[go: up one dir, main page]

WO2023106336A1 - Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
WO2023106336A1
WO2023106336A1 PCT/JP2022/045116 JP2022045116W WO2023106336A1 WO 2023106336 A1 WO2023106336 A1 WO 2023106336A1 JP 2022045116 W JP2022045116 W JP 2022045116W WO 2023106336 A1 WO2023106336 A1 WO 2023106336A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
positive electrode
secondary battery
ratio
active material
Prior art date
Application number
PCT/JP2022/045116
Other languages
French (fr)
Japanese (ja)
Inventor
雅巳 牧寺
奈々 荒井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023106336A1 publication Critical patent/WO2023106336A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for lithium secondary batteries, a positive electrode for lithium secondary batteries, and a lithium secondary battery.
  • the positive electrode active material for lithium secondary batteries contains a lithium metal composite oxide.
  • lithium metal composite oxides composite metal oxides containing metal elements such as Ni, Co and Al and Li are widely used.
  • lithium ions are desorbed and intercalated on the particle surfaces of the positive electrode active material for lithium secondary batteries. Therefore, attempts have been made to improve the performance of lithium secondary batteries by controlling the surface state and structure of particles of positive electrode active materials for lithium secondary batteries.
  • Patent Document 1 discloses a positive electrode active material composed of particles of a lithium-nickel composite oxide, comprising a core composed of the lithium-nickel composite oxide, and a coating layer formed on the surface of the core and composed of a compound containing aluminum. discloses a positive electrode active material having It is disclosed that the coating layer has an Al concentration of 2% by mass or more as measured by a scanning electron microscope-energy dispersive X-ray analysis method.
  • Patent Document 1 The purpose of the positive electrode active material for lithium secondary batteries in Patent Document 1 is to achieve a lithium secondary battery with high capacity and good initial charge/discharge efficiency. However, positive electrode active materials for lithium secondary batteries have room for further improvement in terms of initial discharge capacity and repeated charge/discharge performance of lithium secondary batteries.
  • the present invention has been made in view of the above circumstances, and a positive electrode for a lithium secondary battery that can obtain a lithium secondary battery that has a high initial discharge capacity and does not easily decrease in discharge capacity even after repeated charging and discharging.
  • An object of the present invention is to provide an active material, a positive electrode for a lithium secondary battery and a lithium secondary battery using the same.
  • a positive electrode active material for a lithium secondary battery containing a plurality of particles containing a lithium metal composite oxide having a layered structure contains at least Li, Ni, Al and element M
  • the element M is one or more selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P is an element of A positive electrode active material for a lithium secondary battery that satisfies the following conditions (1) and (2).
  • M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies ⁇ 0.1 ⁇ m ⁇ 0.2, 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.5.)
  • Positive electrode active material for secondary batteries [8] A positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries according to any one of [1] to [7]. [9] A lithium secondary battery having the positive electrode for a lithium secondary battery according to [8].
  • a positive electrode active material for a lithium secondary battery and a lithium secondary battery using the same can obtain a lithium secondary battery that has a high initial discharge capacity and does not easily decrease in discharge capacity even after repeated charging and discharging.
  • a positive electrode for a secondary battery and a lithium secondary battery can be provided.
  • FIG. 1 is a schematic configuration diagram showing an example of a lithium secondary battery
  • FIG. 1 is a schematic diagram showing the overall configuration of an all-solid lithium secondary battery of the present embodiment
  • a positive electrode active material for a lithium secondary battery will be described below. Preferred examples and conditions may be shared among the following embodiments. Moreover, in this specification, each term is defined below.
  • a metal composite compound is hereinafter referred to as "MCC”
  • a lithium metal composite oxide is hereinafter referred to as “LiMO”
  • a positive electrode active material for a lithium secondary battery is hereinafter referred to as "CAM”.
  • Ni refers to nickel atoms, not nickel metal.
  • Li and Al similarly refer to lithium atoms and aluminum atoms and the like, respectively.
  • “Cumulative volume particle size” is a value measured by a laser diffraction scattering method. Specifically, 0.1 g of CAM powder is added to 50 ml of a 0.2% by mass sodium hexametaphosphate aqueous solution to obtain a dispersion in which the powder is dispersed. Next, the particle size distribution of the resulting dispersion is measured using a laser diffraction/scattering particle size distribution analyzer (eg Mastersizer 2000 manufactured by Malvern) to obtain a volume-based cumulative particle size distribution curve.
  • a laser diffraction/scattering particle size distribution analyzer eg Mastersizer 2000 manufactured by Malvern
  • the value of the particle diameter when 10% is accumulated from the fine particle side is the 10% cumulative volume particle size (hereinafter sometimes referred to as D 10 ) ( ⁇ m), and from the fine particle side
  • the value of the particle size at 50% accumulation is the 50% cumulative volume particle size (hereinafter sometimes referred to as D 50 ) ( ⁇ m)
  • the value of the particle size at 90% accumulation from the microparticle side is 90% accumulation.
  • CAM composition analysis is analyzed by the following method. For example, after dissolving CAM powder in hydrochloric acid, it is measured using an ICP emission spectrometer.
  • an ICP emission spectrometer for example, Optima7300 manufactured by PerkinElmer Co., Ltd. can be used.
  • scanning electron microscope-energy dispersive X-ray spectroscopy is referred to as "SEM-EDX”.
  • SEM-EDX scanning electron microscope-energy dispersive X-ray spectrometer
  • a Schottky field emission scanning electron microscope equipped with Oxford Instruments X-Max 150 as an EDX detector JSM-7900F manufactured by JEOL Ltd.
  • the crystal structure of LiMO can be calculated by performing CAM powder X-ray diffraction measurement using CuK ⁇ as a radiation source and measuring the diffraction angle 2 ⁇ in the range of 10 to 90°. Specifically, it can be confirmed by observation using a powder X-ray diffraction measurement device (for example, Ultima IV manufactured by Rigaku Corporation).
  • a powder X-ray diffraction measurement device for example, Ultima IV manufactured by Rigaku Corporation.
  • analysis software for example, integrated powder X-ray analysis software JADE
  • a conductive material acetylene black
  • PVdF binder
  • NMP is used as an organic solvent when preparing the positive electrode mixture.
  • the obtained positive electrode mixture is applied to an Al foil having a thickness of 40 ⁇ m as a current collector and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of this positive electrode for a lithium secondary battery is 1.65 cm 2 .
  • ⁇ Production of lithium secondary battery (coin-type half cell)> The following operations are performed in an argon atmosphere glove box.
  • ⁇ Preparation of positive electrode for lithium secondary battery> Place the positive electrode for lithium secondary battery prepared in the part for coin battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil side facing down on the lower cover.
  • a laminated film separator (16 ⁇ m-thick laminated body obtained by laminating a heat-resistant porous layer on a polyethylene porous film) is placed thereon. 300 ⁇ l of electrolytic solution is injected here.
  • the electrolytic solution used is obtained by dissolving LiPF 6 in a mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a volume ratio of 30:35:35 (volume ratio) to 1 mol/l.
  • metallic lithium is used as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, the upper lid is placed via a gasket, and the lid is crimped with a crimping machine to produce a lithium secondary battery (coin type half cell R2032).
  • “Initial discharge capacity” means a value measured by charging and discharging under the following conditions.
  • the prepared lithium secondary battery was subjected to constant current charging at 0.2 CA up to 4.3 V at 25 ° C. and then constant voltage charging at 4.3 V for 5 hours.
  • a constant current discharge at 2 CA is performed.
  • the discharge capacity is measured, and the obtained value is defined as “initial discharge capacity” (mAh/g).
  • the 50th discharge capacity retention rate means a value measured by conducting a test in which charge-discharge cycles are repeated 50 times under the conditions shown below.
  • the lithium secondary battery produced is initially charged and discharged under the above conditions. After the initial charge/discharge, the charge/discharge is repeated at 1 CA under the same temperature and voltage conditions as the initial charge/discharge. After that, the discharge capacity (mAh/g) at the 50th cycle is measured. The ratio of the discharge capacity at the 50th cycle to the initial discharge capacity is defined as the 50th discharge capacity retention rate (%), that is, the cycle efficiency.
  • a lithium secondary battery with a high 50th discharge capacity retention rate is sometimes described as having good cycle characteristics, meaning that the discharge capacity is less likely to decrease even after repeated charging and discharging.
  • the CAM of the present embodiment contains a plurality of particles containing LiMO having a layered structure, LiMO contains at least Li, Ni, Al and an element M, and the element M is Co, Mn, Fe, Cu, Ti , Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P are one or more elements selected from the group consisting of the following (1) and (2) meet the conditions.
  • the ratio in a plurality of particles The relative standard deviation of R1 is greater than 28.5% and less than or equal to 70%.
  • the ratio in a plurality of particles The relative standard deviation of R2 is greater than 13% and less than or equal to 50%.
  • the CAM in this embodiment contains a plurality of particles.
  • the CAM in this embodiment is powdery.
  • the CAM may contain only secondary particles, or may contain a mixture of primary particles and secondary particles.
  • primary particles are particles that do not appear to have grain boundaries when observed in a field of view of 10,000 times using a scanning electron microscope or the like.
  • Secondary particles are particles in which the primary particles are agglomerated. That is, secondary particles are aggregates of primary particles.
  • the CAM of this embodiment satisfies the above (1) and (2). Whether the CAM satisfies (1) and (2) can be confirmed by analyzing the surface and cross section of the CAM with SEM-EDX.
  • the measurement range of the particle surface for calculating the ratio R1 is defined as the range from the outermost surface of the particle to the depth measurable by SEM-EDX at an acceleration voltage of 15 kV.
  • the measurement range of the particle cross section for calculating the ratio R2 is defined as the range from the outermost surface of the particle cross section produced by the method described below to the depth that can be measured by SEM-EDX at an acceleration voltage of 15 kV.
  • the particle surface is measured by SEM-EDX at an acceleration voltage of 15 kV and a resolution of 119 nm.
  • the particles to be measured may be 100 or more particles, for example, 150 particles having an equivalent circle diameter of 5 ⁇ m or more.
  • a ratio R1 is calculated for each particle to be measured, and a relative standard deviation (unit: %) of the ratio R1 of all particles to be measured is calculated.
  • the cured product is fixed on a sample table and set in a cross-sectional sample preparation device (also called a cross-section polisher, for example, IB-19520CCP manufactured by JEOL).
  • a cross-sectional sample preparation device also called a cross-section polisher, for example, IB-19520CCP manufactured by JEOL.
  • Argon ion beam processing is performed at an ion acceleration voltage of 6.0 kV to produce a cross section of the particle.
  • the particle cross section is analyzed with SEM-EDX at an acceleration voltage of 15 kV and a resolution of 60 nm.
  • the particle cross section to be measured may be a cross section of 100 or more, for example, 150 particles having an equivalent circle diameter of 5 ⁇ m or more.
  • a ratio R2 is calculated for each particle to be measured, and a relative standard deviation (unit: %) of the ratio R2 of all particles to be measured is calculated.
  • LiMO When LiMO contains Al, the particle structure tends to be stabilized, and the CAM performance tends to improve. Therefore, LiMO preferably contains Al.
  • Al tends to segregate in the manufacturing process, specifically the main firing process described later. Excessive segregation of Al tends to impede the diffusion of lithium ions and reduce the initial discharge capacity.
  • the Al content of LiMO is too low to suppress Al segregation, or if the fired product after main firing is washed excessively, the cycle characteristics tend to deteriorate.
  • both the initial discharge capacity and cycle characteristics of the lithium secondary battery can be improved by appropriately controlling the segregation amount of Al contained in the CAM.
  • the Al segregation amount is controlled by the manufacturing method described later, the variation in the Al ratio on the particle surface between the CAM particles and the variation in the Al ratio in the inside of the particle, that is, in the cross section of the particle are controlled. That is, a CAM that satisfies (1) and (2) can improve both the initial discharge capacity and cycle characteristics of a lithium secondary battery.
  • the relative standard deviation of the ratio R1 is greater than 28.5% and 70% or less, preferably 28.6-60.0%, more preferably 30.0-50.0%, 35 .0-50.0% is more preferred.
  • the relative standard deviation of the ratio R1 is more than 28.5%, Al is sufficiently contained in the CAM, and the cycle characteristics of the lithium secondary battery are improved.
  • the relative standard deviation of the ratio R1 is 70% or less, the diffusion inhibition of lithium ions due to Al segregation is suppressed, and the initial discharge capacity is improved.
  • the relative standard deviation of the ratio R2 is greater than 13% and 50% or less, preferably greater than 13.0% and 50.0% or less, more preferably 15.0-40.0%, 17 0-35.0% is more preferred, and 18.0-30.0% is particularly preferred.
  • the relative standard deviation of the ratio R2 is more than 13%, Al is sufficiently contained in the CAM, and the cycle characteristics of the lithium secondary battery are improved.
  • the relative standard deviation of the ratio R2 is 50% or less, the diffusion inhibition of lithium ions due to Al segregation is suppressed, and the initial discharge capacity is improved.
  • the “Al segregation portion” is a portion of the particles X where Al is segregated.
  • the particle surface and particle cross-section to be measured (hereinafter referred to as "surface to be measured") are arbitrarily selected. Therefore, when there are many particles in which the Al segregation parts are dispersed, the Al ratio (ratio R1 and ratio R2) for each surface to be measured tends to have little variation.
  • the ratio of Al (the ratio R1 and the ratio R2) tends to vary for each surface to be measured.
  • ratio a The ratio of the number of particles with a ratio R1 of 10 atomic% or less to the total number of a plurality of particles (hereinafter sometimes referred to as ratio a) is preferably 99% or more, and 99.5 to 100% More preferably, 99.9-100% is even more preferable.
  • ratio a is within the above range, the variation in composition on the particle surface between particles is small, so the initial discharge capacity tends to be higher.
  • ratio b The ratio of the number of particles having a ratio R2 of 10 atomic% or less to the total number of a plurality of particles (hereinafter sometimes referred to as ratio b) is preferably 88% or more, more preferably 90 to 100%. , 99-100% is more preferred.
  • ratio b is within the above range, the variation in the composition inside the particles between particles is small, so the initial discharge capacity tends to be higher.
  • the D 50 of CAM is preferably 5-20 ⁇ m, more preferably 5.0-20 ⁇ m, even more preferably 5.0-17 ⁇ m, particularly preferably 5.0-15 ⁇ m.
  • the cycle characteristics are likely to be improved.
  • the D 90 /D 10 of CAM is preferably 3 or less, more preferably 2-3, even more preferably 2.55-2.98, even more preferably 2.6-2.98.
  • the discharge capacity is higher and the cycle characteristics are better.
  • LiMO contained in the CAM contains at least Li, Ni, Al and element M, and is preferably represented by formula (A).
  • M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies ⁇ 0.1 ⁇ m ⁇ 0.2, 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.5.)
  • m in the formula (A) is more preferably -0.05 or more, and more preferably more than 0. From the viewpoint of obtaining a lithium secondary battery with a higher initial coulombic efficiency, m in the formula (A) is preferably 0.08 or less, more preferably 0.06 or less.
  • the upper limit and lower limit of m can be arbitrarily combined. Combinations include, for example, m greater than 0 and 0.2 or less, -0.05 to 0.08, greater than 0 and 0.06 or less, and the like.
  • x in the formula (A) is preferably 0.01 or more, more preferably 0.02 or more.
  • x in the formula (A) is preferably 0.3 or less, more preferably 0.1 or less.
  • the upper and lower limits of x can be arbitrarily combined. Examples of combinations include 0.01 to 0.3, 0.02 to 0.3, 0.02 to 0.1, and the like.
  • y in the formula (A) is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.05 or more.
  • y in the formula (A) is preferably 0.3 or less, more preferably 0.1 or less.
  • the upper limit and lower limit of y can be combined arbitrarily. Combinations include, for example, 0.01 to less than 0.5, 0.03 to less than 0.5, 0.03 to 0.3, 0.05 to 0.1, and the like.
  • x + y in the formula (A) is preferably more than 0 and 0.50 or less, more preferably more than 0 and 0.48 or less. It is preferably more than 0 and more preferably 0.46 or less.
  • M is preferably one or more metals selected from the group consisting of Co, Mn, W, B, Nb, and Zr.
  • M is at least one element M1 selected from the group consisting of Co and Mn, and Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, and one or more elements M2 selected from the group consisting of S and P.
  • the CAM ratio H1/H2 is preferably 1.5-1.6, more preferably 1.51-1.59. When the ratio H1/H2 is within the above range, the initial discharge capacity and cycle characteristics tend to be high.
  • the crystal structure of LiMO is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structure is composed of P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.
  • the monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to any one space group selected from the group consisting of /c.
  • the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal structure assigned to C2/m.
  • a crystalline structure is particularly preferred.
  • the CAM production method includes at least production of MCC, mixing of MCC and a lithium compound, calcination of the mixture of MCC and the lithium compound, main calcination of the reactant obtained by the calcination, and washing.
  • MCC MCC may be a metal composite hydroxide, a metal composite oxide, or a mixture thereof.
  • Metal composite hydroxides and metal composite oxides for example, contain Ni, Al, and element M in molar ratios represented by formula (A′) below, and are represented by formula (A′′) below.
  • the preferred ranges of x and y in formula (A') or (A'') are the same as the preferred ranges of x and y in formula (A) above.
  • Ni:Al:M (1-xy):x:y (A') Ni ( 1-xy) AlxMyO ⁇ ( OH) 2- ⁇ (A'') (In formula (A′) and formula (A′′), M is Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, One or more elements selected from the group consisting of S and P, satisfying 0 ⁇ x ⁇ 0.5 and 0 ⁇ y ⁇ 0.5.Formula (A'') is 0 ⁇ ⁇ ⁇ 3, ⁇ 0.5 ⁇ 2 and ⁇ - ⁇ 2.)
  • a method for producing MCC containing Ni, Al and Co will be described below as an example.
  • a metal composite hydroxide containing Ni, Al and Co is prepared.
  • a metal composite hydroxide can be produced by a batch coprecipitation method or a continuous coprecipitation method.
  • the nickel salt that is the solute of the nickel salt solution is not particularly limited, but at least one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.
  • the aluminum salt that is the solute of the aluminum salt solution for example, at least one of aluminum sulfate, aluminum nitrate, aluminum chloride and aluminum acetate can be used.
  • At least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used as the cobalt salt that is the solute of the cobalt salt solution.
  • the above metal salts are used in proportions corresponding to the composition ratio of Ni (1-xy) Al x M y (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of Ni, Al and Co in the mixed solution containing the metal salt corresponds to (1-xy):x:y in formula (A'). do. Also, water is used as a solvent.
  • the complexing agent is one capable of forming complexes with nickel ions, aluminum ions and cobalt ions in an aqueous solution. etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracil diacetic acid and glycine.
  • a complexing agent may or may not be used in the manufacturing process of the metal composite hydroxide.
  • the amount of the complexing agent contained in the mixture containing the nickel salt solution, aluminum salt solution, cobalt salt solution and complexing agent is, for example, metal salts (nickel salts, aluminum salts and cobalt salts). is greater than 0 and 2.0 or less.
  • Alkali metal hydroxides are, for example, sodium hydroxide or potassium hydroxide.
  • the pH value in this specification is defined as the value measured when the temperature of the mixed liquid is 40°C.
  • the temperature of the mixed liquid sampled from the reaction tank is not 40°C, the mixed liquid is heated or cooled to 40°C and the pH of the mixed liquid is measured.
  • Ni, Co and Al react to form Ni (1-xy) Al x Co y (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.
  • the pH value of the mixed solution in the reaction vessel is set within the range of 9-13, preferably 10-12.5, and the pH is controlled within ⁇ 0.5.
  • an overflow type reaction tank can be used to separate the formed reaction precipitate.
  • the reaction tank When producing a metal composite hydroxide by a batch coprecipitation method, the reaction tank includes a reaction tank without an overflow pipe and a thickening tank connected to the overflow pipe, and the overflowed reaction precipitate is removed in the thickening tank.
  • Apparatus having a mechanism for concentrating and recirculating to the reaction vessel, etc., may be mentioned.
  • gases for example, inert gases such as nitrogen, argon or carbon dioxide, oxidizing gases such as air or oxygen, or mixed gases thereof may be supplied into the reaction vessel.
  • inert gases such as nitrogen, argon or carbon dioxide
  • oxidizing gases such as air or oxygen, or mixed gases thereof
  • D50 and D90 / D10 of the CAM can be controlled within the range of the present embodiment.
  • the isolated reaction precipitate is washed, dehydrated, dried and sieved to obtain a metal composite hydroxide containing Ni, Al and Co.
  • reaction precipitate is preferably washed with an alkaline washing liquid, more preferably washed with an aqueous sodium hydroxide solution.
  • reaction precipitate may be washed with a washing liquid containing elemental sulfur.
  • cleaning solution containing elemental sulfur include an aqueous potassium or sodium sulfate solution.
  • the metal composite hydroxide is heated to produce the metal composite oxide. Multiple heating steps may be performed if desired.
  • the heating temperature in this specification means the set temperature of the heating device. When a plurality of heating steps are performed, the heating temperature means the temperature of the step heated at the highest temperature among the respective heating steps.
  • the heating temperature is preferably 400-700°C, more preferably 450-680°C.
  • the heating temperature is 400 to 700° C.
  • the metal composite hydroxide is sufficiently oxidized and a metal composite oxide having a BET specific surface area within an appropriate range is obtained.
  • the time for holding at the heating temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • the heating rate to the heating temperature is, for example, 50-400° C./hour.
  • the atmosphere in the heating device may be a moderate oxygen-containing atmosphere (oxygen, atmospheric air, etc.).
  • the oxygen-containing atmosphere may be a mixed gas atmosphere of an inert gas (nitrogen, argon, etc.) and an oxidizing gas (oxygen, air, etc.). good too.
  • the atmosphere in the heating device is an oxygen-containing atmosphere, the transition metal contained in the metal composite hydroxide is moderately oxidized, making it easier to control the form of MCC.
  • the oxygen or oxidizing agent in the oxygen-containing atmosphere should contain sufficient oxygen atoms to oxidize the transition metal.
  • the atmosphere in the heating device is changed by a method such as passing an oxidizing gas into the heating device or bubbling the oxidizing gas into the mixed liquid. can be controlled by
  • a peroxide such as hydrogen peroxide, a peroxide salt such as permanganate, a perchlorate, a hypochlorite, nitric acid, a halogen, ozone, or the like can be used.
  • This step is a step of mixing a lithium compound and MCC to obtain a mixture.
  • the MCC After drying the MCC as necessary, it is mixed with a lithium compound. After drying the MCC, it may be appropriately classified.
  • At least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, and lithium fluoride can be used as the lithium compound.
  • lithium hydroxide and lithium carbonate or a mixture thereof is preferred.
  • a mixture is obtained by mixing the lithium compound and MCC in consideration of the composition ratio of the final object. Specifically, the lithium compound and MCC are mixed at a ratio corresponding to the composition ratio of formula (A) above.
  • the amount (molar ratio) of Li to the total amount of 1 of metal atoms contained in MCC is preferably 1.00 or more, more preferably 1.02 or more, and even more preferably 1.05 or more.
  • a fired product is obtained by firing a mixture of a lithium compound and MCC as described later.
  • calcination means firing at a temperature lower than the firing temperature in the main firing described later (when the firing process described later has a plurality of firing stages, the firing temperature in the firing stage performed at the lowest temperature). It is to be. The calcination may be performed multiple times.
  • the calcination temperature is, for example, preferably 400°C or higher and lower than 700°C, more preferably 500-695°C, and even more preferably 600-690°C.
  • the firing temperature is 400° C. or higher, the reaction between MCC and the lithium compound is promoted.
  • the firing temperature is less than 700° C., even when using MCC with a large Ni content, a lithium secondary battery with excellent cycle characteristics can be achieved.
  • the firing temperature in this specification means the temperature of the atmosphere in the firing furnace, and is the maximum temperature held in the firing process (hereinafter sometimes referred to as the maximum held temperature).
  • the firing temperature means the temperature of the step of firing at the highest holding temperature among the firing steps.
  • the retention time in calcination is preferably 1-8 hours, more preferably 1.0-6 hours, and particularly preferably 1.2-5 hours.
  • the holding time in the calcination is 1 hour or longer, the reaction between MCC and the lithium compound can be sufficiently enhanced.
  • the retention time in the firing is 8 hours or less, volatilization of lithium ions is less likely to occur, resulting in improved battery performance.
  • the atmosphere during preliminary firing and main firing described later is preferably an oxygen-containing atmosphere, more preferably an oxygen atmosphere.
  • an oxygen-containing atmosphere oxygen defects are suppressed, and the battery performance is improved by stabilizing the structure.
  • the mixture of MCC and lithium compound may be fired in the presence of an inert melting agent.
  • the inert melting agent may remain in the fired product, or may be removed after firing by washing with a cleaning liquid as described later.
  • an inert melting agent for example, those described in WO2019/177032A1 can be used.
  • the main calcination of the reaction product may have a plurality of calcination stages with different calcination temperatures. For example, a first firing step and a second firing step in which firing is performed at a higher temperature than the first firing step may be performed independently. Furthermore, it may have firing stages with different firing temperatures and firing times.
  • Al contained in LiMO tends to segregate during main firing. Also, the Al segregation part may move to the particle surface during the main firing. Al segregation that has migrated to the surface tends to flow out during subsequent cleaning. The presence of an appropriate amount of Al segregation can mitigate the expansion and contraction of LiMO caused by charging and discharging of the lithium secondary battery.
  • the firing temperature of the main firing is preferably 700°C or higher, more preferably 700-1100°C, even more preferably 700-750°C.
  • the firing temperature is 700° C. or higher, a CAM having a strong crystal structure can be obtained.
  • the firing temperature is 1100° C. or less, volatilization of lithium ions on the particle surface can be reduced.
  • the firing temperature is 750° C. or lower, it becomes easier to control the relative standard deviation of the ratio R1 and the ratio R2 within the range of the present embodiment.
  • the holding time in main firing is preferably 1 to 50 hours.
  • the holding time in the main firing is 1 hour or longer, the reaction between unreacted MCC and the lithium compound in the reactants can be sufficiently enhanced.
  • the retention time in the main firing is 50 hours or less, volatilization of lithium ions is less likely to occur, and battery performance is improved.
  • the fired product is washed to remove the remaining unreacted lithium compound and inert melting agent, thereby obtaining a CAM.
  • Pure water or an alkaline cleaning liquid can be used for cleaning.
  • the alkaline cleaning solution include aqueous solutions of one or more anhydrides selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate and ammonium carbonate, and hydrates thereof. can be mentioned.
  • Ammonia water can also be used as the alkaline cleaning liquid.
  • the temperature of the cleaning liquid is preferably 15°C or lower, more preferably 10°C or lower, and even more preferably 8°C or lower.
  • the lower limit of the temperature of the cleaning liquid is, for example, 5°C.
  • a method of bringing the cleaning solution and the fired product into contact there is a method in which the fired product is put into each cleaning solution and stirred. Moreover, the method of pouring each washing
  • the cleaning it is preferable to bring the cleaning liquid and the fired product into contact within the appropriate time range.
  • the "appropriate time” in washing refers to a time sufficient to disperse the particles of the fired product while removing the unreacted lithium compound and inert melting agent remaining on the surface of the fired product. It is preferable to adjust the washing time according to the aggregation state of the baked product. Washing times in the range of, for example, 5 minutes to 1 hour are particularly preferred.
  • the ratio of the fired product to the mixture of the cleaning liquid and the fired product (hereinafter sometimes referred to as slurry) is preferably 5-60% by mass, more preferably 20-50% by mass, and 30% by mass. % and 50% by mass or less is more preferable.
  • the proportion of the fired product is 5-60% by mass, the unreacted lithium compound and any inert melting agent can be removed, and the relative standard deviation of the proportion R1 and the proportion R2 is controlled within the range of the present embodiment. easier to do.
  • the weight of the baked product per filtration area in dehydration filtration is preferably 5-30 kg/m 2 , more preferably 20-30 kg/m 2 .
  • the weight of the baked product per filtration area is preferably 30 kg/m 2 or less.
  • the fired product is preferably heat-treated.
  • the temperature and method for heat-treating the baked product are not particularly limited, but from the viewpoint of preventing a decrease in charge capacity, the temperature is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, and 150 ° C. or higher. More preferred.
  • the upper limit temperature is not particularly limited, but it is preferably 700° C. or lower, more preferably 600° C. or lower, and 400° C. or lower as long as it does not affect the crystallite size distribution of the fired product. is more preferred.
  • the volatilization amount of lithium ions can be controlled by the heat treatment temperature.
  • the upper limit and lower limit of the heat treatment temperature can be combined arbitrarily.
  • the heat treatment temperature is preferably 100-700°C, more preferably 130-600°C, even more preferably 150-400°C.
  • the atmosphere during the heat treatment includes an oxygen atmosphere, an inert atmosphere (nitrogen atmosphere, etc.), a reduced pressure atmosphere, or a vacuum atmosphere.
  • the relative standard deviation of the CAM ratio R1 and the ratio R2 the ratio a , the ratio b, D 50 , D 90 /D 10 , H1/H2 can be adjusted within the above ranges.
  • Lithium secondary battery A configuration of a lithium secondary battery suitable for using the CAM of the present embodiment will be described. Also, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for using the CAM of the present embodiment will be described.
  • An example of a lithium secondary battery suitable for using the CAM of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.
  • FIG. 2 is a schematic diagram showing an example of a lithium secondary battery.
  • a cylindrical lithium secondary battery 10 is manufactured as follows.
  • a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .
  • the positive electrode 2 has, for example, a positive electrode active material layer containing CAM, and a positive electrode current collector having the positive electrode active material layer formed on one surface.
  • a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and supporting the positive electrode mixture on one surface of a positive electrode current collector to form a positive electrode active material layer.
  • Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in
  • the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.
  • the shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.
  • a shape defined by IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted.
  • IEC60086 which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500
  • a shape such as a cylindrical shape or a rectangular shape can be mentioned.
  • the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.
  • FIG. 3 is a schematic diagram showing an example of the all-solid lithium secondary battery of this embodiment.
  • the all-solid lithium secondary battery 1000 shown in FIG. 3 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an outer package 200 that houses the laminate 100.
  • the all-solid lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector.
  • bipolar structures include structures described in JP-A-2004-95400. The material forming each member will be described later.
  • the positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 .
  • the positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.
  • the negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 .
  • the negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.
  • the laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 .
  • all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .
  • the all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .
  • a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used.
  • a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.
  • Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).
  • the all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this.
  • the all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .
  • the positive electrode having the above configuration has the CAM described above, it is possible to provide a lithium secondary battery with high initial discharge capacity and good cycle characteristics.
  • the lithium secondary battery with the above configuration has the positive electrode described above, it has a high initial discharge capacity and good cycle characteristics.
  • a CAM containing a plurality of particles containing LiMO having a layered structure The LiMO contains at least Li, Ni, Al and the element M, The CAM, wherein the relative standard deviation of said ratio R1 is 28.6-60.0% and the relative standard deviation of said ratio R2 is 17.0-35.0%.
  • M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies 0 ⁇ m ⁇ 0.2, 0.02 ⁇ x ⁇ 0.1, and 0.05 ⁇ y ⁇ 0.1.
  • the CAM according to any one of [11] to [16], wherein the ratio H1/H2 of the CAM is 1.5-1.6.
  • composition analysis of the CAM produced by the below-described method was performed by the above-described "CAM composition analysis" method.
  • ⁇ Cumulative volume particle size> The D 10 , D 50 and D 90 of the CAM produced by the method described below were measured by the "cumulative volume particle size" measurement method described above.
  • the relative standard deviation of the ratio R1, the relative standard deviation of the ratio R2, the ratio a and the ratio b were calculated by the method described in "SEM-EDX analysis" above.
  • the particles to be measured when calculating the ratio R1 are 150 particles having an equivalent circle diameter of 5 ⁇ m or more
  • the cross section of the particles to be measured when calculating the ratio R2 are 100 particles having an equivalent circle diameter of 5 ⁇ m or more. It was a cross section of a certain particle.
  • Example 1 After water was put into a reactor equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was maintained at 50°C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the molar ratio of Ni, Co, and Al was 0.88:0.09:0.03 to prepare a mixed raw material solution.
  • this mixed raw material solution and an aqueous solution of ammonium sulfate as a complexing agent were continuously added into the reaction tank while stirring.
  • a sodium hydroxide aqueous solution was added dropwise at appropriate times so that the pH of the mixed liquid in the reaction tank was 11.6 (measurement temperature: 40° C.), and a reaction precipitate 1 was obtained.
  • the metal composite hydroxide 1 was held at 650°C in an air atmosphere for 5 hours, heated, and cooled to room temperature to obtain MCC1, which is a metal composite oxide.
  • Lithium hydroxide was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Al contained in MCC1 was 1.10. Mixture 1 was obtained by mixing MCC1 and lithium hydroxide.
  • This mixture 1 was calcined at 650°C for 5 hours in an oxygen atmosphere to obtain a reactant 1.
  • the reactant 1 was calcined at 720° C. for 5 hours in an oxygen atmosphere to obtain a calcined product 1 .
  • the baked product 1 and pure water are mixed so that the ratio of the baked product 1 to the total amount is 30% by mass, and the slurry is stirred for 20 minutes and washed.
  • CAM-1 was obtained by heat-treating at ° C. for 10 hours, drying the water remaining after dehydration and filtration, and sieving.
  • the weight of the baked product 1 per filtration area was 26.9 kg/m 2 .
  • Example 2 CAM-2 was obtained in the same manner as in Example 1, except that the fired product 2 was obtained by changing the temperature during the main firing of the reaction product 1 to 700°C.
  • the weight of the baked product 2 per filtration area was 25.0 kg/m 2 .
  • Example 3 Except that the temperature at the time of main firing of reaction product 1 was changed to 700 ° C. to obtain fired product 3, and that the ratio of fired product 3 to the total amount was set to 40% by mass in the washing step, CAM-3 was obtained in the same manner as in Example 1.
  • the weight of the baked product 3 per filtration area was 25.0 kg/m 2 .
  • LiMO contained in CAM-3 had a layered structure.
  • CAM-C1 was obtained in the same manner as in Example 1, except that the fired product 1 was used as the CAM without being washed.
  • Lithium hydroxide was weighed so that the amount (molar ratio) of Li to 1 of the total amount of Ni, Co and Al contained in MCC1 was 1.00.
  • Mixture 2 was obtained by mixing MCC1 and lithium hydroxide. This mixture 2 was calcined at 650° C. for 5 hours in an oxygen atmosphere to obtain a reactant 2 .
  • a calcined product 5 was obtained in the same manner as in Example 1, except that the reactant 2 was calcined at 740° C. for 15 hours in an oxygen atmosphere.
  • the obtained calcined product 5 and pure water are mixed so that the ratio of the calcined product 5 to the total amount is 5% by mass, and the prepared slurry is stirred for 5 minutes and washed. It was heat-treated in an atmosphere at 120° C. for 10 hours, and the water remaining after dehydration was dried to obtain CAM-C2.
  • the weight of the fired product 5 per filtration area was 1.1 kg/m 2 .
  • CAM-1 to CAM-3 of Examples 1 to 3 and CAM-C1 to CAM-C3 of Comparative Examples 1 to 3 with or without washing process CAM D 50 , CAM D 90 /D 10 , ratio R1 relative Table 1 shows the standard deviation, the relative standard deviation of the ratio R2, the ratio a, the ratio b, the diffraction peak intensity height ratio H1/H2, and the initial discharge capacity and cycle efficiency of the lithium secondary battery using each CAM.
  • Comparative Example 1 in which the baked product was not washed, the relative standard deviation of the ratio R1 was 93.1% and the relative standard deviation of the ratio R2 was 78.9%. It is considered that since washing was not performed after firing, the segregated Al did not flow out and diffusion of lithium ions was inhibited by Al segregation. In Comparative Example 2, the relative standard deviation of the ratio R1 was 31.5% and the relative standard deviation of the ratio R2 was 11.0%. It is considered that the expansion and contraction of LiMO due to charging and discharging could not be buffered because the CAM-C2 did not contain a sufficient amount of Al due to excessive outflow of Al without dehydration filtration under predetermined conditions.
  • a CAM capable of obtaining a lithium secondary battery that has a high initial discharge capacity and whose discharge capacity does not easily decrease even after repeated charging and discharging, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

This positive electrode active material for a lithium secondary battery includes a plurality of particles having a layered structure and including a lithium metal complex oxide, wherein the lithium metal complex oxide includes at least Li, Ni, Al, and an element M, and satisfies the following conditions (1) and (2). (1) Regarding the proportion R1 of the number of atoms of Al to the total number of atoms of Ni, Al, and the element M, as obtained for each particle by measuring the surfaces of the plurality of particles by SEM-EDX, the relative standard deviation of the proportion R1 among the plurality of particles is greater than 28.5% and less than or equal to 70%. (2) Regarding the proportion R2 of the number of atoms of Al to the total number of atoms of Ni, Al, and the element M, as obtained for each particle by measuring cross-sections of the plurality of particles by SEM-EDX, the relative standard deviation of the proportion R2 among the plurality of particles is greater than 13% and less than or equal to 50%.

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2021年12月8日に日本に出願された特願2021-199660号について優先権を主張し、その内容をここに援用する。
The present invention relates to a positive electrode active material for lithium secondary batteries, a positive electrode for lithium secondary batteries, and a lithium secondary battery.
This application claims priority to Japanese Patent Application No. 2021-199660 filed in Japan on December 8, 2021, the content of which is incorporated herein.

 リチウム二次電池用正極活物質は、リチウム金属複合酸化物を含んでいる。リチウム金属複合酸化物としては、Ni、Co及びAl等の金属元素とLiとを含む複合金属酸化物が広く利用されている。リチウム二次電池の充放電を行うと、リチウム二次電池用正極活物質の粒子表面でリチウムイオンが脱離及び挿入される。そのため、リチウム二次電池用正極活物質の粒子の表面状態及び構造を制御し、リチウム二次電池の性能を向上する試みが行われている。 The positive electrode active material for lithium secondary batteries contains a lithium metal composite oxide. As lithium metal composite oxides, composite metal oxides containing metal elements such as Ni, Co and Al and Li are widely used. When the lithium secondary battery is charged and discharged, lithium ions are desorbed and intercalated on the particle surfaces of the positive electrode active material for lithium secondary batteries. Therefore, attempts have been made to improve the performance of lithium secondary batteries by controlling the surface state and structure of particles of positive electrode active materials for lithium secondary batteries.

 例えば特許文献1は、リチウムニッケル複合酸化物の粒子からなる正極活物質であって、リチウムニッケル複合酸化物からなる中心部と、中心部の表面に形成され、アルミニウムを含む化合物からなる被覆層とを有する正極活物質を開示している。被覆層は、走査型電子顕微鏡-エネルギー分散型X線分析法で測定されるAl濃度が2質量%以上であることが開示されている。 For example, Patent Document 1 discloses a positive electrode active material composed of particles of a lithium-nickel composite oxide, comprising a core composed of the lithium-nickel composite oxide, and a coating layer formed on the surface of the core and composed of a compound containing aluminum. discloses a positive electrode active material having It is disclosed that the coating layer has an Al concentration of 2% by mass or more as measured by a scanning electron microscope-energy dispersive X-ray analysis method.

JP-A-2017-188211JP-A-2017-188211

 特許文献1のリチウム二次電池用正極活物質は、高容量で、初期充放電効率のよいリチウム二次電池を達成することを目的としている。しかしながら、リチウム二次電池用正極活物質は、リチウム二次電池の初期放電容量及び繰り返し充放電性能の観点から更なる改善の余地がある。 The purpose of the positive electrode active material for lithium secondary batteries in Patent Document 1 is to achieve a lithium secondary battery with high capacity and good initial charge/discharge efficiency. However, positive electrode active materials for lithium secondary batteries have room for further improvement in terms of initial discharge capacity and repeated charge/discharge performance of lithium secondary batteries.

 本発明は、上記事情に鑑みてなされたものであって、初期放電容量が高く、繰り返し充放電を行っても放電容量が低下し難いリチウム二次電池を得ることができるリチウム二次電池用正極活物質、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a positive electrode for a lithium secondary battery that can obtain a lithium secondary battery that has a high initial discharge capacity and does not easily decrease in discharge capacity even after repeated charging and discharging. An object of the present invention is to provide an active material, a positive electrode for a lithium secondary battery and a lithium secondary battery using the same.

 本発明は、以下の態様を有する。
[1]層状構造を有するリチウム金属複合酸化物を含む複数の粒子を含有するリチウム二次電池用正極活物質であって、
 前記リチウム金属複合酸化物は、少なくともLi、Ni、Al及び元素Mを含有し、
 前記元素Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、
 下記(1)及び(2)の条件を満たす、リチウム二次電池用正極活物質。
 (1)前記複数の粒子の表面を走査型電子顕微鏡-エネルギー分散型X線分光法で測定することで粒子毎に得られる、Ni、Al及び前記元素Mの総原子数に対するAlの原子数の割合R1について、前記複数の粒子における前記割合R1の相対標準偏差は、28.5%より大きく70%以下である。
 (2)前記複数の粒子の断面を前記走査型電子顕微鏡-エネルギー分散型X線分光法で測定することで粒子毎に得られる、Ni、Al及び前記元素Mの総原子数に対するAlの原子数の割合R2について、前記複数の粒子における前記割合R2の相対標準偏差は、13%より大きく50%以下である。
[2]前記複数の粒子の総数に対する、前記割合R1が10atomic%以下の粒子の個数の割合が99%以上である、[1]に記載のリチウム二次電池用正極活物質。
[3]前記複数の粒子の総数に対する、前記割合R2が10atomic%以下の粒子の個数の割合が88%以上である、[1]又は[2]に記載のリチウム二次電池用正極活物質。
[4]前記リチウム二次電池用正極活物質の50%累積体積粒度が5μm以上20μm以下である、[1]~[3]の何れか1つに記載のリチウム二次電池用正極活物質。
[5]前記リチウム二次電池用正極活物質の10%累積体積粒度に対する90%累積体積粒度の比が3以下である、[1]~[4]の何れか1つに記載のリチウム二次電池用正極活物質。
[6]前記リチウム二次電池用正極活物質の組成式が、式(A)で表される、[1]~[5]の何れか1つに記載のリチウム二次電池用正極活物質。
 Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)
(式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、-0.1≦m≦0.2、0<x≦0.5及び0<y<0.5を満たす。)
[7]前記リチウム二次電池用正極活物質のCuKα線を使用した粉末X線回折測定において、2θ=44.1±1°の範囲内の回折ピーク強度高さであるH2に対する2θ=18.5±1°の範囲内の回折ピーク強度高さであるH1の比H1/H2が、1.5以上1.6以下である、[1]~[6]の何れか1つに記載のリチウム二次電池用正極活物質。
[8][1]~[7]の何れか1つに記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。
[9][8]に記載のリチウム二次電池用正極を有するリチウム二次電池。
The present invention has the following aspects.
[1] A positive electrode active material for a lithium secondary battery containing a plurality of particles containing a lithium metal composite oxide having a layered structure,
The lithium metal composite oxide contains at least Li, Ni, Al and element M,
The element M is one or more selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P is an element of
A positive electrode active material for a lithium secondary battery that satisfies the following conditions (1) and (2).
(1) The number of Al atoms relative to the total number of Ni, Al, and element M atoms obtained for each particle by measuring the surfaces of the plurality of particles with a scanning electron microscope-energy dispersive X-ray spectroscopy. Regarding the ratio R1, the relative standard deviation of the ratio R1 in the plurality of particles is greater than 28.5% and no greater than 70%.
(2) The number of Al atoms with respect to the total number of Ni, Al, and element M atoms obtained for each particle by measuring the cross section of the plurality of particles with the scanning electron microscope-energy dispersive X-ray spectroscopy. , the relative standard deviation of the ratio R2 in the plurality of particles is greater than 13% and less than or equal to 50%.
[2] The positive electrode active material for a lithium secondary battery according to [1], wherein the ratio of the number of particles having a ratio R1 of 10 atomic % or less to the total number of the plurality of particles is 99% or more.
[3] The positive electrode active material for a lithium secondary battery according to [1] or [2], wherein the ratio of the number of particles having a ratio R2 of 10 atomic % or less to the total number of the plurality of particles is 88% or more.
[4] The positive electrode active material for lithium secondary batteries according to any one of [1] to [3], wherein the positive electrode active material for lithium secondary batteries has a 50% cumulative volume particle size of 5 μm or more and 20 μm or less.
[5] The lithium secondary according to any one of [1] to [4], wherein the ratio of the 90% cumulative volume particle size to the 10% cumulative volume particle size of the positive electrode active material for lithium secondary batteries is 3 or less. Positive electrode active material for batteries.
[6] The positive electrode active material for lithium secondary batteries according to any one of [1] to [5], wherein the positive electrode active material for lithium secondary batteries has a compositional formula represented by formula (A).
Li[Li m (Ni (1-xy) Al x M y ) 1-m ]O 2 (A)
(In formula A, M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies −0.1≦m≦0.2, 0<x≦0.5 and 0<y<0.5.)
[7] In the powder X-ray diffraction measurement using CuKα rays of the positive electrode active material for a lithium secondary battery, the diffraction peak intensity height within the range of 2θ = 44.1 ± 1° is 2θ = 18.0 for H2. The lithium according to any one of [1] to [6], wherein the ratio H1/H2 of H1, which is the diffraction peak intensity height within the range of 5 ± 1 °, is 1.5 or more and 1.6 or less. Positive electrode active material for secondary batteries.
[8] A positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries according to any one of [1] to [7].
[9] A lithium secondary battery having the positive electrode for a lithium secondary battery according to [8].

 本発明によれば、初期放電容量が高く、繰り返し充放電を行っても放電容量が低下し難いリチウム二次電池を得ることができるリチウム二次電池用正極活物質、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a positive electrode active material for a lithium secondary battery and a lithium secondary battery using the same can obtain a lithium secondary battery that has a high initial discharge capacity and does not easily decrease in discharge capacity even after repeated charging and discharging. A positive electrode for a secondary battery and a lithium secondary battery can be provided.

リチウム二次電池の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a lithium secondary battery; FIG. 本実施形態の全固体リチウム二次電池の全体構成を示す模式図である。1 is a schematic diagram showing the overall configuration of an all-solid lithium secondary battery of the present embodiment; FIG.

 以下、本発明の一態様におけるリチウム二次電池用正極活物質について説明する。以下の複数の実施形態では、好ましい例や条件を共有してもよい。また、本明細書において、各用語を以下に定義する。 A positive electrode active material for a lithium secondary battery according to one embodiment of the present invention will be described below. Preferred examples and conditions may be shared among the following embodiments. Moreover, in this specification, each term is defined below.

 本願明細書において、金属複合化合物(Metal Composite Compound)を以下「MCC」と称し、リチウム金属複合酸化物(Lithium Metal composite Oxide)を以下「LiMO」と称し、リチウム二次電池用正極活物質(Cathode Active Material for lithium secondary batteries)を以下「CAM」と称す。 In the specification of the present application, a metal composite compound is hereinafter referred to as "MCC", a lithium metal composite oxide is hereinafter referred to as "LiMO", and a positive electrode active material for a lithium secondary battery (Cathode Active Material for lithium secondary batteries) is hereinafter referred to as "CAM".

 「Ni」とは、ニッケル金属ではなく、ニッケル原子を指す。「Li」及び「Al」等も同様に、それぞれリチウム原子及びアルミニウム原子等を指す。 "Ni" refers to nickel atoms, not nickel metal. “Li” and “Al” and the like similarly refer to lithium atoms and aluminum atoms and the like, respectively.

 数値範囲を例えば「1-10μm」又は「1~10μm」と記載した場合、1μmから10μmまでの範囲を意味し、下限値である1μmと上限値である10μmを含む数値範囲を意味する。 When the numerical range is described as, for example, "1-10 μm" or "1-10 μm", it means the range from 1 μm to 10 μm, including the lower limit of 1 μm and the upper limit of 10 μm.

 「累積体積粒度」は、レーザー回折散乱法によって測定される値である。具体的には、CAMの粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得る。次に、得られた分散液についてレーザー回折散乱粒度分布測定装置(例えば、マルバーン社製、マスターサイザー2000)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、微小粒子側から10%累積時の粒子径の値が10%累積体積粒度(以下、D10と記載することがある)(μm)であり、微小粒子側から50%累積時の粒子径の値が50%累積体積粒度(以下、D50と記載することがある)(μm)であり、微小粒子側から90%累積時の粒子径の値が90%累積体積粒度(以下、D90と記載することがある)(μm)である。 "Cumulative volume particle size" is a value measured by a laser diffraction scattering method. Specifically, 0.1 g of CAM powder is added to 50 ml of a 0.2% by mass sodium hexametaphosphate aqueous solution to obtain a dispersion in which the powder is dispersed. Next, the particle size distribution of the resulting dispersion is measured using a laser diffraction/scattering particle size distribution analyzer (eg Mastersizer 2000 manufactured by Malvern) to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the value of the particle diameter when 10% is accumulated from the fine particle side is the 10% cumulative volume particle size (hereinafter sometimes referred to as D 10 ) (μm), and from the fine particle side The value of the particle size at 50% accumulation is the 50% cumulative volume particle size (hereinafter sometimes referred to as D 50 ) (μm), and the value of the particle size at 90% accumulation from the microparticle side is 90% accumulation. Volume particle size (hereinafter sometimes referred to as D90 ) (μm).

 「CAMの組成分析」は、以下の方法で分析される。例えば、CAMの粉末を塩酸に溶解させた後、ICP発光分光分析装置を用いて測定する。ICP発光分光分析装置としては、例えば株式会社パーキンエルマー製、Optima7300を使用できる。 "CAM composition analysis" is analyzed by the following method. For example, after dissolving CAM powder in hydrochloric acid, it is measured using an ICP emission spectrometer. As an ICP emission spectrometer, for example, Optima7300 manufactured by PerkinElmer Co., Ltd. can be used.

 本実施形態において、走査型電子顕微鏡-エネルギー分散型X線分光法を「SEM-EDX」と記載する。走査型電子顕微鏡-エネルギー分散型X線分光装置としては、例えば、EDX検出器としてOxford Instrumonts社のX-Max 150を搭載したショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、JSM-7900F)を使用できる。 In this embodiment, scanning electron microscope-energy dispersive X-ray spectroscopy is referred to as "SEM-EDX". As a scanning electron microscope-energy dispersive X-ray spectrometer, for example, a Schottky field emission scanning electron microscope equipped with Oxford Instruments X-Max 150 as an EDX detector (JSM-7900F manufactured by JEOL Ltd. ) can be used.

[結晶構造]
 LiMOの結晶構造は、CuKαを線源とし、かつ回折角2θの測定範囲を10-90°とするCAMの粉末X線回折測定を行うことで算出できる。具体的には、粉末X線回折測定装置(例えば、株式会社リガク製UltimaIV)を用いて観察することにより確認できる。2θ=44.4±1°の範囲内の回折ピーク強度高さ(H2)に対する2θ=18.5±1°の範囲内の回折ピーク強度高さ(H1)の比H1/H2は、上記粉末X線回折測定装置を用いてCAMの粉末X線回折測定を行い、該当する回折ピークを解析ソフトウェア(例えば、統合粉末X線解析ソフトウェアJADE)により解析することで得ることができる。
[Crystal structure]
The crystal structure of LiMO can be calculated by performing CAM powder X-ray diffraction measurement using CuKα as a radiation source and measuring the diffraction angle 2θ in the range of 10 to 90°. Specifically, it can be confirmed by observation using a powder X-ray diffraction measurement device (for example, Ultima IV manufactured by Rigaku Corporation). The ratio H1/H2 of the diffraction peak intensity height (H1) within the range of 2θ = 18.5 ± 1 ° to the diffraction peak intensity height (H2) within the range of 2θ = 44.4 ± 1 ° is the above powder It can be obtained by performing powder X-ray diffraction measurement of CAM using an X-ray diffractometer and analyzing corresponding diffraction peaks with analysis software (for example, integrated powder X-ray analysis software JADE).

 「初期放電容量及び50回目放電容量維持率」は、以下の方法でリチウム二次電池を作製し、以下の条件で測定した。 "Initial discharge capacity and 50th discharge capacity retention rate" were measured under the following conditions after producing a lithium secondary battery by the following method.

<リチウム二次電池用正極の作製>
 CAMと導電材(アセチレンブラック)とバインダー(PVdF)とを、CAM:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製する。正極合剤の調製時には、NMPを有機溶媒として用いる。
<Preparation of positive electrode for lithium secondary battery>
CAM, a conductive material (acetylene black), and a binder (PVdF) were added and kneaded so as to have a composition of CAM: conductive material: binder = 92:5:3 (mass ratio), thereby producing a pasty positive electrode mixture. Prepare the agent. NMP is used as an organic solvent when preparing the positive electrode mixture.

 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得る。このリチウム二次電池用正極の電極面積は1.65cmとする。 The obtained positive electrode mixture is applied to an Al foil having a thickness of 40 μm as a current collector and vacuum-dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery. The electrode area of this positive electrode for a lithium secondary battery is 1.65 cm 2 .

<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行う。
 <リチウム二次電池用正極の作製>で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層した厚さが16μmの積層体)を置く。ここに電解液を300μl注入する。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートの30:35:35(体積比)で混合した混合液にLiPFを1mol/lとなるように溶解させたものを用いる。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032)を作製する。
<Production of lithium secondary battery (coin-type half cell)>
The following operations are performed in an argon atmosphere glove box.
<Preparation of positive electrode for lithium secondary battery> Place the positive electrode for lithium secondary battery prepared in the part for coin battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil side facing down on the lower cover. A laminated film separator (16 μm-thick laminated body obtained by laminating a heat-resistant porous layer on a polyethylene porous film) is placed thereon. 300 μl of electrolytic solution is injected here. The electrolytic solution used is obtained by dissolving LiPF 6 in a mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a volume ratio of 30:35:35 (volume ratio) to 1 mol/l.
Next, metallic lithium is used as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, the upper lid is placed via a gasket, and the lid is crimped with a crimping machine to produce a lithium secondary battery (coin type half cell R2032).

 「初期放電容量」とは、以下の条件で充放電を行って測定した値を意味する。作製したリチウム二次電池を、25℃において4.3Vまで0.2CAで定電流充電してから4.3Vで定電圧充電する定電流定電圧充電を5時間行った後、2.5Vまで0.2CAで放電する定電流放電を行う。放電容量を測定し、得られた値を「初期放電容量」(mAh/g)とする。 "Initial discharge capacity" means a value measured by charging and discharging under the following conditions. The prepared lithium secondary battery was subjected to constant current charging at 0.2 CA up to 4.3 V at 25 ° C. and then constant voltage charging at 4.3 V for 5 hours. A constant current discharge at 2 CA is performed. The discharge capacity is measured, and the obtained value is defined as "initial discharge capacity" (mAh/g).

 「50回目放電容量維持率」とは、以下に示す条件で充放電サイクルを50回繰り返す試験を行って測定した値を意味する。 "The 50th discharge capacity retention rate" means a value measured by conducting a test in which charge-discharge cycles are repeated 50 times under the conditions shown below.

 作製したリチウム二次電池を、上述の条件で初期充放電を行う。初期充放電後、初期充放電と同じ温度と電圧条件で、1CAで充放電を繰り返す。その後、50サイクル目の放電容量(mAh/g)を測定する。初期放電容量に対する50サイクル目の放電容量の割合を、50回目放電容量維持率(%)、すなわちサイクル効率とする。 The lithium secondary battery produced is initially charged and discharged under the above conditions. After the initial charge/discharge, the charge/discharge is repeated at 1 CA under the same temperature and voltage conditions as the initial charge/discharge. After that, the discharge capacity (mAh/g) at the 50th cycle is measured. The ratio of the discharge capacity at the 50th cycle to the initial discharge capacity is defined as the 50th discharge capacity retention rate (%), that is, the cycle efficiency.

 本明細書において、50回目放電容量維持率が大きいリチウム二次電池は、繰り返し充放電を行っても放電容量が低下し難いことを意味し、サイクル特性がよいと記載することがある。 In this specification, a lithium secondary battery with a high 50th discharge capacity retention rate is sometimes described as having good cycle characteristics, meaning that the discharge capacity is less likely to decrease even after repeated charging and discharging.

<リチウム二次電池用正極活物質>
 本実施形態のCAMは、層状構造を有するLiMOを含む複数の粒子を含有し、LiMOは、少なくともLi、Ni、Al及び元素Mを含有し、元素Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、下記(1)及び(2)の条件を満たす。
 (1)複数の粒子の表面をSEM-EDXで測定することで粒子毎に得られる、Ni、Al及び前記元素Mの総原子数に対するAlの原子数の前記割合R1について、複数の粒子における割合R1の相対標準偏差は、28.5%より大きく70%以下である。
 (2)複数の粒子の断面をSEM-EDXで測定することで粒子毎に得られる、Ni、Al及び前記元素Mの総原子数に対するAlの原子数の前記割合R2について、複数の粒子における割合R2の相対標準偏差は、13%より大きく50%以下である。
<Positive electrode active material for lithium secondary battery>
The CAM of the present embodiment contains a plurality of particles containing LiMO having a layered structure, LiMO contains at least Li, Ni, Al and an element M, and the element M is Co, Mn, Fe, Cu, Ti , Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P are one or more elements selected from the group consisting of the following (1) and (2) meet the conditions.
(1) Regarding the ratio R1 of the number of Al atoms to the total number of atoms of Ni, Al, and the element M obtained for each particle by measuring the surface of a plurality of particles with SEM-EDX, the ratio in a plurality of particles The relative standard deviation of R1 is greater than 28.5% and less than or equal to 70%.
(2) Regarding the ratio R2 of the number of Al atoms to the total number of atoms of Ni, Al, and the element M obtained for each particle by measuring the cross section of a plurality of particles with SEM-EDX, the ratio in a plurality of particles The relative standard deviation of R2 is greater than 13% and less than or equal to 50%.

 本実施形態におけるCAMは、複数の粒子を含む。言い換えれば、本実施形態におけるCAMは、粉末状である。本実施形態において、CAMは、二次粒子のみを含んでいてもよく、一次粒子と二次粒子の混合物で含んでいてもよい。 The CAM in this embodiment contains a plurality of particles. In other words, the CAM in this embodiment is powdery. In this embodiment, the CAM may contain only secondary particles, or may contain a mixture of primary particles and secondary particles.

 本実施形態において、「一次粒子」とは、走査型電子顕微鏡等を用いて10000倍の視野にて観察した際に、外観上に粒界が存在しない粒子である。「二次粒子」とは、前記一次粒子が凝集している粒子である。即ち、二次粒子は、一次粒子の凝集体である。 In the present embodiment, "primary particles" are particles that do not appear to have grain boundaries when observed in a field of view of 10,000 times using a scanning electron microscope or the like. "Secondary particles" are particles in which the primary particles are agglomerated. That is, secondary particles are aggregates of primary particles.

 本実施形態のCAMは、上記(1)及び(2)を満たす。
 CAMが(1)及び(2)を満たしているかは、CAMの表面及び断面をSEM-EDXで分析することで確認できる。
The CAM of this embodiment satisfies the above (1) and (2).
Whether the CAM satisfies (1) and (2) can be confirmed by analyzing the surface and cross section of the CAM with SEM-EDX.

 本明細書において、割合R1を算出するための粒子表面の測定範囲は、粒子の最表面からSEM-EDXにより加速電圧15kVで測定できる深さまでの範囲と規定する。同様に、割合R2を算出するための粒子断面の測定範囲は、後述の方法で作製された粒子断面の最表面からSEM-EDXにより加速電圧15kVで測定できる深さまでの範囲と規定する。 In this specification, the measurement range of the particle surface for calculating the ratio R1 is defined as the range from the outermost surface of the particle to the depth measurable by SEM-EDX at an acceleration voltage of 15 kV. Similarly, the measurement range of the particle cross section for calculating the ratio R2 is defined as the range from the outermost surface of the particle cross section produced by the method described below to the depth that can be measured by SEM-EDX at an acceleration voltage of 15 kV.

<SEM-EDX測定>
 粒子表面を加速電圧15kV、分解能119nmでSEM-EDXで測定する。測定対象粒子は、100個以上、例えば150個の円相当径5μm以上である粒子であればよい。測定対象粒子のそれぞれについて、割合R1を算出し、全測定対象粒子の割合R1の相対標準偏差(単位:%)を算出する。
<SEM-EDX measurement>
The particle surface is measured by SEM-EDX at an acceleration voltage of 15 kV and a resolution of 119 nm. The particles to be measured may be 100 or more particles, for example, 150 particles having an equivalent circle diameter of 5 μm or more. A ratio R1 is calculated for each particle to be measured, and a relative standard deviation (unit: %) of the ratio R1 of all particles to be measured is calculated.

 粒子の断面は、以下の方法で準備する。まず、粒子固定用樹脂に粒子を分散させる。その後、真空脱気し、得られた生成物をアルミニウム板に挟み硬化させる。これにより、粒子を含む樹脂の硬化物が得られる。 Prepare the cross section of the particles by the following method. First, particles are dispersed in a particle-fixing resin. Thereafter, vacuum degassing is performed, and the resulting product is sandwiched between aluminum plates and cured. Thereby, a cured product of the resin containing the particles is obtained.

 硬化物を試料台に固定し、断面試料作製装置(クロスセクションポリッシャともいう、例えば、JEOL社製、IB-19520CCP)にセットする。イオン加速電圧6.0kVでアルゴンイオンビーム加工し、粒子の断面を作製する。 The cured product is fixed on a sample table and set in a cross-sectional sample preparation device (also called a cross-section polisher, for example, IB-19520CCP manufactured by JEOL). Argon ion beam processing is performed at an ion acceleration voltage of 6.0 kV to produce a cross section of the particle.

 粒子断面を加速電圧15kV、分解能60nmでSEM-EDXで分析する。測定対象粒子断面は、100個以上、例えば150個の円相当径5μm以上である粒子の断面であればよい。測定対象粒子のそれぞれについて、割合R2を算出し、全測定対象粒子の割合R2の相対標準偏差(単位:%)を算出する。 The particle cross section is analyzed with SEM-EDX at an acceleration voltage of 15 kV and a resolution of 60 nm. The particle cross section to be measured may be a cross section of 100 or more, for example, 150 particles having an equivalent circle diameter of 5 μm or more. A ratio R2 is calculated for each particle to be measured, and a relative standard deviation (unit: %) of the ratio R2 of all particles to be measured is calculated.

 LiMOがAlを含むと粒子の構造が安定化しやすく、CAMの性能が向上しやすい。そのため、LiMOは、Alを含むことが好ましい。しかしながら、CAMの性能が向上する程度にAlを含むLiMOは、その製造工程、具体的には後述する本焼成工程においてAlが偏析しやすい。Alが過剰に偏析すると、リチウムイオンの拡散を阻害し、初期放電容量が低下する傾向にある。また、Alの偏析を抑えるためにLiMOのAl含有量を少なくし過ぎたり、本焼成後の焼成物を過剰に洗浄したりすると、サイクル特性が劣化する傾向にある。 When LiMO contains Al, the particle structure tends to be stabilized, and the CAM performance tends to improve. Therefore, LiMO preferably contains Al. However, in LiMO containing Al to such an extent that the performance of CAM is improved, Al tends to segregate in the manufacturing process, specifically the main firing process described later. Excessive segregation of Al tends to impede the diffusion of lithium ions and reduce the initial discharge capacity. In addition, if the Al content of LiMO is too low to suppress Al segregation, or if the fired product after main firing is washed excessively, the cycle characteristics tend to deteriorate.

 本実施形態では、CAMに含まれるAlの偏析量を適切に制御することで、リチウム二次電池の初期放電容量及びサイクル特性の両方を向上できる。後述する製造方法によりAlの偏析量を制御すると、CAMの粒子間での粒子表面におけるAlの割合のばらつき、及び粒子内部、つまり粒子断面におけるAlの割合のばらつきが制御される。即ち、(1)及び(2)を満たすCAMは、リチウム二次電池の初期放電容量及びサイクル特性の両方を向上できる。 In the present embodiment, both the initial discharge capacity and cycle characteristics of the lithium secondary battery can be improved by appropriately controlling the segregation amount of Al contained in the CAM. When the Al segregation amount is controlled by the manufacturing method described later, the variation in the Al ratio on the particle surface between the CAM particles and the variation in the Al ratio in the inside of the particle, that is, in the cross section of the particle are controlled. That is, a CAM that satisfies (1) and (2) can improve both the initial discharge capacity and cycle characteristics of a lithium secondary battery.

 割合R1の相対標準偏差は、28.5%より大きく70%以下であり、28.6-60.0%であることが好ましく、30.0-50.0%であることがより好ましく、35.0-50.0%であることがさらに好ましい。割合R1の相対標準偏差が28.5%より大きいと、AlがCAMに十分含まれており、リチウム二次電池のサイクル特性が向上する。割合R1の相対標準偏差が70%以下であると、Al偏析によるリチウムイオンの拡散阻害が抑制され、初期放電容量が向上する。 The relative standard deviation of the ratio R1 is greater than 28.5% and 70% or less, preferably 28.6-60.0%, more preferably 30.0-50.0%, 35 .0-50.0% is more preferred. When the relative standard deviation of the ratio R1 is more than 28.5%, Al is sufficiently contained in the CAM, and the cycle characteristics of the lithium secondary battery are improved. When the relative standard deviation of the ratio R1 is 70% or less, the diffusion inhibition of lithium ions due to Al segregation is suppressed, and the initial discharge capacity is improved.

 割合R2の相対標準偏差は、13%より大きく50%以下であり13.0%より大きく50.0%以下であることが好ましく、15.0-40.0%であることがより好ましく、17.0-35.0%であることがさらに好ましく、18.0-30.0%であることが特に好ましい。割合R2の相対標準偏差が13%より大きいと、AlがCAMに十分含まれており、リチウム二次電池のサイクル特性が向上する。割合R2の相対標準偏差が50%以下であると、Al偏析によるリチウムイオンの拡散阻害が抑制され、初期放電容量が向上する。 The relative standard deviation of the ratio R2 is greater than 13% and 50% or less, preferably greater than 13.0% and 50.0% or less, more preferably 15.0-40.0%, 17 0-35.0% is more preferred, and 18.0-30.0% is particularly preferred. When the relative standard deviation of the ratio R2 is more than 13%, Al is sufficiently contained in the CAM, and the cycle characteristics of the lithium secondary battery are improved. When the relative standard deviation of the ratio R2 is 50% or less, the diffusion inhibition of lithium ions due to Al segregation is suppressed, and the initial discharge capacity is improved.

 割合R1及びR2の相対標準偏差が上記範囲であると、Al偏析部が分散して存在する粒子が多く含まれるといえる。「Al偏析部」とは、粒子XにおいてAlが偏析した部分である。上述のSEM-EDXによる測定において、測定対象となる粒子表面及び粒子断面(以下、「測定対象面」と称する)は、任意に選択される。そのため、Al偏析部が分散して存在する粒子が多く含まれる場合、測定対象面毎のAlの割合(割合R1、及び割合R2)は、ばらつきが少ない傾向にある。一方で、Al偏析部の存在に偏りがある場合、Al偏析部を多く含む測定対象面と、Al偏析部をほとんど含まない測定対象面とが存在し得る。そのため、測定対象面毎のAlの割合(割合R1、及び割合R2)にばらつきが生じやすい。 When the relative standard deviations of the ratios R1 and R2 are within the above range, it can be said that many particles in which the Al segregation parts exist are dispersed. The “Al segregation portion” is a portion of the particles X where Al is segregated. In the above-described SEM-EDX measurement, the particle surface and particle cross-section to be measured (hereinafter referred to as "surface to be measured") are arbitrarily selected. Therefore, when there are many particles in which the Al segregation parts are dispersed, the Al ratio (ratio R1 and ratio R2) for each surface to be measured tends to have little variation. On the other hand, if there is a bias in the presence of Al segregation parts, there may be a surface to be measured that contains many Al segregation parts and a surface to be measured that contains almost no Al segregation parts. Therefore, the ratio of Al (the ratio R1 and the ratio R2) tends to vary for each surface to be measured.

 複数の粒子の総数に対する、割合R1が10atomic%以下の粒子の個数の割合(以下、割合aと記載することがある。)は、99%以上であることが好ましく、99.5-100%がより好ましく、99.9-100%がさらに好ましい。割合aが上述の範囲であると、粒子間の粒子表面における組成のばらつきが小さくなるため、初期放電容量がより高くなりやすい。 The ratio of the number of particles with a ratio R1 of 10 atomic% or less to the total number of a plurality of particles (hereinafter sometimes referred to as ratio a) is preferably 99% or more, and 99.5 to 100% More preferably, 99.9-100% is even more preferable. When the ratio a is within the above range, the variation in composition on the particle surface between particles is small, so the initial discharge capacity tends to be higher.

 複数の粒子の総数に対する、割合R2が10atomic%以下の粒子の個数の割合(以下、割合bと記載することがある。)は、88%以上であることが好ましく、90-100%がより好ましく、99-100%がさらに好ましい。割合bが上述の範囲であると、粒子間の粒子内部における組成のばらつきが小さくなるため、初期放電容量がより高くなりやすい。 The ratio of the number of particles having a ratio R2 of 10 atomic% or less to the total number of a plurality of particles (hereinafter sometimes referred to as ratio b) is preferably 88% or more, more preferably 90 to 100%. , 99-100% is more preferred. When the ratio b is within the above range, the variation in the composition inside the particles between particles is small, so the initial discharge capacity tends to be higher.

 CAMのD50は、5-20μmであることが好ましく、5.0-20μmであることがより好ましく、5.0-17μmがさらに好ましく、5.0-15μmが特に好ましい。CAMのD50が上述の範囲であると、サイクル特性がより向上しやすい。 The D 50 of CAM is preferably 5-20 μm, more preferably 5.0-20 μm, even more preferably 5.0-17 μm, particularly preferably 5.0-15 μm. When the D50 of CAM is within the above range, the cycle characteristics are likely to be improved.

 CAMのD90/D10は、3以下であることが好ましく、2-3がより好ましく、2.55-2.98がさらに好ましく、2.6-2.98がさらに好ましい。CAMのD90/D10が上述の範囲であると、放電容量がより高く、サイクル特性がより良好である。 The D 90 /D 10 of CAM is preferably 3 or less, more preferably 2-3, even more preferably 2.55-2.98, even more preferably 2.6-2.98. When the D 90 /D 10 of CAM is within the above range, the discharge capacity is higher and the cycle characteristics are better.

 CAMに含まれるLiMOは、少なくともLi、Ni、Al及び元素Mを含み、式(A)で表されることが好ましい。
 Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)
(式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、-0.1≦m≦0.2、0<x≦0.5及び0<y<0.5を満たす。)
LiMO contained in the CAM contains at least Li, Ni, Al and element M, and is preferably represented by formula (A).
Li[Li m (Ni (1-xy) Al x M y ) 1-m ]O 2 (A)
(In formula A, M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies −0.1≦m≦0.2, 0<x≦0.5 and 0<y<0.5.)

 サイクル特性に優れるリチウム二次電池を得る観点から、前記式(A)におけるmは、-0.05以上であることがより好ましく、0を超えることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記式(A)におけるmは、0.08以下であることが好ましく、0.06以下であることがより好ましい。 From the viewpoint of obtaining a lithium secondary battery with excellent cycle characteristics, m in the formula (A) is more preferably -0.05 or more, and more preferably more than 0. From the viewpoint of obtaining a lithium secondary battery with a higher initial coulombic efficiency, m in the formula (A) is preferably 0.08 or less, more preferably 0.06 or less.

 mの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、mが、0を超え0.2以下、-0.05~0.08、0を超え0.06以下等であることが挙げられる。 The upper limit and lower limit of m can be arbitrarily combined. Combinations include, for example, m greater than 0 and 0.2 or less, -0.05 to 0.08, greater than 0 and 0.06 or less, and the like.

 電池の内部抵抗が低いリチウム二次電池を得る観点から、前記式(A)におけるxは、0.01以上が好ましく、0.02以上がより好ましい。前記式(A)におけるxは、0.3以下であることが好ましく、0.1以下であることがより好ましい。 From the viewpoint of obtaining a lithium secondary battery with low battery internal resistance, x in the formula (A) is preferably 0.01 or more, more preferably 0.02 or more. x in the formula (A) is preferably 0.3 or less, more preferably 0.1 or less.

 xの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、0.01~0.3、0.02~0.3、0.02~0.1等であることが挙げられる。 The upper and lower limits of x can be arbitrarily combined. Examples of combinations include 0.01 to 0.3, 0.02 to 0.3, 0.02 to 0.1, and the like.

 電池の内部抵抗が低いリチウム二次電池を得る観点から、前記式(A)におけるyは、0.01以上が好ましく、0.03以上がより好ましく、0.05以上がさらに好ましい。前記式(A)におけるyは、0.3以下であることが好ましく、0.1以下であることがより好ましい。 From the viewpoint of obtaining a lithium secondary battery with low battery internal resistance, y in the formula (A) is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.05 or more. y in the formula (A) is preferably 0.3 or less, more preferably 0.1 or less.

 yの上限値と下限値は、任意に組み合わせることができる。組み合わせとしては、例えば、0.01以上0.5未満、0.03以上0.5未満、0.03~0.3、0.05~0.1等であることが挙げられる。 The upper limit and lower limit of y can be combined arbitrarily. Combinations include, for example, 0.01 to less than 0.5, 0.03 to less than 0.5, 0.03 to 0.3, 0.05 to 0.1, and the like.

 また、初期放電容量が大きいリチウム二次電池を得る観点から、本実施形態においては、前記式(A)におけるx+yは、0を超え0.50以下が好ましく、0を超え0.48以下がより好ましく、0を超え0.46以下がさらに好ましい。 Further, from the viewpoint of obtaining a lithium secondary battery with a large initial discharge capacity, in the present embodiment, x + y in the formula (A) is preferably more than 0 and 0.50 or less, more preferably more than 0 and 0.48 or less. It is preferably more than 0 and more preferably 0.46 or less.

 サイクル特性に優れるリチウム二次電池を得る観点から、Mは、Co、Mn、W、B、Nb、及びZrからなる群より選択される1種以上の金属であることが好ましい。またMは、Co及びMnからなる群より選択される1種以上の元素M1と、Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素M2とからなっていてもよい。 From the viewpoint of obtaining a lithium secondary battery with excellent cycle characteristics, M is preferably one or more metals selected from the group consisting of Co, Mn, W, B, Nb, and Zr. M is at least one element M1 selected from the group consisting of Co and Mn, and Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, and one or more elements M2 selected from the group consisting of S and P.

 CAMの比H1/H2が、1.5-1.6であることが好ましく、1.51-1.59であることがより好ましい。比H1/H2が、上述の範囲であると、初期放電容量及びサイクル特性が高くなる傾向がある。 The CAM ratio H1/H2 is preferably 1.5-1.6, more preferably 1.51-1.59. When the ratio H1/H2 is within the above range, the initial discharge capacity and cycle characteristics tend to be high.

 LiMOの結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。 The crystal structure of LiMO is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.

 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選択されるいずれか一つの空間群に帰属される。 The hexagonal crystal structure is composed of P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc.

 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選択されるいずれか一つの空間群に帰属される。 The monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, and C2 It belongs to any one space group selected from the group consisting of /c.

 これらのうち、初期放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, in order to obtain a lithium secondary battery with a high initial discharge capacity, the crystal structure is a hexagonal crystal structure assigned to the space group R-3m, or a monoclinic crystal structure assigned to C2/m. A crystalline structure is particularly preferred.

<CAMの製造方法>
 CAMの製造方法について説明する。CAMの製造方法は、MCCの製造、MCCとリチウム化合物との混合、MCCとリチウム化合物との混合物の仮焼成、仮焼成により得られた反応物の本焼成、及び洗浄を少なくとも含んでいる。
<Method for manufacturing CAM>
A method of manufacturing a CAM will be described. The CAM production method includes at least production of MCC, mixing of MCC and a lithium compound, calcination of the mixture of MCC and the lithium compound, main calcination of the reactant obtained by the calcination, and washing.

(1)MCCの製造
 MCCは、金属複合水酸化物、金属複合酸化物、及びこれらの混合物のいずれであってもよい。金属複合水酸化物及び金属複合酸化物は、一例として下記式(A’)で表されるモル比率で、Ni、Al及び元素Mを含み、下記式(A’’)で表される。なお、式(A’)又は式(A’ ’)中のx及びyの好ましい範囲は、上記式(A)のx及びyの好ましい範囲と同様である。
 Ni:Al:M=(1-x-y):x:y   (A’)
 Ni(1-x-y)Alα(OH)2-β  (A’’)
 (式(A’)及び式(A’’)中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、0<x≦0.5及び0<y<0.5を満たす。式(A’’)は、0≦α≦3、-0.5≦β≦2及びβ-α<2を満たす。)
(1) Production of MCC MCC may be a metal composite hydroxide, a metal composite oxide, or a mixture thereof. Metal composite hydroxides and metal composite oxides, for example, contain Ni, Al, and element M in molar ratios represented by formula (A′) below, and are represented by formula (A″) below. The preferred ranges of x and y in formula (A') or (A'') are the same as the preferred ranges of x and y in formula (A) above.
Ni:Al:M=(1-xy):x:y (A')
Ni ( 1-xy) AlxMyOα ( OH) 2-β (A'')
(In formula (A′) and formula (A″), M is Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, One or more elements selected from the group consisting of S and P, satisfying 0 < x ≤ 0.5 and 0 < y < 0.5.Formula (A'') is 0 ≤ α ≤ 3, −0.5≦β≦2 and β-α<2.)

 以下、Ni、Al及びCoを含むMCCの製造方法を一例として説明する。まず、Ni、Al及びCoを含む金属複合水酸化物を調製する。金属複合水酸化物は、バッチ式共沈殿法又は連続式共沈殿法により製造することが可能である。 A method for producing MCC containing Ni, Al and Co will be described below as an example. First, a metal composite hydroxide containing Ni, Al and Co is prepared. A metal composite hydroxide can be produced by a batch coprecipitation method or a continuous coprecipitation method.

 具体的には、JP-A-2002-201028に記載された連続式共沈殿法により、ニッケル塩溶液、コバルト塩溶液、アルミニウム塩溶液及び錯化剤を反応させ、Ni(1-x-y)Al(OH)で表される金属複合水酸化物を製造する。 Specifically, by the continuous coprecipitation method described in JP-A-2002-201028, a nickel salt solution, a cobalt salt solution, an aluminum salt solution and a complexing agent are reacted to obtain Ni (1-xy) A metal composite hydroxide represented by Al x My (OH) 2 is produced.

 ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの少なくとも1種を使用することができる。 The nickel salt that is the solute of the nickel salt solution is not particularly limited, but at least one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used.

 アルミニウム塩溶液の溶質であるアルミニウム塩としては、例えば硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム及び酢酸アルミニウムのうちの少なくとも1種を使用することができる。 As the aluminum salt that is the solute of the aluminum salt solution, for example, at least one of aluminum sulfate, aluminum nitrate, aluminum chloride and aluminum acetate can be used.

 コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト及び酢酸コバルトのうちの少なくとも1種を使用することができる。 At least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used as the cobalt salt that is the solute of the cobalt salt solution.

 以上の金属塩は、上記Ni(1-x-y)Al(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるNi、Al及びCoのモル比が、式(A’)の(1-x-y):x:yと対応するように各金属塩の量を規定する。また、溶媒として水が使用される。 The above metal salts are used in proportions corresponding to the composition ratio of Ni (1-xy) Al x M y (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of Ni, Al and Co in the mixed solution containing the metal salt corresponds to (1-xy):x:y in formula (A'). do. Also, water is used as a solvent.

 錯化剤としては、水溶液中で、ニッケルイオン、アルミニウムイオン及びコバルトイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、又は弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸及びウラシル二酢酸及びグリシンが挙げられる。 The complexing agent is one capable of forming complexes with nickel ions, aluminum ions and cobalt ions in an aqueous solution. etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracil diacetic acid and glycine.

 金属複合水酸化物の製造工程において、錯化剤は、用いられてもよく、用いられなくてもよい。錯化剤が用いられる場合、ニッケル塩溶液、アルミニウム塩溶液、コバルト塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩(ニッケル塩、アルミニウム塩及びコバルト塩)のモル数の合計に対するモル比が0より大きく2.0以下である。 A complexing agent may or may not be used in the manufacturing process of the metal composite hydroxide. When a complexing agent is used, the amount of the complexing agent contained in the mixture containing the nickel salt solution, aluminum salt solution, cobalt salt solution and complexing agent is, for example, metal salts (nickel salts, aluminum salts and cobalt salts). is greater than 0 and 2.0 or less.

 共沈殿法に際しては、ニッケル塩溶液、アルミニウム塩溶液、コバルト塩溶液及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ金属水酸化物を添加する。アルカリ金属水酸化物とは、例えば水酸化ナトリウム又は水酸化カリウムである。 In the coprecipitation method, in order to adjust the pH value of the mixed solution containing the nickel salt solution, the aluminum salt solution, the cobalt salt solution and the complexing agent, before the pH of the mixed solution changes from alkaline to neutral, Add the alkali metal hydroxide. Alkali metal hydroxides are, for example, sodium hydroxide or potassium hydroxide.

 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。反応槽からサンプリングした混合液の温度が、40℃でない場合には、混合液を40℃まで加温又は冷却して混合液のpHを測定する。 It should be noted that the pH value in this specification is defined as the value measured when the temperature of the mixed liquid is 40°C. When the temperature of the mixed liquid sampled from the reaction tank is not 40°C, the mixed liquid is heated or cooled to 40°C and the pH of the mixed liquid is measured.

 上記ニッケル塩溶液、アルミニウム塩溶液、及びコバルト塩溶液のほか、錯化剤を反応槽に連続して供給すると、Ni、Co及びAlが反応し、Ni(1-x-y)AlCo(OH)が生成する。 When the nickel salt solution, aluminum salt solution, and cobalt salt solution as well as the complexing agent are continuously supplied to the reactor, Ni, Co and Al react to form Ni (1-xy) Al x Co y (OH) 2 is produced.

 反応に際しては、反応槽の温度を、例えば20-80℃、好ましくは30-70℃の範囲内で制御する。 During the reaction, the temperature of the reaction vessel is controlled, for example, within the range of 20-80°C, preferably 30-70°C.

 また、反応に際しては、反応槽内の混合液のpH値を、9-13、好ましくは10-12.5の範囲内で設定し、pHは±0.5以内で制御する。 Also, during the reaction, the pH value of the mixed solution in the reaction vessel is set within the range of 9-13, preferably 10-12.5, and the pH is controlled within ±0.5.

 連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を分離するためオーバーフローさせるタイプの反応槽を用いることができる。 For the reaction tank used in the continuous coprecipitation method, an overflow type reaction tank can be used to separate the formed reaction precipitate.

 バッチ式共沈殿法により金属複合水酸化物を製造する場合、反応槽としては、オーバーフローパイプを備えない反応槽、及びオーバーフローパイプに連結された濃縮槽を備え、オーバーフローした反応沈殿物を濃縮槽で濃縮し、再び反応槽へ循環させる機構を有する装置等が挙げられる。 When producing a metal composite hydroxide by a batch coprecipitation method, the reaction tank includes a reaction tank without an overflow pipe and a thickening tank connected to the overflow pipe, and the overflowed reaction precipitate is removed in the thickening tank. Apparatus having a mechanism for concentrating and recirculating to the reaction vessel, etc., may be mentioned.

 各種気体、例えば、窒素、アルゴン若しくは二酸化炭素等の不活性ガス、空気若しくは酸素等の酸化性ガス、又はそれらの混合ガスを反応槽内に供給してもよい。 Various gases, for example, inert gases such as nitrogen, argon or carbon dioxide, oxidizing gases such as air or oxygen, or mixed gases thereof may be supplied into the reaction vessel.

 反応槽に供給する金属塩の濃度、反応槽の温度及び混合液のpH等を適宜制御することにより、CAMのD50及びD90/D10を本実施形態の範囲に制御することができる。 By appropriately controlling the concentration of the metal salt supplied to the reaction tank, the temperature of the reaction tank, the pH of the mixed solution, and the like, D50 and D90 / D10 of the CAM can be controlled within the range of the present embodiment.

 以上の反応後、中和された反応沈殿物を単離する。単離には、例えば反応沈殿物を含むスラリー(つまり、共沈物スラリー)を遠心分離や吸引ろ過などで脱水する方法が用いられる。 After the above reaction, isolate the neutralized reaction precipitate. For isolation, for example, a method of dehydrating a slurry containing a reaction precipitate (that is, a coprecipitate slurry) by centrifugation, suction filtration, or the like is used.

 単離された反応沈殿物を洗浄、脱水、乾燥及び篩別し、Ni、Al及びCoを含む金属複合水酸化物が得られる。 The isolated reaction precipitate is washed, dehydrated, dried and sieved to obtain a metal composite hydroxide containing Ni, Al and Co.

 反応沈殿物の洗浄は、水又はアルカリ性洗浄液で行うことが好ましい。本実施形態においては、反応沈殿物は、アルカリ性洗浄液で洗浄されることが好ましく、水酸化ナトリウム水溶液で洗浄されることがより好ましい。また、反応沈殿物は、硫黄元素を含有する洗浄液を用いて洗浄されてもよい。硫黄元素を含有する洗浄液としては、カリウム又はナトリウムの硫酸塩水溶液等が挙げられる。 It is preferable to wash the reaction precipitate with water or an alkaline washing solution. In the present embodiment, the reaction precipitate is preferably washed with an alkaline washing liquid, more preferably washed with an aqueous sodium hydroxide solution. Also, the reaction precipitate may be washed with a washing liquid containing elemental sulfur. Examples of the cleaning solution containing elemental sulfur include an aqueous potassium or sodium sulfate solution.

 MCCが金属複合酸化物である場合、金属複合水酸化物を加熱して金属複合酸化物を製造する。必要ならば複数の加熱工程を実施してもよい。本明細書における加熱温度とは、加熱装置の設定温度を意味する。複数の加熱工程が実施される場合、加熱温度とは、各加熱工程のうち、最も高い温度で加熱した工程の温度を意味する。 When MCC is a metal composite oxide, the metal composite hydroxide is heated to produce the metal composite oxide. Multiple heating steps may be performed if desired. The heating temperature in this specification means the set temperature of the heating device. When a plurality of heating steps are performed, the heating temperature means the temperature of the step heated at the highest temperature among the respective heating steps.

 加熱温度は、400-700℃であることが好ましく、450-680℃であることがより好ましい。加熱温度が400-700℃であると、金属複合水酸化物が十分に酸化され、かつ適切な範囲のBET比表面積を有する金属複合酸化物が得られる。 The heating temperature is preferably 400-700°C, more preferably 450-680°C. When the heating temperature is 400 to 700° C., the metal composite hydroxide is sufficiently oxidized and a metal composite oxide having a BET specific surface area within an appropriate range is obtained.

 前記加熱温度で保持する時間は、0.1-20時間が挙げられ、0.5-10時間が好ましい。前記加熱温度までの昇温速度は、例えば、50-400℃/時間である。 The time for holding at the heating temperature is 0.1 to 20 hours, preferably 0.5 to 10 hours. The heating rate to the heating temperature is, for example, 50-400° C./hour.

 加熱装置内の雰囲気は、適度な酸素含有雰囲気(酸素、大気等)であってもよい。酸素含有雰囲気は、不活性ガス(窒素、アルゴン等)と酸化性ガス(酸素、大気等)との混合ガス雰囲気であってもよく、不活性ガス雰囲気下で酸化剤が存在する状態であってもよい。加熱装置内の雰囲気が適度な酸素含有雰囲気であることにより、金属複合水酸化物に含まれる遷移金属が適度に酸化され、MCCの形態が制御されやすくなる。 The atmosphere in the heating device may be a moderate oxygen-containing atmosphere (oxygen, atmospheric air, etc.). The oxygen-containing atmosphere may be a mixed gas atmosphere of an inert gas (nitrogen, argon, etc.) and an oxidizing gas (oxygen, air, etc.). good too. When the atmosphere in the heating device is an oxygen-containing atmosphere, the transition metal contained in the metal composite hydroxide is moderately oxidized, making it easier to control the form of MCC.

 酸素含有雰囲気中の酸素又は酸化剤は、遷移金属を酸化させるために十分な酸素原子を含めばよい。 The oxygen or oxidizing agent in the oxygen-containing atmosphere should contain sufficient oxygen atoms to oxidize the transition metal.

 酸素含有雰囲気が不活性ガスと酸化性ガスとの混合ガス雰囲気である場合、加熱装置内の雰囲気は、加熱装置内に酸化性ガスを通気させる又は混合液に酸化性ガスをバブリングするなどの方法で制御することができる。 When the oxygen-containing atmosphere is a mixed gas atmosphere of an inert gas and an oxidizing gas, the atmosphere in the heating device is changed by a method such as passing an oxidizing gas into the heating device or bubbling the oxidizing gas into the mixed liquid. can be controlled by

 酸化剤として、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン又はオゾンなどを使用できる。 As an oxidizing agent, a peroxide such as hydrogen peroxide, a peroxide salt such as permanganate, a perchlorate, a hypochlorite, nitric acid, a halogen, ozone, or the like can be used.

(2)MCCとリチウム化合物との混合
 本工程は、リチウム化合物とMCCとを混合し、混合物を得る工程である。
(2) Mixing of MCC and Lithium Compound This step is a step of mixing a lithium compound and MCC to obtain a mixture.

 前記MCCを必要に応じて乾燥させた後、リチウム化合物と混合する。MCCの乾燥後に、適宜分級を行ってもよい。 After drying the MCC as necessary, it is mixed with a lithium compound. After drying the MCC, it may be appropriately classified.

 本実施形態において、リチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム及びフッ化リチウムの少なくとも何れか一つを使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又はその混合物が好ましい。 In this embodiment, at least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, and lithium fluoride can be used as the lithium compound. Among these, either one of lithium hydroxide and lithium carbonate or a mixture thereof is preferred.

 リチウム化合物とMCCとを、最終目的物の組成比を勘案して混合し、混合物を得る。具体的には、リチウム化合物とMCCは、上記式(A)の組成比に対応する割合で混合する。MCCに含まれる金属原子の合計量1に対するLiの量(モル比)は、1.00以上が好ましく、1.02以上がより好ましく、1.05以上がさらに好ましい。リチウム化合物とMCCの混合物を、後に説明するように焼成することによって、焼成物が得られる。 A mixture is obtained by mixing the lithium compound and MCC in consideration of the composition ratio of the final object. Specifically, the lithium compound and MCC are mixed at a ratio corresponding to the composition ratio of formula (A) above. The amount (molar ratio) of Li to the total amount of 1 of metal atoms contained in MCC is preferably 1.00 or more, more preferably 1.02 or more, and even more preferably 1.05 or more. A fired product is obtained by firing a mixture of a lithium compound and MCC as described later.

(3)混合物の仮焼成
 MCCとリチウム化合物との混合物は、仮焼成され、MCCとリチウム化合物との反応物が形成される。本実施形態において仮焼成とは、後述の本焼成における焼成温度(後述の焼成工程が複数の焼成段階を有する場合は、最も低い温度で実施される焼成段階における焼成温度)よりも低い温度で焼成することである。仮焼成は、複数回行ってもよい。
(3) Temporary Firing of Mixture The mixture of MCC and lithium compound is calcined to form a reaction product of MCC and lithium compound. In the present embodiment, calcination means firing at a temperature lower than the firing temperature in the main firing described later (when the firing process described later has a plurality of firing stages, the firing temperature in the firing stage performed at the lowest temperature). It is to be. The calcination may be performed multiple times.

 仮焼成の温度は、例えば400℃以上700℃未満であることが好ましく、500-695℃であることがより好ましく、600-690℃であることがさらに好ましい。焼成温度が400℃以上であると、MCCとリチウム化合物との反応が促進される。また、焼成温度が700℃未満であると、Ni含有量が多いMCCを用いる場合であっても、サイクル特性に優れるリチウム二次電池を達成できる。 The calcination temperature is, for example, preferably 400°C or higher and lower than 700°C, more preferably 500-695°C, and even more preferably 600-690°C. When the firing temperature is 400° C. or higher, the reaction between MCC and the lithium compound is promoted. Further, when the firing temperature is less than 700° C., even when using MCC with a large Ni content, a lithium secondary battery with excellent cycle characteristics can be achieved.

 本明細書における焼成温度とは、焼成炉内雰囲気の温度を意味し、かつ焼成工程での保持温度の最高温度(以下、最高保持温度と呼ぶことがある)である。複数の焼成段階を有する焼成工程の場合、焼成温度とは、各焼成段階のうち、最も高い保持温度で焼成した段階の温度を意味する。 The firing temperature in this specification means the temperature of the atmosphere in the firing furnace, and is the maximum temperature held in the firing process (hereinafter sometimes referred to as the maximum held temperature). In the case of a firing process having a plurality of firing steps, the firing temperature means the temperature of the step of firing at the highest holding temperature among the firing steps.

 仮焼成における保持時間は、1-8時間が好ましく、1.0-6時間がより好ましく、1.2-5時間が特に好ましい。仮焼成における保持時間が1時間以上であると、MCCとリチウム化合物との反応を十分に高められる。焼成における保持時間が8時間以下であると、リチウムイオンの揮発が生じ難く、電池性能が向上する。 The retention time in calcination is preferably 1-8 hours, more preferably 1.0-6 hours, and particularly preferably 1.2-5 hours. When the holding time in the calcination is 1 hour or longer, the reaction between MCC and the lithium compound can be sufficiently enhanced. When the retention time in the firing is 8 hours or less, volatilization of lithium ions is less likely to occur, resulting in improved battery performance.

 仮焼成及び後述の本焼成時の雰囲気は、酸素含有雰囲気であることが好ましく、酸素雰囲気であることがより好ましい。仮焼成及び後述の本焼成時の雰囲気が酸素含有雰囲気であると、酸素欠陥が抑制され、構造的に安定化することによって電池性能が向上する。 The atmosphere during preliminary firing and main firing described later is preferably an oxygen-containing atmosphere, more preferably an oxygen atmosphere. When the atmosphere at the time of preliminary firing and the main firing described later is an oxygen-containing atmosphere, oxygen defects are suppressed, and the battery performance is improved by stabilizing the structure.

 MCCとリチウム化合物との混合物は、不活性溶融剤の存在下で焼成されてもよい。不活性溶融剤は、焼成物に残留してもよいし、焼成後に後述するように洗浄液で洗浄すること等により除去されてもよい。不活性溶融剤としては、例えばWO2019/177032A1に記載のものを使用することができる。 The mixture of MCC and lithium compound may be fired in the presence of an inert melting agent. The inert melting agent may remain in the fired product, or may be removed after firing by washing with a cleaning liquid as described later. As an inert melting agent, for example, those described in WO2019/177032A1 can be used.

 (4)反応物の本焼成
 反応物の本焼成は、焼成温度が異なる複数の焼成段階を有していてもよい。例えば、第1の焼成段階と、第1の焼成段階よりも高温で焼成する第2の焼成段階をそれぞれ独立に行ってもよい。さらに焼成温度及び焼成時間が異なる焼成段階を有していてもよい。
(4) Main Firing of Reactant The main calcination of the reaction product may have a plurality of calcination stages with different calcination temperatures. For example, a first firing step and a second firing step in which firing is performed at a higher temperature than the first firing step may be performed independently. Furthermore, it may have firing stages with different firing temperatures and firing times.

 LiMOに含まれるAlは、本焼成中に偏析しやすい。また、Al偏析部は、本焼成中に粒子表面に移動することがある。表面に移動したAl偏析部は、後に行われる洗浄によって流出しやすい。Al偏析部が適度に存在することにより、リチウム二次電池の充放電により生じるLiMOの膨張及び収縮を緩和することができる。 Al contained in LiMO tends to segregate during main firing. Also, the Al segregation part may move to the particle surface during the main firing. Al segregation that has migrated to the surface tends to flow out during subsequent cleaning. The presence of an appropriate amount of Al segregation can mitigate the expansion and contraction of LiMO caused by charging and discharging of the lithium secondary battery.

 本焼成の焼成温度は、700℃以上であることが好ましく、700-1100℃であることがより好ましく、700-750℃であることがさらに好ましい。焼成温度が700℃以上であると、強固な結晶構造を有するCAMを得ることができる。また、焼成温度が1100℃以下であると、粒子表面のリチウムイオンの揮発を低減できる。また、焼成温度が750℃以下であると、割合R1及び割合R2の相対標準偏差を本実施形態の範囲に制御しやすくなる。 The firing temperature of the main firing is preferably 700°C or higher, more preferably 700-1100°C, even more preferably 700-750°C. When the firing temperature is 700° C. or higher, a CAM having a strong crystal structure can be obtained. Further, when the firing temperature is 1100° C. or less, volatilization of lithium ions on the particle surface can be reduced. Moreover, when the firing temperature is 750° C. or lower, it becomes easier to control the relative standard deviation of the ratio R1 and the ratio R2 within the range of the present embodiment.

 本焼成における保持時間は、1-50時間が好ましい。本焼成における保持時間が1時間以上であると、反応物中の未反応のMCCとリチウム化合物との反応を十分に高められる。本焼成における保持時間が50時間以下であると、リチウムイオンの揮発が生じ難く、電池性能が向上する。 The holding time in main firing is preferably 1 to 50 hours. When the holding time in the main firing is 1 hour or longer, the reaction between unreacted MCC and the lithium compound in the reactants can be sufficiently enhanced. When the retention time in the main firing is 50 hours or less, volatilization of lithium ions is less likely to occur, and battery performance is improved.

 以上のようにMCCとリチウム化合物との反応物を本焼成することにより、焼成物が得られる。 By firing the reaction product of MCC and the lithium compound as described above, a fired product is obtained.

 (5)焼成物の洗浄
 焼成工程後、焼成物を洗浄して残留する未反応のリチウム化合物及び不活性溶融剤を除去し、CAMが得られる。洗浄には、純水やアルカリ性洗浄液を用いることができる。アルカリ性洗浄液としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム及び炭酸アンモニウムからなる群より選ばれる1種以上の無水物並びにその水和物の水溶液を挙げることができる。また、アルカリ性洗浄液として、アンモニア水を使用することもできる。
(5) Washing of fired product After the firing step, the fired product is washed to remove the remaining unreacted lithium compound and inert melting agent, thereby obtaining a CAM. Pure water or an alkaline cleaning liquid can be used for cleaning. Examples of the alkaline cleaning solution include aqueous solutions of one or more anhydrides selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate and ammonium carbonate, and hydrates thereof. can be mentioned. Ammonia water can also be used as the alkaline cleaning liquid.

 洗浄液の温度は、15℃以下が好ましく、10℃以下がより好ましく、8℃以下がさらに好ましい。洗浄液の温度の下限値は、例えば5℃である。洗浄液の温度を洗浄液が凍結しない範囲且つ上記範囲に制御することで、洗浄時にLiMOの結晶構造中から洗浄液中へのリチウムイオンの過度な溶出が抑制できる。 The temperature of the cleaning liquid is preferably 15°C or lower, more preferably 10°C or lower, and even more preferably 8°C or lower. The lower limit of the temperature of the cleaning liquid is, for example, 5°C. By controlling the temperature of the cleaning liquid within the range above which the cleaning liquid does not freeze, excessive elution of lithium ions from the crystal structure of LiMO into the cleaning liquid during cleaning can be suppressed.

 洗浄液と焼成物とを接触させる方法としては、各洗浄液の中に、焼成物を投入して撹拌する方法が挙げられる。また、各洗浄液をシャワー水として、焼成物にかける方法でもよい。さらに、洗浄液中に、焼成物を投入して撹拌した後、各洗浄液から焼成物を分離し、次いで、各洗浄液をシャワー水として、分離後の焼成物にかける方法でもよい。 As a method of bringing the cleaning solution and the fired product into contact, there is a method in which the fired product is put into each cleaning solution and stirred. Moreover, the method of pouring each washing|cleaning liquid as shower water on a baking product may be used. Furthermore, a method may also be employed in which the fired product is put into the cleaning solution and stirred, then the fired product is separated from each cleaning solution, and then each cleaning solution is used as shower water to be poured over the separated fired product.

 洗浄において、洗浄液と焼成物を適正な時間の範囲で接触させることが好ましい。洗浄における「適正な時間」とは、焼成物の表面に残留する未反応のリチウム化合物及び不活性溶融剤を除去しつつ、焼成物の各粒子を分散させる程度の時間を指す。洗浄時間は、焼成物の凝集状態に応じて調整することが好ましい。洗浄時間は、例えば5分間-1時間の範囲が特に好ましい。 In the cleaning, it is preferable to bring the cleaning liquid and the fired product into contact within the appropriate time range. The "appropriate time" in washing refers to a time sufficient to disperse the particles of the fired product while removing the unreacted lithium compound and inert melting agent remaining on the surface of the fired product. It is preferable to adjust the washing time according to the aggregation state of the baked product. Washing times in the range of, for example, 5 minutes to 1 hour are particularly preferred.

 洗浄液と焼成物との混合物(以下、スラリーと記載することがある)に対する焼成物の割合は、5-60質量%であることが好ましく、20-50質量%であることがより好ましく、30質量%を超え50質量%以下であることがさらに好ましい。焼成物の割合が5-60質量%であると、未反応のリチウム化合物及び任意の不活性溶融剤を除去することができ、割合R1及び割合R2の相対標準偏差を本実施形態の範囲に制御しやすくなる。 The ratio of the fired product to the mixture of the cleaning liquid and the fired product (hereinafter sometimes referred to as slurry) is preferably 5-60% by mass, more preferably 20-50% by mass, and 30% by mass. % and 50% by mass or less is more preferable. When the proportion of the fired product is 5-60% by mass, the unreacted lithium compound and any inert melting agent can be removed, and the relative standard deviation of the proportion R1 and the proportion R2 is controlled within the range of the present embodiment. easier to do.

 焼成物の洗浄後、焼成物を脱水ろ過することが好ましい。脱水ろ過の方法としては、重圧ろ過、加圧ろ過、又は真空ろ過等を使用することができる。脱水ろ過する際のろ過面積当たりの焼成物の重量は、5-30kg/mが好ましく、20-30kg/mがより好ましい。ろ過面積当たりの焼成物の重量が5kg/m以上であると、Alの過剰な流出が抑制され、割合R1及び割合R2の相対標準偏差を本実施形態の範囲に制御しやすくなる。また、ろ過性の観点から、ろ過面積当たりの焼成物の重量は30kg/m以下が好ましい。 After washing the baked product, it is preferable to dehydrate and filter the baked product. As a method for dehydration filtration, pressure filtration, pressure filtration, vacuum filtration, or the like can be used. The weight of the baked product per filtration area in dehydration filtration is preferably 5-30 kg/m 2 , more preferably 20-30 kg/m 2 . When the weight of the baked product per filtration area is 5 kg/m 2 or more, excessive outflow of Al is suppressed, and the relative standard deviation of the ratio R1 and the ratio R2 can be easily controlled within the range of the present embodiment. From the viewpoint of filterability, the weight of the baked product per filtration area is preferably 30 kg/m 2 or less.

 焼成物の脱水後、焼成物は、熱処理されることが好ましい。焼成物を熱処理する温度や方法は特に限定されないが、充電容量の低下を防止できる観点から、100℃以上であることが好ましく、130℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、上限温度に特に制限はないが、焼成物の結晶子径分布に影響を与えない範囲で、700℃以下とすることが好ましく、600℃以下であることがより好ましく、400℃以下であることがさらに好ましい。リチウムイオンの揮発量は、熱処理温度により制御することができる。 After the dehydration of the fired product, the fired product is preferably heat-treated. The temperature and method for heat-treating the baked product are not particularly limited, but from the viewpoint of preventing a decrease in charge capacity, the temperature is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, and 150 ° C. or higher. More preferred. The upper limit temperature is not particularly limited, but it is preferably 700° C. or lower, more preferably 600° C. or lower, and 400° C. or lower as long as it does not affect the crystallite size distribution of the fired product. is more preferred. The volatilization amount of lithium ions can be controlled by the heat treatment temperature.

 熱処理温度の上限値と下限値は任意に組み合わせることができる。例えば、熱処理温度は、100-700℃であることが好ましく、130-600℃であることがより好ましく、150-400℃であることがさらに好ましい。 The upper limit and lower limit of the heat treatment temperature can be combined arbitrarily. For example, the heat treatment temperature is preferably 100-700°C, more preferably 130-600°C, even more preferably 150-400°C.

 熱処理中の雰囲気は、酸素雰囲気、不活性雰囲気(窒素雰囲気等)、減圧雰囲気又は真空雰囲気が挙げられる。洗浄後の熱処理を上記雰囲気で行うことで、熱処理中にCAMと雰囲気中の水分又は二酸化炭素との反応が抑制され、不純物の少ないCAMが得られる。また、焼成物の熱処理後、焼成物を篩別処理することが好ましい。 The atmosphere during the heat treatment includes an oxygen atmosphere, an inert atmosphere (nitrogen atmosphere, etc.), a reduced pressure atmosphere, or a vacuum atmosphere. By performing the heat treatment after cleaning in the above atmosphere, reaction between the CAM and moisture or carbon dioxide in the atmosphere is suppressed during the heat treatment, and a CAM with few impurities can be obtained. Moreover, after the heat treatment of the fired product, it is preferable to subject the fired product to sieving treatment.

 上述の条件で焼成物を洗浄することにより、偏析したAlの少なくとも一部を適度に除去することができる。上述の条件で焼成物を洗浄することで、偏析したAlが流出し、Al偏析によるリチウムイオンの拡散阻害を起こりにくく、リチウム二次電池の初期放電容量を向上することができる。また、上述の条件で焼成物を洗浄することで、Alの過剰な流出を防ぐことができるため、生じた空隙によりリチウム二次電池の充放電により生じるLiMOの膨張及び収縮を緩和することができ、サイクル特性が向上する。 By washing the fired material under the above conditions, at least part of the segregated Al can be removed appropriately. By washing the baked product under the above conditions, the segregated Al flows out, the diffusion of lithium ions is less likely to be inhibited by the Al segregation, and the initial discharge capacity of the lithium secondary battery can be improved. In addition, by washing the fired product under the above conditions, excessive outflow of Al can be prevented, so that the expansion and contraction of LiMO caused by charging and discharging of the lithium secondary battery can be alleviated by the generated voids. , the cycle characteristics are improved.

 金属複合水酸化物の加熱条件、混合物及び反応物の焼成条件、焼成物の洗浄条件、及び熱処理条件を上述の範囲で実施することにより、CAMの割合R1及び割合R2の相対標準偏差、割合a、割合b、D50、D90/D10、H1/H2を上述の範囲に調整することができる。 By performing the heating conditions of the metal composite hydroxide, the firing conditions of the mixture and the reaction product, the cleaning conditions of the fired product, and the heat treatment conditions within the above ranges, the relative standard deviation of the CAM ratio R1 and the ratio R2, the ratio a , the ratio b, D 50 , D 90 /D 10 , H1/H2 can be adjusted within the above ranges.

<リチウム二次電池>
 本実施形態のCAMを用いる場合の好適なリチウム二次電池の構成を説明する。また、本実施形態のCAMを用いる場合に好適なリチウム二次電池用正極(以下、正極と称することがある。)について説明する。
<Lithium secondary battery>
A configuration of a lithium secondary battery suitable for using the CAM of the present embodiment will be described. Also, a positive electrode for a lithium secondary battery (hereinafter sometimes referred to as a positive electrode) suitable for using the CAM of the present embodiment will be described.

 本実施形態のCAMを用いる場合の好適なリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a lithium secondary battery suitable for using the CAM of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.

 リチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of a lithium secondary battery has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution placed between the positive electrode and the negative electrode.

 図2は、リチウム二次電池の一例を示す模式図である。例えば円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 2 is a schematic diagram showing an example of a lithium secondary battery. For example, a cylindrical lithium secondary battery 10 is manufactured as follows.

 まず、図2に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 2, a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are arranged as follows: 1 and the negative electrode 3 are stacked in this order and wound to form an electrode group 4 .

 正極2は、一例として、CAMを含む正極活物質層と、正極活物質層が一面に形成された正極集電体とを有する。このような正極2は、まずCAM、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体の一面に担持させて正極活物質層を形成することで製造できる。 The positive electrode 2 has, for example, a positive electrode active material layer containing CAM, and a positive electrode current collector having the positive electrode active material layer formed on one surface. Such a positive electrode 2 can be manufactured by first preparing a positive electrode mixture containing CAM, a conductive material, and a binder, and supporting the positive electrode mixture on one surface of a positive electrode current collector to form a positive electrode active material layer.

 負極3は、一例として、不図示の負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができ、正極2と同様の方法で製造できる。 Examples of the negative electrode 3 include an electrode in which a negative electrode mixture containing a negative electrode active material (not shown) is supported on a negative electrode current collector, and an electrode composed solely of a negative electrode active material. can be manufactured in

 次いで、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, after housing the electrode group 4 and an insulator (not shown) in the battery can 5, the can bottom is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the electrolyte is arranged between the positive electrode 2 and the negative electrode 3. . Further, by sealing the upper portion of the battery can 5 with the top insulator 7 and the sealing member 8, the lithium secondary battery 10 can be manufactured.

 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形又は角を丸めた長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape of the electrode group 4 cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. can be mentioned.

 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型又は角型などの形状を挙げることができる。 In addition, as the shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted. . For example, a shape such as a cylindrical shape or a rectangular shape can be mentioned.

 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、又はペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the wound type configuration described above, and may have a layered configuration in which a layered structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of laminated lithium secondary batteries include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.

 リチウム二次電池を構成する正極、セパレータ、負極及び電解液については、例えば、WO2022/113904A1の[0113]~[0140]に記載の構成、材料及び製造方法を用いることが出来る。 For the positive electrode, separator, negative electrode and electrolyte that constitute the lithium secondary battery, for example, the configurations, materials and manufacturing methods described in [0113] to [0140] of WO2022/113904A1 can be used.

 <全固体リチウム二次電池>
 次いで、全固体リチウム二次電池の構成を説明しながら、本発明の一態様に係るCAMを全固体リチウム二次電池のCAMとして用いた正極、及びこの正極を有する全固体リチウム二次電池について説明する。
<All-solid lithium secondary battery>
Next, while explaining the configuration of the all-solid lithium secondary battery, the positive electrode using the CAM according to one embodiment of the present invention as the CAM of the all-solid lithium secondary battery and the all-solid lithium secondary battery having this positive electrode will be explained. do.

 図3は、本実施形態の全固体リチウム二次電池の一例を示す模式図である。図3に示す全固体リチウム二次電池1000は、正極110と、負極120と、固体電解質層130とを有する積層体100と、積層体100を収容する外装体200と、を有する。また、全固体リチウム二次電池1000は、集電体の両側にCAMと負極活物質とを配置したバイポーラ構造であってもよい。バイポーラ構造の具体例として、例えば、JP-A-2004-95400に記載される構造が挙げられる。各部材を構成する材料については、後述する。 FIG. 3 is a schematic diagram showing an example of the all-solid lithium secondary battery of this embodiment. The all-solid lithium secondary battery 1000 shown in FIG. 3 has a laminate 100 having a positive electrode 110, a negative electrode 120, and a solid electrolyte layer 130, and an outer package 200 that houses the laminate 100. Moreover, the all-solid lithium secondary battery 1000 may have a bipolar structure in which a CAM and a negative electrode active material are arranged on both sides of a current collector. Specific examples of bipolar structures include structures described in JP-A-2004-95400. The material forming each member will be described later.

 正極110は、正極活物質層111と正極集電体112とを有している。正極活物質層111は、上述したCAM及び固体電解質を含む。また、正極活物質層111は、導電材及びバインダーを含んでいてもよい。 The positive electrode 110 has a positive electrode active material layer 111 and a positive electrode current collector 112 . The positive electrode active material layer 111 contains the above-described CAM and solid electrolyte. Moreover, the positive electrode active material layer 111 may contain a conductive material and a binder.

 負極120は、負極活物質層121と負極集電体122とを有している。負極活物質層121は、負極活物質を含む。また、負極活物質層121は、固体電解質及び導電材を含んでいてもよい。 The negative electrode 120 has a negative electrode active material layer 121 and a negative electrode current collector 122 . The negative electrode active material layer 121 contains a negative electrode active material. Further, the negative electrode active material layer 121 may contain a solid electrolyte and a conductive material.

 積層体100は、正極集電体112に接続される外部端子113と、負極集電体122に接続される外部端子123と、を有していてもよい。その他、全固体リチウム二次電池1000は、正極110と負極120との間にセパレータを有していてもよい。 The laminate 100 may have an external terminal 113 connected to the positive electrode current collector 112 and an external terminal 123 connected to the negative electrode current collector 122 . In addition, all-solid lithium secondary battery 1000 may have a separator between positive electrode 110 and negative electrode 120 .

 全固体リチウム二次電池1000は、さらに積層体100と外装体200とを絶縁する不図示のインシュレーター及び外装体200の開口部200aを封止する不図示の封止体を有する。 The all-solid lithium secondary battery 1000 further has an insulator (not shown) for insulating the laminate 100 and the exterior body 200 and a sealing body (not shown) for sealing the opening 200 a of the exterior body 200 .

 外装体200は、アルミニウム、ステンレス鋼又はニッケルメッキ鋼などの耐食性の高い金属材料を成形した容器を用いることができる。また、外装体200として、少なくとも一方の面に耐食加工を施したラミネートフィルムを袋状に加工した容器を用いることもできる。 For the exterior body 200, a container molded from a highly corrosion-resistant metal material such as aluminum, stainless steel, or nickel-plated steel can be used. Moreover, as the exterior body 200, a container in which a laminated film having at least one surface subjected to corrosion-resistant processing is processed into a bag shape can also be used.

 全固体リチウム二次電池1000の形状としては、例えば、コイン型、ボタン型、ペーパー型(またはシート型)、円筒型、角型、又はラミネート型(パウチ型)などの形状を挙げることができる。 Examples of the shape of the all-solid lithium secondary battery 1000 include coin-shaped, button-shaped, paper-shaped (or sheet-shaped), cylindrical, rectangular, and laminated (pouch-shaped).

 全固体リチウム二次電池1000は、一例として積層体100を1つ有する形態が図示されているが、本実施形態はこれに限らない。全固体リチウム二次電池1000は、積層体100を単位セルとし、外装体200の内部に複数の単位セル(積層体100)を封じた構成であってもよい。 The all-solid-state lithium secondary battery 1000 is illustrated as having one laminate 100 as an example, but the present embodiment is not limited to this. The all-solid-state lithium secondary battery 1000 may have a configuration in which the laminate 100 is used as a unit cell and a plurality of unit cells (laminate 100 ) are sealed inside the exterior body 200 .

 全固体リチウム二次電池については、例えば、WO2022/113904A1の[0151]~[0181]に記載の構成、材料及び製造方法を用いることができる。 For all-solid-state lithium secondary batteries, for example, the configurations, materials and manufacturing methods described in [0151] to [0181] of WO2022/113904A1 can be used.

 以上のような構成の正極は、上述したCAMを有するため、初期放電容量が高く、サイクル特性のよいリチウム二次電池を提供できる。 Since the positive electrode having the above configuration has the CAM described above, it is possible to provide a lithium secondary battery with high initial discharge capacity and good cycle characteristics.

 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、初期放電容量が高く、サイクル特性がよい。 Furthermore, since the lithium secondary battery with the above configuration has the positive electrode described above, it has a high initial discharge capacity and good cycle characteristics.

 本発明のもう一つの側面は、以下の態様を包含する。
[11]層状構造を有するLiMOを含む複数の粒子を含有するCAMであって、
 前記LiMOは、少なくともLi、Ni、Al及び前記元素Mを含有し、
前記割合R1の相対標準偏差は、28.6-60.0%であり、前記割合R2の相対標準偏差は、17.0-35.0%である、CAM。
[12]前記割合aが99.9-100%である、[11]に記載のCAM。
[13]前記割合bが99-100%である、[11]又は[12]に記載のCAM。
[14]前記CAMのD50が5.0-15μmである、[11]~[13]の何れか1つに記載のCAM。
[15]前記CAMのD90/D10が2-3である、[11]~[14]の何れか1つに記載のCAM。
[16]前記CAMの組成式が、式(A)-1で表される、[11]~[15]の何れか1つに記載のCAM。
 Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)-1
(式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、0<m≦0.2、0.02≦x≦0.1、及び0.05≦y≦0.1を満たす。)
[17]前記CAMの前記比H1/H2が、1.5-1.6である、[11]~[16]の何れか1つに記載のCAM。
[18]前記割合R1の相対標準偏差は、35.0-50.0%である、[11]~[17]の何れか1つに記載のCAM。
[19]前記割合R2の相対標準偏差は、18.0-35.0%である、[11]~[18]の何れか1つに記載のCAM。
[20][11]~[19]の何れか1つに記載のCAMを含有するリチウム二次電池用正極。
[21][20]に記載のリチウム二次電池用正極を有するリチウム二次電池。
Another aspect of the present invention includes the following aspects.
[11] A CAM containing a plurality of particles containing LiMO having a layered structure,
The LiMO contains at least Li, Ni, Al and the element M,
The CAM, wherein the relative standard deviation of said ratio R1 is 28.6-60.0% and the relative standard deviation of said ratio R2 is 17.0-35.0%.
[12] The CAM according to [11], wherein the ratio a is 99.9-100%.
[13] The CAM according to [11] or [12], wherein the ratio b is 99-100%.
[14] The CAM of any one of [11] to [13], wherein the CAM has a D50 of 5.0-15 μm.
[15] The CAM according to any one of [11] to [14], wherein D 90 /D 10 of the CAM is 2-3.
[16] The CAM according to any one of [11] to [15], wherein the composition formula of the CAM is represented by Formula (A)-1.
Li[Li m (Ni (1-xy) Al x M y ) 1-m ]O 2 (A)-1
(In formula A, M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies 0<m≦0.2, 0.02≦x≦0.1, and 0.05≦y≦0.1.)
[17] The CAM according to any one of [11] to [16], wherein the ratio H1/H2 of the CAM is 1.5-1.6.
[18] The CAM according to any one of [11] to [17], wherein the relative standard deviation of the ratio R1 is 35.0-50.0%.
[19] The CAM according to any one of [11] to [18], wherein the relative standard deviation of the ratio R2 is 18.0-35.0%.
[20] A positive electrode for a lithium secondary battery, containing the CAM according to any one of [11] to [19].
[21] A lithium secondary battery having the positive electrode for a lithium secondary battery according to [20].

 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited by the following description.

<組成分析>
 後述の方法で製造されるCAMの組成分析は、上述の「CAMの組成分析」の方法により行った。
<Composition analysis>
The composition analysis of the CAM produced by the below-described method was performed by the above-described "CAM composition analysis" method.

<累積体積粒度>
 後述の方法で製造されるCAMのD10、D50及びD90は、上述の「累積体積粒度」の測定方法により測定した。
<Cumulative volume particle size>
The D 10 , D 50 and D 90 of the CAM produced by the method described below were measured by the "cumulative volume particle size" measurement method described above.

<SEM-EDX分析>
 上述の「SEM-EDX分析」に記載の方法で、割合R1の相対標準偏差、割合R2の相対標準偏差、割合a及び割合bを算出した。なお、割合R1を算出するときの測定対象粒子は、150個の円相当径5μm以上である粒子であり、割合R2を算出するときの測定対象粒子断面は、100個の円相当径5μm以上である粒子の断面であった。
<SEM-EDX analysis>
The relative standard deviation of the ratio R1, the relative standard deviation of the ratio R2, the ratio a and the ratio b were calculated by the method described in "SEM-EDX analysis" above. The particles to be measured when calculating the ratio R1 are 150 particles having an equivalent circle diameter of 5 μm or more, and the cross section of the particles to be measured when calculating the ratio R2 are 100 particles having an equivalent circle diameter of 5 μm or more. It was a cross section of a certain particle.

<結晶構造及び回折ピーク強度高さの測定>
 上述の[結晶構造]に記載の方法で、LiMOの結晶構造及びCAMの比H1/H2を測定及び算出した。
<Measurement of crystal structure and diffraction peak intensity height>
The crystal structure of LiMO and the CAM ratio H1/H2 were measured and calculated by the method described in [Crystal structure] above.

<初期放電容量及び50回目放電容量維持率>
 「初期放電容量及び50回目放電容量維持率」に記載の方法でリチウム二次電池を作製し、初期放電容量及び50回目放電容量を測定した。
<Initial discharge capacity and 50th discharge capacity retention rate>
A lithium secondary battery was produced by the method described in "Initial discharge capacity and 50th discharge capacity retention rate", and the initial discharge capacity and the 50th discharge capacity were measured.

 (実施例1)
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
(Example 1)
After water was put into a reactor equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was maintained at 50°C.

 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、NiとCoとAlとのモル比が0.88:0.09:0.03となるように混合して、混合原料液を調製した。 A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution were mixed so that the molar ratio of Ni, Co, and Al was 0.88:0.09:0.03 to prepare a mixed raw material solution.

 次に、反応槽内に、攪拌下、この混合原料溶液と錯化剤として硫酸アンモニウム水溶液を連続的に添加した。反応槽内の混合液のpHが11.6(測定温度:40℃)となるよう水酸化ナトリウム水溶液を適時滴下し、反応沈殿物1を得た。 Next, this mixed raw material solution and an aqueous solution of ammonium sulfate as a complexing agent were continuously added into the reaction tank while stirring. A sodium hydroxide aqueous solution was added dropwise at appropriate times so that the pH of the mixed liquid in the reaction tank was 11.6 (measurement temperature: 40° C.), and a reaction precipitate 1 was obtained.

 反応沈殿物1を洗浄した後、脱水、乾燥して、Ni、Co及びAlを含む金属複合水酸化物1が得られた。 After washing the reaction precipitate 1, it was dehydrated and dried to obtain a metal composite hydroxide 1 containing Ni, Co and Al.

 金属複合水酸化物1を大気雰囲気中650℃で5時間保持して加熱し、室温まで冷却して金属複合酸化物であるMCC1を得た。 The metal composite hydroxide 1 was held at 650°C in an air atmosphere for 5 hours, heated, and cooled to room temperature to obtain MCC1, which is a metal composite oxide.

 MCC1に含まれるNi、Co及びAlの合計量1に対するLiの量(モル比)が1.10となるように、水酸化リチウムを秤量した。MCC1と水酸化リチウムを混合して混合物1を得た。 Lithium hydroxide was weighed so that the amount (molar ratio) of Li to the total amount of Ni, Co and Al contained in MCC1 was 1.10. Mixture 1 was obtained by mixing MCC1 and lithium hydroxide.

 この混合物1を酸素雰囲気下650℃で5時間仮焼成し、反応物1を得た。反応物1を酸素雰囲気下720℃で5時間本焼成し、焼成物1を得た。 This mixture 1 was calcined at 650°C for 5 hours in an oxygen atmosphere to obtain a reactant 1. The reactant 1 was calcined at 720° C. for 5 hours in an oxygen atmosphere to obtain a calcined product 1 .

 焼成物1と純水とを、全体量に対して焼成物1の割合が30質量%になるように混合し作製したスラリーを20分間撹拌させて洗浄した後、脱水ろ過し、窒素雰囲気において250℃で10時間熱処理し、脱水ろ過後に残留する水分を乾燥させ、さらに篩別することにより、CAM-1を得た。なお、ろ過面積当たりの焼成物1の重量は、26.9kg/mであった。 The baked product 1 and pure water are mixed so that the ratio of the baked product 1 to the total amount is 30% by mass, and the slurry is stirred for 20 minutes and washed. CAM-1 was obtained by heat-treating at ° C. for 10 hours, drying the water remaining after dehydration and filtration, and sieving. The weight of the baked product 1 per filtration area was 26.9 kg/m 2 .

 CAM-1の組成分析を行ったところ、式(A)においてm=0.03、x=0.03、y=0.09であり、元素Mは、Coであった。CAM-1に含まれるLiMOは、層状構造を有していた。 A composition analysis of CAM-1 revealed that m = 0.03, x = 0.03, y = 0.09 in formula (A), and element M was Co. LiMO contained in CAM-1 had a layered structure.

 (実施例2)
 反応物1の本焼成時の温度を700℃に変更して焼成物2を得たこと以外は、実施例1と同じ方法でCAM-2を得た。なお、ろ過面積当たりの焼成物2の重量は、25.0kg/mであった。
(Example 2)
CAM-2 was obtained in the same manner as in Example 1, except that the fired product 2 was obtained by changing the temperature during the main firing of the reaction product 1 to 700°C. The weight of the baked product 2 per filtration area was 25.0 kg/m 2 .

 CAM-2の組成分析を行ったところ、式(A)においてm=0.04、x=0.03、y=0.09であり、元素Mは、Coであった。CAM-2に含まれるLiMOは、層状構造を有していた。 A composition analysis of CAM-2 revealed that m = 0.04, x = 0.03, y = 0.09 in formula (A), and element M was Co. LiMO contained in CAM-2 had a layered structure.

 (実施例3)
 反応物1の本焼成時の温度を700℃に変更して焼成物3を得たこと、および洗浄工程で、全体量に対して焼成物3の割合を40質量%としたこと以外は、実施例1と同じ方法でCAM-3を得た。なお、ろ過面積当たりの焼成物3の重量は、25.0kg/mであった。
(Example 3)
Except that the temperature at the time of main firing of reaction product 1 was changed to 700 ° C. to obtain fired product 3, and that the ratio of fired product 3 to the total amount was set to 40% by mass in the washing step, CAM-3 was obtained in the same manner as in Example 1. The weight of the baked product 3 per filtration area was 25.0 kg/m 2 .

 CAM-3の組成分析を行ったところ、式(A)においてm=0.04、x=0.03、y=0.09であり、元素Mは、Coであった。CAM-3に含まれるLiMOは、層状構造を有していた。 A composition analysis of CAM-3 revealed that m = 0.04, x = 0.03, y = 0.09 in formula (A), and element M was Co. LiMO contained in CAM-3 had a layered structure.

 (比較例1)
 焼成物1を洗浄せずにそのままCAMとした以外は、実施例1と同じ方法でCAM-C1を得た。
(Comparative example 1)
CAM-C1 was obtained in the same manner as in Example 1, except that the fired product 1 was used as the CAM without being washed.

 CAM-C1の組成分析を行ったところ、式(A)においてm=0.1、x=0.03、y=0.09であり、元素Mは、Coであった。CAM-C1に含まれるLiMOは、層状構造を有していた。 A composition analysis of CAM-C1 revealed that m = 0.1, x = 0.03, y = 0.09 in formula (A), and element M was Co. LiMO contained in CAM-C1 had a layered structure.

 (比較例2)
 MCC1に含まれるNi、Co及びAlの合計量1に対するLiの量(モル比)が1.00となるように水酸化リチウムを秤量した。MCC1と水酸化リチウムを混合して混合物2を得た。この混合物2を酸素雰囲気下650℃で5時間仮焼成し、反応物2を得た。
 反応物2を酸素雰囲気下740℃で15時間本焼成したこと以外は、実施例1と同じ方法で焼成物5を得た。得られた焼成物5と純水とを、全体量に対して焼成物5の割合が5質量%になるように混合し作製したスラリーを5分間撹拌させて洗浄した後、脱水ろ過し、大気雰囲気において120℃で10時間熱処理し、脱水後に残留する水分を乾燥して、CAM-C2を得た。なお、ろ過面積当たりの焼成物5の重量は、1.1kg/mであった。
(Comparative example 2)
Lithium hydroxide was weighed so that the amount (molar ratio) of Li to 1 of the total amount of Ni, Co and Al contained in MCC1 was 1.00. Mixture 2 was obtained by mixing MCC1 and lithium hydroxide. This mixture 2 was calcined at 650° C. for 5 hours in an oxygen atmosphere to obtain a reactant 2 .
A calcined product 5 was obtained in the same manner as in Example 1, except that the reactant 2 was calcined at 740° C. for 15 hours in an oxygen atmosphere. The obtained calcined product 5 and pure water are mixed so that the ratio of the calcined product 5 to the total amount is 5% by mass, and the prepared slurry is stirred for 5 minutes and washed. It was heat-treated in an atmosphere at 120° C. for 10 hours, and the water remaining after dehydration was dried to obtain CAM-C2. The weight of the fired product 5 per filtration area was 1.1 kg/m 2 .

 CAM-C2の組成分析を行ったところ、式(A)においてm=0.96、x=0.03、y=0.07であり、元素Mは、Coであった。CAM-C2に含まれるLiMOは、層状構造を有していた。 A composition analysis of CAM-C2 revealed that m = 0.96, x = 0.03, y = 0.07 in formula (A), and element M was Co. LiMO contained in CAM-C2 had a layered structure.

 (比較例3)
 反応物2を酸素雰囲気下780℃で5時間本焼成し、焼成物6を得た。得られた焼成物6と純水とを、全体量に対して焼成物6の割合が5質量%になるように混合し作製したスラリーを5分間撹拌させて洗浄した後、脱水ろ過し、大気雰囲気において120℃で10時間熱処理し、脱水ろ過後に残留する水分を乾燥して、CAM-C3を得た。なお、ろ過面積当たりの焼成物6の重量は、1.1kg/mであった。
(Comparative Example 3)
The reactant 2 was calcined at 780° C. for 5 hours in an oxygen atmosphere to obtain a calcined product 6 . The obtained baked product 6 and pure water are mixed so that the ratio of the baked product 6 to the total amount is 5% by mass, and the prepared slurry is stirred for 5 minutes and washed. It was heat-treated at 120° C. for 10 hours in an atmosphere, and the water remaining after dehydration and filtration was dried to obtain CAM-C3. The weight of the fired product 6 per filtration area was 1.1 kg/m 2 .

 CAM-C3の組成分析を行ったところ、式(A)においてm=0.96、x=0.03、y=0.09であり、元素Mは、Coであった。CAM-C3に含まれるLiMOは、層状構造を有していた。 A composition analysis of CAM-C3 revealed that m = 0.96, x = 0.03, y = 0.09 in formula (A), and element M was Co. LiMO contained in CAM-C3 had a layered structure.

 実施例1~3のCAM-1~CAM-3及び比較例1~3のCAM-C1~CAM-C3の洗浄工程の有無、CAMのD50、CAMのD90/D10、割合R1の相対標準偏差、割合R2の相対標準偏差、割合a、割合b、回折ピーク強度高さ比H1/H2及び各CAMを使用したリチウム二次電池の初期放電容量及びサイクル効率を表1に示す。 CAM-1 to CAM-3 of Examples 1 to 3 and CAM-C1 to CAM-C3 of Comparative Examples 1 to 3 with or without washing process, CAM D 50 , CAM D 90 /D 10 , ratio R1 relative Table 1 shows the standard deviation, the relative standard deviation of the ratio R2, the ratio a, the ratio b, the diffraction peak intensity height ratio H1/H2, and the initial discharge capacity and cycle efficiency of the lithium secondary battery using each CAM.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 実施例1~3のCAM-1~CAM-3では、割合R1の相対標準偏差が28.7-48.1%であり、割合R2の相対標準偏差が15.2-22.7%であった。さらに、CAM-1~CAM-3を用いたリチウム二次電池の初期放電容量は、197-202mAh/gであり、サイクル効率は、83.8-90.4%であった。 In CAM-1 to CAM-3 of Examples 1 to 3, the relative standard deviation of the ratio R1 was 28.7-48.1% and the relative standard deviation of the ratio R2 was 15.2-22.7%. rice field. Furthermore, the initial discharge capacity of the lithium secondary batteries using CAM-1 to CAM-3 was 197-202 mAh/g, and the cycle efficiency was 83.8-90.4%.

 一方で、焼成物の洗浄を行わなかった比較例1では、割合R1の相対標準偏差が93.1%であり、割合R2の相対標準偏差が78.9%だった。焼成後に洗浄を行わなかったため、偏析したAlが流出せず、Al偏析によるリチウムイオンの拡散阻害が生じたと考えられる。比較例2では、割合R1の相対標準偏差が31.5%であり、割合R2の相対標準偏差が11.0%だった。所定の条件で脱水ろ過をせず、Alの過剰な流出によりAlがCAM-C2に十分量含まれていなかったため、充放電に伴うLiMOの膨張及び収縮を緩衝することができなかったと考えられる。比較例3では、割合R1の相対標準偏差が28.2%であり、割合R2の相対標準偏差が17.7%だった。焼成温度が高いことによって焼成後にAlが粒子表面に偏析し、また、所定の条件で脱水ろ過をしなかったことによって、CAM-C3の表面のAl偏析が多く流出したためと考えられる。CAM-C1~CAM-C3を用いたコイン型ハーフセルの初期放電容量は、184-198mAh/gであり、サイクル効率は、67.7-93.4%であった。 On the other hand, in Comparative Example 1 in which the baked product was not washed, the relative standard deviation of the ratio R1 was 93.1% and the relative standard deviation of the ratio R2 was 78.9%. It is considered that since washing was not performed after firing, the segregated Al did not flow out and diffusion of lithium ions was inhibited by Al segregation. In Comparative Example 2, the relative standard deviation of the ratio R1 was 31.5% and the relative standard deviation of the ratio R2 was 11.0%. It is considered that the expansion and contraction of LiMO due to charging and discharging could not be buffered because the CAM-C2 did not contain a sufficient amount of Al due to excessive outflow of Al without dehydration filtration under predetermined conditions. In Comparative Example 3, the relative standard deviation of the ratio R1 was 28.2% and the relative standard deviation of the ratio R2 was 17.7%. This is probably because Al segregated on the particle surface after firing due to the high firing temperature, and a large amount of Al segregation flowed out from the surface of CAM-C3 because dehydration and filtration were not performed under the prescribed conditions. The initial discharge capacity of the coin half-cells using CAM-C1 to CAM-C3 was 184-198 mAh/g, and the cycle efficiency was 67.7-93.4%.

 本発明によれば、初期放電容量が高く、繰り返し充放電を行っても放電容量が低下し難いリチウム二次電池を得ることができるCAM、及びこれを用いたリチウム二次電池用正極及びリチウム二次電池を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, a CAM capable of obtaining a lithium secondary battery that has a high initial discharge capacity and whose discharge capacity does not easily decrease even after repeated charging and discharging, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same. We can provide the following batteries.

 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、100…積層体、110…正極、111…正極活物質層、112…正極集電体、113…外部端子、120…負極、121…負極活物質層、122…負極集電体、123…外部端子、130…固体電解質層、200…外装体、200a…開口部、1000…全固体リチウム二次電池 DESCRIPTION OF SYMBOLS 1... Separator, 2... Positive electrode, 3... Negative electrode, 4... Electrode group, 5... Battery can, 6... Electrolytic solution, 7... Top insulator, 8... Sealing body, 10... Lithium secondary battery, 21... Positive electrode lead, 31 Negative electrode lead 100 Laminated body 110 Positive electrode 111 Positive electrode active material layer 112 Positive electrode current collector 113 External terminal 120 Negative electrode 121 Negative electrode active material layer 122 Negative electrode current collector DESCRIPTION OF SYMBOLS 123... External terminal 130... Solid electrolyte layer 200... Exterior body 200a... Opening part 1000... All-solid-state lithium secondary battery

Claims (9)

 層状構造を有するリチウム金属複合酸化物を含む複数の粒子を含有するリチウム二次電池用正極活物質であって、
 前記リチウム金属複合酸化物は、少なくともLi、Ni、Al及び元素Mを含有し、
 前記元素Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、
 下記(1)及び(2)の条件を満たす、リチウム二次電池用正極活物質。
 (1)前記複数の粒子の表面を走査型電子顕微鏡-エネルギー分散型X線分光法で測定することで粒子毎に得られる、Ni、Al及び前記元素Mの総原子数に対するAlの原子数の割合R1について、前記複数の粒子における前記割合R1の相対標準偏差は、28.5%より大きく70%以下である。
 (2)前記複数の粒子の断面を前記走査型電子顕微鏡-エネルギー分散型X線分光法で測定することで粒子毎に得られる、Ni、Al及び前記元素Mの総原子数に対するAlの原子数の割合R2について、前記複数の粒子における前記割合R2の相対標準偏差は、13%より大きく50%以下である。
A positive electrode active material for a lithium secondary battery containing a plurality of particles containing a lithium metal composite oxide having a layered structure,
The lithium metal composite oxide contains at least Li, Ni, Al and element M,
The element M is one or more selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P is an element of
A positive electrode active material for a lithium secondary battery that satisfies the following conditions (1) and (2).
(1) The number of Al atoms relative to the total number of Ni, Al, and element M atoms obtained for each particle by measuring the surfaces of the plurality of particles with a scanning electron microscope-energy dispersive X-ray spectroscopy. Regarding the ratio R1, the relative standard deviation of the ratio R1 in the plurality of particles is greater than 28.5% and no greater than 70%.
(2) The number of Al atoms with respect to the total number of Ni, Al, and element M atoms obtained for each particle by measuring the cross section of the plurality of particles with the scanning electron microscope-energy dispersive X-ray spectroscopy. , the relative standard deviation of the ratio R2 in the plurality of particles is greater than 13% and less than or equal to 50%.
 前記複数の粒子の総数に対する、前記割合R1が10atomic%以下の粒子の個数の割合が99%以上である、請求項1に記載のリチウム二次電池用正極活物質。 The positive electrode active material for a lithium secondary battery according to claim 1, wherein the ratio of the number of particles having a ratio R1 of 10 atomic% or less to the total number of the plurality of particles is 99% or more.  前記複数の粒子の総数に対する、前記割合R2が10atomic%以下の粒子の個数の割合が88%以上である、請求項1又は2に記載のリチウム二次電池用正極活物質。 The positive electrode active material for a lithium secondary battery according to claim 1 or 2, wherein the ratio of the number of particles having a ratio R2 of 10 atomic% or less to the total number of the plurality of particles is 88% or more.  前記リチウム二次電池用正極活物質の50%累積体積粒度が5μm以上20μm以下である、請求項1~3の何れか1つに記載のリチウム二次電池用正極活物質。 The positive electrode active material for lithium secondary batteries according to any one of claims 1 to 3, wherein the positive electrode active material for lithium secondary batteries has a 50% cumulative volume particle size of 5 µm or more and 20 µm or less.  前記リチウム二次電池用正極活物質の10%累積体積粒度に対する90%累積体積粒度の比が3以下である、請求項1~4の何れか1つに記載のリチウム二次電池用正極活物質。 The positive electrode active material for a lithium secondary battery according to any one of claims 1 to 4, wherein the ratio of the 90% cumulative volume particle size to the 10% cumulative volume particle size of the positive electrode active material for a lithium secondary battery is 3 or less. .  前記リチウム二次電池用正極活物質の組成式が、式(A)で表される、請求項1~5の何れか1つに記載のリチウム二次電池用正極活物質。
 Li[Li(Ni(1-x-y)Al1-m]O  ・・・(A)
(式A中、Mは、Co,Mn,Fe,Cu,Ti,Mg,W,Mo,Nb,Zn,Sn,Zr,Ga,V,B,Si,S及びPからなる群より選択される1種以上の元素であり、-0.1≦m≦0.2、0<x≦0.5及び0<y<0.5を満たす。)
The positive electrode active material for a lithium secondary battery according to any one of claims 1 to 5, wherein the compositional formula of the positive electrode active material for a lithium secondary battery is represented by formula (A).
Li[Li m (Ni (1-xy) Al x M y ) 1-m ]O 2 (A)
(In formula A, M is selected from the group consisting of Co, Mn, Fe, Cu, Ti, Mg, W, Mo, Nb, Zn, Sn, Zr, Ga, V, B, Si, S and P It is one or more elements and satisfies −0.1≦m≦0.2, 0<x≦0.5 and 0<y<0.5.)
 前記リチウム二次電池用正極活物質のCuKα線を使用した粉末X線回折測定において、2θ=44.1±1°の範囲内の回折ピーク強度高さであるH2に対する2θ=18.5±1°の範囲内の回折ピーク強度高さであるH1の比H1/H2が、1.5以上1.6以下である、請求項1~6の何れか1つに記載のリチウム二次電池用正極活物質。 In powder X-ray diffraction measurement using CuKα rays of the positive electrode active material for lithium secondary batteries, 2θ = 18.5 ± 1 for H2, which is a diffraction peak intensity height within the range of 2θ = 44.1 ± 1 ° The positive electrode for a lithium secondary battery according to any one of claims 1 to 6, wherein the ratio H1/H2 of H1, which is the diffraction peak intensity height within the range of °, is 1.5 or more and 1.6 or less. active material.  請求項1~7の何れか1つに記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用正極。 A positive electrode for lithium secondary batteries containing the positive electrode active material for lithium secondary batteries according to any one of claims 1 to 7.  請求項8に記載のリチウム二次電池用正極を有するリチウム二次電池。 A lithium secondary battery having the positive electrode for a lithium secondary battery according to claim 8.
PCT/JP2022/045116 2021-12-08 2022-12-07 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery WO2023106336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-199660 2021-12-08
JP2021199660A JP7284244B1 (en) 2021-12-08 2021-12-08 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2023106336A1 true WO2023106336A1 (en) 2023-06-15

Family

ID=86538229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045116 WO2023106336A1 (en) 2021-12-08 2022-12-07 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Country Status (2)

Country Link
JP (2) JP7284244B1 (en)
WO (1) WO2023106336A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199127A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP2015135800A (en) * 2013-12-16 2015-07-27 旭硝子株式会社 Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016122546A (en) * 2014-12-24 2016-07-07 Jx金属株式会社 Positive electrode active material for lithium ion battery and method for producing positive electrode active material for lithium ion battery
WO2017204164A1 (en) * 2016-05-24 2017-11-30 住友化学株式会社 Positive electrode active material, method for producing same and positive electrode for lithium ion secondary batteries
JP2018018644A (en) * 2016-07-27 2018-02-01 マクセルホールディングス株式会社 Nonaqueous electrolyte secondary battery
WO2019103037A1 (en) * 2017-11-21 2019-05-31 住友金属鉱山株式会社 Positive-electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
JP2020087925A (en) * 2018-11-14 2020-06-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2021018974A (en) * 2019-07-18 2021-02-15 株式会社豊田自動織機 Positive electrode active material with uniform dispersion of aluminum
JP2021048070A (en) * 2019-09-19 2021-03-25 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2021524126A (en) * 2018-05-04 2021-09-09 ユミコア Lithium cobalt oxide secondary battery containing fluorinated electrolyte and positive electrode material for high voltage applications

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199127A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP2015135800A (en) * 2013-12-16 2015-07-27 旭硝子株式会社 Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016122546A (en) * 2014-12-24 2016-07-07 Jx金属株式会社 Positive electrode active material for lithium ion battery and method for producing positive electrode active material for lithium ion battery
WO2017204164A1 (en) * 2016-05-24 2017-11-30 住友化学株式会社 Positive electrode active material, method for producing same and positive electrode for lithium ion secondary batteries
JP2018018644A (en) * 2016-07-27 2018-02-01 マクセルホールディングス株式会社 Nonaqueous electrolyte secondary battery
WO2019103037A1 (en) * 2017-11-21 2019-05-31 住友金属鉱山株式会社 Positive-electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
JP2021524126A (en) * 2018-05-04 2021-09-09 ユミコア Lithium cobalt oxide secondary battery containing fluorinated electrolyte and positive electrode material for high voltage applications
JP2020087925A (en) * 2018-11-14 2020-06-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2021018974A (en) * 2019-07-18 2021-02-15 株式会社豊田自動織機 Positive electrode active material with uniform dispersion of aluminum
JP2021048070A (en) * 2019-09-19 2021-03-25 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2023085146A (en) 2023-06-20
JP7284244B1 (en) 2023-05-30
JP2023101586A (en) 2023-07-21

Similar Documents

Publication Publication Date Title
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
CN107720835B (en) Precursors for Lithium Transition Metal Oxide Cathode Materials for Rechargeable Batteries
KR20200125443A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP7676851B2 (en) Transition metal composite hydroxide particles, method for producing transition metal composite hydroxide particles, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2022260072A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN119890295A (en) Metal composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP6923730B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP7157219B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
US20230022902A1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023106336A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023106274A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP7441998B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7454642B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7441999B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
JP7359911B1 (en) Precursor and method for producing positive electrode active material for lithium secondary batteries
WO2022264992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
JP7483987B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7416897B1 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries
WO2023106309A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023106313A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2023181992A1 (en) Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, lithium secondary battery, and method for producing lithium secondary battery positive electrode active material
WO2023106311A1 (en) Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2023249013A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
CN120188285A (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22904264

Country of ref document: EP

Kind code of ref document: A1