[go: up one dir, main page]

WO2023128476A1 - Polyester release film and method for manufacturing same - Google Patents

Polyester release film and method for manufacturing same Download PDF

Info

Publication number
WO2023128476A1
WO2023128476A1 PCT/KR2022/021136 KR2022021136W WO2023128476A1 WO 2023128476 A1 WO2023128476 A1 WO 2023128476A1 KR 2022021136 W KR2022021136 W KR 2022021136W WO 2023128476 A1 WO2023128476 A1 WO 2023128476A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
release film
water
film
layer
Prior art date
Application number
PCT/KR2022/021136
Other languages
French (fr)
Korean (ko)
Inventor
조은혜
김종원
이영창
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN202280077180.6A priority Critical patent/CN118284658A/en
Priority to JP2024537128A priority patent/JP2024546293A/en
Publication of WO2023128476A1 publication Critical patent/WO2023128476A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a polyester release film and a manufacturing method thereof.
  • polarizer protective material such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC).
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • barrier coating layer a coating layer having barrier properties
  • the barrier coating layer is formed through a process of uniformly applying the composition for forming the barrier coating layer on an arbitrary substrate, curing the composition, and then peeling it off.
  • the barrier coating layer should be uniformly applied on the substrate and the cured barrier coating layer should be well peeled from the substrate.
  • silicone-based release film When a silicone-based release film is used as the substrate, since the silicone-based release film has low surface energy, it is difficult to form the barrier coating layer with a uniform thickness, and static electricity problems caused by silicon may occur.
  • One object of the present invention is to provide a polyester release film having excellent peelability, coating processability and antistatic properties and low frictional electrostatic voltage.
  • Another object of the present invention is to provide a polyester release film capable of preventing static electricity generated during film travel and winding and significantly reducing the amount of air or foreign matter introduced due to static electricity.
  • Another object of the present invention is to provide a method for producing the polyester release film.
  • the antistatic layer is provided with a polyester release film comprising a water-dispersible antistatic composition containing a conductive polymer.
  • a first step of preparing a polyester base film A second step of forming a release layer by applying an aqueous coating composition containing a polyester resin, an acrylic resin, and a polyolefin wax to one surface of the base film; A third step of forming an antistatic layer by applying a water-dispersible antistatic composition containing a conductive polymer to the other surface of the base film; And a fourth step of heat-treating while stretching the laminate including the base film and the release layer and the antistatic layer formed on the base film; a method for manufacturing a polyester release film is provided.
  • the polyester release film according to one embodiment of the present invention has excellent peelability and coating processability, excellent antistatic properties, and a remarkably low frictional electrostatic voltage of less than 50 V.
  • polyester release film according to one embodiment of the present invention can prevent static electricity generated during film travel and winding and significantly reduce the amount of air or foreign matter introduced due to static electricity.
  • the polyester release film according to one embodiment of the present invention can solve problems such as yield reduction due to unreacted materials generated when a coating layer is formed using the release film and adsorption of foreign substances due to static electricity.
  • polyester release film according to one embodiment of the invention.
  • the release layer may include a water-based coating composition including a polyester resin, an acrylic resin, and a polyolefin wax.
  • the antistatic layer may include a water-dispersible antistatic composition containing a conductive polymer.
  • the polyester release film may have a frictional electrostatic voltage of less than 50 V.
  • the inventors of the present invention conducted continuous research on release films used as substrates in the manufacture of optical films such as thin film polarizers.
  • a release layer is formed by applying an aqueous coating composition including a polyester resin, an acrylic resin, and a polyolefin wax on the base film in an in-line coating method, and conductivity is formed on the other surface of the base film on which the release layer is not formed.
  • an antistatic layer is formed by applying a water-dispersible antistatic composition containing a polymer, a polyester release film having excellent coating processability and peelability, excellent antistatic properties and low frictional electrostatic voltage is provided. It was found that it could be, and the present invention was completed.
  • the polyester release film can exhibit excellent coating processability and peelability in post-processing using the release film (eg, a process of forming a barrier coating layer on the release film, etc.), as well as low friction of less than 50 V. Contamination due to static electricity can be prevented by having a frictional electrostatic voltage.
  • the polyester release film includes a polyester base film, a release layer formed on one surface of the base film, and an antistatic layer formed on a surface (hereinafter, another surface) of the base film on which the release layer is not formed.
  • the polyester base film is made of a polyester resin, and conventional ones in the art to which the present invention belongs may be used without particular limitation.
  • the polyester base film may be made of polyethylene terephthalate or polyethylene naphthalate.
  • the base film made of polyethylene terephthalate having an intrinsic viscosity in the range of 0.6 to 0.8 dl/g may be advantageous in terms of securing weather resistance and hydrolysis resistance.
  • the release layer may include a water-based coating composition including a polyester resin, an acrylic resin, and a polyolefin wax.
  • the polyester resin is a resin obtained by condensation polymerization of an acid component containing dicarboxylic acid as a main component and a glycol component containing alkylene glycol as a main component.
  • acid component terephthalic acid or its alkyl esters or phenyl esters may be mainly used, and some of them may be replaced with isophthalic acid, oxyethoxybenzoic acid, adipic acid, sebacic acid, 5-sodium sulfoisophthalic acid, sulfoterephthalic acid, etc. and can be used.
  • the glycol component ethylene glycol, diethylene glycol, etc.
  • propylene glycol trimethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-bis It can be used by replacing with oxyethoxybenzene, bisphenol, polyoxyethylene glycol, etc.
  • the polyester resin is diethylene glycol and ethylene glycol in a molar ratio of 5: 50 mol% glycol component including 5, and terephthalic acid and sulfoterephthalic acid in a molar ratio of 8.5: 50 mol% containing terephthalic acid in a molar ratio of 1.5 It can be obtained by condensation polymerization of an acid component.
  • the polyester resin may have a weight average molecular weight of 2,000 to 25,000 g/mol to ensure that the release layer has appropriate solvent resistance.
  • the weight average molecular weight of the polyester resin may be 2,000 to 25,000 g/mol, or 2,000 to 20,000 g/mol, or 3,000 to 20,000 g/mol, or 3,000 to 15,000 g/mol.
  • a weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by the GPC method.
  • a conventionally known analyzer and a detector such as a differential refractive index detector and an analysis column may be used, and a commonly applied temperature Conditions, solvents, and flow rates can be applied.
  • the acrylic resin may contain, as a copolymerization monomer, a radically polymerizable unsaturated monomer containing a glycidyl group in an amount of 20 to 80 mol% based on total monomer components.
  • the glycidyl group-containing radically polymerizable unsaturated monomer is preferred because it can improve the strength of the release layer and prevent outflow of oligomers by a crosslinking reaction.
  • examples of the glycidyl group-containing radical polymerizable unsaturated monomer include glycidyl acrylate, glycidyl methacrylate, and aryl glycidyl ether.
  • Examples of the radically polymerizable unsaturated monomer copolymerizable with the glycidyl group-containing radically polymerizable unsaturated monomer include vinyl esters, unsaturated carboxylic acid esters, unsaturated carboxylic acid amides, unsaturated nitriles, unsaturated carboxylic acids, allyl compounds, nitrogen-containing vinyl monomers, and hydrocarbons.
  • a vinyl monomer or a vinyl silane compound, etc. are mentioned.
  • Examples of the vinyl ester include vinyl propionate, vinyl stearate, and vinyl chloride.
  • Examples of the unsaturated carboxylic acid ester include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, butyl maleate, octyl maleate, butyl fumarate, octyl fumarate, hydroxyethyl methacrylate , hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate and the like can be used.
  • As the unsaturated carboxylic acid amide, acrylamide, methacrylamide, methylol acrylamide, butoxy methylol acrylamide and the like may be used.
  • Acrylonitrile and the like can be used as the unsaturated nitrile.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic acid ester, fumaric acid acid ester, and itaconic acid acid ester.
  • the allyl compound allyl acetate, allyl methacrylate, allyl acrylate, allyl itaconate, diallyl itaconate, and the like can be used.
  • nitrogen-containing vinyl monomer vinyl pyridine, vinyl imidazole, and the like may be used.
  • Ethylene, propylene, hexene, octene, styrene, vinyltoluene, butadiene, etc. may be used as the hydrocarbon vinyl monomer.
  • the vinyl silane compound include dimethyl vinyl methoxy silane, dimethyl vinyl ethoxy silane, methyl vinyl dimethoxy silane, methyl vinyl diethoxy silane, gamma-methacryloxy propyl trimethoxysilane, and gamma-methacryloxy propyl dimethoxy silane. etc. can be used.
  • the acrylic resin may be copolymerized with 40 to 60 mol% of glycidyl acrylate and 40 to 60 mol% of vinyl propionate.
  • the acrylic resin may preferably have a weight average molecular weight of 20,000 to 70,000 g/mol. More preferably, the weight average molecular weight of the acrylic resin may be 20,000 to 60,000 g/mol, or 30,000 to 60,000 g/mol, or 40,000 to 60,000 g/mol, or 45,000 to 55,000 g/mol.
  • the weight ratio of the solid content of the polyester resin and the acrylic resin may be 1: 0.1 to 1: 1.5, and more specifically, 1: 0.2 to 1: 1.
  • the polyester release film may have an effect of further improving processing coating property as well as excellent release property.
  • the release layer may include polyolefin wax, and may be dispersed on the polyester resin and the acrylic resin.
  • the specific type of the polyolefin wax is not particularly limited, but at least one selected from the group consisting of polyethylene wax and polypropylene wax may be preferably used.
  • the polyolefin wax may be included in 20 to 50 parts by weight or 30 to 40 parts by weight based on 100 parts by weight of the polyester resin.
  • the polyolefin wax is preferably included in an amount of 20 parts by weight or more based on 100 parts by weight of the polyester resin so that the release layer can exhibit an appropriate peeling force.
  • the polyolefin wax is preferably included in an amount of 50 parts by weight or less based on 100 parts by weight of the polyester resin.
  • the polyolefin wax is 20 parts by weight or more, or 25 parts by weight or more, or 30 parts by weight or more based on 100 parts by weight of the polyester resin; And it may be included in 50 parts by weight or less, or 45 parts by weight or less, or 40 parts by weight or less.
  • the polyolefin wax is included in 20 to 50 parts by weight, or 25 to 50 parts by weight, or 25 to 45 parts by weight, or 30 to 45 parts by weight, or 30 to 40 parts by weight based on 100 parts by weight of the polyester resin.
  • the total content of the polyester resin, acrylic resin, and polyolefin wax included in the water-based coating composition is 1 to 10 wt%, 2 to 9 wt%, 4 to 8 wt%, or 5 to 6 wt% based on solids. desirable.
  • a polyester release film prepared by satisfying the above range in terms of solid content of the polyester resin, acrylic resin, and polyolefin wax included in the water-based coating composition has excellent transfer characteristics and peelability, as well as frictional electrification voltage (Frictional Electrostatic Voltage) can be significantly lowered to less than 50 V.
  • the release film manufactured by satisfying the above range can prevent the occurrence of fine pinholes, and thus the processing coating properties can be improved.
  • the water-based coating composition applied to the release layer is, if necessary, a silicone-based wetting agent, a fluorine-based wetting agent, a curing agent, an acid catalyst, a slip agent, an antifoaming agent, a wetting agent, a surfactant, a thickener, a plasticizer, an oxidizing agent
  • Additives such as an inhibitor, an ultraviolet absorber, an antiseptic, and a crosslinking agent may be further added. The additive may be selectively used within the limit of not impairing the physical properties of the release layer.
  • the antistatic layer may include a water-dispersible antistatic composition containing a conductive polymer.
  • the polyester release film according to one embodiment of the present invention includes the release layer made of a non-silicone material and the antistatic layer, so that coating workability and peelability are excellent as well as antistatic properties and frictional electrification voltage ( Frictional Electrostatic Voltage) may have a remarkably low characteristic of less than 50 V.
  • the conductive polymer may be a nano-sized structure having electrical conductivity and polarity.
  • the conductive polymer may include, for example, at least one selected from conductive polymers such as polythiophene, polypyrrole, and polyaniline.
  • a resin composition including a conductive polymer may also be included in the category of the conductive polymer.
  • the resin may be, for example, a water-based resin and may include an ionic polymer.
  • the ionic polymer as a polymer having a group including a cationic or anionic group, it may be an ionic polymer such as polystyrene sulfonate salt or polystyrene ammonium salt, but is not limited thereto.
  • the content is not limited as long as the object of the present invention is achieved, but for example, it may be used in a weight ratio of 0.01 to 2 with respect to the conductive polymer.
  • the conductive polymer may be preferably a polythiophene-based conductive polymer, and may also be polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS).
  • PEDOT:PSS polyethylenedioxythiophene:polystyrenesulfonate
  • it is suitable for use in an in-line coating process due to its excellent water dispersibility, and transparency is not deteriorated even through a stretching process after the in-line application process, and 10 10 ⁇ / ⁇ or less It is more preferred because it can express the surface resistance of
  • the water-dispersible antistatic composition may further include a water-based polyurethane resin.
  • a water-based polyurethane resin By mixing and using the water-based polyurethane resin with a conductive polymer, the miscibility is excellent, the surface resistance performance is improved, the adhesion with the polyester base film is excellent, the physical property change is small under high temperature and high humidity conditions, and the yellowing phenomenon is low.
  • An antistatic layer may be formed.
  • the water-based polyurethane resin can achieve physical properties of excellent heat resistance and low change in surface resistance by using a polyurethane binder in which a polycarbonate-based polyol and diisocyanate are reacted. More preferably, the use of hexamethylene diisocyanate as a specific example of the diisocyanate is good from the viewpoint of forming a coating film with less yellowing by improving heat resistance, but is not limited thereto.
  • the water-dispersible antistatic composition may contain 1 to 30 wt% of the conductive polymer and 70 to 99 wt% of the aqueous polyurethane resin in 100 wt% of the solid content of the water-dispersible antistatic composition. More specifically, 5 to 25 wt% of the conductive polymer and 75 to 95 wt% of the polyurethane binder may be included. More specifically, 5 to 20 wt% of the conductive polymer and 80 to 95 wt% of the polyurethane binder may be included.
  • the antistatic layer may be formed by applying a water-dispersible antistatic composition containing a conductive polymer solution, an aqueous polyurethane resin solution, an organic solvent, and water.
  • the water-dispersible antistatic composition comprises 40 to 90 wt% of a conductive polymer solution having a solid content of 1 to 3 wt% and 5 to 50 wt% of an aqueous polyurethane resin solution having a solid content of 30 to 40 wt%. %, an organic solvent of 3 to 50 wt% and the balance of water.
  • the conductive polymer may be used as a conductive polymer solution mixed in a solvent in order to express optimal dispersibility. Specifically, for example, when PEDOT:PSS is used, water, alcohol, or a solvent having a high dielectric constant, etc. It may be used in combination.
  • the content of the conductive polymer solution in the antistatic composition may be 40 to 90 wt%, more preferably 50 to 70 wt%, and the content is sufficient to achieve the object of the present invention, but is not limited thereto.
  • the water-based polyurethane resin may be dispersed in a solvent
  • the solvent is not limited to, but is any one or a mixture of two or more selected from the group consisting of an amide-based organic solvent and an aprotic highly dipolar (AHD) organic solvent.
  • a solvent may be used.
  • the content of the water-based polyurethane resin in the water-dispersible antistatic composition may be 5 to 50 wt%, more preferably 10 to 30 wt%, but is not limited thereto.
  • the organic solvent is not particularly limited, but any one or a mixture of two or more selected from the group consisting of an alcohol-based organic solvent and an aprotic highly polar organic solvent may be used, but is not limited thereto.
  • the content of the organic solvent may be 50 wt% or less, 40 wt% or less, 30 wt% or less, 20 wt% or less, or 10 wt% or less in the water-dispersible antistatic composition, and the lower limit is 1 wt% or 2 wt%. It may be more than that, and the content suitable for improving the dispersibility of the conductive polymer and the water-based polyurethane resin in the above range is not limited thereto.
  • the alcohol-based organic solvent is not limited, but specifically, for example, methanol, ethanol, propanol, isopropanol, butanol, and 2-amino-2-methyl-1-propanol may be used, alone or in combination of two or more. can be used
  • the aprotic highly polar organic solvent is not limited, but specifically, for example, dimethyl sulfoxide, propylene carbonate, etc. may be used, and may be used alone or in combination of two or more.
  • the conductivity of the conductive polymer can be further improved by using an aprotic highly polar organic solvent.
  • the polyester release film according to an embodiment of the present invention has excellent antistatic property as the frictional electrostatic voltage is significantly lower than 50 V. It can prevent the generation of static electricity generated during film travel and winding, and can significantly reduce the amount of air or foreign matter introduced due to static electricity.
  • the polyester release film according to an embodiment of the present invention is caused by a decrease in yield due to unreacted substances generated when a coating layer is formed using the same, and a decrease in yield due to static electricity Problems such as adsorption of foreign matter can be solved.
  • the surface resistance of the antistatic layer may be 10 10 ⁇ / ⁇ or less, and more specifically, 10 9 ⁇ / ⁇ or less.
  • the water-dispersible antistatic composition if necessary, silicone-based wetting agent, fluorine-based wetting agent, slip agent, antifoaming agent, wetting agent, surfactant, thickener, plasticizer, antioxidant, ultraviolet absorber, preservative and crosslinking agent etc. may be further included.
  • Thicknesses of the base film, the release layer, and the antistatic layer are not particularly limited and may be adjusted according to specific fields of application of the polyester release film.
  • the base film may have a thickness of 10 to 300 ⁇ m, and the release layer and the antistatic layer may have a thickness of 10 to 200 nm, but are not necessarily limited thereto.
  • Thicknesses of the release layer and the antistatic layer may be the same as or different from each other.
  • the base film may have a thickness of 10 to 200 ⁇ m, 10 to 100 ⁇ m, or 10 to 50 ⁇ m
  • the release layer may have a thickness of 10 to 100 nm, more specifically 50 to 100 nm
  • the antistatic layer may have a thickness of 10 to 100 nm, more specifically 20 to 80 nm.
  • the base film is not particularly limited, but may be uniaxially stretched in the machine direction (MD) or transverse direction (TD) or biaxially stretched in the machine direction (MD) and transverse direction (TD) ,
  • the release layer and the antistatic layer may be uniaxially or biaxially stretched, but uniaxially stretched in the transverse direction (TD) may be preferred because the properties of the present invention can be better imparted.
  • polyester release film As the polyester release film satisfies the above characteristics, it may have excellent peelability as well as excellent antistatic property due to low frictional electrostatic voltage.
  • the polyester release film may have a peel strength of 350 to 700 gf/inch, or 400 to 650 gf/inch, or 400 to 600 gf/inch.
  • the polyester release film having a peel strength within the above range may have excellent coating processability and peelability in post-processing (eg, a process of forming a barrier coating layer on the release film).
  • the peel force is measured according to the standard test method of ASTM D 3330. Specifically, the peel force is 70 g / cm by cutting an acrylate-based adhesive tape (manufactured by Nitto Denko, NITTO #31B tape width: 25 mm) into a size of 5 mm X 180 mm and stacking it on the release layer of the polyester release film. After applying a load of 2 and leaving it at room temperature for 30 minutes, it can be measured by peeling the tape 180 degrees at a peeling rate of 300 mm/min using a peel tester.
  • an acrylate-based adhesive tape manufactured by Nitto Denko, NITTO #31B tape width: 25 mm
  • the polyester release film may have a significantly low frictional electrostatic voltage of less than 50 V, or less than 40 V, or less than 30 V, or less than 20 V, or less than 10 V.
  • the lower limit is not particularly limited, but may be, for example, 1 V or more, 3 V or 5 V or more.
  • the frictional electrostatic voltage is measured according to the standard test method of KS K 0555.
  • the measurement of the frictional electrification voltage may be performed by a method of measuring frictional static electricity for the polyester release film using a conventional rotary static tester.
  • the amount of static electricity generated by rubbing the A side (the release layer side of the polyester release film) and the B side (the antistatic layer side of the polyester release film) at a rotational speed of 300 rpm for 180 seconds is measured.
  • the polyester release film may exhibit excellent processing coating properties while having a low haze value.
  • the polyester release film may have a haze of 3.90% or less.
  • the polyester release film may have a haze of 3.50 to 3.90%, 3.60 to 3.90%, or 3.70 to 3.86%.
  • polyester release film may have excellent processing coating properties that satisfy Formula 1 below.
  • N H is the number of pinholes generated per unit area (m 2 ) when a UV resin is applied to the release layer of the polyester release film to a thickness of 10 ⁇ m and cured.
  • the polyester release film may exhibit a total light transmittance of 90% to 95%, a water contact angle of 85 ° to 90 °, a diiodomethane contact angle of 50 ° to 60 °, and a surface energy of 30 to 35 mN / m.
  • the polyester release film according to one embodiment of the present invention may be a polyester release film for thin film polarizers, but is not limited thereto and can be applied to various fields requiring antistatic, coating workability, and peelability.
  • cover tape for MLCC (Multi Layer Ceramic Capacitor) Carrier, FPCB (Flexible Printed Circuits Board) process protection, OCA (Optical Clear Adhesive) and OCA protection can be applied.
  • the release layer and the antistatic layer may be formed on the polyester base film by in-line coating.
  • the release layer may be formed by applying an aqueous coating composition including the polyester resin, acrylic resin, and polyolefin wax to one surface of the polyester base film by an in-line coating method.
  • the antistatic layer may be formed by applying the water-dispersible antistatic composition containing the conductive polymer to the other surface of the base film by an in-line coating method.
  • the coating thickness is thin, the adhesive strength with the polyester base film is excellent, and the antistatic layer can exhibit excellent resistance to moisture and solvents.
  • polyester release film has excellent coating processability, peelability, and low frictional electrification voltage, it can be suitably used as a base film for release in the manufacture of a thin film polarizer.
  • a barrier coating layer may be formed on the base film of the polyester release film; a polyvinyl alcohol resin layer; adhesive layer; And a resin layer such as polyethylene terephthalate (PET), triacetyl cellulose (TAC), or polymethyl methacrylate (PMMA) may be sequentially laminated to form a laminate.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • polyester release film may be removed from the laminate.
  • a third step of forming an antistatic layer by applying a water-dispersible antistatic composition containing a conductive polymer to the other surface of the base film; and a fourth step of heat-treating while stretching the laminate including the base film, a release layer and an antistatic layer formed on the base film; can include
  • the first step is to prepare a polyester base film, and the polyester base film is made of a polyester resin.
  • polyester base film a conventional one in the art to which the present invention belongs may be used without particular limitation.
  • the polyester base film may be prepared as being stretched in the machine direction (MD, or longitudinal direction).
  • the polyester base film may be stretched 2 to 5 times in the machine direction (MD).
  • the polyester base film preferably has a thickness of 10 to 300 ⁇ m, but is not limited thereto within the limit of achieving the object of the present invention.
  • the second step is a step of forming a release layer by applying a water-based coating composition containing a polyester resin, an acrylic resin, and a polyolefin wax to one surface of the base film, wherein the water-based coating composition is applied on the polyester base film. It is for forming a release layer.
  • the water-based coating composition may include the polyester resin, the acrylic resin, and the polyolefin wax, and the above description of the resin and wax may be applied.
  • the water-based coating composition may be prepared by uniformly mixing the above-described components and water.
  • the solid content of the water-based coating composition may be preferably 20 to 60 wt% to secure the efficiency of the coating process.
  • the release layer may be formed on one surface of the polyester base film by an in-line coating method using the aqueous coating composition. As the release layer is formed by the in-line coating method, the adhesive strength with the polyester base film is excellent even though the coating thickness is thin, and excellent resistance to moisture and solvents can be exhibited.
  • the in-line coating method may be performed using a conventional device.
  • the water-based coating composition may be applied to a thickness of 20 to 200 nm after final stretching and drying of the release layer. Specific details regarding the thickness and other characteristics of the release layer may be applied as described above.
  • the release layer may be formed by removing moisture from the water-based coating composition and curing the water-based coating composition.
  • the third step is a step of forming an antistatic layer by applying a water-dispersible antistatic composition containing a conductive polymer to the other surface of the base film
  • the water-dispersible antistatic composition may further include a water-based polyurethane resin, Specific details regarding the conductive polymer, the water-based polyurethane resin, and the like may be applied as described above.
  • the water-dispersible antistatic composition may be prepared by uniformly mixing the above-described components and water.
  • the solid content of the antistatic composition may be preferably 5 to 50 wt% to secure the efficiency of the coating process.
  • the water-dispersible antistatic composition may further include an organic solvent, and the above-described information regarding this may be applied.
  • the antistatic layer may be formed on the other surface of the polyester base film by an in-line coating method using the water-dispersible antistatic composition, and the specific details of the in-line coating method are as described above in the release layer. can be applied
  • the fourth step is a step of heat-treating the laminate including the base film, the release layer and the antistatic layer formed on the base film while stretching in the machine direction (MD) or the transverse direction (TD).
  • the laminate when the laminate is stretched 2 to 5 times in the transverse direction (TD), it is suitable for achieving the desired physical properties of one embodiment of the present invention and is preferred.
  • the polyester base film may be stretched in the transverse direction (TD).
  • TD transverse direction
  • the polyester base film may be biaxially stretched in the machine direction and the transverse direction, and the release layer and the antistatic layer may be uniaxially stretched in the transverse direction.
  • the fourth step may be performed using a conventional heat treatment device such as a tenter.
  • the laminate may continuously pass through the tenter.
  • the laminate may be preheated while passing through the front end of the tenter, stretched in the transverse direction (TD) while passing through the middle part of the tenter, and heat treated while passing through the rear end of the tenter.
  • the heat treatment may be performed while maintaining tension applied to the laminate during the transverse direction stretching.
  • the fourth step may be performed by passing the laminate through a heat treatment device having a total heat capacity of 222,000 kcal/min to 229,000 kcal/min of air supplied to the passing section.
  • the laminated body passing through the heat treatment device is subjected to the stretching and heat treatment while being exposed to the total heat amount range.
  • the total heat of the air supplied to the entire passing section is 222,000 kcal/min to 229,000 kcal/min, or 225,000 kcal/min to 229,000 kcal/min, or 226,000 kcal/min to 229,000 kcal/min , or 226,000 kcal / min to 228,000 kcal / min, or 226,000 kcal / min to 227,000 kcal / min may be performed by passing the laminate through a heat treatment device.
  • the total heat amount (kcal) of air supplied to the entire section through which the laminate passes is the temperature of the section (°C), the mass of air supplied to the heat treatment device (kg/min), It can be calculated from data such as specific heat (kcal/kg °C).
  • the air mass (kg/min) can be obtained from the air volume flow rate (Nm 3 /min) and air density (kg/Nm 3 ).
  • the density of air supplied to a certain zone in the heat treatment device is 1.286 kg/Nm 3
  • the specific heat of air is 0.24 kcal/kg°C
  • the volumetric flow rate of air is 380 Nm 3 /min.
  • the total heat (kcal) of the air supplied to the section can be obtained as 23,456.64 kcal / min by the following formulas 1 and 2 there is.
  • Mass of air (kg/min) Volume flow rate of air (Nm 3 /min) X Density of air (kg/Nm 3 )
  • the step of preheating the laminate by passing through a section in which a heat amount of 44,000 kcal / min to 46,000 kcal / min is supplied; stretching the preheated laminate in the machine direction (MD) or transverse direction (TD) while passing through a section where a heat amount of 62,000 kcal/min to 64,000 kcal/min is supplied; and a step of heat treating the stretched laminate while passing it through a section in which a heat amount of 114,000 kcal/min to 120,000 kcal/min is supplied.
  • MD machine direction
  • TD transverse direction
  • the preheating process may be performed while passing the laminate through a section where a heat amount of 45,000 kcal/min to 46,000 kcal/min is supplied.
  • the stretching process may be performed while passing the preheated laminate through a section where a heat amount of 63,000 kcal/min to 64,000 kcal/min is supplied.
  • the step of heat treating the stretched laminate is 115,000 kcal/min to 120,000 kcal/min, or 115,000 kcal/min to 119,000 kcal/min, or 116,000 kcal/min to 119,000 kcal/min, Alternatively, 117,000 kcal/min to 118,500 kcal/min, or 118,000 kcal/min to 118,500 kcal/min may be performed while passing through a section in which heat is supplied.
  • the fourth step when the total heat amount of the air supplied to the passing section is too low, the release property and transfer characteristics of the polyester release film may deteriorate and the frictional electrification voltage may increase. And, in the fourth step (particularly, in the heat treatment zone after the transverse stretching), when the total heat amount of the air supplied to the passing section is too high, the surface energy of the polyester release film is lowered, and thus the processing coating property may be lowered. .
  • the laminate is subjected to the heat treatment device at a speed of 80 m/min to 120 m/min, 90 m/min to 110 m/min, or 90 m/min to 100 m/min. It is desirable to pass
  • the laminate is subjected to the heat treatment within the speed range It is desirable to pass through the device.
  • the fourth step may be performed at 120 °C to 245 °C.
  • the fourth step may include preheating the laminate at 120 °C to 150 °C; transversely stretching the preheated laminate at 130° C. to 150° C.; and a process of heat treating the stretched laminate at 215 °C to 245 °C.
  • the step of heat treating the stretched laminate is 215 °C or higher, 220 °C or higher, 225 °C or higher, or 230 °C or higher; And it can be carried out at 245 °C or less, or 240 °C or less.
  • the process of heat treating the stretched laminate may be performed at 215 to 245 °C, 220 to 245 °C, 220 to 240 °C, 225 to 240 °C, or 230 to 240 °C.
  • a process of relaxing by 2 to 10% in the machine direction and the transverse direction at 150 ° C. to 200 ° C. may be performed.
  • the final thickness of the polyester release film obtained through the above processes may be 20 to 100 ⁇ m, or 30 to 80 ⁇ m, or 30 to 50 ⁇ m.
  • the first resin composition 14.3 wt% (solid content 20 wt%), the second resin composition 14.3 wt% (solid content 20 wt%), silicone-based wetting agent 0.2 wt% (Dow Corning, Q2-5212, solid content 90 wt%) , 0.2 wt% of a fluorine-based wetting agent (DuPont, FS-31, 25 wt% solid content), and the remaining amount of water were mixed to prepare a first aqueous coating composition.
  • a second aqueous coating composition was prepared in the same manner as in Preparation Example 1, except that the first resin composition prepared in Preparation Example 1 was not used and the amount of the second resin composition was further used. That is, the second water-based coating composition according to Preparation Example 2 includes 28.6 wt% of the second resin composition.
  • conductive polymer aqueous dispersion (Heraeus, Clevios P solid content: 1.3 wt%), 6 wt% of water, and 5 wt% of isopropyl alcohol (IPA) were put in a mixing container, stirred for 1 hour, and 2-amino-2- After adding 2 wt% of methyl-1-propanol (Alfa aesar, 95%) to the mixing container and stirring for another hour, a water-based polyurethane resin (Neo resins Neo rez R-960, solid content 31 wt%) was added.
  • IPA isopropyl alcohol
  • the first water-dispersible antistatic composition (solid content 6.98 wt%). %) is produced. Then, the first water-dispersible antistatic composition is prepared by secondary dilution.
  • the first water-dispersible antistatic composition 69.6 wt% of water, 0.2 wt% of a silicone-based wetting agent (Dow Corning, Q2-5212, 90 wt% of solid content), and 0.2 wt% of a fluorine-based wetting agent (DuPont, FS-31, solid content 25 wt%) was mixed to prepare a first antistatic coating composition.
  • a silicone-based wetting agent Dow Corning, Q2-5212, 90 wt% of solid content
  • a fluorine-based wetting agent DuPont, FS-31, solid content 25 wt%
  • a fourth aqueous coating composition was prepared in the same manner as in Preparation Example 1, except that the amount of the first resin composition was further used without using the second resin composition prepared in Preparation Example 1. That is, the fourth water-based coating composition according to Comparative Preparation Example 1 includes 28.6 wt% of the first resin composition.
  • Acrylic water dispersion (ATX-014 from Takamatsu, Japan, solid content 40 wt%) 5.1 wt%, anionic polymer antistatic agent (Jinbo, ICP-323, molecular weight 100,000 g / mol or more, solid content 25.5 wt%), 9 wt%,
  • a second antistatic coating composition was prepared by mixing 2 wt% of a silicone-based wetting agent (BYK 384) and the remaining amount of water.
  • PET chips from which moisture was removed to 100 ppm or less were injected into a melting extruder, melted, and rapidly cooled and solidified using a casting drum having a surface temperature of 20 ° C while extruding through a T-die to prepare a PET sheet.
  • the prepared PET sheet was stretched 3.5 times in the machine direction at 110° C. and then cooled to room temperature to obtain the PET base film.
  • the heat treatment while passing the laminate (initial width 5.12 m, initial thickness 152 ⁇ m) at a moving speed of 100 m/min through the tenter having a total length of 33 m including a preheating zone, a stretching zone, and a heat treatment zone in sequence step was performed.
  • the heat treatment step was performed by passing the laminate through the tenter having a total heat quantity of 226,400 kcal/min of air supplied to the passing section.
  • the density of air supplied to the tenter was 1.286 kg/nm 3
  • the specific heat of air was 0.24 kcal/kg° C.
  • the volumetric flow rate of air was adjusted within the range of 270 to 680 nm 3 /min.
  • the laminate passed through the preheating zone (passing length: 7.5 m) at a temperature of about 120 °C to 130 °C and supplied with a heat amount of 45,000 kcal/min.
  • the preheated laminate was stretched 4 times in the transverse direction while passing through the stretching zone (passing length of 10.5 m) supplied with a heat amount of 63,200 kcal/min at a temperature of about 130°C to 140°C.
  • the stretched laminate was subjected to heat treatment while passing through the heat treatment zone (passing length of 15 m) supplied with a heat amount of 118,200 kcal/min at a temperature of 230 to 235°C.
  • a polyester release film having a total thickness of 38 ⁇ m was prepared by heat-setting at 200° C. by 10% relaxation in each of the machine and transverse directions.
  • Example 2 a polyester release film having a total thickness of 38 ⁇ m was prepared in the same manner as in Example 1, except that the release layer of Example 1 was coated with the second aqueous coating composition according to Preparation Example 2. manufactured.
  • Example 1 In Comparative Example 1, except that the antistatic layer of Example 1 was not formed. In the same manner as in Example 1, a polyester release film having a total thickness of 38 ⁇ m was prepared.
  • Comparative Example 2 except that the release layer of Example 1 was formed by coating the third aqueous coating composition according to Comparative Preparation Example 1, the polyester release film having a total thickness of 38 ⁇ m was carried out in the same manner as in Example 1. was manufactured.
  • Comparative Example 3 a polyester release film having a total thickness of 38 ⁇ m was prepared in the same manner as in Comparative Example 2, except that the antistatic layer of Comparative Example 2 was not formed.
  • Comparative Example 4 except that the antistatic layer of Example 1 was coated with the second antistatic coating composition according to Comparative Preparation Example 3, the same procedure as in Example 1 was performed, and a polyester release having a total thickness of 38 ⁇ m A film was made.
  • Comparative Example 5 a polyester release film having a total thickness of 38 ⁇ m was carried out in the same manner as in Example 1, except that the release layer of Example 1 was coated with the fourth aqueous coating composition according to Comparative Preparation Example 2. was manufactured.
  • Haze and total light transmittance (TT) of the films of Examples and Comparative Examples were measured using a haze meter (Nipon denshoku, NDH 5000).
  • the water contact angle for the release layer of the film was measured using a contact angle measuring instrument (KRUSS, DSA 100). 3 ⁇ l of pure water (S1, Volume mode) was dropped on the film specimen and the average water contact angle for 15 seconds was measured. A total of 5 measurements were performed and the average value was shown.
  • the contact angle of diiodomethane on the release layer of the film was measured using a contact angle meter (KRUSS, DSA 100). 1 ⁇ l of diiodomethane (S1, Volume mode) was dropped on the film specimen and the average contact angle of diiodomethane for 15 seconds was measured. A total of 5 measurements were performed and the average value was shown.
  • the surface energy of the release layer of the film was calculated using the Owens-Wendt method from the measurement results of the water contact angle and the diiodomethane contact angle.
  • UV resin (Miwon Specialty Chemical Co., MIRAMER M1130) was applied on the release layer of the film to a thickness of 10 ⁇ m to prepare a UV cured sample.
  • the process coating properties of the samples were evaluated according to the criteria below.
  • an acrylate-based adhesive tape Nito Denko NITTO #31B tape width: 25 mm
  • Frictional static electricity on the polyester release film was measured using a rotary static tester (Daiei Kagaku Seiki MFG, RST-300a). At this time, the amount of static electricity generated by rubbing the A side (the release layer side of the polyester release film) and the B side (the antistatic layer side of the release film) at a rotational speed of 300 rpm for 180 seconds was measured.
  • the surface resistance of the antistatic layer of the films prepared in Examples and Comparative Examples was evaluated.
  • the measurement method is Mitsubishi Chemical Corp. Surface resistance was measured using Hiresta-Up MCP-HP450 equipment under conditions of 25 °C, 50% RH, 10 V, and 10 seconds.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Waterborne coating composition used for side A * Preparation Example 1 Preparation Example 2 Preparation Example 1 Comparative Preparation Example 1 Comparative Preparation Example 1 Comparative Preparation Example 2 A-side physical properties water contact angle (°) 87.0 89.8 87.0 112.0 112.0 87.0 71.5 Surface energy (mN/m) 35 34 35 18 18 35 54 processing coating 1st class Grade 2 1st class 5 stars 5 stars 1st class 1st class Peel force (gf/inch) 420 380 420 16 16 420 682 warrior traits nothing nothing nothing nothing nothing nothing nothing have nothing Antistatic coating composition used for side B * Preparation Example 3 Preparation Example 3 - Preparation Example 3 - Comparative Preparation Example 3 Preparation Example 3 Side B * Properties warrior traits nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing nothing
  • the polyester release film according to the examples has excellent transfer properties, peelability, and coating processability, as well as excellent antistatic properties and a triboelectric charge voltage of less than 50 V compared to the release films of comparative examples. was found to be significantly lower.
  • the polyester release film of the present invention includes a release layer comprising a water-based coating composition including a polyester resin, an acrylic resin and a polyolefin wax, and an antistatic layer comprising a water-dispersible antistatic composition comprising a conductive polymer, It not only has excellent peelability and coating processability, but also has excellent antistatic properties and a remarkably low frictional electrification voltage of less than 50 V. The amount of foreign matter can be significantly reduced.
  • the polyester release film of the present invention can solve problems such as yield reduction due to unreacted substances generated when the coating layer is formed using the release film and adsorption of foreign substances due to static electricity, so that when manufacturing optical films such as thin film polarizers It is suitable for use as a substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

The present invention relates to a polyester release film and a method for manufacturing same. The polyester release film is not only excellent in peelability and coating processability, but also has excellent antistatic properties and has a remarkably low frictional charge voltage of less than 50 V. In addition, the polyester release film prevents static electricity generated during film travel and winding, and can significantly reduce the amount of air or foreign matter introduced due to static electricity.

Description

폴리에스테르 이형 필름 및 이의 제조방법Polyester release film and manufacturing method thereof

본 발명은 폴리에스테르 이형 필름 및 이의 제조방법에 관한 것이다.The present invention relates to a polyester release film and a manufacturing method thereof.

디스플레이의 대형화 및 박형화 추세에 따라, 화상 표시 장치에서 편광판에 대한 박형화 요구가 커지고 있다.[0003] With the trend of larger and thinner displays, the demand for thinning polarizers in image display devices is increasing.

편광판의 박형화를 위한 하나의 방안은 폴리에틸렌테레프탈레이트(PET), 트리아세틸 셀룰로오스(TAC) 등의 전형적인 편광자 보호 소재를 박막화하는 것이다. 편광판을 박형화하기 위한 또 하나의 방안은 상기 편광자 보호 소재를 베리어성을 갖는 코팅층(이하 "베리어 코팅층")으로 대체하는 것이다.One way to thin the polarizer is to thin a typical polarizer protective material such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC). Another way to thin the polarizer is to replace the polarizer protective material with a coating layer having barrier properties (hereinafter referred to as “barrier coating layer”).

상기 베리어 코팅층은 상기 베리어 코팅층 형성용 조성물을 임의의 기재 상에 균일하게 도포하고 이를 경화한 후 박리하는 공정을 거쳐 형성된다.The barrier coating layer is formed through a process of uniformly applying the composition for forming the barrier coating layer on an arbitrary substrate, curing the composition, and then peeling it off.

양질의 베리어 코팅층을 얻기 위해서는 상기 베리어 코팅층이 기재 상에 균일하게 도포되어야 할 뿐만 아니라, 경화된 상기 베리어 코팅층이 상기 기재로부터 잘 박리되어야 한다.In order to obtain a high-quality barrier coating layer, the barrier coating layer should be uniformly applied on the substrate and the cured barrier coating layer should be well peeled from the substrate.

상기 기재로 실리콘계 이형 필름을 사용하게 되면, 상기 실리콘계 이형 필름은 낮은 표면 에너지를 갖기 때문에 상기 베리어 코팅층이 균일한 두께로 형성되기 어렵고, 실리콘에 의한 정전기 문제가 발생할 수 있다.When a silicone-based release film is used as the substrate, since the silicone-based release film has low surface energy, it is difficult to form the barrier coating layer with a uniform thickness, and static electricity problems caused by silicon may occur.

본 발명의 일 목적은 박리성, 코팅가공성 및 대전방지성이 우수하고 마찰 대전압(Frictional Electrostatic Voltage)이 낮은 폴리에스테르 이형 필름을 제공하는 것이다.One object of the present invention is to provide a polyester release film having excellent peelability, coating processability and antistatic properties and low frictional electrostatic voltage.

본 발명의 다른 일 목적은 필름 주행 및 권취 시 발생되는 정전기 발생을 방지하고 정전기로 인해 유입되는 공기 또는 이물의 양을 현저히 감소시킬 수 있는 폴리에스테르 이형 필름을 제공하는 것이다.Another object of the present invention is to provide a polyester release film capable of preventing static electricity generated during film travel and winding and significantly reducing the amount of air or foreign matter introduced due to static electricity.

본 발명의 또 다른 일 목적은 상기 폴리에스테르 이형 필름의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the polyester release film.

본 발명의 일 구현예에 따르면,According to one embodiment of the present invention,

폴리에스테르 기재필름, 상기 기재필름의 일면에 형성된 이형층 및 상기 기재필름의 타면에 형성된 대전방지층을 포함하고, 상기 이형층은 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 포함하고, 상기 대전방지층은 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 포함하는 것인, 폴리에스테르 이형 필름이 제공된다.A polyester base film, a release layer formed on one side of the base film, and an antistatic layer formed on the other side of the base film, wherein the release layer includes a water-based coating composition including a polyester resin, an acrylic resin, and a polyolefin wax, , The antistatic layer is provided with a polyester release film comprising a water-dispersible antistatic composition containing a conductive polymer.

본 발명의 다른 일 구현 예에 따르면,According to another embodiment of the present invention,

폴리에스테르 기재필름을 준비하는 제1단계; 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 기재필름의 일면에 도포하여 이형층을 형성하는 제2단계; 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 상기 기재필름의 타면에 도포하여 대전방지층을 형성하는 제3단계; 및 상기 기재필름과 상기 기재필름 상에 형성된 이형층 및 대전방지층을 포함한 적층체를 연신하면서 열처리하는 제4단계;를 포함하는, 폴리에스테르 이형 필름의 제조방법이 제공된다.A first step of preparing a polyester base film; A second step of forming a release layer by applying an aqueous coating composition containing a polyester resin, an acrylic resin, and a polyolefin wax to one surface of the base film; A third step of forming an antistatic layer by applying a water-dispersible antistatic composition containing a conductive polymer to the other surface of the base film; And a fourth step of heat-treating while stretching the laminate including the base film and the release layer and the antistatic layer formed on the base film; a method for manufacturing a polyester release film is provided.

본 발명의 일 구현예에 따른 폴리에스테르 이형 필름은, 박리성 및 코팅 가공성이 우수할 뿐만 아니라, 대전방지성이 우수하고 마찰 대전압(Frictional Electrostatic Voltage)이 50 V 미만으로 현저히 낮은 특성이 있다.The polyester release film according to one embodiment of the present invention has excellent peelability and coating processability, excellent antistatic properties, and a remarkably low frictional electrostatic voltage of less than 50 V.

또한, 본 발명의 일 구현예에 따른 폴리에스테르 이형 필름은, 필름 주행 및 권취 시 발생되는 정전기 발생을 방지하고 정전기로 인해 유입되는 공기 또는 이물의 양을 현저히 감소시킬 수 있다.In addition, the polyester release film according to one embodiment of the present invention can prevent static electricity generated during film travel and winding and significantly reduce the amount of air or foreign matter introduced due to static electricity.

본 발명의 일 구현예에 따른 폴리에스테르 이형 필름은, 이를 이용하여 코팅층을 형성시킬 때 발생되는 미반응물로 인한 수율 저하, 정전기로 인한 이물 흡착 등의 문제를 해결할 수 있다.The polyester release film according to one embodiment of the present invention can solve problems such as yield reduction due to unreacted materials generated when a coating layer is formed using the release film and adsorption of foreign substances due to static electricity.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

한편, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. On the other hand, the embodiments of the present invention can be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below.

또한 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. In addition, embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다. Also, the singular forms used in the specification and appended claims may be intended to include the plural forms as well, unless the context dictates otherwise.

나아가, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.Furthermore, "include" a certain component throughout the specification means that other components may be further included without excluding other components unless otherwise stated.

발명의 일 구현예에 따른 폴리에스테르 이형 필름은,The polyester release film according to one embodiment of the invention,

폴리에스테르 기재필름, 상기 기재필름의 일면에 형성된 이형층 및 상기 기재필름의 타면에 형성된 대전방지층을 포함한다.A polyester base film, a release layer formed on one surface of the base film, and an antistatic layer formed on the other surface of the base film.

일 구현예에서, 상기 이형층은 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 포함할 수 있다.In one embodiment, the release layer may include a water-based coating composition including a polyester resin, an acrylic resin, and a polyolefin wax.

또한 일 구현예에서, 상기 대전방지층은 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 포함할 수 있다.Also, in one embodiment, the antistatic layer may include a water-dispersible antistatic composition containing a conductive polymer.

또한 일 구현예에서, 상기 폴리에스테르 이형필름은 50 V 미만의 마찰 대전압(Frictional Electrostatic Voltage)을 가질 수 있다.Also, in one embodiment, the polyester release film may have a frictional electrostatic voltage of less than 50 V.

본 발명자들은 박막 편광판 등의 광학필름의 제조 시 기재로 사용되는 이형 필름에 대하여 계속적인 연구를 하였다.The inventors of the present invention conducted continuous research on release films used as substrates in the manufacture of optical films such as thin film polarizers.

그 결과, 기재필름 상에 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함한 수계 코팅 조성물을 인-라인 코팅 방식으로 도포하여 이형층을 형성시키고, 이형층이 형성되지 않은 상기 기재필름의 타면 상에 전도성 고분자를 포함한 수분산성 대전방지 조성물을 도포하여 대전방지층을 형성시킨 경우 코팅 가공성과 박리성이 우수할 뿐만 아니라, 대전방지성이 우수하고 마찰 대전압(Frictional Electrostatic Voltage)이 낮은 폴리에스테르 이형 필름이 제공될 수 있음이 알게 되어 본 발명을 완성하게 되었다.As a result, a release layer is formed by applying an aqueous coating composition including a polyester resin, an acrylic resin, and a polyolefin wax on the base film in an in-line coating method, and conductivity is formed on the other surface of the base film on which the release layer is not formed. When an antistatic layer is formed by applying a water-dispersible antistatic composition containing a polymer, a polyester release film having excellent coating processability and peelability, excellent antistatic properties and low frictional electrostatic voltage is provided. It was found that it could be, and the present invention was completed.

상기 폴리에스테르 이형 필름은, 이를 사용한 후-가공(예를 들어, 상기 이형 필름 상에 베리어 코팅층을 형성시키는 공정 등)에서 우수한 코팅 가공성 및 박리성을 나타낼 수 있을 뿐 아니라, 50 V 미만의 낮은 마찰 대전압(Frictional Electrostatic Voltage)을 가져 정전기로 인한 오염의 발생을 방지할 수 있다.The polyester release film can exhibit excellent coating processability and peelability in post-processing using the release film (eg, a process of forming a barrier coating layer on the release film, etc.), as well as low friction of less than 50 V. Contamination due to static electricity can be prevented by having a frictional electrostatic voltage.

상기 폴리에스테르 이형 필름은 폴리에스테르 기재필름, 상기 기재필름의 일면에 형성된 이형층 및 상기 기재필름의 이형층이 형성되지 않은 면(이하, 타면)에 형성된 대전방지층을 포함한다.The polyester release film includes a polyester base film, a release layer formed on one surface of the base film, and an antistatic layer formed on a surface (hereinafter, another surface) of the base film on which the release layer is not formed.

상기 폴리에스테르 기재필름은 폴리에스테르 수지로 이루어진 것이며, 본 발명이 속하는 기술분야에서 통상적인 것이 특별한 제한 없이 사용될 수 있다. 예를 들어, 상기 폴리에스테르 기재필름은 폴리에틸렌테레프탈레이트, 폴리에틸렌 나프탈레이트 등으로 이루어진 것일 수 있다.The polyester base film is made of a polyester resin, and conventional ones in the art to which the present invention belongs may be used without particular limitation. For example, the polyester base film may be made of polyethylene terephthalate or polyethylene naphthalate.

비제한적인 예로, 상기 기재필름은 고유 점도가 0.6 내지 0.8 dl/g인 범위의 폴리에틸렌테레프탈레이트로 이루어진 것이 내후성 및 내가수분해성의 확보 측면에서 유리할 수 있다.As a non-limiting example, the base film made of polyethylene terephthalate having an intrinsic viscosity in the range of 0.6 to 0.8 dl/g may be advantageous in terms of securing weather resistance and hydrolysis resistance.

상기 이형층은 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 포함할 수 있다.The release layer may include a water-based coating composition including a polyester resin, an acrylic resin, and a polyolefin wax.

상기 폴리에스테르 수지는 디카르복실산을 주성분으로 하는 산성분과 알킬렌글리콜을 주성분으로 하는 글리콜 성분을 축중합하여 얻어지는 수지이다. 상기 산성분으로는 테레프탈산 또는 그의 알킬에스테르나 페닐에스테르 등이 주로 사용될 수 있고, 그 일부를 이소프탈산, 옥시에톡시 안식향산, 아디핀산, 세바식산, 5-나트륨설포이소프탈산, 술포테레프탈산 등으로 대체하여 사용할 수 있다. 상기 글리콜 성분으로는 에틸렌글리콜, 디에틸렌글리콜 등이 주로 사용될 수 있고, 그 일부를 프로필렌 글리콜, 트리메틸렌 글리콜, 1,4-사이클로헥산디올, 1,4-사이클로헥산디메탄올, 1,4-비스옥시에톡시벤젠, 비스페놀, 폴리옥시에틸렌 글리콜 등으로 대체하여 사용할 수 있다.The polyester resin is a resin obtained by condensation polymerization of an acid component containing dicarboxylic acid as a main component and a glycol component containing alkylene glycol as a main component. As the acid component, terephthalic acid or its alkyl esters or phenyl esters may be mainly used, and some of them may be replaced with isophthalic acid, oxyethoxybenzoic acid, adipic acid, sebacic acid, 5-sodium sulfoisophthalic acid, sulfoterephthalic acid, etc. and can be used. As the glycol component, ethylene glycol, diethylene glycol, etc. may be mainly used, some of which are propylene glycol, trimethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-bis It can be used by replacing with oxyethoxybenzene, bisphenol, polyoxyethylene glycol, etc.

비제한적인 예로, 상기 폴리에스테르 수지는 디에틸렌글리콜과 에틸렌글리콜을 5: 5의 몰 비로 포함하는 50 몰%의 글리콜 성분, 및 테레프탈산과 술포테레프탈산을 8.5: 1.5의 몰 비로 포함하는 50 몰%의 산 성분을 축중합하여 얻어질 수 있다.As a non-limiting example, the polyester resin is diethylene glycol and ethylene glycol in a molar ratio of 5: 50 mol% glycol component including 5, and terephthalic acid and sulfoterephthalic acid in a molar ratio of 8.5: 50 mol% containing terephthalic acid in a molar ratio of 1.5 It can be obtained by condensation polymerization of an acid component.

상기 폴리에스테르 수지는 2,000 내지 25,000 g/mol의 중량 평균 분자량을 가지는 것이, 상기 이형층이 적절한 내용제성을 가지도록 하는데 유리할 수 있다. 바람직하게는, 상기 폴리에스테르 수지의 중량 평균 분자량은 2,000 내지 25,000 g/mol, 또는 2,000 내지 20,000 g/mol, 또는 3,000 내지 20,000 g/mol, 또는 3,000 내지 15,000 g/mol일 수 있다.It may be advantageous for the polyester resin to have a weight average molecular weight of 2,000 to 25,000 g/mol to ensure that the release layer has appropriate solvent resistance. Preferably, the weight average molecular weight of the polyester resin may be 2,000 to 25,000 g/mol, or 2,000 to 20,000 g/mol, or 3,000 to 20,000 g/mol, or 3,000 to 15,000 g/mol.

본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(refractive index detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다.In this specification, a weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by the GPC method. In the process of measuring the weight average molecular weight in terms of polystyrene measured by the GPC method, a conventionally known analyzer and a detector such as a differential refractive index detector and an analysis column may be used, and a commonly applied temperature Conditions, solvents, and flow rates can be applied.

상기 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 20 내지 80 몰%로 함유하는 것일 수 있다. 상기 글리시딜기 함유 라디칼 중합성 불포화 모노머는 가교 반응에 의해 상기 이형층의 강도를 향상시키고 올리고머의 유출을 방지할 수 있도록 할 수 있어서 선호된다. 상기 글리시딜기 함유 라디칼 중합성 불포화 모노머로는 아크릴산 글리시딜, 메타크릴산 글리시딜, 아릴글리시딜에테르 등을 예로 들 수 있다.The acrylic resin may contain, as a copolymerization monomer, a radically polymerizable unsaturated monomer containing a glycidyl group in an amount of 20 to 80 mol% based on total monomer components. The glycidyl group-containing radically polymerizable unsaturated monomer is preferred because it can improve the strength of the release layer and prevent outflow of oligomers by a crosslinking reaction. Examples of the glycidyl group-containing radical polymerizable unsaturated monomer include glycidyl acrylate, glycidyl methacrylate, and aryl glycidyl ether.

상기 글리시딜기 함유 라디칼 중합성 불포화 모노머와 공중합 가능한 라디칼 중합성 불포화 모노머로는 비닐에스테르, 불포화카르본산에스테르, 불포화 카르본산 아미드, 불포화 니트릴, 불포화 카르본산, 알릴화합물, 함질소계 비닐 모노머, 탄화수소 비닐 모노머 또는 비닐 실란화합물 등을 들 수 있다. 상기 비닐 에스테르로는 프로피온산비닐, 스테아린산비닐, 염화비닐등을 사용할 수 있다. 상기 불포화카르본산에스테르로는 아크릴산메틸, 아크릴산에틸, 아크릴산부틸, 아크릴산 2-에틸헥실, 메타크릴산 에틸, 메타크릴산 부틸, 말레인산 부틸, 말레인산 옥틸, 푸마르산부틸, 푸마르산 옥틸, 메타크릴산 히드록시 에틸, 아크릴산 히드록시 에틸, 메타크릴산 히드록시 프로필, 아크릴산 히드록시 프로필 등을 사용할 수 있다. 상기 불포화 카르본산 아미드로는 아크릴아미드, 메타크릴아미드, 메티롤아크릴아미드, 부톡시 메티롤 아크릴아미드 등을 사용할 수 있다. 상기 불포화 니트릴로는 아크릴로니트릴 등을 사용할 수 있다. 불포화 카르본산으로는 아크릴산, 메타크릴산, 말레인산, 푸마르산, 이타콘산, 말레인산 산성 에스테르, 푸마르산 산성 에스테르, 이타콘산 산성 에스테르 등을 사용할 수 있다. 상기 알릴화합물로는 초산알릴, 메타크릴산 알릴, 아크릴산 알릴, 이타콘산 알릴, 이타콘산 디알릴 등을 사용할 수 있다. 상기 함질소계 비닐 모노머로는 비닐피리딘, 비닐 이미다졸 등을 사용할 수 있다. 상기 탄화수소 비닐 모노머로는 에틸렌, 프로필렌, 헥센, 옥텐, 스티렌, 비닐톨루엔, 부타디엔 등을 사용할 수 있다. 상기 비닐 실란화합물로는 디메틸 비닐 메톡시 실란, 디메틸 비닐에톡시 실란, 메틸 비닐 디메톡시 실란, 메틸 비닐 디에톡시 실란, 감마-메타크릴옥시 프로필 트리 메톡시실란, 감마-메타크릴록시 프로필 디메톡시 실란 등을 사용할 수 있다.Examples of the radically polymerizable unsaturated monomer copolymerizable with the glycidyl group-containing radically polymerizable unsaturated monomer include vinyl esters, unsaturated carboxylic acid esters, unsaturated carboxylic acid amides, unsaturated nitriles, unsaturated carboxylic acids, allyl compounds, nitrogen-containing vinyl monomers, and hydrocarbons. A vinyl monomer or a vinyl silane compound, etc. are mentioned. Examples of the vinyl ester include vinyl propionate, vinyl stearate, and vinyl chloride. Examples of the unsaturated carboxylic acid ester include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, butyl maleate, octyl maleate, butyl fumarate, octyl fumarate, hydroxyethyl methacrylate , hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate and the like can be used. As the unsaturated carboxylic acid amide, acrylamide, methacrylamide, methylol acrylamide, butoxy methylol acrylamide and the like may be used. Acrylonitrile and the like can be used as the unsaturated nitrile. Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic acid ester, fumaric acid acid ester, and itaconic acid acid ester. As the allyl compound, allyl acetate, allyl methacrylate, allyl acrylate, allyl itaconate, diallyl itaconate, and the like can be used. As the nitrogen-containing vinyl monomer, vinyl pyridine, vinyl imidazole, and the like may be used. Ethylene, propylene, hexene, octene, styrene, vinyltoluene, butadiene, etc. may be used as the hydrocarbon vinyl monomer. Examples of the vinyl silane compound include dimethyl vinyl methoxy silane, dimethyl vinyl ethoxy silane, methyl vinyl dimethoxy silane, methyl vinyl diethoxy silane, gamma-methacryloxy propyl trimethoxysilane, and gamma-methacryloxy propyl dimethoxy silane. etc. can be used.

비제한적인 예로, 상기 아크릴계 수지는 아크릴산 글리시딜 40 내지 60 몰%와 프로피온산비닐 40 내지 60 몰%가 공중합된 것일 수 있다.As a non-limiting example, the acrylic resin may be copolymerized with 40 to 60 mol% of glycidyl acrylate and 40 to 60 mol% of vinyl propionate.

상기 아크릴계 수지는 20,000 내지 70,000 g/mol의 중량 평균 분자량을 가지는 것이 바람직할 수 있다. 보다 바람직하게는, 상기 아크릴계 수지의 중량 평균 분자량은 20,000 내지 60,000 g/mol, 또는 30,000 내지 60,000 g/mol, 또는 40,000 내지 60,000 g/mol, 또는 45,000 내지 55,000 g/mol일 수 있다.The acrylic resin may preferably have a weight average molecular weight of 20,000 to 70,000 g/mol. More preferably, the weight average molecular weight of the acrylic resin may be 20,000 to 60,000 g/mol, or 30,000 to 60,000 g/mol, or 40,000 to 60,000 g/mol, or 45,000 to 55,000 g/mol.

일 구현예에서 상기 폴리에스테르 수지 및 상기 아크릴계 수지의 고형분의 중량비는 1: 0.1 내지 1: 1.5일 수 있으며, 더욱 구체적으로는 1:0.2 내지 1:1일 수 있다. 상기 범위를 만족하는 수계 코팅 조성물로 이형층을 제조 시 폴리에스테르 이형 필름은 박리성이 우수할 뿐만 아니라 가공 코팅성이 더욱 향상되는 효과를 가질 수 있다.In one embodiment, the weight ratio of the solid content of the polyester resin and the acrylic resin may be 1: 0.1 to 1: 1.5, and more specifically, 1: 0.2 to 1: 1. When the release layer is prepared with a water-based coating composition satisfying the above range, the polyester release film may have an effect of further improving processing coating property as well as excellent release property.

상기 이형층은 폴리올레핀 왁스를 포함할 수 있으며, 상기 폴리에스테르 수지 및 아크릴계 수지 상에 분산된 형태일 수 있다.The release layer may include polyolefin wax, and may be dispersed on the polyester resin and the acrylic resin.

상기 폴리올레핀 왁스의 구체적인 종류는 특별히 제한되지 않지만, 폴리에틸렌 왁스 및 폴리프로필렌 왁스로 이루어진 군에서 선택된 1종 이상이 바람직하게 사용될 수 있다.The specific type of the polyolefin wax is not particularly limited, but at least one selected from the group consisting of polyethylene wax and polypropylene wax may be preferably used.

상기 폴리올레핀 왁스는 상기 폴리에스테르 수지 100 중량부에 대하여 20 내지 50 중량부 또는 30 내지 40 중량부로 포함될 수 있다. 상기 이형층이 적절한 박리력을 나타낼 수 있도록 하기 위하여 상기 폴리올레핀 왁스는 상기 폴리에스테르 수지 100 중량부에 대하여 20 중량부 이상으로 포함되는 것이 바람직하다. 다만, 상기 이형층에 상기 폴리올레핀 왁스가 과량으로 첨가될 경우 배면 전사 문제와 가공 코팅성의 저하가 유발될 수 있다. 그러므로, 상기 폴리올레핀 왁스는 상기 폴리에스테르 수지 100 중량부에 대하여 50 중량부 이하로 포함되는 것이 바람직하다.The polyolefin wax may be included in 20 to 50 parts by weight or 30 to 40 parts by weight based on 100 parts by weight of the polyester resin. The polyolefin wax is preferably included in an amount of 20 parts by weight or more based on 100 parts by weight of the polyester resin so that the release layer can exhibit an appropriate peeling force. However, when an excessive amount of the polyolefin wax is added to the release layer, a backside transfer problem and a decrease in processing coating properties may be caused. Therefore, the polyolefin wax is preferably included in an amount of 50 parts by weight or less based on 100 parts by weight of the polyester resin.

예를 들어, 상기 폴리올레핀 왁스는 상기 폴리에스테르 수지 100 중량부에 대하여 20 중량부 이상, 또는 25 중량부 이상, 또는 30 중량부 이상; 그리고 50 중량부 이하, 또는 45 중량부 이하, 또는 40 중량부 이하로 포함될 수 있다. 구체적으로, 상기 폴리올레핀 왁스는 상기 폴리에스테르 수지 100 중량부에 대하여 20 내지 50 중량부, 또는 25 내지 50 중량부, 또는 25 내지 45 중량부, 또는 30 내지 45 중량부, 또는 30 내지 40 중량부로 포함될 수 있다.For example, the polyolefin wax is 20 parts by weight or more, or 25 parts by weight or more, or 30 parts by weight or more based on 100 parts by weight of the polyester resin; And it may be included in 50 parts by weight or less, or 45 parts by weight or less, or 40 parts by weight or less. Specifically, the polyolefin wax is included in 20 to 50 parts by weight, or 25 to 50 parts by weight, or 25 to 45 parts by weight, or 30 to 45 parts by weight, or 30 to 40 parts by weight based on 100 parts by weight of the polyester resin. can

상기 수계 코팅 조성물에 포함된 상기 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스의 총 함량은 고형분 기준으로 1 내지 10 wt%, 2 내지 9 wt%, 4 내지 8 wt%, 또는 5 내지 6 wt%인 것이 바람직하다.The total content of the polyester resin, acrylic resin, and polyolefin wax included in the water-based coating composition is 1 to 10 wt%, 2 to 9 wt%, 4 to 8 wt%, or 5 to 6 wt% based on solids. desirable.

상기 수계 코팅 조성물에 포함된 상기 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스의 고형분 기준 총 함량이 상기 범위를 만족하여 제조되는 폴리에스테르 이형 필름은 전사 특성과 박리성이 우수할 뿐만 아니라 마찰 대전압(Frictional Electrostatic Voltage)이 50 V 미만으로 현저히 낮아질 수 있다. 또한, 상기 범위를 만족하여 제조되는 이형 필름은 미세 핀홀의 발생을 방지할 수 있어 가공 코팅성이 향상될 수 있다.A polyester release film prepared by satisfying the above range in terms of solid content of the polyester resin, acrylic resin, and polyolefin wax included in the water-based coating composition has excellent transfer characteristics and peelability, as well as frictional electrification voltage (Frictional Electrostatic Voltage) can be significantly lowered to less than 50 V. In addition, the release film manufactured by satisfying the above range can prevent the occurrence of fine pinholes, and thus the processing coating properties can be improved.

본 발명의 일 구현예에서, 상기 이형층에 도포되는 수계 코팅 조성물은 필요에 따라, 실리콘계 웨팅제, 불소계 웨팅제, 경화제, 산 촉매, 슬립제, 소포제, 습윤제, 계면활성제, 증점제, 가소제, 산화방지제, 자외선 흡수제, 방부제, 및 가교제와 같은 첨가제가 더 부가될 수 있다. 상기 첨가제는 상기 이형층의 물성을 저해하지 않는 한도 내에서 선택적으로 사용될 수 있다.In one embodiment of the present invention, the water-based coating composition applied to the release layer is, if necessary, a silicone-based wetting agent, a fluorine-based wetting agent, a curing agent, an acid catalyst, a slip agent, an antifoaming agent, a wetting agent, a surfactant, a thickener, a plasticizer, an oxidizing agent Additives such as an inhibitor, an ultraviolet absorber, an antiseptic, and a crosslinking agent may be further added. The additive may be selectively used within the limit of not impairing the physical properties of the release layer.

상기 대전방지층은 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 포함할 수 있다.The antistatic layer may include a water-dispersible antistatic composition containing a conductive polymer.

본 발명의 일 구현예에 따른 폴리에스테르 이형 필름은 비-실리콘계 소재로 이루어진 상기 이형층과 상기 대전방지층을 포함함으로써, 코팅 가공성 및 박리성이 우수할 뿐만 아니라 대전방지성이 우수하고 마찰 대전압(Frictional Electrostatic Voltage)이 50 V 미만으로 현저히 낮은 특성을 가질 수 있다.The polyester release film according to one embodiment of the present invention includes the release layer made of a non-silicone material and the antistatic layer, so that coating workability and peelability are excellent as well as antistatic properties and frictional electrification voltage ( Frictional Electrostatic Voltage) may have a remarkably low characteristic of less than 50 V.

상기 전도성 고분자는 전기 전도성 및 극성을 가진 나노크기의 구조체일 수 있다. 상기 전도성 고분자는, 예를 들어, 폴리티오펜계, 폴리피롤계 및 폴리아닐린계 등의 전도성 고분자에서 선택되는 하나 이상을 포함하는 것일 수 있다.The conductive polymer may be a nano-sized structure having electrical conductivity and polarity. The conductive polymer may include, for example, at least one selected from conductive polymers such as polythiophene, polypyrrole, and polyaniline.

또한 일 구현예로서 상기 전도성 고분자의 범주에는 전도성 고분자 포함하는 수지 조성물도 포함할 수 있다. 상기 수지는 예를 들면, 수계 수지일 수 있으며, 이온성 중합체를 포함하는 것일 수 있다. In addition, as an embodiment, a resin composition including a conductive polymer may also be included in the category of the conductive polymer. The resin may be, for example, a water-based resin and may include an ionic polymer.

상기 이온성 중합체의 경우, 양이온 또는 음이온기를 포함하는 기를 가지는 중합체로서, 폴리스티렌설포네이트염, 폴리스티렌암모늄염 등의 이온성 중합체일 수 있으며, 이에 한정되는 것은 아니다. 상기 이온성 중합체를 사용하는 경우 본 발명의 목적을 달성하는 한에서는 그 함량을 한정하지 않지만 예를 들면, 상기 전도성 고분자에 대하여 0.01 내지 2 중량비로 사용할 수 있다. In the case of the ionic polymer, as a polymer having a group including a cationic or anionic group, it may be an ionic polymer such as polystyrene sulfonate salt or polystyrene ammonium salt, but is not limited thereto. In the case of using the ionic polymer, the content is not limited as long as the object of the present invention is achieved, but for example, it may be used in a weight ratio of 0.01 to 2 with respect to the conductive polymer.

일 구현예로서 상기 전도성 고분자로서는 바람직하게는 폴리티오펜계 전도성 고분자일 수 있으며, 또한 폴리에틸렌디옥시티오펜:폴리스티렌설포네이트(PEDOT:PSS)일 수 있다. 상기 전도성 고분자로 PEDOT:PSS를 사용할 경우 수분산성이 우수하여 인-라인 도포 공정에 사용하기에 적합하며, 인-라인 도포 공정 이후 연신 공정을 거치더라도 투명성이 저하되지 않고, 1010 Ω/□ 이하의 표면 저항을 발현될 수 있어 더욱 선호된다.As an embodiment, the conductive polymer may be preferably a polythiophene-based conductive polymer, and may also be polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS). When PEDOT:PSS is used as the conductive polymer, it is suitable for use in an in-line coating process due to its excellent water dispersibility, and transparency is not deteriorated even through a stretching process after the in-line application process, and 10 10 Ω/□ or less It is more preferred because it can express the surface resistance of

상기 수분산성 대전방지 조성물은 수계 폴리우레탄 수지를 더 포함할 수 있다. 상기 수계 폴리우레탄 수지를 전도성 고분자와 혼합하여 사용함으로써 혼화성이 우수하고, 표면저항 성능을 향상시키며, 폴리에스테르 베이스필름과의 밀착력이 우수하고, 고온고습 조건에서 물성 변화가 적고, 황변현상이 적은 대전방지층을 형성할 수 있다. 상기 수계 폴리우레탄 수지는 폴리카보네이트계 폴리올과 디이소시아네이트를 반응시킨 폴리우레탄 바인더를 사용함으로써 내열성이 우수하고, 표면저항 변화율이 적은 물성을 달성할 수 있다. 더욱 좋게는 상기 디이소시아네이트의 구체적인 예로 헥사메틸렌 디이소시아네이트를 사용하는 것이 내열성을 향상시켜 황변현상이 적은 도막을 형성하기 위한 관점에서 좋으나 이에 제한되는 것은 아니다.The water-dispersible antistatic composition may further include a water-based polyurethane resin. By mixing and using the water-based polyurethane resin with a conductive polymer, the miscibility is excellent, the surface resistance performance is improved, the adhesion with the polyester base film is excellent, the physical property change is small under high temperature and high humidity conditions, and the yellowing phenomenon is low. An antistatic layer may be formed. The water-based polyurethane resin can achieve physical properties of excellent heat resistance and low change in surface resistance by using a polyurethane binder in which a polycarbonate-based polyol and diisocyanate are reacted. More preferably, the use of hexamethylene diisocyanate as a specific example of the diisocyanate is good from the viewpoint of forming a coating film with less yellowing by improving heat resistance, but is not limited thereto.

일 구현예에서, 상기 수분산성 대전방지 조성물의 고형분 함량 100 wt% 중 전도성 고분자가 1 내지 30 wt%, 수계 폴리우레탄 수지가 70 내지 99 wt%로 포함되는 것일 수 있다. 더욱 구체적으로, 전도성 고분자가 5 내지 25 wt%, 폴리우레탄 바인더가 75 내지 95 wt%로 포함되는 것일 수 있다. 더욱 구체적으로, 전도성 고분자가 5 내지 20 wt%, 폴리우레탄 바인더가 80 내지 95 wt%로 포함되는 것일 수 있다.In one embodiment, the water-dispersible antistatic composition may contain 1 to 30 wt% of the conductive polymer and 70 to 99 wt% of the aqueous polyurethane resin in 100 wt% of the solid content of the water-dispersible antistatic composition. More specifically, 5 to 25 wt% of the conductive polymer and 75 to 95 wt% of the polyurethane binder may be included. More specifically, 5 to 20 wt% of the conductive polymer and 80 to 95 wt% of the polyurethane binder may be included.

보다 구체적으로 상기 대전방지층은 전도성 고분자 용액과 수계 폴리우레탄 수지 용액, 유기용매 및 물을 포함하는 수분산성 대전방지 조성물을 도포하여 형성한 것일 수 있다.More specifically, the antistatic layer may be formed by applying a water-dispersible antistatic composition containing a conductive polymer solution, an aqueous polyurethane resin solution, an organic solvent, and water.

더욱 구체적으로 예를 들면, 상기 수분산성 대전방지 조성물은 고형분 함량이 1 내지 3 wt%인 전도성 고분자 용액 40 내지 90 wt%, 고형분 함량이 30 내지 40 wt%인 수계 폴리우레탄 수지 용액 5 내지 50 wt%, 유기용매 3 내지 50 wt% 및 잔량의 물을 포함하는 것일 수 있다.More specifically, for example, the water-dispersible antistatic composition comprises 40 to 90 wt% of a conductive polymer solution having a solid content of 1 to 3 wt% and 5 to 50 wt% of an aqueous polyurethane resin solution having a solid content of 30 to 40 wt%. %, an organic solvent of 3 to 50 wt% and the balance of water.

상기 전도성 고분자는 최적의 분산성을 발현하기 위하여 용매에 혼합된 상태의 전도성 고분자 용액으로 사용하는 것일 수 있으며, 구체적으로 예를 들어 PEDOT:PSS를 사용하는 경우 물, 알코올 및 유전상수가 큰 용매 등에 혼합하여 사용하는 것일 수 있다.The conductive polymer may be used as a conductive polymer solution mixed in a solvent in order to express optimal dispersibility. Specifically, for example, when PEDOT:PSS is used, water, alcohol, or a solvent having a high dielectric constant, etc. It may be used in combination.

상기 대전방지 조성물 중 전도성 고분자 용액의 함량은 40 내지 90 wt%, 더욱 좋게는 50 내지 70 wt%일 수 있으며, 발명의 목적을 달성하기에 충분한 함량이나 이에 제한되는 것은 아니다.The content of the conductive polymer solution in the antistatic composition may be 40 to 90 wt%, more preferably 50 to 70 wt%, and the content is sufficient to achieve the object of the present invention, but is not limited thereto.

또한 상기 수계 폴리우레탄 수지는 용매에 분산된 것일 수 있으며, 용매는 제한되는 것은 아니나 아마이드계 유기용매 및 비양자성 고극성(Aprotic Highly Dipolar, AHD) 유기용매로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있다.In addition, the water-based polyurethane resin may be dispersed in a solvent, and the solvent is not limited to, but is any one or a mixture of two or more selected from the group consisting of an amide-based organic solvent and an aprotic highly dipolar (AHD) organic solvent. A solvent may be used.

상기 수분산상 대전방지 조성물 중 수계 폴리우레탄 수지의 함량은 5 내지 50 wt%, 더욱 좋게는 10 내지 30 wt%일 수 있으나, 이에 제한되지 않음은 물론이다.The content of the water-based polyurethane resin in the water-dispersible antistatic composition may be 5 to 50 wt%, more preferably 10 to 30 wt%, but is not limited thereto.

상기 유기용매는 특별히 제한되는 것은 아니나, 알코올계 유기용매 및 비양자성 고극성 유기용매로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합용매를 사용하는 것일 수 있으며, 이에 제한되는 것은 아니다.The organic solvent is not particularly limited, but any one or a mixture of two or more selected from the group consisting of an alcohol-based organic solvent and an aprotic highly polar organic solvent may be used, but is not limited thereto.

상기 유기용매의 함량은 상기 수분산성 대전방지 조성물 중 50 wt% 이하, 40 wt% 이하, 30 wt% 이하, 20 wt% 이하, 또는 10 wt% 이하일 수 있으며, 하한은 1 wt% 또는 2 wt% 이상일 수 있으며, 상기 범위에서 전도성 고분자 및 수계 폴리우레탄 수지의 분산성을 향상시키기에 적합한 함량이나 이에 제한되는 것은 아니다.The content of the organic solvent may be 50 wt% or less, 40 wt% or less, 30 wt% or less, 20 wt% or less, or 10 wt% or less in the water-dispersible antistatic composition, and the lower limit is 1 wt% or 2 wt%. It may be more than that, and the content suitable for improving the dispersibility of the conductive polymer and the water-based polyurethane resin in the above range is not limited thereto.

상기 알코올계 유기용매는 제한되는 것은 아니지만 구체적으로 예를 들면, 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올 및 2-아미노-2-메틸-1-프로판올 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용할 수 있다.The alcohol-based organic solvent is not limited, but specifically, for example, methanol, ethanol, propanol, isopropanol, butanol, and 2-amino-2-methyl-1-propanol may be used, alone or in combination of two or more. can be used

상기 비양자성 고극성 유기용매는 제한되는 것은 아니지만 구체적으로 예를 들면, 디메틸설폭사이드, 프로필렌 카보네이트 등이 사용될 수 있으며, 단독 또는 둘 이상을 혼합하여 사용할 수 있다. 비양자성 고극성 유기용매를 사용함으로써 전도성 고분자의 전도도를 더욱 향상시킬 수 있다.The aprotic highly polar organic solvent is not limited, but specifically, for example, dimethyl sulfoxide, propylene carbonate, etc. may be used, and may be used alone or in combination of two or more. The conductivity of the conductive polymer can be further improved by using an aprotic highly polar organic solvent.

상기 수분산성 대전방지 조성물이 각 물질을 상기 함량 범위로 포함함으로써, 본 발명의 일 구현예에 따른 폴리에스테르 이형 필름은 마찰 대전압(Frictional Electrostatic Voltage)이 50 V 미만으로 현저히 낮아 대전방지성이 우수하며, 필름 주행 및 권취 시 발생되는 정전기 발생을 방지하고 정전기로 인해 유입되는 공기 또는 이물의 양을 현저히 감소시킬 수 있다.Since the water-dispersible antistatic composition includes each material in the above content range, the polyester release film according to an embodiment of the present invention has excellent antistatic property as the frictional electrostatic voltage is significantly lower than 50 V. It can prevent the generation of static electricity generated during film travel and winding, and can significantly reduce the amount of air or foreign matter introduced due to static electricity.

또한, 상기 수분산성 대전방지 조성물이 상기 함량 범위를 만족함으로써, 본 발명의 일 구현예에 따른 폴리에스테르 이형 필름은, 이를 이용하여 코팅층을 형성시킬 때 발생되는 미반응물로 인한 수율 저하, 정전기로 인한 이물 흡착 등의 문제를 해결할 수 있다.In addition, since the water-dispersible antistatic composition satisfies the above content range, the polyester release film according to an embodiment of the present invention is caused by a decrease in yield due to unreacted substances generated when a coating layer is formed using the same, and a decrease in yield due to static electricity Problems such as adsorption of foreign matter can be solved.

본 발명의 일 구현예에서, 상기 대전방지층의 표면 저항이 1010 Ω/□ 이하일 수 있으며, 보다 구체적으로는 109 Ω/□ 이하일 수 있다.In one embodiment of the present invention, the surface resistance of the antistatic layer may be 10 10 Ω/□ or less, and more specifically, 10 9 Ω/□ or less.

본 발명의 일 구현예에서, 상기 수분산성 대전방지 조성물은 필요에 따라, 실리콘계 웨팅제, 불소계 웨팅제, 슬립제, 소포제, 습윤제, 계면활성제, 증점제, 가소제, 산화방지제, 자외선 흡수제, 방부제 및 가교제 등을 더 포함하는 것일 수 있다.In one embodiment of the present invention, the water-dispersible antistatic composition, if necessary, silicone-based wetting agent, fluorine-based wetting agent, slip agent, antifoaming agent, wetting agent, surfactant, thickener, plasticizer, antioxidant, ultraviolet absorber, preservative and crosslinking agent etc. may be further included.

상기 기재필름, 이형층 및 대전방지층의 두께는 특별히 제한되지 않으며, 상기 폴리에스테르 이형 필름의 구체적인 적용 분야에 따라 조절될 수 있다. Thicknesses of the base film, the release layer, and the antistatic layer are not particularly limited and may be adjusted according to specific fields of application of the polyester release film.

예를 들어, 상기 기재필름은 10 내지 300 ㎛의 두께를 가질 수 있으며, 상기 이형층 및 대전방지층은 10 내지 200 ㎚의 두께를 가질 수 있지만 반드시 이에 한정하는 것은 아니다.For example, the base film may have a thickness of 10 to 300 μm, and the release layer and the antistatic layer may have a thickness of 10 to 200 nm, but are not necessarily limited thereto.

상기 이형층 및 대전방지층의 두께는 서로 같거나 다를 수 있다. 구체적으로는, 상기 기재필름의 두께는 10 내지 200 ㎛, 10 내지 100 ㎛, 또는 10 내지 50 ㎛일 수 있고, 상기 이형층의 두께는 10 내지 100 ㎚, 더욱 구체적으로는 50 내지 100 ㎚일 수 있으며, 상기 대전방지층의 두께는 10 내지 100 ㎚, 더욱 구체적으로는 20 내지 80 ㎚일 수 있다.Thicknesses of the release layer and the antistatic layer may be the same as or different from each other. Specifically, the base film may have a thickness of 10 to 200 μm, 10 to 100 μm, or 10 to 50 μm, and the release layer may have a thickness of 10 to 100 nm, more specifically 50 to 100 nm And, the antistatic layer may have a thickness of 10 to 100 nm, more specifically 20 to 80 nm.

상기 폴리에스테르 이형 필름에서, 상기 기재필름은 특별히 한정하는 것은 아니지만, 기계방향(MD) 또는 횡방향(TD)으로 일축연신되거나 기계방향(MD) 및 횡방향(TD)으로 이축 연신된 것일 수 있고, 상기 이형층 및 대전방지층은 일축 또는 이축연신된 것일 수 있지만, 횡방향(TD)으로 일축 연신되는 경우, 본 발명의 특성을 더 잘 부여할 수 있으므로 선호될 수 있다.In the polyester release film, the base film is not particularly limited, but may be uniaxially stretched in the machine direction (MD) or transverse direction (TD) or biaxially stretched in the machine direction (MD) and transverse direction (TD) , The release layer and the antistatic layer may be uniaxially or biaxially stretched, but uniaxially stretched in the transverse direction (TD) may be preferred because the properties of the present invention can be better imparted.

상기 폴리에스테르 이형 필름은 상술한 특성들을 충족함에 따라 우수한 박리성을 가질 뿐만 아니라 낮은 마찰 대전압(Frictional Electrostatic Voltage)을 가져 대전방지성이 우수할 수 있다.As the polyester release film satisfies the above characteristics, it may have excellent peelability as well as excellent antistatic property due to low frictional electrostatic voltage.

예를 들어, 상기 폴리에스테르 이형 필름은 350 내지 700 gf/inch, 또는 400 내지 650 gf/inch, 또는 400 내지 600 gf/inch의 박리력을 가질 수 있다. 상기 범위의 박리력을 가지는 폴리에스테르 이형 필름은 후-가공(예를 들어, 상기 이형 필름 상에 베리어 코팅층을 형성시키는 공정 등)에서 우수한 코팅 가공성 및 박리성을 가질 수 있다.For example, the polyester release film may have a peel strength of 350 to 700 gf/inch, or 400 to 650 gf/inch, or 400 to 600 gf/inch. The polyester release film having a peel strength within the above range may have excellent coating processability and peelability in post-processing (eg, a process of forming a barrier coating layer on the release film).

본 명세서에서, 상기 박리력은 ASTM D 3330의 표준 시험법에 따라 측정된 것이다. 구체적으로, 상기 박리력은, 상기 폴리에스테르 이형 필름의 이형층 위에 아크릴레이트계 점착테이프(니또덴코제 NITTO #31B 테이프 폭: 25mm)를 5 ㎜ X 180 ㎜의 사이즈로 잘라 적층하고 70 g/cm2의 하중을 가하여 상온에 30분 동안 방치한 후 박리 시험기(peel tester)를 이용하여 300 mm/min의 박리 속도로 상기 테이프를 180도 박리하여 측정될 수 있다.In the present specification, the peel force is measured according to the standard test method of ASTM D 3330. Specifically, the peel force is 70 g / cm by cutting an acrylate-based adhesive tape (manufactured by Nitto Denko, NITTO #31B tape width: 25 mm) into a size of 5 mm X 180 mm and stacking it on the release layer of the polyester release film. After applying a load of 2 and leaving it at room temperature for 30 minutes, it can be measured by peeling the tape 180 degrees at a peeling rate of 300 mm/min using a peel tester.

또한, 상기 폴리에스테르 이형 필름은 50 V 미만, 또는 40 V 미만, 또는 30 V 미만, 또는 20 V 미만, 또는 10 V 미만의 현저히 낮은 마찰 대전압(Frictional Electrostatic Voltage)을 가질 수 있으며 마찰 대전압의 하한은 특별히 제한되지 않으나 예를 들면 1 V 이상, 3 V 또는 5 V 이상일 수 있다.In addition, the polyester release film may have a significantly low frictional electrostatic voltage of less than 50 V, or less than 40 V, or less than 30 V, or less than 20 V, or less than 10 V. The lower limit is not particularly limited, but may be, for example, 1 V or more, 3 V or 5 V or more.

본 명세서에서, 상기 마찰 대전압(Frictional Electrostatic Voltage)은 KS K 0555의 표준 시험법에 따라 측정된 것이다. 구체적으로, 상기 마찰 대전압의 측정은, 통상적인 로타리 스태틱 테스터(rotary static tester)를 이용하여 상기 폴리에스테르 이형 필름에 대한 마찰 정전기를 측정하는 방법으로 수행될 수 있다. 이때, A 면(상기 폴리에스테르 이형 필름에서 상기 이형층 면) 및 B 면(상기 폴리에스테르 이형 필름에서 상기 대전방지층 면)을 회전속도 300 rpm으로 180 초 동안 마찰시켜 발생하는 정전기량을 측정한다.In the present specification, the frictional electrostatic voltage is measured according to the standard test method of KS K 0555. Specifically, the measurement of the frictional electrification voltage may be performed by a method of measuring frictional static electricity for the polyester release film using a conventional rotary static tester. At this time, the amount of static electricity generated by rubbing the A side (the release layer side of the polyester release film) and the B side (the antistatic layer side of the polyester release film) at a rotational speed of 300 rpm for 180 seconds is measured.

나아가, 상기 폴리에스테르 이형 필름은 낮은 헤이즈 값을 가지면서도 우수한 가공 코팅성을 나타낼 수 있다.Furthermore, the polyester release film may exhibit excellent processing coating properties while having a low haze value.

예를 들어, 상기 폴리에스테르 이형 필름은 3.90% 이하의 헤이즈를 가질 수 있다. 바람직하게는, 상기 폴리에스테르 이형 필름은 3.50 내지 3.90%, 3.60 내지 3.90%, 또는 3.70 내지 3.86%의 헤이즈를 가질 수 있다.For example, the polyester release film may have a haze of 3.90% or less. Preferably, the polyester release film may have a haze of 3.50 to 3.90%, 3.60 to 3.90%, or 3.70 to 3.86%.

또한, 상기 폴리에스테르 이형 필름은 하기 식 1을 충족하는 우수한 가공 코팅성을 가질 수 있다.In addition, the polyester release film may have excellent processing coating properties that satisfy Formula 1 below.

[식 1][Equation 1]

NH = 0N H = 0

상기 식 1에서, NH는 상기 폴리에스테르 이형 필름의 상기 이형층 상에 UV 수지를 두께 10 ㎛로 도포하여 경화시켰을 때 단위 면적(m2)당 생성되는 핀홀의 개수이다.In Equation 1, N H is the number of pinholes generated per unit area (m 2 ) when a UV resin is applied to the release layer of the polyester release film to a thickness of 10 μm and cured.

즉, 상기 폴리에스테르 이형 필름을 기재로 사용하는 임의의 제조 공정에서, 상기 이형층 상에 임의의 수지층을 형성시킬 때, 상기 이형층 상에는 핀홀이 실질적으로 형성되지 않아, 우수한 가공 코팅성을 나타낼 수 있다.That is, in any manufacturing process using the polyester release film as a substrate, when an arbitrary resin layer is formed on the release layer, pinholes are not substantially formed on the release layer, resulting in excellent processing coating properties. can

또한, 상기 폴리에스테르 이형 필름은 90% 내지 95%의 전광선 투과율, 85° 내지 90°의 수 접촉각, 50° 내지 60°의 diiodomethane 접촉각, 및 30 내지 35 mN/m의 표면 에너지를 나타낼 수 있다.In addition, the polyester release film may exhibit a total light transmittance of 90% to 95%, a water contact angle of 85 ° to 90 °, a diiodomethane contact angle of 50 ° to 60 °, and a surface energy of 30 to 35 mN / m.

또한, 본 발명의 일 구현예에 따른 폴리에스테르 이형 필름은 박막 편광판용 폴리에스테르 이형 필름일 수 있으나, 이에 제한되지 않고 대전방지, 코팅 가공성 및 박리성이 요구되는 다양한 분야에 적용이 가능함은 물론이다. 예를 들어, 박막 편광판 용도 외에 MLCC(Multi Layer Ceramic Capacitor) Carrier용 Cover tape, FPCB(Flexible Printed Circuits Board) 공정 보호용, OCA(Optically Clear Adhesive)용 및 OCA 보호용, 디스플레이용 광학 부재(각종 디스플레이 표면 보호용 등에 적용 가능하다.In addition, the polyester release film according to one embodiment of the present invention may be a polyester release film for thin film polarizers, but is not limited thereto and can be applied to various fields requiring antistatic, coating workability, and peelability. . For example, in addition to the use of thin film polarizers, cover tape for MLCC (Multi Layer Ceramic Capacitor) Carrier, FPCB (Flexible Printed Circuits Board) process protection, OCA (Optical Clear Adhesive) and OCA protection, optical members for displays (for various display surface protection) etc. can be applied.

상기 폴리에스테르 이형 필름에서, 특히, 상기 이형층 및 대전방지층은 상기 폴리에스테르 기재필름 상에 인-라인 코팅에 의해 형성된 것일 수 있다. 상기 이형층은 상기 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함한 수계 코팅 조성물을 상기 폴리에스테르 기재필름의 일면에 인-라인 코팅 방법에 의해 도포하여 형성될 수 있다.In the polyester release film, in particular, the release layer and the antistatic layer may be formed on the polyester base film by in-line coating. The release layer may be formed by applying an aqueous coating composition including the polyester resin, acrylic resin, and polyolefin wax to one surface of the polyester base film by an in-line coating method.

상기 대전방지층은 상기 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 상기 기재필름의 타면에 인-라인 코팅 방법에 의해 도포하여 형성될 수 있다.The antistatic layer may be formed by applying the water-dispersible antistatic composition containing the conductive polymer to the other surface of the base film by an in-line coating method.

상기 이형층 및 대전방지층은 인-라인 코팅 방법에 의해 형성됨에 따라 도포 두께가 얇으면서도 상기 폴리에스테르 기재필름과의 접착력이 우수하고, 수분 및 용제에 대한 우수한 내성을 나타낼 수 있다.As the release layer and the antistatic layer are formed by the in-line coating method, the coating thickness is thin, the adhesive strength with the polyester base film is excellent, and the antistatic layer can exhibit excellent resistance to moisture and solvents.

상기 폴리에스테르 이형 필름은 우수한 코팅 가공성, 박리성 및 낮은 마찰 대전압을 가짐에 따라 박막 편광판의 제조시 이형용 기재 필름으로 적합하게 사용될 수 있다.As the polyester release film has excellent coating processability, peelability, and low frictional electrification voltage, it can be suitably used as a base film for release in the manufacture of a thin film polarizer.

비제한적인 예로, 상기 박막 편광판의 제조시 상기 폴리에스테르 이형 필름의 상기 기재필름 상에는, 베리어 코팅층; 폴리비닐알코올 수지층; 접착층; 및 폴리에틸렌 테레프탈레이트(PET), 트리아세틸 셀룰로오스(TAC), 또는 폴리메틸 메타크릴레이트(PMMA) 등의 수지층이 순차로 적층하여 적층체를 형성할 수 있다.As a non-limiting example, when the thin film polarizing plate is manufactured, a barrier coating layer may be formed on the base film of the polyester release film; a polyvinyl alcohol resin layer; adhesive layer; And a resin layer such as polyethylene terephthalate (PET), triacetyl cellulose (TAC), or polymethyl methacrylate (PMMA) may be sequentially laminated to form a laminate.

또한, 상기 폴리에스테르 이형 필름은 상기 적층체로부터 제거될 수 있다.In addition, the polyester release film may be removed from the laminate.

이하에서는, 폴리에스테르 이형 필름의 제조방법에 대해 상세히 설명한다.Hereinafter, the manufacturing method of the polyester release film will be described in detail.

본 발명의 일 구현예에 따른 폴리에스테르 이형 필름의 제조방법은,A method for producing a polyester release film according to an embodiment of the present invention,

폴리에스테르 기재필름을 준비하는 제1단계; 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 기재필름의 일면에 도포하여 이형층을 형성하는 제2단계; 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 상기 기재필름의 타면에 도포하여 대전방지층을 형성하는 제3단계; 및 상기 기재필름과 상기 기재필름 상에 형성된 이형층 및 대전방지층을 포함한 적층체를 연신하면서 열처리하는 제4단계; 를 포함할 수 있다.A first step of preparing a polyester base film; A second step of forming a release layer by applying an aqueous coating composition containing a polyester resin, an acrylic resin, and a polyolefin wax to one surface of the base film; A third step of forming an antistatic layer by applying a water-dispersible antistatic composition containing a conductive polymer to the other surface of the base film; and a fourth step of heat-treating while stretching the laminate including the base film, a release layer and an antistatic layer formed on the base film; can include

상기 제1단계는 폴리에스테르 기재필름을 준비하는 단계로, 상기 폴리에스테르 기재필름은 폴리에스테르 수지로 이루어진 것이다.The first step is to prepare a polyester base film, and the polyester base film is made of a polyester resin.

상기 폴리에스테르 기재필름으로는 본 발명이 속하는 기술분야에서 통상적인 것이 특별한 제한 없이 사용될 수 있다. 상기 폴리에스테르 기재필름은, 반드시 이에 제한되는 것은 아니지만, 기계방향(MD, 또는 길이방향)으로 연신된 것으로 준비될 수 있다. 바람직하게는, 상기 폴리에스테르 기재필름은 기계방향(MD)으로 2배 내지 5배 연신된 것일 수 있다. 상기 폴리에스테르 기재필름은 10 내지 300 ㎛의 두께를 갖는 것이 바람직하나, 본 발명의 목적을 달성하는 한도 내에서 이에 제한되지 않음은 물론이다.As the polyester base film, a conventional one in the art to which the present invention belongs may be used without particular limitation. The polyester base film, but is not necessarily limited thereto, may be prepared as being stretched in the machine direction (MD, or longitudinal direction). Preferably, the polyester base film may be stretched 2 to 5 times in the machine direction (MD). The polyester base film preferably has a thickness of 10 to 300 μm, but is not limited thereto within the limit of achieving the object of the present invention.

상기 제2단계는 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 기재필름의 일면에 도포하여 이형층을 형성하는 단계로, 상기 수계 코팅 조성물은 상기 폴리에스테르 기재필름 상에 상기 이형층을 형성시키기 위한 것이다.The second step is a step of forming a release layer by applying a water-based coating composition containing a polyester resin, an acrylic resin, and a polyolefin wax to one surface of the base film, wherein the water-based coating composition is applied on the polyester base film. It is for forming a release layer.

상기 수계 코팅 조성물은 상기 폴리에스테르 수지, 상기 아크릴계 수지 및 상기 폴리올레핀 왁스를 포함할 수 있으며, 상기 수지 및 왁스에 대한 구체적인 내용은 상술한 바를 적용할 수 있다.The water-based coating composition may include the polyester resin, the acrylic resin, and the polyolefin wax, and the above description of the resin and wax may be applied.

상기 수계 코팅 조성물은 상술한 성분들과 물을 균일하게 혼합하는 방법으로 준비될 수 있다. 상기 수계 코팅 조성물의 고형분 함량은 20 내지 60 wt%인 것이 코팅 공정의 효율성 확보를 위해 바람직할 수 있다.The water-based coating composition may be prepared by uniformly mixing the above-described components and water. The solid content of the water-based coating composition may be preferably 20 to 60 wt% to secure the efficiency of the coating process.

상기 이형층은 상기 수계 코팅 조성물을 사용하여 인-라인 코팅법에 의해 상기 폴리에스테르 기재필름의 일면에 형성될 수 있다. 상기 인-라인 코팅법에 의해 상기 이형층을 형성함에 따라, 도포 두께가 얇으면서도 상기 폴리에스테르 기재필름과의 접착력이 우수하고, 수분 및 용제에 대한 우수한 내성을 나타낼 수 있다.The release layer may be formed on one surface of the polyester base film by an in-line coating method using the aqueous coating composition. As the release layer is formed by the in-line coating method, the adhesive strength with the polyester base film is excellent even though the coating thickness is thin, and excellent resistance to moisture and solvents can be exhibited.

상기 인-라인 코팅법은 통상의 장치를 이용하여 수행될 수 있다.The in-line coating method may be performed using a conventional device.

상기 인-라인 코팅을 수행함에 있어서, 상기 수계 코팅 조성물은 상기 이형층의 최종 연신 및 건조 후 두께가 20 내지 200 nm가 되도록 도포될 수 있다. 상기 이형층의 두께 기타 특성에 관한 구체적인 내용은 상술한 바를 적용할 수 있다.In performing the in-line coating, the water-based coating composition may be applied to a thickness of 20 to 200 nm after final stretching and drying of the release layer. Specific details regarding the thickness and other characteristics of the release layer may be applied as described above.

상기 수계 코팅 조성물을 상기 폴리에스테르 기재필름 상에 도포한 후, 상기 수계 코팅 조성물의 수분을 제거하고 경화시킴으로써 상기 이형층이 형성될 수 있다.After the water-based coating composition is applied on the polyester base film, the release layer may be formed by removing moisture from the water-based coating composition and curing the water-based coating composition.

상기 제3단계는 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 상기 기재필름의 타면에 도포하여 대전방지층을 형성하는 단계로, 상기 수분산성 대전방지 조성물은 수계 폴리우레탄 수지를 더 포함할 수 있으며, 상기 전도성 고분자, 수계 폴리우레탄 수지 등에 관한 구체적인 내용은 상술한 바를 적용할 수 있다.The third step is a step of forming an antistatic layer by applying a water-dispersible antistatic composition containing a conductive polymer to the other surface of the base film, the water-dispersible antistatic composition may further include a water-based polyurethane resin, Specific details regarding the conductive polymer, the water-based polyurethane resin, and the like may be applied as described above.

상기 수분산성 대전방지 조성물은 상술한 성분들과 물을 균일하게 혼합하는 방법으로 준비될 수 있다. 상기 대전방지 조성물의 고형분 함량은 5 내지 50 wt%인 것이 코팅 공정의 효율성 확보를 위해 바람직할 수 있다.The water-dispersible antistatic composition may be prepared by uniformly mixing the above-described components and water. The solid content of the antistatic composition may be preferably 5 to 50 wt% to secure the efficiency of the coating process.

상기 수분산성 대전방지 조성물은 유기용매를 더 포함할 수 있으며, 이에 관한 구체적인 내용은 상술한 바를 적용할 수 있다.The water-dispersible antistatic composition may further include an organic solvent, and the above-described information regarding this may be applied.

상기 대전방지층은 상기 수분산상 대전방지 조성물을 사용하여 인-라인 코팅법에 의해 상기 폴리에스테르 기재필름의 타면에 형성될 수 있으며, 인-라인 코팅법에 대한 구체적인 내용은 상기 이형층에서 상술한 바를 적용할 수 있다.The antistatic layer may be formed on the other surface of the polyester base film by an in-line coating method using the water-dispersible antistatic composition, and the specific details of the in-line coating method are as described above in the release layer. can be applied

상기 제4단계는 상기 기재필름과 상기 기재필름 상에 형성된 이형층 및 대전방지층을 포함한 적층체를 기계방향(MD) 또는 횡방향(TD)으로 연신하면서 열처리하는 단계이다.The fourth step is a step of heat-treating the laminate including the base film, the release layer and the antistatic layer formed on the base film while stretching in the machine direction (MD) or the transverse direction (TD).

일 구현예에서, 반드시 이에 제한되는 것은 아니나, 상기 적층체는 횡방향(TD)으로 2배 내지 5배 연신될 경우 본 발명의 일 구현예가 목적으로 하는 물성을 달성하기에 적합하여 선호된다.In one embodiment, but not necessarily limited thereto, when the laminate is stretched 2 to 5 times in the transverse direction (TD), it is suitable for achieving the desired physical properties of one embodiment of the present invention and is preferred.

예를 들어, 기계방향(MD)으로 일축 연신된 상기 폴리에스테르 기재필름 상에 상기 이형층 및 대전방지층을 형성한 후, 이것을 횡방향(TD)으로 연신할 수 있다. 이러한 연신 공정을 통해 상기 폴리에스테르 기재필름은 기계방향 및 횡방향으로 이축 연신되고, 상기 이형층 및 대전방지층은 횡방향으로 일축 연신될 수 있다.For example, after forming the release layer and the antistatic layer on the polyester base film uniaxially stretched in the machine direction (MD), it may be stretched in the transverse direction (TD). Through this stretching process, the polyester base film may be biaxially stretched in the machine direction and the transverse direction, and the release layer and the antistatic layer may be uniaxially stretched in the transverse direction.

상기 제4단계는 텐터(tenter)와 같은 통상적인 열 처리 장치를 이용하여 수행될 수 있다. 상기 제4단계에서 상기 적층체는 텐터를 연속적으로 통과할 수 있다.The fourth step may be performed using a conventional heat treatment device such as a tenter. In the fourth step, the laminate may continuously pass through the tenter.

상기 적층체는 상기 텐터의 전단부를 통과하면서 예열되고, 상기 텐터의 중단부를 통과하면서 예를 들어, 횡방향(TD) 연신되고, 상기 텐터의 후단부를 통과하면서 열 처리될 수 있다. 상기 열 처리는 상기 횡방향 연신시 상기 적층체에 가해진 장력을 유지한 상태에서 가열되는 것일 수 있다.The laminate may be preheated while passing through the front end of the tenter, stretched in the transverse direction (TD) while passing through the middle part of the tenter, and heat treated while passing through the rear end of the tenter. The heat treatment may be performed while maintaining tension applied to the laminate during the transverse direction stretching.

바람직하게는, 상기 제4단계는 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 수행될 수 있다. 상기 열 처리 장치를 통과하는 상기 적층체는 상기 총 열량 범위하에 노출되면서 상기 연신 및 열 처리된다.Preferably, the fourth step may be performed by passing the laminate through a heat treatment device having a total heat capacity of 222,000 kcal/min to 229,000 kcal/min of air supplied to the passing section. The laminated body passing through the heat treatment device is subjected to the stretching and heat treatment while being exposed to the total heat amount range.

구체적으로, 상기 제4단계는 전체 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min, 혹은 225,000 kcal/min 내지 229,000 kcal/min, 혹은 226,000 kcal/min 내지 229,000 kcal/min, 혹은 226,000 kcal/min 내지 228,000 kcal/min, 혹은 226,000 kcal/min 내지 227,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 수행될 수 있다.Specifically, in the fourth step, the total heat of the air supplied to the entire passing section is 222,000 kcal/min to 229,000 kcal/min, or 225,000 kcal/min to 229,000 kcal/min, or 226,000 kcal/min to 229,000 kcal/min , or 226,000 kcal / min to 228,000 kcal / min, or 226,000 kcal / min to 227,000 kcal / min may be performed by passing the laminate through a heat treatment device.

상기 제4단계에서 상기 적층체가 통과하는 전체 구간에 공급되는 공기의 총 열량(kcal)은, 상기 구간의 온도(℃), 상기 열 처리 장치에 공급되는 공기의 질량(kg/min), 공기의 비열(kcal/kg℃)과 같은 데이터들로부터 계산될 수 있다. 상기 공기의 질량(kg/min)은 공기의 체적유량(Nm3/min) 및 공기의 밀도 (kg/Nm3)로부터 얻어질 수 있다.In the fourth step, the total heat amount (kcal) of air supplied to the entire section through which the laminate passes is the temperature of the section (℃), the mass of air supplied to the heat treatment device (kg/min), It can be calculated from data such as specific heat (kcal/kg °C). The air mass (kg/min) can be obtained from the air volume flow rate (Nm 3 /min) and air density (kg/Nm 3 ).

예를 들어, 상기 열 처리 장치에서 임의의 구간(zone)에 공급되는 공기의 밀도가 1.286 kg/Nm3이고, 공기의 비열이 0.24 kcal/kg℃이고, 공기의 체적 유량이 380 Nm3/min, 공기의 초기 온도가 20 ℃이고, 상기 구간의 설정 온도가 220 ℃ 라고 할 때, 상기 구간에 공급되는 공기의 총 열량(kcal)은 하기 계산식 1 및 2에 의해 23,456.64 kcal/min으로 얻어질 수 있다.For example, the density of air supplied to a certain zone in the heat treatment device is 1.286 kg/Nm 3 , the specific heat of air is 0.24 kcal/kg°C, and the volumetric flow rate of air is 380 Nm 3 /min. , When the initial temperature of the air is 20 ℃ and the set temperature of the section is 220 ℃, the total heat (kcal) of the air supplied to the section can be obtained as 23,456.64 kcal / min by the following formulas 1 and 2 there is.

[계산식 1][Calculation 1]

공기의 질량(kg/min) = 공기의 체적유량(Nm3/min) X 공기의 밀도(kg/Nm3)Mass of air (kg/min) = Volume flow rate of air (Nm 3 /min) X Density of air (kg/Nm 3 )

[계산식 2][Calculation 2]

공기의 열량(kcal/min) = 공기의 질량(kg/min) X 공기의 비열(kcal/kg℃) X 온도 변화(℃)Heat of air (kcal/min) = mass of air (kg/min) X specific heat of air (kcal/kg℃) X temperature change (℃)

그리고, 상기 구간의 통과 길이가 3 m이고 상기 적층체가 100 m/min의 속도로 상기 구간을 통과할 때, 상기 구간에서 상기 적층체가 노출되는 열량은 하기 계산식 3에 의해 7,037 kcal/zone으로 얻어질 수 있다.And, when the passage length of the section is 3 m and the laminate passes through the section at a speed of 100 m/min, the amount of heat exposed to the laminate in the section is obtained as 7,037 kcal/zone by Equation 3 below. can

[계산식 3][Calculation 3]

적층체가 노출되는 열량(kcal/zone) = 공기의 열량(kcal/min) X 구간의 통과 길이(m/zone) X 적층체의 속도(m/min)Heat amount exposed to the laminate (kcal/zone) = Heat amount of air (kcal/min) X Passing length of the section (m/zone) X Speed of the laminate (m/min)

발명의 일 실시예에 따르면, 상기 적층체를 44,000 kcal/min 내지 46,000 kcal/min의 열량이 공급되는 구간을 통과시켜 예열하는 공정; 예열된 상기 적층체를 62,000 kcal/min 내지 64,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 상기 기계방향(MD) 또는 횡방향(TD)으로 연신하는 공정; 및 연신된 상기 적층체를 114,000 kcal/min 내지 120,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 상기 열 처리하는 공정을 포함하여 수행될 수 있다.According to one embodiment of the invention, the step of preheating the laminate by passing through a section in which a heat amount of 44,000 kcal / min to 46,000 kcal / min is supplied; stretching the preheated laminate in the machine direction (MD) or transverse direction (TD) while passing through a section where a heat amount of 62,000 kcal/min to 64,000 kcal/min is supplied; and a step of heat treating the stretched laminate while passing it through a section in which a heat amount of 114,000 kcal/min to 120,000 kcal/min is supplied.

바람직하게는, 상기 예열하는 공정은, 상기 적층체를 45,000 kcal/min 내지 46,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 수행될 수 있다.Preferably, the preheating process may be performed while passing the laminate through a section where a heat amount of 45,000 kcal/min to 46,000 kcal/min is supplied.

바람직하게는, 상기 연신하는 공정은, 예열된 상기 적층체를 63,000 kcal/min 내지 64,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 수행될 수 있다.Preferably, the stretching process may be performed while passing the preheated laminate through a section where a heat amount of 63,000 kcal/min to 64,000 kcal/min is supplied.

그리고, 바람직하게는, 상기 열 처리하는 공정은 연신된 상기 적층체를 115,000 kcal/min 내지 120,000 kcal/min, 혹은 115,000 kcal/min 내지 119,000 kcal/min, 혹은 116,000 kcal/min 내지 119,000 kcal/min, 혹은 117,000 kcal/min 내지 118,500 kcal/min, 혹은 118,000 kcal/min 내지 118,500 kcal/min의 열량이 공급되는 구간을 통과시키면서 수행될 수 있다.And, preferably, the step of heat treating the stretched laminate is 115,000 kcal/min to 120,000 kcal/min, or 115,000 kcal/min to 119,000 kcal/min, or 116,000 kcal/min to 119,000 kcal/min, Alternatively, 117,000 kcal/min to 118,500 kcal/min, or 118,000 kcal/min to 118,500 kcal/min may be performed while passing through a section in which heat is supplied.

상기 제4단계 (특히, 상기 연신 후 열 처리 존)에서 통과 구간에 공급되는 공기의 총 열량이 너무 낮을 경우 상기 폴리에스테르 이형 필름의 박리성과 전사 특성이 열악해지고 마찰 대전압이 커질 수 있다. 그리고, 상기 제4단계 (특히, 상기 횡방향 연신 후 열 처리 존)에서 통과 구간에 공급되는 공기의 총 열량이 너무 높을 경우 상기 폴리에스테르 이형 필름의 표면 에너지가 낮아져 가공 코팅성이 저하될 수 있다.In the fourth step (particularly, in the heat treatment zone after stretching), when the total heat amount of the air supplied to the passing section is too low, the release property and transfer characteristics of the polyester release film may deteriorate and the frictional electrification voltage may increase. And, in the fourth step (particularly, in the heat treatment zone after the transverse stretching), when the total heat amount of the air supplied to the passing section is too high, the surface energy of the polyester release film is lowered, and thus the processing coating property may be lowered. .

또한, 상기 제4단계에서 상기 적층체는 상기 열 처리 장치를 80 m/min 내지 120 m/min, 또는 90 m/min 내지 110 m/min, 또는 90 m/min 내지 100 m/min의 속도로 통과하는 것이 바람직하다.In addition, in the fourth step, the laminate is subjected to the heat treatment device at a speed of 80 m/min to 120 m/min, 90 m/min to 110 m/min, or 90 m/min to 100 m/min. It is desirable to pass

상기 제4단계를 수행함에 있어서, 상기 각 구간에서 상기 적층체를 적절한 열량 하에 노출시키고, 상기 횡 방향 연신과 열 처리가 충분히 이루어질 수 있도록 하기 위하여, 상기 적층체는 상기 속도 범위 내에서 상기 열 처리 장치를 통과하는 것이 바람직하다.In performing the fourth step, in order to expose the laminate to an appropriate amount of heat in each section and to sufficiently perform the transverse stretching and heat treatment, the laminate is subjected to the heat treatment within the speed range It is desirable to pass through the device.

상기 제4단계는 120 ℃ 내지 245 ℃ 하에서 수행될 수 있다. 예를 들어, 상기 제4단계는 120 ℃ 내지 150 ℃ 하에서 상기 적층체를 예열하는 공정; 130 ℃ 내지 150 ℃ 하에서 상기 예열된 적층체를 횡방향으로 연신하는 공정; 및 215 ℃ 내지 245 ℃ 하에서 상기 연신된 적층체를 열 처리하는 공정으로 수행될 수 있다.The fourth step may be performed at 120 °C to 245 °C. For example, the fourth step may include preheating the laminate at 120 °C to 150 °C; transversely stretching the preheated laminate at 130° C. to 150° C.; and a process of heat treating the stretched laminate at 215 °C to 245 °C.

특히, 상기 연신된 적층체를 열 처리하는 공정은 215 ℃ 이상, 220 ℃ 이상, 225 ℃ 이상, 또는 230 ℃ 이상; 그리고 245 ℃ 이하, 또는 240 ℃ 이하에서 수행될 수 있다. 구체적으로, 상기 연신된 적층체를 열 처리하는 공정은 215 내지 245 ℃, 220 내지 245 ℃, 220 내지 240 ℃, 225 내지 240 ℃, 또는 230 내지 240 ℃ 하에서 수행될 수 있다.In particular, the step of heat treating the stretched laminate is 215 °C or higher, 220 °C or higher, 225 °C or higher, or 230 °C or higher; And it can be carried out at 245 ℃ or less, or 240 ℃ or less. Specifically, the process of heat treating the stretched laminate may be performed at 215 to 245 °C, 220 to 245 °C, 220 to 240 °C, 225 to 240 °C, or 230 to 240 °C.

상기 연신된 적층체를 열 처리 공정의 온도가 상기 범위를 만족할 경우 상기 폴리에스테르 이형 필름의 박리성이 우수할 뿐만 아니라, 마찰대전압(Frictional Electrostatic Voltage)이 낮아질 수 있고, 상기 폴리에스테르 이형 필름의 제조시 미세 핀홀이 발생하지 않아 가공 코팅성이 향상할 수 있다.When the temperature of the heat treatment process for the stretched laminate satisfies the above range, not only the release property of the polyester release film is excellent, but also the frictional electrostatic voltage can be lowered, and the polyester release film Since fine pinholes do not occur during manufacturing, processing coating properties can be improved.

상기 제4단계의 수행 후 150 ℃ 내지 200 ℃ 하에서 기계방향 및 횡방향으로 각각 2 내지 10%만큼 이완시키는 공정이 수행될 수 있다.After performing the fourth step, a process of relaxing by 2 to 10% in the machine direction and the transverse direction at 150 ° C. to 200 ° C. may be performed.

상기 공정들을 통해 얻어지는 상기 폴리에스테르 이형 필름의 최종 두께는 20 내지 100 ㎛, 또는 30 내지 80 ㎛, 또는 30 내지 50 ㎛일 수 있다.The final thickness of the polyester release film obtained through the above processes may be 20 to 100 μm, or 30 to 80 μm, or 30 to 50 μm.

이하, 본 발명의 제조예, 실시예 및 실험예를 하기에 구체적으로 예시하여 설명한다. 다만, 후술하는 실시예 및 실험예는 본 발명의 일부를 예시하는 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, manufacturing examples, examples and experimental examples of the present invention will be specifically illustrated and described. However, Examples and Experimental Examples to be described later are merely illustrative of a part of the present invention, and the present invention is not limited thereto.

<제조예 1> 제1 수계 코팅 조성물의 제조<Preparation Example 1> Preparation of a first water-based coating composition

(1) 제1 수지 조성물의 제조(1) Preparation of the first resin composition

디에틸렌글리콜과 에틸렌글리콜을 5: 5의 몰비로 포함하는 50 몰%의 글리콜 성분, 및 테레프탈산과 술포테레프탈산을 8.5: 1.5의 몰비로 포함하는 50 몰%의 산 성분을 축중합하여 제1 폴리에스테르 수지를 얻었다(중량 평균 분자량 10,000 g/mol).A first polyester resin obtained by condensation polymerization of 50 mol% of a glycol component containing diethylene glycol and ethylene glycol in a molar ratio of 5: 5, and 50 mol% of an acid component containing terephthalic acid and sulfoterephthalic acid in a molar ratio of 8.5: 1.5 was obtained (weight average molecular weight 10,000 g/mol).

증류수에 100 중량부의 상기 제1 폴리에스테르 수지 및 25 중량부의 폴리에틸렌 왁스(일본 다카마츠사의 Wax No.1) 를 첨가하고 30분 동안 교반하여 제1 수지 조성물(고형분 20 wt%)을 제조하였다.100 parts by weight of the first polyester resin and 25 parts by weight of polyethylene wax (Wax No.1, Takamatsu, Japan) were added to distilled water and stirred for 30 minutes to prepare a first resin composition (solid content: 20 wt%).

(2) 제2 수지 조성물의 제조(2) Preparation of the second resin composition

디에틸렌글리콜과 에틸렌글리콜을 5: 5의 몰비로 포함하는 50 몰%의 글리콜 성분, 및 테레프탈산과 술포테레프탈산을 8.5: 1.5의 몰비로 포함하는 50 몰%의 산 성분을 축중합하여 제2 폴리에스테르 수지를 얻었다(중량 평균 분자량 3,000 g/mol).A second polyester resin obtained by condensation polymerization of 50 mol% of a glycol component containing diethylene glycol and ethylene glycol in a molar ratio of 5: 5, and 50 mol% of an acid component containing terephthalic acid and sulfoterephthalic acid in a molar ratio of 8.5: 1.5 (Weight average molecular weight 3,000 g/mol).

아크릴산 글리시딜 60 몰% 및 프로피온산비닐 40 몰%를 공중합하여 아크릴계 수지를 얻었다(중량 평균 분자량 50,000 g/mol).60 mol% of glycidyl acrylate and 40 mol% of vinyl propionate were copolymerized to obtain an acrylic resin (weight average molecular weight: 50,000 g/mol).

증류수에 50 중량부의 상기 제2 폴리에스테르 수지, 50 중량부의 상기 아크릴계 수지, 및 25 중량부의 폴리에틸렌 왁스를 첨가하고 30분 동안 교반하여 제2 수지 조성물(고형분 20 wt%)을 제조하였다.50 parts by weight of the second polyester resin, 50 parts by weight of the acrylic resin, and 25 parts by weight of polyethylene wax were added to distilled water and stirred for 30 minutes to prepare a second resin composition (solid content: 20 wt%).

(3) 수계 코팅 조성물의 제조(3) Preparation of water-based coating composition

상기 제1 수지 조성물 14.3 wt% (고형분 20 wt%), 상기 제2 수지 조성물 14.3 wt% (고형분 20 wt%), 실리콘계 웨팅제 0.2 wt% (Dow Corning사, Q2-5212, 고형분 90 wt%), 불소계 웨팅제 0.2 wt% (DuPont사, FS-31, 고형분 25 wt%), 및 잔량의 물을 혼합하여 제1 수계 코팅 조성물을 제조하였다.The first resin composition 14.3 wt% (solid content 20 wt%), the second resin composition 14.3 wt% (solid content 20 wt%), silicone-based wetting agent 0.2 wt% (Dow Corning, Q2-5212, solid content 90 wt%) , 0.2 wt% of a fluorine-based wetting agent (DuPont, FS-31, 25 wt% solid content), and the remaining amount of water were mixed to prepare a first aqueous coating composition.

<제조예 2> 제2 수계 코팅 조성물의 제조<Preparation Example 2> Preparation of a second water-based coating composition

상기 제조예 1에서 제조한 제1 수지 조성물을 사용하지 않고 그 함량만큼 제2 수지 조성물을 더 사용한 것을 제외하고는 제조예 1과 동일한 방식으로 제2 수계 코팅 조성물을 제조하였다. 즉, 제조예 2에 따른 제2 수계 코팅 조성물은 제2 수지 조성물을 28.6 wt%만큼 포함한다.A second aqueous coating composition was prepared in the same manner as in Preparation Example 1, except that the first resin composition prepared in Preparation Example 1 was not used and the amount of the second resin composition was further used. That is, the second water-based coating composition according to Preparation Example 2 includes 28.6 wt% of the second resin composition.

<제조예 3> 제1 대전방지 코팅 조성물의 제조<Preparation Example 3> Preparation of the first antistatic coating composition

전도성 고분자 수분산액(Heraeus사, Clevios P 고형분 1.3 wt%) 60 wt%, 물 6 wt%, 이소프로필알코올(IPA) 5 wt%을 혼합용기에 넣고 1시간 동안 교반하고, 2-아미노-2-메틸-1-프로판올(Alfa aesar, 95%) 2 wt%를 혼합용기에 추가로 넣어 다시 1시간 동안 교반한 후에 수계 폴리우레탄 수지 수지(Neo resins사 Neo rez R-960, 고형분 31 wt%)를 20 wt% 넣어 30분간 재교반한 후, 혼합용기에 디메틸설폭사이드 5 wt%, 실리콘계 웨팅제(BYK 348)를 2 wt% 첨가하여 1시간 동안 추가 교반하여 제1 수분산성 대전방지 조성물(고형분 6.98 wt%)을 제조한다. 그리고 상기 제1 수분산성 대전방지 조성물을 2차 희석 제조한다. 이때 상기 제1 수분산성 대전방지 조성물 30 wt%, 물 69.6 wt%, 실리콘계 웨팅제 0.2 wt% (Dow Corning사, Q2-5212, 고형분 90 wt%), 및 불소계 웨팅제 0.2 wt% (DuPont사, FS-31, 고형분 25 wt%)를 혼합하여 제1 대전방지 코팅 조성물을 제조하였다.60 wt% of conductive polymer aqueous dispersion (Heraeus, Clevios P solid content: 1.3 wt%), 6 wt% of water, and 5 wt% of isopropyl alcohol (IPA) were put in a mixing container, stirred for 1 hour, and 2-amino-2- After adding 2 wt% of methyl-1-propanol (Alfa aesar, 95%) to the mixing container and stirring for another hour, a water-based polyurethane resin (Neo resins Neo rez R-960, solid content 31 wt%) was added. After adding 20 wt% and re-stirring for 30 minutes, 5 wt% of dimethyl sulfoxide and 2 wt% of a silicone-based wetting agent (BYK 348) were added to the mixing container and further stirred for 1 hour to form the first water-dispersible antistatic composition (solid content 6.98 wt%). %) is produced. Then, the first water-dispersible antistatic composition is prepared by secondary dilution. In this case, 30 wt% of the first water-dispersible antistatic composition, 69.6 wt% of water, 0.2 wt% of a silicone-based wetting agent (Dow Corning, Q2-5212, 90 wt% of solid content), and 0.2 wt% of a fluorine-based wetting agent (DuPont, FS-31, solid content 25 wt%) was mixed to prepare a first antistatic coating composition.

<비교제조예 1> 제3 수계 코팅 조성물의 제조<Comparative Preparation Example 1> Preparation of a third water-based coating composition

실리콘 이형 주재 20 wt%(Wacker사 400E, 고형분 55 wt%)와 경화제 1.1 wt%(Wacker사 V-72, 고형분 40 wt%) 실리콘계 웨팅제 0.18 wt%( Dow Corning사, Q2-5212, 고형분 90 wt%), 이소프로필 알코올(IPA) 5 wt% 및 잔량의 물을 혼합하여 제3 수계 코팅 조성물을 제조하였다.20 wt% silicone release main material (Wacker 400E, solid content 55 wt%) and curing agent 1.1 wt% (Wacker V-72, solid content 40 wt%) 0.18 wt% silicone wetting agent (Dow Corning, Q2-5212, solid content 90 wt%), 5 wt% of isopropyl alcohol (IPA) and the balance of water to prepare a third water-based coating composition.

<비교제조예 2> 제4 수계 코팅 조성물의 제조<Comparative Preparation Example 2> Preparation of the fourth water-based coating composition

상기 제조예 1에서 제조한 제2 수지 조성물을 사용하지 않고 그 함량만큼 제1 수지 조성물을 더 사용한 것을 제외하고는 제조예 1과 동일한 방식으로 제4 수계 코팅 조성물을 제조하였다. 즉, 비교제조예 1에 따른 제4 수계 코팅 조성물은 제1 수지 조성물을 28.6 wt%만큼 포함한다.A fourth aqueous coating composition was prepared in the same manner as in Preparation Example 1, except that the amount of the first resin composition was further used without using the second resin composition prepared in Preparation Example 1. That is, the fourth water-based coating composition according to Comparative Preparation Example 1 includes 28.6 wt% of the first resin composition.

<비교제조예 3> 제2 대전방지 코팅 조성물의 제조<Comparative Preparation Example 3> Preparation of the second antistatic coating composition

아크릴계 수분산체(일본 다카마츠사의 ATX-014, 고형분 40 wt%) 5.1 wt%, 음이온계 고분자 대전방지제 (㈜ 진보, ICP-323, 분자량 100,000 g/mol 이상, 고형분 25.5 wt%), 9 wt%, 실리콘계 웨팅제(BYK 384) 2 wt% 및 잔량의 물을 혼합하여 제2 대전방지 코팅 조성물을 제조하였다.Acrylic water dispersion (ATX-014 from Takamatsu, Japan, solid content 40 wt%) 5.1 wt%, anionic polymer antistatic agent (Jinbo, ICP-323, molecular weight 100,000 g / mol or more, solid content 25.5 wt%), 9 wt%, A second antistatic coating composition was prepared by mixing 2 wt% of a silicone-based wetting agent (BYK 384) and the remaining amount of water.

<실시예 1><Example 1>

(1) 수분이 100 ppm 이하로 제거된 PET 칩을 용융압출기에 주입하여 용융한 후, T-다이를 통해 압출하면서 표면온도 20 ℃인 캐스팅 드럼으로 급냉 및 고화시켜 PET 시트를 제조하였다. 제조된 PET 시트를 110 ℃에서 기계방향으로 3.5배 연신한 후 상온으로 냉각하여 상기 PET 기재필름을 얻었다.(1) PET chips from which moisture was removed to 100 ppm or less were injected into a melting extruder, melted, and rapidly cooled and solidified using a casting drum having a surface temperature of 20 ° C while extruding through a T-die to prepare a PET sheet. The prepared PET sheet was stretched 3.5 times in the machine direction at 110° C. and then cooled to room temperature to obtain the PET base film.

(2) 그라비아 코터를 이용하여 제조예 1에 따른 제1 수계 코팅 조성물을 상기 PET 기재필름의 일면에 최종 건조 후 두께 70 ㎚가 되도록 도포하여 이형층을 형성하고, 제조예 3에 따른 제1 대전방지 코팅 조성물을 상기 PET 기재필름의 타면에 최종 건조 후 두께 50 ㎚가 되도록 도포하여 대전방지층을 형성하였다.(2) Applying the first aqueous coating composition according to Preparation Example 1 using a gravure coater to one side of the PET base film to a thickness of 70 nm after final drying to form a release layer, and first charging according to Preparation Example 3 An antistatic layer was formed by applying the antistatic coating composition to the other surface of the PET base film to a thickness of 50 nm after final drying.

(3) 이어서, 예열 존, 연신 존, 및 열 처리 존으로 구획된 텐터(tenter)에서 상기 이형층 및 대전방지층이 형성된 적층체를 횡방향(TD)으로 4배 연신하면서 열 처리하는 단계가 수행되었다.(3) Then, in a tenter partitioned into a preheating zone, a stretching zone, and a heat treatment zone, a heat treatment step is performed while stretching the laminate on which the release layer and the antistatic layer are formed 4 times in the transverse direction (TD) It became.

예열 존, 연신 존, 및 열 처리 존을 순차로 포함한 총 길이 33 m의 상기 텐터에 상기 적층체(초기 폭 5.12 m, 초기 두께 152 ㎛)가 100 m/min의 이동속도로 통과하면서 상기 열 처리하는 단계가 수행되었다.The heat treatment while passing the laminate (initial width 5.12 m, initial thickness 152 μm) at a moving speed of 100 m/min through the tenter having a total length of 33 m including a preheating zone, a stretching zone, and a heat treatment zone in sequence step was performed.

상기 열 처리하는 단계는 통과 구간에 공급되는 공기의 총 열량이 226,400 kcal/min인 상기 텐터에 상기 적층체를 통과시키며 수행되었다.The heat treatment step was performed by passing the laminate through the tenter having a total heat quantity of 226,400 kcal/min of air supplied to the passing section.

상기 텐터에 공급되는 공기의 밀도는 1.286 kg/㎚3이고, 공기의 비열은 0.24 kcal/kg℃으로 확인되었고, 공기의 체적유량은 270 내지 680 ㎚3/min의 범위 내에서 조절되었다.The density of air supplied to the tenter was 1.286 kg/nm 3 , the specific heat of air was 0.24 kcal/kg° C., and the volumetric flow rate of air was adjusted within the range of 270 to 680 nm 3 /min.

구체적으로, 상기 적층체는 약 120 ℃ 내지 130 ℃의 온도 하에서 45,000 kcal/min의 열량이 공급되는 상기 예열 존(통과 길이 7.5 m)을 통과하였다. 연속하여, 예열된 상기 적층체는 약 130 ℃ 내지 140 ℃의 온도 하에서 63,200 kcal/min의 열량이 공급되는 상기 연신 존(통과 길이 10.5 m)을 통과하면서 횡방향으로 4배 연신되었다. 연속하여, 연신된 상기 적층체는 230 내지 235 ℃의 온도 하에서 118,200 kcal/min의 열량이 공급되는 상기 열 처리 존(통과 길이 15 m)을 통과하면서 열 처리되었다.Specifically, the laminate passed through the preheating zone (passing length: 7.5 m) at a temperature of about 120 °C to 130 °C and supplied with a heat amount of 45,000 kcal/min. Subsequently, the preheated laminate was stretched 4 times in the transverse direction while passing through the stretching zone (passing length of 10.5 m) supplied with a heat amount of 63,200 kcal/min at a temperature of about 130°C to 140°C. Continuously, the stretched laminate was subjected to heat treatment while passing through the heat treatment zone (passing length of 15 m) supplied with a heat amount of 118,200 kcal/min at a temperature of 230 to 235°C.

(4) 상기 열 처리 단계 후, 200 ℃에서 기계방향 및 횡방향으로 각각 10%씩 이완시켜 열 고정함으로써, 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.(4) After the heat treatment step, a polyester release film having a total thickness of 38 μm was prepared by heat-setting at 200° C. by 10% relaxation in each of the machine and transverse directions.

<실시예 2><Example 2>

실시예 2에서는, 실시예 1의 이형층으로 제조예 2에 따른 제2 수계 코팅 조성물을 코팅하여 형성한 것을 제외하고는, 실시예 1과 동일하게 실시하여 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.In Example 2, a polyester release film having a total thickness of 38 μm was prepared in the same manner as in Example 1, except that the release layer of Example 1 was coated with the second aqueous coating composition according to Preparation Example 2. manufactured.

<비교예 1><Comparative Example 1>

비교예 1에서는, 실시예 1의 대전방지층을 형성하지 않은 것을 제외하고는. 실시예 1과 동일하게 실시하여 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.In Comparative Example 1, except that the antistatic layer of Example 1 was not formed. In the same manner as in Example 1, a polyester release film having a total thickness of 38 μm was prepared.

<비교예 2><Comparative Example 2>

비교예 2에서는, 실시예 1의 이형층으로 비교제조예 1에 따른 제3 수계 코팅 조성물을 코팅하여 형성한 것을 제외하고는, 실시예 1과 동일하게 실시하여 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.In Comparative Example 2, except that the release layer of Example 1 was formed by coating the third aqueous coating composition according to Comparative Preparation Example 1, the polyester release film having a total thickness of 38 μm was carried out in the same manner as in Example 1. was manufactured.

<비교예 3><Comparative Example 3>

비교예 3에서는, 비교예 2의 대전방지층을 형성하지 않은 것을 제외하고는, 비교예 2와 동일하게 실시하여 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.In Comparative Example 3, a polyester release film having a total thickness of 38 μm was prepared in the same manner as in Comparative Example 2, except that the antistatic layer of Comparative Example 2 was not formed.

<비교예 4><Comparative Example 4>

비교예 4에서는, 실시예 1의 대전방지층으로 비교제조예 3에 따른 제2 대전방지 코팅 조성물을 코팅하여 형성한 것을 제외하고는, 실시예 1과 동일하게 실시하여 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.In Comparative Example 4, except that the antistatic layer of Example 1 was coated with the second antistatic coating composition according to Comparative Preparation Example 3, the same procedure as in Example 1 was performed, and a polyester release having a total thickness of 38 μm A film was made.

<비교예 5><Comparative Example 5>

비교예 5에서는, 실시예 1의 이형층으로 비교제조예 2에 따른 제4 수계 코팅 조성물을 코팅하여 형성한 것을 제외하고는, 실시예 1과 동일하게 실시하여 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.In Comparative Example 5, a polyester release film having a total thickness of 38 μm was carried out in the same manner as in Example 1, except that the release layer of Example 1 was coated with the fourth aqueous coating composition according to Comparative Preparation Example 2. was manufactured.

<평가항목><Evaluation items>

실시예 및 비교예의 하기 특성을 측정한 값을 하기 표 1에 나타내었다.The measured values of the following properties of Examples and Comparative Examples are shown in Table 1 below.

1. 광학 특성1. Optical properties

Haze meter(Nipon denshoku, NDH 5000)를 이용하여 하기 실시예 및 비교예의 필름에 대한 헤이즈(haze) 및 전광선 투과율(TT)을 측정하였다.Haze and total light transmittance (TT) of the films of Examples and Comparative Examples were measured using a haze meter (Nipon denshoku, NDH 5000).

2. 전사 특성 (Transfer test)2. Transfer test

폴리에스테르 이형 필름의 이형층 상에 무-처리된 PET 기재 필름을 적층시키고 50 gf/inch의 하중을 주고 45 ℃의 오븐에 24 시간 방치한 후, 수접촉각의 차이가 △2° 이상이면 전사 有로 표기하고, 수 접촉각의 차이가 없을 경우 전사 無로 표기하였다.After laminating an untreated PET base film on the release layer of the polyester release film, applying a load of 50 gf/inch, and leaving it in an oven at 45 ° C. for 24 hours, if the difference in water contact angle is greater than △2 °, transfer is present. It was marked as , and when there was no difference in water contact angle, it was marked as no transfer.

폴리에스테르 이형 필름의 대전방지층에 대하여도 동일한 전사 테스트를 실시하여 전사 유무를 표기하였다.The same transfer test was performed on the antistatic layer of the polyester release film to indicate the presence or absence of transfer.

3. 수 접촉각3. Water contact angle

접촉각 측정기(KRUSS, DSA 100)를 이용하여 상기 필름의 이형층에 대한 수 접촉각을 측정하였다. 순수 3 ㎕ (S1, Volume mode)를 상기 필름 시편에 떨어뜨리고 15초 동안의 수 접촉각 평균을 측정하였다. 총 5회 측정하여 그 평균값을 나타내었다.The water contact angle for the release layer of the film was measured using a contact angle measuring instrument (KRUSS, DSA 100). 3 μl of pure water (S1, Volume mode) was dropped on the film specimen and the average water contact angle for 15 seconds was measured. A total of 5 measurements were performed and the average value was shown.

4. Diiodomethane 접촉각4. Diiodomethane contact angle

접촉각 측정기(KRUSS, DSA 100)를 이용하여 상기 필름의 이형층에 대한 diiodomethane 접촉각을 측정하였다. Diiodomethane 1 ㎕ (S1, Volume mode)를 상기 필름 시편에 떨어뜨리고 15초 동안의 diiodomethane 접촉각 평균을 측정하였다. 총 5회 측정하여 그 평균값을 나타내었다.The contact angle of diiodomethane on the release layer of the film was measured using a contact angle meter (KRUSS, DSA 100). 1 μl of diiodomethane (S1, Volume mode) was dropped on the film specimen and the average contact angle of diiodomethane for 15 seconds was measured. A total of 5 measurements were performed and the average value was shown.

5. 표면 에너지5. Surface Energy

상기 수 접촉각과 diiodomethane 접촉각의 측정 결과로부터 Owens-Wendt Method로 이용하여 상기 필름의 이형층의 표면 에너지를 계산하였다.The surface energy of the release layer of the film was calculated using the Owens-Wendt method from the measurement results of the water contact angle and the diiodomethane contact angle.

6. 가공 코팅성6. Processing coating properties

상기 필름의 이형층 위에 UV 수지(Miwon Specialty Chemical Co.,MIRAMER M1130)를 두께 10 ㎛로 도포하여 UV 경화시킨 샘플을 준비하였다. 상기 샘플의 가공 코팅성을 아래의 기준에 따라 평가하였다.UV resin (Miwon Specialty Chemical Co., MIRAMER M1130) was applied on the release layer of the film to a thickness of 10 μm to prepare a UV cured sample. The process coating properties of the samples were evaluated according to the criteria below.

* 1 등급 - 단위 면적(㎡)당 핀홀 없음* Grade 1 - No pinholes per unit area (㎡)

* 2 등급 - 단위 면적(㎡)당 핀홀 2 개 이하* Class 2 - less than 2 pinholes per unit area (㎡)

* 3 등급 - 단위 면적(㎡)당 핀홀 5 개 이하* Class 3 - Less than 5 pinholes per unit area (㎡)

* 4 등급 - 단위 면적(㎡)당 핀홀 10 개 이하* Grade 4 - Less than 10 pinholes per unit area (㎡)

* 5 등급 - 단위 면적(㎡)당 핀홀 10 개 초과* Grade 5 - More than 10 pinholes per unit area (㎡)

7. 박리력7. Peel force

상기 폴리에스테르 이형 필름의 이형층 위에 아크릴레이트계 점착테이프(니또덴코제 NITTO #31B 테이프 폭: 25mm)를 붙인 제1 샘플을 준비하는 단계; 상기 제1 샘플을 5 ㎜ X 180 ㎜의 사이즈로 잘라 제2 샘플을 준비하는 단계; 및 상기 제2 샘플 상에 70 g/cm2의 하중을 가하여 상온에 30분 동안 방치한 후 박리 시험기(peel tester)를 이용하여 300 mm/min의 박리 속도로 상기 테이프를 180도 박리하는 단계;를 포함한 방법으로 박리력을 측정하였다.preparing a first sample by attaching an acrylate-based adhesive tape (Nitto Denko NITTO #31B tape width: 25 mm) on the release layer of the polyester release film; preparing a second sample by cutting the first sample into a size of 5 mm X 180 mm; and applying a load of 70 g/cm 2 to the second sample, leaving it at room temperature for 30 minutes, and then peeling the tape 180 degrees at a peel rate of 300 mm/min using a peel tester; The peel force was measured by a method including.

8. 마찰 대전압8. Frictional electrification

로타리 스태틱 테스터(Daiei Kagaku Seiki MFG, RST-300a)를 이용하여 상기 폴리에스테르 이형 필름에 대한 마찰 정전기를 측정하였다. 이때, A 면(상기 폴리에스테르 이형 필름에서 상기 이형층 면) 및 B 면(상기 이형 필름에서 상기 대전방지층 면)을 회전속도 300 rpm으로 180 초 동안 마찰시켜 발생하는 정전기량을 측정하였다.Frictional static electricity on the polyester release film was measured using a rotary static tester (Daiei Kagaku Seiki MFG, RST-300a). At this time, the amount of static electricity generated by rubbing the A side (the release layer side of the polyester release film) and the B side (the antistatic layer side of the release film) at a rotational speed of 300 rpm for 180 seconds was measured.

9. 표면 저항9. Surface resistance

실시예 및 비교예에서 제조된 필름의 대전방지층에 대한 표면저항을 평가하였다. 측정 방법은 Mitsubishi Chemical Corp. Hiresta-Up MCP-HP450 장비를 사용하여 25 ℃, 50%RH, 10 V, 10초의 조건으로 표면저항을 측정하였다.The surface resistance of the antistatic layer of the films prepared in Examples and Comparative Examples was evaluated. The measurement method is Mitsubishi Chemical Corp. Surface resistance was measured using Hiresta-Up MCP-HP450 equipment under conditions of 25 ℃, 50% RH, 10 V, and 10 seconds.

실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 A면*에 사용된 수계 코팅 조성물Waterborne coating composition used for side A * 제조예 1Preparation Example 1 제조예 2Preparation Example 2 제조예 1Preparation Example 1 비교 제조예 1Comparative Preparation Example 1 비교 제조예 1Comparative Preparation Example 1 제조예 1Preparation Example 1 비교 제조예 2Comparative Preparation Example 2 A면 물성A-side physical properties 수 접촉각
(°)
water contact angle
(°)
87.087.0 89.889.8 87.087.0 112.0112.0 112.0112.0 87.087.0 71.571.5
표면 에너지(mN/m)Surface energy (mN/m) 3535 3434 3535 1818 1818 3535 5454 가공코팅성processing coating 1 등급1st class 2 등급Grade 2 1 등급1st class 5 등급5 stars 5 등급5 stars 1 등급1st class 1등급1st class 박리력 (gf/inch)Peel force (gf/inch) 420420 380380 420420 1616 1616 420420 682682 전사 특성warrior traits nothing nothing nothing nothing nothing have nothing B면*에 사용된 대전방지 코팅 조성물Antistatic coating composition used for side B * 제조예 3Preparation Example 3 제조예 3Preparation Example 3 -- 제조예 3Preparation Example 3 -- 비교 제조예 3Comparative Preparation Example 3 제조예 3Preparation Example 3 B면* 물성Side B * Properties 전사 특성warrior traits nothing nothing nothing nothing nothing nothing nothing 표면 저항
(Ω/□)
surface resistance
(Ω/□)
109 10 9 109 10 9 -- 109 10 9 -- 109 10 9 109 10 9
공통 물성common properties Haze (%)Haze (%) 3.863.86 3.983.98 3.633.63 3.973.97 3.743.74 3.903.90 3.753.75 전광선 투과율 (%)Total light transmittance (%) 90.3690.36 90.3890.38 90.1290.12 90.4890.48 90.0290.02 0.270.27 90.7790.77 A면-B면 간의마찰 대전압 (V)Friction electrification voltage between A side and B side (V) 1010 1010 274274 5050 1,4201,420 112112 2020 A면: 기재필름의 일면에 형성된 이형층
B면: 기재필름의 타면에 형성된 대전방지층
Side A: release layer formed on one side of the base film
Side B: antistatic layer formed on the other side of the base film

상기 표 1을 참고하면, 실시예에 따른 폴리에스테르 이형 필름은 비교예들의 이형 필름에 비하여 전사 특성, 박리성 및 코팅 가공성이 우수할 뿐만 아니라, 대전방지성이 우수하고 마찰 대전압이 50 V 미만으로 현저히 낮은 것이 확인되었다.Referring to Table 1, the polyester release film according to the examples has excellent transfer properties, peelability, and coating processability, as well as excellent antistatic properties and a triboelectric charge voltage of less than 50 V compared to the release films of comparative examples. was found to be significantly lower.

따라서, 본 발명의 폴리에스테르 이형 필름은, 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함한 수계 코팅 조성물을 포함하는 이형층 및 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 포함하는 대전방지층을 포함함으로써, 박리성 및 코팅 가공성이 우수할 뿐만 아니라, 대전방지성이 우수하고 마찰 대전압이 50 V 미만으로 현저히 낮은 특성이 있으며, 필름 주행 및 권취 시 발생되는 정전기 발생을 방지하고 정전기로 인해 유입되는 공기 또는 이물의 양을 현저히 감소시킬 수 있다.Therefore, the polyester release film of the present invention includes a release layer comprising a water-based coating composition including a polyester resin, an acrylic resin and a polyolefin wax, and an antistatic layer comprising a water-dispersible antistatic composition comprising a conductive polymer, It not only has excellent peelability and coating processability, but also has excellent antistatic properties and a remarkably low frictional electrification voltage of less than 50 V. The amount of foreign matter can be significantly reduced.

또한 본 발명의 폴리에스테르 이형 필름은 상기 이형 필름을 이용하여 코팅층을 형성시킬 때 발생되는 미반응물로 인한 수율 저하, 정전기로 인한 이물 흡착 등의 문제를 해결할 수 있어 박막 편광판 등의 광학필름의 제조 시 기재로 사용하기에 적합하다.In addition, the polyester release film of the present invention can solve problems such as yield reduction due to unreacted substances generated when the coating layer is formed using the release film and adsorption of foreign substances due to static electricity, so that when manufacturing optical films such as thin film polarizers It is suitable for use as a substrate.

Claims (17)

폴리에스테르 기재필름, 상기 기재필름의 일면에 형성된 이형층 및 상기 기재필름의 타면에 형성된 대전방지층을 포함하고,A polyester base film, a release layer formed on one side of the base film, and an antistatic layer formed on the other side of the base film, 상기 이형층은 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 포함하고The release layer includes a water-based coating composition including a polyester resin, an acrylic resin, and a polyolefin wax, 상기 대전방지층은 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 포함하는 것인, 폴리에스테르 이형 필름.The antistatic layer is a polyester release film comprising a water-dispersible antistatic composition containing a conductive polymer. 제 1항에 있어서,According to claim 1, 상기 폴리에스테르 이형 필름은 50 V 미만의 마찰대전압을 가지는, 폴리에스테르 이형 필름.The polyester release film has a triboelectric potential of less than 50 V, the polyester release film. 제 1항에 있어서,According to claim 1, 상기 폴리에스테르 수지 및 상기 아크릴계 수지의 고형분의 중량비가 1:0.1 내지 1:1.5인, 폴리에스테르 이형 필름.A weight ratio of the solid content of the polyester resin and the acrylic resin is 1:0.1 to 1:1.5, a polyester release film. 제 1항에 있어서,According to claim 1, 상기 이형층은 폴리에스테르 수지 100 중량부에 대하여 폴리올레핀 왁스 20 내지 50 중량부를 포함하는, 폴리에스테르 이형 필름.The release layer comprises 20 to 50 parts by weight of polyolefin wax based on 100 parts by weight of the polyester resin, a polyester release film. 제 1항에 있어서,According to claim 1, 상기 폴리올레핀 왁스는 폴리에틸렌 왁스 및 폴리프로필렌 왁스로 이루어진 군에서 선택되는 1종 이상의 왁스인, 폴리에스테르 이형 필름.The polyolefin wax is at least one wax selected from the group consisting of polyethylene wax and polypropylene wax, polyester release film. 제 1항에 있어서,According to claim 1, 상기 전도성 고분자는 폴리티오펜계, 폴리피롤계 및 폴리아닐린계에서 선택되는 하나 이상을 포함하는 것인, 폴리에스테르 이형 필름.The conductive polymer is a polyester release film comprising at least one selected from polythiophene-based, polypyrrole-based and polyaniline-based. 제 1항에 있어서,According to claim 1, 상기 수분산성 대전방지 조성물은 수계 폴리우레탄 수지를 더 포함하는, 폴리에스테르 이형 필름.The water-dispersible antistatic composition further comprises a water-based polyurethane resin, a polyester release film. 제 7항에 있어서,According to claim 7, 상기 수분산성 대전방지 조성물의 고형분은 1 내지 30 wt%의 전도성 고분자 및 70 내지 99 wt%의 수계 폴리우레탄 수지를 포함하는 것인, 폴리에스테르 이형 필름.The solid content of the water-dispersible antistatic composition is a polyester release film comprising 1 to 30 wt% of a conductive polymer and 70 to 99 wt% of a water-based polyurethane resin. 제 1항에 있어서,According to claim 1, 상기 대전방지층의 표면 저항이 1010 Ω/□ 이하인, 폴리에스테르 이형 필름.The surface resistance of the antistatic layer is 10 10 Ω / □ or less, a polyester release film. 제 1 항에 있어서,According to claim 1, 3.90% 이하의 헤이즈 및 하기 식 1을 충족하는 가공 코팅성을 가지는, 폴리에스테르 이형 필름:A polyester release film having a haze of 3.90% or less and a processing coatability satisfying the following formula 1: [식 1][Equation 1] NH = 0 N H = 0 상기 식 1에서, NH는 상기 폴리에스테르 이형 필름의 상기 이형층 상에 UV 수지를 두께 10 ㎛로 도포하여 경화시켰을 때 단위 면적(m2)당 생성되는 핀홀의 개수이다.In Equation 1, N H is the number of pinholes generated per unit area (m 2 ) when a UV resin is applied to the release layer of the polyester release film to a thickness of 10 μm and cured. 제 1항에 있어서,According to claim 1, 상기 이형층은 상기 수계 코팅 조성물이 인-라인 코팅되어 형성된 것이고,The release layer is formed by in-line coating the water-based coating composition, 상기 대전방지층은 상기 수분산성 대전방지 조성물이 인-라인 코팅되어 형성된 것인, 폴리에스테르 이형 필름.The antistatic layer is formed by in-line coating of the water-dispersible antistatic composition, a polyester release film. 제 1항에 있어서,According to claim 1, 상기 기재필름은 이축연신된 것이고, 상기 이형층 및 대전방지층은 횡방향(TD)으로 일축연신된 것인, 폴리에스테르 이형 필름.The base film is biaxially stretched, and the release layer and the antistatic layer are uniaxially stretched in the transverse direction (TD), a polyester release film. 제 1항에 있어서,According to claim 1, 상기 기재필름의 두께가 10 내지 300 ㎛이고, 상기 이형층 및 대전방지층의 두께가 10 내지 200 ㎚인, 폴리에스테르 이형 필름.The base film has a thickness of 10 to 300 μm, and the release layer and the antistatic layer have a thickness of 10 to 200 nm, a polyester release film. 제 1항에 있어서,According to claim 1, 상기 폴리에스테르 이형 필름은 편광판 보호용인, 폴리에스테르 이형 필름.The polyester release film is for protecting a polarizing plate, a polyester release film. 폴리에스테르 기재필름을 준비하는 제1단계;A first step of preparing a polyester base film; 폴리에스테르 수지, 아크릴계 수지 및 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 기재필름의 일면에 도포하여 이형층을 형성하는 제2단계;A second step of forming a release layer by applying an aqueous coating composition containing a polyester resin, an acrylic resin, and a polyolefin wax to one surface of the base film; 전도성 고분자를 포함하는 수분산성 대전방지 조성물을 상기 기재필름의 타면에 도포하여 대전방지층을 형성하는 제3단계; 및A third step of forming an antistatic layer by applying a water-dispersible antistatic composition containing a conductive polymer to the other surface of the base film; and 상기 기재필름과 상기 기재필름 상에 형성된 이형층 및 대전방지층을 포함한 적층체를 연신하면서 열처리하는 제4단계;를 포함하는, 폴리에스테르 이형 필름의 제조방법.A method for producing a polyester release film comprising a; fourth step of heat-treating while stretching the laminate including the base film and the release layer and the antistatic layer formed on the base film. 제 15항에 있어서,According to claim 15, 상기 제4단계는 통과 구간에 긍급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 연신 및 열처리하는 것인, 폴리에스테르 이형 필름의 제조방법.The fourth step is to pass the laminate through a heat treatment device having a total heat amount of 222,000 kcal / min to 229,000 kcal / min of air supplied to the passing section, and stretching and heat treatment. Method for producing a polyester release film. 제 15항에 있어서,According to claim 15, 상기 제4단계는 상기 적층체를 44,000 kcal/min 내지 46,000 kcal/min의 열량이 공급되는 구간을 통과시켜 예열하는 공정;The fourth step is a process of preheating the laminated body by passing through a section in which a heat amount of 44,000 kcal/min to 46,000 kcal/min is supplied; 예열된 상기 적층체를 62,000 kcal/min 내지 64,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 횡방향(TD)으로 연신하는 공정; 및stretching the preheated laminate in a transverse direction (TD) while passing through a section where a heat amount of 62,000 kcal/min to 64,000 kcal/min is supplied; and 연신된 상기 적층체를 114,000 kcal/min 내지 120,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 상기 열처리하는 공정; 을 포함하여 수행되는, 폴리에스테르 이형 필름의 제조방법.a step of subjecting the stretched laminate to the heat treatment while passing it through a section where a heat amount of 114,000 kcal/min to 120,000 kcal/min is supplied; Method for producing a polyester release film, which is carried out including a.
PCT/KR2022/021136 2021-12-30 2022-12-23 Polyester release film and method for manufacturing same WO2023128476A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280077180.6A CN118284658A (en) 2021-12-30 2022-12-23 Polyester release film and method for producing same
JP2024537128A JP2024546293A (en) 2021-12-30 2022-12-23 Polyester release film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210191912A KR20230102068A (en) 2021-12-30 2021-12-30 Polyester Release Film And Method For Manufacturing Same
KR10-2021-0191912 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023128476A1 true WO2023128476A1 (en) 2023-07-06

Family

ID=86999794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021136 WO2023128476A1 (en) 2021-12-30 2022-12-23 Polyester release film and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP2024546293A (en)
KR (1) KR20230102068A (en)
CN (1) CN118284658A (en)
TW (1) TWI858483B (en)
WO (1) WO2023128476A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060096665A (en) * 2005-03-02 2006-09-13 (주)국제라텍 Transparent antistatic release film, manufacturing method thereof and adhesive tape formed therefrom
KR20090032724A (en) * 2007-09-28 2009-04-01 도레이새한 주식회사 Manufacturing method of antistatic polyester film
KR20180003460A (en) * 2016-06-30 2018-01-09 코오롱인더스트리 주식회사 Polyester muti-layer film
KR20190094846A (en) * 2018-02-06 2019-08-14 도레이첨단소재 주식회사 Polyester film and method for manufacturing the same
KR20210149611A (en) * 2020-06-02 2021-12-09 코오롱인더스트리 주식회사 Polyester release film and method for preparing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718848B1 (en) * 2005-11-30 2007-05-17 도레이새한 주식회사 Antistatic Polyester Film
WO2021246851A1 (en) * 2020-06-02 2021-12-09 코오롱인더스트리 주식회사 Polyester release film and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060096665A (en) * 2005-03-02 2006-09-13 (주)국제라텍 Transparent antistatic release film, manufacturing method thereof and adhesive tape formed therefrom
KR20090032724A (en) * 2007-09-28 2009-04-01 도레이새한 주식회사 Manufacturing method of antistatic polyester film
KR20180003460A (en) * 2016-06-30 2018-01-09 코오롱인더스트리 주식회사 Polyester muti-layer film
KR20190094846A (en) * 2018-02-06 2019-08-14 도레이첨단소재 주식회사 Polyester film and method for manufacturing the same
KR20210149611A (en) * 2020-06-02 2021-12-09 코오롱인더스트리 주식회사 Polyester release film and method for preparing the same

Also Published As

Publication number Publication date
KR20230102068A (en) 2023-07-07
TWI858483B (en) 2024-10-11
CN118284658A (en) 2024-07-02
TW202330274A (en) 2023-08-01
JP2024546293A (en) 2024-12-19

Similar Documents

Publication Publication Date Title
WO2014178517A1 (en) Polyester-based primer composition, optical film using same and polarizing plate comprising same
WO2019054616A1 (en) Polyimide copolymer and polyimide film using same
WO2022220349A1 (en) Double-sided antistatic silicone release film
WO2015047014A1 (en) Release film and manufacturing method therefor
WO2014148684A1 (en) Protection film and polarizing plate using same
WO2018159918A1 (en) Window substrate and image display device comprising same
WO2018004288A2 (en) Polyester multilayered film
WO2019147099A1 (en) Antistatic coating solution composition and antistatic polyester film using same
WO2022131500A1 (en) Silicone release coating composition and release film comprising same
WO2023038425A1 (en) Release coating composition
WO2022097872A1 (en) Release film and preparation method therefor
WO2015102336A1 (en) Polyester film and method for manufacturing same
WO2021246851A1 (en) Polyester release film and method for manufacturing same
WO2022030942A1 (en) Conductive foam tape for attaching display panel
WO2015167235A1 (en) Polyester film and method for manufacturing same
WO2020189882A1 (en) Antistatic silicone release film
WO2022215831A1 (en) Thermosetting resin composition, cured product and prepreg thereof, and laminated sheet, metal foil-laminated sheet, and printed wiring board having said cured product or cured prepreg
WO2023128476A1 (en) Polyester release film and method for manufacturing same
WO2015102354A1 (en) Polyester film and method for preparing same
WO2022186427A1 (en) Release film
WO2021045557A1 (en) Polyester protection film for flexible display device
WO2024010242A1 (en) Release film
WO2021194071A1 (en) Adhesive composition for protective film, adhesive including same, and adhesive sheet using same
WO2019132451A1 (en) Polyester resin and polyester film using same
WO2025110382A1 (en) Polyester film and component comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280077180.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2024537128

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22916618

Country of ref document: EP

Kind code of ref document: A1