモジュール35のうち第2のパワーモジュール35の正極端子35b及び負極端子35cを経由した、負極導体343までの第2経路の長さと略同一である。なお、第1経路の長さが第2経路の長さと略同一であるとは、第1経路の全長に対して、第1経路の長さと第2経路の長さとの差が、±5%の範囲内であることを意味する。
 これにより、第1のパワーモジュール35及び第2のパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35により大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。
Further, the length of the first path from the positive electrode conductor 342 to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c of the first power module 35 among the plurality of power modules 35 is The length of the second path to the negative conductor 343 via the positive terminal 35b and the negative terminal 35c of the second power module 35 among the plurality of power modules 35 is substantially the same. Note that the length of the first path is substantially the same as the length of the second path means that the difference between the length of the first path and the length of the second path is ±5% with respect to the total length of the first path. means within the range of
Thereby, the surge voltages generated in the first power module 35 and the second power module 35 can be equalized. Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1. FIG.

 また、複数のパワーモジュール35の全てにおいて、正極導体342から、正極端子35b及び負極端子35cを経由した、負極導体343までの経路の長さが略同一である。
 これにより、全てのパワーモジュール35について、それぞれのパワーモジュール35に発生するサージ電圧を均等にできる。したがって、パワーモジュール35により大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。
Further, in all of the plurality of power modules 35, the path length from the positive electrode conductor 342 to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c is substantially the same.
As a result, the surge voltage generated in each power module 35 can be equalized for all the power modules 35 . Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1. FIG.

 また、正極導体342と正極端子35bとは直接接続されており、負極導体343と負極端子35cとは直接接続されている。
 これにより、ワイヤ等を使用せずにコンデンサユニット34とパワーモジュール35とを接続できるため、回転電機ユニット1のコストを抑えることができる。また、コンデンサユニット34とパワーモジュール35との接続経路を短縮できるため、この接続経路におけるインダクタンスが抑えられ、パワーモジュール35に発生するサージ電圧を抑制できる。したがって、パワーモジュール35により大容量の電流を入力することが可能となり、回転電機ユニット1の更なる高出力化が可能となる。
The positive conductor 342 and the positive terminal 35b are directly connected, and the negative conductor 343 and the negative terminal 35c are directly connected.
Accordingly, since the capacitor unit 34 and the power module 35 can be connected without using wires or the like, the cost of the rotating electric machine unit 1 can be suppressed. Moreover, since the connection path between the capacitor unit 34 and the power module 35 can be shortened, the inductance in this connection path can be suppressed, and the surge voltage generated in the power module 35 can be suppressed. Therefore, it becomes possible to input a large amount of current by the power module 35, and it becomes possible to further increase the output of the rotary electric machine unit 1. FIG.

 また、電力変換装置3は、複数のパワーモジュール35と複数のコイル25とをそれぞれ接続する複数のバスバー37をさらに備える。
 これにより、バスバー37を用いて、パワーモジュール35とコイル25とを容易に接続することができる。
Moreover, the power conversion device 3 further includes a plurality of bus bars 37 that connect the plurality of power modules 35 and the plurality of coils 25, respectively.
Thereby, the power module 35 and the coil 25 can be easily connected using the bus bar 37 .

 また、電力変換装置3は、複数のパワーモジュール35を制御する制御基板36と、複数のバスバー37を流れる電流をそれぞれ検出する複数の電流センサ38と、をさらに備える。複数の電流センサ38はそれぞれ、制御基板36と直接接続される。
 これにより、電流センサ38の信号端子38aと制御基板36との接続経路を短縮できるため、耐ノイズ性を向上できる。また、ハーネス等を使用せずに電流センサ38と制御基板36とを接続するため、回転電機ユニット1の低コスト化、及び軽量化を図ることができる。
The power conversion device 3 further includes a control board 36 that controls the plurality of power modules 35 and a plurality of current sensors 38 that respectively detect currents flowing through the plurality of busbars 37 . Each of the multiple current sensors 38 is directly connected to the control board 36 .
As a result, the connection path between the signal terminal 38a of the current sensor 38 and the control board 36 can be shortened, so that noise resistance can be improved. Further, since the current sensor 38 and the control board 36 are connected without using a harness or the like, the cost and weight of the rotary electric machine unit 1 can be reduced.

 また、複数のバスバー37はそれぞれ、複数のパワーモジュール35のうち対応するパワーモジュール35と接続される第1端子371aと、複数のコイル25のうち対応するコイル25と接続される第2端子372aと、を有する。第1端子371aは、対応するパワーモジュール35の本体部35aよりも径方向外側に位置する。
 これにより、バスバー37を用いて、パワーモジュール35とコイル25とをより容易に接続することができる。
Moreover, each of the plurality of bus bars 37 has a first terminal 371 a connected to the corresponding power module 35 among the plurality of power modules 35 and a second terminal 372 a connected to the corresponding coil 25 among the plurality of coils 25 . , have The first terminals 371a are positioned radially outward of the main body portion 35a of the corresponding power module 35 .
Thereby, the power module 35 and the coil 25 can be more easily connected using the bus bar 37 .

 また、複数のバスバー37はそれぞれ、電流センサ38が取り付けられる取付部373をさらに有する。取付部373は、軸方向において第2端子372aよりも制御基板36側に突出するよう設けられている。
 これにより、電流センサ38の信号端子38aを制御基板36により容易に接続することができる。
Moreover, each of the plurality of bus bars 37 further has an attachment portion 373 to which the current sensor 38 is attached. The attachment portion 373 is provided so as to protrude toward the control board 36 from the second terminal 372a in the axial direction.
Thereby, the signal terminal 38 a of the current sensor 38 can be easily connected to the control board 36 .

 また、複数のバスバー37と、複数のパワーモジュール35とは、周方向に交互に配置されている。
 これにより、電力変換装置3の実装密度を向上させることができ、回転電機ユニット1の小型化が可能となる。
 また、バスバー37に電流センサ38が設けられる場合、電流センサ38の信号端子38aを、ハーネス等を使用することなく制御基板36に直接接続することが可能となる。したがって、耐ノイズ性が向上し、電流センサ38によるバスバー37の電流値の検出精度が向上する。
Also, the plurality of bus bars 37 and the plurality of power modules 35 are alternately arranged in the circumferential direction.
As a result, the mounting density of the power conversion device 3 can be improved, and the size of the rotating electric machine unit 1 can be reduced.
Further, when the current sensor 38 is provided on the bus bar 37, the signal terminal 38a of the current sensor 38 can be directly connected to the control board 36 without using a harness or the like. Therefore, the noise resistance is improved, and the detection accuracy of the current value of the bus bar 37 by the current sensor 38 is improved.

 また、回転電機ユニット1は、冷媒が流通する第1冷却流路が形成され、電力変換装置3を冷却する冷却器4を備える。第1冷却流路は、冷媒が供給される入口流路51と、入口流路51から分岐するとともに、軸方向から見たときに、複数のパワーモジュール35のうち第1群のパワーモジュール35U1、35V1、35W1に重なる位置に形成される第1流路52と、入口流路51から分岐するとともに、軸方向から見たときに、複数のパワーモジュール35のうち第1群と異なる第2群のパワーモジュール35U2、35V2、35W2に重なる位置に形成される第2流路53と、入口流路51から分岐するとともに、軸方向から見たときに、コンデンサユニット34に重なる位置に形成される第3流路54と、第1流路52、第2流路53、及び第3流路54からの冷媒が合流するとともに、冷却器4から冷媒が排出される出口流路55と、を有する。出口流路55は、回転電機2を冷却する第2冷却部6の内部に形成された第2冷却流路に連通する。第2冷却流路は、出口流路55と連通する連通流路61と、連通流路61から分岐するとともに、連通流路61から周方向における一方側に延びる第4流路62と、連通流路61から分岐するとともに、連通流路61から周方向における他方側に延びる第5流路63と、第4流路62及び第5流路63からの冷媒が合流するとともに、第2冷却部6から冷媒が排出される排出流路64と、を有する。 The rotary electric machine unit 1 also includes a cooler 4 that cools the power conversion device 3 in which a first cooling passage through which a coolant flows is formed. The first cooling channel includes an inlet channel 51 to which a coolant is supplied, and branches from the inlet channel 51. When viewed from the axial direction, the power modules 35U1 of the first group among the plurality of power modules 35, A first flow path 52 formed at a position overlapping with 35V1 and 35W1, and a second group branching from the inlet flow path 51 and different from the first group among the plurality of power modules 35 when viewed from the axial direction. A second flow path 53 formed at a position overlapping the power modules 35U2, 35V2, and 35W2, and a third flow path 53 branched from the inlet flow path 51 and formed at a position overlapping the capacitor unit 34 when viewed in the axial direction. It has a flow path 54 and an outlet flow path 55 through which the refrigerant from the first flow path 52 , the second flow path 53 , and the third flow path 54 merge and the refrigerant is discharged from the cooler 4 . The outlet passage 55 communicates with a second cooling passage formed inside the second cooling portion 6 that cools the rotating electric machine 2 . The second cooling flow path includes a communication flow path 61 that communicates with the outlet flow path 55, a fourth flow path 62 that branches from the communication flow path 61 and extends to one side in the circumferential direction from the communication flow path 61, and a communication flow path. While branching from the passage 61 and extending to the other side in the circumferential direction from the communication passage 61 , the coolant from the fourth passage 62 and the fifth passage 63 merge, and the second cooling portion 6 and a discharge channel 64 through which the coolant is discharged.

 冷媒が、第1流路52と第2流路53とに分岐されて流通する。したがって、1系統の冷却流路上に複数のパワーモジュール35を配置する場合と比べて、冷却流路の上流側と下流側との間で冷媒の温度が偏ることを抑制できる。したがって、複数のパワーモジュール35を均一的に冷却することができ、回転電機ユニット1の冷却性能を向上できる。また、この結果、パワーモジュール35へ入力する電流密度を向上することが可能となり、回転電機ユニット1の高出力化が可能となる。
 また、第3流路54を流れる冷媒によりコンデンサユニット34を冷却できるため、回転電機ユニット1の冷却性能がより向上する。この結果、コンデンサユニット34へ入力する電流密度を向上することが可能となり、回転電機ユニット1の高出力化が可能となる。
 さらに、冷却器4の第1冷却流路と第2冷却部6の第2冷却流路とが回転電機ユニット1内で連通しているため、回転電機ユニット1を小型化できる。
 さらに、第4流路62を流れる冷媒によって、回転電機2のうち、周方向の一方側の半分を冷却し、第5流路63を流れる冷媒によって、回転電機2のうち、周方向の他方側の半分を冷却できるため、第2冷却部6による回転電機2の冷却効率が向上する。
The coolant is branched to flow through the first channel 52 and the second channel 53 . Therefore, compared with the case where a plurality of power modules 35 are arranged on one system of cooling flow path, it is possible to suppress unevenness in temperature of the coolant between the upstream side and the downstream side of the cooling flow path. Therefore, the plurality of power modules 35 can be uniformly cooled, and the cooling performance of the rotating electric machine unit 1 can be improved. Further, as a result, it is possible to improve the density of the current input to the power module 35, and it is possible to increase the output of the rotary electric machine unit 1. FIG.
Moreover, since the condenser unit 34 can be cooled by the refrigerant flowing through the third flow path 54, the cooling performance of the rotating electric machine unit 1 is further improved. As a result, it is possible to improve the density of the current input to the capacitor unit 34, and the output of the rotary electric machine unit 1 can be increased.
Furthermore, since the first cooling flow path of the cooler 4 and the second cooling flow path of the second cooling section 6 communicate within the rotating electrical machine unit 1, the rotating electrical machine unit 1 can be made smaller.
Furthermore, the coolant flowing through the fourth flow path 62 cools half of the rotating electrical machine 2 on one side in the circumferential direction, and the coolant flowing through the fifth flow path 63 cools the other half of the rotating electrical machine 2 in the circumferential direction. can be cooled, the cooling efficiency of the rotating electric machine 2 by the second cooling unit 6 is improved.

 また、端子台32、信号コネクタ33、第1継手48、及び第2継手66は、回転電機ユニット1の前方側に配置される。
 これにより、端子台32、信号コネクタ33、第1継手48、及び第2継手66を、回転電機ユニット1の周方向の一方に集約できるため、回転電機ユニット1の車両等への搭載性、及びメンテナンス性が向上する。
Also, the terminal block 32 , the signal connector 33 , the first joint 48 , and the second joint 66 are arranged on the front side of the rotary electric machine unit 1 .
As a result, the terminal block 32, the signal connector 33, the first joint 48, and the second joint 66 can be integrated in one of the circumferential directions of the rotary electric machine unit 1, so that the rotary electric machine unit 1 can be easily mounted on a vehicle or the like. Improve maintainability.

 また、軸方向から見て、正極導体342及び負極導体343のうち、本体部341から延びる部分(すなわち、正極側第1端部342a、正極側第2端部342b、負極側第1端部343a、及び負極側第2端部343b)は、軸心に重ならないよう配置されている。
 これにより、コンデンサユニット34の本体部341を、回転子22の軸心上に配置できる。したがって、正極導体342から、複数のパワーモジュール35のうち第1のパワーモジュール35の正極端子35b及び負極端子35cを経由した、負極導体343の第1経路の長さを、正極導体342から、複数のパワーモジュール35のうち第2のパワーモジュール35の正極端子35b及び負極端子35cを経由した、負極導体343までの第2経路の長さと略同一にできる。したがって、第1のパワーモジュール35及び第2のパワーモジュール35に発生するサージ電圧を均等にできるため、パワーモジュール35に大容量の電流を入力することが可能となり、回転電機ユニット1の高出力化が可能となる。
In addition, when viewed from the axial direction, of the positive electrode conductor 342 and the negative electrode conductor 343, the portions extending from the main body portion 341 (that is, the positive electrode side first end portion 342a, the positive electrode side second end portion 342b, the negative electrode side first end portion 343a) , and the negative electrode side second end portion 343b) are arranged so as not to overlap with the axial center.
Thereby, the body portion 341 of the capacitor unit 34 can be arranged on the axis of the rotor 22 . Therefore, the length of the first path of the negative electrode conductor 343 from the positive electrode conductor 342 via the positive electrode terminal 35b and the negative electrode terminal 35c of the first power module 35 among the plurality of power modules 35 is set to a plurality of lengths from the positive electrode conductor 342 The length of the second path to the negative electrode conductor 343 via the positive electrode terminal 35b and the negative electrode terminal 35c of the second power module 35 of the power modules 35 can be substantially the same. Therefore, since the surge voltages generated in the first power module 35 and the second power module 35 can be made uniform, a large amount of current can be input to the power module 35, and the output of the rotary electric machine unit 1 can be increased. becomes possible.

 また、制御基板36の中央部には、コンデンサユニット34が挿通される開口部36bが形成される。複数の電流センサ38は、制御基板36よりも固定子21側に配置される。
 これにより、制御基板36とコンデンサユニット34とが接触することを避けつつ、制御基板36を、複数のパワーモジュール35に近接させて配置することができる。これにより、電流センサ38の信号端子38aと制御基板36とを容易に直接接続させることができるため、耐ノイズ性が向上し、電流センサ38によるバスバー37の電流値の検出精度が向上する。
An opening 36b through which the capacitor unit 34 is inserted is formed in the central portion of the control board 36. As shown in FIG. A plurality of current sensors 38 are arranged closer to the stator 21 than the control board 36 is.
Thereby, the control board 36 can be arranged close to the plurality of power modules 35 while avoiding contact between the control board 36 and the capacitor unit 34 . As a result, the signal terminal 38a of the current sensor 38 and the control board 36 can be easily and directly connected, so that the noise resistance is improved and the detection accuracy of the current value of the bus bar 37 by the current sensor 38 is improved.

 また、正極導体342及び負極導体343のうち、本体部341から延びて直流電源Eに接続される部分(すなわち、正極側第1端部342a及び負極側第1端部343a)は、開口部36bに挿通される。また、レゾルバ27を制御基板36に接続するレゾルバ用ハーネス27cは、開口部36bに挿通される。
 これにより、レゾルバ用ハーネス27cの経路長を短くできるため、耐ノイズ性が向上し、レゾルバ27によるシャフト23の回転角の検出精度が向上する。また、レゾルバ用ハーネス27cの経路長を短くできるため、レゾルバ用ハーネス27cの製造コストを低減することができる。
In addition, of the positive electrode conductor 342 and the negative electrode conductor 343, the portions extending from the body portion 341 and connected to the DC power source E (that is, the positive electrode side first end portion 342a and the negative electrode side first end portion 343a) are provided with the opening portion 36b. is inserted into the A resolver harness 27c that connects the resolver 27 to the control board 36 is inserted through the opening 36b.
As a result, the path length of the resolver harness 27c can be shortened, so the noise resistance is improved, and the detection accuracy of the rotation angle of the shaft 23 by the resolver 27 is improved. Moreover, since the path length of the resolver harness 27c can be shortened, the manufacturing cost of the resolver harness 27c can be reduced.

実施の形態2.
 次に、実施の形態2に係る回転電機ユニット1について説明する。本実施の形態に係る回転電機ユニットは、基本的な構成は実施の形態1の回転電機ユニット1と同様であるため、異なる点を中心に説明する。図18は、回転電機ユニット1の斜視図であって、ケース31、端子台32、及び制御基板36を取り外した状態を示す図である。
Embodiment 2.
Next, the rotary electric machine unit 1 according to Embodiment 2 will be described. Since the basic configuration of the rotary electric machine unit according to the present embodiment is the same as that of the rotary electric machine unit 1 of the first embodiment, different points will be mainly described. FIG. 18 is a perspective view of the rotary electric machine unit 1, showing a state in which the case 31, the terminal block 32, and the control board 36 are removed.

 図18に示されるように、本実施の形態では、パワーモジュール35において、正極端子35b及び負極端子35cは、本体部35aから、軸方向に直交する方向(本実施の形態では、略径方向)に延びている。コンデンサユニット34において、正極導体342の正極側第2端部342bの先端部及び負極導体343の負極側第2端部343bの先端部は、軸方向に直交する方向(本実施の形態では、略径方向)に延びている。 As shown in FIG. 18, in the power module 35 of the present embodiment, the positive electrode terminal 35b and the negative electrode terminal 35c extend from the body portion 35a in a direction orthogonal to the axial direction (in the present embodiment, substantially radial direction). extends to In the capacitor unit 34, the tip portion of the positive electrode side second end portion 342b of the positive electrode conductor 342 and the tip portion of the negative electrode side second end portion 343b of the negative electrode conductor 343 are arranged in a direction perpendicular to the axial direction (in the present embodiment, approximately radial direction).

 正極端子35bは、正極側第2端部342bの先端部と軸方向に重なるように配置される。正極端子35bは、正極側第2端部342bの先端部に上方から当接する。すなわち、正極端子35bの上面(すなわち、正極端子35bにおける、固定子21側と反対側の面)と、正極側第2端部342bの先端部の下面(すなわち、正極側第2端部342bの先端部における、固定子21側の面)とは、軸方向に対向し、互いに接触する。また、正極端子35bの板厚(すなわち、正極端子35bの軸方向の大きさ)は、正極側第2端部342bの先端部の板厚(すなわち、正極側第2端部342bの先端部の軸方向の大きさ)よりも小さい。 The positive electrode terminal 35b is arranged so as to axially overlap the tip of the positive electrode side second end 342b. The positive electrode terminal 35b abuts the tip of the positive electrode side second end 342b from above. That is, the upper surface of the positive electrode terminal 35b (that is, the surface of the positive electrode terminal 35b opposite to the stator 21 side) and the lower surface of the tip of the positive electrode-side second end 342b (that is, the positive electrode-side second end 342b) The surface on the side of the stator 21 at the tip portion faces in the axial direction and contacts each other. In addition, the thickness of the positive electrode terminal 35b (that is, the size of the positive electrode terminal 35b in the axial direction) is the thickness of the tip of the positive electrode-side second end 342b (that is, the thickness of the tip of the positive electrode-side second end 342b). axial dimension).

 正極端子35bは、正極側第2端部342bに直接接続される。なお、直接接続されるとは、正極端子35bと正極側第2端部342bとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。正極端子35bと正極側第2端部342bとの接続には、例えば、レーザー溶接が用いられる。この場合、レーザー溶接は、正極端子35b側から行われる。正極端子35bと正極側第2端部342bとのレーザー溶接部は、正極側第2端部342bと正極端子35bとの第1接続部C1である。軸方向から見て、正極側第2端部342bと正極端子35bとの第1接続部C1は、コンデンサユニット34の本体部341とパワーモジュール35の本体部35aとの間に位置している。 The positive electrode terminal 35b is directly connected to the positive electrode side second end 342b. The direct connection means that the positive electrode terminal 35b and the positive electrode side second end portion 342b are connected in contact with each other without using a wire or the like. For example, laser welding is used to connect the positive electrode terminal 35b and the positive electrode side second end portion 342b. In this case, laser welding is performed from the positive electrode terminal 35b side. A laser-welded portion between the positive terminal 35b and the positive electrode-side second end portion 342b is a first connection portion C1 between the positive electrode-side second end portion 342b and the positive electrode terminal 35b. A first connecting portion C1 between the positive electrode side second end portion 342b and the positive electrode terminal 35b is positioned between the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35 when viewed from the axial direction.

 負極端子35cは、負極側第2端部343bの先端部と軸方向に重なるように配置される。負極端子35cは、負極側第2端部343bの先端部に上方から当接する。すなわち、負極端子35cの上面(すなわち、負極端子35cにおける、固定子21側と反対側の面)と、負極側第2端部343bの先端部の下面(すなわち、負極側第2端部343bの先端部における、固定子21側の面)とは、軸方向に対向し、互いに接触する。また、負極端子35cの板厚(すなわち、負極端子35cの軸方向の大きさ)は、負極側第2端部343bの先端部の板厚(すなわち、負極側第2端部343bの先端部の軸方向の大きさ)よりも小さい。 The negative electrode terminal 35c is arranged so as to axially overlap the tip of the negative electrode-side second end 343b. The negative electrode terminal 35c abuts the tip of the negative electrode-side second end 343b from above. That is, the upper surface of the negative electrode terminal 35c (that is, the surface of the negative electrode terminal 35c opposite to the stator 21 side) and the lower surface of the tip of the negative electrode-side second end portion 343b (that is, the negative electrode-side second end portion 343b) The surface on the side of the stator 21 at the tip portion faces in the axial direction and contacts each other. Further, the plate thickness of the negative electrode terminal 35c (that is, the size of the negative electrode terminal 35c in the axial direction) is the thickness of the tip portion of the negative electrode-side second end portion 343b (that is, the thickness of the tip portion of the negative electrode-side second end portion 343b). axial dimension).

 負極端子35cは、負極側第2端部343bに直接接続される。なお、直接接続されるとは、負極端子35cと負極側第2端部343bとが、ワイヤ等を使用せずに、互いに接触して接続されることをいう。負極端子35cと負極側第2端部343bとの接続には、例えば、レーザー溶接が用いられる。この場合、レーザー溶接は、負極端子35c側から行われる。負極端子35cと負極側第2端部343bとのレーザー溶接部は、負極側第2端部343bと負極端子35cとの第2接続部C2である。軸方向から見て、負極側第2端部343bと負極端子35cとの第2接続部C2は、コンデンサユニット34の本体部341とパワーモジュール35の本体部35aとの間に位置している。 The negative terminal 35c is directly connected to the negative second end 343b. The direct connection means that the negative electrode terminal 35c and the negative electrode side second end portion 343b are connected in contact with each other without using a wire or the like. Laser welding, for example, is used to connect the negative electrode terminal 35c and the negative electrode-side second end portion 343b. In this case, laser welding is performed from the negative electrode terminal 35c side. The laser-welded portion between the negative electrode terminal 35c and the negative electrode-side second end portion 343b is the second connection portion C2 between the negative electrode-side second end portion 343b and the negative electrode terminal 35c. A second connection portion C2 between the negative electrode-side second end portion 343b and the negative electrode terminal 35c is positioned between the main body portion 341 of the capacitor unit 34 and the main body portion 35a of the power module 35 when viewed from the axial direction.

 以上説明したように、本実施の形態では、正極導体342の正極側第2端部342bと正極端子35bとは、軸方向に対向して互いに接触しており、負極導体343の負極側第2端部343bと負極端子35cとは、軸方向に対向して互いに接触している。
 これにより、正極導体342、負極導体343、正極端子35b、及び負極端子35cの材料の使用量を削減できるため、回転電機ユニット1の削減コストを低減することができ、かつ、回転電機ユニット1の軽量化が可能となる。
As described above, in the present embodiment, the positive electrode side second end portion 342b of the positive electrode conductor 342 and the positive electrode terminal 35b are axially opposed to each other and are in contact with each other. The end portion 343b and the negative terminal 35c are axially opposed to each other and are in contact with each other.
As a result, the amount of material used for the positive electrode conductor 342, the negative electrode conductor 343, the positive electrode terminal 35b, and the negative electrode terminal 35c can be reduced. Weight reduction is possible.

 なお、正極側第2端部342bの先端部の板厚が、正極端子35bの板厚よりも小さい場合には、正極側第2端部342bの先端部が、正極端子35bよりも上方に配置され、レーザー溶接が、正極側第2端部342bの先端部側から行われてもよい。また、負極側第2端部343bの先端部の板厚が、負極端子35cの板厚よりも小さい場合には、負極側第2端部343bの先端部が、負極端子35cよりも上方に配置され、レーザー溶接が、負極側第2端部343bの先端部側から行われてもよい。すなわち、正極側第2端部342bの先端部と正極端子35bとのうち、板厚が薄い方の側からレーザー溶接を行い、負極側第2端部343bの先端部と負極端子35cとのうち、板厚が薄い方の側からレーザー溶接を行う。これにより、レーザー溶接に必要な溶接部の溶け込み深さを小さくすることができるため、レーザー溶接機の出力を低減でき、設備コストを削減できる。さらに、レーザー溶接に要する時間を短縮できるため、生産性を向上できる。 When the plate thickness of the tip of the positive electrode side second end portion 342b is smaller than the plate thickness of the positive electrode terminal 35b, the tip portion of the positive electrode side second end portion 342b is arranged above the positive electrode terminal 35b. and laser welding may be performed from the tip side of the positive electrode side second end portion 342b. Further, when the plate thickness of the tip of the negative electrode side second end portion 343b is smaller than the plate thickness of the negative electrode terminal 35c, the tip portion of the negative electrode side second end portion 343b is arranged above the negative electrode terminal 35c. and laser welding may be performed from the tip side of the negative electrode side second end portion 343b. That is, laser welding is performed from the tip portion of the positive electrode side second end portion 342b and the positive electrode terminal 35b, whichever is thinner, and the tip portion of the negative electrode side second end portion 343b and the negative electrode terminal 35c are welded. , laser welding from the thinner side. As a result, it is possible to reduce the penetration depth of the weld required for laser welding, so that the output of the laser welder can be reduced and the equipment cost can be reduced. Furthermore, since the time required for laser welding can be shortened, productivity can be improved.

 なお、本開示の技術的範囲は前記実施の形態に限定されず、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 It should be noted that the technical scope of the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present disclosure.

1 回転電機ユニット
2 回転電機
3 電力変換装置
4 冷却器(第1冷却部)
6 第2冷却部
21 固定子
22 回転子
25 コイル
27 レゾルバ
27c レゾルバ用ハーネス(ハーネス)
32 端子台
33 信号コネクタ
34 コンデンサユニット
35 パワーモジュール
35a 本体部(パワーモジュール本体部)
35b 正極端子
35c 負極端子
36 制御基板
36b 開口部
37 バスバー
38 電流センサ
48 第1継手
51 入口流路
52 第1流路
53 第2流路
54 第3流路
55 出口流路
61 連通流路
62 第4流路
63 第5流路
64 排出流路
66 第2継手
341 本体部(コンデンサ本体部)
342 正極導体
343 負極導体
371a 第1端子
372a 第2端子
373 取付部
C1 第1接続部
C2 第2接続部
1 Rotating electric machine unit 2 Rotating electric machine 3 Power conversion device 4 Cooler (first cooling unit)
6 second cooling unit 21 stator 22 rotor 25 coil 27 resolver 27c harness for resolver (harness)
32 terminal block 33 signal connector 34 capacitor unit 35 power module 35a main body (power module main body)
35b Positive electrode terminal 35c Negative electrode terminal 36 Control board 36b Opening 37 Bus bar 38 Current sensor 48 First joint 51 Inlet channel 52 First channel 53 Second channel 54 Third channel 55 Outlet channel 61 Communication channel 62 4th flow path 63 5th flow path 64 discharge flow path 66 second joint 341 main body (condenser main body)
342 Positive electrode conductor 343 Negative electrode conductor 371a First terminal 372a Second terminal 373 Mounting portion C1 First connection portion C2 Second connection portion

Claims (15)

 固定子と、前記固定子に対して軸心回りに回転する回転子と、を有する回転電機と、
 前記回転子の軸心に沿った軸方向において、前記回転電機と並んで配置される電力変換装置と、
を備え、
 前記電力変換装置は、前記電力変換装置の中央部に配置されるコンデンサユニットと、前記コンデンサユニットを囲むように、前記回転子の軸心回りの周方向に配置される複数のパワーモジュールと、を有し、
 前記コンデンサユニットは、コンデンサ本体部と、正極導体と、負極導体と、を有し、
 前記複数のパワーモジュールはそれぞれ、パワーモジュール本体部と、前記正極導体と接続される正極端子と、前記負極導体と接続される負極端子と、を有し、
 前記正極端子及び前記負極端子は、前記コンデンサユニットと対向するよう配置されており、
 前記正極導体と前記正極端子との第1接続部、及び前記負極導体と前記負極端子との第2接続部は、前記コンデンサ本体部と前記パワーモジュール本体部との間に位置している、回転電機ユニット。
a rotating electric machine having a stator and a rotor rotating about an axis with respect to the stator;
a power conversion device arranged side by side with the rotating electric machine in an axial direction along the axis of the rotor;
with
The power conversion device includes a capacitor unit arranged in a central portion of the power conversion device, and a plurality of power modules arranged in a circumferential direction around the axis of the rotor so as to surround the capacitor unit. have
The capacitor unit has a capacitor body, a positive electrode conductor, and a negative electrode conductor,
each of the plurality of power modules has a power module main body, a positive electrode terminal connected to the positive electrode conductor, and a negative electrode terminal connected to the negative electrode conductor;
The positive terminal and the negative terminal are arranged to face the capacitor unit,
A first connecting portion between the positive electrode conductor and the positive electrode terminal and a second connecting portion between the negative electrode conductor and the negative electrode terminal are positioned between the capacitor body and the power module body. electrical unit.
 前記正極導体から、前記複数のパワーモジュールのうち第1のパワーモジュールの前記正極端子及び前記負極端子を経由した、前記負極導体までの第1経路の長さが、前記正極導体から、前記複数のパワーモジュールのうち第2のパワーモジュールの前記正極端子及び前記負極端子を経由した、前記負極導体までの第2経路の長さと略同一である、請求項1に記載の回転電機ユニット。 The length of a first path from the positive electrode conductor to the negative electrode conductor via the positive electrode terminal and the negative electrode terminal of a first power module among the plurality of power modules is equal to the length of the first path from the positive electrode conductor to the plurality of power modules. 2. The rotary electric machine unit according to claim 1, wherein the length of the second path to the negative conductor via the positive terminal and the negative terminal of a second power module of the power modules is substantially the same as that of the second path.  前記複数のパワーモジュールの全てにおいて、前記正極導体から、前記正極端子及び前記負極端子を経由した、前記負極導体までの経路の長さが略同一である、請求項2に記載の回転電機ユニット。 3. The electric rotating machine unit according to claim 2, wherein in all of said plurality of power modules, paths from said positive electrode conductor to said negative electrode conductor via said positive electrode terminal and said negative electrode terminal have substantially the same length.  前記正極導体と前記正極端子とは直接接続されており、前記負極導体と前記負極端子とは直接接続されている、請求項1~3のいずれか一項に記載の回転電機ユニット。 The rotating electric machine unit according to any one of claims 1 to 3, wherein the positive conductor and the positive terminal are directly connected, and the negative conductor and the negative terminal are directly connected.  前記回転電機は、前記固定子に巻装される複数のコイルをさらに有し、
 前記電力変換装置は、前記複数のパワーモジュールと前記複数のコイルとをそれぞれ接続する複数のバスバーをさらに有する、請求項1~4のいずれか一項に記載の回転電機ユニット。
The rotating electric machine further has a plurality of coils wound around the stator,
The rotating electric machine unit according to any one of claims 1 to 4, wherein said power conversion device further comprises a plurality of busbars connecting said plurality of power modules and said plurality of coils, respectively.
 前記電力変換装置は、前記複数のパワーモジュールを制御する制御基板と、前記複数のバスバーを流れる電流をそれぞれ検出する複数の電流センサと、をさらに備え、
 前記複数の電流センサはそれぞれ、前記制御基板と直接接続される、請求項5に記載の回転電機ユニット。
The power conversion device further includes a control board that controls the plurality of power modules, and a plurality of current sensors that respectively detect currents flowing through the plurality of bus bars,
6. The rotating electric machine unit according to claim 5, wherein each of said plurality of current sensors is directly connected to said control board.
 前記複数のバスバーはそれぞれ、前記複数のパワーモジュールのうち対応するパワーモジュールと接続される第1端子と、前記複数のコイルのうち対応するコイルと接続される第2端子と、を有し、
 前記第1端子は、前記対応するパワーモジュールの前記パワーモジュール本体部よりも径方向外側に位置する、請求項6に記載の回転電機ユニット。
each of the plurality of bus bars has a first terminal connected to a corresponding power module out of the plurality of power modules and a second terminal connected to a corresponding coil out of the plurality of coils;
7. The rotating electric machine unit according to claim 6, wherein said first terminal is located radially outside of said power module body portion of said corresponding power module.
 前記複数のバスバーはそれぞれ、前記電流センサが取り付けられる取付部をさらに有し、
 前記取付部は、前記軸方向において前記第2端子よりも前記制御基板側に突出するよう設けられている、請求項7に記載の回転電機ユニット。
each of the plurality of bus bars further has a mounting portion to which the current sensor is mounted;
8. The rotating electric machine unit according to claim 7, wherein said mounting portion is provided so as to protrude further toward said control board than said second terminal in said axial direction.
 前記複数のバスバーと、前記複数のパワーモジュールとは、周方向に交互に配置されている、請求項5~8のいずれか一項に記載の回転電機ユニット。 The electric rotating machine unit according to any one of claims 5 to 8, wherein the plurality of bus bars and the plurality of power modules are alternately arranged in the circumferential direction.  冷媒が流通する第1冷却流路が形成され、前記電力変換装置を冷却する第1冷却部、
をさらに備え、
 前記第1冷却流路は、
  前記冷媒が供給される入口流路と、
  前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち第1群のパワーモジュールに重なる位置に形成される第1流路と、
  前記入口流路から分岐するとともに、前記軸方向から見たときに、前記複数のパワーモジュールのうち前記第1群と異なる第2群のパワーモジュールに重なる位置に形成される第2流路と、
  前記入口流路から分岐するとともに、前記軸方向から見たときに、前記コンデンサユニットに重なる位置に形成される第3流路と、
  前記第1流路、前記第2流路、及び前記第3流路からの前記冷媒が合流するとともに、前記第1冷却部から前記冷媒が排出される出口流路と、を有し、
 前記出口流路は、前記回転電機を冷却する第2冷却部の内部に形成された第2冷却流路に連通しており、
 前記第2冷却流路は、
  前記出口流路と連通する連通流路と、
  前記連通流路から分岐するとともに、前記連通流路から前記周方向における一方側に延びる第4流路と、
  前記連通流路から分岐するとともに、前記連通流路から前記周方向における他方側に延びる第5流路と、
  前記第4流路及び前記第5流路からの前記冷媒が合流するとともに、前記第2冷却部から前記冷媒が排出される排出流路と、を有する、請求項1~9のいずれか一項に記載の回転電機ユニット。
a first cooling unit that cools the power conversion device by forming a first cooling flow path through which a coolant flows;
further comprising
The first cooling channel is
an inlet channel to which the coolant is supplied;
a first flow path branched from the inlet flow path and formed at a position overlapping a first group of power modules among the plurality of power modules when viewed in the axial direction;
a second flow path branched from the inlet flow path and formed at a position overlapping with a second group of power modules different from the first group among the plurality of power modules when viewed in the axial direction;
a third flow path branched from the inlet flow path and formed at a position overlapping with the capacitor unit when viewed in the axial direction;
an outlet flow path through which the refrigerant from the first flow path, the second flow path, and the third flow path merges and the refrigerant is discharged from the first cooling section;
The outlet flow path communicates with a second cooling flow path formed inside a second cooling section that cools the rotating electric machine,
the second cooling channel,
a communication channel that communicates with the outlet channel;
a fourth flow path branched from the communication flow path and extending from the communication flow path to one side in the circumferential direction;
a fifth flow path branched from the communication flow path and extending from the communication flow path to the other side in the circumferential direction;
and a discharge channel through which the coolant from the fourth channel and the fifth channel joins and the coolant is discharged from the second cooling unit. The rotary electric machine unit described in .
 前記電力変換装置は、直流電源と前記コンデンサユニットとを接続する端子台と、外部装置と接続される信号コネクタと、をさらに備え、
 前記入口流路には、外部から前記冷媒を供給する第1継手が接続されており、
 前記排出流路には、前記冷媒を外部に排出する第2継手が接続されており、
 前記軸方向から見たときに、前記回転子の軸心に対して前記信号コネクタが配置される側を前方側と称し、その反対側を後方側と称するとき、
 前記端子台、前記信号コネクタ、前記第1継手、及び前記第2継手は、前記回転電機ユニットの前方側に配置される、請求項10に記載の回転電機ユニット。
The power conversion device further includes a terminal block that connects the DC power supply and the capacitor unit, and a signal connector that is connected to an external device,
A first joint that supplies the coolant from the outside is connected to the inlet channel,
A second joint for discharging the refrigerant to the outside is connected to the discharge channel,
When viewed from the axial direction, the side on which the signal connector is arranged with respect to the axial center of the rotor is called the front side, and the opposite side is called the rear side,
11. The rotary electric machine unit according to claim 10, wherein said terminal block, said signal connector, said first joint, and said second joint are arranged on a front side of said rotary electric machine unit.
 前記軸方向から見て、前記正極導体及び前記負極導体のうち、前記コンデンサ本体部から延びる部分は、前記軸心に重ならないよう配置されている、請求項1~11のいずれか一項に記載の回転電機ユニット。 The positive electrode conductor and the negative electrode conductor according to any one of claims 1 to 11, wherein portions of the positive electrode conductor and the negative electrode conductor extending from the capacitor main body are arranged so as not to overlap the axial center when viewed from the axial direction. rotating electrical unit.  前記制御基板の中央部には、前記コンデンサユニットが挿通される開口部が形成され、
 前記複数の電流センサは、前記制御基板よりも前記固定子側に配置される、請求項6に記載の回転電機ユニット。
An opening through which the capacitor unit is inserted is formed in the central portion of the control board,
7. The rotating electric machine unit according to claim 6, wherein said plurality of current sensors are arranged closer to said stator than said control board.
 前記回転電機は、前記回転子に設けられるシャフトの回転角を検出するレゾルバをさらに備え、
 前記正極導体及び前記負極導体のうち、前記コンデンサ本体部から延びて直流電源に接続される部分、及び前記レゾルバを前記制御基板に接続するハーネスは、前記開口部に挿通される、
請求項13に記載の回転電機ユニット。
The rotating electric machine further includes a resolver that detects a rotation angle of a shaft provided in the rotor,
A portion of the positive conductor and the negative conductor that extends from the capacitor main body and is connected to a DC power supply, and a harness that connects the resolver to the control board are inserted through the opening.
The rotary electric machine unit according to claim 13.
 前記正極導体と前記正極端子とは、前記軸方向に対向して互いに接触しており、前記負極導体と前記負極端子とは、前記軸方向に対向して互いに接触している、請求項1~14のいずれか一項に記載の回転電機ユニット。 The positive conductor and the positive terminal are opposed in the axial direction and are in contact with each other, and the negative conductor and the negative terminal are opposed in the axial direction and are in contact with each other. 15. The rotating electric machine unit according to any one of 14.
PCT/JP2023/000351 2022-01-26 2023-01-11 Dynamo-electric machine unit WO2023145419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023576746A JPWO2023145419A1 (en) 2022-01-26 2023-01-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022009936 2022-01-26
JP2022-009936 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145419A1 true WO2023145419A1 (en) 2023-08-03

Family

ID=87471134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000351 WO2023145419A1 (en) 2022-01-26 2023-01-11 Dynamo-electric machine unit

Country Status (2)

Country Link
JP (1) JPWO2023145419A1 (en)
WO (1) WO2023145419A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292703A (en) * 1992-04-09 1993-11-05 Toyota Motor Corp Motor for electric vehicle
JPH1127959A (en) * 1997-07-08 1999-01-29 Toshiba Fa Syst Eng Kk Inverter
US20060002054A1 (en) * 2004-07-02 2006-01-05 Visteon Global Technologies, Inc. Electric machine with integrated electronics in a circular/closed-loop arrangement
JP2008167641A (en) * 2006-12-07 2008-07-17 Nissan Motor Co Ltd Power converter and electric motor drive system
JP2011010409A (en) * 2009-06-24 2011-01-13 Denso Corp Drive device
JP2015104257A (en) * 2013-11-26 2015-06-04 アイシン精機株式会社 Inverter device and inverter-integrated motor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373035B2 (en) * 1994-03-31 2003-02-04 マツダ株式会社 Inverter device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292703A (en) * 1992-04-09 1993-11-05 Toyota Motor Corp Motor for electric vehicle
JPH1127959A (en) * 1997-07-08 1999-01-29 Toshiba Fa Syst Eng Kk Inverter
US20060002054A1 (en) * 2004-07-02 2006-01-05 Visteon Global Technologies, Inc. Electric machine with integrated electronics in a circular/closed-loop arrangement
JP2008167641A (en) * 2006-12-07 2008-07-17 Nissan Motor Co Ltd Power converter and electric motor drive system
JP2011010409A (en) * 2009-06-24 2011-01-13 Denso Corp Drive device
JP2015104257A (en) * 2013-11-26 2015-06-04 アイシン精機株式会社 Inverter device and inverter-integrated motor device

Also Published As

Publication number Publication date
JPWO2023145419A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
EP0720273B1 (en) Vehicle AC generator
CN102570694B (en) Drive apparatus
US9312782B2 (en) Power converter equipped with semiconductor module
JP5720958B2 (en) Rotating electric machine drive system
EP3141459B1 (en) Electric power steering device
US10622861B2 (en) Stator and bus bar connector configuration
CN103155369B (en) Controller-integrated electric rotating machine
KR20020037732A (en) Automotive alternator
JP2010104205A (en) Controller-integrated rotating electric machine
JP2021013263A (en) Power distribution member
EP0375419B1 (en) Dynamoelectric machine
CN112636512B (en) Wiring components for rotating electrical machines
CN103765737A (en) Connector, current-rectifying device provided with such a connector, and electric machine provided with such a rectification device
WO2023145419A1 (en) Dynamo-electric machine unit
WO2023145420A1 (en) Rotating electric machine unit
JP2018078784A (en) Rotary electric machine and method of manufacturing the same
US20230327523A1 (en) Stator and rotary electric machine using same
JP2023154697A (en) Rotary electric machine unit
JP2023110968A (en) Rotary electric machine unit
CN115250046A (en) Busbar and motor
JP2023108733A (en) Rotating electric machine unit
JP7706657B2 (en) Rotating Electric Unit
WO2023234045A1 (en) Rotating electric machine unit
JP2018027000A (en) Controller-integrated rotary electric machine
JP2021013293A (en) Electrical distribution member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576746

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23746636

Country of ref document: EP

Kind code of ref document: A1