WO2023136089A1 - 波長選択スイッチ、および、それを用いた光クロスコネクト装置 - Google Patents
波長選択スイッチ、および、それを用いた光クロスコネクト装置 Download PDFInfo
- Publication number
- WO2023136089A1 WO2023136089A1 PCT/JP2022/047530 JP2022047530W WO2023136089A1 WO 2023136089 A1 WO2023136089 A1 WO 2023136089A1 JP 2022047530 W JP2022047530 W JP 2022047530W WO 2023136089 A1 WO2023136089 A1 WO 2023136089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- liquid crystal
- light
- optical
- selective switch
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 175
- 239000006185 dispersion Substances 0.000 claims abstract description 47
- 230000007246 mechanism Effects 0.000 claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 230000008878 coupling Effects 0.000 claims abstract description 4
- 238000010168 coupling process Methods 0.000 claims abstract description 4
- 238000005859 coupling reaction Methods 0.000 claims abstract description 4
- 239000004973 liquid crystal related substance Substances 0.000 claims description 180
- 150000001875 compounds Chemical class 0.000 claims description 46
- 239000010410 layer Substances 0.000 description 113
- 239000010408 film Substances 0.000 description 67
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 52
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 36
- 230000010287 polarization Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 239000011295 pitch Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 239000013307 optical fiber Substances 0.000 description 7
- 230000003098 cholesteric effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 239000005268 rod-like liquid crystal Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 description 2
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N Methyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- CAMHHLOGFDZBBG-UHFFFAOYSA-N epoxidized methyl oleate Natural products CCCCCCCCC1OC1CCCCCCCC(=O)OC CAMHHLOGFDZBBG-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- IZXDTJXEUISVAJ-UHFFFAOYSA-N n-methyl-n-octadecyloctadecan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[NH+](C)CCCCCCCCCCCCCCCCCC IZXDTJXEUISVAJ-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29305—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
- G02B6/2931—Diffractive element operating in reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/351—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
- G02B6/3534—Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being diffractive, i.e. a grating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/3544—2D constellations, i.e. with switching elements and switched beams located in a plane
- G02B6/3548—1xN switch, i.e. one input and a selectable single output of N possible outputs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/356—Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0049—Crosstalk reduction; Noise; Power budget
Definitions
- the present invention relates to a wavelength selective switch and an optical cross-connect device using the same.
- a wavelength cross-connect device is connected as a relay node of optical signals to an optical fiber of a route (optical transmission line) in which a plurality of optical fibers of an optical network are grouped together.
- an optical signal from an input-side route is output to a predetermined output-side route via a plurality of wavelength selective switches (WSS).
- WSS wavelength selective switches
- a wavelength selective switch has the function of separating each wavelength component contained in an optical signal transmitted over an optical fiber in wavelength multiplexing mode communication and distributing it to each predetermined route.
- a dispersive element is used to separate the wavelength components, and by spatially separating the wavelength differences, it is possible to distribute them to different paths.
- Prisms, surface relief gratings (SRG), arrayed waveguide gratings (AWG), etc. have been used as dispersive elements.
- an optical cross-connect device arranged at an optical node includes a plurality of optical fibers. It has an inter-node connection input port and an inter-node connection output port connected to inter-node connection optical fibers, and an internal connection input port and an internal connection output port, respectively.
- a plurality of optical cross-connect units interconnected in a ring or series via connection output ports the plurality of optical cross-connect units having the number of inter-node connection input ports and internal connection input ports and multiple outputs corresponding to the number of inter-node connection output ports and internal connection output ports.
- the wavelength multiplex mode is only used mainly in the C band (1530 nm to 1565 nm), and the utilization of other bands is expected to be the source of improvement in communication speed.
- an object of the present invention is to provide a wavelength selective switch capable of supporting a wide band and reducing crosstalk, and an optical cross-connect device using the same.
- the incident light is spatially separated for each wavelength and emitted from the optical input port, the optical output port, and the incident light from the optical input port so that the emission angle of the light is different for each predetermined wavelength band.
- a wavelength selective switch including a wavelength dispersing section and a deflection section for coupling light to an optical output port by variably deflecting the reflection angle or transmission angle of light incident from the wavelength dispersing section for each wavelength,
- a wavelength selective switch, wherein the wavelength dispersion unit includes a wavelength dispersion element and a position control mechanism for reversibly changing the position and/or the angle of the wavelength dispersion element with respect to the optical input port.
- the wavelength selective switch according to [1] which has a multiplexing section that multiplexes two or more of the lights of each wavelength that have been deflected by the deflection section.
- the wavelength dispersion element includes an optically anisotropic layer having a liquid crystal alignment pattern in which the direction of the optic axis derived from the liquid crystal compound changes while continuously rotating in at least one in-plane direction.
- An optical cross-connect device including the wavelength selective switch according to any one of [1] to [5].
- the present invention it is possible to provide a wavelength selective switch capable of operating a wide wavelength band and reducing crosstalk. Further, according to the present invention, an optical cross-connect device using this wavelength selective switch can be provided.
- FIG. 1 is a conceptual diagram of an example of a wavelength selective switch of the present invention
- FIG. 2a is a conceptual diagram of an example of a conventional wavelength selective switch.
- FIG. 2b is a conceptual diagram of an example of the wavelength selective switch of the present invention.
- 1 is a conceptual diagram of an example of a liquid crystal diffraction element used in the present invention
- FIG. 1 is a conceptual diagram of an example of a liquid crystal diffraction element used in a wavelength selective switch of the present invention
- FIG. 4 is a conceptual plan view of the liquid crystal diffraction element shown in FIG. 3.
- FIG. 4 is a conceptual diagram of an example of an exposure device for exposing the alignment film of the liquid crystal diffraction element shown in FIG. 3.
- FIG. FIG. 4 is a conceptual diagram of another example of the liquid crystal diffraction element used in the wavelength selective switch of the present invention;
- the light input port, the light output port, and the light input from the light input port are spatially arranged for each wavelength so that the light output angle differs for each predetermined wavelength band.
- a wavelength selection unit including a wavelength dispersing part that separates and emits light, and a deflection part that couples light to an optical output port by variably deflecting the reflection angle or transmission angle of light incident from the wavelength dispersing part for each wavelength. It is a switch, and the chromatic dispersion unit comprises a chromatic dispersion element and a position control mechanism for reversibly changing the position and/or angle of the chromatic dispersion element with respect to the optical input port.
- FIG. 1 shows the configuration of a wavelength selective switch according to a preferred embodiment of the present invention.
- FIG. 1 shows an example of a drop-type wavelength selective switch having one optical input port 1 and multiple optical output ports 2 . Since only the input and output directions of light are reversed and many descriptions are redundant, the add-type wavelength selective switch is omitted, but the present invention is an add-type switch having a plurality of optical input ports and one optical output port. can also be applied to a wavelength selective switch. Although not described in detail, it may be an add-drop type wavelength selective switch having a plurality of optical input ports and a plurality of optical output ports.
- the spatial optical wavelength selective switch having an optical input port 1 and a plurality of optical output ports 2 shown in FIG. It also has a wavelength dispersing section that spatially separates the incident light for each wavelength and emits the light.
- the wavelength dispersing section also has a function of combining the incident light beams that have been deflected by the deflecting section and coupling them to the optical output port 2 .
- the wavelength dispersing section includes a wavelength dispersing element 4 such as a prism or a diffraction grating for demultiplexing and combining incident light, and a wavelength dispersing element 4 reversibly reversible in position and/or angle with respect to the optical input port 1. and a position control mechanism 7 for changing.
- the position control mechanism 7 reversibly changes the angle of the main surface of the wavelength dispersion element 4 with respect to the optical axis direction of the light input port 1 (light emission direction). That is, the position control mechanism 7 reversibly changes the incident angle when the light incident from the light input port 1 enters the wavelength dispersion element 4 .
- the chromatic dispersing section may be a front-end optical system 3 between the optical input port 1 and the chromatic dispersing element 4, and/or the chromatic dispersing element 4 and the deflection section 6, if necessary. It may further have a back-end optical system 5 between.
- light incident from an optical input port 1 passes through a front-end optical system 3, a wavelength dispersion element 4, and a back-end optical system 5, and is reflected by a deflection section 6. , again passes through the back-end optics 5 , the wavelength dispersive element 4 , and the front-end optics 3 to be coupled to the plurality of optical output ports 2 .
- the wavelength selective switch shown in FIG. 1 separates each wavelength component contained in an incident optical signal in wavelength multiplexing mode communication, and distributes the separated light of each wavelength component to each predetermined route. be.
- the light incident from the optical input port 1 is adjusted in the polarization state, traveling direction, etc. by the front-end optical system 3 and enters the wavelength dispersion element 4 .
- the wavelength dispersion element 4 separates the incident wavelength into respective wavelength components and reflects the light toward the deflection section 6 .
- the light separated into each wavelength component by the wavelength dispersive element 4 is adjusted in the polarization state, traveling direction, etc. by the back-end optical system 5 and enters the deflection unit 6 .
- the deflection unit 6 deflects the incident light of each wavelength component in a desired direction for each wavelength.
- the light of each wavelength component deflected by the deflection unit 6 is incident on the wavelength dispersion element 4 after being adjusted in the polarization state, traveling direction, etc. by the back-end optical system 5 .
- the wavelength dispersive element 4 reflects the light of each wavelength component toward the desired optical output port 2 .
- the wavelength dispersive element 4 multiplexes light of a desired wavelength component out of the light of each wavelength component. That is, in the illustrated example, the wavelength dispersion element 4 (wavelength dispersion section) also serves as a multiplexing section.
- the light reflected by the wavelength dispersion element 4 is adjusted in polarization state, traveling direction, etc. by the front-end optical system 3 and is coupled to one of the plurality of optical output ports 2 .
- the wavelength dispersive element 4 is configured to also serve as a multiplexing unit for multiplexing light of desired wavelength components among the light of each wavelength component deflected by the deflection unit 6.
- the wavelength selective switch of the present invention does not have the function of multiplexing the light of each wavelength component deflected by the deflection unit 6, and is configured to couple the light of each wavelength component to each different optical output port. good.
- the wavelength selective switch of the present invention may be configured to have a multiplexing section separate from the wavelength dispersive element 4 .
- a plurality of light output ports 2 are arranged substantially vertically in the figure, and the wavelength dispersive element 4 separates the light incident from the light input port 1 substantially horizontally in the figure, and the deflection unit 6 deflects the light of each wavelength component substantially in the vertical direction in the figure in order to couple the light of each wavelength component to the desired optical output port 2 . That is, when viewed from the light traveling direction, the direction in which the light is deflected by the deflection unit 6 is the direction in which the plurality of light output ports 2 are arranged, and the direction in which the wavelength dispersion element 4 separates light is the direction in which the light is polarized. This direction is substantially orthogonal to the direction in which the portion 6 deflects the light.
- the light incident from the optical input port 1 has five wavelength components with different signals, and the first and second wavelength components of these five signals are sent to the first optical output port
- the wavelength dispersive element 4 divides the incident light into five separated into two wavelength components.
- the deflection unit 6 also deflects the first and second wavelength components of the five wavelength components toward the first optical output port, and deflects the third and fourth wavelength components toward the second optical output port. direction to deflect the fifth wavelength component in a direction toward the third optical output port.
- the wavelength dispersive element 4 multiplexes the first and second wavelength components deflected by the deflection section 6 and couples them to the first optical output port, and multiplexes the third and fourth wavelength components to produce the second wavelength component.
- an optical output port and a fifth wavelength component is coupled to a third optical output port.
- the wavelength selective switch separates each wavelength component contained in an incident optical signal in wavelength multiplexing mode communication in which different signals are superimposed on each wavelength, and separates the light of each separated wavelength component. Distribute to a predetermined route.
- the chromatic dispersion section has a position control mechanism 7 for reversibly changing the position and/or the angle of the chromatic dispersion element 4 with respect to the optical input port 1 .
- the wavelength selective switch of the present invention can change the wavelength band of light separated by the wavelength dispersive element 4 by changing the position and/or angle of the wavelength dispersive element 4 .
- the wavelength selective switch of the present invention can operate in a wide wavelength band and can suppress the occurrence of crosstalk that accompanies the widening of the band.
- the position control mechanism 7 changes the position and/or angle of the wavelength dispersive element 4 to change the wavelength band of light separated by the wavelength dispersive element 4 to the T band (238 THz ⁇ 300 THz), O band (220 THz ⁇ 238 THz), E band (205 THz ⁇ 220 THz), S band (196 THz ⁇ 205 THz), C band (191.5 THz ⁇ 196 THz), L band (184.5 THz ⁇ 191.5 THz), And it can change from any band in the U-band (179 THz to 184.5 THz) to another band.
- changing the position of the wavelength dispersion element 4 means changing the emission direction of the light of each wavelength component separated by the wavelength dispersion element 4 with respect to the deflection unit 6 .
- the wavelength dispersive element 4 may be configured to move in parallel.
- Wavelength dispersion element A known element can be used as the wavelength dispersion element, and examples thereof include a prism, a surface relief diffraction grating, a liquid crystal diffraction element, a dielectric multilayer film, and a cholesteric reflective layer. A combination of these may be used, for example, a combination of a prism and a surface relief diffraction grating, a prism and a liquid crystal diffraction element, a surface relief diffraction grating and a liquid crystal diffraction grating, etc., and integrated by pasting or lamination. good too.
- a surface relief diffraction grating, a liquid crystal diffraction element, a dielectric multilayer film, and a cholesteric reflective layer are preferable because they are excellent in separating near-infrared light, which is mainly used in optical wired communication.
- the direction of the optical axis derived from the liquid crystal compound, which will be described later changes while continuously rotating in at least one direction in the plane. It is more preferable to apply either a liquid crystal diffraction element including an optically anisotropic layer having a liquid crystal alignment pattern or a cholesteric reflective layer.
- the orientation of the optic axis derived from the liquid crystal compound changes while continuously rotating in at least one direction in the plane. It is preferably either a liquid crystal diffraction element including an optically anisotropic layer having a liquid crystal alignment pattern, or a cholesteric reflective layer.
- the position control mechanism for reversibly changing the position and/or the angle of the wavelength dispersive element with respect to the optical input port may be one that rotates the wavelength dispersive element about one axis, or one that rotates the wavelength dispersive element linearly. It may be something that gives a movement. Known means such as stepping motors and linear motors can be used to control these movements.
- FIGS. 2a and 2b The function of the position control mechanism will be conceptually explained using FIGS. 2a and 2b.
- 2a and 2b will be described using an example of a drop-type wavelength selective switch having one optical input port and a plurality of optical output ports. The same applies to an add type wavelength selective switch having an output port and an add/drop type wavelength selective switch having a plurality of optical input ports and optical output ports.
- 2a and 2b a wavelength dispersive element 4 that spatially separates incident light by wavelength, and a multiplexing unit that multiplexes two or more of the lights of each wavelength deflected by the deflection unit 6.
- the wavelength dispersive element 4 may also serve as the multiplexing section.
- FIGS. 2a and 2b three wavelength dispersive elements 4 as multiplexing sections are illustrated, but actually, different positions within the plane of one wavelength dispersion element 4 serve as multiplexing sections. It works.
- the wavelength dispersive element 4 is movable by the position control mechanism 7, it is possible to change the corresponding wavelength band of the device according to the input and output wavelength bands. can. By being reversibly movable, even when it is desired to widen the wavelength band to be operated, it is possible to respond flexibly by operating each wavelength band by time division.
- the movement of the wavelength dispersion element 4 is represented only by linear movement in FIG. , as previously described, may control angle or position, or both.
- the angle and positional latitude and resolution in control are appropriately designed in consideration of the spatial resolution of the wavelength dispersive element used, the optical distance from the wavelength dispersive element to the deflection unit, the size of the deflection unit, and the pixel pitch width. be able to.
- the deflection section includes a spatial phase modulator.
- a spatial phase modulator is a device that can change the phase of reflected light (transmitted in the case of a transmissive type) according to the spatial position on the spatial phase modulator where the light is reflected. By spatially controlling the phase of the light, the direction (deflection) of the light can also be controlled.
- a micromirror device and a liquid crystal optical element represented by LCOS can be used as the spatial phase modulator.
- LCOS Liquid Crystal On Silicon
- a spatial phase modulator using LCOS is preferable because it is easy to provide three or more paths. By providing three or more routes, the degree of freedom in the network topology (connection form) that can be formed is dramatically increased, which can contribute to the sophistication of the network within the data center.
- LCOS is a configuration in which fine phase modulation electrodes that reflect light with high efficiency are formed on a silicon substrate, and a glass substrate is mounted on top of this with a spacer in between.
- a liquid crystal material for deflection control is sealed in a space surrounded by a glass substrate, a spacer, and a silicon substrate.
- the liquid crystal material to be enclosed and the thickness of the spacer are selected so that the phase of light in the communication wavelength band (184.5 to 238 THz) can be changed by 2 ⁇ or more.
- transparent thin film electrodes for grounding (GND) are provided in advance on both sides of the glass substrate. ITO is often used as a transparent electrode material.
- a back-end optical system that can be included in the present invention can be configured by appropriately combining various optical elements such as lenses, prisms, microlens arrays, apertures, filters, and retardation plates.
- the light incident on the polarizing section from the wavelength dispersing section is preferably polarized light, particularly linearly polarized light, because the LCOS has polarization dependence.
- the back-end optical system described above preferably includes an optical element that controls the polarization state.
- the optical element that controls the polarization state may transmit only a specific polarized component and remove the other polarized component by absorbing or reflecting it.
- an absorptive linear polarizer, a reflective linear polarizer, a reflective circular polarizer, or the like can be applied.
- the absorbing linear polarizer include a material in which iodine or a dichroic dye is oriented and contained in an organic material, and an absorbing wire grid polarizer.
- Examples of reflective linear polarizers include reflective wire grid polarizers and stretched polymer multilayer films (for example, those available from 3M as DBEF (trade name) and APF (trade name)).
- DBEF trade name
- APF trade name
- the optical element for controlling the polarization state may be one that spatially separates the incident light according to each polarization component.
- Such optical elements include a Wollaston prism, a Rochon prism, a Brewster window, a polarizing beam splitter, and a liquid crystal diffraction element containing an optical functional layer having a liquid crystal orientation pattern in which the optical axis changes in the plane derived from a liquid crystal compound. can be used.
- the front-end optical system that can be included in the present invention can be configured by appropriately combining various optical elements such as lenses, prisms, microlens arrays, apertures, filters, and retardation plates, like the back-end optical system described above.
- various optical elements such as lenses, prisms, microlens arrays, apertures, filters, and retardation plates, like the back-end optical system described above.
- an optical element having polarization selectivity it is preferable that the light incident on the polarization wavelength dispersion section from the light input port be polarized light.
- the front-end optical system described above preferably includes an optical element that controls the polarization state.
- Optical elements that control the polarization state include those that transmit only a specific polarization component and remove other polarization components by absorbing or reflecting them, and those that spatially separate incident light according to each polarization component. can be used, and examples thereof are the same as those described in the back-end optical system.
- the front-end optical system if there is a difference in optical path length between each wavelength channel from the optical input port to the optical output port, a time mismatch occurs between the channels, resulting in signal regeneration. It may cause trouble at times. Therefore, it is preferable to design the front-end optical system so that no optical path difference occurs between the wavelength channels. It is particularly preferable that the front-end optical system compensates for the optical path difference that occurs in the optical path from the wavelength dispersion element to the back-end optical system and the deflection unit.
- a liquid crystal diffraction element (liquid crystal optical element) including an optically anisotropic layer (optical function layer) having a liquid crystal orientation pattern in which the optical axis derived from a liquid crystal compound changes in the plane.
- a liquid crystal diffraction element include a transmissive liquid crystal diffraction element shown in FIG. 2 of JP-A-2017-522601 and a reflective liquid crystal diffraction element shown in FIG. .
- Such a liquid crystal diffraction element is a thin sheet-like element in which liquid crystal compounds (compounds containing mesogens) are fixed in a predetermined orientation state.
- the liquid crystal diffraction element can be combined with a retardation layer, a prism layer, and a microlens layer, if necessary.
- a liquid crystal diffraction element as a wavelength dispersion element, the wavelength selective switch of the present invention is thinner and more compact than conventionally known prisms and surface relief gratings (SRG), while spatially dispersing wavelength channels. Crosstalk between channels can be reduced in that the separation width can be increased. Moreover, it is preferable in that the diffraction efficiency is high and the insertion loss can be reduced.
- a liquid crystal diffraction element (optically anisotropic layer) having a liquid crystal orientation pattern that changes in-plane can be obtained by fixing a liquid crystal compound in a predetermined orientation state.
- the alignment state may be fixed by using an electric field, a magnetic field, or the like, or by using phase transition, cross-linking, polymerization, or the like of a liquid crystal compound.
- an electric field, a magnetic field, or the like is used to fix the orientation state, the applied electric field or magnetic field may be controlled to adjust on/off switching and spatial separation of each beam.
- phase transition, cross-linking, polymerization, etc. of a liquid crystal compound to fix the alignment state, various compounds exhibiting liquid crystallinity can be used as the liquid crystal compound.
- the liquid crystal diffraction element used in the present invention is an element in which a composition containing a polymerizable liquid crystal compound is brought into a predetermined alignment state and then polymerized or crosslinked to fix the alignment state.
- these elements can be manufactured by the methods described in Japanese Patent Publication No. 2017-522601 and International Publication No. 2019/189852.
- FIG. 3 shows a conceptual diagram of a liquid crystal diffraction element in which the orientation state is fixed and which has a liquid crystal orientation pattern in which the optic axis of the liquid crystal compound changes within the plane.
- an optically anisotropic layer 26 which is an optical functional layer, is provided on a transparent substrate (support) 20 provided as necessary.
- the optically anisotropic layer 26 contains a liquid crystal compound 30 whose orientation state is fixed with the optic axis (long axis direction of the rod in FIG. 3) changing in any plane 615 across the optically anisotropic layer 26.
- An alignment film 24 (not shown) is provided between the support 20 and the optically anisotropic layer 26 .
- the alignment of the liquid crystal compound 30 whose orientation is fixed in this manner forms a distribution of refractive index anisotropy within the optically anisotropic layer 26, and a polarization-selective diffraction action on the signal light 103 from the optical fiber.
- the incident signal light 103 is spatially separated into ⁇ 1st-order light 105 and 1st-order light 107 at an angle corresponding to the wavelength.
- the liquid crystal diffraction element 104 in FIG. 3 is typically an optically anisotropic layer that separates the incident signal light 103 into two circularly polarized light beams with different rotation directions.
- the optically anisotropic layer 26 is formed using a composition containing a liquid crystal compound, and the direction of the optical axis derived from the liquid crystal compound is It may have a liquid crystal orientation pattern that changes while continuously rotating in at least one direction in the plane, and the liquid crystal compound (optical axis) may also change while rotating in the thickness direction. .
- the support 20 supports the alignment film 24 and the optically anisotropic layer 26 .
- Various sheet-like materials can be used as the support 20 as long as they can support the alignment film 24 and the optically anisotropic layer 26 .
- a transparent support is preferable, and a polyacrylic resin film such as polymethyl methacrylate, a cellulose resin film such as cellulose triacetate, or a cycloolefin polymer film (for example, the product name "Arton” manufactured by JSR Corporation, Trade name “Zeonor”, manufactured by Nippon Zeon Co., Ltd.), polyethylene terephthalate (PET), polycarbonate, and polyvinyl chloride.
- the support is not limited to a flexible film, and may be a non-flexible substrate such as a glass substrate.
- the thickness of the support 20 is not limited, and the thickness capable of holding the alignment film and the optically anisotropic layer can be appropriately set according to the application of the liquid crystal diffraction element 104, the material for forming the support 20, and the like. Just do it.
- the thickness of the support 20 is preferably 1-1000 ⁇ m, more preferably 3-250 ⁇ m, even more preferably 5-150 ⁇ m.
- An alignment film 24 may be formed on the surface of the support 20 in the liquid crystal diffraction element 104 .
- the alignment film 24 is an alignment film for aligning the liquid crystal compound 30 in a predetermined liquid crystal alignment pattern when forming the optically anisotropic layer 26 of the liquid crystal diffraction element 104 .
- a rod-shaped liquid crystal compound is illustrated as the liquid crystal compound 30 .
- the optically anisotropic layer 26 is such that the optical axis 30A (see FIG. 5) derived from the liquid crystal compound 30 is oriented in one in-plane direction (see FIG. 5). It has a liquid crystal orientation pattern that changes while continuously rotating along the arrow A direction in the middle). Therefore, the alignment film of the liquid crystal diffraction element 104 is formed so that the optically anisotropic layer 26 can form this liquid crystal alignment pattern.
- the optic axis 30A of the liquid crystal compound 30 is intended to be the long molecular axis of the rod-like liquid crystal compound.
- the optic axis 30A of the liquid crystal compound 30 is intended to be an axis parallel to the normal direction (perpendicular direction) to the disc surface of the discotic liquid crystal compound.
- rotation of the direction of the optical axis 30A is also simply referred to as “rotation of the optical axis 30A”.
- Various known alignment films are available. For example, rubbed films made of organic compounds such as polymers, oblique deposition films of inorganic compounds, films with microgrooves, and Langmuir films of organic compounds such as ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride and methyl stearate.
- LB Liquinuir-Blodgett
- the alignment film by rubbing treatment can be formed by rubbing the surface of the polymer layer with paper or cloth several times in one direction.
- Materials used for the alignment film include polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and Materials used for forming an alignment film, etc., described in Japanese Patent Application Laid-Open No. 2005-128503 are preferably exemplified.
- a so-called photo-alignment film formed by irradiating a photo-orientation material with polarized or non-polarized light is preferably used as the alignment film. That is, in the liquid crystal diffraction element 104, a photo-alignment film formed by coating a photo-alignment material on the support 20 is preferably used as the alignment film 24.
- FIG. Irradiation with polarized light can be performed in a direction perpendicular to or oblique to the photo-alignment film, and irradiation with non-polarized light can be performed in a direction oblique to the photo-alignment film.
- the thickness of the alignment film is not limited, and the thickness may be appropriately set according to the material for forming the alignment film so that the required alignment function can be obtained.
- the thickness of the alignment film is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
- the method for forming the alignment film is not limited, and various known methods can be used depending on the material for forming the alignment film. As an example, there is a method in which an alignment film is applied to the surface of the support 20 and dried, and then the alignment film is exposed to laser light to form an alignment pattern.
- FIG. 6 conceptually shows an example of an exposure apparatus that exposes the alignment film 24 to form the alignment pattern described above.
- the exposure device 60 shown in FIG. 6 includes a light source 64 having a laser 62, a ⁇ /2 plate 65 that changes the polarization direction of the laser beam M emitted by the laser 62, and a beam MA and a beam MA. It includes a polarizing beam control element 68 that splits the beam MB into two, mirrors 70A and 70B placed on the optical paths of the two split beams MA and MB, respectively, and ⁇ /4 plates 72A and 72B.
- the light source 64 emits linearly polarized light P 0 .
- the ⁇ /4 plate 72A converts the linearly polarized light P 0 (light ray MA) into right circularly polarized light PR
- the ⁇ /4 plate 72B converts the linearly polarized light P 0 (light ray MB) into left circularly polarized light P L .
- a support 20 having an alignment film 24 before an alignment pattern is formed is placed in an exposure area, and two light beams MA and MB cross each other on the alignment film 24 and interfere with each other. exposed to light. Due to the interference at this time, the polarization state of the light with which the alignment film 24 is irradiated changes periodically in the form of interference fringes. As a result, an alignment film having an alignment pattern in which the alignment state changes periodically (hereinafter also referred to as a patterned alignment film) is obtained.
- the period of the alignment pattern can be adjusted by changing the crossing angle ⁇ of the two light beams MA and MB.
- the exposure device 60 by adjusting the intersection angle ⁇ , in the orientation pattern in which the optical axis 30A derived from the liquid crystal compound 30 rotates continuously along one direction, , the length of one cycle (one cycle .LAMBDA. to be described later) in which the optical axis 30A rotates by 180.degree. can be adjusted.
- the optically anisotropic layer 26 By forming the optically anisotropic layer 26 on the alignment film 24 having such an alignment pattern in which the alignment state changes periodically, the optical axis 30A derived from the liquid crystal compound 30, which will be described later, is oriented along one direction.
- An optically anisotropic layer 26 can be formed having a liquid crystal alignment pattern that continuously rotates with the Further, by rotating the optical axes of the ⁇ /4 plates 72A and 72B by 90°, the direction of rotation of the optical axis 30A can be reversed.
- the orientation of the optical axis of the liquid crystal compound of the optically anisotropic layer 26 formed on the patterned alignment film changes while continuously rotating along at least one in-plane direction. It has an alignment pattern for aligning the liquid crystal compound so that a liquid crystal alignment pattern is obtained. Assuming that the orientation axis of the patterned orientation film is along the direction in which the liquid crystal compound is oriented, the direction of the orientation axis of the patterned orientation film changes while continuously rotating along at least one in-plane direction. It can be said that it has an orientation pattern.
- the orientation axis of the patterned orientation film can be detected by measuring the absorption anisotropy.
- a patterned alignment film is irradiated with linearly polarized light while being rotated and the amount of light transmitted through the patterned alignment film is measured, the direction in which the light amount becomes maximum or minimum gradually changes along one direction in the plane. Observed to change.
- the alignment film 24 is provided as a preferred embodiment, and is not an essential component, as described above.
- the optically anisotropic layer 26 or the like is attached to the liquid crystal compound 30. It is also possible to have a liquid crystal orientation pattern in which the direction of the derived optical axis 30A changes while continuously rotating along one direction.
- an optically anisotropic layer 26 is formed on the surface of the alignment film 24 .
- the optically anisotropic layer 26 is formed using a composition containing a liquid crystal compound.
- the optically anisotropic layer 26 functions as a general ⁇ /2 plate when the in-plane retardation value is set to ⁇ /2. It has a function of giving a phase difference of half a wavelength, that is, 180° to two linearly polarized light components.
- Such a liquid crystal diffraction element 104 bends incident circularly polarized light and changes the rotation direction of the circularly polarized light.
- the liquid crystal diffraction element 104 (optically anisotropic layer 26) bends the incident light in the opposite azimuth direction according to the rotating direction of the incident circularly polarized light.
- the optically anisotropic layer 26 is a liquid crystal in which the direction of the optical axis 30A derived from the liquid crystal compound 30 changes while continuously rotating in one direction (arrow A direction in FIG. 5) in the plane of the optically anisotropic layer. It has an orientation pattern.
- the optical axis 30A derived from the liquid crystal compound 30 is the axis with the highest refractive index in the liquid crystal compound 30, that is, the so-called slow axis.
- the optic axis 30A is along the long axis direction of the rod shape.
- the optic axis 30A derived from the liquid crystal compound 30 is also referred to as "the optic axis 30A of the liquid crystal compound 30" or "the optic axis 30A".
- FIG. 5 is a schematic diagram showing the alignment state of the liquid crystal compound 30 in the plane of the main surface of the optically anisotropic layer 26.
- the main surface is the maximum surface of the sheet-like material (film, plate-like material, layer).
- the optically anisotropic layer 26 has a liquid crystal orientation pattern that changes while the optic axis 30A continuously rotates in one direction indicated by the arrow A in the plane.
- the liquid crystal compound 30 is two-dimensionally aligned in a plane parallel to one direction indicated by the arrow A and the Y direction perpendicular to the arrow A direction. 5 and 6, which will be described later, the Y direction is a direction perpendicular to the plane of the paper. In the following description, "one direction indicated by arrow A” is also simply referred to as "arrow A direction”.
- it is a diagram of the optically anisotropic layer 26 viewed from a direction orthogonal to the main surface.
- FIG. 5 shows only the liquid crystal compound 30 on the surface of the alignment film 24 in order to clearly show the structure of the liquid crystal diffraction element 104 .
- this optically anisotropic layer 26 also has a structure in which liquid crystal compounds 30 are stacked from the liquid crystal compound 30 on the surface of the alignment film in the thickness direction, as shown in FIG.
- the optically anisotropic layer 26 has a liquid crystal orientation pattern in which the direction of the optical axis 30A derived from the liquid crystal compound 30 changes while continuously rotating along the direction of the arrow A in the plane of the optically anisotropic layer 26. have. That the direction of the optical axis 30A of the liquid crystal compound 30 changes while continuously rotating in the direction of the arrow A (predetermined one direction) specifically means that the liquid crystal compounds arranged along the direction of the arrow A.
- the angle formed by the optical axis 30A of 30 and the direction of the arrow A varies depending on the position in the direction of the arrow A. This means that the angle changes sequentially up to ⁇ 180°.
- the difference in angle between the optical axes 30A of the liquid crystal compounds 30 adjacent to each other in the direction of the arrow A is preferably 45° or less, more preferably 15° or less, and even more preferably a smaller angle. .
- the direction of the optic axis 30A is oriented in the Y direction perpendicular to the arrow A direction, that is, in the Y direction perpendicular to one direction in which the optic axis 30A rotates continuously.
- Equivalent liquid crystal compounds 30 are arranged at regular intervals. In other words, in the liquid crystal compounds 30 forming the optically anisotropic layer 26, the angle between the direction of the optical axis 30A and the direction of the arrow A is the same between the liquid crystal compounds 30 arranged in the Y direction.
- the length (distance) of the 180° rotation of the optical axis 30A of the liquid crystal compound 30 is defined as the length ⁇ of one cycle in the liquid crystal alignment pattern. do. That is, in the case of the optically anisotropic layer 26 shown in FIGS. 3 and 5, the optic axis 30A of the liquid crystal compound 30 is 180° in the direction of the arrow A in which the direction of the optic axis 30A rotates continuously within the plane.
- the length (distance) of degree rotation is defined as the length ⁇ of one cycle in the liquid crystal alignment pattern.
- the length of one cycle in the liquid crystal alignment pattern is defined by the distance from ⁇ to ⁇ +180° formed by the optical axis 30A of the liquid crystal compound 30 and the direction of the arrow A. That is, the distance between the centers in the direction of arrow A of two liquid crystal compounds 30 having the same angle with respect to the direction of arrow A is defined as the length of one cycle ⁇ . Specifically, as shown in FIG. 5, the distance between the centers of the two liquid crystal compounds 30 in the direction of the arrow A and the direction of the optical axis 30A in the direction of the arrow A is defined as the length of one period ⁇ . . In the following description, the length ⁇ of one period is also referred to as "one period ⁇ ".
- the liquid crystal orientation pattern of the optically anisotropic layer 26 repeats this one cycle ⁇ in the direction of the arrow A, that is, in one direction in which the direction of the optical axis 30A rotates continuously and changes.
- the liquid crystal diffraction element 104 (optically anisotropic layer 26) is also a liquid crystal diffraction element, and this one period ⁇ is the period (one period) of the diffraction structure.
- the liquid crystal compounds arranged in the Y direction perpendicular to the direction of arrow A are aligned in the direction of the optic axis 30A and the direction of arrow A, that is, the direction in which the optic axis of the liquid crystal compound 30 rotates. are equal.
- a region R is defined as a region where the liquid crystal compound 30 having the same angle formed by the optical axis 30A and the arrow A direction is arranged in the Y direction.
- the value of the in-plane retardation (Re) in each region R is preferably half the wavelength, ie, ⁇ /2.
- the refractive index difference associated with the refractive index anisotropy of the region R in the optically anisotropic layer is the refractive index in the direction of the slow axis in the plane of the region R and the direction orthogonal to the direction of the slow axis is the refractive index difference defined by the difference from the refractive index of That is, the refractive index difference ⁇ n associated with the refractive index anisotropy of the region R is the difference between the refractive index of the liquid crystal compound 30 in the direction of the optical axis 30A and the refractive index of the liquid crystal compound 30 in the direction perpendicular to the optical axis 30A in the plane of the region R. Equal to the difference in refractive index. That is, the refractive index difference ⁇ n is equal to the refractive index
- the optically anisotropic layer 26 can adjust the angle of refraction of transmitted light and its wavelength selectivity by changing one period ⁇ of the formed liquid crystal alignment pattern. Specifically, the shorter the period ⁇ of the liquid crystal alignment pattern, the stronger the interference between the lights passing through the liquid crystal compounds 30 adjacent to each other, so that the transmitted light can be greatly refracted.
- the angle of refraction of light by such an optically anisotropic layer 26 differs according to the wavelength of incident light, and the shorter the wavelength, the smaller the angle of refraction.
- the angle of refraction with respect to the incident wavelength can be controlled by the period ⁇ and the variation of the liquid crystal orientation pattern inside the optically anisotropic layer, adjusting these to exhibit the desired properties allows the spatial separation can be taken large.
- ⁇ Cholesteric reflective layer As the wavelength dispersion element of the wavelength selective switch of the present invention, a cholesteric reflective layer having a liquid crystal orientation pattern in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating in at least one direction in the plane. Reflective liquid crystal diffraction elements containing (cholesteric liquid crystal layers) are available.
- FIG. 7 is a diagram schematically showing an example of a reflective liquid crystal diffraction element.
- the plan view of the reflective liquid crystal diffraction element shown in FIG. 7 has the same configuration as that shown in FIG.
- the cholesteric liquid crystal phase is fixed, and the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one direction in the plane. It has a cholesteric liquid crystal layer 34 with a liquid crystal alignment pattern.
- the cholesteric liquid crystal layer reflects one of the selectively reflected wavelengths of circularly polarized light and transmits light of other wavelength ranges and the other circularly polarized light. Therefore, a diffractive element having a cholesteric liquid crystal layer is a reflective diffractive element.
- the reflective liquid crystal diffraction element has a support 20, an alignment film 24, and a cholesteric liquid crystal layer .
- the support 20 and the alignment film 24 are the same as those of the transmissive liquid crystal diffraction element.
- the reflective liquid crystal diffraction element of the example shown in FIG. 7 has the support 20, the alignment film 24, and the cholesteric liquid crystal layer 34, the present invention is not limited to this.
- the reflective liquid crystal diffraction element may have, for example, only the alignment film 24 and the cholesteric liquid crystal layer 34 from which the support 20 is removed.
- the reflective liquid crystal diffraction element may have only the cholesteric liquid crystal layer 34 from which the support 20 and the alignment film 24 are separated, for example.
- the cholesteric liquid crystal layer 34 has a helical structure in which the liquid crystal compound 30 is spirally rotated and stacked in the same manner as a cholesteric liquid crystal layer in which a normal cholesteric liquid crystal phase is fixed.
- the structure in which the liquid crystal compounds 30 are stacked one helically (rotated by 360°) is defined as one helical pitch, and the helically rotating liquid crystal compounds 30 have a structure in which a plurality of pitches are stacked.
- a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed has a wavelength-selective reflectivity, and the selective reflection wavelength range of the cholesteric liquid crystal layer is the length of the above-described helical pitch in the thickness direction. depends on Therefore, when the cholesteric liquid crystal layer is made to have wavelength selectivity and diffracts light of different wavelengths for each cholesteric liquid crystal layer, the helical pitch P of the cholesteric liquid crystal layer is adjusted for each cholesteric liquid crystal layer. , the selective reflection wavelength range of the cholesteric liquid crystal layer may be appropriately set.
- the orientation of the optic axis derived from the liquid crystal compound changes while continuously rotating in at least one direction in the plane, as in the above-described transmissive liquid crystal diffraction element. It has a liquid crystal alignment pattern.
- the cholesteric liquid crystal layer 34 having such a liquid crystal alignment pattern reflects incident light in a direction different from specular reflection.
- the light incident on the cholesteric liquid crystal layer 34 from a direction perpendicular to it is tilted in the arrow A direction and reflected.
- the cholesteric liquid crystal layer 34 is a cholesteric liquid crystal layer that selectively reflects right-handed circularly polarized light of red light
- the cholesteric liquid crystal layer 34 reflects right-handed circularly polarized light of red light. Reflects only polarized light and transmits other light.
- the optical axis 30A of the liquid crystal compound 30 changes while rotating along the arrow A direction (one direction).
- the liquid crystal alignment pattern formed in the cholesteric liquid crystal layer 34 is a periodic pattern in the arrow A direction. Therefore, the right-handed circularly polarized red light R R incident perpendicularly to the cholesteric liquid crystal layer 34 is reflected and diffracted in the azimuth direction according to the period of the liquid crystal alignment pattern, and the reflected right-handed circularly polarized red light R R is The light is reflected and diffracted in a direction inclined in the azimuth direction of the alignment axis D with respect to the XY plane (main surface of the cholesteric liquid crystal layer).
- the light reflection direction (reflection azimuth) can be adjusted.
- the reflection direction is reversed depending on the turning direction of the spiral of the liquid crystal compound 30, that is, the turning direction of the reflected circularly polarized light.
- the direction of rotation of the spiral when the direction of rotation of the spiral is right-handed, it selectively reflects right-handed circularly polarized light. Polarized light is tilted in the direction of arrow A and reflected.
- the liquid crystal layer when the direction of rotation of the spiral is left-handed, the liquid crystal layer selectively reflects left-handed circularly polarized light and has a liquid crystal orientation pattern in which the optical axis 30A rotates clockwise along the direction of arrow A. , reflects the left-handed circularly polarized light by tilting it in the direction opposite to the arrow A direction.
- the shorter the period ⁇ the greater the angle of the reflected light with respect to the incident light. That is, the shorter the period ⁇ , the greater the inclination of the reflected light with respect to the incident light.
- the angle of diffraction by the cholesteric liquid crystal layer 34 having such a liquid crystal orientation pattern varies depending on the wavelength of light. Specifically, the longer the wavelength of the light, the larger the angle of the reflected light with respect to the incident light. Therefore, the cholesteric liquid crystal layer 34 can separate light by diffracting (reflecting) incident light at different angles depending on the wavelength. Further, when the cholesteric liquid crystal layer 34 is used as the wavelength dispersion element 4, as shown in FIG. changes the wavelength of light directed toward Thereby, the wavelength band of the light separated by the wavelength dispersive element 4 can be changed.
- the cholesteric liquid crystal layer reflects and diffracts incident light at different angles for each wavelength. That is, the cholesteric liquid crystal layer must have a somewhat broad reflection wavelength band.
- a general cholesteric liquid crystal layer has wavelength selective reflectivity and reflects light in a narrow band.
- the cholesteric liquid crystal layer preferably has a structure in which the helical pitch changes in the thickness direction in order to widen the reflection wavelength band. Since the cholesteric liquid crystal layer has a structure in which the helical pitch changes in the thickness direction, the reflection wavelength band of the cholesteric liquid crystal layer can be widened. In order to widen the reflection wavelength band, it is also preferable to increase the birefringence ( ⁇ n) of the liquid crystal.
- the cholesteric liquid crystal layer in which the helical pitch changes in the thickness direction, is bright in the thickness direction in the striped pattern of bright and dark areas that can be seen when the cross section is observed using a scanning electron microscope (SEM). The distance between black and dark areas will be different.
- the reflective liquid crystal diffraction element may be configured to have a plurality of cholesteric liquid crystal layers with different helical pitches.
- each of the plurality of cholesteric liquid crystal layers has a liquid crystal orientation pattern, and reflects and diffracts the light of the selective reflection wavelength among the incident light.
- each cholesteric liquid crystal layer reflects light at a different angle (direction) by making the diffraction angle of each cholesteric liquid crystal layer different.
- the reflective diffraction element may have a cholesteric liquid crystal layer that reflects right-handed circularly polarized light and a cholesteric liquid crystal layer that reflects left-handed circularly polarized light with the same selective reflection wavelength for each selective reflection wavelength.
- a cholesteric liquid crystal layer having a liquid crystal alignment pattern can be produced by the method described in International Publication No. 2019/131966, International Publication No. 2019/189852, and the like.
- the optical cross-connect device of the present invention can be configured by including one or more of the wavelength selective switches of the present invention described above, and further by combining with a multicast switch and a driving electronic circuit.
- Such an optical cross-connect device of the present invention can provide a useful optical cross-connect device that can flexibly handle a wide wavelength band and that has little crosstalk and little insertion loss.
- the wavelength selective switch of the present invention is mounted as a drop type on the optical input side of an optical cross-connect device, and after each separated beam is controlled by a multicast switch, the optical output side of the optical cross-connect device is , the wavelength selective switch of the present invention can be implemented as an add type. Since the wavelength selective switch of the present invention can change the corresponding wavelength band, even if the wavelength band is flexibly operated according to the traffic situation, it is preferable because it can always exhibit the optimum performance.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Nonlinear Science (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computing Systems (AREA)
- Electromagnetism (AREA)
- Liquid Crystal (AREA)
Abstract
Description
よって、本発明では、広帯域の対応が可能で、かつ、クロストークが低減された波長選択スイッチ、およびそれを用いた光クロスコネクト装置の提供を目的とする。
波長分散部は、波長分散素子と、波長分散素子を、光入力ポートに対する位置または角度、もしくは、その両方を可逆的に変化させる位置制御機構とを備えた、波長選択スイッチ。
[2] 偏向部で偏向された各波長の光のうち2以上を合波する合波部を有する、[1]に記載の波長選択スイッチ。
[3] 波長分散部が合波部を兼ねる、[2]に記載の波長選択スイッチ。
[4] 波長分散素子が、プリズム、表面レリーフ回折格子、液晶回折素子の少なくともいずれかを含む、[1]に記載の波長選択スイッチ。
[5] 波長分散素子が、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に向かって連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を含む液晶回折素子である、[4]に記載の波長選択スイッチ。
[6] [1]~[5]のいずれかに記載の波長選択スイッチを含む、光クロスコネクト装置。
また、本発明によれば、この波長選択スイッチを用いた光クロスコネクト装置を提供できる。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本発明の波長選択スイッチは、光入力ポートと、光出力ポートと、光入力ポートから入射した光の出射角度が、所定の波長帯域ごとに異なるように、入射した光を波長ごとに空間的に分離して出射する波長分散部と、波長分散部から入射した光の反射角度又は透過角度を波長ごとに可変に偏向させることにより、光を光出力ポートに結合させる偏向部と、を含む波長選択スイッチであり、波長分散部は、波長分散素子と、波長分散素子を、光入力ポートに対する位置または角度、もしくは、その両方を可逆的に変化させる位置制御機構とを備える。
また、波長分散素子4の位置を変化させるとは、波長分散素子4が分離した各波長成分の光の出射方向を偏向部6に対して変化させることを意味する。例えば、波長分散素子4が面内で回折角度が変化する構成の場合には、波長分散素子4を平行移動させる構成としてもよい。
波長分散素子としては公知のものを利用することができ、プリズム、表面レリーフ回折格子、液晶回折素子、誘電体多層膜、コレステリック反射層などが例示される。これらを組み合わせたものであっても良く、例えばプリズムと表面レリーフ回折格子、プリズムと液晶回折素子、表面レリーフ回折格子と液晶回折格子などの組合せで、貼合または積層により一体化したものであってもよい。主に光有線通信で用いられる近赤外光に対して分離能に優れる点で、表面レリーフ回折格子、液晶回折素子、誘電体多層膜、コレステリック反射層が好ましい。また、高次光が少なく、回折効率の波長依存性が低い点で、後述するような、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に向かって連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を含む液晶回折素子、あるいは、コレステリック反射層のいずれかを適用することがより好ましい。波長チャンネル間の空間分離距離が大きく、チャンネル間のクロストークが低減できる観点でも、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に向かって連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を含む液晶回折素子、あるいは、コレステリック反射層のいずれかであることが好ましい。
波長分散素子を、光入力ポートに対する位置または角度、またはその両方を可逆的に変化させる位置制御機構としては、波長分散素子を1つの軸を中心に回転させるものであってもよいし、直線的な動きを付与するものであってもよい。これらの動きを制御するものとしては、ステッピングモータ、リニアモータなど、公知の手段を採用することができる。
偏向部は、空間位相変調器を含む。空間位相変調器は、反射する(透過型の場合は透過する)光の位相に、光が反射する空間位相変調器上の空間的な位置に応じて変化を与えることができるデバイスである。そして、光の位相を空間的に制御すると、光の向き(偏向)も制御することができる。
空間位相変調器としては、マイクロミラーデバイス、および、LCOS(Liquid Crystal On Silicon)などに代表される液晶光学素子を利用することができる。方路を3以上の複数にすることが容易な点で、LCOSを利用した空間位相変調器が好ましい。方路を3以上の複数にすることで、形成できるネットワークトポロジー(接続形態)の自由度が劇的に上がるため、データセンター内ネットワークの高度化に寄与することができる。
本発明に含むことができるバックエンド光学系は、レンズ、プリズム、マイクロレンズアレイ、アパーチャ、フィルタ、位相差板などの各種光学素子を適宜組み合わせて構成することができる。
空間位相変調器としてLCOSを利用する場合、LCOSは偏光依存性があるため、波長分散部から偏向部に入射する光は、偏光であることが好ましく、特に直線偏光であることが好ましい。この観点において、前述したバックエンド光学系は、偏光状態を制御する光学素子を含んで構成されていることが好ましい。
本発明に含まれうるフロントエンド光学系は、前述したバックエンド光学系同様、レンズ、プリズム、マイクロレンズアレイ、アパーチャ、フィルタ、位相差板などの各種光学素子を適宜組み合わせて構成することができる。
波長分散素子として、偏光選択性を有する光学素子を用いる場合、光入力ポートから偏波長分散部に入射する光は、偏光であることが好ましい。この観点において、前述したフロントエンド光学系は、偏光状態を制御する光学素子を含んで構成されていることが好ましい。
波長分散素子からバックエンド光学系、偏向部までの光路で生じる光路差を、フロントエンド光学系が補償するような構成であることが、特に好ましい。
本発明の波長選択スイッチの波長分散素子として、液晶化合物に由来する光学軸が面内で変化する液晶配向パターンを有する光学異方性層(光学機能層)を含む液晶回折素子(液晶光学素子)が利用できる。このような液晶回折素子としては、例えば、特表2017-522601号公報の図2に示される透過型の液晶回折素子、および、同公報の図4に示される反射型の液晶回折素子を例示できる。
このような液晶回折素子は、液晶化合物(メソゲンを含む化合物)が所定の配向状態で固定された薄いシート状の素子である。なお、液晶回折素子には、必要に応じて、さらに、位相差層、プリズム層、および、マイクロレンズ層を組み合わせることができる。
本発明の波長選択スイッチは、波長分散素子として、液晶回折素子を用いることで、従来知られたプリズム、表面レリーフ回折格子(SRG)に比べ、薄型小型の素子でありながら、波長チャンネルの空間的な分離幅を大きくすることができる点で、チャンネル間のクロストークを低減させることができる。また、回折効率が大きく、挿入損失を小さくできる点でも好ましい。
配向状態の固定は、電場および磁場等を利用してもよく、液晶化合物の相転移、架橋および重合等を利用したものであってもよい。
配向状態の固定に電場および磁場等を利用する場合は、印加する電場または磁場を制御することで、オン/オフの切り替え並びに各ビームの空間的な分離を調節させるようにしてもよい。配向状態の固定に液晶化合物の相転移、架橋および重合等を利用する場合は、液晶化合物としては液晶性を示す種々の化合物を用いることができるが、長期間にわたり安定した光学特性を維持できる点から、重合性液晶化合物を用いることが好ましい。特に好ましくは、本発明に用いる液晶回折素子は、重合性液晶化合物を含む組成物を所定の配向状態にした後、重合または架橋により配向状態を固定した素子である。これらの素子の作製方法については、特表2017-522601号公報、国際公開第2019/189852号に記載の方法で作製することができる。
図3に示す液晶回折素子104は、必要に応じて設けられる透明基材(支持体)20上に、光学機能層である光学異方性層26が設けられている。光学異方性層26には、光学異方性層26を横切る任意の面615内で変化する光学軸(図3中における棒の長軸方向)で配向状態が固定された液晶化合物30が含まれる。また、支持体20と光学異方性層26との間には、図示しない配向膜24を有している。
このように配向が固定された液晶化合物30の配列は、光学異方性層26内で屈折率異方性の分布を形成し、光ファイバからの信号光103に対して偏光選択的な回折作用を示して、入射した信号光103を波長に応じた角度で-1次光105および1次光107へと空間的に分離する。
図3の液晶回折素子104では、典型的には、入射した信号光103を、それぞれ回転方向が異なる2つの円偏光に分離する光学異方性層であるが、偏光多重モードが直交する直線偏光の多重モードである場合は、図示しない入射側λ/4波長板および出射側λ/4波長板を加えることで、多重された2つの直線偏光成分をそれぞれ空間的に分離して取り出すことが可能である。この点に関しては、後述する図3に示す例も同様である。
どのような配向状態が、-1次光および1次光(あるいは0次光を利用しても良い)を、どのような偏光状態で、どのように空間的に分離するかは、特開2004-341024号公報に記載されたジョーンズ法(R. C. Jones, J. Opt. Soc. Am. 31, 488, 1941)により解析することができ、配向状態を適宜設計することによって、-1次光または1次光のみを利用することができる。波長分散素子としては、1次光のみを用いる様態が好ましい。
液晶回折素子104において、支持体20は、配向膜24、および、光学異方性層26を支持するものである。
支持体20は、配向膜24および光学異方性層26を支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
支持体20としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、シクロオレフィンポリマー系フィルム(例えば、商品名「アートン」、JSR社製、商品名「ゼオノア」、日本ゼオン社製)、ポリエチレンテレフタレート(PET)、ポリカーボネート、および、ポリ塩化ビニル等を挙げることができる。支持体は、可撓性のフィルムに限らず、ガラス基板等の非可撓性の基板であってもよい。
支持体20の厚さは、1~1000μmが好ましく、3~250μmがより好ましく、5~150μmがさらに好ましい。
液晶回折素子104において、支持体20の表面には配向膜24が形成してもよい。
配向膜24は、液晶回折素子104の光学異方性層26を形成する際に、液晶化合物30を所定の液晶配向パターンに配向するための配向膜である。
なお、図3等においては、液晶化合物30として、棒状液晶化合物を例示している。
従って、液晶回折素子104の配向膜は、光学異方性層26が、この液晶配向パターンを形成できるように、形成される。
なお、本発明において、液晶化合物30が棒状液晶化合物である場合、液晶化合物30の光学軸30Aは、棒状液晶化合物の分子長軸を意図する。一方、液晶化合物30が円盤状液晶化合物である場合、液晶化合物30の光学軸30Aは、円盤状液晶化合物の円盤面に対する法線方向(直交方向)に平行な軸を意図する。
例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等が例示される。
配向膜に使用する材料としては、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-97377号公報、特開2005-99228号公報、および、特開2005-128503号公報記載の配向膜等の形成に用いられる材料が好ましく例示される。
偏光の照射は、光配向膜に対して、垂直方向または斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
配向膜の厚さは、0.01~5μmが好ましく、0.05~2μmがより好ましい。
図6に示す露光装置60は、レーザ62を備えた光源64と、レーザ62が出射したレーザ光Mの偏光方向を変えるλ/2板65と、レーザ62が出射したレーザ光Mを光線MAおよびMBの2つに分離する偏光ビーム制御素子68と、分離された2つの光線MAおよびMBの光路上にそれぞれ配置されたミラー70Aおよび70Bと、λ/4板72Aおよび72Bと、を備える。
なお、光源64は直線偏光P0を出射する。λ/4板72Aは、直線偏光P0(光線MA)を右円偏光PRに、λ/4板72Bは直線偏光P0(光線MB)を左円偏光PLに、それぞれ変換する。
この際の干渉により、配向膜24に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。これにより、配向状態が周期的に変化する配向パターンを有する配向膜(以下、パターン配向膜ともいう)が得られる。
露光装置60においては、2つの光線MAおよびMBの交差角αを変化させることにより、配向パターンの周期を調節できる。すなわち、露光装置60においては、交差角αを調節することにより、液晶化合物30に由来する光学軸30Aが一方向に沿って連続的に回転する配向パターンにおいて、光学軸30Aが回転する1方向における、光学軸30Aが180°回転する1周期の長さ(後述する1周期Λ)を調節できる。
このような配向状態が周期的に変化した配向パターンを有する配向膜24上に、光学異方性層26を形成することにより、後述する、液晶化合物30に由来する光学軸30Aが一方向に沿って連続的に回転する液晶配向パターンを有する、光学異方性層26を形成できる。
また、λ/4板72Aおよび72Bの光学軸を、それぞれ、90°回転することにより、光学軸30Aの回転方向を逆にすることができる。
パターン配向膜が、液晶化合物を配向させる向きに沿った軸を配向軸とすると、パターン配向膜は、配向軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している配向パターンを有するといえる。
パターン配向膜の配向軸は、吸収異方性を測定することで検出することができる。例えば、パターン配向膜に直線偏光を回転させながら照射して、パターン配向膜を透過する光の光量を測定した際に、光量が最大または最小となる向きが、面内の一方向に沿って漸次変化して観測される。
例えば、支持体20をラビング処理する方法、支持体20をレーザ光等で加工する方法等によって、支持体20に配向パターンを形成することにより、光学異方性層26等が、液晶化合物30に由来する光学軸30Aの向きが、一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する構成とすることも、可能である。
図3に示す液晶回折素子104において、配向膜24の表面には、光学異方性層26が形成される。
光学異方性層26は、面内レタデーションの値をλ/2に設定した場合に、一般的なλ/2板としての機能、すなわち、光学異方性層に入射した光に含まれる互いに直交する2つの直線偏光成分に半波長すなわち180°の位相差を与える機能を有している。このような液晶回折素子104(光学異方性層26)は、入射した円偏光を屈曲させ、かつ、円偏光の旋回方向を変換する。また、液晶回折素子104(光学異方性層26)は、入射する円偏光の旋回方向に応じて、入射した光を逆の方位方向に屈曲させる。
なお、液晶化合物30に由来する光学軸30Aとは、液晶化合物30において屈折率が最も高くなる軸、いわゆる遅相軸である。例えば、液晶化合物30が棒状液晶化合物である場合には、光学軸30Aは、棒形状の長軸方向に沿っている。
以下の説明では、液晶化合物30に由来する光学軸30Aを、『液晶化合物30の光学軸30A』または『光学軸30A』とも言う。
上述のように、光学異方性層26は、面内において、光学軸30Aが矢印Aで示す一方向に連続的に回転しながら変化する液晶配向パターンを有するものである。
以下の説明では、『矢印Aで示す一方向』を単に『矢印A方向』とも言う。
また、図5では、液晶回折素子104の構成を明確に示すために、液晶化合物30は配向膜24の表面の液晶化合物30のみを示している。しかしながら、この光学異方性層26も、厚さ方向には、図3に示されるように、この配向膜の表面の液晶化合物30から、液晶化合物30が積み重ねられた構造を有する。
液晶化合物30の光学軸30Aの向きが矢印A方向(所定の一方向)に連続的に回転しながら変化しているとは、具体的には、矢印A方向に沿って配列されている液晶化合物30の光学軸30Aと、矢印A方向とが成す角度が、矢印A方向の位置によって異なっており、矢印A方向に沿って、光学軸30Aと矢印A方向とが成す角度がθからθ+180°あるいはθ-180°まで、順次、変化していることを意味する。
なお、矢印A方向に互いに隣接する液晶化合物30の光学軸30Aの角度の差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
言い換えれば、光学異方性層26を形成する液晶化合物30において、Y方向に配列される液晶化合物30同士では、光学軸30Aの向きと矢印A方向とが成す角度が等しい。
すなわち、図3および図5に示す光学異方性層26であれば、面内で光学軸30Aの向きが連続的に回転して変化する矢印A方向において、液晶化合物30の光学軸30Aが180°回転する長さ(距離)を、液晶配向パターンにおける1周期の長さΛとする。言い換えれば、液晶配向パターンにおける1周期の長さは、液晶化合物30の光学軸30Aと矢印A方向とのなす角度がθからθ+180°となるまでの距離により定義される。
すなわち、矢印A方向に対する角度が等しい2つの液晶化合物30の、矢印A方向の中心間の距離を、1周期の長さΛとする。具体的には、図5に示すように、矢印A方向と光学軸30Aの方向とが一致する2つの液晶化合物30の、矢印A方向の中心間の距離を、1周期の長さΛとする。
以下の説明では、この1周期の長さΛを『1周期Λ』とも言う。
液晶回折素子104において、光学異方性層26の液晶配向パターンは、この1周期Λを、矢印A方向すなわち光学軸30Aの向きが連続的に回転して変化する一方向に繰り返す。また、液晶回折素子104(光学異方性層26)は、液晶回折素子でもあり、この1周期Λが、回折構造の周期(1周期)となる。
この場合に、それぞれの領域Rにおける面内レタデーション(Re)の値は、半波長すなわちλ/2であるのが好ましい。これらの面内レタデーションは、領域Rの屈折率異方性に伴う屈折率差Δnと光学異方性層の厚さとの積により算出される。ここで、光学異方性層における領域Rの屈折率異方性に伴う屈折率差とは、領域Rの面内における遅相軸の方向の屈折率と、遅相軸の方向に直交する方向の屈折率との差により定義される屈折率差である。すなわち、領域Rの屈折率異方性に伴う屈折率差Δnは、光学軸30Aの方向の液晶化合物30の屈折率と、領域Rの面内において光学軸30Aに垂直な方向の液晶化合物30の屈折率との差に等しい。つまり、上記屈折率差Δnは、液晶化合物の屈折率差に等しい。
本発明の波長選択スイッチの波長分散素子として、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に向かって連続的に回転しながら変化している液晶配向パターンを有するコレステリック反射層(コレステリック液晶層)を含む反射型の液晶回折素子が利用できる。
図7および図7に示す反射型液晶回折素子は、コレステリック液晶相を固定してなり、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有するコレステリック液晶層34を有する。コレステリック液晶層は、選択反射波長の一方の円偏光を反射し、他の波長域の光および他方の円偏光を透過するものである。したがって、コレステリック液晶層を有する回折素子は、反射型の回折素子である。
なお、図7に示す例の反射型液晶回折素子は、支持体20と、配向膜24と、コレステリック液晶層34とを有するが、本発明は、これに制限はされない。反射型液晶回折素子は、例えば、支持体20を剥離した、配向膜24およびコレステリック液晶層34のみを有するものでもよい。または、反射型液晶回折素子は、例えば、支持体20および配向膜24を剥離した、コレステリック液晶層34のみを有するものでもよい。
以上に述べた本発明の波長選択スイッチを1つ以上含み、さらに、マルチキャストスイッチ、および駆動用電子回路と組み合わせることで、本発明の光クロスコネクト装置を構成することができる。このような本発明の光クロスコネクト装置は、広帯域な波長帯域の運用に柔軟に対応可能で、かつ、クロストークが少なく挿入損失が少ない、有用な光クロスコネクト装置を提供することができる。
具体的な一例として、光クロスコネクト装置の光入力側に、本発明の波長選択スイッチをドロップ型として実装し、分離された各ビームをマルチキャストスイッチで制御した後、光クロスコネクト装置の光出力側として、本発明の波長選択スイッチをアド型として実装することができる。本発明の波長選択スイッチは、対応する波長帯域が可変にできるため、トラヒックの状況に応じて波長帯域がフレキシブルに運用されても、常に最適なパフォーマンスを発現できるため好ましい。
2 光出力ポート
3 フロントエンド光学系
4 波長分散素子
5 バックエンド光学系
6 偏向部
7 位置制御機構
20 支持体
24 配向膜
26 光学異方性層
30 液晶化合物
30A 光学軸
34 コレステリック液晶層
60 露光装置
62 レーザ
64 光源
65 λ/2板
68 偏光ビーム制御素子
70A、70B ミラー
72A、72B λ/4板
103 信号光
104 液晶回折素子
105 -1次光
107 1次光
615 面
Λ 1周期
R 領域
P0 直線偏光
PL 左円偏光
PR 右円偏光
α 交差角
M レーザ光
MA、MB 光線
Claims (6)
- 光入力ポートと、光出力ポートと、前記光入力ポートから入射した光の出射角度が、所定の波長帯域ごとに異なるように、入射した光を波長ごとに空間的に分離して出射する波長分散部と、前記波長分散部から入射した光の反射角度又は透過角度を波長ごとに可変に偏向させることにより、光を前記光出力ポートに結合させる偏向部と、を含む波長選択スイッチであり、
前記波長分散部は、波長分散素子と、前記波長分散素子を、前記光入力ポートに対する位置または角度、もしくは、その両方を可逆的に変化させる位置制御機構とを備えた、波長選択スイッチ。 - 前記偏向部で偏向された各波長の光のうち2以上を合波する合波部を有する、請求項1に記載の波長選択スイッチ。
- 前記波長分散部が前記合波部を兼ねる、請求項2に記載の波長選択スイッチ。
- 前記波長分散素子が、プリズム、表面レリーフ回折格子、液晶回折素子の少なくともいずれかを含む、請求項1に記載の波長選択スイッチ。
- 前記波長分散素子が、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に向かって連続的に回転しながら変化している液晶配向パターンを有する光学異方性層を含む液晶回折素子である、請求項4に記載の波長選択スイッチ。
- 請求項1~5のいずれか1項に記載の波長選択スイッチを含む、光クロスコネクト装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023573950A JPWO2023136089A1 (ja) | 2022-01-17 | 2022-12-23 | |
CN202280089033.0A CN118575113A (zh) | 2022-01-17 | 2022-12-23 | 波长选择开关及使用了该波长选择开关的光交叉连接装置 |
US18/766,931 US20240365028A1 (en) | 2022-01-17 | 2024-07-09 | Wavelength selective switch and optical cross-connect device including wavelength selective switch |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-005113 | 2022-01-17 | ||
JP2022005113 | 2022-01-17 | ||
JP2022185429 | 2022-11-21 | ||
JP2022-185429 | 2022-11-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/766,931 Continuation US20240365028A1 (en) | 2022-01-17 | 2024-07-09 | Wavelength selective switch and optical cross-connect device including wavelength selective switch |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023136089A1 true WO2023136089A1 (ja) | 2023-07-20 |
Family
ID=87278964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/047530 WO2023136089A1 (ja) | 2022-01-17 | 2022-12-23 | 波長選択スイッチ、および、それを用いた光クロスコネクト装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240365028A1 (ja) |
JP (1) | JPWO2023136089A1 (ja) |
WO (1) | WO2023136089A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010277029A (ja) * | 2009-06-01 | 2010-12-09 | Nippon Telegr & Teleph Corp <Ntt> | 光波長選択デバイス及びその光路補正方法 |
JP2012113086A (ja) * | 2010-11-24 | 2012-06-14 | Nippon Telegr & Teleph Corp <Ntt> | 波長選択スイッチとその制御方法 |
JP2014032390A (ja) * | 2012-07-13 | 2014-02-20 | Sumitomo Electric Ind Ltd | 光学ユニット、及び、波長選択スイッチ |
WO2019189675A1 (ja) * | 2018-03-29 | 2019-10-03 | 富士フイルム株式会社 | 光偏向装置および光学装置 |
-
2022
- 2022-12-23 WO PCT/JP2022/047530 patent/WO2023136089A1/ja active Application Filing
- 2022-12-23 JP JP2023573950A patent/JPWO2023136089A1/ja active Pending
-
2024
- 2024-07-09 US US18/766,931 patent/US20240365028A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010277029A (ja) * | 2009-06-01 | 2010-12-09 | Nippon Telegr & Teleph Corp <Ntt> | 光波長選択デバイス及びその光路補正方法 |
JP2012113086A (ja) * | 2010-11-24 | 2012-06-14 | Nippon Telegr & Teleph Corp <Ntt> | 波長選択スイッチとその制御方法 |
JP2014032390A (ja) * | 2012-07-13 | 2014-02-20 | Sumitomo Electric Ind Ltd | 光学ユニット、及び、波長選択スイッチ |
WO2019189675A1 (ja) * | 2018-03-29 | 2019-10-03 | 富士フイルム株式会社 | 光偏向装置および光学装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023136089A1 (ja) | 2023-07-20 |
US20240365028A1 (en) | 2024-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9201286B2 (en) | Method and apparatus for wavelength selective switch | |
KR102484474B1 (ko) | 브래그 액정 편광 격자 | |
KR102125485B1 (ko) | 복소 정보를 갖는 파동장을 변조하는 공간 광변조 장치 | |
JP2757563B2 (ja) | 偏光回転を用いた周波数選択光スイッチ | |
US20060239607A1 (en) | Wavelength selector switch | |
CN113168016A (zh) | 导光元件、图像显示装置及传感装置 | |
CN101051868A (zh) | 可调光分/插复用器 | |
WO2023063414A1 (ja) | 光結合システムおよび光通信デバイス | |
US20060038929A1 (en) | Tunable spectral imaging filter configured for UV spectral ranges | |
JP2008268724A5 (ja) | ||
JP2009042557A (ja) | 波長選択スイッチ | |
US11988880B2 (en) | Optical coupling system and optical communication device | |
JP2005003758A (ja) | 反射型光変調素子および可変光減衰器 | |
WO2023136089A1 (ja) | 波長選択スイッチ、および、それを用いた光クロスコネクト装置 | |
JP2004037480A (ja) | 液晶素子および光減衰器 | |
JP7426468B2 (ja) | 光通信デバイス | |
US20080253265A1 (en) | Optical head apparatus | |
CN118575113A (zh) | 波长选择开关及使用了该波长选择开关的光交叉连接装置 | |
US20240369900A1 (en) | Wavelength selective switch | |
WO2024214808A1 (ja) | ビームスプリッター、および、光波長選択スイッチ装置 | |
KR100990347B1 (ko) | 위상판 및 광정보 기록재생 장치 | |
WO2024214807A1 (ja) | ビームスプリッター、光波長選択スイッチ装置 | |
WO2024214803A1 (ja) | ビームスプリッターおよび光波長選択スイッチ装置 | |
WO2024204164A1 (ja) | 波長選択性位相差板、光学素子 | |
CN118575128A (zh) | 波长选择开关 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22920606 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023573950 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280089033.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22920606 Country of ref document: EP Kind code of ref document: A1 |