[go: up one dir, main page]

WO2023135400A1 - Composition de liant clair et ses applications pour les revetements routiers et d'amenagement - Google Patents

Composition de liant clair et ses applications pour les revetements routiers et d'amenagement Download PDF

Info

Publication number
WO2023135400A1
WO2023135400A1 PCT/FR2023/050059 FR2023050059W WO2023135400A1 WO 2023135400 A1 WO2023135400 A1 WO 2023135400A1 FR 2023050059 W FR2023050059 W FR 2023050059W WO 2023135400 A1 WO2023135400 A1 WO 2023135400A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder composition
binder
alkyl acrylate
composition according
ethylene
Prior art date
Application number
PCT/FR2023/050059
Other languages
English (en)
Inventor
Thomas LEBARBE
Juliette PARISOT
Marie-Laure PIERRE
Original Assignee
Vinci Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vinci Construction filed Critical Vinci Construction
Priority to EP23703099.4A priority Critical patent/EP4466312A1/fr
Priority to US18/729,451 priority patent/US20250171620A1/en
Publication of WO2023135400A1 publication Critical patent/WO2023135400A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0869Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/30Coherent pavings made in situ made of road-metal and binders of road-metal and other binders, e.g. synthetic material, i.e. resin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/20Mixtures of bitumen and aggregate defined by their production temperatures, e.g. production of asphalt for road or pavement applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/30Environmental or health characteristics, e.g. energy consumption, recycling or safety issues

Definitions

  • the present invention relates to the field of transport and urban development infrastructures, in particular clear or colored coatings with clear binders. More particularly, the present invention relates to a clear binder composition comprising one or more copolymers of ethylene and alkyl acrylate having a melt index greater than 2.5 g/10min and a melting temperature greater than 85° vs. The use of such copolymers allows the application of coatings at lowered temperatures while giving them good resistance to permanent deformation at the temperatures of use.
  • bituminous binders used in road construction, are black in color and are therefore difficult to color. This inability to color bituminous binders is explained by the black color of asphaltenes which are compounds intrinsically present in bitumens.
  • Coatings based on clear binders make it possible to produce mixes whose color is that of the granular materials which constitute them or possibly a colored color by adding pigments.
  • Users of urban roads are particularly sensitive to the color of the surfaces on which they travel. Color provides an essential aspect for the harmonious integration of pavements into their environment, but also facilitates their readability.
  • these products are also appreciated for certain specific uses: in paving of tunnels or underpasses, they save lighting and improve visibility, and therefore safety; in the wearing course of engineering structures, they make it possible to reduce the temperature reached by the covering exposed to the sun and thus to limit the thermal stresses on the deck of the structure; finally, in urban areas, they make it possible to limit the surface temperature of the coating and thus contribute to the fight against urban heat islands.
  • Clear or colored coatings are based on the use of synthetic coating binders with the same characteristics as conventional bitumens but without having the black color. These synthetic binders, made from components of petroleum origin, do not contain asphaltenes and thus have a clear, translucent, transparent appearance in a thin film.
  • the clear binders of the prior art generally consist of a mixture of petroleum oils, petroleum hydrocarbon resins and polymers. However, the clear binders known to those skilled in the art must be heated to temperatures between 150° C. and 200° C. in order to mix them with solid mineral particles also heated in this same temperature range. Manufacturing at these temperatures allows good fluidity of the composition and workability suitable for mechanized or manual application on site.
  • the coating applied on site is generally at a temperature above 140-150°C, which results in significant smoke emissions.
  • the manufacturing temperature, and therefore the application temperature, of these clear coatings significant workability problems are observed.
  • the use of elastomers of the poly(styrene-b-butadiene-b-styrene) (SBS) or styrene-ethylene-butylene-styrene (SEBS) type in the binders of the prior art leads to a filamentous character of the binders when the temperature drops below 120-130°C and the coating is handled. This filamentous nature makes the application of clear binders impossible at lower temperature given the rapid decrease in the temperature of the coating during application on site.
  • the filamentous character means that the binder becomes more viscous and forms threads between the solid mineral particles when the composition is handled. This stringy state makes manual application impossible and may compromise the durability of the coating in the sense that the cohesion of the coating may be disturbed due to insufficient compaction or placement of the coating.
  • One method for reducing the stringiness of coatings with clear synthetic binders consists in reducing the elastomer content in the composition of the binder. However, this method leads to a resistance to permanent deformation which is strongly impacted. The coatings resulting from this method are then no longer suitable for use over a wide traffic and temperature window.
  • Patent application EP1481023 describes a clear binder composition which comprises from 0.05 to 3% by weight of an amide-type additive which makes it possible to reduce the handling temperature of the clear coating.
  • this patent application mentions the use of polymers such as SBS or styrene-isoprene-styrene (SIS) elastomers.
  • SBS styrene-isoprene-styrene
  • SIS styrene-isoprene-styrene
  • Patent application WO 2017/076814 describes a synthetic binder composition for the production of clear coatings which comprises a solvent-extracted petroleum oil, a petroleum resin, an SEBS elastomer having a styrene content of 25-35% and a copolymer of ethylene and ethyl acrylate (EEA) having an ethyl acrylate (EA) content of 10-25% and a melt index (MFR or MFI) of 0.5 g/10mm to 2.5 g/10mm.
  • ESA ethylene and ethyl acrylate
  • MFR or MFI melt index
  • compositions of clear binders whose workability, characterized by the dynamic viscosity of the binder and the absence of filamentous character, is suitable for application at lowered temperature while ensuring good resistance to traffic. coatings prepared from such compositions.
  • the present invention relates to a clear binder composition
  • a clear binder composition comprising a plasticizer, a structuring agent and one or more copolymers of ethylene and alkyl acrylate having a melt index greater than 2.5 g/10min as measured according to method IS01 133-1 (2011) and a melting temperature greater than or equal to 85°C as measured according to method ISO 11357-3 (2016).
  • the present invention also relates to road and landscaping products comprising solid particles and such a composition.
  • the present invention relates to the use of a copolymer of ethylene and alkyl acrylate having a melt index greater than 2.5 g/10 min as measured according to the method IS01 133-1 (201 1 ) and a melting temperature greater than or equal to 85°C as measured according to the ISO 11357-3 (2016) method to lower the manufacturing and/or application temperature of hot mixes, warm mixes and asphalts sunk.
  • the inventors have developed a binder composition meeting the needs expressed. Surprisingly, it has been demonstrated that the use of a copolymer of ethylene and alkyl acrylate having a melt index greater than 2.5 g/10min and a melting temperature greater than or equal to 85°C in a clear binder composition makes it possible to obtain a clear binder having improved physico-mechanical properties, in particular from the point of view of dynamic viscosity between 100 and 200°C and resistance to permanent deformation. Such compositions exhibit workability suitable for application at lowered temperature while guaranteeing good resistance of the coating produced from such compositions to permanent deformation over its service temperature range.
  • the clear binder composition developed by the inventors comprises: (a) a plasticizing agent, (b) a structuring agent,
  • binder composition refers to a binder composition that is generally colorless or light in color (e.g. white or beige). Thus, the composition is suitable for the preparation of clear coatings or colorable coatings.
  • the binder composition may further comprise additives commonly used in road engineering, in particular coloring agents.
  • the binder composition is typically free of asphaltene. More generally, the binder composition is typically free of bitumen.
  • the clear binder composition generally comprises, by weight relative to the total weight of the composition:
  • the components entering into the binder composition can be as described below.
  • plasticizing agent denotes a chemical constituent making it possible to thin and reduce the viscosity and the modulus of the binder composition. It is typically an oil. A wide range of so-called lubricating oils can be used in the binder composition according to the invention. Such oils are well known to those skilled in the art.
  • a synthetic petroleum oil typically it is a synthetic petroleum oil.
  • An example of a synthetic petroleum oil suitable for the implementation of the present invention is a petroleum oil resulting from a solvent extraction process of crude oil (commonly designated by the acronym RAE for “Residual Aromatic Extracts”).
  • the oil obtained is rich in aromatic and naphthenic compounds.
  • the extraction solvent is typically phenol, N-methylpyrrolidone and furfural.
  • the plasticizer is a furfural-extracted RAE oil containing a total aromatic content of at least 20% by weight, for example 20-30% by weight.
  • oils which can be used as a plasticizer include, without being limiting, synthetic petroleum oils obtained from the treatment of crude oil distillates, synthetic oils such as poly(alpha olefins), oils of vegetable origin obtained from plants and/or plants directly or after chemical modification such as triglycerides, polyol esters of fatty acids, oligomerized/polymerized triglycerides.
  • structural agent denotes any chemical constituent conferring satisfactory mechanical properties and cohesiveness on the binder composition.
  • the structuring agents useful for the preparation of clear binder compositions are well known to those skilled in the art.
  • the structuring agent is a hydrocarbon petroleum resin, for example resulting from the copolymerization of aromatic petroleum cuts.
  • An example of this type of resin is a hydrocarbon resin obtained by copolymerization of an aromatic petroleum cut rich in C9 monomers. Such a cut comes from the thermal cracking of naphtha.
  • This aromatic petroleum cut rich in C9 monomer is rich in compounds such as vinyltoluenes, dicyclopentadienes, indene, methylstyrene, styrene and methylindenes.
  • resins that can be used as structuring agent include, without being limiting, resins derived from C5 aliphatic petroleum cuts, resins derived from C5/C9 petroleum cuts, resins of plant origin (obtained from plants and/or plants) such as rosin esters or polyterpene resins or terpene/phenol resins.
  • the copolymer(s) of ethylene and alkyl acrylate that are useful in the context of the present invention have a melt index greater than 2.5 g/10min as measured according to the ISO1133-1 (2011) method ( 190°C/2.16Kg) and a melting temperature greater than or equal to 85°C as measured according to the ISO 11357-3 (2016) method.
  • melt index (MFI) of the copolymers of ethylene and alkyl acrylate useful in the context of the present invention is greater than 2.5 and less than or equal to 700 g/10min, preferably it varies from 6 to 320 g/10 min, even more preferably from 7 to 200 g/10 min.
  • the copolymers of ethylene and alkyl acrylate useful in the context of the present invention typically comprise from 1 to 40% by weight, preferably from 10 to 35% by weight, even more preferably from 15 to 30% by weight of alkyl acrylate based on the total weight of the copolymer.
  • the alkyl acrylate typically includes alkyl groups containing 1 to 8 carbon atoms. Examples of alkyl acrylate useful in the context of the present invention include methyl acrylate, ethyl acrylate, butyl acrylate or mixtures thereof.
  • the melting temperature of the copolymers of ethylene and alkyl acrylate useful in the context of the present invention is below 110°C.
  • the melting point of the copolymers of ethylene and alkyl acrylate useful within the scope of the present invention is greater than or equal to 90° C., even more preferably greater than or equal to 95 ⁇ C.
  • copolymers of ethylene and of alkyl acrylate which are useful in the context of the present invention are prepared by a process of continuous radical copolymerization at high pressure in a tubular reactor (called “tubular copolymerization process”).
  • Tubular copolymerization processes are well known to those skilled in the art.
  • the copolymers of ethylene and of alkyl acrylate which are useful in the context of the present invention can be prepared by a method as described in WO 2003/051630.
  • copolymers of ethylene and alkyl acrylate useful in the context of the present invention are distinguished from the copolymers of ethylene and alkyl acrylate prepared by a process of radical copolymerization at high pressure in an autoclave reactor (known as "autoclave copolymerization process").
  • the additives can be any additive or mixtures thereof commonly used in road engineering.
  • additives include but are not limited to waxes, adhesion promoters, coloring agents or workability additives.
  • Waxes can make it possible to further improve the hot dynamic viscosity of binder compositions without impacting the rheological properties at the temperatures of use of clear coatings.
  • the waxes reduce the dynamic viscosity of the binder composition when hot and bring an increase in cohesion to the composition during cooling.
  • waxes useful in the context of the present invention include, without limitation, vegetable waxes (e.g. hydrogenated castor oil), synthetic waxes from the Fischer-Tropsch process, microcrystalline petroleum waxes, petroleum waxes of the slack wax, polyethylene waxes, waxes resulting from the copolymerization of ethylene and vinyl acetate, etc...
  • the waxes can be added, either in the binder composition or during the manufacture of the mix or the mastic asphalt mixed with the solid mineral particles (fillers, sands and aggregates). Membership dopes
  • the adhesion dopes make it possible to improve the reciprocal affinity between the binder composition and the aggregates and ensure their durability.
  • dopes useful in the context of the present invention include, without limitation, nitrogenous surfactant compounds derived from fatty acids (amines, amidoamines, imidazolines), fatty acids or polymerized fatty acids, phosphate esters, d organosilanes, etc.
  • the coloring agents can be inorganic pigments or organic dyes.
  • the pigments are selected according to the shade, the color desired for the coating.
  • metal oxides such as iron oxides, chromium oxides, cobalt oxides, titanium oxides can be used to obtain the colors red, yellow, gray, green, blue or white.
  • the coloring agents can be added, either in the binder composition or during the manufacture of the mix or the mastic asphalt mixed with the solid mineral particles (fillers, sands and aggregates).
  • the coloring agents can also be added in an emulsion comprising the binder composition.
  • Workability additives make it possible to improve the workability of compositions intended for the preparation of road and landscaping products.
  • Workability additives may be as described in EP 3 612 597 A1.
  • compositions of the present invention comprise a synthetic petroleum oil RAE as a plasticizer and a hydrocarbon petroleum resin resulting from the copolymerization of aromatic petroleum cuts rich in C9 monomers as a structuring agent.
  • compositions of the present invention can be prepared by a process comprising the following steps:
  • the present invention also relates to such a method.
  • compositions of the present invention can be used as a substitute for bitumen-based binders for the preparation of a wide variety of road and landscaping products.
  • road and landscaping products obtained may be referred to collectively as “bituminous products” or individually by usual names referring to the presence of bitumen.
  • bituminous products the bitumen traditionally used is replaced by a composition according to the present invention. Such bituminous products are then light in color or can be colored.
  • the compositions of the present invention can be used for the preparation of asphalt mixes (hot mix asphalt, warm mix asphalt) and mastic asphalt.
  • the low dynamic viscosity of the binder compositions of the present invention makes it possible to prepare and apply these products at temperatures lower than those used in the traditional preparation and application processes. It has been particularly demonstrated that the use of a copolymer of ethylene and alkyl acrylate as described above makes it possible to lower the temperature of manufacture and/or implementation of hot mixes, warm mixes and mastic asphalts. The present invention also relates to such a use.
  • compositions of the present invention can also be used for the preparation of binder emulsions useful for the preparation of surface dressings, cold poured bituminous materials, emulsion bituminous concretes and grave emulsion.
  • the low dynamic viscosity of the binder compositions of the present invention can make it possible to facilitate emulsification, particularly by allowing better shear and/or a lower heating temperature.
  • the present invention also relates to road and landscaping products prepared using the compositions of the present invention.
  • road and landscaping products are well known in road engineering and can be prepared by conventional techniques.
  • some of the aforementioned road and landscaping products may be prepared according to methods such as described in WO 2011/151387, EP 0 384 094, EP 0 524 031, EP 0 781 887, EP 0 552 574, FR 2 732 239 or EP 1 668 184.
  • binder when the latter is used, designates the binder composition of the present invention.
  • road and landscaping products as used here or “bituminous product” as used here by abuse of language designates a product comprising a binder composition according to the present invention and solid particles, in particular particles mineral solids.
  • solid particles designates any solid particles that can be used for the production of road and landscaping products according to the invention, in particular for road construction and urban landscaping in clear coatings.
  • solid particles include solid mineral particles such as natural mineral aggregates (gravel, sand, fines), for example from quarries or gravel pits, products from the recycling of clear coatings such as clear coated aggregates, for example example resulting from the recycling of materials recovered during the repair of clear coatings or surpluses from clear asphalt plants, manufacturing scrap, aggregates from the recycling of road materials including concrete, slag, in particular slag, shales, in particular bauxite or corundum, rubber crumbs, for example from tire recycling, artificial aggregates of any origin and aggregates from, for example, household waste incineration bottom ash (MIOM), as well as mixtures thereof in all proportions.
  • MIOM household waste incineration bottom ash
  • the solid particles in particular the solid mineral particles, for example natural mineral aggregates, typically comprise elements smaller than 0.063 mm (filler or fines), sand whose elements are between 0.063 mm and 2 mm and gravel or aggregates , whose elements have dimensions between 2 mm and 6 mm and greater than 6 mm.
  • solid particles in particular solid mineral particles, for example mineral aggregates
  • the “solid mineral particles” are also designated by the terms “mineral fraction 0/D”. This 0/D mineral fraction can be separated into two particle sizes: the 0/d mineral fraction and the d/D mineral fraction.
  • the finest elements are those included in the range between 0 and a maximum diameter which can be set between 2 and 6 mm (from 0/2 to 0/6), advantageously between 2 and 4mm.
  • the other elements minimum diameter greater than 2, 3, 4, 5 or 6 mm; and approximately up to 31.5 mm constitute the mineral fraction d/D.
  • Hot mixes are typically obtained by hot mixing of solid particles as described above (typically a mixture of fines, sand and aggregates having the specific features described above) and a binder composition as described above. above, typically in an asphalt plant. The mixture is then spread and compacted.
  • solid particles typically a mixture of fines, sand and aggregates having the specific features described above
  • binder composition typically in an asphalt plant. The mixture is then spread and compacted.
  • the hot mixes prepared using a binder composition according to the present invention can be manufactured at a manufacturing temperature below 170° C., preferably below 160° C., even more preferably at a temperature ranging from 140 at 155°C (mixing or coating temperature).
  • the mixture can then be spread at an application temperature below 140-145°C, preferably below 130°C (eg for example around 100°C, 110°C or 120°C).
  • the working time can be extended without negatively impacting the compactability and workability of the product.
  • Warm mixes are mixes applied at temperatures approximately 30 to 50°C lower than the temperatures used for hot mixes.
  • the hot or warm mixes of the invention can be manufactured in any mix plant.
  • Hot or warm mixes generally comprise from 4 to 10% by weight of the binder composition, advantageously from 4.5 to 6.5% by weight relative to the total weight of the formulated product (that is to say by relative to the total weight of the mixture comprising the binder composition and the solid particles).
  • Hot or warm bituminous mixes are typically used to produce layers and/or coatings for road construction and/or civil engineering. They are typically used to make wearing courses. Hot or warm bituminous mixes can be used in particular to produce wearing layers such as thin bituminous concrete (BBM), semi-grained bituminous concrete (BBSG), very thin bituminous concrete (BBTM), ultra-thin bituminous concrete (BBUM ), flexible bituminous concretes (BBS), pervious bituminous concretes (BBDr) or high modulus bituminous concretes (BBME).
  • BBM thin bituminous concrete
  • BBSG semi-grained bituminous concrete
  • BBTM very thin bituminous concrete
  • BBUM ultra-thin bituminous concrete
  • BBS flexible bituminous concretes
  • BBDr pervious bituminous concretes
  • BBME high modulus bituminous concretes
  • Hot or warm bituminous mixes can be used for the manufacture of storable mixes. sunk
  • Cast asphalts designate products obtained by hot casting of a mixture comprising a binder composition, fines, sand, gravel and optionally natural asphalt powder.
  • a binder composition comprising a binder composition, fines, sand, gravel and optionally natural asphalt powder.
  • the interstitial voids that may be present in the mixes are filled with sand, fines and binder.
  • Asphalts Poured can be very particularly used to prepare surfacings for roads, sidewalks or other urban developments or else to prepare waterproofing layers for structures and buildings.
  • Mastic asphalts prepared using a binder composition according to the present invention can be manufactured at a manufacturing temperature below 200°C, preferably below 180°C, even more preferably at a temperature below 160°C. C (mixing or coating temperature). The mixture can then be cast at a processing temperature below 180°C, for example ranging from 120°C to 180°C.
  • Mastic asphalts generally comprise from 5 to 12% by weight of the binder composition, advantageously from 7 to 9% by weight relative to the total weight of the formulated product (that is to say relative to the total weight of the mixture comprising binder composition and solid particles).
  • Binder emulsions are commonly used for various road applications, where they can be spread in the presence of aggregates to produce surface dressings.
  • Binder emulsions can also be mixed with aggregates to obtain cold mixes, either just before laying (Cold Poured Bituminous Materials and recycling in place), or in asphalt mixing plants (storable mixes, Grave-Emulsion, Concrete Bituminous to Emulsion).
  • Binder emulsions are obtained by dispersing binder droplets in an aqueous phase.
  • the binder droplets are stabilized in the continuous phase by surfactant compounds which can be anionic, non-ionic, amphoteric or cationic.
  • the binder emulsions used in the road industry are mainly cationic in nature. These emulsions are defined and characterized according to different standards and specifications.
  • the European standard EN 13808: 2013 defines the technical specifications for cationic bitumen emulsions used in road construction, road infrastructure maintenance, airports and other surfacings.
  • bitumen emulsions This European standard applies to bitumen emulsions, fluxed bitumen emulsions, polymer modified bitumen emulsions and polymer modified fluxed bitumen emulsions, which also include latex modified bitumen emulsions.
  • the binder emulsions according to the present invention comprise a binder composition according to the invention, water and a surfactant, preferably a cationic surfactant.
  • a surfactant preferably a cationic surfactant.
  • Surfactants useful for the preparation of binder emulsions are well known to those skilled in the art.
  • Surface dressings are well known to those skilled in the art.
  • Surface wear coatings are surface coatings as described in the guide “Superficial Wear Coatings", Institute of Roads, Streets and Infrastructures for Mobility, Cerema, September 2017.
  • a surface wear coating denotes a layer consisting of superimposed layers of a binder in the form of an emulsion and of solid particles, in particular solid mineral particles. It is typically obtained by spraying a binder then by spreading solid mineral particles on this binder, in one or more layers. The whole is then compacted.
  • the total content of binder in a surface wear coating is adapted according to the structure of the coating (single- or two-layer, type of gravelling), the nature of the binder and the size of the solid mineral particles, in particular aggregates, following for example the recommendations of the guide "Superficial Wear Coatings", Institute of Roads, Streets and Infrastructures for Mobility, Cerema, September 2017.
  • Emulsion bituminous concretes BBE
  • gravel emulsions GE
  • Gravel-emulsion are used for base courses, binder courses and reprofiling, bituminous emulsion concrete (BBE) for wearing courses.
  • emulsion coated are cold coated from a mixture of solid particles, in particular solid mineral particles including aggregates, an emulsion binder, typically a cationic emulsion, and additives.
  • the aggregates can be used without prior drying and heating or undergo partial hot pre-lacquering. It may sometimes be necessary to heat the mix obtained after its manufacture, during its implementation.
  • Gravel-emulsion (GE) and bituminous emulsion concrete (BBE) are as described in the guide "Plant-made emulsion mixes", Institute of Roads, Streets and Infrastructures for Mobility, Cerema , 2020
  • the binder used for the synthesis of emulsion bituminous concretes is in the form of an emulsion binder.
  • the total residual anhydrous binder content of the cold mix is typically 3 to 7 ppc (part percent by weight), advantageously 3.5 to 5.5 ppc, based on the weight of the solid particles.
  • the residual binder content is between 3.5% and 5.5%, advantageously from 4.5 to 5.5%, by weight relative to the total weight of the dry mineral fraction for the bituminous concretes in emulsion or advantageously from 3.5% to 4.5%, by weight relative to the total weight of the dry mineral fraction for a gravel-emulsion.
  • Emulsion bituminous concretes can be used for the manufacture of storable mixes.
  • Cold-poured bituminous materials are asphalt mixes for a surface layer consisting of solid particles, such as solid mineral particles, for example aggregates, undried coated with binder emulsion and poured in place continuously by means of equipment specific.
  • MBCF Cold Cast Bituminous Materials
  • this very thin cold poured coating (generally 6 to 13 mm thick per layer) must reach its final consistency (rise in cohesion) very quickly.
  • the binder used for the manufacture of cold poured bituminous materials is in the form of an emulsion binder.
  • the binder content advantageously varies from 50 to 75% by weight of binder, relative to the total weight of the emulsion, more advantageously from 55 to 70% by weight, even more advantageously from 60 to 65% by weight .
  • the total residual anhydrous binder content of the cold poured bituminous material is typically 5.5 to 9 pph (part percent by weight), preferably 6 to 8 pph, based on the weight of the solid particles.
  • a binder composition according to the invention (Example 1) comprises the following constituents:
  • Example 1 is prepared according to the following process:
  • the melt index is measured according to the method described in standard ISO1 133-1 (201 1).
  • the copolymers are evaluated at a temperature of 190° C. and under a load of 2.16 kg.
  • This test method allows the determination of the consistency of bitumens, bituminous binders and hydrocarbon binders.
  • the penetration of a reference needle into a conditioned test sample is measured.
  • the operating conditions which apply to penetrabilities up to approximately 330 x 0.1 mm must be: temperature of 25°C, applied load of 100 g and duration of application of the load of 5 seconds.
  • This test method allows the determination of the softening point of bitumens, bituminous binders and bituminous binders, in the temperature range of 28°C to 150°C.
  • Two horizontal discs of bitumen, cast in shouldered brass rings, are to be heated in a liquid bath with a controlled rate of temperature rise, while each supports a steel ball.
  • the noted softening point must correspond to the average of the temperatures at which the two discs soften sufficiently to allow each ball, wrapped in bituminous binder, to descend a height of (25.0 ⁇ 0.4) mm.
  • This test method allows the determination of the dynamic viscosity of different modified and non-modified bituminous binders and bituminous binders by means of a viscometer with rotating spindle (coaxial viscometer).
  • the torque applied to a rotating spindle (eg a cylinder) in a particular container, which contains the sample to be measured, accounts for the relative resistance of the spindle to rotation and provides a measure of the dynamic viscosity of the sample.
  • the tests are carried out from 100 to 180°C by applying, for each test temperature, a similar shear rate between the different samples.
  • This test method is used to determine the existence of an elastic response of bitumens, bituminous binders and bituminous binders under creep-recovery in shear at two stress levels, at a specified temperature.
  • the existence of this elastic response is determined by measuring the recovery percentage and the irreversible compliance of the binder. Irreversible creep compliance has been shown to be an indicator of the resistance of binders to permanent deformation under repeated stresses.
  • the test must be carried out at 50°C, 60°C, 70°C or 80°C as appropriate. Other test temperatures may be used for comparison.
  • the sample preparation and apparatus are in accordance with EN 14770, with a geometry of parallel plates of 25 mm and an air gap adjustment of 1 mm. The sample is subjected to constant stress for 1 second, followed by recovery for 9 seconds. Ten creep-recovery cycles are performed at a creep stress of 0.100 kPa, followed by another 10 cycles at a creep stress of 3.200 kPa
  • a hot mix is first prepared using the binder composition.
  • the mixture below is made at a temperature of 150°C from a total mass of asphalt of 500 g:
  • the mix is then placed in an oven at 120° C. for 30 minutes. After 30 minutes, the temperature of the mix is checked so that the mixture is indeed at 120° C., then the mix is handled using a spatula. The operator visualizes whether filaments are observed during handling of the asphalt. If only one filament is observed, the binder is rated as filamentary in appearance. 2. Examples
  • the EBA1 and EMA3 copolymers are useful copolymers of ethylene and alkyl acrylate in the context of the present invention.
  • EBA2 and EMA4 copolymers are copolymers of ethylene and alkyl acrylate presented for comparison.
  • binder compositions were fabricated and characterized in order to demonstrate the importance of the melting temperature of the copolymer on the performance of the binder compositions on the criterion of resistance to permanent deformation (Table 2).
  • the INV1 binder composition is a composition according to the invention: the copolymer used is an EBA copolymer having an MFI of 175 g/10min and a melting temperature of 102°C.
  • the COMP1 binder composition is not a composition according to the invention: the melting point of the EBA is 75°C, therefore less than 85°C.
  • EBAI presents a significantly higher melting temperature than TEBA2. This is explained by the nature of the processes for preparing these copolymers.
  • EBA 1 is prepared using a tubular copolymerization process, thus generating high heterogeneity and therefore a high melting temperature
  • TEBA2 is prepared using an autoclave copolymerization process, generating a homogeneous copolymer with a low melting temperature.
  • the characterization results of the INV1 and COMF1 binder compositions show that the heterogeneity of the copolymer is essential in order to obtain a high ball-ring temperature value and a good resistance to permanent deformation at 60°C as indicated by the high value of recovery of the composition INV1 and the low irreversible compliance of the composition INV1. 2.2. Demonstration of the importance of the melt index of the copolymer
  • binder compositions were manufactured and characterized in order to demonstrate the importance of the melt index of the copolymer on the reduction in the dynamic viscosity of the composition and therefore on its ability to be applied at lower temperature without influencing the workability of the product at application (Table 3).
  • the INV2 binder composition is a composition according to the invention: the copolymer used is an EMA copolymer having an MFI of 7 g/10min and a melting point of 97°C.
  • the binder composition COMP2 is not a composition according to the invention: the melt index of the EMA is 2 g/10min, therefore less than 2.5 g/m 2 .
  • TEMA3 exhibits a higher melt index than TEMA4.
  • the characterization results of the compositions INV2 and COMP2 show that a high melt index is essential to obtain a lower dynamic viscosity value. Indeed, at 100° C., the binder composition INV2 exhibits a dynamic viscosity lowered by 1000 mPa.s compared with the binder composition COMP2.
  • the results of the INV3 and INV1 binder compositions demonstrate that at the same consistency (values close to penetrability), the use of EBAI, which has a high fluidity index (175 g/10 min for EBA1 against 7 g/ 10min for EMA3) makes it possible to obtain a significantly lower dynamic viscosity at 100°C while maintaining equivalent irreversible compliance between the two binders.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente divulgation concerne le domaine des infrastructures de transport et d'aménagement urbain, en particulier des revêtements clairs ou colorés aux liants clairs. Plus particulièrement, la présente divulgation porte sur une composition de liant clair comprenant un ou plusieurs copolymères d'éthylène et d'acrylate d'alkyle ayant un indice de fluidité supérieur à 2,5 g/10min et une température de fusion supérieure à 85°C.

Description

COMPOSITION DE LIANT CLAIR ET SES APPLICATIONS POUR LES REVETEMENTS ROUTIERS ET D’AMENAGEMENT
DOMAINE DE L’INVENTION
La présente invention concerne le domaine des infrastructures de transport et d'aménagement urbain, en particulier des revêtements clairs ou colorés aux liants clairs. Plus particulièrement, la présente invention porte sur une composition de liant clair comprenant un ou plusieurs copolymères d'éthylène et d'acrylate d'alkyle ayant un indice de fluidité supérieur à 2,5 g/10min et une température de fusion supérieure à 85 °C. L’utilisation de tels copolymères permet l’application des revêtements à température abaissée tout en leur conférant une bonne résistance à la déformation permanente aux températures d'usage.
ARRIERE PLAN TECHNOLOGIQUE
Les liants bitumineux classiques, utilisés en construction routière, sont de couleur noire et sont donc difficilement colorables. Cette incapacité à colorer les liants bitumineux s'explique par la couleur noire des asphaltènes qui sont des composés intrinsèquement présents dans les bitumes.
Les revêtements à base de liants clairs permettent de réaliser des enrobés dont la teinte est celle des matériaux granulaires qui les constituent ou éventuellement une teinte colorée par ajout de pigments. Les utilisateurs des voiries urbaines (piétons, cyclistes, automobilistes) sont particulièrement sensibles à la teinte des revêtements sur lesquels ils circulent. La couleur procure un aspect indispensable à l’intégration harmonieuse des chaussées dans leur environnement mais facilite aussi leur lisibilité. Outre les avantages esthétiques que procurent les liants clairs, ces produits sont également appréciés pour certains emplois particuliers : en revêtements de chaussée de tunnel ou de passage souterrain, ils conduisent à des économies d’éclairage et améliorent la visibilité, donc la sécurité ; en couche de roulement d’ouvrage d’art, ils permettent de diminuer la température atteinte par le revêtement exposé au soleil et ainsi de limiter les contraintes thermiques sur le tablier de l’ouvrage ; enfin, en milieux urbains, ils permettent de limiter la température de surface du revêtement et ainsi contribuent à la lutte contre les îlots de chaleur urbains.
Les revêtements clairs ou colorés s’appuient sur l’utilisation de liants d’enrobage synthétiques présentant les mêmes caractéristiques que les bitumes classiques mais sans avoir la couleur noire. Ces liants de synthèse, élaborés à partir de composants d’origine pétrolière, ne comportent pas d’asphaltènes et ont ainsi une apparence claire, translucide, transparente en film mince. Les liants clairs de l’art antérieur sont généralement constitués d’un mélange d’huiles pétrolières, de résines hydrocarbonées pétrolières et de polymères. Cependant, les liants clairs connus de l'homme de l'art doivent être chauffés à des températures comprises entre 150 °C et 200 °C afin de les mélanger avec des particules solides minérales également chauffées dans cette même gamme de température. La fabrication à ces températures permet une bonne fluidité de la composition et une maniabilité adaptée à l’application mécanisée ou manuelle sur chantier. Cependant, le revêtement appliqué sur chantier est généralement à une température supérieure à 140- 150 °C ce qui a pour conséquence de générer d’importantes émissions de fumées. En abaissant la température de fabrication, et donc d'application, de ces revêtements clairs, des problèmes importants de maniabilité sont observés. En effet, l’utilisation d’élastomères de type poly(styrène-b- butadiène-b-styrène) (SBS) ou styrène-éthylène-butylène-styrène (SEBS) dans les liants de l’art antérieur amène un caractère filamenteux des liants lorsque la température descend en- dessous de 120-130 °C et que le revêtement est manipulé. Ce caractère filamenteux rend l’application des liants clairs impossible à température abaissée compte-tenu de la diminution rapide de la température du revêtement lors de l’application sur chantier. Le caractère filamenteux signifie que le liant devient plus visqueux et forme des fils entre les particules solides minérales lorsque la composition est manipulée. Cet état filamenteux rend l’application manuelle impossible et peut compromettre la durabilité du revêtement dans le sens ou la cohésion du revêtement peut être perturbée du fait d’un compactage ou une mise en place du revêtement insuffisant. Une méthode pour réduire le caractère filamenteux des revêtements aux liants de synthèse clairs consiste à réduire la teneur en élastomère dans la composition du liant. Cependant, cette méthode conduit à une résistance à la déformation permanente qui est fortement impactée. Les revêtements issus de cette méthode ne sont alors plus adaptés pour une utilisation selon une large fenêtre de trafic et de température.
La demande de brevet EP1481023 décrit une composition de liant clair qui comprend de 0,05 à 3% massique d’un additif de type amide qui permet de diminuer la température de maniabilité du revêtement clair. Cependant, cette demande de brevet mentionne l’usage de polymères tels que des élastomères SBS ou styrène-isoprène-styrène (SIS). Le caractère filamenteux à une température inférieure à 120-130°C n’est donc pas éliminé malgré la diminution de la viscosité dynamique du liant.
La demande de brevet WO 2017/076814 décrit une composition de liant de synthèse pour la réalisation de revêtements clairs qui comprend une huile pétrolière extraite au solvant, une résine pétrolière, un élastomère SEBS ayant une teneur en styrène de 25-35% et un copolymère d’éthylène et d’acrylate d’éthyle (EEA) ayant une teneur en acrylate d’éthyle (EA) de 10-25% et un indice de fluidité (MFR ou MFI) de 0,5 g/10mm à 2,5 g/10mm. Cette demande de brevet précise que la teneur en SEBS noté y (%massique) est caractérisée par -0,6x + 3,1 < y < -0,5x + 6,1 et 0 < y < 2,8 où x est la teneur (% massique) en copolymère EEA. Les copolymères d’éthylène et d’acrylate d’éthyle décrits dans la demande WO 2017/076814 possèdent un indice de fluidité compris entre 0,5 et 2,5 g/10min. L’utilisation de polymères ayant un indice de fluidité aussi bas ne permet pas d’obtenir des valeurs de viscosité dynamique à 150 ou 180 °C suffisamment basses pour envisager une application des revêtements clairs à basse température (température inférieure à 140-150 °C).
Il existe donc un besoin pour la mise à disposition de compositions de liants clairs dont la maniabilité, caractérisée par la viscosité dynamique du liant et l’absence de caractère filamenteux, soit adaptée à une application à température abaissée tout en assurant une bonne résistance au trafic des revêtements préparés à partir de telles compositions.
BREVE DESCRIPTION DE L'INVENTION
La présente invention porte sur une composition de liant clair comprenant un agent plastifiant, un agent structurant et un ou plusieurs copolymères d’éthylène et d’acrylate d’alkyle ayant un indice de fluidité supérieur à 2,5 g/10min tel que mesuré selon la méthode IS01 133-1 (2011 ) et une température de fusion supérieure ou égale à 85 °C telle que mesurée selon la méthode ISO 11357-3 (2018).
La présente invention porte également sur des produits routiers et d’aménagement comprenant des particules solides et une telle composition.
Enfin, la présente invention porte sur l’utilisation d’un copolymère d'éthylène et d’acrylate d’alkyle ayant un indice de fluidité supérieur à 2,5 g/10min tel que mesuré selon la méthode IS01 133-1 (201 1 ) et une température de fusion supérieure ou égale à 85 °C telle que mesurée selon la méthode ISO 11357-3 (2018) pour abaisser la température de fabrication et/ou de mise en œuvre des enrobés à chaud, des enrobés tièdes et des asphaltes coulés.
D’autres aspects de l’invention sont tels que décrits ci-dessous et dans les revendications.
DESCRIPTION DETAILLEE DE L'INVENTION
Les inventeurs ont mis au point une composition de liant répondant aux besoins exprimés. De façon surprenante, il a été mis en évidence que l’utilisation d’un copolymère d’éthylène et d’acrylate d’alkyle ayant un indice de fluidité supérieur à 2,5 g/10min et une température de fusion supérieure ou égale à 85 °C dans une composition de liant clair permet d’obtenir un liant clair présentant des propriétés physico-mécaniques améliorées, notamment du point de vue de la viscosité dynamique entre 100 et 200 °C et de la résistance à la déformation permanente. De telles compositions présentent une maniabilité adaptée à une application à température abaissée tout en garantissant une bonne résistance du revêtement produit à partir de telles compositions à la déformation permanente sur sa plage de température de service.
La composition de liant clair mise au point par les inventeurs comprend : (a) un agent plastifiant, (b) un agent structurant,
(c) un ou plusieurs copolymères d'éthylène et d'acrylate d'alkyle ayant un indice de fluidité supérieur à 2,5 g/10min et une température de fusion supérieure ou égale à 85 °C.
L’expression « composition de liant clair » désigne une composition de liant qui est généralement incolore ou de couleur claire (ex. blanche ou beige). Ainsi, la composition est adaptée à la préparation de revêtements clairs ou de revêtements colorables.
La composition de liant peut en outre comprendre des additifs communément employés en technique routière, en particulier des agents de coloration.
La composition de liant est typiquement dépourvue d’asphaltène. Plus généralement, la composition de liant est typiquement dépourvue de bitume.
La composition de liant clair comprend généralement, en poids par rapport au poids total de la composition :
(a) de 25 à 85% en poids, de préférence de 50 à 70% en poids d’un agent plastifiant,
(b) de 10 à 70% en poids, de préférence de 20 à 40% en poids d’un agent structurant,
(c) de 1 à 20% en poids, de préférence de 4 à 12% en poids d’un ou plusieurs copolymères d'éthylène et d'acrylate d'alkyle ayant un indice de fluidité supérieur à 2,5 g/10min et une température de fusion supérieure ou égale à 85 °C, et
(d) de 0 à 10% en poids, de préférence de 0,3 à 3% en poids d’additifs communément employés en technique routière.
Les composants entrant dans la composition de liant peuvent être tels que décrits ci-dessous.
Aqent plastifiant
Le terme « agent plastifiant » désigne un constituant chimique permettant de fluidifier et de réduire la viscosité et le module de la composition de liant. Il s’agit typiquement d’une huile. Une large gamme d’huiles dites lubrifiantes peut être utilisée dans la composition de liant selon l’invention. De telles huiles sont bien connues de l’homme du métier.
Typiquement, il s’agit d’une huile synthétique pétrolière. Un exemple d’huile synthétique pétrolière adaptée à la mise en œuvre de la présente invention est une huile pétrolière issue d’un procédé d’extraction au solvant du pétrole brut (communément désigné par l’acronyme RAE pour « Residual Aromatic Extracts »). L’huile obtenue est riche en composés aromatiques et naphténiques. Le solvant d’extraction est typiquement le phénol, la N- méthylpyrrolidone et le furfural. Dans certains modes de réalisation, l’agent plastifiant est une huile RAE extraite au furfural contenant une teneur totale en composés aromatiques d’au moins 20% en poids, par exemple de 20 à 30% en poids. D’autres exemples d’huiles utilisables comme agent plastifiant incluent, sans être limitatifs, les huiles pétrolières de synthèse issues du traitement de distillats du pétrole brut, les huiles de synthèse telles que les poly(alpha oléfines), les huiles d’origine végétale obtenues à partir de végétaux et/ou de plantes de manière directe ou après modification chimique telles que les triglycérides, les esters polyol d’acides gras, les triglycérides oligomérisées/polymérisées.
Agent structurant
Le terme « agent structurant » désigne tout constituant chimique conférant des propriétés mécaniques et une cohésivité satisfaisante à la composition de liant. Les agents structurants utiles à la préparation de compositions de liant clair sont bien connus de l’homme du métier.
Dans certains modes de réalisation, l’agent structurant est une résine pétrolière hydrocarbonée, par exemple issue de la copolymérisation de coupes pétrolières aromatiques. Un exemple de ce type de résine est une résine hydrocarbonée obtenue par copolymérisation d’une coupe pétrolière aromatique riche en monomères C9. Une telle coupe est issue du craquage thermique du naphta. Cette coupe pétrolière aromatique riche en monomère C9 est riche en composés tels que les vinyltoluènes, les dicyclopentadiènes, l’indène, le méthylstyrène, le styrène et les méthylindènes.
D’autres exemples de résines utilisables comme agent structurant incluent, sans être limitatifs, les résines issues de coupes pétrolières aliphatiques C5, les résines issues de coupes pétrolières C5/C9, les résines d’origine végétale (obtenues à partir de végétaux et/ou de plantes) telles que les esters de colophanes ou les résines polyterpéniques ou encore les résines terpènes/phénol.
Copolvmères d'éthylène et d'acrylate d'alkyle
Le ou les copolymères d'éthylène et d'acrylate d'alkyle utiles dans le cadre de la présente invention présente un indice de fluidité à chaud supérieur à 2,5 g/10min tel que mesuré selon la méthode ISO1133-1 (2011 ) (190°C/2,16Kg) et une température de fusion supérieure ou égale à 85 °C telle que mesurée selon la méthode ISO 11357-3 (2018).
Typiquement, l’indice de fluidité à chaud (MFI) des copolymères d'éthylène et d'acrylate d'alkyle utiles dans le cadre de la présente invention est supérieur à 2,5 et inférieur ou égal à 700 g/10min, de préférence il varie de 6 à 320 g/10 min, encore plus préférablement de 7 à 200 g/10 min.
Les copolymères d’éthylène et d’acrylate d’alkyle utiles dans le cadre de la présente invention comprennent typiquement de 1 à 40% en poids, préférablement de 10 à 35% en poids, encore plus préférablement de 15 à 30% en poids d’acrylate d’alkyle par rapport au poids total du copolymère. L’acrylate d’alkyle comprend typiquement des groupements alkyles contenant de 1 à 8 atomes de carbone. Des exemples d’acrylate d’alkyle utiles dans le cadre de la présente invention incluent l’acrylate de méthyle, l’acrylate d’éthyle, l’acrylate de butyle ou leurs mélanges.
Typiquement, la température de fusion des copolymères d’éthylène et d’acrylate d’alkyle utiles dans le cadre de la présente invention est inférieure à 1 10 °C. De préférence, la température de fusion des copolymères d’éthylène et d’acrylate d’alkyle utiles dans le cadre de la présente invention est supérieure ou égale à 90 °C, encore plus préférablement supérieure ou égale à 95 <C.
Les copolymères d’éthylène et d’acrylate d’alkyle utiles dans le cadre de la présente invention sont préparés par un procédé de copolymérisation radicalaire continue à haute pression dans un réacteur tubulaire (dit « procédé de copolymérisation tubulaire »). Les procédés de copolymérisation tubulaire sont bien connus de l’homme du métier. Par exemple, les copolymères d’éthylène et d’acrylate d’alkyle utiles dans le cadre de la présente invention peuvent être préparés par un procédé tel que décrit dans WO 2003/051630. Les copolymères d’éthylène et d’acrylate d’alkyle utiles dans le cadre de la présente invention se distinguent des copolymères d’éthylène et d’acrylate d’alkyle préparés par un procédé de copolymérisation radicalaire à haute pression dans un réacteur autoclave (dit « procédé de copolymérisation autoclave »).
Additifs
Les additifs peuvent être tout additif ou leurs mélanges communément employés en technique routière. Des exemples d’additifs incluent de manière non limitative des cires, des dopes d’adhésion, des agents colorants ou des additifs de maniabilité.
Cires
Les cires peuvent permettre d’améliorer davantage la viscosité dynamique à chaud des compositions de liant sans impacter les propriétés rhéologiques aux températures d’usage des revêtements clairs. Les cires diminuent la viscosité dynamique de la composition de liant à chaud et apportent une remontée en cohésion à la composition lors du refroidissement.
Des exemples de cires utiles dans le cadre de la présente invention incluent de manière non limitative les cires végétales (ex. : huile de ricin hydrogénée), les cires synthétiques issues du procédé Fischer-Tropsch, les cires pétrolières microcristallines, les cires pétrolières de type slack wax, les cires de polyéthylène, les cires issues de la copolymérisation de l’éthylène et d’acétate de vinyle, etc...
Les cires peuvent être ajoutées, indifféremment dans la composition de liant ou lors de la fabrication de l’enrobé ou de l’asphalte coulé en mélange avec les particules solides minérales (fillers, sables et granulats). Dopes d’adhésion
Les dopes d’adhésion permettent d’améliorer l’affinité réciproque entre la composition de liant et les granulats et en assurent la pérennité.
Des exemples de dopes utiles dans le cadre de la présente invention incluent de manière non limitative des composés tensioactifs azotés dérivés des acides gras (amines, amidoamines, imidazolines), d’acides gras ou d’acides gras polymérisés, d’esters phosphate, d’organosilanes, etc...
Agents colorants
Les agents colorants peuvent être des pigments minéraux ou des colorants organiques. Les pigments sont sélectionnés suivant la teinte, la couleur souhaitée pour le revêtement. Par exemple, des oxydes métalliques tels que des oxydes de fer, des oxydes de chrome, des oxydes de cobalt, des oxydes de titane peuvent être utilisés pour obtenir les couleurs rouge, jaune, gris, vert, bleu ou blanc.
Les agents colorants peuvent être ajoutés, indifféremment dans la composition de liant ou lors de la fabrication de l’enrobé ou de l’asphalte coulé en mélange avec les particules solides minérales (fillers, sables et granulats). Les agents colorants peuvent également être ajoutés dans une émulsion comprenant la composition de liant.
Additifs de maniabilité
Les additifs de maniabilité permettent d’améliorer la maniabilité des compositions destinées à la préparation de produits routiers et d’aménagement. Les additifs de maniabilité peuvent être tels que décrits dans EP 3 612 597 A1 .
Dans certains modes de réalisation, les compositions de la présente invention comprennent une huile synthétique pétrolière RAE en tant qu’agent plastifiant et une résine pétrolière hydrocarbonée issue de la copolymérisation de coupes pétrolières aromatiques riches en monomères C9 en tant qu’agent structurant.
Les compositions de la présente invention peuvent être préparées par un procédé comprenant les étapes suivantes :
(a) chauffage de l’agent plastifiant à une température allant de 140 à 200 °C, par exemple pendant 10 à 30 min ;
(b) ajout de l’agent structurant, de préférence graduellement, mélange et chauffage à une température allant de 140 à 200 °C, par exemple pendant 30 à 120 min ; (c) ajout du copolymère d’éthylène et d’acrylate de butyle, mélange et chauffage à une température allant de 140 à 200 °C, par exemple pendant 60 à 120 min ;
(d) ajout des éventuels additifs, mélange et chauffage à une température allant de 140 à 200°C, par exemple pendant 5 à 20 min.
La présente invention porte également sur un tel procédé.
Les étapes du procédé peuvent être réalisées dans l’ordre présenté ou l’ordre de ces étapes peut être différent.
Les compositions de la présente invention sont utilisables en substitution des liants à base de bitume pour la préparation d’une grande variété de produits routiers et d’aménagement. Dans la suite, par abus de langage, les produits routiers et d’aménagement obtenus, pourront être désignés collectivement « produits bitumineux » ou individuellement par des dénominations usuelles faisant référence à la présence de bitume. Il est clair que dans de tels « produits bitumineux », le bitume traditionnellement employé est remplacé par une composition selon la présente invention. De tels produits bitumineux sont alors de couleur claire ou sont colorables. Les compositions de la présente invention peuvent être utilisées pour la préparation d’enrobés (enrobés à chaud, enrobés tièdes) et d’asphaltes coulés. La faible viscosité dynamique des compositions de liant de la présente invention permet de préparer et d’appliquer ces produits à des températures inférieures à celles mises en oeuvre dans les procédés traditionnels de préparation et d’application. Il a été tout particulièrement mis en évidence que l’utilisation d’un copolymère d'éthylène et d’acrylate d'alkyle tel que précédemment décrit permet d’abaisser la température de fabrication et/ou de mise en oeuvre des enrobés à chaud, des enrobés tièdes et des asphaltes coulés. La présente invention porte également sur une telle utilisation.
Les compositions de la présente invention peuvent également être utilisées pour la préparation d’émulsions de liant utiles pour la préparation d’enduits superficiels, de matériaux bitumineux coulés à froid, de bétons bitumineux à l’émulsion et grave émulsion. La faible viscosité dynamique des compositions de liant de la présente invention peut permettre de faciliter l’émulsification, tout particulièrement en permettant un meilleur cisaillement et/ou une température de chauffage abaissée.
La présente invention porte également sur les produits routiers et d’aménagement préparés au moyen des compositions de la présente invention. De tels produits routiers et d’aménagement (produits bitumineux) sont bien connus en technique routière et peuvent être préparés par des techniques conventionnelles. Par exemple, certains des produits routiers et d’aménagement précédemment cités pourront être préparés selon des méthodes telles que décrites dans WO 2011/151387, EP 0 384 094, EP 0 524 031 , EP 0 781 887, EP 0 552 574, FR 2 732 239 ou encore EP 1 668 184. Les produits routiers et d’aménagement répondent typiquement aux normes EN 13108-6 (12/2006), EN 12970 (12/2000), EN 13108-1 (02/2007), EN 13108-2 (12/2006), EN 13108-3 (12/2006), EN 13108-4 (12/2006), EN 13969 (09/2005), EN 13108-5 (12/2006), EN 13108-7 (12/2006) et EN 13108-9 (10/2016).
Dans la description faite ci-dessous des produits routiers et d’aménagement (ou produits bitumineux), il est entendu que le terme « liant », lorsque ce dernier est employé, désigne la composition de liant de la présente invention.
Le terme « produits routiers et d’aménagement » tel qu’employé ici ou « produit bitumineux » tel qu’employé ici par abus de langage désigne un produit comprenant une composition de liant selon la présente invention et des particules solides, en particulier des particules solides minérales.
Le terme "particules solides ", désigne toutes particules solides utilisables pour la réalisation de produits routiers et d’aménagement selon l’invention, notamment pour la construction routière et l’aménagement urbain en revêtements clairs. Des exemples de particules solides incluent les particules solides minérales telles que les granulats minéraux naturels (gravillons, sable, fines), par exemple issus de carrière ou de gravière, les produits de recyclage des revêtements clairs tels que les agrégats d'enrobés clairs, par exemple résultant du recyclage des matériaux récupérés lors de la réfection des revêtements clairs ou des surplus d’usines d’enrobés clairs, les rebuts de fabrication, les granulats provenant du recyclage de matériaux routiers y compris les bétons, les laitiers en particulier les scories, les schistes en particulier la bauxite ou le corindon, les poudrettes de caoutchouc par exemple provenant du recyclage des pneus, les granulats artificiels de toute origine et les granulats provenant par exemple des mâchefers d’incinération des ordures ménagères (MIOM), ainsi que leurs mélanges en toutes proportions.
Les particules solides, en particulier les particules solides minérales, par exemple les granulats minéraux naturels, comprennent typiquement des éléments inférieurs à 0,063 mm (filler ou fines), du sable dont les éléments sont compris entre 0,063 mm et 2 mm et des gravillons ou granulats, dont les éléments ont des dimensions comprises entre 2 mm et 6 mm et supérieures à 6 mm.
La taille des particules solides, en particulier des particules solides minérales, par exemple les granulats minéraux, est mesurée par les essais décrits dans la norme NF EN 933-2 (07/2020). Les « particules solides minérales » sont également désignées par les termes « fraction minérale 0/D ». Cette fraction minérale 0/D peut être séparée en deux granulométries : la fraction minérale 0/d et la fraction minérale d/D. Les éléments les plus fins (la fraction minérale 0/d) sont ceux compris dans la plage comprise entre 0 et un diamètre maximal que l’on peut fixer entre 2 et 6 mm (de 0/2 à 0/6), avantageusement entre 2 et 4 mm. Les autres éléments (diamètre minimal supérieur à 2, 3, 4, 5 ou 6 mm ; et environ jusqu’à 31 ,5 mm) constituent la fraction minérale d/D. Enrobés à chaud ou tièdes
Les enrobés à chaud sont typiquement obtenus par mélange à chaud de particules solides telles que décrites ci-dessus (typiquement un mélange de fine, sable et granulats présentant les spécificités décrites ci-dessus) et d’une composition de liant telle que décrite ci-dessus, typiquement dans une usine d’enrobés. Le mélange est ensuite épandu et compacté.
Les enrobés à chaud préparés au moyen d’une composition de liant selon la présente invention peuvent être fabriqués à une température de fabrication inférieure à 170 °C, de préférence inférieure à 160 °C, de manière encore plus préférée à une température allant de 140 à 155 °C (température de mélange ou d’enrobage). Le mélange peut ensuite être épandu à une température de mise en œuvre inférieure à 140-145 °C, de préférence inférieure à 130 °C (ex. par exemple autour de 100 °C, 1 10 °C ou 120 °C). De manière avantageuse, le temps de travail peut être allongé sans impacter négativement la compactibilité et la maniabilité du produit.
Les enrobés tièdes sont des enrobés mis en œuvre à des températures d’environ 30 à 50°C inférieures aux températures mises en œuvre pour des enrobés hydrocarbonés à chaud.
Les enrobés à chaud ou tièdes de l'invention peuvent être fabriqués dans n'importe quelle usine d'enrobés.
Les enrobés à chaud ou tièdes comprennent généralement de 4 à 10% en poids de la composition de liant, avantageusement de 4,5 à 6,5% en poids par rapport au poids total du produit formulé (c’est-à-dire par rapport au poids total du mélange comprenant la composition de liant et les particules solides).
Les enrobés hydrocarbonés à chaud ou tièdes sont typiquement utilisés pour réaliser des couches et/ou revêtements de construction routière et/ou de génie civil. Ils sont typiquement utilisés pour réaliser des couches de roulement. Les enrobés hydrocarbonés à chaud ou tièdes peuvent être tout particulièrement utilisés pour réaliser des couches de roulement de type bétons bitumineux minces (BBM), bétons bitumineux semi-grenu (BBSG), bétons bitumineux très mines (BBTM), bétons bitumineux ultra minces (BBUM), bétons bitumineux souples (BBS), bétons bitumineux drainants (BBDr) ou bétons bitumineux à module élevé (BBME).
Les enrobés hydrocarbonés à chaud ou tièdes peuvent être utilisés pour la fabrication d’enrobés stockables. coulés
Les asphaltes coulés désignent des produits obtenus par coulage à chaud d’un mélange comprenant une composition de liant, des fines, du sable, des gravillons et éventuellement de la poudre d’asphalte naturelle. Dans les asphaltes coulés, les vides interstitiels qui peuvent être présents dans les enrobés sont comblés par du sable, des fines et du liant. Les asphaltes coulés peuvent être tout particulièrement utilisés pour préparer des revêtements de chaussées, de trottoirs ou autres aménagements urbains ou encore pour préparer des couches d'étanchéité d'ouvrages et bâtiments.
Les asphaltes coulés préparés au moyen d’une composition de liant selon la présente invention peuvent être fabriqués à une température de fabrication inférieure à 200 °C, de préférence inférieure à 180 °C, de manière encore plus préférée à une température inférieure à 160 °C (température de mélange ou d’enrobage). Le mélange peut ensuite être coulé à une température de mise en oeuvre inférieure à 180 °C, par exemple allant de 120 °C à 180 °C.
Les asphaltes coulés comprennent généralement de 5 à 12% en poids de la composition de liant, avantageusement de 7 à 9% en poids par rapport au poids total du produit formulé (c’est- à-dire par rapport au poids total du mélange comprenant la composition de liant et les particules solides).
Emulsions de liant et produits bitumineux préparés au moyen de telles émulsions
Les émulsions de liant sont utilisées de manière courante pour diverses applications routières, où elles peuvent être répandues en présence de granulats pour réaliser des enduits superficiels d’usure.
Les émulsions de liants peuvent également être mélangées à des granulats pour obtenir des enrobés à froid, soit juste avant la pose (Matériaux Bitumineux Coulés à froid et recyclage en place), soit en centrales d’enrobage (enrobés stockables, Grave-Emulsion, Bétons Bitumineux à l’Emulsion).
Les émulsions de liant sont obtenues par dispersion de gouttelettes de liant dans une phase aqueuse. Les gouttelettes de liant sont stabilisées dans la phase continue par des composés tensioactifs qui peuvent être anioniques, non-ioniques, amphotériques ou cationiques. Les émulsions de liant utilisées dans l’industrie routière sont majoritairement de nature cationique. Ces émulsions sont définies et caractérisées selon différentes normes et spécifications. La norme Européenne EN 13808 : 2013 définit les spécifications techniques des émulsions cationiques de bitume employées dans la construction routière, l’entretien des infrastructures routières, les aéroports et les autres revêtements. Cette norme Européenne s’applique pour les émulsions de bitume, les émulsions de bitume fluxé, les émulsions de bitume modifié aux polymères et les émulsions de bitume fluxé modifié aux polymères, qui incluent également les émulsions de bitume modifiées au latex.
Les émulsions de liant selon la présente invention comprennent une composition de liant selon l’invention, de l’eau et un agent tensio-actif, de préférence un agent tensioactif cationique. Les agents tensio-actifs utiles à la préparation d’émulsions de liant sont bien connus de l’homme du métier. Enduits superficiels d’usure
Les enduits superficiels d’usure sont des revêtements superficiels tels que décrits dans le guide « Enduits Superficiels d’Usure », Institut des Routes, des Rues et des Infrastructures pour la Mobilité, Cerema, Septembre 2017. Typiquement, un enduit superficiel d’usure désigne une couche constituée de couches superposées d‘un liant sous forme d’émulsion et de particules solides, en particulier des particules solides minérales. Il est typiquement obtenu en pulvérisant un liant puis en épandant sur ce liant des particules solides minérales, en une ou plusieurs couches. L’ensemble est ensuite compacté.
La teneur totale en liant dans un enduit superficiel d’usure est adaptée en fonction de la structure de l’enduit (mono- ou bi-couche, type de gravillonnage), de la nature du liant et de la dimension des particules solides minérales, en particulier des granulats, en suivant par exemple les préconisations du guide « Enduits Superficiels d’Usure », Institut des Routes, des Rues et des Infrastructures pour la Mobilité, Cerema, Septembre 2017.
Bétons bitumineux à l’émulsion (BBE) et graves-émulsions (GE)
Les graves-émulsion (GE) sont employés pour les couches d’assise, de liaison et le reprofilage, les bétons bitumineux à l’émulsion (BBE) pour les couches de roulement.
Ces produits, encore appelés enrobés à l’émulsion, sont des enrobés réalisés à froid à partir d'un mélange de particules solides, en particulier des particules solides minérales incluant des granulats, d’un liant en émulsion, typiquement une émulsion cationique, et des additifs. Les granulats peuvent être utilisés sans séchage et chauffage préalable ou subir un pré-laquage partiel à chaud. Il peut parfois être nécessaire de réchauffer l’enrobé obtenu après sa fabrication, lors de sa mise en oeuvre.
Cette technique, dite technique "à froid", présente au niveau environnemental l'avantage important, de ne pas produire d'émissions de fumées.
Les graves-émulsion (GE) et les bétons bitumineux à l’émulsion (BBE) sont tels que décrits dans le guide « Enrobés à l’émulsion fabriqués en usine », Institut des Routes, des Rues et des Infrastructures pour la Mobilité, Cerema, 2020
Le liant employé pour la synthèse de bétons bitumineux à l’émulsion est sous la forme de liant en émulsion. La teneur totale en liant anhydre résiduel de l’enrobé à froid est typiquement de 3 à 7 ppc (partie pour cent en poids), avantageusement 3,5 à 5,5 ppc, par rapport au poids des particules solides.
Dans l’enrobé à froid, la teneur en liant résiduel est comprise entre 3,5% et 5,5%, avantageusement de 4,5 à 5,5%, en poids par rapport au poids total de la fraction minérale sèche pour les bétons bitumineux à l’émulsion ou avantageusement de 3,5% à 4,5%, en poids par rapport au poids total de la fraction minérale sèche pour une grave-émulsion. Les bétons bitumineux à l’émulsion peuvent être utilisés pour la fabrication d’enrobés stockables.
Matériaux bitumineux coulés à froid (MBCF)
Les matériaux bitumineux coulés à froid sont des enrobés pour couche de surface constitués de particules solides, tels des particules solides minérales, par exemple des granulats, non séchées enrobées à l’émulsion de liant et coulés en place en continu au moyen d’un matériel spécifique.
Les Matériaux Bitumineux Coulés à Froid (MBCF) sont tels que décrits dans le guide « Matériaux bitumineux coulés à froid », Institut des Routes, des Rues et des Infrastructures pour la Mobilité, Cerema, 2017.
Après sa mise en œuvre et rupture de l'émulsion, ce revêtement coulé à froid en très faible épaisseur (généralement de 6 à 13 mm d’épaisseur par couche) doit atteindre sa consistance définitive (montée en cohésion) très rapidement.
Le liant employé pour la fabrication de matériaux bitumineux coulés à froid est sous la forme de liant en émulsion. Dans cette émulsion, la teneur en liant varie avantageusement de 50 à 75% en poids de liant, par rapport au poids total de l’émulsion, plus avantageusement de 55 à 70% en poids, encore plus avantageusement de 60 à 65% en poids.
La teneur totale en liant anhydre résiduel du matériau bitumineux coulé à froid est typiquement, de 5,5 à 9 ppc (partie pour cent en poids), avantageusement 6 à 8 ppc, par rapport au poids des particules solides.
EXEMPLES
1 . Méthodes
1.1. Préparation d’une composition de liant selon l’invention
Une composition de liant selon l’invention (exemple 1 ) comprend les constituants suivants :
- 58,9% massique d’une huile RAE caractérisée par une teneur de 27% en composés aromatiques, 22% en composés naphténiques et 51 % en composés paraffiniques en tant qu’agent plastifiant ;
- 34,6% massique d’une résine hydrocarbonée pétrolière issue de monomères C9 en tant qu’agent structurant ;
- 6,5% massique par rapport à la masse totale d’huile et de résine d’un copolymère d’éthylène et d’acrylate de butyle possédant un indice de fluidité supérieur à 2,5 g/10min et une température de fusion supérieure à 85 °C. La composition de l’exemple 1 est préparé selon le procédé suivant :
(i) chauffage de l’huile RAE, par exemple à 170 °C ;
(ii) ajout progressif de la résine à l’huile et mélange, par exemple pendant 1 h à 2h à 170°C avec une vitesse d’agitation de 300 tr/min ;
(iii) ajout du copolymère d’éthylène et d’acrylate de butyle au mélange huile/résine et mélange, par exemple pendant 1 h à 2h à 170°C avec une vitesse d’agitation de 650 tr/min ;
(iv) le cas échéant, ajout d’une dope d’adhésivité sous forme liquide puis mélange, par exemple pendant 15 minutes à 170°C.
1.2. Indice de fluidité des copolymères d’éthylène et d’acrylate d’alkyle
L’indice de fluidité est mesuré selon la méthode décrite dans la norme ISO1 133-1 (201 1 ). Les copolymères sont évalués à une température de 190 °C et sous une charge de 2,16kg.
1.3. Détermination de la pénétrabilité à l’aiguille (NF EN 1426 - Janvier 2018)
Cette méthode d’essai permet la détermination de la consistance des bitumes, des liants bitumineux et des liants hydrocarbonés. La pénétration d’une aiguille de référence dans un échantillon d’essai conditionné est mesurée. Les conditions opératoires qui s’appliquent aux pénétrabilités jusqu’à environ 330 x 0,1 mm, doivent être : température de 25°C, charge appliquée de 100 g et durée d’application de la charge de 5 secondes.
1.4. Détermination du point de ramolissement - Méthode Bille et Anneau (NF EN 1427 - Janvier 2018)
Cette méthode d’essai permet la détermination du point de ramollissement des bitumes, des liants bitumineux et des liants hydrocarbonés, dans la plage des températures de 28 °C à 150°C. Deux disques horizontaux de bitume, moulés dans des anneaux de laiton à épaulement, doivent être chauffés dans un bain liquide avec un taux d’élévation de la température contrôlé, alors que chacun soutient une bille d’acier. Le point de ramollissement noté doit correspondre à la moyenne des températures auxquelles les deux disques se ramollissent suffisamment pour permettre à chaque bille, enveloppée de liant bitumineux, de descendre d’une hauteur de (25,0 ± 0,4) mm.
1.5. Détermination de la viscosité dynamique des liants bitumineux à l’aide d’un viscosimètre tournant (NF EN 13302 - Juin 2018)
Cette méthode d’essai permet la détermination de la viscosité dynamique de différents liants bitumineux modifiées et non-modifiées et de liants hydrocarbonés au moyen d’un viscosimètre à mobile tournant (viscosimètre coaxial). Le couple appliqué à un mobile tournant (par exemple un cylindre) dans un récipient particulier, qui contient l'échantillon à mesurer, rend compte de la résistance relative du mobile à la rotation et fournit une mesure de la viscosité dynamique de l’échantillon. Les essais sont réalisés de 100 à 180 °C en appliquant pour chaque température d’essai, un taux de cisaillement proche entre les différents échantillons.
1.6. Essai de fluaqe-recouyrance sous contraintes répétées :essai MSCR (NF EN 16659 - Février 2016)
Cette méthode d’essai sert à déterminer l’existence d’une réponse élastique des bitumes, liant bitumineux et liants hydrocarbonés sous fluage-recouvrance en cisaillement à deux niveaux de contrainte, à une température spécifiée. L’existence de cette réponse élastique est déterminée en mesurant le pourcentage de recouvrance et la complaisance irréversible du liant. Il a été démontré que la complaisance en fluage irréversible est un indicateur de la résistance des liants à la déformation permanente sous contraintes répétées.
L’essai doit être effectué à 50°C, 60°C, 70°C ou 80°C selon le cas. D’autres températures d’essai peuvent être utilisées à titre comparatif. La préparation des échantillons et l’appareillage sont conformes à l’EN 14770, avec une géométrie de plateaux parallèles de 25 mm et un réglage de l’entrefer de 1 mm. L’échantillon est soumis à une contrainte constante pendant 1 seconde, suivie d’une recouvrance pendant 9 secondes. Dix cycles de fluage- recouvrance sont effectués à une contrainte de fluage de 0,100 kPa, suivi par 10 autres cycles à une contrainte de fluage de 3,200 kPa
1.7. Evaluation de l’aspect filamenteux des compositions de liant
Un enrobé à chaud est tout d’abord préparé au moyen de la composition de liant. Pour cela, le mélange ci-dessous est réalisé à une température de 150 °C à partir d’une masse totale d’enrobé de 500 g :
- Granulats 2/6 Lazard : 56,50 % en masse ;
- Sable 0/4 La Nerthe : 36,30 % en masse ;
- Filler d’apport (Filler calcaire) : 1 ,40 % en masse ;
- Composition de liant : 5,80 % en masse.
L’enrobé est ensuite placé dans une étuve à 120^0 pendant 30 minutes. Au bout de 30 minutes, la température de l’enrobé est contrôlée afin que le mélange soit bien à 120 °C puis l’enrobé est manipulé à l’aide d’une spatule. L’opérateur visualise si des filaments sont observés lors de la manipulation de l’enrobé. Si un seul filament est observé, le liant est évalué comme d’aspect filamenteux. 2. Exemples
Dans les exemples suivants, les copolymères d’éthylène et d’acrylate alkyle présentés au tableau 1 ci-dessous ont été évalués.
Figure imgf000017_0001
1 fourni par SK Functional Polymer ; Tableau 1 : Copolymères d’éthylène et d’acrylate d’alkyle
Les copolymères EBA1 et EMA3 sont des copolymères d’éthylène et d’acrylate d’alkyle utiles dans le cadre de la présente invention.
Les copolymères EBA2 et EMA4 sont des copolymères d’éthylène et d’acrylate d’alkyle présentés à titre de comparaison.
2.1 . Démonstration de l’importance de la température de fusion du copolymère
Les compositions de liant suivantes ont été fabriquées et caractérisées afin de démontrer l’importance de la température de fusion du copolymère sur les performances des compositions de liant sur le critère de la résistance à la déformation permanente (tableau 2).
Figure imgf000017_0002
Figure imgf000018_0001
Tableau 2 : Performances des compositions de liant
La composition de liant INV1 est une composition selon l’invention : le copolymère utilisé est un copolymère EBA présentant un MFI de 175 g/10min et une température de fusion de 102 °C. La composition de liant COMP1 n’est pas une composition selon l’invention : la température de fusion de l’EBA est de 75 °C, donc inférieure à 85 °C.
En dépit d’une composition équivalente de l’EBAI et de TEBA2 (copolymère d’éthylène et d’acrylate de butyle présentant un taux d’acrylate de butyle de 28% et un MFI de 175 g/10min), l’EBAI présente une température de fusion nettement plus élevée que TEBA2. Cela s’explique par la nature des procédés de préparation de ces copolymères. L’EBA 1 est préparé selon un procédé de copolymérisation tubulaire, générant ainsi une forte hétérogénéité et donc une température de fusion importante, alors que TEBA2 est préparé selon un procédé de copolymérisation autoclave, générant un copolymère homogène à faible température de fusion. Les résultats de caractérisation des compositions de liant INV1 et COMF1 montrent que l’hétérogénéité du copolymère est primordiale afin d’obtenir une forte valeur de température bille-anneau et une bonne résistance à la déformation permanente à 60 °C comme indiqué par la forte valeur de recouvrance de la composition INV1 et la faible complaisance irréversible de la composition INV1 . 2.2. Démonstration de l’importance de l’indice de fluidité du copolymère
Les compositions de liant suivantes ont été fabriquées et caractérisées afin de démontrer l’importance de l’indice de fluidité du copolymère sur la diminution de la viscosité dynamique de la composition et donc sur sa faculté à être appliquée à plus faible température sans influence sur la maniabilité du produit à l’application (tableau 3).
Figure imgf000019_0001
Tableau 3 : Performances des compositions de liant La composition de liant INV2 est une composition selon l’invention : le copolymère utilisé est un copolymère EMA présentant un MFI de 7 g/10min et une température de fusion de 97°C. La composition de liant COMP2 n’est pas une composition selon l’invention : l’indice de fluidité de l’EMA est de 2 g/10min, donc inférieur à 2,5 g/m2. Malgré la teneur en acrylate de méthyle similaire entre TEMA3 et de TEMA4, TEMA3 présente un indice de fluidité supérieur à TEMA4. Les résultats de caractérisation des compositions INV2 et COMP2 montrent qu’un indice de fluidité important est primordial pour obtenir une valeur de viscosité dynamique abaissée. En effet, à 100 °C, la composition de liant INV2 présente une viscosité dynamique abaissée de 1000 mPa.s par rapport à la composition de liant COMP2.
Les exemples des compositions de liant INV3 et INV1 selon l’invention, permettent de démontrer qu’un mode préféré de l’invention consiste à sélectionner des copolymères dont l’indice de fluidité est sensiblement important (tableau 4).
Figure imgf000020_0001
Figure imgf000021_0001
Tableau 4 : Performances des compositions de liant
En effet, les résultats des compositions de liant INV3 et INV1 démontrent qu’à même consistance (valeurs proches de pénétrabilité), l’utilisation de l’EBAI qui possède un indice de fluidité important (175 g/10min pour EBA1 contre 7 g/10min pour EMA3) permet d’obtenir une viscosité dynamique sensiblement plus basse à 100 °C tout en maintenant une complaisance irréversible équivalente entre les deux liants.

Claims

REVENDICATIONS
1 . Composition de liant clair comprenant :
(a) un agent plastifiant,
(b) un agent structurant,
(c) un ou plusieurs copolymères d'éthylène et d'acrylate d'alkyle ayant un indice de fluidité supérieur à 2,5 g/10min tel que mesuré selon la méthode ISO1133-1 (201 1 ) et une température de fusion supérieure ou égale à 85 °C telle que mesurée selon la méthode ISO 11357-3 (2018).
2. Composition de liant selon la revendication 1 dans laquelle l’agent structurant est une résine pétrolière hydrocarbonée ou une résine d’origine végétale, de préférence une résine pétrolière hydrocarbonée issue de la copolymérisation de coupes pétrolières aromatiques riches en monomères C9.
3. Composition de liant selon la revendication 1 ou 2 dans laquelle l’agent plastifiant est une huile synthétique pétrolière ou une huile d’origine végétale, de préférence une huile pétrolière issue d’un procédé d’extraction au solvant (RAE).
4. Composition de liant selon l’une des revendications précédentes dans laquelle le copolymère d’éthylène et d’acrylate d’alkyle comprend de 1 à 40% en poids d’acrylate d’alkyle par rapport au poids total du copolymère.
5. Composition de liant selon l’une des revendications précédentes dans laquelle l’acrylate d’alkyle est l’acrylate de méthyle, l’acrylate d’éthyle, l’acrylate de butyle ou leurs mélanges.
6. Composition de liant selon l’une des revendications précédentes comprenant en outre un ou plusieurs additifs communément employés en technique routière.
7. Composition de liant selon la revendication 6 dans laquelle l’additif comprend au moins un agent de coloration.
8. Produit routier et d’aménagement comprenant des particules solides et une composition de liant selon l’une des revendications précédentes.
9. Produit selon la revendication 8 choisi parmi les enrobés à chaud, les enrobés tièdes, les asphaltes coulés, les enduits superficiels, les matériaux bitumineux coulés à froid, les bétons bitumineux à l’émulsion et les graves émulsions.
10. Utilisation d’un copolymère d'éthylène et d'acrylate d'alkyle ayant un indice de fluidité supérieur à 2,5 g/10min tel que mesuré selon la méthode ISO1133-1 (2011) et une température de fusion supérieure ou égale à 85 °C telle que mesurée selon la méthode ISO 11357-3 (2018) pour abaisser la température de fabrication et/ou de mise en œuvre des enrobés à chaud, des enrobés tièdes et des asphaltes coulés.
PCT/FR2023/050059 2022-01-17 2023-01-17 Composition de liant clair et ses applications pour les revetements routiers et d'amenagement WO2023135400A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23703099.4A EP4466312A1 (fr) 2022-01-17 2023-01-17 Composition de liant clair et ses applications pour les revetements routiers et d'amenagement
US18/729,451 US20250171620A1 (en) 2022-01-17 2023-01-17 Clear binder composition, and uses thereof for road surfacing and development surfacing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2200365 2022-01-17
FR2200365A FR3131920A1 (fr) 2022-01-17 2022-01-17 Composition de liant clair et ses applications pour les revêtements routiers et d’aménagement

Publications (1)

Publication Number Publication Date
WO2023135400A1 true WO2023135400A1 (fr) 2023-07-20

Family

ID=81328235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/050059 WO2023135400A1 (fr) 2022-01-17 2023-01-17 Composition de liant clair et ses applications pour les revetements routiers et d'amenagement

Country Status (5)

Country Link
US (1) US20250171620A1 (fr)
EP (1) EP4466312A1 (fr)
CL (1) CL2024002126A1 (fr)
FR (1) FR3131920A1 (fr)
WO (1) WO2023135400A1 (fr)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384094A1 (fr) 1987-11-17 1990-08-29 René Maheas Procédé de fabrication d'enrobés denses bitumineux stockables
EP0524031A1 (fr) 1991-07-19 1993-01-20 Colas S.A. Procédé d'obtention à froid d'enrobés denses bitumineux
EP0552574A1 (fr) 1992-01-24 1993-07-28 Screg Procédé de fabrication d'enrobés routiers par double enrobage
FR2732239A1 (fr) 1995-03-29 1996-10-04 Muntzer Emile Jacques Enrobages bitumineux polyvalents a chaud et a froid
EP0781887A1 (fr) 1995-12-28 1997-07-02 Colas Procédé d'obtention à froid d'enrobés denses bitumineux et dispositif pour la mise en oeuvre de ce procédé
WO2003051630A1 (fr) 2001-12-14 2003-06-26 E.I. Du Pont De Nemours And Company Stratifie fait d'un copolymere d'ethylene-acrylate de methyle et de polyester
EP1481023A1 (fr) 2002-01-23 2004-12-01 Shell Internationale Researchmaatschappij B.V. Composition de liant pigmentable
EP1668184A2 (fr) 2003-09-19 2006-06-14 Colas Procede de fabrication d un enrobe bitumineux a froid et dis positif
WO2010055491A1 (fr) * 2008-11-14 2010-05-20 Total Raffinage Marketing Liant synthetique clair
WO2011151387A1 (fr) 2010-06-04 2011-12-08 Eurovia Procédé de fabrication d'enrobés hydrocarbonés à froid, enrobés hydrocarbonés à froid à maniabilité contrôlée et leur utilisation pour la réalisation de revêtements routiers
WO2014174190A1 (fr) * 2013-04-25 2014-10-30 Arkema France Composition de pre-melange pour bitumes
WO2017076814A1 (fr) 2015-11-02 2017-05-11 Shell Internationale Research Maatschappij B.V. Composition de liant pour chaussée peu colorée
EP3612597A1 (fr) 2017-04-18 2020-02-26 Eurovia Produits asphaltiques ayant des proprietes de maniabilite ameliorees

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384094A1 (fr) 1987-11-17 1990-08-29 René Maheas Procédé de fabrication d'enrobés denses bitumineux stockables
EP0524031A1 (fr) 1991-07-19 1993-01-20 Colas S.A. Procédé d'obtention à froid d'enrobés denses bitumineux
EP0552574A1 (fr) 1992-01-24 1993-07-28 Screg Procédé de fabrication d'enrobés routiers par double enrobage
FR2732239A1 (fr) 1995-03-29 1996-10-04 Muntzer Emile Jacques Enrobages bitumineux polyvalents a chaud et a froid
EP0781887A1 (fr) 1995-12-28 1997-07-02 Colas Procédé d'obtention à froid d'enrobés denses bitumineux et dispositif pour la mise en oeuvre de ce procédé
WO2003051630A1 (fr) 2001-12-14 2003-06-26 E.I. Du Pont De Nemours And Company Stratifie fait d'un copolymere d'ethylene-acrylate de methyle et de polyester
EP1481023A1 (fr) 2002-01-23 2004-12-01 Shell Internationale Researchmaatschappij B.V. Composition de liant pigmentable
EP1668184A2 (fr) 2003-09-19 2006-06-14 Colas Procede de fabrication d un enrobe bitumineux a froid et dis positif
WO2010055491A1 (fr) * 2008-11-14 2010-05-20 Total Raffinage Marketing Liant synthetique clair
WO2011151387A1 (fr) 2010-06-04 2011-12-08 Eurovia Procédé de fabrication d'enrobés hydrocarbonés à froid, enrobés hydrocarbonés à froid à maniabilité contrôlée et leur utilisation pour la réalisation de revêtements routiers
WO2014174190A1 (fr) * 2013-04-25 2014-10-30 Arkema France Composition de pre-melange pour bitumes
WO2017076814A1 (fr) 2015-11-02 2017-05-11 Shell Internationale Research Maatschappij B.V. Composition de liant pour chaussée peu colorée
EP3612597A1 (fr) 2017-04-18 2020-02-26 Eurovia Produits asphaltiques ayant des proprietes de maniabilite ameliorees

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONGHAN: "Arkema Group LOTRYL 17 BA 07 Copolymer Ethylene -Butyl Acrylate", 5 August 2022 (2022-08-05), XP055949531, Retrieved from the Internet <URL:http://www.lookpolymers.com/pdf/Arkema-Group-LOTRYL-17-BA-07-Copolymer-Ethylene-Butyl-Acrylate.pdf> [retrieved on 20220805] *

Also Published As

Publication number Publication date
FR3131920A1 (fr) 2023-07-21
CL2024002126A1 (es) 2025-03-28
EP4466312A1 (fr) 2024-11-27
US20250171620A1 (en) 2025-05-29

Similar Documents

Publication Publication Date Title
CA2801520C (fr) Procede de fabrication d&#39;enrobes hydrocarbones a froid, enrobes hydrocarbones a froid a maniabilite controlee et leur utilisation pour la realisation de revetements routiers
EP3559136B1 (fr) Composition d&#39;asphalte coulé pour la réalisation de revêtements
WO2010055491A1 (fr) Liant synthetique clair
EP2276803A1 (fr) Enrobes bitumineux a froid
EP1184423B1 (fr) Emulsions aqueuses de bitume synthétique, leur procédé de préparation et leurs applications
WO2023135400A1 (fr) Composition de liant clair et ses applications pour les revetements routiers et d&#39;amenagement
CA2981628C (fr) Liant clair et ses applications
EP3898805B1 (fr) Enrobé avec coke de pétrole
WO2022208035A1 (fr) Liants bitumineux offrant une resistance accrue aux agressions chimiques
FR2765229A1 (fr) Liant clair ou bitumineux susceptible d&#39;etre mis sous forme solide subdivise a temperature ambiante et particules de liants, notamment granules et pastilles
EP2718376A1 (fr) Émulsions bitumineuses
WO2014096170A1 (fr) Composition de liant synthetique clair
WO2021019141A1 (fr) Composition bitume/polymere fluxee et son procede de preparation
FR2765232A1 (fr) Liants clairs et leurs utilisations, notamment pour la preparation d&#39;enrobes routiers ou d&#39;asphaltes coules
CA1308829C (fr) Procede de preparation d&#39;un liant a base de bitume et de polymeres
BE1006326A5 (fr) Procede de preparation d&#39;un liant a base de bitume et de polymeres.
WO2024141521A1 (fr) Liant clair et ses applications
WO2021160974A1 (fr) Agents fluxants insatures pour liants hydrocarbones
FR2787115A1 (fr) Liants bitumineux modifies a haute cohesion et leurs utilisations
FR2652368A1 (en) Bituminous surfacing and process for its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23703099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18729451

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023703099

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023703099

Country of ref document: EP

Effective date: 20240819

WWP Wipo information: published in national office

Ref document number: 18729451

Country of ref document: US