[go: up one dir, main page]

WO2023138072A1 - 电源电路以及电源装置 - Google Patents

电源电路以及电源装置 Download PDF

Info

Publication number
WO2023138072A1
WO2023138072A1 PCT/CN2022/118159 CN2022118159W WO2023138072A1 WO 2023138072 A1 WO2023138072 A1 WO 2023138072A1 CN 2022118159 W CN2022118159 W CN 2022118159W WO 2023138072 A1 WO2023138072 A1 WO 2023138072A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
module
output
isolation
Prior art date
Application number
PCT/CN2022/118159
Other languages
English (en)
French (fr)
Inventor
谭坚文
Original Assignee
深圳迈微医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈微医疗科技有限公司 filed Critical 深圳迈微医疗科技有限公司
Priority to JP2024543435A priority Critical patent/JP2025502473A/ja
Priority to EP22921500.9A priority patent/EP4468543A1/en
Publication of WO2023138072A1 publication Critical patent/WO2023138072A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for DC mains or DC distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for DC mains or DC distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application belongs to the technical field of power circuits, and in particular relates to a power circuit and a power device.
  • a traditional power supply is a device (or system) that provides electrical energy to circuits or electronic and electrical equipment.
  • it can generally be divided into DC power supply and AC power supply; according to the different output voltage levels, it can generally be divided into low-voltage power supply and high-voltage power supply; according to different application fields (or electrical equipment), it can also be divided into communication power supply, aviation power supply, military special power supply, etc.
  • the waveform of its output voltage or current is generally a sine wave with alternating positive and negative.
  • high-frequency AC power supply also called high-frequency inverter power supply
  • the output of the traditional high-frequency AC power supply is a high-frequency sine wave, which generally has two types: switch mode or linear amplification mode.
  • the working bandwidth of the linear amplification mode is wide, but the working efficiency is often low; the switching mode adopts the inverter circuit and the power electronic switching device, and the working efficiency is high.
  • High-voltage square-wave pulse power supply is essentially a high-frequency AC power supply, but its output waveform is square wave or pulse voltage, and the output voltage is often required to be relatively high. Due to different technical implementation paths, it is difficult to simultaneously generate sine waves and high-voltage square waves in the same circuit or system.
  • the existing system scheme using two power supplies realizes the output of different waveform energy forms by means of integration and communication control, but this implementation scheme is a system integration scheme, and the power supplies are all independent systems with independent controllers; and a system-level master controller is required to realize the communication between the master controller and the two power supplies.
  • the output switching of the two energy forms generally uses a relay switching method, which leads to problems such as long switching time and inflexible control.
  • the purpose of the present application is to provide a power supply circuit and a power supply device, aiming to solve the problems of high cost and inconvenient switching of output signals in the traditional power supply capable of outputting multiple waveforms.
  • the first aspect of the present application provides a power supply circuit, including: an input circuit configured to modulate an input voltage into a first working voltage and a second working voltage and output it; a low voltage circuit connected to the input circuit and configured to generate a first output voltage based on the first working voltage and output it; a high voltage circuit connected to the input circuit and configured to generate a second output voltage based on the second working voltage and output it; an isolation circuit connected to the high voltage circuit and the low voltage circuit for outputting the first output voltage and configured to output the first output voltage when the high voltage circuit outputs the second output voltage,
  • the low-voltage circuit is isolated from the second output voltage higher than the preset isolation voltage according to a preset isolation voltage; a control circuit, connected to the high-voltage circuit and the low-voltage circuit, is configured to control the high-voltage circuit and the low-voltage circuit to generate the first output voltage and the second output voltage respectively.
  • the low-voltage circuit includes a resonant module, the resonant module includes a first switching tube, a second switching tube, and a resonance unit, the first conducting end of the first switching tube is connected to the input circuit to receive the first operating voltage, the controlled end of the first switching tube is connected to the control circuit, the second conducting end of the first switching tube is connected to the first conducting end of the second switching tube and connected to the resonance module, the controlled end of the second switching tube is connected to the control circuit, the second conducting end of the second switching tube is connected to a ground terminal; the output of the resonance unit The terminal is connected to the isolation circuit for outputting the resonant voltage.
  • the resonant module includes a first switching tube, a second switching tube, and a resonance unit, the first conducting end of the first switching tube is connected to the input circuit to receive the first operating voltage, the controlled end of the first switching tube is connected to the control circuit, the second conducting end of the first switching tube is connected to the first conducting end of the second switching tube and connected to the resonance module, the
  • the low-voltage circuit further includes a reference voltage module
  • the reference voltage module includes a third switch tube and a fourth switch tube
  • the first conduction end of the third switch tube is connected to the input circuit to receive the first operating voltage
  • the controlled end of the third switch tube is connected to the control circuit
  • the second conduction end of the third switch tube is connected to the first conduction end of the fourth switch tube and connected to the isolation circuit
  • the controlled end of the fourth switch tube is connected to the control circuit
  • the second conduction end of the fourth switch tube is connected to the ground terminal
  • the reference voltage module is used to output a differential mode A reference voltage
  • the differential mode reference voltage is used to generate a differential mode sinusoidal voltage in combination with the resonant voltage
  • the differential mode sinusoidal voltage is the first output voltage.
  • the high-voltage circuit includes a first switch module, a second switch module, a third switch module, and a fourth switch module; the first end of the first switch module is connected to the input circuit to receive the second operating voltage; the second end of the first switch module is connected to the first end of the second switch module and connected to the isolation circuit; the second end of the second switch module is connected to the ground; the first end of the third switch module is connected to the input circuit to receive the second operating voltage; The second terminal is connected to the ground terminal; the high voltage circuit is used to output a differential mode square wave voltage, and the differential mode square wave voltage is the second output voltage.
  • the isolation circuit includes a first isolation module and a second isolation module, the voltage input end of the first isolation module is connected to the resonance module, the voltage input end of the second isolation module is connected to the reference voltage module, and the voltage output end of the first isolation module and the voltage output end of the second isolation module are both connected to the high voltage circuit.
  • the first isolation module includes a first voltage dividing resistor, a second voltage dividing resistor, a first unidirectional conductor, a second unidirectional conductor, a third unidirectional conductor, and a fourth unidirectional conductor;
  • the first terminal of the first voltage dividing resistor is connected to a protection voltage terminal, and the protection voltage terminal is used to output a protection voltage corresponding to the preset isolation voltage;
  • the second terminal of the first voltage dividing resistor is respectively connected to the positive pole of the first unidirectional conductor and the positive pole of the third unidirectional conductor, and the negative pole of the first unidirectional conductor is connected to the positive pole of the second unidirectional conductor
  • the resonance module connect the resonance module, the negative pole of the second unidirectional conductor is connected to the first end of the second voltage dividing resistor, the negative pole of the third unidirectional conductor is connected to the positive pole of the fourth unidirectional conductor and connected to the high voltage circuit, the negative pole of the fourth unidirectional conductor is connected to
  • control circuit includes a control unit and several optocouplers, and the control unit is respectively connected to the high voltage circuit and the low voltage circuit through several optocouplers for controlling generation of the second output voltage and the generation of the first output voltage.
  • the input circuit includes a rectification module and a first voltage regulation module and a second voltage regulation module connected to the rectification module, the rectification module is used to rectify the input voltage into an input DC voltage, the first voltage regulation module is used to convert the input DC voltage into the first working voltage, and the second voltage regulation module is used to convert the input DC voltage into the second working voltage.
  • control unit is respectively connected to the first voltage regulation module, the second voltage regulation module and the isolation circuit, and the control unit is configured to respectively configure the first working voltage, the second working voltage and the preset isolation voltage.
  • the second aspect of the present application provides a power supply device, including the above power supply circuit.
  • the beneficial effect of the power supply circuit and the power supply device provided by the present application is that the low-voltage circuit in the power supply circuit can output the first output voltage through the isolation circuit, and when the second output voltage is output, the isolation circuit can isolate the second output voltage higher than the preset isolation voltage from the low-voltage circuit according to the preset isolation voltage, so as to prevent the second output voltage from damaging the low-voltage circuit, and also realize seamless switching of the output of the power supply circuit from the first output voltage to the second output voltage.
  • FIG. 1 is a functional block diagram of a power supply circuit provided in the first embodiment of the present application
  • Fig. 2 is a schematic circuit diagram of the low-voltage circuit shown in Fig. 1;
  • Fig. 3 is a schematic circuit diagram of the high-voltage circuit shown in Fig. 1;
  • Fig. 4 is another schematic circuit diagram of the high voltage circuit shown in Fig. 1;
  • Fig. 5 is a schematic circuit diagram of the isolation circuit shown in Fig. 1;
  • FIG. 6 is another functional block diagram of the power supply circuit provided by the first embodiment of the present application.
  • 100-input circuit 110-rectifier module; 120-first voltage regulation module; 130-second voltage regulation module; 200-low voltage circuit; 210-resonance module; 211-resonance unit; 220-reference voltage module; 300-high voltage circuit; Module; 411-first unidirectional conductor; 412-second unidirectional conductor; 413-third unidirectional conductor; 414-fourth unidirectional conductor; 420-second isolation module; 500-control circuit.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • Fig. 1 shows the functional block diagram of the power supply circuit provided by the first embodiment of the present application. For the convenience of description, only the parts related to this embodiment are shown, and the details are as follows:
  • a power supply circuit includes: an input circuit 100 , a low voltage circuit 200 , a high voltage circuit 300 , an isolation circuit 400 and a control circuit 500 .
  • the input circuit 100 is configured to modulate the input voltage into a first operating voltage and a second operating voltage and output them.
  • the low-voltage circuit 200 is connected to the input circuit 100, and the low-voltage circuit 200 is configured to generate and output a first output voltage based on a first operating voltage.
  • the high voltage circuit 300 is connected to the input circuit 100, and the high voltage circuit 300 is configured to generate and output a second output voltage based on the second operating voltage.
  • the isolation circuit 400 is connected to the high voltage circuit 300 and the low voltage circuit 200, the isolation circuit 400 is used to output the first output voltage, and the isolation circuit 400 is configured to isolate the low voltage circuit 200 from the second output voltage higher than the preset isolation voltage according to the preset isolation voltage when the high voltage circuit 300 outputs the second output voltage.
  • the control circuit 500 is connected to the high voltage circuit 300 and the low voltage circuit 200, and the control circuit 500 is configured to control the high voltage circuit 300 and the low voltage circuit 200 to generate a first output voltage and a second output voltage respectively. Wherein, the preset isolation voltage is greater than the first output voltage and less than the second output voltage.
  • the second operating voltage is much greater than the first operating voltage
  • the second output voltage is much greater than the first output voltage.
  • the isolation circuit 400 of this embodiment can receive the second output voltage when switching from the first output voltage to the second output voltage, and isolate the second output voltage greater than the preset isolation voltage from the low-voltage circuit 200 to prevent the second output voltage from being transmitted into the low-voltage circuit 200. At the same time, it is also possible to realize seamless switching from the first output voltage to the second output voltage without considering whether the low-voltage circuit 200 is turned off.
  • the low-voltage circuit 200 includes a resonance module 210.
  • the resonance module 210 includes a first switching tube Q1, a second switching tube Q2 and a resonance unit 211.
  • the first conducting end of the first switching tube Q1 is connected to the input circuit 100 to receive the first operating voltage.
  • the controlled end of the first switching tube Q1 is connected to the control circuit 500.
  • the second conducting end of the first switching tube Q1 is connected to the first conducting end of the second switching tube Q2 and connected to the resonance module 210.
  • the controlled end is connected to the control circuit 500, the second conduction end of the second switching transistor Q2 is connected to the ground end; the output end of the resonant unit 211 is connected to the isolation circuit 400 for outputting the resonant voltage; the first output voltage includes the resonant voltage.
  • the resonant unit 211 includes a resonant capacitor C1 and a resonant inductor L1, the first end of the resonant capacitor C1 is connected to the second conduction end of the first switching transistor Q1, the second end of the resonant capacitor C1 is connected to the first end of the resonant inductor L1, and the second end of the resonant inductor L1 is connected to the isolation circuit 400.
  • the low-voltage circuit 200 further includes a reference voltage module 220.
  • the reference voltage module 220 includes a third switching tube Q3 and a fourth switching tube Q4.
  • the first conducting terminal of the third switching tube Q3 is connected to the input circuit 100 to receive the first operating voltage.
  • the controlled terminal of the third switching tube Q3 is connected to the control circuit 500.
  • the second conducting terminal of the third switching tube Q3 is connected to the first conducting terminal of the fourth switching tube Q4 and connected to the isolation circuit 400.
  • the controlled terminal of the fourth switching tube Q4 is connected to the control circuit. 500.
  • the second conduction terminal of the fourth switching transistor Q4 is connected to the ground terminal; the reference voltage module 220 is used to output a differential mode reference voltage, and the differential mode reference voltage is used to generate a differential mode sinusoidal voltage in combination with a resonant voltage, and the differential mode sinusoidal voltage is the first output voltage. Both the resonant voltage and the differential mode reference voltage are less than the preset isolation voltage.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4 are all MOS tubes.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4 can all be NMOS tubes, and the first conducting ends of the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4 correspond to the drains of the NMOS tubes.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube corresponds to the source of the NMOS transistor, and the controlled ends of the first switching transistor Q1 , the second switching transistor Q2 , the third switching transistor Q3 and the fourth switching transistor Q4 correspond to the gate of the NMOS transistor.
  • the differential mode reference voltage is generated by the reference voltage module 220 , and the differential mode reference voltage can be combined with the resonant voltage to generate a differential mode sinusoidal voltage with a positive phase and a negative phase.
  • the low-voltage circuit 200 outputs a positive phase differential mode sinusoidal voltage; when the first switch tube Q1 is turned on, the fourth switch tube Q4 is turned off, and the second switch tube Q2 and the third switch tube Q3 are turned on, a negative phase differential mode sinusoidal voltage is output.
  • the high voltage circuit 300 includes a first switch module 310, a second switch module 320, a third switch module 330 and a fourth switch module 340; the first end of the first switch module 310 is connected to the input circuit 100 to receive the second operating voltage, the second end of the first switch module 310 is connected to the first end of the second switch module 320 and connected to the first output terminal OUT1 of the isolation circuit 400, the second end of the second switch module 320 is connected to the ground end;
  • the input circuit 100 is connected to receive the second operating voltage, the second terminal of the third switch module 330 is connected to the first terminal of the fourth switch module 340 and connected to the second output terminal OUT2 of the isolation circuit 400, and the second terminal of the fourth switch module 340 is connected to the ground terminal; the high voltage circuit 300 is used to output a differential mode square wave voltage.
  • the high voltage circuit 300 When under the control of the control circuit 500, the first switch module 310 and the fourth switch module 340 are turned on, and when the second switch module 320 and the third switch module 330 are turned off, the high voltage circuit 300 outputs a high-level differential mode square wave voltage; when the first switch module 310 and the fourth switch module 340 are turned off, and the second switch module 320 and the third switch module 330 are turned on, the high voltage circuit 300 outputs a low level differential mode square wave voltage, which is the second output voltage.
  • the first switch module 310 , the second switch module 320 , the third switch module 330 and the fourth switch module 340 are all MOS transistors.
  • the first switch module 310, the second switch module 320, the third switch module 330 and the fourth switch module 340 can all be NMOS transistors, the first conduction terminals of the first switch module 310, the second switch module 320, the third switch module 330 and the fourth switch module 340 correspond to the drains of the NMOS transistors, the second conduction terminals of the first switch module 310, the second switch module 320, the third switch module 330 and the fourth switch module 340 correspond to the sources of the NMOS transistors.
  • the controlled terminals of the module 310 , the second switch module 320 , the third switch module 330 and the fourth switch module 340 correspond to the gates of the NMOS transistors.
  • the first switch module 310 , the second switch module 320 , the third switch module 330 and the fourth switch module 340 may each include a plurality of sequentially connected MOS transistors for voltage sharing.
  • the isolation circuit 400 includes a first isolation module 410 and a second isolation module 420, the voltage input terminals of the first isolation module 410 and the voltage input terminals of the second isolation module 420 are connected to the low-voltage circuit 200, and the voltage output terminals of the first isolation module 410 and the voltage output terminals of the second isolation module 420 are connected to the high-voltage circuit 300.
  • the first isolation module 410 includes a first voltage-dividing resistor R1, a second voltage-dividing resistor R2, a first unidirectional conductor 411, a second unidirectional conductor 412, a third unidirectional conductor 413, and a fourth unidirectional conductor 414; the first end of the first voltage-dividing resistor R1 is connected to the protection voltage terminal V1, and the protection voltage terminal V1 is used to output a protection voltage corresponding to a preset isolation voltage.
  • the negative pole of the first unidirectional conductor 411 is connected to the positive pole of the second unidirectional conductor 412 and connected to the resonance module 210
  • the negative pole of the second unidirectional conductor 412 is connected to the first end of the second voltage dividing resistor R2
  • the negative pole of the third unidirectional conductor 413 is connected to the positive pole of the fourth unidirectional conductor 414 and connected to the high voltage circuit 300
  • the negative pole of the fourth unidirectional conductor 414 is connected to the first terminal of the second voltage dividing resistor R2
  • the second terminal of the second voltage dividing resistor R2 is connected to ground end.
  • the cathode of the first one-way conductor 411 is the voltage input terminal of the first isolation module 410
  • the cathode of the third one-way conductor 413 is the voltage output terminal of the first isolation module 410 (the first output terminal OUT1 of the isolation circuit 400 ).
  • the second isolation module 420 has the same structure as the first isolation module 410 and is arranged between the reference voltage module 220 and the second end of the third switch module 330 of the high voltage circuit 300.
  • the voltage output end of the second isolation module 420 (the second output end OUT2 of the isolation circuit 400) is connected to the second end of the third switch module 330 of the high voltage circuit 300.
  • the voltage output end of the first isolation module 410 is used to output resonance voltage, and the first isolation module 410 is used to isolate the resonance module 210 from the high voltage In the circuit 300 , the voltage output terminal of the second isolation module 420 is used to output the differential mode reference voltage, and the second isolation module 420 is used to isolate the reference voltage module 220 and the high voltage circuit 300 .
  • the first unidirectional conductor 411, the second unidirectional conductor 412, the third unidirectional conductor 413, and the fourth unidirectional conductor 414 can all be a diode, or a plurality of end-to-end diodes.
  • each unidirectional conductor includes two end-to-end diodes.
  • the resistance values of the first voltage dividing resistor R1 and the second voltage dividing resistor R2 are equal, so that the preset isolation voltage is half of the protection voltage. When the ratio of the resistance values of the first voltage dividing resistor R1 and the second voltage dividing resistor R2 changes, the relationship between the preset isolation voltage and the protection voltage changes accordingly.
  • the preset isolation voltages of the voltage input terminal of the first isolation module 410 and the voltage output terminal of the first isolation module 410 are both 250V through the voltage division of the first voltage dividing resistor R1 and the second voltage dividing resistor R2. 2 is turned on, and the voltage at the first end of the second voltage dividing resistor R2 is also pulled down to the resonance voltage, and at the same time, the fourth unidirectional conductor 414 is also in the conduction state, so that the voltage at the voltage output end of the first isolation module 410 becomes the resonance voltage, realizing the lossless output of the resonance voltage.
  • the voltage of the first terminal of the first voltage dividing resistor R1 is raised through the fourth unidirectional conductor 414.
  • the voltage of the negative pole of the second unidirectional conductor 412 is greater than the voltage of the positive pole of the second unidirectional conductor 412, so that the second unidirectional conductor 412 is turned off, and the isolation of the resonance module 210 and the second output voltage is realized. Even if the resonant module 210 is still not turned off, seamless switching from the resonant voltage to the voltage output by the second terminal of the first switch module 310 is realized.
  • the second isolation circuit 400 can also isolate the differential mode reference module from the second output voltage, and also realize seamless switching from the differential mode reference voltage to the voltage output by the second terminal of the first switch module 310 . Finally, seamless switching from the first output voltage to the second output voltage is realized.
  • the control circuit 500 includes a control unit and several optocouplers, and the control unit is respectively connected to the high voltage circuit 300 and the low voltage circuit 200 through several optocouplers for controlling the generation of the second output voltage and the generation of the first output voltage.
  • the control unit is respectively connected to the gates of the MOS transistors in the high-voltage circuit 300 and the low-voltage circuit 200 through several photocouplers, so as to control the on and off of each MOS transistor in the high-voltage circuit 300 and the low-voltage circuit 200 .
  • the control unit can be a single-chip microcomputer or a microprocessor.
  • the isolating circuit 400 includes an isolating switch.
  • the isolating switch can be a traditional high-voltage relay or a high-voltage switch.
  • the controlled end of the isolating switch is connected to the control circuit 500
  • the first conduction end of the isolating switch is connected to the low-voltage circuit 200
  • the second conduction end of the isolating switch is connected to the high-voltage circuit 300 .
  • the isolating switch can realize the connection and shutdown of the low-voltage circuit 200 and the high-voltage circuit 300 under the control of the control circuit 500 .
  • the control circuit may simultaneously turn off the isolation switch when the high voltage circuit 300 outputs the second output voltage, so as to protect the low voltage circuit 200 . This embodiment will not be described in detail again.
  • the input circuit 100 includes a rectification module 110 and a first voltage regulation module 120 and a second voltage regulation module 130 connected to the rectification module 110 .
  • the rectifying module 110 is used to rectify the input voltage into an input DC voltage
  • the first voltage regulation module 120 is used to convert the input DC voltage into a first working voltage
  • the second voltage regulating module 130 is used to convert the input DC voltage into a second working voltage.
  • the rectifier module 110 may be a switching power supply topology module
  • the first voltage regulation module 120 may be a step-up and drop topology module
  • the second voltage regulation module 130 may be a flyback boost module.
  • control unit is also connected to the first voltage regulation module 120 , the second voltage regulation module 130 and the isolation circuit 400 respectively, and the control unit is used to respectively configure the first working voltage, the second working voltage and the preset isolation voltage.
  • the second embodiment of the present application provides a power supply device, including the above-mentioned power supply circuit.
  • the power supply device may be an electric power drive device, specifically a medical equipment drive device. This embodiment does not limit the type of power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Inverter Devices (AREA)

Abstract

本申请涉及一种电源电路以及电源装置,电源电路包括:输入电路(100),被配置为将输入电压调制为第一工作电压和第二工作电压;低压电路(200),被配置为基于第一工作电压生成第一输出电压;高压电路(300),被配置为基于第二工作电压生成第二输出电压;隔离电路(400),与高压电路和低压电路连接,用于输出第一输出电压,并被配置为当高压电路输出第二输出电压时,根据预设隔离电压,隔离低压电路和高于预设隔离电压的第二输出电压;控制电路(500),与高压电路和低压电路连接,被配置为分别控制高压电路和低压电路生成第一输出电压和第二输出电压。本申请可以避免第二输出电压损坏低压电路,同时也实现了电源电路的输出由第一输出电压到第二输出电压的无缝切换。

Description

电源电路以及电源装置
本申请要求于2022年01月20日在中华人民共和国国家知识产权局专利局提交的、申请号为202210066078.8、申请名称为“电源电路以及电源装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电源电路技术领域,尤其涉及一种电源电路以及电源装置。
背景技术
目前,传统的电源是向电路或电子电气设备提供电能的装置(或系统)。根据电源输出电能形式的不同,一般可分为直流电源和交流电源;根据输出电压等级的不同,一般又可分为低压电源和高压电源;根据应用领域(或用电设备)不同,还可分为通信电源、航空电源、军用特种电源等。
对于交流电源而言,其输出电压或电流的波形一般为正负交替的正弦波,其中,高频交流电源(也称为高频逆变电源)的应用越来越广。传统的高频交流电源的输出为高频正弦波,一般有开关模式或线性放大模式两类。线性放大模式的工作带宽较宽,但工作效率往往较低;开关模式采用逆变电路和电力电子开关器件,工作效率较高。
除了输出正弦波的高频交流电源外,另一类能输出方波的高频交流电源近年来也越来越受到重视,特别是输出高压方波的高压脉冲电源。高压方波脉冲电源本质上也是一种高频交流电源,但其输出波形为方波或脉冲电压,且输出电压往往要求比较高。由于技术实现路径不同,因此难以同时实现正弦波和高压方波在同一个电路或系统中产生。
现有的采用两种电源的系统方案,以集成和通信控制的方式实现不同波形能量形式的输出,但这种实现方案为系统集成方案,电源均为独立的系统,具有独立的控制器;且需配备一个系统级的总控制器,实现总控制器与两台电源间的通信。除了系统构成复杂、体积庞大、成本高昂等问题外,两种能量形式的输出切换一般采用继电器的切换方式,导致切换时间长,控制不灵活等问题。
技术问题
本申请的目的在于提供一种电源电路以及电源装置,旨在解决传统的能够输出多种波形的电源存在的成本高、输出信号切换不便的问题。
技术解决方案
为实现上述目的,本申请第一方面提供了一种电源电路,包括:输入电路,被配置为将输入电压调制为第一工作电压和第二工作电压并输出;低压电路,与所述输入电路连接,被配置为基于所述第一工作电压生成第一输出电压并输出;高压电路,与所述输入电路连接,被配置为基于所述第二工作电压生成第二输出电压并输出;隔离电路,与所述高压电路和所述低压电路连接,用于输出所述第一输出电压,并被配置为当所述高压电路输出所述第二输出电压时,根据预设隔离电压,将所述低压电路与高于所述预设隔离电压的所述第二输出电压进行隔离;控制电路,与所述高压电路和所述低压电路连接,被配置为分别控制所述高压电路和所述低压电路生成所述第一输出电压和所述第二输出电压。
其中一实施例中,所述低压电路包括谐振模块,所述谐振模块包括第一开关管、第二开关管和谐振单元,所述第一开关管的第一导通端连接所述输入电路,以接收所述第一工作电压,所述第一开关管的受控端连接所述控制电路,所述第一开关管的第二导通端连接所述第二开关管的第一导通端并连接所述谐振模块,所述第二开关管的受控端连接所述控制电路,所述第二开关管的第二导通端连接地端;所述谐振单元的输出端连接所述隔离电路,以用于输出谐振电压。
其中一实施例中,所述低压电路还包括参考电压模块,所述参考电压模块包括第三开关管和第四开关管,所述第三开关管的第一导通端连接所述输入电路,以接收所述第一工作电压,所述第三开关管的受控端连接所述控制电路,所述第三开关管的第二导通端连接所述第四开关管的第一导通端并连接所述隔离电路,所述第四开关管的受控端连接所述控制电路,所述第四开关管的第二导通端连接所述地端;所述参考电压模块用于输出差模参考电压,所述差模参考电压用于结合所述谐振电压生成差模正弦电压,所述差模正弦电压即是所述第一输出电压。
其中一实施例中,所述高压电路包括第一开关模块、第二开关模块、第三开关模块和第四开关模块;所述第一开关模块的第一端连接所述输入电路,以接收所述第二工作电压,所述第一开关模块的第二端连接所述第二开关模块的第一端并连接所述隔离电路,所述第二开关模块的第二端连接地端;所述第三开关模块的第一端连接所述输入电路,以接收所述第二工作电压,所述第三开关模块的第二端连接所述第四开关模块的第一端并连接所述隔离电路,所述第四开关模块的第二端连接所述地端;所述高压电路用于输出差模方波电压,所述差模方波电压即是所述第二输出电压。
其中一实施例中,隔离电路包括第一隔离模块和第二隔离模块,所述第一隔离模块的电压输入端连接所述谐振模块,所述第二隔离模块的电压输入端连接所述参考电压模块,所述第一隔离模块的电压输出端和所述第二隔离模块的电压输出端均连接所述高压电路。
其中一实施例中,所述第一隔离模块包括第一分压电阻、第二分压电阻、第一单向导通器、第二单向导通器、第三单向导通器和第四单向导通器;所述第一分压电阻的第一端连接保护电压端,所述保护电压端用于输出与所述预设隔离电压对应的保护电压,所述第一分压电阻的第二端分别连接所述第一单向导通器的正极和第三单向导通器的正极,所述第一单向导通器的负极连接所述第二单向导通器的正极并连接所述谐振模块,所述第二单向导通器的负极连接所述第二分压电阻的第一端,所述第三单向导通器的负极连接所述第四单向导通器的正极并连接所述高压电路,所述第四单向导通器的负极连接所述第二分压电阻的第一端,所述第二分压电阻的第二端连接所述地端;所述第二隔离模块与所述第一隔离模块的结构相同;所述第一隔离模块用于输出所述谐振电压并隔离所述谐振模块和所述高压电路,所述第二隔离模块用于输出所述差模参考电压并隔离所述参考电压模块和所述高压电路。
其中一实施例中,所述控制电路包括控制单元和若干光电耦合器,所述控制单元通过若干所述光电耦合器分别与所述高压电路、所述低压电路连接,以用于控制生成所述第二输出电压和所述第一输出电压的生成。
其中一实施例中,所述输入电路包括整流模块和与所述整流模块连接的第一调压模块和第二调压模块,所述整流模块用于将所述输入电压整流为输入直流电压,所述第一调压模块用于将所述输入直流电压转换为所述第一工作电压,所述第二调压模块用于将所述输入直流电压转换为所述第二工作电压。
其中一实施例中,所述控制单元分别与所述第一调压模块、所述第二调压模块和所述隔离电路连接,所述控制单元用于分别配置所述第一工作电压、所述第二工作电压和所述预设隔离电压。
本申请第二方面提供了一种电源装置,包括如上述的电源电路。
有益效果
本申请提供电源电路以及电源装置的有益效果在于:电源电路中的低压电路可以通过隔离电路输出第一输出电压,当第二输出电压进行输出时,隔离电路可以根据预设隔离电压将高于预设隔离电压的第二输出电压与低压电路隔开,避免第二输出电压损坏低压电路,同时也实现了电源电路的输出由第一输出电压到第二输出电压的无缝切换。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施例提供的电源电路的原理框图;
图2为图1所示的低压电路的电路示意图;
图3为图1所示的高压电路的电路示意图;
图4为图1所示的高压电路的另一电路示意图;
图5为图1所示的隔离电路的电路示意图;
图6为本申请第一实施例提供的电源电路的另一原理框图。
附图标号说明:100-输入电路;110-整流模块;120-第一调压模块;130-第二调压模块;200-低压电路;210-谐振模块;211-谐振单元;220-参考电压模块;300-高压电路;310-第一开关模块;320-第二开关模块;330-第三开关模块;340-第四开关模块;400-隔离电路;410-第一隔离模块;411-第一单向导通器;412-第二单向导通器;413-第三单向导通器;414-第四单向导通器;420-第二隔离模块;500-控制电路。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1示出了本申请第一实施例提供的电源电路的原理框图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
一种电源电路,包括:输入电路100、低压电路200、高压电路300、隔离电路400和控制电路500。输入电路100被配置为将输入电压调制为第一工作电压和第二工作电压并输出。低压电路200与输入电路100连接,低压电路200被配置为基于第一工作电压生成第一输出电压并输出。高压电路300与输入电路100连接,高压电路300被配置为基于第二工作电压生成第二输出电压并输出。隔离电路400与高压电路300和低压电路200连接,隔离电路400用于输出第一输出电压,隔离电路400并被配置为当高压电路300输出第二输出电压时,根据预设隔离电压,将低压电路200与高于预设隔离电压的第二输出电压进行隔离。控制电路500与高压电路300和低压电路200连接,控制电路500被配置为分别控制高压电路300和低压电路200生成第一输出电压和第二输出电压。其中,预设隔离电压大于第一输出电压且小于第二输出电压。
需要说明的是,第二工作电压远大于第一工作电压,第二输出电压远大于第一输出电压,在输出第一输出电压时,若需要切换为输出第二输出电压,常规电路需要较长的切换时间,且难以做到无缝切换。而本实施例的隔离电路400可以在由第一输出电压切换到第二输出电压时,接收第二输出电压,并将大于预设隔离电压的第二输出电压与低压电路200进行隔离,避免第二输出电压传输进低压电路200,同时,也可以无需考虑低压电路200是否关断,实现由第一输出电压到第二输出电压的无缝切换。
如图2所示,本实施例中,低压电路200包括谐振模块210,谐振模块210包括第一开关管Q1、第二开关管Q2和谐振单元211,第一开关管Q1的第一导通端连接输入电路100,以接收第一工作电压,第一开关管Q1的受控端连接控制电路500,第一开关管Q1的第二导通端连接第二开关管Q2的第一导通端并连接谐振模块210,第二开关管Q2的受控端连接控制电路500,第二开关管Q2的第二导通端连接地端;谐振单元211的输出端连接隔离电路400,以用于输出谐振电压;第一输出电压包括谐振电压。通过控制第一开关管Q1和第二开关管Q2的通断可以实现输出带有震荡的谐振电压。具体地,谐振单元211包括谐振电容C1和谐振电感L1,谐振电容C1的第一端连接第一开关管Q1的第二导通端,谐振电容C1的第二端连接谐振电感L1的第一端,谐振电感L1的第二段连接隔离电路400。
如图2所示,本实施例中,低压电路200还包括参考电压模块220,参考电压模块220包括第三开关管Q3和第四开关管Q4,第三开关管Q3的第一导通端连接输入电路100,以接收第一工作电压,第三开关管Q3的受控端连接控制电路500,第三开关管Q3的第二导通端连接第四开关管Q4的第一导通端并连接隔离电路400,第四开关管Q4的受控端连接控制电路500,第四开关管Q4的第二导通端连接地端;参考电压模块220用于输出差模参考电压,差模参考电压用于结合谐振电压生成差模正弦电压,差模正弦电压即是第一输出电压。谐振电压和差模参考电压均小于预设隔离电压。
其中,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4均为MOS管,具体地,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4均可以是NMOS管,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4的第一导通端对应NMOS管的漏极,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4的第二导通端对应NMOS管的源极,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4的受控端对应NMOS管的栅极。
需要说明的是,通过参考电压模块220生成差模参考电压,差模参考电压从而可以结合谐振电压生成带有正相位和负相位的差模正弦电压。具体的,当在控制电路500的控制下,第一开关管Q1导通和第四开关管Q4导通,第二开关管Q2和第三开关管Q3关断时,低压电路200输出正相位的差模正弦电压;当第一开关管Q1导通和第四开关管Q4关断,第二开关管Q2和第三开关管Q3导通时,输出负相位的差模正弦电压。
如图3所示,本实施例中,高压电路300包括第一开关模块310、第二开关模块320、第三开关模块330和第四开关模块340;第一开关模块310的第一端与输入电路100连接,以接收第二工作电压,第一开关模块310的第二端连接第二开关模块320的第一端并连接隔离电路400的第一输出端OUT1,第二开关模块320的第二端连接地端;第三开关模块330的第一端与输入电路100连接,以接收第二工作电压,第三开关模块330的第二端连接第四开关模块340的第一端并连接隔离电路400的第二输出端OUT2,第四开关模块340的第二端连接地端;高压电路300用于输出差模方波电压。
当在控制电路500的控制下,第一开关模块310和第四开关模块340导通,第二开关模块320和第三开关模块330关断时,高压电路300输出高电平的差模方波电压;当第一开关模块310和第四开关模块340关断,第二开关模块320和第三开关模块330导通时,高压电路300输出低电平的差模方波电压,差模方波电压即是第二输出电压。
其中,第一开关模块310、第二开关模块320、第三开关模块330和第四开关模块340均为MOS管。具体地,第一开关模块310、第二开关模块320、第三开关模块330和第四开关模块340均可以是NMOS管,第一开关模块310、第二开关模块320、第三开关模块330和第四开关模块340的第一导通端对应NMOS管的漏极,第一开关模块310、第二开关模块320、第三开关模块330和第四开关模块340的第二导通端对应NMOS管的源极,第一开关模块310、第二开关模块320、第三开关模块330和第四开关模块340的受控端对应NMOS管的栅极。
如图4所示,第一开关模块310、第二开关模块320、第三开关模块330和第四开关模块340也可以均包括多个依次相连的MOS管,以用于分摊电压。
如图5所示,本实施例中,隔离电路400包括第一隔离模块410和第二隔离模块420,第一隔离模块410的电压输入端和第二隔离模块420的电压输入端均连接低压电路200,第一隔离模块410的电压输出端和第二隔离模块420的电压输出端均连接高压电路300。
其中,第一隔离模块410包括第一分压电阻R1、第二分压电阻R2、第一单向导通器411、第二单向导通器412、第三单向导通器413和第四单向导通器414;第一分压电阻R1的第一端连接保护电压端V1,保护电压端V1用于输出与预设隔离电压存在对应关系的保护电压,第一分压电阻R1的第二端分别连接第一单向导通器411的正极和第三单向导通器413的正极,第一单向导通器411的负极连接第二单向导通器412的正极并连接谐振模块210,第二单向导通器412的负极连接第二分压电阻R2的第一端,第三单向导通器413的负极连接第四单向导通器414的正极并连接高压电路300,第四单向导通器414的负极连接第二分压电阻R2的第一端,第二分压电阻R2的第二端连接地端。第一单向导通器411的负极即为第一隔离模块410的电压输入端,第三单向导通器413的负极即为第一隔离模块410的电压输出端(隔离电路400的第一输出端OUT1)。
如图3-5所示,第二隔离模块420与第一隔离模块410的结构相同并设置在参考电压模块220与高压电路300的第三开关模块330的第二端之间,第二隔离模块420的电压输出端(隔离电路400的第二输出端OUT2)与高压电路300的第三开关模块330的第二端连接,第一隔离模块410的电压输出端用于输出谐振电压,第一隔离模块410用于隔离谐振模块210和高压电路300,第二隔离模块420的电压输出端用于输出差模参考电压,第二隔离模块420用于隔离参考电压模块220和高压电路300。
具体的,第一单向导通器411、第二单向导通器412、第三单向导通器413和第四单向导通器414均可以是一个二极管,也可以是多个首尾相连的二极管,本实施例中每个单向导通器均包括两个首尾相连的二极管。本实施例中,第一分压电阻R1和第二分压电阻R2的阻值相等,使得预设隔离电压为保护电压的一半,当第一分压电阻R1和第二分压电阻R2的阻值之比发生变化,则预设隔离电压与保护电压的大小关系则发生对应变化。
需要说明的是,以第一隔离模块410为例,本实施例中,若保护电压为500V,通过第一分压电阻R1和第二分压电阻R2的分压,使得第一隔离模块410的电压输入端和第一隔离模块410的电压输出端的预设隔离电压均为250V,当谐振电压传输至第一隔离模块410后,会将第一隔离模块410的电压输入端拉低至对应的谐振电压,此时第二单向导通器412导通,将第二分压电阻R2的第一端的电压也拉低至谐振电压,同时第四单向导通器414也处于导通状态,使得第一隔离模块410的电压输出端的电压变为谐振电压,实现对谐振电压的无损输出。若此时第一开关模块310的第二端输出的高幅值的电压传输至第一隔离模块410,通过第四单向导通器414将第一分压电阻R1的第一端的电压升高,此时第二单向导通器412的负极的电压大于第二单向导通器412的正极的电压,使得第二单向导通器412关断,实现对谐振模块210和第二输出电压的隔离。即使谐振模块210仍然未关断,但也实现了由谐振电压到第一开关模块310的第二端输出的电压的无缝切换。同理,第二隔离电路400也可以实现对差模参考模块和第二输出电压的隔离,同时也实现了由差模参考电压到第一开关模块310的第二端输出的电压的无缝切换。最终实现由第一输出电压到第二输出电压的无缝切换。
本实施例中,控制电路500包括控制单元和若干光电耦合器,控制单元通过若干光电耦合器分别与高压电路300、低压电路200连接,以用于控制生成第二输出电压和第一输出电压生成。具体的,控制单元通过若干光电耦合器分别与高压电路300、低压电路200中的MOS管的栅极连接,以用于控制高压电路300、低压电路200中的各个MOS管的导通与关断。控制单元可以是单片机或者微处理器。
另一实施例中,与本实施例不同的是,所述隔离电路400包括隔离开关,隔离开关可以是传统的高压继电器或高压切换开关,隔离开关的受控端与控制电路500连接,隔离开关的第一导通端与低压电路200连接,隔离开关的第二导通端与高压电路300连接,隔离开关可以在控制电路500的控制下实现低压电路200和高压电路300连通与关断。例如,控制电路可以在高压电路300输出第二输出电压时,同时断开隔离开关,以保护低压电路200。本实施例不再做详细叙述。
如图6所示,本实施例中,输入电路100包括整流模块110和与整流模块110连接的第一调压模块120和第二调压模块130。整流模块110用于将输入电压整流为输入直流电压,第一调压模块120用于将输入直流电压转换为第一工作电压,第二调压模块130用于将输入直流电压转换为第二工作电压。整流模块110可以是开关电源拓扑模块,第一调压模块120可以是升压降拓扑模块,第二调压模块130可以是反激式升压模块。
如图6所示,本实施例中,控制单元还分别与第一调压模块120、第二调压模块130和隔离电路400连接,控制单元用于分别配置第一工作电压、第二工作电压和预设隔离电压。
本申请第二实施例提供了一种电源装置,包括如上述的电源电路,电源装置可以是电能驱动装置,具体可以是医用设备驱动装置,本实施例不限制电源装置的种类。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种电源电路,其特征在于,包括:
    输入电路,被配置为将输入电压调制为第一工作电压和第二工作电压并输出;
    低压电路,与所述输入电路连接,被配置为基于所述第一工作电压生成第一输出电压并输出;
    高压电路,与所述输入电路连接,被配置为基于所述第二工作电压生成第二输出电压并输出;
    隔离电路,与所述高压电路和所述低压电路连接,用于输出所述第一输出电压,并被配置为当所述高压电路输出所述第二输出电压时,根据预设隔离电压,将所述低压电路与高于所述预设隔离电压的所述第二输出电压进行隔离;
    控制电路,与所述高压电路和所述低压电路连接,被配置为分别控制所述高压电路和所述低压电路生成所述第一输出电压和所述第二输出电压。
  2. 如权利要求1所述的电源电路,其特征在于,所述低压电路包括谐振模块,所述谐振模块包括第一开关管、第二开关管和谐振单元,所述第一开关管的第一导通端连接所述输入电路,以接收所述第一工作电压,所述第一开关管的受控端连接所述控制电路,所述第一开关管的第二导通端连接所述第二开关管的第一导通端并连接所述谐振模块,所述第二开关管的受控端连接所述控制电路,所述第二开关管的第二导通端连接地端;
    所述谐振单元的输出端连接所述隔离电路,以用于输出谐振电压。
  3. 如权利要求2所述的电源电路,其特征在于,所述低压电路还包括参考电压模块,所述参考电压模块包括第三开关管和第四开关管,所述第三开关管的第一导通端连接所述输入电路,以接收所述第一工作电压,所述第三开关管的受控端连接所述控制电路,所述第三开关管的第二导通端连接所述第四开关管的第一导通端并连接所述隔离电路,所述第四开关管的受控端连接所述控制电路,所述第四开关管的第二导通端连接所述地端;
    所述参考电压模块用于输出差模参考电压,所述差模参考电压用于结合所述谐振电压生成差模正弦电压,所述差模正弦电压即是所述第一输出电压。
  4. 如权利要求3所述的电源电路,其特征在于,所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管均为MOS管。
  5. 如权利要求4所述的电源电路,其特征在于,所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管均为NMOS管。
  6. 如权利要求1所述的电源电路,其特征在于,所述高压电路包括第一开关模块、第二开关模块、第三开关模块和第四开关模块;
    所述第一开关模块的第一端连接所述输入电路,以接收所述第二工作电压,所述第一开关模块的第二端连接所述第二开关模块的第一端并连接所述隔离电路,所述第二开关模块的第二端连接地端;所述第三开关模块的第一端连接所述输入电路,以接收所述第二工作电压,所述第三开关模块的第二端连接所述第四开关模块的第一端并连接所述隔离电路,所述第四开关模块的第二端连接所述地端;
    所述高压电路用于输出差模方波电压,所述差模方波电压即是所述第二输出电压。
  7. 如权利要求6所述的电源电路,其特征在于,所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块均为MOS管。
  8. 如权利要求7所述的电源电路,其特征在于,所述第一开关模块、所述第二开关模块、所述第三开关模块和所述第四开关模块均为NMOS管。
  9. 如权利要求3所述的电源电路,其特征在于,隔离电路包括第一隔离模块和第二隔离模块,所述第一隔离模块的电压输入端连接所述谐振模块,所述第二隔离模块的电压输入端连接所述参考电压模块,所述第一隔离模块的电压输出端和所述第二隔离模块的电压输出端均连接所述高压电路。
  10. 如权利要求9所述的电源电路,其特征在于,所述第一隔离模块包括第一分压电阻、第二分压电阻、第一单向导通器、第二单向导通器、第三单向导通器和第四单向导通器;
    所述第一分压电阻的第一端连接保护电压端,所述保护电压端用于输出与所述预设隔离电压对应的保护电压,所述第一分压电阻的第二端分别连接所述第一单向导通器的正极和第三单向导通器的正极,所述第一单向导通器的负极连接所述第二单向导通器的正极并连接所述谐振模块,所述第二单向导通器的负极连接所述第二分压电阻的第一端,所述第三单向导通器的负极连接所述第四单向导通器的正极并连接所述高压电路,所述第四单向导通器的负极连接所述第二分压电阻的第一端,所述第二分压电阻的第二端连接所述地端;
    所述第二隔离模块与所述第一隔离模块的结构相同;所述第一隔离模块用于输出所述谐振电压并隔离所述谐振模块和所述高压电路,所述第二隔离模块用于输出所述差模参考电压并隔离所述参考电压模块和所述高压电路。
  11. 如权利要求1所述的电源电路,其特征在于,所述控制电路包括控制单元和若干光电耦合器,所述控制单元通过若干所述光电耦合器分别与所述高压电路、所述低压电路连接,以用于控制生成所述第二输出电压和所述第一输出电压的生成。
  12. 如权利要求11所述的电源电路,其特征在于,所述输入电路包括整流模块和与所述整流模块连接的第一调压模块和第二调压模块,所述整流模块用于将所述输入电压整流为输入直流电压,所述第一调压模块用于将所述输入直流电压转换为所述第一工作电压,所述第二调压模块用于将所述输入直流电压转换为所述第二工作电压。
  13. 如权利要求12所述的电源电路,其特征在于,所述控制单元分别与所述第一调压模块、所述第二调压模块和所述隔离电路连接,所述控制单元用于分别配置所述第一工作电压、所述第二工作电压和所述预设隔离电压。
  14. 如权利要求1-13任一项所述的电源电路,其特征在于,所述第一输出电压小于所述第二输出电压。
  15. 一种电源装置,其特征在于,包括如权利要求1-14任一项所述的电源电路。
PCT/CN2022/118159 2022-01-20 2022-09-09 电源电路以及电源装置 WO2023138072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024543435A JP2025502473A (ja) 2022-01-20 2022-09-09 電源回路及び電源装置
EP22921500.9A EP4468543A1 (en) 2022-01-20 2022-09-09 Power supply circuit and power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210066078.8A CN114400649A (zh) 2022-01-20 2022-01-20 电源电路以及电源装置
CN202210066078.8 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023138072A1 true WO2023138072A1 (zh) 2023-07-27

Family

ID=81232622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118159 WO2023138072A1 (zh) 2022-01-20 2022-09-09 电源电路以及电源装置

Country Status (4)

Country Link
EP (1) EP4468543A1 (zh)
JP (1) JP2025502473A (zh)
CN (1) CN114400649A (zh)
WO (1) WO2023138072A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400649A (zh) * 2022-01-20 2022-04-26 深圳迈微医疗科技有限公司 电源电路以及电源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213030A1 (ja) * 2016-06-09 2017-12-14 株式会社村田製作所 電力変換装置
CN208190338U (zh) * 2018-05-23 2018-12-04 深圳市鼎阳科技有限公司 一种低损耗的供电切换电路
CN111371172A (zh) * 2020-03-10 2020-07-03 北京军陶科技有限公司 电源切换电路
CN114400649A (zh) * 2022-01-20 2022-04-26 深圳迈微医疗科技有限公司 电源电路以及电源装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533195A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN108023483B (zh) * 2017-12-15 2019-10-25 合肥惠科金扬科技有限公司 一种直流隔离电源
CN113725909B (zh) * 2021-09-07 2024-04-19 上海中科深江电动车辆有限公司 模块化电源站系统
CN216774292U (zh) * 2022-01-20 2022-06-17 深圳迈微医疗科技有限公司 电源电路以及电源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213030A1 (ja) * 2016-06-09 2017-12-14 株式会社村田製作所 電力変換装置
CN208190338U (zh) * 2018-05-23 2018-12-04 深圳市鼎阳科技有限公司 一种低损耗的供电切换电路
CN111371172A (zh) * 2020-03-10 2020-07-03 北京军陶科技有限公司 电源切换电路
CN114400649A (zh) * 2022-01-20 2022-04-26 深圳迈微医疗科技有限公司 电源电路以及电源装置

Also Published As

Publication number Publication date
JP2025502473A (ja) 2025-01-24
EP4468543A1 (en) 2024-11-27
CN114400649A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN109874385B (zh) 电力转换系统
TW201824680A (zh) 模組化電源系統
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
EP1252705B1 (en) Simplified implementation of parallelability for modules with synchronous rectification
WO2015110051A1 (zh) 双向dc/dc变换器及其控制方法
CN112564529B (zh) 一种升压型七电平逆变器
US9124176B2 (en) Voltage converter comprising a storage inductor with one winding and a storage inductor with two windings
WO2023138072A1 (zh) 电源电路以及电源装置
CN118920825B (zh) 均压控制电路、源载系统及电子设备
CN114747113A (zh) 充电设备和用于运行充电设备的方法
CN216774292U (zh) 电源电路以及电源装置
WO2021258935A1 (zh) 一种高降压模块化直流电源
CN106100361A (zh) 一种交直流变换电路及电力电子变压器
Luo et al. A single-stage high-frequency resonant AC/AC converter
CN210724554U (zh) 一种嵌位型升压功率变换电路结构
Won et al. Auxiliary power supply for medium-voltage power electronics systems
CN113258762B (zh) 一种电机控制器的低压电源电路
EP4451260A1 (en) Display device and display control method
WO2018108142A1 (zh) 模块化电源系统
US9825550B1 (en) Bi-directional power converter for converting power between alternating current and direct current
CN206041791U (zh) 一种双管串联反激式开关电源
CN115441757A (zh) 一种五电平pwm整流器及供电设备
CN113228488B (zh) 整流器、逆变器及无线充电设备
WO2021252911A1 (en) Highly efficient isolated bidirectional dc/ac topologies
CN220210267U (zh) 一种模块化的交流直流双向转换系统及储能设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024543435

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022921500

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022921500

Country of ref document: EP

Effective date: 20240820