WO2023141522A2 - Multicyclic compounds - Google Patents
Multicyclic compounds Download PDFInfo
- Publication number
- WO2023141522A2 WO2023141522A2 PCT/US2023/060928 US2023060928W WO2023141522A2 WO 2023141522 A2 WO2023141522 A2 WO 2023141522A2 US 2023060928 W US2023060928 W US 2023060928W WO 2023141522 A2 WO2023141522 A2 WO 2023141522A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- unsubstituted
- cancer
- group
- alkyl
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 264
- 150000003839 salts Chemical class 0.000 claims abstract description 116
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 34
- 125000000217 alkyl group Chemical group 0.000 claims description 111
- 201000011510 cancer Diseases 0.000 claims description 90
- 206010028980 Neoplasm Diseases 0.000 claims description 75
- -1 cyano, hydroxy Chemical group 0.000 claims description 38
- 108010006124 DNA-Activated Protein Kinase Proteins 0.000 claims description 32
- 102000005768 DNA-Activated Protein Kinase Human genes 0.000 claims description 32
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 30
- 125000004178 (C1-C4) alkyl group Chemical class 0.000 claims description 28
- 229910052739 hydrogen Inorganic materials 0.000 claims description 26
- 239000001257 hydrogen Substances 0.000 claims description 26
- 230000002401 inhibitory effect Effects 0.000 claims description 26
- 125000001424 substituent group Chemical group 0.000 claims description 21
- 150000002431 hydrogen Chemical group 0.000 claims description 18
- 239000003814 drug Substances 0.000 claims description 17
- 229910052736 halogen Inorganic materials 0.000 claims description 14
- 150000002367 halogens Chemical class 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 9
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 8
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 8
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical group C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 8
- 206010009944 Colon cancer Diseases 0.000 claims description 7
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 claims description 6
- 206010018338 Glioma Diseases 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims description 6
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical group C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 6
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 6
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 6
- 125000002950 monocyclic group Chemical group 0.000 claims description 6
- 125000006239 protecting group Chemical group 0.000 claims description 6
- 125000002619 bicyclic group Chemical group 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 5
- 206010005003 Bladder cancer Diseases 0.000 claims description 4
- 206010006187 Breast cancer Diseases 0.000 claims description 4
- 208000026310 Breast neoplasm Diseases 0.000 claims description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 4
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 4
- 206010060862 Prostate cancer Diseases 0.000 claims description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 4
- 206010038389 Renal cancer Diseases 0.000 claims description 4
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 4
- 208000029742 colonic neoplasm Diseases 0.000 claims description 4
- 201000005202 lung cancer Diseases 0.000 claims description 4
- 208000020816 lung neoplasm Diseases 0.000 claims description 4
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 4
- 201000002528 pancreatic cancer Diseases 0.000 claims description 4
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical group C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 claims description 4
- 201000002510 thyroid cancer Diseases 0.000 claims description 4
- 208000001446 Anaplastic Thyroid Carcinoma Diseases 0.000 claims description 3
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 3
- 201000009030 Carcinoma Diseases 0.000 claims description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 3
- 201000008808 Fibrosarcoma Diseases 0.000 claims description 3
- 208000032612 Glial tumor Diseases 0.000 claims description 3
- 208000034578 Multiple myelomas Diseases 0.000 claims description 3
- 206010029260 Neuroblastoma Diseases 0.000 claims description 3
- 206010033128 Ovarian cancer Diseases 0.000 claims description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 3
- 206010039491 Sarcoma Diseases 0.000 claims description 3
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical group C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 claims description 3
- 201000001531 bladder carcinoma Diseases 0.000 claims description 3
- 201000000053 blastoma Diseases 0.000 claims description 3
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 201000008184 embryoma Diseases 0.000 claims description 3
- 201000010536 head and neck cancer Diseases 0.000 claims description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 3
- 238000005984 hydrogenation reaction Methods 0.000 claims description 3
- 208000026037 malignant tumor of neck Diseases 0.000 claims description 3
- 201000001441 melanoma Diseases 0.000 claims description 3
- 208000025113 myeloid leukemia Diseases 0.000 claims description 3
- 201000010174 renal carcinoma Diseases 0.000 claims description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 claims description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 3
- 208000017572 squamous cell neoplasm Diseases 0.000 claims description 3
- 208000001608 teratocarcinoma Diseases 0.000 claims description 3
- 201000008440 thyroid gland anaplastic carcinoma Diseases 0.000 claims description 3
- 208000019179 thyroid gland undifferentiated (anaplastic) carcinoma Diseases 0.000 claims description 3
- 208000010570 urinary bladder carcinoma Diseases 0.000 claims description 3
- NDOVLWQBFFJETK-UHFFFAOYSA-N 1,4-thiazinane 1,1-dioxide Chemical group O=S1(=O)CCNCC1 NDOVLWQBFFJETK-UHFFFAOYSA-N 0.000 claims description 2
- MUGSKSNNEORSJG-UHFFFAOYSA-N 3174-74-1 Chemical group C1CC=CCO1 MUGSKSNNEORSJG-UHFFFAOYSA-N 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- BUGOPWGPQGYYGR-UHFFFAOYSA-N thiane 1,1-dioxide Chemical group O=S1(=O)CCCCC1 BUGOPWGPQGYYGR-UHFFFAOYSA-N 0.000 claims description 2
- 125000006704 (C5-C6) cycloalkyl group Chemical group 0.000 claims 1
- 125000002827 triflate group Chemical group FC(S(=O)(=O)O*)(F)F 0.000 claims 1
- 201000010099 disease Diseases 0.000 abstract description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 7
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 55
- 125000003118 aryl group Chemical group 0.000 description 52
- 125000000623 heterocyclic group Chemical group 0.000 description 50
- 125000001072 heteroaryl group Chemical group 0.000 description 49
- 125000003342 alkenyl group Chemical group 0.000 description 25
- 125000000304 alkynyl group Chemical group 0.000 description 25
- 125000000392 cycloalkenyl group Chemical group 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 125000004429 atom Chemical group 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 125000002947 alkylene group Chemical group 0.000 description 13
- 239000012043 crude product Substances 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- 238000005160 1H NMR spectroscopy Methods 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 8
- 229910052938 sodium sulfate Inorganic materials 0.000 description 8
- 239000007832 Na2SO4 Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 108091000080 Phosphotransferase Proteins 0.000 description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- 125000001188 haloalkyl group Chemical group 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 102000020233 phosphotransferase Human genes 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 238000010898 silica gel chromatography Methods 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 125000004646 sulfenyl group Chemical group S(*)* 0.000 description 5
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052805 deuterium Inorganic materials 0.000 description 4
- 230000005782 double-strand break Effects 0.000 description 4
- 125000004438 haloalkoxy group Chemical group 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 239000005457 ice water Substances 0.000 description 4
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 230000006780 non-homologous end joining Effects 0.000 description 4
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 4
- 230000005778 DNA damage Effects 0.000 description 3
- 231100000277 DNA damage Toxicity 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 125000005631 S-sulfonamido group Chemical group 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 230000036755 cellular response Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000002953 preparative HPLC Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 3
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 2
- VRJHQPZVIGNGMX-UHFFFAOYSA-N 4-piperidinone Chemical compound O=C1CCNCC1 VRJHQPZVIGNGMX-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- FZRKAZHKEDOPNN-UHFFFAOYSA-N Nitric oxide anion Chemical group O=[N-] FZRKAZHKEDOPNN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000720974 Protium Species 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 102100036976 X-ray repair cross-complementing protein 6 Human genes 0.000 description 2
- 101710124907 X-ray repair cross-complementing protein 6 Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 235000019439 ethyl acetate Nutrition 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- 125000005423 trihalomethanesulfonamido group Chemical group 0.000 description 2
- 125000005152 trihalomethanesulfonyl group Chemical group 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 1
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 description 1
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical compound C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- CIISBYKBBMFLEZ-UHFFFAOYSA-N 1,2-oxazolidine Chemical compound C1CNOC1 CIISBYKBBMFLEZ-UHFFFAOYSA-N 0.000 description 1
- LKLLNYWECKEQIB-UHFFFAOYSA-N 1,3,5-triazinane Chemical compound C1NCNCN1 LKLLNYWECKEQIB-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- SILNNFMWIMZVEQ-UHFFFAOYSA-N 1,3-dihydrobenzimidazol-2-one Chemical compound C1=CC=C2NC(O)=NC2=C1 SILNNFMWIMZVEQ-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- IMLSAISZLJGWPP-UHFFFAOYSA-N 1,3-dithiolane Chemical compound C1CSCS1 IMLSAISZLJGWPP-UHFFFAOYSA-N 0.000 description 1
- IVJFXSLMUSQZMC-UHFFFAOYSA-N 1,3-dithiole Chemical compound C1SC=CS1 IVJFXSLMUSQZMC-UHFFFAOYSA-N 0.000 description 1
- QVFHFKPGBODJJB-UHFFFAOYSA-N 1,3-oxathiane Chemical compound C1COCSC1 QVFHFKPGBODJJB-UHFFFAOYSA-N 0.000 description 1
- WJJSZTJGFCFNKI-UHFFFAOYSA-N 1,3-oxathiolane Chemical compound C1CSCO1 WJJSZTJGFCFNKI-UHFFFAOYSA-N 0.000 description 1
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 description 1
- JBYHSSAVUBIJMK-UHFFFAOYSA-N 1,4-oxathiane Chemical compound C1CSCCO1 JBYHSSAVUBIJMK-UHFFFAOYSA-N 0.000 description 1
- CPRVXMQHLPTWLY-UHFFFAOYSA-N 1,4-oxathiine Chemical compound O1C=CSC=C1 CPRVXMQHLPTWLY-UHFFFAOYSA-N 0.000 description 1
- QXQAPNSHUJORMC-UHFFFAOYSA-N 1-chloro-4-propylbenzene Chemical compound CCCC1=CC=C(Cl)C=C1 QXQAPNSHUJORMC-UHFFFAOYSA-N 0.000 description 1
- CUCJJMLDIUSNPU-UHFFFAOYSA-N 1-oxidopiperidin-1-ium Chemical compound [O-][NH+]1CCCCC1 CUCJJMLDIUSNPU-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- JECYNCQXXKQDJN-UHFFFAOYSA-N 2-(2-methylhexan-2-yloxymethyl)oxirane Chemical compound CCCCC(C)(C)OCC1CO1 JECYNCQXXKQDJN-UHFFFAOYSA-N 0.000 description 1
- DOSGEBYQRMBTGS-UHFFFAOYSA-N 2-(3,6-dihydro-2h-pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CCOCC1 DOSGEBYQRMBTGS-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- RVBUGGBMJDPOST-UHFFFAOYSA-N 2-thiobarbituric acid Chemical compound O=C1CC(=O)NC(=S)N1 RVBUGGBMJDPOST-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- WEQPBCSPRXFQQS-UHFFFAOYSA-N 4,5-dihydro-1,2-oxazole Chemical compound C1CC=NO1 WEQPBCSPRXFQQS-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- MRUWJENAYHTDQG-UHFFFAOYSA-N 4H-pyran Chemical compound C1C=COC=C1 MRUWJENAYHTDQG-UHFFFAOYSA-N 0.000 description 1
- UCZQXJKDCHCTAI-UHFFFAOYSA-N 4h-1,3-dioxine Chemical compound C1OCC=CO1 UCZQXJKDCHCTAI-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- SFHYNDMGZXWXBU-LIMNOBDPSA-N 6-amino-2-[[(e)-(3-formylphenyl)methylideneamino]carbamoylamino]-1,3-dioxobenzo[de]isoquinoline-5,8-disulfonic acid Chemical compound O=C1C(C2=3)=CC(S(O)(=O)=O)=CC=3C(N)=C(S(O)(=O)=O)C=C2C(=O)N1NC(=O)N\N=C\C1=CC=CC(C=O)=C1 SFHYNDMGZXWXBU-LIMNOBDPSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- 125000004649 C2-C8 alkynyl group Chemical group 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- 125000005915 C6-C14 aryl group Chemical group 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229940126657 Compound 17 Drugs 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102100030011 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000864057 Homo sapiens Serine/threonine-protein kinase SMG1 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 102000015335 Ku Autoantigen Human genes 0.000 description 1
- 108010025026 Ku Autoantigen Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- ZSXGLVDWWRXATF-UHFFFAOYSA-N N,N-dimethylformamide dimethyl acetal Chemical compound COC(OC)N(C)C ZSXGLVDWWRXATF-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- 102100029938 Serine/threonine-protein kinase SMG1 Human genes 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 102100036973 X-ray repair cross-complementing protein 5 Human genes 0.000 description 1
- 101710124921 X-ray repair cross-complementing protein 5 Proteins 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000005036 alkoxyphenyl group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005282 allenyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 201000005200 bronchus cancer Diseases 0.000 description 1
- HGXJOXHYPGNVNK-UHFFFAOYSA-N butane;ethenoxyethane;tin Chemical compound CCCC[Sn](CCCC)(CCCC)C(=C)OCC HGXJOXHYPGNVNK-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 229940124301 concurrent medication Drugs 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 208000030381 cutaneous melanoma Diseases 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- SNQXJPARXFUULZ-UHFFFAOYSA-N dioxolane Chemical compound C1COOC1 SNQXJPARXFUULZ-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 125000001810 isothiocyanato group Chemical group *N=C=S 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 210000000244 kidney pelvis Anatomy 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 208000020984 malignant renal pelvis neoplasm Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000006682 monohaloalkyl group Chemical group 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- JTHRRMFZHSDGNJ-UHFFFAOYSA-N piperazine-2,3-dione Chemical compound O=C1NCCNC1=O JTHRRMFZHSDGNJ-UHFFFAOYSA-N 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- IUBQJLUDMLPAGT-UHFFFAOYSA-N potassium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([K])[Si](C)(C)C IUBQJLUDMLPAGT-UHFFFAOYSA-N 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 125000001325 propanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- OSFBJERFMQCEQY-UHFFFAOYSA-N propylidene Chemical compound [CH]CC OSFBJERFMQCEQY-UHFFFAOYSA-N 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 239000003909 protein kinase inhibitor Substances 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- USPWKWBDZOARPV-UHFFFAOYSA-N pyrazolidine Chemical compound C1CNNC1 USPWKWBDZOARPV-UHFFFAOYSA-N 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- CBDKQYKMCICBOF-UHFFFAOYSA-N thiazoline Chemical compound C1CN=CS1 CBDKQYKMCICBOF-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000000858 thiocyanato group Chemical group *SC#N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000004952 trihaloalkoxy group Chemical group 0.000 description 1
- 125000004385 trihaloalkyl group Chemical group 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
Definitions
- the present application relates to the fields of chemistry, biochemistry and medicine.
- compounds of Formula (I), or pharmaceutically acceptable salt thereof pharmaceutical compositions that include a compound described herein (including pharmaceutically acceptable salts of a compound described herein) and methods of synthesizing the same.
- methods of treating diseases and/or conditions with a compound of Formula (I), or a pharmaceutically acceptable salt thereof are also disclosed herein.
- Some embodiments disclosed herein relate to a compound of Formula (I), or a pharmaceutically acceptable salt thereof. [0005] Some embodiments disclosed herein relate to a pharmaceutical composition that can contain an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
- Some embodiments described herein relate to a method of treating a cancer described herein that can include administering an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof)
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein.
- Some embodiments described herein relate to a method for inhibiting growth of a malignant growth or a tumor that can include contacting the growth or the tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Some embodiments described herein relate to a method for treating a cancer described herein that can include contacting a malignant growth or a tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Some embodiments described herein relate to a method for inhibiting the activity of DNA-dependent protein kinase in a cell that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting the activity of DNA- dependent protein kinase.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting the activity of DNA-dependent protein kinase.
- Some embodiments described herein relate to a method for treating a cancer described herein that can include inhibiting the activity of DNA-dependent protein kinase using an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof).
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof).
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- DNA-dependent protein kinase is a serine/threonine protein kinase that plays an important role in the proliferation and survival of cells.
- DNA-PK is necessary for multiple cellular functions, including the regulation of transcription and in the maintenance of telomeres. It is a member of the phosphatidylinositol 3 -kinase-related kinase family and it mediates the cellular response to DNA damage.
- DNA-PK consists of a catalytic subunit and a Ku heterodimer that is made up of the Ku70 and Ku80 subunits.
- DNA-PK plays an important role in the maintenance of genomic integrity because of its involvement in cellular response to DNA damage and in the repair of DNA double-strand break (DNA-DSBs).
- DNA-PK is involved in repairing double-strand breaks (DSBs) through non-homologous end-joining (NHEJ).
- NHEJ pathway consist of several steps that include detection of DSBs by the Ku70/80 with subsequent recruitment and stabilization of the NHEJ complex at the damage location. The activation of DNA-PK then leads to ligation of broken DNA ends. Because of the role played by DNA-PK in cellular response to DNA damage and its deregulation in tumor cells, it has become an attractive therapeutic target in cancer. There is an effort to develop selective small molecules that will inhibit the activity of DNA-PK in several cancers as a single agent or in combination with other targeted therapeutics and/or ionizing radiation therapy.
- the indicated “optionally substituted” or “substituted” group may be substituted with one or more group(s) (such as 1, 2 or 3) individually and independently selected from deuterium, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl), heterocyclyl(alkyl), hydroxy, alkoxy, acyl, cyano, halogen, thiocarbonyl, O- carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, O-carboxy, C-amido(alkyl), isocyanato, thiocyanato, nitro, azi
- C a to C b in which “a” and “b” are integers refer to the number of carbon atoms in an alkyl, alkenyl or alkynyl group, or the number of carbon atoms in the ring of a cycloalkyl, cycloalkenyl, aryl, heteroaryl or heterocyclyl group. That is, the alkyl, alkenyl, alkynyl, ring of the cycloalkyl, ring of the cycloalkenyl, ring of the aryl, ring of the heteroaryl or ring of the heterocyclyl can contain from “a” to “b”, inclusive, carbon atoms.
- a “C 1 to C 4 alkyl” group refers to all alkyl groups having from 1 to 4 carbons, that is, CH3-, CH 3 CH 2 -, CH 3 CH 2 CH 2 -, (CH 3 ) 2 CH-, CH 3 CH 2 CH 2 CH 2 -, CH 3 CH 2 CH(CH 3 )- and (CH 3 ) 3 C-. If no “a” and “b” are designated with regard to an alkyl, alkenyl, alkynyl, cycloalkyl cycloalkenyl, aryl, heteroaryl or heterocyclyl group, the broadest range described in these definitions is to be assumed.
- alkyl refers to a straight or branched hydrocarbon chain that comprises a fully saturated (no double or triple bonds) hydrocarbon group.
- the alkyl group may have 1 to 20 carbon atoms (whenever it appears herein, a numerical range such as “1 to 20” refers to each integer in the given range; e.g., “1 to 20 carbon atoms” means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 20 carbon atoms, although the present definition also covers the occurrence of the term “alkyl” where no numerical range is designated).
- the alkyl group may also be a medium size alkyl having 1 to 10 carbon atoms.
- the alkyl group could also be a lower alkyl having 1 to 6 carbon atoms.
- the alkyl group of the compounds may be designated as “C 1 -C 4 alkyl” or similar designations.
- “C 1 -C 4 alkyl” indicates that there are one to four carbon atoms in the alkyl chain, i.e., the alkyl chain is selected from methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec -butyl and t-butyl.
- Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl and hexyl.
- the alkyl group may be substituted or unsubstituted.
- alkenyl refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more double bonds.
- the length of an alkenyl can vary.
- the alkenyl can be a C 2-4 alkenyl, C 2-6 alkenyl or C 2-8 alkenyl.
- alkenyl groups include allenyl, vinylmethyl and ethenyl.
- An alkenyl group may be unsubstituted or substituted.
- alkynyl refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more triple bonds.
- the length of an alkynyl can vary.
- the alkynyl can be a C 2-4 alkynyl, C 2-6 alkynyl or C 2-8 alkynyl.
- Examples of alkynyls include ethynyl and propynyl.
- An alkynyl group may be unsubstituted or substituted.
- cycloalkyl refers to a completely saturated (no double or triple bonds) mono- or multi- cyclic hydrocarbon ring system.
- Cycloalkyl groups can contain 3 to 10 atoms in the ring(s). 3 to 8 atoms in the ring(s) or 3 to 6 atoms in the ring(s).
- a cycloalkyl group may be unsubstituted or substituted.
- Typical cycloalkyl groups include, but are in no way limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
- cycloalkenyl refers to a mono- or multi- cyclic hydrocarbon ring system that contains one or more double bonds in at least one ring; although, if there is more than one, the double bonds cannot form a fully delocalized pi-electron system throughout all the rings (otherwise the group would be “aryl,” as defined herein). When composed of two or more rings, the rings may be connected together in a fused- or spiro-fashion.
- a cycloalkenyl can contain 3 to 10 atoms in the ring(s) or 3 to 8 atoms in the ring(s).
- a cycloalkenyl group may be unsubstituted or substituted.
- aryl refers to a carbocyclic (all carbon) monocyclic or multicyclic aromatic ring system (including fused ring systems where two carbocyclic rings share a chemical bond) that has a fully delocalized pi-electron system throughout all the rings.
- the number of carbon atoms in an aryl group can vary.
- the aryl group can be a C 6 -C 14 aryl group, a C 6 -C 10 aryl group, or a C 6 aryl group.
- Examples of aryl groups include, but are not limited to, benzene, naphthalene and azulene.
- An aryl group may be substituted or unsubstituted.
- heteroaryl refers to a monocyclic, bicyclic and tricyclic aromatic ring system (a ring system with fully delocalized pi-electron system) that contain(s) one or more heteroatoms (for example, 1 to 5 heteroatoms), that is, an element other than carbon, including but not limited to, nitrogen, oxygen and sulfur.
- the number of atoms in the ring(s) of a heteroaryl group can vary.
- the heteroaryl group can contain 4 to 14 atoms in the ring(s), 5 to 10 atoms in the ring(s) or 5 to 6 atoms in the ring(s).
- heteroaryl includes fused ring systems where two rings, such as at least one aryl ring and at least one heteroaryl ring, or at least two heteroaryl rings, share at least one chemical bond.
- heteroaryl rings include, but are not limited to, furan, furazan, thiophene, benzothiophene, phthalazine, pyrrole, oxazole, benzoxazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, thiazole, 1,2,3- thiadiazole, 1,2,4-thiadiazole, benzothiazole, imidazole, benzimidazole, indole, indazole, pyrazole, benzopyrazole, isoxazole, benzoisoxazole, isothiazole, triazole, benzotriazole, thiadiazole, tetrazole, pyridine, pyridazine, pyrim
- heterocyclyl refers to a monocyclic, bicyclic and tricyclic ring system wherein carbon atoms together with from 1 to 5 heteroatoms constitute said ring system.
- a heterocycle may optionally contain one or more unsaturated bonds situated in such a way, however, that a fully delocalized pi-electron system does not occur throughout all the rings.
- the number of atoms in the ring(s) of a heterocyclyl group can vary.
- the heterocyclyl group can contain 4 to 14 atoms in the ring(s), 5 to 10 atoms in the ring(s) or 5 to 6 atoms in the ring(s).
- the heteroatom(s) is an element other than carbon including, but not limited to, oxygen, sulfur and nitrogen.
- a heterocycle may further contain one or more carbonyl or thiocarbonyl functionalities, so as to make the definition include oxo-systems and thio-systems such as lactams, lactones, cyclic imides, cyclic thioimides and cyclic carbamates. When composed of two or more rings, the rings may be joined together in a fused fashion. Additionally, any nitrogens in a heterocyclyl may be quatemized. Heterocyclyl groups may be unsubstituted or substituted.
- heterocyclyl groups include but are not limited to, 1,3-dioxin, 1,3-dioxane, 1,4- dioxane, 1,2-dioxolane, 1,3 -dioxolane, 1,4-dioxolane, 1,3-oxathiane, 1,4-oxathiin, 1,3- oxathiolane, 1,3-dithiole, 1,3-dithiolane, 1,4-oxathiane, tetrahydro- 1,4-thiazine, 2H-1,2-oxazine, maleimide, succinimide, barbituric acid, thiobarbituric acid, dioxopiperazine, hydantoin, dihydrouracil, trioxane, hexahydro-1, 3, 5-triazine, imidazoline, imidazolidine, isoxazoline, isoxazolidine, oxazoline, oxazoline, o
- cycloalkyl(alkyl) refer to a cycloalkyl group connected, as a substituent, via a lower alkylene group.
- the lower alkylene and aryl group of a cycloalkyl(alkyl) may be substituted or unsubstituted.
- Examples include but are not limited to cyclopropyl-CH 2 -, cyclobutyl-CH 2 -, cyclopentyl-CH 2 -, cyclohexyl-CH 2 -, cyclopropyl-CH 2 CH 2 -, cyclobutyl- CH 2 CH 2 -, cyclopentyl-CH 2 CH 2 -, cyclohexyl-CH 2 CH 2 -, cyclopropyl-CH 2 CH 2 CH 2 -, cyclobutyl-CH 2 CH 2 CH 2 -, cyclopentyl-CH 2 CH 2 CH 2 -, cyclohexyl-CH 2 CH 2 CH 2 -, cyclopropyl- CH 2 CH 2 CH 2 CH 2 -, cyclobutyl-CH 2 CH 2 CH 2 -, cyclopentyl-CH 2 CH 2 CH 2 CH 2 - and cyclohexyl-CH 2 CH 2 CH 2 CH 2 -.
- aryl(alkyl) refer to an aryl group connected, as a substituent, via a lower alkylene group.
- the lower alkylene and aryl group of an aryl(alkyl) may be substituted or unsubstituted. Examples include but are not limited to benzyl, 2-phenyl(alkyl), 3-phenyl(alkyl), and naphthyl(alkyl).
- heteroaryl(alkyl) refer to a heteroaryl group connected, as a substituent, via a lower alkylene group.
- the lower alkylene and heteroaryl group of heteroaryl(alkyl) may be substituted or unsubstituted. Examples include but are not limited to 2- thienyl(alkyl), 3-thienyl(alkyl), furyl(alkyl), thienyl(alkyl), pyrrolyl(alkyl), pyridyl(alkyl), isoxazolyl(alkyl), imidazolyl(alkyl), and their benzo-fused analogs.
- heterocyclyl(alkyl) refer to a heterocyclic group connected, as a substituent, via a lower alkylene group.
- the lower alkylene and heterocyclyl of a heterocyclyl(alkyl) may be substituted or unsubstituted. Examples include but are not limited tetrahydro-2H-pyran-4-yl(methyl), piperidin-4-yl(ethyl), piperidin-4-yl(propyl), tetrahydro-2H- thiopyran-4-yl(methyl) and l,3-thiazinan-4-yl(methyl).
- “Lower alkylene groups” are straight-chained -CH 2 - tethering groups, forming bonds to connect molecular fragments via their terminal carbon atoms. Examples include but are not limited to methylene (-CH 2 -), ethylene (-CH 2 CH 2 -), propylene (-CH 2 CH 2 CH 2 -) and butylene (-CH 2 CH 2 CH 2 CH 2 -).
- a lower alkylene group can be substituted by replacing one or more hydrogen of the lower alkylene group with a substituent(s) listed under the definition of “substituted.” Further, when a lower alkylene group is substituted, the lower alkylene can be substituted by replacing both hydrogens on the same carbon with a cycloalkyl group (e.g., )•
- alkoxy refers to the formula -OR wherein R is an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl) is defined herein.
- a non-limiting list of alkoxys are methoxy, ethoxy, n-propoxy, 1 -methylethoxy (isopropoxy), n-butoxy, iso-butoxy, sec -butoxy, tert-butoxy, phenoxy and benzyloxy.
- an alkoxy can be -OR, wherein R is an unsubstituted C 1-4 alkyl. An alkoxy may be substituted or unsubstituted.
- acyl refers to a hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl) connected, as substituents, via a carbonyl group. Examples include formyl, acetyl, propanoyl, benzoyl and acryl. An acyl may be substituted or unsubstituted.
- hydroxyalkyl refers to an alkyl group in which one or more of the hydrogen atoms are replaced by a hydroxy group.
- exemplary hydroxyalkyl groups include but are not limited to, 2-hydroxyethyl, 3 -hydroxypropyl, 2-hydroxypropyl and 2,2-dihydroxyethyl.
- a hydroxyalkyl may be substituted or unsubstituted.
- haloalkyl refers to an alkyl group in which one or more of the hydrogen atoms are replaced by a halogen (e.g., mono-haloalkyl, di-haloalkyl and tri-haloalkyl).
- a halogen e.g., mono-haloalkyl, di-haloalkyl and tri-haloalkyl.
- groups include but are not limited to, chloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 1-chloro-2-fluoromethyl and 2-fluoroisobutyl.
- a haloalkyl may be substituted or unsubstituted.
- haloalkoxy refers to a O-alkyl group and O-monocyclic cycloalkyl group in which one or more of the hydrogen atoms are replaced by a halogen (e.g., mono-haloalkoxy, di- haloalkoxy and tri- haloalkoxy).
- Such groups include but are not limited to, chloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 1-chloro-2-fluoromethoxy, 2-fluoroisobutoxy, chloro-substituted cyclopropyl, fluoro-substituted cyclopropyl, chlorosubstituted cyclobutyl and fluoro-substituted cyclobutyl.
- a haloalkoxy can be -OR, wherein R is a C 1-4 alkyl substituted by 1, 2 or 3 halogens. A haloalkoxy may be substituted or unsubstituted.
- a “sulfenyl” group refers to an “-SR” group in which R can be hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- R can be hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- a sulfenyl may be substituted or unsubstituted.
- a sulfinyl may be substituted or unsubstituted.
- a “sulfonyl” group refers to an “SO 2 R” group in which R can be the same as defined with respect to sulfenyl. A sulfonyl may be substituted or unsubstituted.
- An O-carboxy may be substituted or unsubstituted.
- An ester and C-carboxy may be substituted or unsubstituted.
- a thiocarbonyl may be substituted or unsubstituted.
- a “trihalomethanesulfonyl” group refers to an “X 3 CSO 2 -” group wherein each X is a halogen.
- a “trihalomethanesulfonamido” group refers to an “X 3 CS(O) 2 N(RA)-” group wherein each X is a halogen, and RA is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- amino refers to a -NH 2 group.
- hydroxy refers to a -OH group.
- a “cyano” group refers to a “-CN” group.
- azido refers to a -N3 group.
- An “isocyanato” group refers to a “-NCO” group.
- a “thiocyanato” group refers to a “-CNS” group.
- An “isothiocyanato” group refers to an “-NCS” group.
- a “mercapto” group refers to an “-SH” group.
- S-sulfonamido refers to a “-SO 2 N(R A R B )” group in which RA and RB can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- RA and RB can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- An S-sulfonamido may be substituted or unsubstituted.
- N-sulfonamido refers to a “RSO 2 N(R A )-” group in which R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- An N-sulfonamido may be substituted or unsubstituted.
- An O-carbamyl may be substituted or unsubstituted.
- R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- An N-carbamyl may be substituted or unsubstituted.
- An O-thiocarbamyl may be substituted or unsubstituted.
- R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- An N-thiocarbamyl may be substituted or unsubstituted.
- a C-amido may be substituted or unsubstituted.
- R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- An N-amido may be substituted or unsubstituted.
- a “mono-substituted amine” refers to a “-NHR A ” in which RA can be independently alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- a mono-substituted amine may be substituted or unsubstituted.
- a mono-substituted amine can be -NHRA, wherein RA can be an unsubstituted C 1-6 alkyl or an unsubstituted or a substituted benzyl.
- a “di-substituted amine” refers to a “-NR A R B ” in which RA and RB can be independently alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
- a mono-substituted amine may be substituted or unsubstituted.
- a mono-substituted amine can be -NR A R B , wherein RA and RB can be independently an unsubstituted C 1-6 alkyl or an unsubstituted or a substituted benzyl.
- a ketoamide may be substituted or unsubstituted.
- halogen atom or “halogen” as used herein, means any one of the radio-stable atoms of column 7 of the Periodic Table of the Elements, such as, fluorine, chlorine, bromine and iodine.
- substituents there may be one or more substituents present.
- haloalkyl may include one or more of the same or different halogens.
- C 1 -C 3 alkoxyphenyl may include one or more of the same or different alkoxy groups containing one, two or three atoms.
- salt refers to a salt of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound.
- the salt is an acid addition salt of the compound.
- Pharmaceutical salts can be obtained by reacting a compound with inorganic acids such as hydrohalic acid (e.g., hydrochloric acid or hydrobromic acid), sulfuric acid, nitric acid and phosphoric acid.
- compositions can also be obtained by reacting a compound with an organic acid such as aliphatic or aromatic carboxylic or sulfonic acids, for example formic, acetic, succinic, lactic, malic, tartaric, citric, ascorbic, nicotinic, methanesulfonic, ethanesulfonic, p-toluenesulfonic, salicylic or naphthalenesulfonic acid.
- organic acid such as aliphatic or aromatic carboxylic or sulfonic acids
- Pharmaceutical salts can also be obtained by reacting a compound with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, C 1 -C 7 alkylamine, cyclohexylamine, triethanolamine, ethylenediamine, and salts with amino acids such as arginine and lysine.
- a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, C 1 -C 7 alkylamine, cyclohexy
- the term “comprising” is to be interpreted synonymously with the phrases “having at least” or “including at least”.
- the term “comprising” means that the compound or composition includes at least the recited features or components but may also include additional features or components.
- each center may independently be of (R)-configuration or (S)-configuration or a mixture thereof.
- the compounds provided herein may be enantiomerically pure, enantiomerically enriched, racemic mixture, diastereomerically pure, diastereomerically enriched, or a stereoisomeric mixture.
- each double bond may independently be E or Z a mixture thereof.
- each chemical element as represented in a compound structure may include any isotope of said element.
- a hydrogen atom may be explicitly disclosed or understood to be present in the compound.
- the hydrogen atom can be any isotope of hydrogen, including but not limited to hydrogen- 1 (protium) and hydrogen-2 (deuterium).
- reference herein to a compound encompasses all potential isotopic forms unless the context clearly dictates otherwise.
- R 1 can be selected from wherein R 1 can be unsubstituted or substituted with 1 or 2 substituents selected from a halogen, an unsubstituted C 1-4 alkyl, a deuterium-substituted C 1-4 alkyl and an unsubstituted C 1-4 alkoxy; and R 1A can be hydrogen or an unsubstituted C 1-4 alkyl; R 2 can be selected from an unsubstituted or a substituted monocyclic cycloalkyl and an unsubstituted or a substituted monocyclic heterocyclyl; R 3 can be selected from hydrogen, an unsubstituted C 1-4 alkyl, an unsubstituted C 1-4 alkoxy and an unsubstituted monocyclic C 3-6 cycloalkyl; and R 4 can be selected from hydrogen, an unsubstituted C 1-4 alkyl, an unsubstituted C 1-4 alkoxy and an unsubstituted monocycl
- R 1 can be In other embodiments,
- R 1 can be . In still other embodiments, R 1 can be In yet still other embodiments, R 1 can be Each bicyclic structure for R 1 can be unsubstituted or substituted. Various groups can be present on a substituted version of R 1 , such as those provided for “optionally substituted.” For example, R 1 can be substituted one or more times (1, 2 or 3 times) with a group independently selected from a halogen (such as F, Cl or Br), an unsubstituted C 1-4 alkyl (for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec- butyl and tert-butyl) and a deuterium-substituted C 1-4 alkyl (for example, -CH 2 D, -CHD 2 , -CD 3 , -CH 2 CD 3 and -CD 2 CD 3 )
- a halogen such as F, Cl or Br
- R 1 bicyclic structures can be selected from:
- R 2 can be a monocyclic cycloalkyl, such as a monocyclic C4-6 cycloalkyl.
- R 2 can be a monocyclic heterocyclyl.
- the monocyclic heterocyclyl for R 2 can include 1 or 2 ring heteroatoms.
- the monocyclic heterocyclyl for R 2 can include 1 or 2 ring heteroatoms selected from O (oxygen), S (sulfur) or N (nitrogen).
- Examples of monocyclic cycloalkyls for R 2 include cyclobutyl, cyclopentyl and cyclohexyl, including the following: wherein each shown ring can be unsubstituted or substituted.
- Various sizes of monocyclic heterocyclyls can be present for R 2 .
- R 2 can be a 4-6 membered monocyclic heterocyclyl.
- Exemplary monocyclic heterocyclyls for R 2 include tetrahydrofuran, tetrahydro-2H-pyran, tetrahydro-2H-thiopyran 1,1 -dioxide, morpholine, thiomorpholine, thiomorpholine 1,1 -dioxide, piperidine, piperazine and 3,6-dihydro-2H-pyran.
- R 2 can be selected from unsubstituted or substituted.
- R 2 can be unsubstituted. In other embodiments, R 2 can be substituted. A variety of substituents can be present for R 2 . Similarly, the number of substituents present on R 2 can vary. In some embodiments, R 2 can be substituted 1, 2 or 3 times with a substituent described herein, including those provided for “optionally substituted.” For example, R 2 can be substituted with one or more substituents selected from halogen, cyano, hydroxy, an unsubstituted C 1-4 alkyl, an unsubstituted C 1-4 alkoxy, an unsubstituted monocyclic C 3-6 cycloalkyl and an unsubstituted C 1-4 haloalkyl.
- R 2 can be substituted with one or more substituents selected from fluoro, chloro, cyano, hydroxy, methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, -CF 3 , -CHF 2 , -C(CH 3 )F 2 , -CHCI2, -CH 2 F, -CH(CH 3 )F, -CH 2 CF 3 , -CH 2 CI, -CH 2 CH 2 F, -CH 2 CH 2 Cl, -CH 2 CH 2 CH 2 F and -CH 2 CH 2 CH 2 Cl.
- substituents
- R 2 When R 2 is substituted, one or both hydrogens on a ring carbon and/or the hydrogen on a ring nitrogen can be replaced with a substituent described herein.
- the ring NH group of a piperazine can be substituted with an unsubstituted C 1-4 alkyl group, such as methyl.
- R 3 can be hydrogen.
- R 3 can be an unsubstituted C 1-4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
- R 3 can be an unsubstituted C 1-4 alkoxy (for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy).
- R 3 can be an unsubstituted monocyclic C 3-6 cycloalkyl, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
- R 4 can be hydrogen. In other embodiments, R 4 can be an unsubstituted C 1-4 alkyl, such as those described herein. In still other embodiments, R 4 can be a deuterium-substituted C 1-4 alkyl. For example, R 4 can be -CH 2 D, -CHD 2 , -CD 3 , -CH 2 CD 3 and -CD 2 CD 3 . In yet still other embodiments, R 4 can be an unsubstituted monocyclic C 3 -6 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
- R 4 can be an unsubstituted bicyclic C 5-6 cycloalkyl.
- exemplary bicyclic C 5-6 cycloalkyls include bicyclo [1.1.1] pentyl and bicyclo [2.1.1] hexyl.
- R 4 can be an unsubstituted C 1-4 haloalkyl, such as those described herein and including -CF 3 , -CHF 2 , -C(CH 3 )F 2 , -CHCI2, -CH 2 F, -CH(CH 3 )F, -CH 2 CF 3 , -CH 2 CI, -CH 2 CH 2 F, -CH 2 CH 2 CI, -CH 2 CH 2 CH 2 F and -CH 2 CH 2 CH 2 CI.
- Examples of compounds of Formula (I), include the following: [0080] Further examples of a compound of Formula (I), include the following:
- Additional examples of a compound of Formula (I) can be selected from: , or a pharmaceutically acceptable salt of any of the foregoing.
- Some embodiments disclosed herein relate to a compound having the structure or a pharmaceutically acceptable salt thereof.
- Other embodiments disclosed herein relate to a compound having the structure or a pharmaceutically acceptable salt thereof, wherein PG 1 can be a protecting group. Suitable protecting groups are known to those skilled in the art.
- PG 1 can be a triflate.
- Still other embodiments disclosed herein relate to a compound having the structure or a pharmaceutically acceptable salt thereof.
- Some embodiments disclosed herein relate to a method of preparing a compound having the structure , or a pharmaceutically acceptable salt thereof, that can include coupling a boronic ester to a compound having the structure
- the boronic ester can have the structure wherein each R B1 and R B2 can be a C 1-6 alkyl (such as an unsubstituted C 1-6 alkyl), or R B1 and R B2 can be taken together along with the -O-B-O- to form a
- the boronic ester can be Other embodiments disclosed herein relate to a method of preparing a compound having the structure or a pharmaceutically acceptable salt thereof, that can include hydrogenating a compound having the structure or a pharmaceutically acceptable salt thereof.
- the hydrogenation of can include using a suitable hydrogenation compound, such as palladium on carbon.
- compositions described herein relate to a pharmaceutical composition, which can include an effective amount of a compound described herein (e.g., a compound, or a pharmaceutically acceptable salt thereof, as described herein) and a pharmaceutically acceptable carrier, excipient or combination thereof.
- a pharmaceutical composition described herein is suitable for human and/or veterinary applications.
- a “carrier” refers to a compound that facilitates the incorporation of a compound into cells or tissues.
- DMSO dimethyl sulfoxide
- DMSO dimethyl sulfoxide
- a “diluent” refers to an ingredient in a pharmaceutical composition that lacks pharmacological activity but may be pharmaceutically necessary or desirable.
- a diluent may be used to increase the bulk of a potent drug whose mass is too small for manufacture and/or administration. It may also be a liquid for the dissolution of a drug to be administered by injection, ingestion or inhalation.
- a common form of diluent in the art is a buffered aqueous solution such as, without limitation, phosphate buffered saline that mimics the composition of human blood.
- an “excipient” refers to an inert substance that is added to a pharmaceutical composition to provide, without limitation, bulk, consistency, stability, binding ability, lubrication, disintegrating ability etc., to the composition.
- a “diluent” is a type of excipient.
- Proper formulation is dependent upon the route of administration chosen.
- Techniques for formulation and administration of the compounds described herein are known to those skilled in the art. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, rectal, topical, aerosol, injection, inhalation and parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, intrathecal, direct intraventricular, intraperitoneal, intranasal and intraocular injections.
- Pharmaceutical compositions will generally be tailored to the specific intended route of administration.
- the liposomes may be targeted to and taken up selectively by the organ.
- compositions disclosed herein may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tableting processes.
- compounds used in a pharmaceutical composition may be provided as salts with pharmaceutically compatible counterions.
- Some embodiments described herein relate to a method for treating a cancer described herein that can include administering an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof)
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein.
- Some embodiments described herein relate to a method for inhibiting growth of a malignant growth or a tumor that can include contacting the growth or the tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Some embodiments described herein relate to a method for treating a cancer described herein that can include contacting a malignant growth or a tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
- Some embodiments described herein relate to a method for inhibiting the activity of DNA-dependent protein kinase that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein.
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting the activity of DNA- dependent protein kinase.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting the activity of DNA-dependent protein kinase.
- Some embodiments described herein relate to a method for inhibiting the activity of DNA-dependent protein kinase that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein.
- a method for inhibiting the activity of DNA-dependent protein kinase that can include contacting a cancer cell from a cancer described herein with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), and thereby inhibiting the activity of DNA-dependent protein kinase.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- Some embodiments described herein relate to a method for treating a cancer described herein that can include inhibiting the activity of DNA-dependent protein kinase using an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof).
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof).
- inventions described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
- Some embodiments described herein relate to a method for treating a cancer described herein that can include contacting a cancer cell with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), wherein the compound inhibits the activity of DNA-dependent protein kinase.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- Some embodiments disclosed herein relate to a method for inhibiting the activity of DNA-dependent protein kinase that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein or a cancer cell from a cancer described herein.
- a compound described herein for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof
- inventions disclosed herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting the activity of DNA-dependent protein kinase.
- Still other embodiments disclosed herein relate to a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting the activity of DNA-dependent protein kinase.
- suitable cancers include, but are not limited to: a lung cancer, a pancreatic cancer, a colon cancer (e.g., colorectal cancer), a myeloid leukemia (e.g., AML, CML, and CMML), a thyroid cancer, a myelodysplastic syndrome (MDS), a bladder carcinoma, an epidermal carcinoma, a melanoma, a breast cancer, a prostate cancer, a head and neck cancers (e.g., squamous cell cancer of the head and neck), an ovarian cancer, a brain cancer (e.g., gliomas, such as glioma blastoma multiforme), a cancer of mesenchymal origin (e.g., fibrosarcomas and rhabdomyosarcomas), a sarcoma, a teratocarcinoma, a neuroblastoma, a kidney carcinoma, a hepatoma,
- treat do not necessarily mean total cure or abolition of the disease or condition. Any alleviation of any undesired signs or symptoms of a disease or condition, to any extent can be considered treatment and/or therapy. Furthermore, treatment may include acts that may worsen the subject’s overall feeling of well-being or appearance.
- a “subject” refers to an animal that is the object of treatment, observation or experiment.
- Animal includes cold- and warm-blooded vertebrates and invertebrates such as fish, shellfish, reptiles and, in particular, mammals.
- “Mammal” includes, without limitation, mice, rats, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, horses, camels, non-human primates, such as monkeys, chimpanzees, and apes, and, in particular, humans.
- the subject can be human, for example a human subject that is 18 years old or older.
- an effective amount is used to indicate an amount of an active compound, or pharmaceutical agent, which elicits the biological or medicinal response indicated.
- an effective amount of compound can be the amount needed to alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. This response may occur in a tissue, system, animal or human and includes alleviation of the signs or symptoms of the disease being treated. Determination of an effective amount is well within the capability of those skilled in the art, in view of the disclosure provided herein.
- the effective amount of the compounds disclosed herein required as a dose will depend on the route of administration, the type of animal, including human, being treated, and the physical characteristics of the specific animal under consideration. The dose can be tailored to achieve a desired effect, but will depend on such factors as weight, diet, concurrent medication and other factors which those skilled in the medical arts will recognize.
- the aqueous phase was extracted with EA (3 x 2000 mL).
- the mixture was purified by prep-HPLC (HC1 as additive) and twice purification by prep-HPLC (NH4HCO3 as additive) to give A1 (2.5 mg, 6.39 umol, 9.77e-l% yield).
- Additional compounds of Formula (I) can be prepared using similar materials and methods described herein, such as those described herein.
- a kinase buffer (40 mM Tris, pH 7.5, 0.0055% Brij-35, 20 mM MgCl 2 , 0.05 mM DTT) was prepared, and the compounds were diluted to 100X of the final desired highest inhibitor concentration in reaction by 100% DMSO.
- the compounds were in tubes to one well on a 96-well storage plate and serially by transferring 15 ⁇ L to 30 ⁇ L of 100% DMSO into the well. 50 nL of compound was transferred from source plate to 384-well plate.
- Solution (2X) of substrate and ATP in kinase reaction buffer was prepared, and 2.5 ⁇ L of substrate solution was added to each well of the assay plate to initiate the reaction.
- DNA- PK in 1x kinase buffer at 2-fold the final concentration of each reagent was prepared, and 2.5 ⁇ L of kinase solution was added to each well.
- 2.5 ⁇ L of substrate solution was added to each well of the assay plate to start reaction and incubated at room temperature for 3 h.
- 5 ⁇ L of ADP-Glo reagent was added to each well of the assay plate to terminate the reaction.
- the solution was mixed briefly, centrifuged and equilibrated for 120 min. 10 uL Kinase Detection Reagent was added to each well, and shaken and left to equilibrate for 30 min before reading on a plate reader for luminescence.
- Percent inhibition (max-sample RLU)/(max-min) x 100 was calculated and fitted the data in XLFit excel add-in version 5.4.0.8 to obtain IC 50 values.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Provided herein are compounds of Formula (I), or pharmaceutically acceptable salts thereof, pharmaceutical compositions that include a compound described herein (including pharmaceutically acceptable salts of a compound described herein) and methods of synthesizing the same. Also provided herein are methods of treating diseases and/or conditions with a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
Description
MULTICYCLIC COMPOUNDS
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS
[0001] Any and all applications for which a foreign or domestic priority claim is identified, for example, in the Application Data Sheet or Request as filed with the present application, are hereby incorporated by reference under 37 CFR 1.57, and Rules 4.18 and 20.6, including U.S. Provisional Application Nos. 63/301,866, filed January 21, 2022, which is incorporated by reference in its entireties.
BACKGROUND
Field
[0002] The present application relates to the fields of chemistry, biochemistry and medicine. Disclosed herein are compounds of Formula (I), or pharmaceutically acceptable salt thereof, pharmaceutical compositions that include a compound described herein (including pharmaceutically acceptable salts of a compound described herein) and methods of synthesizing the same. Also disclosed herein are methods of treating diseases and/or conditions with a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
Description
[0003] According to the National Cancer Institute, an estimated 1,806,590 new cases of cancer will be diagnosed in the United States and 606,520 people will die from the disease in 2020. The most common cancers are breast cancer, lung and bronchus cancer, prostate cancer, colon and rectum cancer, melanoma of the skin, bladder cancer, non-Hodgkin lymphoma, kidney and renal pelvis cancer, endometrial cancer, leukemia, pancreatic cancer, thyroid cancer, and liver cancer.
SUMMARY
[0004] Some embodiments disclosed herein relate to a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
[0005] Some embodiments disclosed herein relate to a pharmaceutical composition that can contain an effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
[0006] Some embodiments described herein relate to a method of treating a cancer described herein that can include administering an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein.
[0007] Some embodiments described herein relate to a method for inhibiting growth of a malignant growth or a tumor that can include contacting the growth or the tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), wherein the malignant growth or tumor is due to a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of
Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
[0008] Some embodiments described herein relate to a method for treating a cancer described herein that can include contacting a malignant growth or a tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
[0009] Some embodiments described herein relate to a method for inhibiting the activity of DNA-dependent protein kinase in a cell that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically
acceptable salt thereof) in the manufacture of a medicament for inhibiting the activity of DNA- dependent protein kinase. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting the activity of DNA-dependent protein kinase.
[0010] Some embodiments described herein relate to a method for treating a cancer described herein that can include inhibiting the activity of DNA-dependent protein kinase using an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof). Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase.
[0011] These are other embodiments are described in greater detail below.
DETAILED DESCRIPTION
[0012] DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase that plays an important role in the proliferation and survival of cells. In addition, DNA-PK is necessary for multiple cellular functions, including the regulation of transcription and in the maintenance of telomeres. It is a member of the phosphatidylinositol 3 -kinase-related kinase family and it mediates the cellular response to DNA damage. DNA-PK consists of a catalytic subunit and a Ku heterodimer that is made up of the Ku70 and Ku80 subunits. DNA-PK plays an
important role in the maintenance of genomic integrity because of its involvement in cellular response to DNA damage and in the repair of DNA double-strand break (DNA-DSBs). DNA-PK is involved in repairing double-strand breaks (DSBs) through non-homologous end-joining (NHEJ). NHEJ pathway consist of several steps that include detection of DSBs by the Ku70/80 with subsequent recruitment and stabilization of the NHEJ complex at the damage location. The activation of DNA-PK then leads to ligation of broken DNA ends. Because of the role played by DNA-PK in cellular response to DNA damage and its deregulation in tumor cells, it has become an attractive therapeutic target in cancer. There is an effort to develop selective small molecules that will inhibit the activity of DNA-PK in several cancers as a single agent or in combination with other targeted therapeutics and/or ionizing radiation therapy.
Definitions
[0013] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art. All patents, applications, published applications and other publications referenced herein are incorporated by reference in their entirety unless stated otherwise. In the event that there are a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
[0014] Whenever a group is described as being “optionally substituted” that group may be unsubstituted or substituted with one or more of the indicated substituents. Likewise, when a group is described as being “unsubstituted or substituted” if substituted, the substituent(s) may be selected from one or more of the indicated substituents. If no substituents are indicated, it is meant that the indicated “optionally substituted” or “substituted” group may be substituted with one or more group(s) (such as 1, 2 or 3) individually and independently selected from deuterium, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl), heterocyclyl(alkyl), hydroxy, alkoxy, acyl, cyano, halogen, thiocarbonyl, O- carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, S-sulfonamido, N-sulfonamido, C-carboxy, O-carboxy, C-amido(alkyl), isocyanato, thiocyanato, nitro, azido, silyl, sulfenyl, sulfinyl, sulfonyl, haloalkyl, haloalkoxy, trihalomethanesulfonyl, trihalomethanesulfonamido, an amino, a mono-substituted amine and a di-substituted amine.
[0015] As used herein, “Ca to Cb” in which “a” and “b” are integers refer to the number of carbon atoms in an alkyl, alkenyl or alkynyl group, or the number of carbon atoms in the ring
of a cycloalkyl, cycloalkenyl, aryl, heteroaryl or heterocyclyl group. That is, the alkyl, alkenyl, alkynyl, ring of the cycloalkyl, ring of the cycloalkenyl, ring of the aryl, ring of the heteroaryl or ring of the heterocyclyl can contain from “a” to “b”, inclusive, carbon atoms. Thus, for example, a “C1 to C4 alkyl” group refers to all alkyl groups having from 1 to 4 carbons, that is, CH3-, CH3CH2-, CH3CH2CH2-, (CH3)2CH-, CH3CH2CH2CH2-, CH3CH2CH(CH3)- and (CH3)3C-. If no “a” and “b” are designated with regard to an alkyl, alkenyl, alkynyl, cycloalkyl cycloalkenyl, aryl, heteroaryl or heterocyclyl group, the broadest range described in these definitions is to be assumed.
[0016] As used herein, “alkyl” refers to a straight or branched hydrocarbon chain that comprises a fully saturated (no double or triple bonds) hydrocarbon group. The alkyl group may have 1 to 20 carbon atoms (whenever it appears herein, a numerical range such as “1 to 20” refers to each integer in the given range; e.g., “1 to 20 carbon atoms” means that the alkyl group may consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 20 carbon atoms, although the present definition also covers the occurrence of the term “alkyl” where no numerical range is designated). The alkyl group may also be a medium size alkyl having 1 to 10 carbon atoms. The alkyl group could also be a lower alkyl having 1 to 6 carbon atoms. The alkyl group of the compounds may be designated as “C1-C4 alkyl” or similar designations. By way of example only, “C1-C4 alkyl” indicates that there are one to four carbon atoms in the alkyl chain, i.e., the alkyl chain is selected from methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec -butyl and t-butyl. Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, pentyl and hexyl. The alkyl group may be substituted or unsubstituted.
[0017] As used herein, “alkenyl” refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more double bonds. The length of an alkenyl can vary. For example, the alkenyl can be a C2-4 alkenyl, C2-6 alkenyl or C2-8 alkenyl. Examples of alkenyl groups include allenyl, vinylmethyl and ethenyl. An alkenyl group may be unsubstituted or substituted.
[0018] As used herein, “alkynyl” refers to an alkyl group that contains in the straight or branched hydrocarbon chain one or more triple bonds. The length of an alkynyl can vary. For example, the alkynyl can be a C2-4 alkynyl, C2-6 alkynyl or C2-8 alkynyl. Examples of alkynyls include ethynyl and propynyl. An alkynyl group may be unsubstituted or substituted.
[0019] As used herein, “cycloalkyl” refers to a completely saturated (no double or triple bonds) mono- or multi- cyclic hydrocarbon ring system. When composed of two or more rings, the rings may be joined together in a fused- or spiro-fashion. Cycloalkyl groups can contain 3 to 10 atoms in the ring(s). 3 to 8 atoms in the ring(s) or 3 to 6 atoms in the ring(s). A cycloalkyl group may be unsubstituted or substituted. Typical cycloalkyl groups include, but are in no way limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
[0020] As used herein, “cycloalkenyl” refers to a mono- or multi- cyclic hydrocarbon ring system that contains one or more double bonds in at least one ring; although, if there is more than one, the double bonds cannot form a fully delocalized pi-electron system throughout all the rings (otherwise the group would be “aryl,” as defined herein). When composed of two or more rings, the rings may be connected together in a fused- or spiro-fashion. A cycloalkenyl can contain 3 to 10 atoms in the ring(s) or 3 to 8 atoms in the ring(s). A cycloalkenyl group may be unsubstituted or substituted.
[0021] As used herein, “aryl” refers to a carbocyclic (all carbon) monocyclic or multicyclic aromatic ring system (including fused ring systems where two carbocyclic rings share a chemical bond) that has a fully delocalized pi-electron system throughout all the rings. The number of carbon atoms in an aryl group can vary. For example, the aryl group can be a C6-C14 aryl group, a C6-C10 aryl group, or a C6 aryl group. Examples of aryl groups include, but are not limited to, benzene, naphthalene and azulene. An aryl group may be substituted or unsubstituted.
[0022] As used herein, “heteroaryl” refers to a monocyclic, bicyclic and tricyclic aromatic ring system (a ring system with fully delocalized pi-electron system) that contain(s) one or more heteroatoms (for example, 1 to 5 heteroatoms), that is, an element other than carbon, including but not limited to, nitrogen, oxygen and sulfur. The number of atoms in the ring(s) of a heteroaryl group can vary. For example, the heteroaryl group can contain 4 to 14 atoms in the ring(s), 5 to 10 atoms in the ring(s) or 5 to 6 atoms in the ring(s). Furthermore, the term “heteroaryl” includes fused ring systems where two rings, such as at least one aryl ring and at least one heteroaryl ring, or at least two heteroaryl rings, share at least one chemical bond. Examples of heteroaryl rings include, but are not limited to, furan, furazan, thiophene, benzothiophene, phthalazine, pyrrole, oxazole, benzoxazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, thiazole, 1,2,3- thiadiazole, 1,2,4-thiadiazole, benzothiazole, imidazole, benzimidazole, indole, indazole, pyrazole, benzopyrazole, isoxazole, benzoisoxazole, isothiazole, triazole, benzotriazole,
thiadiazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, purine, pteridine, quinoline, isoquinoline, quinazoline, quinoxaline, cinnoline and triazine. A heteroaryl group may be substituted or unsubstituted.
[0023] As used herein, “heterocyclyl” refers to a monocyclic, bicyclic and tricyclic ring system wherein carbon atoms together with from 1 to 5 heteroatoms constitute said ring system. A heterocycle may optionally contain one or more unsaturated bonds situated in such a way, however, that a fully delocalized pi-electron system does not occur throughout all the rings. The number of atoms in the ring(s) of a heterocyclyl group can vary. For example, the heterocyclyl group can contain 4 to 14 atoms in the ring(s), 5 to 10 atoms in the ring(s) or 5 to 6 atoms in the ring(s). The heteroatom(s) is an element other than carbon including, but not limited to, oxygen, sulfur and nitrogen. A heterocycle may further contain one or more carbonyl or thiocarbonyl functionalities, so as to make the definition include oxo-systems and thio-systems such as lactams, lactones, cyclic imides, cyclic thioimides and cyclic carbamates. When composed of two or more rings, the rings may be joined together in a fused fashion. Additionally, any nitrogens in a heterocyclyl may be quatemized. Heterocyclyl groups may be unsubstituted or substituted. Examples of such “heterocyclyl groups include but are not limited to, 1,3-dioxin, 1,3-dioxane, 1,4- dioxane, 1,2-dioxolane, 1,3 -dioxolane, 1,4-dioxolane, 1,3-oxathiane, 1,4-oxathiin, 1,3- oxathiolane, 1,3-dithiole, 1,3-dithiolane, 1,4-oxathiane, tetrahydro- 1,4-thiazine, 2H-1,2-oxazine, maleimide, succinimide, barbituric acid, thiobarbituric acid, dioxopiperazine, hydantoin, dihydrouracil, trioxane, hexahydro-1, 3, 5-triazine, imidazoline, imidazolidine, isoxazoline, isoxazolidine, oxazoline, oxazolidine, oxazolidinone, thiazoline, thiazolidine, morpholine, oxirane, piperidine N-Oxide, piperidine, piperazine, pyrrolidine, pyrrolidone, pyrrolidione, 4- piperidone, pyrazoline, pyrazolidine, 2-oxopyrrolidine, tetrahydropyran, 4H-pyran, tetrahydrothiopyran, thiamorpholine, thiamorpholine sulfoxide, thiamorpholine sulfone and their benzo-fused analogs (e.g., benzimidazolidinone, tetrahydroquinoline and 3,4- methy lenedioxypheny 1) .
[0024] As used herein, “cycloalkyl(alkyl)” refer to a cycloalkyl group connected, as a substituent, via a lower alkylene group. The lower alkylene and aryl group of a cycloalkyl(alkyl) may be substituted or unsubstituted. Examples include but are not limited to cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2-, cyclohexyl-CH2-, cyclopropyl-CH2CH2-, cyclobutyl- CH2CH2-, cyclopentyl-CH2CH2-, cyclohexyl-CH2CH2-, cyclopropyl-CH2CH2CH2-,
cyclobutyl-CH2CH2CH2-, cyclopentyl-CH2CH2CH2-, cyclohexyl-CH2CH2CH2-, cyclopropyl- CH2CH2CH2CH2-, cyclobutyl-CH2CH2CH2CH2-, cyclopentyl-CH2CH2CH2CH2- and cyclohexyl-CH2CH2CH2CH2-.
[0025] As used herein, “aryl(alkyl)” refer to an aryl group connected, as a substituent, via a lower alkylene group. The lower alkylene and aryl group of an aryl(alkyl) may be substituted or unsubstituted. Examples include but are not limited to benzyl, 2-phenyl(alkyl), 3-phenyl(alkyl), and naphthyl(alkyl).
[0026] As used herein, “heteroaryl(alkyl)” refer to a heteroaryl group connected, as a substituent, via a lower alkylene group. The lower alkylene and heteroaryl group of heteroaryl(alkyl) may be substituted or unsubstituted. Examples include but are not limited to 2- thienyl(alkyl), 3-thienyl(alkyl), furyl(alkyl), thienyl(alkyl), pyrrolyl(alkyl), pyridyl(alkyl), isoxazolyl(alkyl), imidazolyl(alkyl), and their benzo-fused analogs.
[0027] A “heterocyclyl(alkyl)” refer to a heterocyclic group connected, as a substituent, via a lower alkylene group. The lower alkylene and heterocyclyl of a heterocyclyl(alkyl) may be substituted or unsubstituted. Examples include but are not limited tetrahydro-2H-pyran-4-yl(methyl), piperidin-4-yl(ethyl), piperidin-4-yl(propyl), tetrahydro-2H- thiopyran-4-yl(methyl) and l,3-thiazinan-4-yl(methyl).
[0028] “Lower alkylene groups” are straight-chained -CH2- tethering groups, forming bonds to connect molecular fragments via their terminal carbon atoms. Examples include but are not limited to methylene (-CH2-), ethylene (-CH2CH2-), propylene (-CH2CH2CH2-) and butylene (-CH2CH2CH2CH2-). A lower alkylene group can be substituted by replacing one or more hydrogen of the lower alkylene group with a substituent(s) listed under the definition of “substituted.” Further, when a lower alkylene group is substituted, the lower alkylene can be substituted by replacing both hydrogens on the same carbon with a cycloalkyl group (e.g.,
)•
[0029] As used herein, “alkoxy” refers to the formula -OR wherein R is an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl) is defined herein. A non-limiting list of alkoxys are methoxy, ethoxy, n-propoxy, 1 -methylethoxy (isopropoxy), n-butoxy, iso-butoxy, sec -butoxy,
tert-butoxy, phenoxy and benzyloxy. In some instances, an alkoxy can be -OR, wherein R is an unsubstituted C1-4 alkyl. An alkoxy may be substituted or unsubstituted.
[0030] As used herein, “acyl” refers to a hydrogen, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, a cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl) connected, as substituents, via a carbonyl group. Examples include formyl, acetyl, propanoyl, benzoyl and acryl. An acyl may be substituted or unsubstituted.
[0031] As used herein, “hydroxyalkyl” refers to an alkyl group in which one or more of the hydrogen atoms are replaced by a hydroxy group. Exemplary hydroxyalkyl groups include but are not limited to, 2-hydroxyethyl, 3 -hydroxypropyl, 2-hydroxypropyl and 2,2-dihydroxyethyl. A hydroxyalkyl may be substituted or unsubstituted.
[0032] As used herein, “haloalkyl” refers to an alkyl group in which one or more of the hydrogen atoms are replaced by a halogen (e.g., mono-haloalkyl, di-haloalkyl and tri-haloalkyl). Such groups include but are not limited to, chloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 1-chloro-2-fluoromethyl and 2-fluoroisobutyl. A haloalkyl may be substituted or unsubstituted.
[0033] As used herein, “haloalkoxy” refers to a O-alkyl group and O-monocyclic cycloalkyl group in which one or more of the hydrogen atoms are replaced by a halogen (e.g., mono-haloalkoxy, di- haloalkoxy and tri- haloalkoxy). Such groups include but are not limited to, chloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 1-chloro-2-fluoromethoxy, 2-fluoroisobutoxy, chloro-substituted cyclopropyl, fluoro-substituted cyclopropyl, chlorosubstituted cyclobutyl and fluoro-substituted cyclobutyl. In some instances, a haloalkoxy can be -OR, wherein R is a C1-4 alkyl substituted by 1, 2 or 3 halogens. A haloalkoxy may be substituted or unsubstituted.
[0034] A “sulfenyl” group refers to an “-SR” group in which R can be hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A sulfenyl may be substituted or unsubstituted.
[0035] A “sulfinyl” group refers to an “-S(=O)-R” group in which R can be the same as defined with respect to sulfenyl. A sulfinyl may be substituted or unsubstituted.
[0036] A “sulfonyl” group refers to an “SO2R” group in which R can be the same as defined with respect to sulfenyl. A sulfonyl may be substituted or unsubstituted.
[0037] An “O-carboxy” group refers to a “RC(=O)O-” group in which R can be hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl), as defined herein. An O-carboxy may be substituted or unsubstituted.
[0038] The terms “ester” and “C-carboxy” refer to a “-C(=O)OR” group in which R can be the same as defined with respect to O-carboxy. An ester and C-carboxy may be substituted or unsubstituted.
[0039] A “thiocarbonyl” group refers to a “-C(=S)R” group in which R can be the same as defined with respect to O-carboxy. A thiocarbonyl may be substituted or unsubstituted.
[0040] A “trihalomethanesulfonyl” group refers to an “X3CSO2-” group wherein each X is a halogen.
[0041] A “trihalomethanesulfonamido” group refers to an “X3CS(O)2N(RA)-” group wherein each X is a halogen, and RA is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl).
[0042] The term “amino” as used herein refers to a -NH2 group.
[0043] As used herein, the term “hydroxy” refers to a -OH group.
[0044] A “cyano” group refers to a “-CN” group.
[0045] The term “azido” as used herein refers to a -N3 group.
[0046] An “isocyanato” group refers to a “-NCO” group.
[0047] A “thiocyanato” group refers to a “-CNS” group.
[0048] An “isothiocyanato” group refers to an “-NCS” group.
[0049] A “mercapto” group refers to an “-SH” group.
[0050] A “carbonyl” group refers to a “C(=O)” group.
[0051] An “S-sulfonamido” group refers to a “-SO2N(RARB)” group in which RA and RB can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An S-sulfonamido may be substituted or unsubstituted.
[0052] An “N-sulfonamido” group refers to a “RSO2N(RA)-” group in which R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-sulfonamido may be substituted or unsubstituted.
[0053] An “O-carbamyl” group refers to a “-OC(=O)N(RARB)” group in which RA and RB can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An O-carbamyl may be substituted or unsubstituted.
[0054] An “N-carbamyl” group refers to an “ROC(=O)N(RA)-” group in which R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-carbamyl may be substituted or unsubstituted.
[0055] An “O-thiocarbamyl” group refers to a “-OC(=S)-N(RARB)” group in which RA and RB can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An O-thiocarbamyl may be substituted or unsubstituted.
[0056] An “N-thiocarbamyl” group refers to an “ROC(=S)N(RA)-” group in which R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-thiocarbamyl may be substituted or unsubstituted.
[0057] A “C-amido” group refers to a “-C(=O)N(RARB)” group in which RA and RB can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A C-amido may be substituted or unsubstituted.
[0058] An “N-amido” group refers to a “RC(=O)N(RA)-” group in which R and RA can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). An N-amido may be substituted or unsubstituted.
[0059] A “mono-substituted amine” refers to a “-NHRA” in which RA can be independently alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A mono-substituted amine may be substituted or unsubstituted. In some instances, a mono-substituted amine can be -NHRA, wherein RA can be an unsubstituted C1-6 alkyl or an unsubstituted or a substituted benzyl.
[0060] A “di-substituted amine” refers to a “-NRARB” in which RA and RB can be independently alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl,
aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A mono-substituted amine may be substituted or unsubstituted. In some instances, a mono-substituted amine can be -NRARB, wherein RA and RB can be independently an unsubstituted C1-6 alkyl or an unsubstituted or a substituted benzyl.
[0061] A “ketoamide” group refers to a -C(=O)-C(=O)N(RARB) group in which RA and RB can be independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl, heterocyclyl, aryl(alkyl), heteroaryl(alkyl) or heterocyclyl(alkyl). A ketoamide may be substituted or unsubstituted.
[0062] The term “halogen atom” or “halogen” as used herein, means any one of the radio-stable atoms of column 7 of the Periodic Table of the Elements, such as, fluorine, chlorine, bromine and iodine.
[0063] Where the numbers of substituents is not specified (e.g., haloalkyl), there may be one or more substituents present. For example, “haloalkyl” may include one or more of the same or different halogens. As another example, “C1-C3 alkoxyphenyl” may include one or more of the same or different alkoxy groups containing one, two or three atoms.
[0064] As used herein, the abbreviations for any protective groups, amino acids and other compounds, are, unless indicated otherwise, in accord with their common usage, recognized abbreviations, or the IUPAC-IUB Commission on Biochemical Nomenclature (See, Biochem. 11:942-944 (1972)).
[0065] The term “pharmaceutically acceptable salt” refers to a salt of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. In some embodiments, the salt is an acid addition salt of the compound. Pharmaceutical salts can be obtained by reacting a compound with inorganic acids such as hydrohalic acid (e.g., hydrochloric acid or hydrobromic acid), sulfuric acid, nitric acid and phosphoric acid. Pharmaceutical salts can also be obtained by reacting a compound with an organic acid such as aliphatic or aromatic carboxylic or sulfonic acids, for example formic, acetic, succinic, lactic, malic, tartaric, citric, ascorbic, nicotinic, methanesulfonic, ethanesulfonic, p-toluenesulfonic, salicylic or naphthalenesulfonic acid. Pharmaceutical salts can also be obtained by reacting a compound with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl)methylamine, C1-C7 alkylamine,
cyclohexylamine, triethanolamine, ethylenediamine, and salts with amino acids such as arginine and lysine.
[0066] Terms and phrases used in this application, and variations thereof, especially in the appended claims, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing, the term ‘including’ should be read to mean ‘including, without limitation,’ ‘including but not limited to,’ or the like; the term ‘comprising’ as used herein is synonymous with ‘including,’ ‘containing,’ or ‘characterized by,’ and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps; the term ‘having’ should be interpreted as ‘having at least;’ the term ‘includes’ should be interpreted as ‘includes but is not limited to;’ the term ‘example’ is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof. In addition, the term “comprising” is to be interpreted synonymously with the phrases "having at least" or "including at least". When used in the context of a compound or composition, the term "comprising" means that the compound or composition includes at least the recited features or components but may also include additional features or components.
[0067] With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity. The indefinite article “a” or “an” does not exclude a plurality.
[0068] It is understood that, in any compound described herein having one or more chiral centers, if an absolute stereochemistry is not expressly indicated, then each center may independently be of (R)-configuration or (S)-configuration or a mixture thereof. Thus, the compounds provided herein may be enantiomerically pure, enantiomerically enriched, racemic mixture, diastereomerically pure, diastereomerically enriched, or a stereoisomeric mixture. In addition, it is understood that, in any compound described herein having one or more double bond(s) generating geometrical isomers that can be defined as E or Z, each double bond may independently be E or Z a mixture thereof. Likewise, it is understood that, in any compound described, all tautomeric forms are also intended to be included.
[0069] It is to be understood that where compounds disclosed herein have unfilled valencies, then the valencies are to be filled with hydrogens or isotopes thereof, e.g., hydrogen- 1 (protium) and hydrogen-2 (deuterium).
[0070] It is understood that the compounds described herein can be labeled isotopically. Substitution with isotopes such as deuterium may afford certain therapeutic advantages resulting from greater metabolic stability, such as, for example, increased in vivo halflife or reduced dosage requirements. Each chemical element as represented in a compound structure may include any isotope of said element. For example, in a compound structure a hydrogen atom may be explicitly disclosed or understood to be present in the compound. At any position of the compound that a hydrogen atom may be present, the hydrogen atom can be any isotope of hydrogen, including but not limited to hydrogen- 1 (protium) and hydrogen-2 (deuterium). Thus, reference herein to a compound encompasses all potential isotopic forms unless the context clearly dictates otherwise.
[0071] Where a range of values is provided, it is understood that the upper and lower limit, and each intervening value between the upper and lower limit of the range is encompassed within the embodiments.
Compounds
[0072] Some embodiments disclosed herein relate to a compound of Formula (I), or a pharmaceutically acceptable salt thereof:
wherein: R1 can be selected from
wherein R1 can be unsubstituted or substituted with 1 or 2 substituents selected from a halogen, an unsubstituted C1-4 alkyl, a deuterium-substituted C1-4 alkyl and an unsubstituted C1-4 alkoxy; and R1A can be hydrogen or an unsubstituted C1-4 alkyl; R2 can be selected from an unsubstituted or a substituted monocyclic cycloalkyl and an unsubstituted or a substituted monocyclic heterocyclyl; R3 can be selected from hydrogen, an unsubstituted C1-4 alkyl, an unsubstituted C1-4 alkoxy and an unsubstituted monocyclic C3-6 cycloalkyl; and R4 can be selected from hydrogen, an unsubstituted C1-4 alkyl, a deuterium-substituted C1-4 alkyl, an unsubstituted monocyclic C3-6 cycloalkyl, an unsubstituted bicyclic C5-6 cycloalkyl and an unsubstituted C1-4 haloalkyl.
R1 can be . In still other embodiments, R1 can be In yet
still other embodiments, R1 can be Each bicyclic structure for R1 can be
unsubstituted or substituted. Various groups can be present on a substituted version of R1, such as those provided for “optionally substituted.” For example, R1 can be substituted one or more times (1, 2 or 3 times) with a group independently selected from a halogen (such as F, Cl or Br), an unsubstituted C1-4 alkyl (for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec- butyl and tert-butyl) and a deuterium-substituted C1-4 alkyl (for example, -CH2D, -CHD2, -CD3, -CH2CD3 and -CD2CD3)
[0074] Exemplary R1 bicyclic structures can be selected from:
[0075] Various monocyclic moieties can be present for R2. In some embodiments, R2 can be a monocyclic cycloalkyl, such as a monocyclic C4-6 cycloalkyl. In other embodiments, R2 can be a monocyclic heterocyclyl. The monocyclic heterocyclyl for R2 can include 1 or 2 ring heteroatoms. As an example, the monocyclic heterocyclyl for R2 can include 1 or 2 ring heteroatoms selected from O (oxygen), S (sulfur) or N (nitrogen). Examples of monocyclic cycloalkyls for R2 include cyclobutyl, cyclopentyl and cyclohexyl, including the following: wherein each shown ring can be unsubstituted or substituted. Various sizes
of monocyclic heterocyclyls can be present for R2. For example, R2 can be a 4-6 membered monocyclic heterocyclyl. Exemplary monocyclic heterocyclyls for R2 include tetrahydrofuran, tetrahydro-2H-pyran, tetrahydro-2H-thiopyran 1,1 -dioxide, morpholine, thiomorpholine, thiomorpholine 1,1 -dioxide, piperidine, piperazine and 3,6-dihydro-2H-pyran. In some embodiments, R2 can be selected from
unsubstituted or substituted.
[0076] In some embodiments, R2 can be unsubstituted. In other embodiments, R2 can be substituted. A variety of substituents can be present for R2. Similarly, the number of substituents present on R2 can vary. In some embodiments, R2 can be substituted 1, 2 or 3 times with a substituent described herein, including those provided for “optionally substituted.” For example, R2 can be substituted with one or more substituents selected from halogen, cyano, hydroxy, an unsubstituted C1-4 alkyl, an unsubstituted C1-4 alkoxy, an unsubstituted monocyclic C3-6 cycloalkyl and an unsubstituted C1-4 haloalkyl. In some embodiments, R2 can be substituted with one or more substituents selected from fluoro, chloro, cyano, hydroxy, methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, sec -butyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, -CF3, -CHF2, -C(CH3)F2, -CHCI2, -CH2F, -CH(CH3)F, -CH2CF3, -CH2CI, -CH2CH2F, -CH2CH2Cl, -CH2CH2CH2F and -CH2CH2CH2Cl. When R2 is substituted, one or both hydrogens on a ring carbon and/or the hydrogen on a ring nitrogen can be replaced with a substituent described herein. For example, the ring NH group of a piperazine can be substituted with an unsubstituted C1-4 alkyl group, such as methyl.
[0077] In some embodiments, R3 can be hydrogen. In other embodiments, R3 can be an unsubstituted C1-4 alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl. In still other embodiments, R3 can be an unsubstituted C1-4 alkoxy (for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy). In yet still other embodiments, R3 can be an unsubstituted monocyclic C3-6 cycloalkyl, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
[0078] In some embodiments, R4 can be hydrogen. In other embodiments, R4 can be an unsubstituted C1-4 alkyl, such as those described herein. In still other embodiments, R4 can be a deuterium-substituted C1-4 alkyl. For example, R4 can be -CH2D, -CHD2, -CD3, -CH2CD3 and -CD2CD3. In yet still other embodiments, R4 can be an unsubstituted monocyclic C3-6 cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. In some embodiments, R4 can be an
unsubstituted bicyclic C5-6 cycloalkyl. Exemplary bicyclic C5-6 cycloalkyls include bicyclo [1.1.1] pentyl and bicyclo [2.1.1] hexyl. In other embodiments, R4 can be an unsubstituted C1-4 haloalkyl, such as those described herein and including -CF3, -CHF2, -C(CH3)F2, -CHCI2, -CH2F, -CH(CH3)F, -CH2CF3, -CH2CI, -CH2CH2F, -CH2CH2CI, -CH2CH2CH2F and -CH2CH2CH2CI.
[0079] Examples of compounds of Formula (I), include the following:
[0080] Further examples of a compound of Formula (I), include the following:
, or a pharmaceutically acceptable salt of any of the foregoing.
[0081] Additional examples of a compound of Formula (I) can be selected from:
, or a pharmaceutically
acceptable salt of any of the foregoing.
[0082] Some embodiments disclosed herein relate to a compound having the structure or a pharmaceutically acceptable salt thereof. Other embodiments disclosed
herein relate to a compound having the structure or a pharmaceutically
acceptable salt thereof, wherein PG1 can be a protecting group. Suitable protecting groups are known to those skilled in the art. For example, PG1 can be a triflate. Still other embodiments disclosed herein relate to a compound having the structure
or a pharmaceutically acceptable salt thereof.
[0083] Some embodiments disclosed herein relate to a method of preparing a compound having the structure
, or a pharmaceutically acceptable salt thereof,
that can include coupling a boronic ester to a compound having the structure
A variety of boronic ester can be used in the coupling reaction. In some embodiments, the boronic ester can have the structure
wherein each RB1 and RB2 can be a C1-6 alkyl (such as an unsubstituted C1-6 alkyl), or RB1 and RB2 can be taken together along with the -O-B-O- to form a
5- to 7-membered heterocyclyl (for example, a 5- to 7-membered monocyclic heterocyclyl). In some embodiments, the boronic ester can be Other embodiments disclosed herein
relate to a method of preparing a compound having the structure
or a pharmaceutically acceptable salt thereof, that can include hydrogenating a compound having the structure or a pharmaceutically acceptable salt thereof. In some embodiments,
the hydrogenation of can include using a suitable hydrogenation compound, such
as palladium on carbon.
Synthesis
[0084] Compounds of Formula (I) along with those described herein may be prepared in various ways. General synthetic routes for preparing compounds of Formula (I) are shown and described herein along with some examples of starting materials used to synthesize compounds described herein. Additionally, for the purpose of the general synthetic routes, the structures depicted are appropriately protected, as known by one skilled in the art and the generic structures are meant to include these protecting groups. The routes shown and described herein are illustrative only and are not intended, nor are they to be construed, to limit the scope of the claims in any manner whatsoever. Those skilled in the art will be able to recognize modifications of the disclosed syntheses and to devise alternate routes based on the disclosures herein; all such modifications and alternate routes are within the scope of the claims.
Pharmaceutical Compositions
[0085] Some embodiments described herein relate to a pharmaceutical composition, which can include an effective amount of a compound described herein (e.g., a compound, or a pharmaceutically acceptable salt thereof, as described herein) and a pharmaceutically acceptable carrier, excipient or combination thereof. A pharmaceutical composition described herein is suitable for human and/or veterinary applications.
[0086] As used herein, a “carrier” refers to a compound that facilitates the incorporation of a compound into cells or tissues. For example, without limitation, dimethyl sulfoxide (DMSO) is a commonly utilized carrier that facilitates the uptake of many organic compounds into cells or tissues of a subject.
[0087] As used herein, a “diluent” refers to an ingredient in a pharmaceutical composition that lacks pharmacological activity but may be pharmaceutically necessary or desirable. For example, a diluent may be used to increase the bulk of a potent drug whose mass is too small for manufacture and/or administration. It may also be a liquid for the dissolution of a drug to be administered by injection, ingestion or inhalation. A common form of diluent in the art is a buffered aqueous solution such as, without limitation, phosphate buffered saline that mimics the composition of human blood.
[0088] As used herein, an “excipient” refers to an inert substance that is added to a pharmaceutical composition to provide, without limitation, bulk, consistency, stability, binding ability, lubrication, disintegrating ability etc., to the composition. A “diluent” is a type of excipient.
[0089] Proper formulation is dependent upon the route of administration chosen. Techniques for formulation and administration of the compounds described herein are known to those skilled in the art. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, rectal, topical, aerosol, injection, inhalation and parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, intrathecal, direct intraventricular, intraperitoneal, intranasal and intraocular injections. Pharmaceutical compositions will generally be tailored to the specific intended route of administration.
[0090] One may also administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into the infected area, often in a depot or sustained release formulation. Furthermore, one may administer the compound in a targeted drug delivery system, for example, in a liposome coated with a tissue- specific antibody. The liposomes may be targeted to and taken up selectively by the organ.
[0091] The pharmaceutical compositions disclosed herein may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tableting processes. As described herein, compounds used in a pharmaceutical composition may be provided as salts with pharmaceutically compatible counterions.
Methods of Use
[0092] Some embodiments described herein relate to a method for treating a cancer described herein that can include administering an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a
compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein.
[0093] Some embodiments described herein relate to a method for inhibiting growth of a malignant growth or a tumor that can include contacting the growth or the tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), wherein the malignant growth or tumor is due to a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting growth of a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
[0094] Some embodiments described herein relate to a method for treating a cancer described herein that can include contacting a malignant growth or a tumor with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for
example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer that can include contacting a malignant growth or a tumor, wherein the malignant growth or tumor is due to a cancer described herein.
[0095] Some embodiments described herein relate to a method for inhibiting the activity of DNA-dependent protein kinase that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein. Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting the activity of DNA- dependent protein kinase. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting the activity of DNA-dependent protein kinase. Some embodiments described herein relate to a method for inhibiting the activity of DNA-dependent protein kinase that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a cancer cell from a cancer described herein. Other
embodiments described herein relate to a method for inhibiting the activity of DNA-dependent protein kinase that can include contacting a cancer cell from a cancer described herein with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), and thereby inhibiting the activity of DNA-dependent protein kinase.
[0096] Some embodiments described herein relate to a method for treating a cancer described herein that can include inhibiting the activity of DNA-dependent protein kinase using an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof). Other embodiments described herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase. Still other embodiments described herein relate to an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for treating a cancer described herein by inhibiting the activity of DNA-dependent protein kinase. Some embodiments described herein relate to a method for treating a cancer described herein that can include contacting a cancer cell with an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof), wherein the compound inhibits the activity of DNA-dependent protein kinase.
[0097] Some embodiments disclosed herein relate to a method for inhibiting the activity of DNA-dependent protein kinase that can include providing an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically
acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) to a subject having a cancer described herein or a cancer cell from a cancer described herein. Other embodiments disclosed herein relate to the use of an effective amount of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) in the manufacture of a medicament for inhibiting the activity of DNA-dependent protein kinase. Still other embodiments disclosed herein relate to a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) or a pharmaceutical composition that includes of a compound described herein (for example, a compound of Formula (I), or a pharmaceutically acceptable salt thereof) for inhibiting the activity of DNA-dependent protein kinase.
[0098] Examples of suitable cancers include, but are not limited to: a lung cancer, a pancreatic cancer, a colon cancer (e.g., colorectal cancer), a myeloid leukemia (e.g., AML, CML, and CMML), a thyroid cancer, a myelodysplastic syndrome (MDS), a bladder carcinoma, an epidermal carcinoma, a melanoma, a breast cancer, a prostate cancer, a head and neck cancers (e.g., squamous cell cancer of the head and neck), an ovarian cancer, a brain cancer (e.g., gliomas, such as glioma blastoma multiforme), a cancer of mesenchymal origin (e.g., fibrosarcomas and rhabdomyosarcomas), a sarcoma, a teratocarcinoma, a neuroblastoma, a kidney carcinoma, a hepatoma, non-Hodgkin's lymphoma, multiple myeloma or an anaplastic thyroid carcinoma.
[0099] As used herein, the terms “treat,” “treating,” “treatment,” “therapeutic,” and “therapy” do not necessarily mean total cure or abolition of the disease or condition. Any alleviation of any undesired signs or symptoms of a disease or condition, to any extent can be considered treatment and/or therapy. Furthermore, treatment may include acts that may worsen the subject’s overall feeling of well-being or appearance.
[0100] As used herein, a “subject” refers to an animal that is the object of treatment, observation or experiment. “Animal” includes cold- and warm-blooded vertebrates and invertebrates such as fish, shellfish, reptiles and, in particular, mammals. “Mammal” includes, without limitation, mice, rats, rabbits, guinea pigs, dogs, cats, sheep, goats, cows, horses, camels, non-human primates, such as monkeys, chimpanzees, and apes, and, in particular, humans. In
some embodiments, the subject can be human, for example a human subject that is 18 years old or older.
[0101] The term “effective amount” is used to indicate an amount of an active compound, or pharmaceutical agent, which elicits the biological or medicinal response indicated. For example, an effective amount of compound can be the amount needed to alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. This response may occur in a tissue, system, animal or human and includes alleviation of the signs or symptoms of the disease being treated. Determination of an effective amount is well within the capability of those skilled in the art, in view of the disclosure provided herein. The effective amount of the compounds disclosed herein required as a dose will depend on the route of administration, the type of animal, including human, being treated, and the physical characteristics of the specific animal under consideration. The dose can be tailored to achieve a desired effect, but will depend on such factors as weight, diet, concurrent medication and other factors which those skilled in the medical arts will recognize.
EXAMPLES
[0102] Additional embodiments are disclosed in further detail in the following examples, which are not in any way intended to limit the scope of the claims.
[0103] Compound 17 (100 g, 598.92 mmol, eq.), dichloropalladium;triphenylphosphane (8.41 g, 11.98 mmol, 0.02 eq.), tributyl(l- ethoxyvinyl)stannane (237.93 g, 658.81 mmol, 222.36 mL, 1.1 eq.) in dioxane (1000 mL) was de- gassed and then heated to 100°C for 1 h under N2. The reaction was quenched by the addition of saturated solution of potassium fluoride (aq., 500 mL). The mixture was stirred at 20 °C for 2 h. The aqueous phase was extracted with EA (3 x 2000 mL). The combined organic phase was washed with brine (1000 mL), dried with anhydrous Na2SO4, filtered and concentrated in vacuum to afford the crude product, which was purified by silica gel chromatography (column height: 250 mm, diameter: 100 mm, 100-200 mesh silica gel, PE:EA = 100:1, 80:1) to afford 18 (110 g, 542.91
mmol, yield 90.65%) as a yellow solid. 1H NMR (400 MHz, CDCl3-d ) δ ppm 1.44 (t, J=7.03 Hz, 3 H) 3.98 (q, J=7.03 Hz, 2 H) 4.73 (d, J=3.01 Hz, 1 H) 5.32 (d, J=3.01 Hz, 1 H) 8.47 (d, J=2.76 Hz, 1 H).
[0104] To a solution of 18 (110 g, 542.91 mmol, 1 eq.) in dioxane (1000 mL) was added a solution of NaIO4 (232.25 g, 1.09 mol, 60.17 mL, 2 eq.) in H2O (500 mL), then KMnO4 (86.62 g, 548.11 mmol, 1.01 eq.) was added to the mixture in one portion at 0 °C. The mixture was stirred at 25 °C for 1 h. The mixture was filtered, and the resulting filtrate was diluted with EtOAc (1050 mL), aqueous sodium bicarbonate (1000 mL) and aqueous NaCl (1000 mL). The mixture was stirred for 5 mins. The aqueous layer was extracted with EtOAc (2 x 500 mL). The combined organic layers were dried over sodium sulfate, filtrated and concentrated under reduced pressure. The residue was purified by silica gel chromatography (column height: 250 mm, diameter: 100 mm, 100-200 mesh silica gel, PE:EA = 100:1, 10:1) to afford 19 (27.5 g, 134.42 mmol, yield 24.76%) as a yellow solid. 1H NMR (400 MHz, CDCl3-d ) δ ppm 1.45 (t, J=7.13 Hz, 3 H) 4.52 (q, J=7.13 Hz, 2 H) 8.70 (d, J=1.63 Hz, 1 H).
[0105] To a mixture of 19 (27.5 g, 134.42 mmol, 1 eq.) in DCM (50 mL) was added methanamine●hydrochloride (907.56 mg, 13.44 mmol, 0.1 eq.) and TEA (40.80 g, 403.25 mmol, 56.13 mL, 3 eq.) in one portion at 20 °C under N2. The mixture was stirred at 20 °C for 12 h. Compound 20 (28.99 g, crude) was obtained as yellow oil solution and used in the next step directly. LCMS (ESI+): m/z 216 [M+1], (RT: 0.623 min).
[0106] To a mixture of 20 (28.99 g, 134.44 mmol, 1 eq.) in DCM (300 mL) was added
TEA (27.22 g, 268.88 mmol, 37.44 mL, 2 eq.) and acetyl chloride (105.57 g, 1.34 mol, 95.97 mL, 10 eq.) dropwise at 20 °C under N2. The mixture was stirred at 20 °C for 3 h. The mixture was concentrated in vacuum to give the crude product. The residue was poured into ice-water (150 mL) and stirred for 5 mins. The aqueous phase was extracted with EA (3 x 200 mL). The combined organic phase was washed with brine (150 mL), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by silica gel chromatography (column height: 250 mm, diameter: 100 mm, 100-200 mesh silica gel, PE:EA = 100:1, 9:1) to afford 21 (13 g, 50.45 mmol, yield 37.53%) as a yellow solid. 1H NMR (400 MHz, CDCl3-d ) δ ppm 1.41 (td, J=7.07, 2.96 Hz, 3 H) 1.78 - 2.31 (m, 3 H) 3.16 - 3.49 (m, 3 H) 4.44 (dq, J=19.43, 7.12 Hz, 2 H) 8.55 - 8.74 (m, 1 H).
[0107] To a mixture of 21 (1 g, 3.88 mmol, 1 eq.) and in MeOH (20 mL) was added DIEA (2.01 g, 15.52 mmol, 2.70 mL, 4 eq.) in one portion at 20°C under N2. The mixture was stirred at 60°C for 12 h. Twelve additional vials were set up as described above. All thirteen mixtures were combined. The mixture was filtered and then concentrated in vacuum to give the crude product. The residue was purified by silica gel chromatography (column height: 250 mm, diameter: 100 mm, 100-200 mesh silica gel, PE:EA=50:1, 8:1) to afford 25 (9.8 g, 40.97 mmol, yield 81.20%) as a yellow solid. 1H NMR (400 MHz, CDCI3-d) δ ppm 1.83 - 2.28 (m, 3 H) 3.16 - 3.40 (m, 3 H) 3.93 - 4.00 (m, 3 H) 4.05 - 4.12 (m, 3 H) 8.45 - 8.57 (m, 1 H).
[0108] To a mixture of 25 (500 mg, 2.09 mmol, 1 eq.) in THF (20 mL) was added NaHMDS (I M, 6.27 mL, 3 eq.) dropwise at -60 °C under N2. The mixture was stirred at -60 °C for 1 h. Eighteen additional vials were set up as described above. All nineteen mixtures were combined, and the reaction was quenched by water (30 mL). The aqueous phase was extracted with EA (100 mL). The aqueous was added to HC1 (1 N, 10 mL). The aqueous phase was lyophilization to give the crude product. The crude product was triturated with DCM (100 mL) and TEA (3 g) to give 26 (6 g, crude) as a yellow solid. 1H NMR (400 MHz, CDCl3-d) δ ppm 3.69 (s, 3 H) 4.12 (s, 3 H) 6.50 (s, 1 H) 8.75 (s, 1 H).
[0109] To a mixture of 26 (6 g, 28.96 mmol, 1 eq.) in DCM (5 mL) was added TEA (8.79 g, 86.88 mmol, 12.09 mL, 3 eq.) and Tf2O (12.26 g, 43.44 mmol, 7.17 mL, 1.5 eq.) dropwise at 0 °C under N2. The mixture was stirred at 0 °C for 1 h. The mixture was cooled to 0 °C and then concentrated under reduced pressure at 30 °C. The residue was poured into ice-water (10 mL) and stirred for 5 mins. The aqueous phase was extracted with EA (3 x 20 mL). The combined organic phase was washed with brine (1 x 10 mL), dried with anhydrous Na2SO4, filtered and concentrated in vacuum to give 27 (6 g, crude) as a yellow oil. LCMS (ESI+): m/z 340 [M+l], (RT: 0.762 min).
[0110] To a mixture of 27 (6 g, 17.69 mmol, 1 eq.) and in dioxane (50 mL) and H2O (50 mL) was added Na2CO3 (3.75 g, 35.37 mmol, 2 eq.), 2-(3,6-dihydro-2H-pyran-4-yl)-4,4,5,5- tetramethyl-1,3,2-dioxaborolane (5.57 g, 26.53 mmol, 1.5 eq.) and Pd(dppf)Cl2 (258.82 mg, 353.72 umol, 0.02 eq.) in one portion at 20 °C under N2. The mixture was stirred at 80 °C for 2 h. The residue was poured into ice-water (30 mL) and stirred for 5 mins. The aqueous phase was extracted with EA (3 x 100 mL). The combined organic phase was washed with brine (100 mL),
dried with anhydrous Na2SO4, filtered and concentrated under reduced pressure to give 28 (6 g, crude). LCMS (ESI+): m/z 274 [M+l], (RT: 0.647 min).
[0111] To a mixture of 28 (6.00 g, 22.11 mmol, 1 eq.) in MeOH (60 mL) was added palladium/C (235.34 mg, 2.21 mmol, 0.1 eq.) in one portion at 20 °C under N2. The mixture was stirred under H2 (15 psi) at 20 °C for 10 mins. The mixture was filtered, and the filter was concentrated under reduced pressure. The crude product was purified by silica gel chromatography eluted with PE:EA=100:l to 1:1 to give 29 (350 mg, 1.27 mmol, yield 5.75%) as a yellow solid. 1H NMR (400 MHz, CDCI3-d) δ ppm 1.70 - 1.83 (m, 2 H) 1.89 - 1.97 (m, 2 H) 3.50 (s, 3 H) 3.61 - 3.75 (m, 6 H) 4.04 - 4.16 (m, 5 H) 6.95 (s, 1 H) 8.75 (s, 1 H).
[0112] To a mixture of 9 (24.22 mg, 163.46 umol, 1.5 eq.) and 29 (30 mg, 108.97 umol, 1 eq.) in THE (1 mL) was added KHMDS (I M, 163.46 uL, 1.5 eq.) dropwise at 20 °C under N2. The mixture was stirred at 50 °C for 1.5 h. Five additional vials were set up as described above. All six mixtures were combined, and the reaction were quenched by addition of MeOH (5 mL). The mixture was purified by prep-HPLC (HC1 as additive) and twice purification by prep-HPLC (NH4HCO3 as additive) to give A1 (2.5 mg, 6.39 umol, 9.77e-l% yield). Column: C18-1 150*30mm*5um;mobile phase: [water(HCl)-ACN];B%: l%-45%,8min. Column: C18-1 150*30mm*5um;mobile phase: [water( NH4HCO3)-ACN];B%: 15%-40%,20min. 1H NMR (400 MHz, CDCI3-d) δ ppm 1.79 (qd, J=12.34, 4.00 Hz, 2 H) 1.96 (br d, J=12.26 Hz, 2 H) 2.56 (s, 3 H) 3.66 - 3.77 (m, 4 H) 3.83 (br t, J=11.38 Hz, 2 H) 4.13 (br dd, J=11.26, 3.38 Hz, 2 H) 6.97 (s, 2 H) 7.62 (s, 1 H) 8.29 (s, 1 H) 8.73 (s, 1 H) 9.82 (s, 1 H). LCMS (ESI+): m/z 392 (M + 1), (RT: 2.137 min).
[0113] To a solution of C1 (25 g, 163.25 mmol, 1 eq.) in toluene (250 mL) was added
DMFDMA (58.36 g, 498.75 mmol, 3 eq.) at 20 °C. The mixture was stirred at 120 °C for 1 h. The mixture was filtered and dried in high vacuum to give C2 (32.8 g, 96.49% yield, 90% purity) as a yellow solid. 1H NMR: (400 MHz, DMSO-d6) δ ppm 8.68 (s, 1 H) 6.79 (s, 1 H) 3.16 (s, 3 H) 3.05 (s, 3 H) 2.51 (s, 3 H).
[0114] To a solution of C2 (32.8 g, 157.53 mmol, 1 eq.) in MeOH (330 mL) was added hydroxylamine hydrochloride (21.89 g, 315.06 mmol, 2 eq.) at 20°C. The vessel was evacuated and backfilled with nitrogen (3x) at 20 °C. The mixture was stirred at 80 °C for 1 h. The mixture was concentrated under reduced pressure, and then water (50 mL) was added. The mixture was extracted with EA (3 x 20 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated under reduced pressure to give C3 (30.06 g, 97.28% yield, 90% purity) as a yellow solid. 1H NMR: (400 MHz, DMSO-d6 ) δ ppm 10.54 (s, 1 H) 10.12 (d, J=9.66 Hz, 1 H) 8.88 (s, 1 H) 7.88 (d, J=9.66 Hz, 1 H) 7.04 (s, 1 H) 2.51 (s, 3 H).
[0115] To a solution of C3 (10.4 g, 53.02 mmol, 1 eq.) in THE (100 mL) cooled at 0 °C was added TFAA (16.7 g, 79.53 mmol, 1.5 eq.) dropwise. The mixture was stirred at 20 °C for 12 h. The mixture was concentrated under reduced pressure to give the crude product. The crude product was purified by column chromatography on silica gel eluted with EA and PE (eluted with EA in PE from 0% to 12%). The product was recrystallized from PE. The product was filtered and the cake was dried in vacuo to give C4 (4.65 g, 49.23% yield, 90% purity) as a pale-yellow solid. 1H NMR: (400 MHz, DMSO-d6) δ ppm 9.98 (s, 1 H) 8.72 (s, 1 H) 7.95 (s, 1 H) 2.66 (d, J=0.88 Hz, 3 H).
[0116] To a suspension of Pd/C (6.34 g, 5.22 mmol, 10% purity) in EtOH (40 mL) at 20 °C was added a solution of C4 (4.65 g, 26.1 mmol, 1 eq.) in EtOH (50 mL). Ammonium formate (8.23 g, 130.51 mmol, 5 eq.) was added in the mixture at 20 °C. The mixture was stirred at 80 °C for 2 h, and then was filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to give the crude product. The crude product was dried in vacuo to give C5 (3.02 g, 78.09% yield, 90% purity) was obtained as a pale brown solid. 1H NMR: (400 MHz, DMSO- d6) δ ppm 8.11 (s, 1 H) 8.08 (s, 1 H) 7.46 (s, 1 H) 4.97 - 5.05 (m, 2 H) 2.25 (s, 3 H).
[0117] To a solution of 79 (350 mg, 1.45 mmol, 1 eq.) in DMSO (6 mL) was added DIEA (561.47 mg, 4.34 mmol, 756.70 uL, 3 eq.) and morpholine (252.32 mg, 2.90 mmol, 254.86 uL, 2 eq.) at 25 °C under N2. The mixture was stirred at 90 °C for 12 h. The mixture was poured into ice water (15 mL) at 0 °C, stirred for 10 min and filtered. The filter cake was dried under high vacuum to give the product, which was used in the next step directly without further purification. Compound 79A (340 mg, 80.31% yield) was obtained as a brown solid.
[0118] To a solution of 79A (340 mg, 1.16 mmol, 1 eq.) in DCM (6 mL) was added MCPBA (247.91 mg, 1.22 mmol, 85% purity, 1.05 eq.) at 25 °C under N2. The mixture was stirred at 25 °C for 2 h. The mixture was poured into water and extracted with DCM (3 x 5 mL). The combined organic phase was washed with NaSO3 (20 mL), dried over Na2SO4 and concentrated to give the crude product. The residue was purified by column chromatography (SiO2, PE:EA=50: 1 to 2:1). Compound 79B (200 mg, 55.77% yield) was obtained as a light brown solid.
[0119] To a solution of 79B (100 mg, 324.30 umol, 1 eq.) and 6-methyl-3aH- benzotriazol-5-amine (57.66 mg, 389.16 umol, 1.2 eq.) in DMF (3 mL) was added KOtBu (90.98 mg, 810.75 umol, 2.5 eq.) at 0 °C under N2. The mixture was stirred at 20 °C for 2 h. The mixture was poured into water and extracted with DCM (3 x 5 mL). The combined organic phase was dried over Na2SO4 and concentrated to give the crude product. The crude product was purified by reversed-phase HPLC( 0.1% FA condition, prep-HPLC (column: Phenomenex Luna 80*30mm*3um; liquid phase: [A-FA/H2O=0.1% v/v; B-ACN]B%: 10%-35%,8min])). Compound A2 (41 mg, 104.48 umol, 32.22% yield) was obtained as a yellow solid. 1H NMR: 400 MHz, CDOD3) δ ppm 9.16 (s, 1H), 9.05 (s, 1H), 8.93 (s, 1H), 8.42 (s, 1H), 8.15 (br s, 1H), 7.76 (s, 1H), 6.05 (s, 1H), 3.55 (s, 3H), 3.44 (br d, J = 4.8 Hz, 4H), 3.27 (br d, J = 4.4 Hz, 4H), 2.38 (s, 3H).
Example 3 Additional Compounds
[0120] Additional compounds of Formula (I) can be prepared using similar materials and methods described herein, such as those described herein.
Example A DNA-PK Kinase Assay
[0121] A kinase buffer (40 mM Tris, pH 7.5, 0.0055% Brij-35, 20 mM MgCl2, 0.05 mM DTT) was prepared, and the compounds were diluted to 100X of the final desired highest inhibitor concentration in reaction by 100% DMSO. The compounds were in tubes to one well on a 96-well storage plate and serially by transferring 15 μL to 30 μL of 100% DMSO into the well. 50 nL of compound was transferred from source plate to 384-well plate.
[0122] Solution (2X) of substrate and ATP in kinase reaction buffer was prepared, and 2.5 μL of substrate solution was added to each well of the assay plate to initiate the reaction. DNA- PK in 1x kinase buffer at 2-fold the final concentration of each reagent was prepared, and 2.5 μL of kinase solution was added to each well. 2.5 μL of substrate solution was added to each well of the assay plate to start reaction and incubated at room temperature for 3 h. 5 μL of ADP-Glo reagent was added to each well of the assay plate to terminate the reaction. The solution was mixed briefly, centrifuged and equilibrated for 120 min. 10 uL Kinase Detection Reagent was added to each well, and shaken and left to equilibrate for 30 min before reading on a plate reader for luminescence. Percent inhibition = (max-sample RLU)/(max-min) x 100 was calculated and fitted the data in XLFit excel add-in version 5.4.0.8 to obtain IC50 values.
[0123] The results of the assays are provided in Table 1. In Table 1, ‘A’ indicates an
IC50 of < 0.01 μM, ‘B’ indicates an IC50 of ≥ 0.01 μM and < 0.10 μM, and ‘C’ indicates an IC50 of ≥ 0.10 μM. As shown by the results in Table 1, compounds of Formula (I), including pharmaceutically acceptable salts thereof, are effective DNA-dependent protein kinase inhibitors.
[0124] Although the foregoing has been described in some detail by way of illustrations and examples for purposes of clarity and understanding, it will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present disclosure. Therefore, it should be clearly understood that the forms disclosed herein are illustrative only and are not intended to limit the scope of the present disclosure, but rather to also cover all modification and alternatives coming with the true scope and spirit of the present disclosure.
Claims
1. A compound of Formula (I), or a pharmaceutically acceptable salt thereof, having the structure:
wherein:
R1 is selected from the group consisting of
wherein R1 is unsubstituted or substituted with 1 or 2
substituents selected from the group consisting of a halogen, an unsubstituted C 1-4 alkyl, a deuterium-substituted C1-4 alkyl and an unsubstituted C1-4 alkoxy; and R1A is hydrogen or an unsubstituted C1-4 alkyl;
R2 is selected from the group consisting of an unsubstituted or a substituted monocyclic cycloalkyl and an unsubstituted or a substituted monocyclic heterocyclyl;
R3 is selected from the group consisting of hydrogen, an unsubstituted C1-4 alkyl, an unsubstituted C1-4 alkoxy and an unsubstituted monocyclic C3-6 cycloalkyl; and
R4 is selected from the group consisting of hydrogen, an unsubstituted C1-4 alkyl, a deuterium-substituted C1-4 alkyl, an unsubstituted monocyclic C3-6 cycloalkyl, an unsubstituted bicyclic C5-6 cycloalkyl and an unsubstituted C1-4 haloalkyl.
6. The compound of any one of Claims 1-4, wherein R1 is unsubstituted.
7. The compound of any one of Claims 1-4, wherein R1 is substituted.
8. The compound of Claim 7, wherein R1 is substituted with a halogen.
9. The compound of Claim 7, wherein R1 is substituted with an unsubstituted C1-4 alkyl.
10. The compound of Claim 7, wherein R1 is substituted with a deuterium-substituted
C1-4 alkyl.
12. The compound of any one of Claims 1-11, wherein R2 is a monocyclic cycloalkyl.
13. The compound of any one of Claims 1-11, wherein R2 is a monocyclic C4-6 cycloalkyl.
14. The compound of any one of Claims 1-11, wherein R2 is a monocyclic heterocyclyl.
15. The compound of any one of Claims 1-11, wherein R2 is a 4-6 membered monocyclic heterocyclyl.
16. The compound of any one of Claims 1-11, wherein R2 is selected from the group consisting of cyclopentyl and cyclohexyl.
17. The compound of any one of Claims 1-11, wherein R2 is selected from the group consisting of tetrahydrofuran, tetrahydro-2H-pyran, tetrahydro-2H-thiopyran 1,1 -dioxide, morpholine, thiomorpholine, thiomorpholine 1,1 -dioxide, piperidine, piperazine and 3,6-dihydro- 2H-pyran.
20. The compound of any one of Claims 1-19, wherein R2 is unsubstituted.
21. The compound of any one of Claims 1-19, wherein R2 is substituted.
22. The compound of Claim 21, wherein R2 is substituted with one or more substituents selected from the group consisting of halogen, cyano, hydroxy, an unsubstituted C1-4 alkyl, an
unsubstituted C1-4 alkoxy, an unsubstituted monocyclic C3-6 cycloalkyl and an unsubstituted C1-4 haloalkyl.
23. The compound of any one of Claims 1-22, wherein R3 is hydrogen.
24. The compound of any one of Claims 1-22, wherein R3 is an unsubstituted C1-4 alkyl.
25. The compound of any one of Claims 1-22, wherein R3 is an unsubstituted C1-4 alkoxy.
26. The compound of any one of Claims 1-22, wherein R3 is an unsubstituted monocyclic C3-6 cycloalkyl.
27. The compound of any one of Claims 1-26, wherein R4 is hydrogen.
28. The compound of any one of Claims 1-26, wherein R4 is an unsubstituted C1-4 alkyl.
29. The compound of any one of Claims 1-26, wherein R4 is a deuterium-substituted C1-4 alkyl.
30. The compound of any one of Claims 1-26, wherein R4 is an unsubstituted monocyclic C3-6 cycloalkyl.
31. The compound of any one of Claims 1-26, wherein R4 is an unsubstituted bicyclic
C5-6 cycloalkyl.
32. The compound of any one of Claims 1-26, wherein R4 is an unsubstituted C1-4 haloalkyl.
37. A pharmaceutical composition comprising a compound of any one of Claims 1-36, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent, excipient or combination thereof.
38. Use of an effective amount of a compound of any one of Claims 1-36, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of Claim 37 in the manufacture of a medicament for treating a cancer.
39. The use of Claim 38, wherein the cancer is selected from the group consisting of a lung cancer, a pancreatic cancer, a colon cancer (e.g., colorectal cancer), a myeloid leukemia (e.g., AML, CML, and CMML), a thyroid cancer, a myelodysplastic syndrome (MDS), a bladder carcinoma, an epidermal carcinoma, a melanoma, a breast cancer, a prostate cancer, a head and neck cancers (e.g., squamous cell cancer of the head and neck), an ovarian cancer, a brain cancer (e.g., gliomas, such as glioma blastoma multiforme), a cancer of mesenchymal origin (e.g., fibrosarcomas and rhabdomyosarcomas), a sarcoma, a teratocarcinoma, a neuroblastoma, a kidney
carcinoma, a hepatoma, non-Hodgkin's lymphoma, multiple myeloma or an anaplastic thyroid carcinoma.
40. Use of an effective amount of a compound of any one of Claims 1-36, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of Claim 37 in the manufacture of a medicament for inhibiting DNA-dependent protein kinase.
41. A method for treating a cancer comprising administering an effective amount of a compound of any one of Claims 1-36, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of Claim 37 to a subject in need thereof.
42. A method for treating a cancer comprising contacting a cancer cell with an effective amount of a compound of any one of Claims 1-36, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of Claim 37 to a subject having the cancer.
43. The method of Claim 41 or 42, wherein the cancer is selected from the group consisting of a lung cancer, a pancreatic cancer, a colon cancer (e.g., colorectal cancer), a myeloid leukemia (e.g., AML, CML, and CMML), a thyroid cancer, a myelodysplastic syndrome (MDS), a bladder carcinoma, an epidermal carcinoma, a melanoma, a breast cancer, a prostate cancer, a head and neck cancers (e.g., squamous cell cancer of the head and neck), an ovarian cancer, a brain cancer (e.g., gliomas, such as glioma blastoma multiforme), a cancer of mesenchymal origin (e.g., fibrosarcomas and rhabdomyosarcomas), a sarcoma, a teratocarcinoma, a neuroblastoma, a kidney carcinoma, a hepatoma, non-Hodgkin's lymphoma, multiple myeloma or an anaplastic thyroid carcinoma.
44. A method for inhibiting DNA-dependent protein kinase comprising contacting a cell with an effective amount of a compound of any one of Claims 1-36, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition of Claim 37, wherein the cell is a cancer cell.
49. The method of Claim 46 or 48, wherein the PG1 is a triflate group.
50. A method of preparing the compound of Claim 47 comprising hydrogenating the compound of Claim 45:
51. The method of Claim 50, wherein the hydrogenation comprises the use of palladium on carbon.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263301866P | 2022-01-21 | 2022-01-21 | |
US63/301,866 | 2022-01-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023141522A2 true WO2023141522A2 (en) | 2023-07-27 |
WO2023141522A3 WO2023141522A3 (en) | 2023-08-24 |
Family
ID=87349160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2023/060928 WO2023141522A2 (en) | 2022-01-21 | 2023-01-19 | Multicyclic compounds |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023141522A2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1569925A1 (en) * | 2002-12-13 | 2005-09-07 | Neurogen Corporation | 2-substituted quinazolin-4-ylamine analogues as capsaicin receptor modulators |
US20060142312A1 (en) * | 2004-12-23 | 2006-06-29 | Pfizer Inc | C6-aryl and heteroaryl substituted pyrido[2,3-D] pyrimidin-7-ones |
WO2014015523A1 (en) * | 2012-07-27 | 2014-01-30 | Hutchison Medipharma Limited | Novel heteroaryl and heterocycle compounds, compositions and methods |
CN105828820B (en) * | 2013-10-18 | 2020-01-07 | 赛尔基因昆蒂赛尔研究公司 | Bromo domain inhibitors |
LT3497103T (en) * | 2016-08-15 | 2021-07-26 | Pfizer Inc. | PYRIDOPIRIMIDINONE CDK2 / 4/6 INHIBITORS |
WO2020200291A1 (en) * | 2019-04-02 | 2020-10-08 | Cullgen (Shanghai) , Inc. | Compounds and methods of treating cancers |
-
2023
- 2023-01-19 WO PCT/US2023/060928 patent/WO2023141522A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2023141522A3 (en) | 2023-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11198699B2 (en) | Compounds targeting PRMT5 | |
JP6949952B2 (en) | Spiro ring compound | |
EP3661918B1 (en) | 1,2-dihydro-3h-pyrazolo[3,4-d]pyrimidin-3-one analogs | |
ES2234097T3 (en) | FTALAZINAS WITH INHIBITING ACTIVITY OF ANGIOGENESIS. | |
WO2022109182A9 (en) | Polyheterocyclic glp-1 r modulating compounds | |
WO2023133413A1 (en) | Multicyclic compounds | |
WO2023081209A1 (en) | Pi3k inhibitors and methods of treating cancer | |
KR102049534B1 (en) | NOVEL CHIRAL N-ACYL-5,6,7,(8-SUBSTITUTED)-TETRAHYDRO-[1,2,4]TRIAZOLO[4,3-a]PYRAZINES AS SELECTIVE NK-3 RECEPTOR ANTAGONISTS, PHARMACEUTICAL COMPOSITION, METHODS FOR USE IN NK-3 RECEPTOR MEDIATED DISORDERS AND CHIRAL SYNTHESIS THEREOF | |
ES2872003T3 (en) | Spirobyclic inhibitors of the menin-MLL interaction | |
JP2019508467A (en) | 2-Cyanoisoindoline derivatives for cancer treatment | |
US12054479B1 (en) | Multicyclic compounds | |
CA3197470A1 (en) | Bicyclic compounds | |
JP7313492B2 (en) | Quinoline and cinnoline derivatives as DNA-PK inhibitors | |
JP2021500334A (en) | Amine-substituted heterocyclic compounds as EHMT2 inhibitors, salts thereof, and methods for synthesizing them. | |
JP2007513181A (en) | Novel M3 muscarinic acetylcholine receptor antagonist | |
MX2007003116A (en) | Dna-pk inhibitors. | |
WO2023096915A1 (en) | Multicyclic compounds | |
WO2023049199A1 (en) | Azole compounds | |
WO2023141522A2 (en) | Multicyclic compounds | |
JP2022519764A (en) | Bicyclic sulfonamide | |
AU2017280412B2 (en) | Substituted pyrrolo (2, 3-D) pyridazin-4-ones and pyrazolo (3, 4-D) pyridazin-4-ones as protein kinase inhibitors | |
CN115894376B (en) | Aromatic amide compound, pharmaceutical composition and use thereof | |
WO2021067266A1 (en) | Pyrrolidinyl-based compounds | |
WO2023049691A1 (en) | Cdk7 inhibitors and methods of treating cancer | |
US20220112194A1 (en) | Compounds targeting prmt5 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23743919 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23743919 Country of ref document: EP Kind code of ref document: A2 |