[go: up one dir, main page]

WO2023127946A1 - 電気集塵機 - Google Patents

電気集塵機 Download PDF

Info

Publication number
WO2023127946A1
WO2023127946A1 PCT/JP2022/048551 JP2022048551W WO2023127946A1 WO 2023127946 A1 WO2023127946 A1 WO 2023127946A1 JP 2022048551 W JP2022048551 W JP 2022048551W WO 2023127946 A1 WO2023127946 A1 WO 2023127946A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
voltage
dust collecting
electrode
electrostatic precipitator
Prior art date
Application number
PCT/JP2022/048551
Other languages
English (en)
French (fr)
Inventor
喬彬 長谷川
裕司 清水
Original Assignee
株式会社クリエイティブテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリエイティブテクノロジー filed Critical 株式会社クリエイティブテクノロジー
Priority to EP22916168.2A priority Critical patent/EP4458475A1/en
Priority to US18/724,916 priority patent/US20250121379A1/en
Priority to KR1020247021288A priority patent/KR20240128847A/ko
Priority to JP2023571099A priority patent/JPWO2023127946A1/ja
Priority to CN202280086406.9A priority patent/CN118510607A/zh
Publication of WO2023127946A1 publication Critical patent/WO2023127946A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • B03C3/64Use of special materials other than liquids synthetic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/82Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/04Ionising electrode being a wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/06Ionising electrode being a needle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation of bulk or dry particles in mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • This invention relates to an electric dust collector that collects dust in the air using an electric field.
  • the electrostatic precipitator type air purifier has a structure in which the air purifying ability is sufficiently exhibited even if the static pressure of the fan is low, so there is no need to increase the rotational speed of the fan. Therefore, most electrostatic precipitator air purifiers are silent and do not generate noise.
  • the plus and minus electrodes of the dust collection structure must be brought close to each other. As a result, discharge occurs and ozone is likely to be generated. Therefore, this air purifier is also not suitable as a device for use in a personal space.
  • This electrostatic precipitator has a structure in which an ionization section and a dust collection section are assembled in a case, and the dust collection section is composed of a high-voltage electrode and a dust collection plate.
  • the ionization section is a DC ionizer, and the high-voltage electrode and the dust collection plate are each covered with an insulator. Then, a DC voltage of the same polarity is applied from a power supply to the ionizer and the high voltage electrode, and a DC voltage or a ground voltage of the opposite polarity to the applied voltage is applied to the dust collecting plate to operate.
  • the electrostatic precipitator can efficiently collect dust without generating ozone and noise.
  • This electrostatic precipitator can be made smaller, but does not have a structure that is completely adapted to personal space. In other words, although this electrostatic precipitator can be made thin, it requires a certain size in order to fully exhibit its air cleaning ability. For this reason, the size cannot be reduced to the extent that an individual can use it on a desk. Therefore, the installation place is limited.
  • air purifiers have been conventionally required to have functions to cope with sick house syndrome (formaldehyde), allergies to chemical substances, and the like. Conventionally, however, air purifiers have mainly been used for the purpose of improving the cleanliness of clean rooms in factories and preventing contamination by foreign matter.
  • the present invention has been made to solve the above-mentioned problems. It does not generate noise or ozone. It is an object of the present invention to provide an electrostatic precipitator capable of adsorbing substances at the molecular level such as chemical substances which are smaller than the particles.
  • a first aspect of the present invention provides an electric dust collector comprising an ionization section for generating ions and a dust collection section for electrically collecting dust to which ions are attached.
  • the ionization section is an ionizer that generates ions having the same polarity as the polarity of the applied voltage by applying a predetermined voltage to the electrode needles to cause corona discharge, and the dust collection section is the latter stage of the ionization section.
  • a high-voltage electrode having a plurality of gaps for passing dust attached with ions and to which a predetermined voltage is applied; and a dust collecting plate to which a voltage opposite to the polarity of the voltage applied or a ground voltage is applied to electrically adsorb dust with ions attached thereto, the polarity of the voltage applied to the electrode needle of the ionization unit and the high voltage
  • the polarity of the voltage applied to the electrode is set to the same polarity
  • the high-voltage electrode of the dust collection part is formed of a plurality of linear conductors arranged in parallel at a predetermined interval and each covered with an insulator.
  • the dust collecting plate of the dust portion is formed of a base material such as a semiconductor or an insulator and a carbon material covering the base material.
  • a high-voltage electrode having the same polarity as the ions is interposed between the ionization section and the dust collection plate to prevent the formation of an electric field directly between the ionization section and the dust collection plate.
  • a large amount of ions diffuse widely in front of the high-voltage electrode without going toward the dust collecting plate, and adhere to dust in a wide range.
  • a wide range of dust will be charged.
  • the charged dust is drawn toward the dust-collecting plate by the strong electric field generated between the high-voltage electrode and the dust-collecting plate, and is electrically attracted to the dust-collecting plate. be done.
  • the electric dust collector of the first aspect of the present invention has the ability to charge dust over a wide range and efficiently collect a large amount of charged dust by means of a strong electric field.
  • spark discharge may occur and ozone may be generated.
  • the energy that is supposed to be provided for generating ions is used for spark discharge, so there is a possibility that the efficiency of dust collection will be lowered.
  • the high voltage electrode is interposed between the ionization section and the dust collection plate, and the polarity of the voltage applied to the ionization section and the high voltage electrode are different.
  • the dust collecting plate is formed by covering the high-voltage electrode with an insulator and covering a substrate having a high volume resistivity such as a semiconductor or an insulator with a carbon material, almost no current flows. The occurrence of spark discharge can be reliably prevented. That is, since the first aspect of the present invention is of the electrostatic precipitator type, no noise is generated by the fan or the like. In addition, it is possible not only to prevent the generation of ozone, but also to reduce the thickness of the electrostatic precipitator by shortening the distance between the ionization part and the dust collecting plate.
  • the dust collecting plate of the dust collecting portion is formed of a base material such as a semiconductor or an insulator and a carbon material covering the base material, activated carbon, for example, can be used.
  • a carbon material By applying it as a carbon material, it is possible to adsorb not only particle-sized substances but also molecular-level substances such as chemical substances smaller than particles.
  • the adsorption capacity of the dust collecting plate is very high, even if a small dust collecting plate is used, a desired dust collecting capacity can be obtained.
  • not only the thickness but also the entire electrostatic precipitator can be reduced for use. That is, in the first aspect of the present invention, it is possible to miniaturize the device perfectly to suit personal space.
  • the structure of the substrate of the dust collecting plate is a wide surface area structure such as a corrugated honeycomb structure, a sponge structure, or a fiber structure.
  • the surface area of the dust collecting plate can be greatly increased. Therefore, even if the size of the dust collecting plate is set to be extremely small, the desired dust collecting ability can be maintained, so that the size of the electrostatic precipitator can be further reduced accordingly.
  • a third aspect of the present invention is the electrostatic precipitator according to the first aspect or the second aspect, wherein the intervals between the plurality of linear conductors forming the high voltage electrode are set within a range of 40 mm to 80 mm, and a plurality of The distance between the high-voltage electrode formed of the linear conductor and the dust collection plate is set within the range of 45 mm to 100 mm, and the distance from the electrode needle of the ionization section to the high-voltage electrode is set to 0 mm or more.
  • a fourth aspect of the present invention is the electrostatic precipitator according to any one of the first to third aspects, wherein the ionizer is a DC ionizer that generates ions by applying a DC voltage of 3 kV or more,
  • the voltage applied to the dust plate was configured to be a DC voltage or a ground voltage having a polarity opposite to that of the high voltage electrode.
  • an ionizer having an electrode needle of the same polarity as that of the electrode needle of the ionization section is arranged above and outside the dust collection section. It is assumed to be an additional configuration.
  • ions are generated not only from the electrode needles of the ionization section, but also from the electrode needles of the ionizer additionally provided above and outside the dust collecting section, so that the ions can be efficiently diffused over a wider area. It is possible to further improve the dust collection performance of the present invention.
  • a sixth aspect of the present invention is the electrostatic precipitator according to any one of the first to fifth aspects, in which the ionization part is arranged in front of an insulating cover with front and rear openings, and The dust section is assembled from the inner middle stage to the inner rear stage of the cover, and a front cover member made of insulating resin and having a plurality of openings is positioned between the ionization section and the high-voltage electrode of the dust collection section and in the ionization section. It is configured to be provided at a position away from the electrode needle.
  • the front cover member is provided between the ionization section and the high-voltage electrode of the dust collection section and at a position away from the electrode needle of the ionization section. It is possible to suppress deterioration in performance.
  • the structure of the dust collecting portion is such that a plurality of dust collecting plates are stacked in the front-rear direction behind the high-voltage electrode,
  • the structure is either a structure in which a plate is bent in the front-rear direction and a structure in which a dust collecting plate having an increased thickness is provided.
  • the thickness of the dust collecting plate can be increased several times, and the surface area of the dust collecting plate can be increased accordingly.
  • the size of the dust collecting plate can be reduced while maintaining the desired dust collecting ability, and the size of the electrostatic precipitator can be further reduced.
  • the electrostatic precipitator of the present invention no noise or ozone is generated.
  • further miniaturization can be achieved.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1;
  • FIG. 2 is an exploded perspective view of the electrostatic precipitator of FIG. 1 with parts cut away;
  • FIG. 4 is a cross-sectional view showing a state of ion generation by an ionization section;
  • FIG. 4 is a cross-sectional view showing a collected state of charged dust from above. It is an exploded sectional view for explaining an electrostatic precipitator according to a second embodiment of the present invention.
  • FIG 11 is a perspective view showing a base material of a dust collecting plate applied to an electric dust collector according to a third embodiment of the present invention
  • 8A and 8B are schematic diagrams showing an example of how to use the dust collecting plate, where FIG. 8A shows a state in which two dust collecting plates are stacked, and FIG. 8B shows a single dust collecting plate. is folded.
  • FIG. 8A shows a state in which two dust collecting plates are stacked
  • FIG. 8B shows a single dust collecting plate. is folded.
  • It is a perspective view which shows the electrostatic precipitator based on 4th Example of this invention.
  • It is a perspective view which shows the electrostatic precipitator based on 5th Example of this invention.
  • FIG. 1 is a perspective view showing an electrostatic precipitator according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1
  • FIG. 2 is an exploded perspective view of the electrostatic precipitator of FIG. 1 shown
  • the electrostatic precipitator 1 of this embodiment has a structure in which an ionization section 3 and a dust collection section 4 are incorporated in a cover 2 .
  • the cover 2 is a rectangular frame made of insulating resin with openings at the front (surface side in FIG. 1) and rear (back side in FIG. 1). It is assembled from the inner middle stage of the cover 2 to the inner rear stage.
  • the ionization section 3 is a section for generating ions, and is composed of an ionizer 30 and a power supply 10 .
  • the ionizer 30 is attached to the center of the front end of the lower surface of the upper frame 21 of the cover 2 .
  • This ionizer 30 is a DC ionizer, and as shown in FIG. 2, has an electrode needle 30a inside. The tip of the electrode needle 30a is directed downward, and the rear end is connected to the negative electrode 10a of a power supply 10 that generates a DC voltage. That is, the negative DC voltage from the power supply 10 is applied to the electrode needle 30 a of the ionizer 30 .
  • the voltage applied to the electrode needles 30a normally needs to be in the range of 3 kV to 7 kV. Therefore, in this embodiment, a DC power supply in the range of 3 kV to 7 kV was used as the power supply 10 .
  • the polarity of the voltage applied to the electrode needle 30a is arbitrary, but in this embodiment, it is set to apply a negative DC voltage. In other words, the direction of the electrode needle 30a and the voltage of the power source 10 were set so that the ions of the negative electrode diffuse in front of the dust collecting portion 4 and parallel to the surface of the dust collecting portion 4.
  • the dust collection part 4 is a part for electrically collecting dust with ions attached, and is composed of a front high-voltage electrode 5 and a rear dust collection plate 6 .
  • the high-voltage electrode 5 of the dust collection section 4 is a plurality of linear conductors 50 arranged downstream of the ionization section 3 and connected to the power source 10 .
  • the plurality of linear conductors 50 are arranged side by side in parallel at predetermined intervals in an upright state.
  • This interval that is, each interval G in which the plurality of linear conductors 50 are arranged side by side, is a gap for allowing dust with attached ions to pass through, and is set in the range of 40 mm to 80 mm, and is set in the range of 60 mm to 80 mm. is more preferably set to
  • Each of the linear conductors 50 is covered with an insulator 51 . It is desirable that such a linear conductor 50 be as thin as possible and capable of withstanding high voltage.
  • the linear conductor 50 is preferably made of copper, nickel, or an alloy thereof, and the insulator 51 is preferably made of silicon or polyethylene.
  • An upper end 50 a of such a linear conductor 50 is connected to a strip conductor 52 a provided on the lower surface of the upper frame 21 of the cover 2 , and the strip conductor 52 a is connected to the negative electrode 10 a of the power source 10 .
  • the negative DC voltage from the power supply 10 is applied to the plurality of linear conductors 50 . That is, as shown in FIG. 2, in the electrostatic precipitator 1 of this embodiment, both DC voltages applied to the electrode needles 30a of the ionizer 30 and the plurality of linear conductors 50 are set to have the same polarity and the same voltage value.
  • the DC voltage applied to the electrode needle 30 a of the ionizer 30 and the plurality of linear conductors 50 are set to the same voltage value, but they can be set to different voltage values if they have the same polarity. is of course.
  • the dust collecting plate 6 of the dust collecting portion 4 is, as shown in FIG.
  • the dust collecting plate 6 is arranged at a predetermined distance rearward from the high voltage electrode 5 in an upright state perpendicular to the dust collecting direction (right direction in FIG. 2).
  • the distance L1 from the electrode needle 30a of the ionizer 30 to the high voltage electrode 5 is set to 0 mm or more.
  • it is set to 10 mm or more.
  • a distance L2 from the high voltage electrode 5 to the dust collecting plate 6 is set within a range of 45 to 100 mm.
  • it is set within the range of 55 mm to 90 mm.
  • Such a dust collecting plate 6 is formed of a base material 60 and a carbon material 61 covering the base material 60, as shown in FIG.
  • a semiconductor, an insulator, or the like can be applied as the base material 60, and various materials such as activated carbon can be applied as the carbon material.
  • a urethane foam sponge 5 mm thick which is a porous insulator, is used as the base material 60, and activated carbon is used as the carbon material. If the number of pores in the urethane foam sponge exceeds 30ppi (pores per inch: the number of pores per inch of sponge), the pressure loss increases, air cannot pass through, and it becomes difficult to draw charged particles into the dust collection plate.
  • the area is 30 ppi or less.
  • the upper end 60a of the base material 60 coated with the carbon material 61 in this manner is connected to a terminal 62a provided behind the lower surface of the upper frame 21 of the cover 2 as shown in FIG. is connected to the positive electrode 10b of the As a result, the positive DC voltage from the power supply 10 is applied to the dust collecting plate 6 . That is, in the electric dust collector 1 of this embodiment, a DC voltage or a ground voltage having a polarity opposite to that of the voltage applied to the high voltage electrode 5 is applied to the dust collecting plate 6 formed of the base material 60 and the carbon material 61. is set to be applied. This voltage value is in the range of 0V to 5 kV.
  • a voltage value in the range of 0 to 3 KV is more preferable because the risk of electric discharge or electric shock can be further reduced.
  • a voltage having a polarity opposite to that of the high voltage electrode 5 or a ground voltage to the dust collecting plate 6, a strong electric field is generated between the high voltage electrode 5 and the dust collecting plate 6, and the high voltage electrode The charged dust passing through the gap G of 5 can be quickly attracted to the dust collecting plate 6 with a strong force.
  • FIG. 4 is a cross-sectional view showing a state of ion generation by the ionization section 3
  • FIG. 5 is a cross-sectional view showing a state of collecting charged dust from above.
  • the negative DC voltage of the power source 10 is applied to the electrode needle 30 a of the ionizer 30 and the linear conductor 50 of the high voltage electrode 5 , and the positive DC voltage is applied to the dust collecting plate 6 .
  • a negative DC voltage is applied to the electrode needle 30a of the ionizer 30, and corona discharge is generated at the tip portion of the electrode needle 30a.
  • the distance L2 from the high voltage electrode 5 to the dust collecting plate 6 is allowed to be set in the range of 45 to 100 mm, and the interval between the high voltage electrodes 5
  • the desired dust collection capacity can be obtained.
  • the inventors conducted a comparison experiment between the dust collecting ability and compactness of the dust collecting plate provided in the electrostatic precipitator of this embodiment and the dust collecting ability and compactness of the dust collecting plate provided in the conventional electrostatic precipitator.
  • rice field The conventional electric dust collector has a different dust collecting plate from the electric dust collector of this embodiment.
  • the dust collecting plate is a PVC (polyvinyl chloride) plate, and the conductor is covered with an insulating material.
  • a comparison experiment with a conventional electrostatic precipitator was conducted in an acrylic box measuring 1.4 m x 1.4 m x 1.4 m.
  • the electrostatic precipitator of this example achieved an attenuation factor of about 130% as compared to a conventional electrostatic precipitator having the same size of collecting plate.
  • the inventors were able to confirm that the electrostatic precipitator of this embodiment has a higher dust collecting capacity than the conventional electrostatic precipitator.
  • the size of the dust collecting plate in the electric dust collector of this embodiment is a small A6 size. , should be a large A4 size. In other words, in order to obtain the same level of dust collecting capacity as the electrostatic precipitator of this embodiment with the conventional electrostatic precipitator, it was necessary to increase the size of the dust collecting plate four times.
  • the electrostatic precipitator 1 of this embodiment the plurality of linear conductors 50, which are the high voltage electrodes 5, are interposed between the ionizer 30 and the dust collecting plate 6, and the polarity of the DC voltage applied to the ionizer 30 is changed. and the polarity of the DC voltage applied to the linear conductor 50 are set to have the same polarity, so that an electric field is not directly generated between the ionizer 30 and the dust collecting plate 6 . Therefore, almost no spark discharge is generated, and ozone is not generated.
  • the inventors applied a DC voltage of 7 KV to the ionizer 30 and the linear conductor 50 under the conditions of a room temperature of 23 ° C and a dry air flow rate of 20 L / min, and applied a ground voltage to the dust collection plate. 6 to drive the electrostatic precipitator 1 of this example.
  • an environmental ozone measuring instrument Model 1150 manufactured by Direc Co., Ltd. was used, and samples were taken at 1.5 L/min and sampled at intervals of 12 seconds.
  • the ozone concentration an average value for 10 minutes from 5 minutes after the start of measurement to 15 minutes was used.
  • the difference in ozone concentration from the blank was 0.0025 ppm or less, and it was confirmed that the amount of ozone generated was very small.
  • the air contains not only dust such as particle-sized chemical substances, but also dust such as chemical substances at a molecular level smaller than particles.
  • dust collecting plate 6 of the dust collecting portion 4 is formed of the insulating base material 60 and the carbon material 61, which is activated carbon. It can adsorb not only particle-sized dust but also molecular-level dust such as chemical substances that are smaller than particles.
  • the electric dust collector 1 of this embodiment the adsorption capacity of the dust collecting plate 6 is very high. Therefore, even if a small dust collecting plate 6 is used, a desired dust collecting capacity can be obtained.
  • the dust collecting plate 6 by making the dust collecting plate 6 smaller than usual, not only the thickness but also the entire electric dust collector 1 can be made small, so that it can be easily installed on a tabletop, etc., which is perfectly suitable for personal space.
  • a dust collector 1 can be provided.
  • activated carbon has a high ability to adsorb ozone. Therefore, even if an unexpected situation such as the ionizer 30 approaching the user due to breakage or the like occurs, the dust collecting plate 6 absorbs the generated ozone to protect the user.
  • the electric dust collector 1 of this embodiment is of an electric dust collection type, so it is not equipped with a noise-generating fan or the like. However, it is necessary to confirm whether or not noise is generated due to the miniaturization. Therefore, the inventors set the size of the electrostatic precipitator 1 to 1/8 that of the conventional electrostatic precipitator air purifier, and measured the sound volume. It was less than 1/10 of the sound volume of 40 dB or more generated by a HEPA filter type air purifier of about the same size, and moreover, the dust collection performance was more than double.
  • FIG. 6 is an exploded sectional view for explaining an electrostatic precipitator according to a second embodiment of the invention.
  • the electric dust collector 1 of this embodiment differs from the first embodiment in the electrical connection structure of the high-voltage electrode and the electrical connection structure of the ionizer.
  • the plurality of linear conductors 50 are connected in parallel to the negative electrode 10a of the power supply 10 through the belt-shaped conductors 52a (see FIG. 2).
  • one linear conductor 50 connected to the negative electrode 10a of the power source 10 is used as the high-voltage electrode.
  • a plurality of holes 23 are provided in the upper frame 21 and the lower frame 22 of the cover 2, and a single linear conductor 50 covered with an insulator 51 is passed through these holes 23. It was passed in a meandering shape.
  • a high voltage electrode having the same function as the high voltage electrode of the first embodiment was constructed.
  • power is supplied to the ionizer 30 of the ionization unit 3 by a wire from the negative electrode 10a of the power source 10.
  • the linear conductor 50 is also used as an electric wire for supplying power to the ionizer 30.
  • FIG. By adopting such an electrical connection structure, the electrical structure of the electrostatic precipitator is simplified. Since other configurations, functions and effects are the same as those of the first embodiment, the description thereof will be omitted.
  • FIG. 7 is a perspective view showing the base material of the dust collecting plate applied to the electric dust collector according to the third embodiment of the invention.
  • the electrostatic precipitator of this embodiment differs from the first and second embodiments in that the structure of the substrate 60 of the dust collecting plate 6' has a wide surface area.
  • paper was used as the base material, and the base material 60 with a corrugated honeycomb structure and a large surface area was formed using this paper.
  • a substrate 60 having a corrugated honeycomb structure having many cells 60d was formed.
  • a carbon material 61 (see FIG. 3) was adhered to the surface of this base material 60 to form a dust collecting plate 6' having a corrugated honeycomb structure.
  • FIG. 8A and 8B are schematic diagrams showing an example of how to use the dust collecting plate 6' shown in FIG. (b) shows a state in which one dust collecting plate 6' is bent. Even if the external dimensions of the dust collecting plate 6' when viewed from the front (left-right direction in FIG. 8) are the same as the external dimensions of the dust collecting plate 6 when viewed from the front described above, the dust collecting plate 6' has a large number of cells. 60d, the surface area of the dust collecting plate 6' increases, and the dust collecting capacity can be enhanced. In addition, as shown in FIG.
  • one dust collecting plate 6′ is bent in the front-rear direction and arranged behind the high-voltage electrode 5, so that the height dimension of the electrostatic precipitator 1 ( The length in the vertical direction in FIG. 8) can be reduced to one-half. Furthermore, instead of bending one dust collecting plate 6' shown in FIG. It can be made smaller. The height dimension of one dust collecting plate 6' shown in FIG. It can be made smaller. Other configurations, actions and effects are the same as those of the first and second embodiments, so description thereof will be omitted.
  • FIG. 9 is a perspective view showing an electric dust collector according to a fourth embodiment of this invention.
  • the electrostatic precipitator 1 of this embodiment differs from the first to third embodiments in that an ionizer 30' is additionally provided.
  • an ionizer 30 ′ separate from the ionizer 30 of the ionization section 3 is provided above and outside the dust collection section 4 .
  • the ionizer 30' was mounted on the upper frame 21 of the cover 2 so that the electrode needle 30a' having the same polarity as the electrode needle 30a of the ionization section 3 faces upward. Then, the electrode needle 30a' of the ionizer 30' was connected to the negative electrode 10a of the power source 10 (see FIG. 1).
  • the ionizer 30' operates to generate the ions I.
  • the ions I are generated not only from the ionizer 30 but also from the ionizer 30', so that the ions I can be efficiently diffused over a wider area.
  • Other configurations, actions and effects are the same as those of the first to third embodiments, so description thereof will be omitted.
  • FIG. 10 is a perspective view showing essential parts of an electrostatic precipitator according to a fifth embodiment of the invention
  • FIG. 11 is a schematic cross-sectional view for explaining the essential parts of the embodiment.
  • the electrostatic precipitator 1 of this embodiment differs from the first to fourth embodiments in that it has a front cover member 20 .
  • the ionization section 3 is arranged in the front stage inside the insulating cover 2 which is open at the front and rear. Then, the dust collecting part 4 is assembled from the inner middle stage to the inner rear stage of the cover 2 .
  • This increases the durability of the electrostatic precipitator 1 and protects it from damage.
  • the cover 2 of the electrostatic precipitator 1 is a mere rectangular frame, and cannot be said to provide sufficient protection.
  • the high-voltage electrode 5 of the dust collection part 4 is completely exposed from the front opening of the cover 2, and may come into contact with an external object and be damaged. Therefore, in the fifth embodiment, a front cover member 20 is provided to reinforce the cover 2 and protect the high voltage electrode 5.
  • the front cover member 20 is a grid-shaped member having a large number of openings 20a, and is made of an insulating resin like the cover 2. As shown in FIG. The front cover member 20 is arranged in front of the high-voltage electrode 5, and has its upper end fixed to the upper frame 21 of the cover 2, its lower end fixed to the lower frame 22, and its both sides fixed to both side frames 24, 24, respectively. . As shown in FIG. 11, the front cover member 20 is interposed between the ionizer 30 of the ionization section 3 and the high-voltage electrode 5. If it is too close, the front cover member 20 may interfere with the corona discharge at the electrode needle 30a, and the amount of ions generated may decrease.
  • the cover 2 is set to have a rectangular frame, but the shape is not limited to this and is free. Further, similarly to the front cover member 20, the cover 2 may be provided with an opening. Furthermore, although the front cover member 20 is formed of a grid member, it is not limited to this. Any member having an opening to the extent that a human hand or the like cannot enter may be used. Other configurations, actions and effects are the same as those of the first to fourth embodiments, so description thereof will be omitted.
  • the present invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the gist of the invention.
  • the high voltage electrode is formed of a plurality of parallel linear conductors 50 covered with an insulator 51 as shown in FIG. 3, but the high voltage electrode is limited to this. isn't it.
  • the ionizer 30 having one electrode needle 30a inside was exemplified as the ionizer of the ionization unit 3, but the ionizer applicable to the electrostatic precipitator includes It is not limited to this.
  • a so-called “carbon brush ionizer” in which electrode needles made of carbon conductive fibers are bundled in a brush shape can also be applied as an ionizer for an electrostatic precipitator.
  • the cover 2 of the above-described embodiment includes an upper frame 21, a lower frame 22, and two side frames 24 connecting the upper frame 21 and the lower frame 22, but the shape of the cover can be changed as appropriate. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrostatic Separation (AREA)

Abstract

電気集塵機1は、イオン化部3と集塵部4とをカバー2に組み付けた構造である。集塵部4を、高電圧電極5と集塵板6とで構成した。イオン化部3のイオナイザ30は、直流イオナイザであり、高電圧電極5は絶縁体51に被覆されている。集塵板6を基材60とこれを被覆した炭素素材61とで形成した。そして、同極性の直流電圧を電源10からイオナイザ30と高電圧電極5とに印加し、イオナイザ30と高電圧電極5とに印加した電圧とは逆極性の直流電圧もしくはグランド電圧を集塵板6に印加する。

Description

電気集塵機
 この発明は、空気中の塵埃を電界を利用して集塵する電気集塵機に関するものである。
 近年、空気清浄機は、季節家電ではなく、通年使用する家電として、一般家庭や企業のオフィスに普及している。これは、昨今のコロナウィルスやPM2.5等の環境問題に対応するためである。つまり、個人がパーソナルスペースや会社のデスク等の環境において使用するために、小型化した空気清浄機に関心が高まっているからである。
 空気清浄機には、フィルター式と電気集塵式の2方式があるが、このような空気清浄機を小型化すると、次のような不適応性が生じていた。
 まず、フィルター式の空気清浄機では、機器を小型化すると、ファンの静圧が低下してしまう。このため、空気をHEPAフィルターに充分に通過させることができず、空気清浄能力が劣化してしまう。そして、空気清浄能力を少しでも良くするために、ファンの回転数を上げると、騒音が発生してしまう。このため、フィルター式の空気清浄機の中には、大型空気清浄機並みの騒音を発する製品もあり、パーソナルスペースで使用する機器として全く適さない。
 一方、電気集塵式の空気清浄機では、ファンの静圧が低くても充分に空気清浄能力を発揮する構造であるため、ファンの回転数を上げる必要がない。このため、電気集塵式の空気清浄機は、ほとんどが無音であり、騒音を発生することはない。しかしながら、電気集塵式の空気清浄機では、小型化するには、集塵構造のプラス極とマイナス極とを近づけなければならない。このため、放電が発生して、オゾンが発生しやすくなる。したがって、この空気清浄機も、パーソナルスペースで使用する機器としては適さない。
 このような問題に対応すべく、特許文献1に記載の電気集塵機が提案された。
 この電気集塵機は、イオン化部と集塵部とをケースに組み付けた構造になっており、集塵部は、高電圧電極と集塵板とで構成されている。イオン化部は、直流イオナイザであり、高電圧電極と集塵板とは、それぞれ絶縁体に被覆されている。そして、同極性の直流電圧を電源からイオナイザと高電圧電極とに印加すると共に、この印加電圧とは逆極性の直流電圧もしくはグランド電圧を集塵板に印加することで、動作するようになっている。
 かかる構成により、この電気集塵機は、オゾンを発生させることなく、しかも騒音を発生させずに、効率的に集塵することができるようになっている。
国際公開第2021/131519号パンフレット
 しかし、上記した電気集塵機では、次のような問題がある。
 この電気集塵機では、小型化が可能であるが、パーソナルスペースに完全に適応した構造になっていない。
 つまり、この電気集塵機では、その厚みを薄くすることができるが、その空気清浄能力を充分発揮させるようにするには、ある程度の大きさが必要となる。このため、個人が卓上で使用することができる程度の大きさにはすることができない。したがって、その設置場所は限られたものとなる。
 また、空気清浄機には、シックハウス症候群(ホルムアルデヒド)や化学物質アレルギー等に対応するための機能が従来から求められている。しかし、従来では、空気清浄機を、工場におけるクリーンルームのクリーン度の改善や異物混入を防止する目的で使用するのが主流であった。このため、パーティクルサイズの化学物質等を吸着する機能は有していたが、パーティクルよりもさらに小さい分子レベルの化学物質等を吸着する機能は有しておらず、これらの物質を吸着することができなかった。
 小型化された空気清浄機についても、同様であり、上記電気集塵機もその例に漏れなかった。
 この発明は、上述した課題を解決するためになされたもので、騒音やオゾンの発生がなく、また、薄型化だけでなく、パーソナルスペースに完全に適応した小型化が可能で、しかも、パーティクルよりもさらに小さい化学物質等の分子レベルの物質を吸着可能な電気集塵機を提供することを目的とする。
 上記課題を解決するために、本発明の第1の態様は、イオンを発生させるためのイオン化部と、イオンが付着した塵を電気的に集塵するための集塵部とで構成される電気集塵機であって、イオン化部は、所定の電圧を電極針に印加してコロナ放電させることにより、印加電圧の極性と同極性のイオンを発生させるイオナイザであり、集塵部は、イオン化部の後段に配設され、イオンが付着した塵を通過させるための複数の間隙を有し且つ所定の電圧が印加される高電圧電極と、この高電圧電極の後段に配設され且つ高電圧電極に印加される電圧の極性と逆極性の電圧もしくはグランド電圧が印加されて、イオンが付着した塵を電気的に吸着する集塵板とを備え、イオン化部の電極針に印加する電圧の極性と高電圧電極に印加する電圧の極性とを同極性に設定し、集塵部の高電圧電極を、所定間隔で平行に並べられ且つそれぞれが絶縁体で被覆された複数の線状導体で形成し、集塵部の集塵板を、半導体や絶縁物等の基材と、当該基材を被覆した炭素素材とで形成した構成とする。
 かかる構成により、同極性の所定の電圧をイオン化部と高電圧電極とに印加すると共に、逆極性の所定の電圧もしくはグランド電圧を集塵板に印加すると、コロナ放電がイオン化部で起こり、印加電圧と同極性の多量のイオンがイオン化部から発生する。このとき、イオンと同極性の電圧が、イオン化部の後段に配されている高電圧電極に印加されているので、多量のイオンは、高電圧電極によって反発され、集塵板側への移動が抑制される。つまり、イオン化部と集塵板との間に、イオンと同極性の高電圧電極が介在し、イオン化部と集塵板との間に直接電界を作ることを防いでいる。これにより、多量のイオンが、集塵板側に向かわずに、高電圧電極の前で広く拡散し、広範囲にある塵に付着する。この結果、広範囲の塵が帯電されることとなる。
 帯電した塵は、高電圧電極の間隙を通過した後、高電圧電極と集塵板との間に発生している強い電界によって、集塵板側に引き込まれ、集塵板に電気的に吸着される。つまり、この発明の第1の態様の電気集塵機は、広い範囲で、塵を帯電させ、強い電界によって、帯電した多量の塵を効率的に集塵する能力を有している。
 ところで、イオン化部と集塵板との距離が近いと、火花放電が起こり、オゾンが発生するおそれがある。しかも、イオン発生に供与する筈のエネルギが、火花放電に使用されてしまうため、集塵効率も低下してしまうおそれがある。
 しかしながら、この発明の第1の態様の電気集塵機では、上記したように、高電圧電極をイオン化部と集塵板との間に介在させ、しかも、イオン化部に印加する電圧の極性と高電圧電極に印加する電圧の極性とを、同極性に設定しているので、電界が、イオン化部と集塵板との間に直接発生しない。このため、火花放電がほとんど発生しない。しかも、高電圧電極を絶縁体で被覆し、半導体又は絶縁体等の体積抵抗率の高い基材を炭素素材で覆うことで、集塵板を形成したので、電流がほとんど流れず、この結果、火花放電の発生を確実に防止することができる。つまり、この発明の第1の態様は、電気集塵式であるので、ファン等による騒音は発生しない。また、オゾンの発生を防止することができるだけでなく、イオン化部と集塵板との距離を近くして、電気集塵機の厚さを薄くすることができる。
 さらに、この発明の第1の態様では、集塵部の集塵板が、半導体や絶縁物等の基材と、この基材を被覆した炭素素材とで形成されているので、例えば、活性炭を炭素素材として適用することで、パーティクルサイズの物質だけでなく、パーティクルよりもさらに小さい化学物質等の分子レベルの物質をも吸着することができる。
 このように、集塵板の吸着能力が非常に高いので、小さな集塵板を使用しても、所望の集塵能力を得ることができる。この結果、厚さだけでなく、電気集塵機全体を小さくして使用することができる。つまり、この発明の第1の態様では、パーソナルスペースに完全に適応した小型化が可能である。
 本発明の第2の態様は、第1の態様に係る電気集塵機において、集塵板の基材の構造を、コルゲートハニカム構造やスポンジ構造、繊維構造等の広表面積構造にした構成とする。
 かかる構成により、集塵板の表面積を大幅に大きくすることができる。したがって、集塵板サイズを極めて小さく設定しても、所望の集塵能力を維持することができるので、その分、電気集塵機のさらなる小型化を図ることができる。
 本発明の第3の態様は、第1の態様又は第2の態様に係る電気集塵機において、高電圧電極を形成する複数の線状導体の間隔を、40mm~80mmの範囲内に設定し、複数の線状導体で形成された高電圧電極と集塵板との距離を、45mm~100mmの範囲内に設定し、イオン化部の電極針から高電圧電極までの距離を、0mm以上に設定した構成とする。
 かかる構成により、小型の電気集塵機をパーソナルスペースで自由に使用することができる。
 本発明の第4の態様は、第1の態様ないし第3の態様のいずれかに係る電気集塵機において、イオナイザは、3kV以上の直流電圧を印加することでイオンを発生する直流イオナイザであり、集塵板に印加する電圧は、高電圧電極と逆極性の直流電圧もしくはグランド電圧である構成とした。
 かかる構成により、イオナイザによる安定的なコロナ放電を維持することができる。
 本発明の第5の態様は、第1の態様ないし第4の態様のいずれかに係る電気集塵機において、イオン化部の電極針と同極の電極針を有するイオナイザを、集塵部の上方外側に追設した構成とする。
 かかる構成により、イオンが、イオン化部の電極針から発生するだけでなく、集塵部の上方外側に追設したイオナイザの電極針からも発生するので、イオンをより広範囲に効率よく拡散することができ、この発明の集塵性能のさらなる向上を図ることができる。
 本発明の第6の態様は、第1の態様ないし第5の態様のいずれかに係る電気集塵機において、イオン化部を、前方及び後方が開口した絶縁性のカバーの内部前段に配置すると共に、集塵部を、カバーの内部中段から内部後段にかけて組み付け、絶縁性樹脂からなり且つ複数の開口を有した前面カバー部材を、イオン化部と集塵部の高電圧電極との間であって且つイオン化部の電極針から離れた位置に設けた構成とする。
 かかる構成により、電気集塵機の部品をカバー内に取り付けることで、内部の電気集塵機を守り、耐久性を高めることができる。ところが、電気集塵機の周囲を覆うだけでは集塵性能が大幅に低下する。しかし、この発明の第6の態様では、前面カバー部材がイオン化部と集塵部の高電圧電極との間であって且つイオン化部の電極針から離れた位置に設けられているので、集塵性能の低下を抑えることができる。
  本発明の第7の態様は、第2の態様に係る電気集塵機において、集塵部の構造は、高電圧電極の後段に、集塵板を前後方向に複数重ねて配設した構造,集塵板を前後方向に折り曲げて配設した構造又は厚みを増した集塵板を配設した構造のいずれかである構成とした。
 かかる構成により、集塵板の厚さを数倍にすることができ、その分、集塵板の表面積を大きくすることができる。この結果、集塵板を、所望の集塵能力を保持したまま小型化することができ、電気集塵機のさらなる小型化を図ることができる。
 以上詳しく説明したように、この発明の電気集塵機によれば、騒音やオゾンの発生はない。また、機器の薄型化が可能なだけでなく、パーソナルスペースに完全に適応した小型化も可能である。しかも、パーティクルよりもさらに小さい化学物質等の分子レベルの物質をも吸着することができる、という効果がある。特に、第2及び第7の態様によれば、さらなる小型化を図ることができる。
 また、第5の態様によれば、集塵性能のさらなる向上を図ることができる。
この発明の第1実施例に係る電気集塵機を示す斜視図である。 図1の矢視A-A断面図である。 部品を一部破断して示す図1の電気集塵機の分解斜視図である。 イオン化部によるイオン発生状態を示す断面図である。 帯電塵の集塵状態を上方から示す断面図である。 この発明の第2実施例に係る電気集塵機を説明するための分解断面図である。 この発明の第3実施例に係る電気集塵機に適用される集塵板の基材を示す斜視図である。 集塵板の利用方法の一例を示す概略図であり、図8の(a)は、2枚の集塵板を重ねた状態を示し、図8の(b)は、1枚の集塵板を折り曲げた状態を示す。 この発明の第4実施例に係る電気集塵機を示す斜視図である。 この発明の第5実施例に係る電気集塵機を示す斜視図である。 実施例の要部を説明するための概略断面図である。
 以下、この発明の最良の形態について図面を参照して説明する。
(実施例1)
 図1は、この発明の第1実施例に係る電気集塵機を示す斜視図であり、図2は、図1の矢視A-A断面図であり、図3は、部品を一部破断して示す図1の電気集塵機の分解斜視図である。
 図1に示すように、この実施例の電気集塵機1は、イオン化部3と集塵部4とをカバー2に組み込んだ構造になっている。
 カバー2は、前方(図1の表面側)及び後方(図1の裏面側)が開口した絶縁性樹脂の四角形枠体であり、イオン化部3がカバー2の内部前段に、集塵部4がカバー2の内部中段から内部後段にかけて組み付けられている。
 イオン化部3は、イオンを発生させるための部分であり、イオナイザ30と電源10とで構成されている。
 イオナイザ30は、カバー2の上枠21の下面前端の中央に取り付けられている。このイオナイザ30は、直流イオナイザであり、図2に示すように、電極針30aを内部に有する。この電極針30aの先端は下向きにされ、後端は直流電圧を発生する電源10の負極10aに接続されている。
 すなわち、電源10からの負極の直流電圧が、イオナイザ30の電極針30aに印加されるようになっている。これにより、コロナ放電を電極針30aの先端部分に発生させ、電極針30a周辺に存在している空気を電気的に分解して、負極のイオンを発生することができる。
 安定的なコロナ放電を維持して、イオンを発生させるためには、電極針30aに印加する電圧は、通常3kV~7kVの範囲の電圧が必要である。このため、この実施例では、電源10として、3kV~7kVの範囲の直流電源を使用した。
 また、電極針30aに印加する電圧の極性は、任意であるが、この実施例では、負極の直流電圧を印加する設定とした。
 つまり、負極のイオンが、集塵部4の前で、集塵部4の面と平行に拡散するように、電極針30aの向きと電源10の電圧とを設定した。
 集塵部4は、イオンが付着した塵を電気的に集塵するための部分であり、前段の高電圧電極5と後段の集塵板6とで構成されている。
 集塵部4の高電圧電極5は、上記イオン化部3の後段に配置された複数の線状導体50であり、電源10に接続されている。
 複数の線状導体50は、図3に示すように、起立した状態で、横並びに所定間隔で平行に配置されている。
 この間隔、すなわち、複数の線状導体50の横並びの各間隔Gは、イオンが付着した塵を通過させるための間隙であり、40mm~80mmの範囲に設定されており、60mm~80mmの範囲内に設定されていることがより好ましい。
 複数の線状導体50のそれぞれは、絶縁体51によって被覆されている。
 このような線状導体50は、可能な限り細く、高電圧に耐えられる性能であることが望ましい。
 例えば、線状導体50としては、銅、ニッケル又はこれらの合金のいずれかが好ましく、絶縁体51は、シリコン又はポリエチレンであることが好ましい。
 このような線状導体50の上端50aは、カバー2の上枠21の下面に設けられた帯状導体52aに接続され、帯状導体52aが電源10の負極10aに接続されている。
 これにより、電源10からの負極の直流電圧が、複数の線状導体50に印加されることとなる。
 すなわち、図2に示すように、この実施例の電気集塵機1では、イオナイザ30の電極針30aと複数の線状導体50とに印加する両直流電圧が、同極性で同電圧値に設定されている。
 このように、イオナイザ30の電極針30aと複数の線状導体50とに印加する直流電圧を同極性に設定することにより、イオナイザ30で発生させたイオンが、高電圧電極5を構成する複数の線状導体50によって集塵板6に直接吸着されることを妨げ、同極の反発作用によってイオンの拡散を行うことができる。
 なお、この実施例では、イオナイザ30の電極針30aと複数の線状導体50とに印加する直流電圧を同電圧値に設定したが、同極性であれば、異なる電圧値に設定することができることは勿論である。
 集塵部4の集塵板6は、図3に示すように、高電圧電極5の後段に配置された平板状の導体であり、電源10に接続されている。
 集塵板6は、集塵方向(図2の右方向)と垂直に起立した状態で、高電圧電極5から所定距離後方に配置されている。
 なお、図2に示すように、イオナイザ30の電極針30aからこの高電圧電極5までの距離L1は、0mm以上に設定される。好ましくは、10mm以上に設定する。高電圧電極5から集塵板6までの距離L2は、45~100mmの範囲に設定される。好ましくは、55mm~90mmの範囲内に設定する。
 かかる集塵板6は、図3に示すように、基材60と、この基材60を被覆した炭素素材61とで形成されている。
 半導体や絶縁物等を、基材60として適用することができ、活性炭等各種の素材を、炭素素材として適用することができる。この実施例では、絶縁物の多孔質体であるウレタンフォームスポンジ5mm厚を基材60として適用し、活性炭を、炭素素材として適用した。ウレタンフォームスポンジのポア数は30ppi(pores per inch:スポンジ1インチあたりのポアの数)を超えると圧力損失が高くなり、空気が通らなくなり集塵板の内部に帯電したパーティクルを引き込むことが難しくなるため、面積が増えても有効ではなくなることから、30ppi以下であることが好ましい。また、集塵板6の体積抵抗率が10~1010Ω・cmになるように、炭素素材61を基材60に付着させることが好ましい。これにより、電流は集塵板6にはほとんど流れないが、必要な電圧は集塵板6に印加することができるので、感電や火花放電の発生を防止することができる。
 このように炭素素材61で被覆された基材60の上端60aは、図2に示すように、カバー2の上枠21の下面後方に設けられた端子62aに接続され、端子62aは、電源10の正極10bに接続されている。
 これにより、電源10からの正極の直流電圧が、集塵板6に印加されるようになっている。
 すなわち、この実施例の電気集塵機1では、高電圧電極5に印加される電圧の極性と逆極性の直流電圧もしくはグランド電圧が、基材60と炭素素材61とで形成された集塵板6に印加されるように設定されている。この電圧値は、0V~5kVの範囲の電圧値である。また、放電や感電のリスクを更に低くすることができるため、0~3KVの範囲の電圧値がより好ましい。
 このように、高電圧電極5と逆極性の電圧もしくはグランド電圧が集塵板6に印加されることで、高電圧電極5と集塵板6との間に強い電界が発生し、高電圧電極5の間隔Gを通過した帯電塵を強い力で素早く集塵板6に吸着することができる。
 次に、この実施例の電気集塵機1の作用及び効果について説明する。
 図4は、イオン化部3によるイオン発生状態を示す断面図であり、図5は、帯電塵の集塵状態を上方から示す断面図である。
 図2において、電源10の負極の直流電圧を、イオナイザ30の電極針30aと高電圧電極5の線状導体50とに印加し、正極の直流電圧を、集塵板6に印加する。
 すると、負極の直流電圧がイオナイザ30の電極針30aに印加し、コロナ放電が電極針30aの先端部分で発生する。この結果、図4に示すように、多量の負極のイオンIが電極針30aの先端部分の周囲に拡散する。
 このとき、イオンIは、集塵板6側に引き込まれようとするが、イオンIと同極性の負極の直流電圧が、高電圧電極5の線状導体50に印加されているので、イオンIの集塵板6側への移動が、同極性の線状導体50によって抑制される。
 すなわち、イオンIと同極性の電圧が印加された線状導体50が、イオナイザ30と集塵板6との間に介在しているので、イオナイザ30の電極針30aと集塵板6との間に、直接的な電界が形成されない。
 したがって、多量のイオンIは、集塵板6によって引き込まれることなく、高電圧電極5の前で広く拡散し、高電圧電極5の前の広範囲な空間に存在する塵に付着する。つまり、イオナイザ30と同極性の電圧が印加されている高電圧電極5の存在によって、広範囲の塵が帯電されることとなる。
 そして、図5に示すように、高電圧電極5から集塵板6側に向く強い電界Eが、高電圧電極5と集塵板6との間に発生しているので、負極に帯電した塵Dが、高電圧電極5の間隔Gを通過すると、これらの帯電塵Dは、急速に強い力で集塵板6側に引き込まれ、集塵板6に電気的に吸着される。
 つまり、この実施例の電気集塵機1によれば、広い範囲で多量の塵が帯電され、これらの帯電塵が、高電圧電極5と集塵板6との間の強い電界によって、強力且つ迅速に集塵される。
 ところで、この実施例の電気集塵機においては、上記したように、高電圧電極5から集塵板6までの距離L2を、45~100mmの範囲に設定することを許容し、高電圧電極5の間隔Gを、40mm~80mmの範囲に設定することを許容し、イオナイザ30の電極針30aから高電圧電極5までの距離L1を、0mm以上に設定することを許容することにより、所望の集塵能力を保持しつつ、電気集塵機の小型化を図っている。
 ここで、発明者等は、この実施例の電気集塵機が備える集塵板による集塵能力と小型性と従来型の電気集塵機が備える集塵板の集塵能力と小型性との比較実験を行った。
 なお、従来の電気集塵機は、この実施例の電気集塵機から集塵板を変更したもので、集塵板が、PVC(ポリ塩化ビニル)板であり、導体を絶縁物で覆った構造になっている。
 従来型の電気集塵機との比較実験は、大きさが1.4m×1.4m×1.4mのアクリルボックス内で行った。
 この実施例の電気集塵機では、同じ大きさの集塵板を備えた従来型の電気集塵機に対して、約130%の減衰率を達成した。これにより、発明者等は、この実施例の電気集塵機が、従来型の電気集塵機に比べ、高い集塵能力を有することを確認することができた。
 この実施例の電気集塵機における集塵板の大きさは小型のA6版であるが、従来型の電気集塵機の集塵板がこの小型の集塵板と同程度の集塵能力を得るためには、大型のA4版にしなければならない。つまり、従来型の電気集塵機でこの実施例の電気集塵機と同程度の集塵能力を得るようにするためには、集塵板を4倍のサイズにする必要があった。
  ところで、イオン化部3のイオナイザ30と集塵板6との距離が短いと、イオナイザ30から集塵板6に向かって、火花放電が起こり、オゾンが発生するおそれがある。
 しかしながら、この実施例の電気集塵機1では、高電圧電極5である複数の線状導体50を、イオナイザ30と集塵板6との間に介在させ、しかも、イオナイザ30に印加する直流電圧の極性と線状導体50に印加する直流電圧の極性とを、同極性に設定しているので、電界が、イオナイザ30と集塵板6との間に直接発生しない。このため、火花放電がほとんど発生しないので、オゾンも発生しない。
 発明者等は、かかる点を確認すべく、室温23°C、ドライエアー風量20L/minの条件下で、直流電圧7KVをイオナイザ30と線状導体50とに印加すると共に グランド電圧を集塵板6に印加して、この実施例の電気集塵機1を駆動した。測定にはダイレック社製環境用オゾン測定器Model1150を使用し、1.5L/minにて試料を採取し、12秒間隔でサンプリングを行った。オゾン濃度は測定開始5分後から15分までの10分間の平均値を用いた。
 すると、この実施例の電気集塵機では、ブランクとのオゾン濃度の差が0.0025ppm以下であり、オゾン発生量が非常に少ないことが確認された。
 ところで、空気中には、パーティクルサイズの化学物質等の塵だけでなく、パーティクルよりもさらに小さい分子レベルの化学物質等の塵も存在する。このように極小の塵は、一般型の電気集塵式の空気清浄機では、集塵することはできない。
 しかし、この実施例の電気集塵機1では、集塵部4の集塵板6を、絶縁物の基材60と、活性炭である炭素素材61とで形成したので、炭素素材61の吸着能力によって、パーティクルサイズの塵だけでなく、パーティクルよりもさらに小さい化学物質等の分子レベルの塵をも吸着することができる。
 このように、この実施例の電気集塵機1では、集塵板6の吸着能力が非常に高い。したがって、小さな集塵板6を使用しても、所望の集塵能力を得ることができる。つまり、集塵板6を通常よりも小型にすることで、厚さだけでなく、電気集塵機1全体を小さくすることができるので、卓上に容易に設置できる等、パーソナルスペースに完全に適応した電気集塵機1を提供することができる。
 さらに、活性炭は、オゾンを吸着する能力も高い。このため、破損等によりイオナイザ30がユーザに接近する等の想定外の事態が生じた場合でも、集塵板6が発生したオゾンを吸着して、ユーザを保護する。
 なお、この実施例の電気集塵機1は、電気集塵式なので、騒音を発生するファン等は搭載していない。しかし、小型化によって、騒音が発生するか否かは、確認しておく必要がある。そこで、発明者等は、電気集塵機1のサイズを、従来の電気集塵式の空気清浄機の8分の1に設定して動作させ、その音量を測定したところ、16dBとなり、その音量は同程度の大きさのHEPAフィルター式の空気清浄機が発生する40dB以上の音量の10分の1以下であり、しかも、集塵性能は2倍以上であった。
(実施例2)
 次に、第2実施例について説明する。
 図6は、この発明の第2実施例に係る電気集塵機を説明するための分解断面図である。
 この実施例の電気集塵機1は、高電圧電極の電気接続構造とイオナイザの電気接続構造が、上記第1実施例と異なる。
 上記第1実施例では、複数の線状導体50を、帯状導体52a(図2参照。)を通じて電源10の負極10aに並列に接続した。しかし、この実施例では、図6に示すように、1本の線状導体50を電源10の負極10aに接続して構成したものを、高電圧電極として適用した。
 具体的には、複数の孔23を、カバー2の上枠21と下枠22とに設け、絶縁体51で被覆された1本の線状導体50を、これらの孔23に靴紐を通すように蛇行状に通した。そして、線状導体50の基端50aを電源10の負極10aに接続することにより、上記第1実施例の高電圧電極と同機能の高電圧電極を構成した。
 また、上記第1実施例では、イオン化部3のイオナイザ30への給電を、電源10の負極10aからの電線で行う構成にした。これに対して、この実施例では、線状導体50の末端50bを、イオナイザ30に接続させることによって、線状導体50を、イオナイザ30に対する給電用の電線として兼用した。
 かかる電気接続構造をとることにより、電気集塵機の電気的構造を簡略化した。
 その他の構成、作用及び効果は、上記第1実施例と同様であるので、その記載は省略する。
(実施例3)
 次に、第3実施例について説明する。
 図7は、この発明の第3実施例に係る電気集塵機に適用される集塵板の基材を示す斜視図である。
 この実施例の電気集塵機では、集塵板6’の基材60の構造が広表面積の構造になっている点が、上記第1及び第2の実施例と異なる。
 具体的には、紙を基材の素材として使用し、この紙を用いて、コルゲートハニカム構造の広表面積の基材60を形成した。例えば、図7に示すように、波状のコルゲート紙60bを、ライナー紙60cを介して積層することで、多数のセル60dを有したコルゲートハニカム構造の基材60を形成した。
 そして、炭素素材61(図3参照)をこの基材60の表面に付着して、コルゲートハニカム構造の集塵板6’を形成した。
 この集塵板6’をうまく利用することで、電気集塵機1をさらに小型にすることができる。
 図8は、図7に示す集塵板6’の利用方法の一例を示す概略図であり、図8の(a)は、1枚の集塵板6’を用いた状態を示し、図8の(b)は、1枚の集塵板6’を折り曲げた状態を示す。
 集塵板6’の正面視(図8の左右方向)の外形寸法が、前述した集塵板6の正面視の外形寸法と同じ場合であっても、集塵板6’は、多数のセル60dを有しているので、集塵板6’の表面積が増え、集塵能力を高めることができる。
 また、図8の(b)に示すように、1枚の集塵板6’を前後方向に折り曲げた状態で、高電圧電極5の後段に配置することで、電気集塵機1の高さ寸法(図8の上下方向長さ)を2分の1に小型化することができる。
 さらに、図7に示す1枚の集塵板6’を折り曲げる代わりに、高さ寸法が半分の集塵板6’を2枚重ねて使用した場合においても、電気集塵機1を2分の1に小型化することができる。
 なお、図7に示す1枚の集塵板6’の高さ寸法は半分で、厚さ寸法(図8の左右方向長さ)を2倍にすることでも電気集塵機1を2分の1に小型化することができる。
 その他の構成、作用及び効果は、上記第1及び第2実施例と同様であるので、その記載は省略する。
(実施例4)
 次に、第4実施例について説明する。
 図9は、この発明の第4実施例に係る電気集塵機を示す斜視図である。
 この実施例の電気集塵機1は、イオナイザ30’が追設されている点が、上記第1ないし第3実施例と異なる。
 すなわち、図9に示すように、イオン化部3のイオナイザ30とは別体のイオナイザ30’を、集塵部4の上方の外側に設けた。
 具体的には、イオン化部3の電極針30aと同極の電極針30a’が、上方を向くように、イオナイザ30’をカバー2の上枠21上に取り付けた。そして、イオナイザ30’の電極針30a’を電源10の負極10a(図1参照)に接続した。
 かかる構成により、電源10をオンにすると、イオナイザ30’が動作して、イオンIを発生する。
 したがって、この実施例の電気集塵機1によれば、イオンIが、イオナイザ30から発生するだけでなく、イオナイザ30’からも発生するので、イオンIをより広範囲に効率よく拡散することができる。
 その他の構成、作用及び効果は、上記第1ないし第3実施例と同様であるので、その記載は省略する。
(実施例5)
 次に、第5実施例について説明する。
 図10は、この発明の第5実施例に係る電気集塵機の要部を示す斜視図であり、図11は、実施例の要部を説明するための概略断面図である。
 この実施例の電気集塵機1は、前面カバー部材20を有している点が、上記第1ないし第4実施例と異なる。
 すなわち、上記第1ないし第4実施例では、イオン化部3を前方及び後方が開口した絶縁性のカバー2の内部前段に配置した。そして、集塵部4をカバー2の内部中段から内部後段にかけて組み付けた。これにより、電気集塵機1の耐久性を高めると共に、破損から守るようにしている。
 しかし、電気集塵機1のカバー2は単なる四角形枠体であり、保護として充分とはいえない。また、集塵部4の高電圧電極5は、カバー2の前方開口から完全に露出しており、外部の物と接触して傷付くおそれがある。
 そこで、第5実施例では、前面カバー部材20を設けて、カバー2の補強と高電圧電極5の保護を図っている。
 具体的には、図10に示すように、前面カバー部材20は、多数の開口20aを有する格子状の部材であり、カバー2と同様に、絶縁性樹脂で形成されている。
 前面カバー部材20は、高電圧電極5の前方に配置され、その上端部がカバー2の上枠21に、下端部が下枠22に、両側部が両側枠24,24にそれぞれ固着されている。
 図11に示すように、この前面カバー部材20は、イオン化部3のイオナイザ30と高電圧電極5との間に介在することになるが、前面カバー部材20の位置がイオナイザ30の電極針30aに近づき過ぎると、電極針30aでコロナ放電が前面カバー部材20によって邪魔され、イオン発生量が減少するおそれがある。
 なお、この実施例では、カバー2を四角形枠体に設定したが、その形状はこれに限らず自由である。また、前面カバー部材20と同様に、カバー2に開口を設けても良い。
 さらに、前面カバー部材20を格子状の部材で形成したが、これに限らない。人の手等が入らない程度の開口を有した部材であれば良い。
その他の構成、作用及び効果は、上記第1ないし第4実施例と同様であるので、その記載は省略する。
 なお、この発明は、上記実施例に限定されるものではなく、発明の要旨の範囲内において種々の変形や変更が可能である。
 例えば、上記実施例では、高電圧電極を、図3に示したように、絶縁体51で被覆した複数の平行な線状導体50で形成したが、高電圧電極は、これに限定されるものではない。
 また、上記実施例では、コロナ放電の理解を容易にするため、イオン化部3のイオナイザとして、1本の電極針30aを内部に有するイオナイザ30を例示したが、電気集塵機に適用可能なイオナイザは、これに限るものではない。例えば、カーボンの導電繊維でなる電極針をブラシ状の束にした、いわゆる「カーボンブラシイオナイザ」も、電気集塵機のイオナイザとして適用することができる。
 さらに、上記実施例のカバー2は、上枠21と、下枠22と、上枠21及び下枠22を連結する2つの側枠24とを備える構成であるが、カバーの形状は適宜変更できる。例えば、2つの側枠24を有さないカバーを採択することも可能である。また、第1、第2、第4、第5実施例として、高電圧電極5を5つ有する構成を例示したが、高電圧電極の数は適宜変更できることは言うまでもない。
 1…電気集塵機、 2…カバー、 3…イオン化部、 4…集塵部、 5…高電圧電極、 6,6’…集塵板、 60a…上端、 60b…コルゲート紙、 60c…ライナー紙、 60d…セル、 10…電源、 10a…負極、 10b…正極、 20…前面カバー部材、 20a…開口、 21…上枠、 22…下枠、 23…孔、 24…側枠、 30,30’…イオナイザ、 30a,30a’…電極針、 50…線状導体、 50a…上端(基端)、 50b…末端、  51,60…基材、 61…炭素素材、 52a…帯状導体、 62a…端子、 E…電界、 G…間隔、 I…イオン、 D…帯電塵。

Claims (6)

  1.  イオンを発生させるためのイオン化部と、イオンが付着した塵を電気的に集塵するための集塵部とで構成される電気集塵機であって、
     上記イオン化部は、所定の電圧を電極針に印加してコロナ放電させることにより、印加電圧の極性と同極性のイオンを発生させるイオナイザであり、
     上記集塵部は、上記イオン化部の後段に配設され、上記イオンが付着した塵を通過させるための複数の間隙を有し且つ所定の電圧が印加される高電圧電極と、この高電圧電極の後段に配設され且つ高電圧電極に印加される電圧の極性と逆極性の電圧もしくはグランド電圧が印加されて、上記イオンが付着した塵を電気的に吸着する集塵板とを備え、
     上記イオン化部の電極針に印加する電圧の極性と上記高電圧電極に印加する電圧の極性とを同極性に設定し、
     上記集塵部の高電圧電極を、所定間隔で平行に並べられ且つそれぞれが絶縁体で被覆された複数の線状導体で形成し、
     上記集塵部の集塵板を、半導体や絶縁物等の基材と、当該基材を被覆した炭素素材とで形成し、
     上記イオン化部の電極針と同極の電極針を有するイオナイザを、上記集塵部の上方外側に追設した、
     ことを特徴とする電気集塵機。
  2.  請求項1に記載の電気集塵機において、
     上記集塵板の基材の構造を、コルゲートハニカム構造やスポンジ構造、繊維構造等の広表面積構造にした、
     ことを特徴とする電気集塵機。
  3.  請求項1又は請求項2に記載の電気集塵機において、
     上記高電圧電極を形成する複数の線状導体の間隔を、40mm~80mmの範囲内に設定し、
     上記複数の線状導体で形成された高電圧電極と上記集塵板との距離を、45mm~100mmの範囲内に設定し、
     上記イオン化部の電極針から高電圧電極までの距離を、0mm以上に設定した、
     ことを特徴とする電気集塵機。
  4.  請求項1ないし請求項3のいずれかに記載の電気集塵機において、
     上記イオナイザは、3kV以上の直流電圧を印加することでイオンを発生する直流イオナイザであり、
     上記集塵板に印加する電圧は、高電圧電極と逆極性の直流電圧もしくはグランド電圧である、
     ことを特徴とする電気集塵機。
  5.  請求項1ないし請求項4のいずれかに記載の電気集塵機において、
     上記イオン化部を、前方及び後方が開口した絶縁性のカバーの内部前段に配置すると共に、上記集塵部を、カバーの内部中段から内部後段にかけて組み付け、
     絶縁性樹脂からなり且つ複数の開口を有した前面カバー部材を、上記イオン化部と集塵部の高電圧電極との間であって且つイオン化部の電極針から離れた位置に設けた、
     ことを特徴とする電気集塵機。
  6.  請求項2に記載の電気集塵機において、
     上記集塵部の構造は、上記高電圧電極の後段に、上記集塵板を前後方向に複数重ねて配設した構造,上記集塵板を前後方向に折り曲げて配設した構造又は厚みを増した集塵板を配設した構造のいずれかである、
     ことを特徴とする電気集塵機。
     
PCT/JP2022/048551 2021-12-28 2022-12-28 電気集塵機 WO2023127946A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22916168.2A EP4458475A1 (en) 2021-12-28 2022-12-28 Electrostatic precipitator
US18/724,916 US20250121379A1 (en) 2021-12-28 2022-12-28 Electrostatic precipitator
KR1020247021288A KR20240128847A (ko) 2021-12-28 2022-12-28 전기 집진기
JP2023571099A JPWO2023127946A1 (ja) 2021-12-28 2022-12-28
CN202280086406.9A CN118510607A (zh) 2021-12-28 2022-12-28 电集尘机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214990 2021-12-28
JP2021214990 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127946A1 true WO2023127946A1 (ja) 2023-07-06

Family

ID=86999223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048551 WO2023127946A1 (ja) 2021-12-28 2022-12-28 電気集塵機

Country Status (7)

Country Link
US (1) US20250121379A1 (ja)
EP (1) EP4458475A1 (ja)
JP (1) JPWO2023127946A1 (ja)
KR (1) KR20240128847A (ja)
CN (1) CN118510607A (ja)
TW (1) TW202339855A (ja)
WO (1) WO2023127946A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165157A (en) * 1979-06-08 1980-12-23 Hisashi Kato Dust collecting electrode plate for electrostatic precipitator
JPS5899964A (ja) * 1981-12-09 1983-06-14 松下電器産業株式会社 空気清浄機
JPH0263561A (ja) * 1988-08-30 1990-03-02 Mitsubishi Electric Corp 空気清浄機の集塵装置
US5330559A (en) * 1992-08-11 1994-07-19 United Air Specialists, Inc. Method and apparatus for electrostatically cleaning particulates from air
JP2020138178A (ja) * 2019-03-01 2020-09-03 パナソニックIpマネジメント株式会社 エアフィルタユニットおよびそれを用いた空気清浄装置
WO2021131519A1 (ja) 2019-12-27 2021-07-01 株式会社クリエイティブテクノロジー 電気集塵機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417076B2 (ja) 2020-02-21 2024-01-18 フリュー株式会社 情報処理方法、撮影装置、および画像管理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165157A (en) * 1979-06-08 1980-12-23 Hisashi Kato Dust collecting electrode plate for electrostatic precipitator
JPS5899964A (ja) * 1981-12-09 1983-06-14 松下電器産業株式会社 空気清浄機
JPH0263561A (ja) * 1988-08-30 1990-03-02 Mitsubishi Electric Corp 空気清浄機の集塵装置
US5330559A (en) * 1992-08-11 1994-07-19 United Air Specialists, Inc. Method and apparatus for electrostatically cleaning particulates from air
JP2020138178A (ja) * 2019-03-01 2020-09-03 パナソニックIpマネジメント株式会社 エアフィルタユニットおよびそれを用いた空気清浄装置
WO2021131519A1 (ja) 2019-12-27 2021-07-01 株式会社クリエイティブテクノロジー 電気集塵機

Also Published As

Publication number Publication date
TW202339855A (zh) 2023-10-16
CN118510607A (zh) 2024-08-16
US20250121379A1 (en) 2025-04-17
JPWO2023127946A1 (ja) 2023-07-06
EP4458475A1 (en) 2024-11-06
KR20240128847A (ko) 2024-08-27

Similar Documents

Publication Publication Date Title
US8070861B2 (en) Active field polarized media air cleaner
JP5014353B2 (ja) 改良されたフィルタ媒体による能動電界分極媒体型エアクリーナ
JP5494613B2 (ja) 集塵装置
CN100441308C (zh) 静电过滤结构
EP1849523A1 (en) Air cleaner
WO2001064349A1 (fr) Appareil depoussiereur et appareil de climatisation
JPH07503897A (ja) 2段階静電気フィルタ
JP2007253055A (ja) 集塵装置および空調装置
WO2007145329A1 (ja) 集塵装置
WO2017155458A1 (en) A device for cleaning of indoor air using electronic fans
JP2007007589A (ja) 電気集塵デバイス及びこれを組込んだ空気清浄装置
WO2023127946A1 (ja) 電気集塵機
JP2604872B2 (ja) エアフィルタ
CN1171983A (zh) 空气净化装置
JP2012081423A (ja) 電気集塵構造、電気集塵ユニットおよび空気清浄機
JPH1128388A (ja) 電気集塵フィルタとその電気集塵フィルタを備えた電気集塵装置
JP2008023445A (ja) 集塵装置
JP2006289337A (ja) 集塵装置および空調装置
TW202120192A (zh) 電場裝置和氣體淨化裝置以及淨化方法
JP3641704B2 (ja) 空気清浄装置用電極板
JP2008000719A (ja) 集塵装置
JP2018167189A (ja) 電気集塵装置
JP4591086B2 (ja) 放電装置及び空気浄化装置
WO2008010458A1 (fr) Appareil collecteur de poussière
JP2019171232A (ja) 集塵装置及び換気システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023571099

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280086406.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202404415S

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2022916168

Country of ref document: EP

Effective date: 20240729

WWP Wipo information: published in national office

Ref document number: 18724916

Country of ref document: US