[go: up one dir, main page]

WO2023100689A1 - Construction machine driving device, and construction machine and construction machine system provided with same - Google Patents

Construction machine driving device, and construction machine and construction machine system provided with same Download PDF

Info

Publication number
WO2023100689A1
WO2023100689A1 PCT/JP2022/042839 JP2022042839W WO2023100689A1 WO 2023100689 A1 WO2023100689 A1 WO 2023100689A1 JP 2022042839 W JP2022042839 W JP 2022042839W WO 2023100689 A1 WO2023100689 A1 WO 2023100689A1
Authority
WO
WIPO (PCT)
Prior art keywords
assist
operator
physical quantity
bucket
work
Prior art date
Application number
PCT/JP2022/042839
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 吉原
一茂 小岩井
洋一郎 山▲崎▼
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to EP22901122.6A priority Critical patent/EP4421247A4/en
Priority to CN202280078501.4A priority patent/CN118339345A/en
Priority to US18/712,083 priority patent/US20250019938A1/en
Publication of WO2023100689A1 publication Critical patent/WO2023100689A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • E02F9/2012Setting the functions of the control levers, e.g. changing assigned functions among operations levers, setting functions dependent on the operator or seat orientation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions

Definitions

  • the present disclosure relates to a construction machine driving device, a construction machine having the same, and a construction machine system.
  • a construction machine is equipped with a machine body and a working device that can change its attitude with respect to the machine body.
  • the construction machine is, for example, a hydraulic excavator
  • the machine body is composed of a lower traveling body
  • the working device includes an upper rotating body, a boom, an arm and a bucket.
  • Construction machines perform various operations at work sites. An operator frequently operates a lever to adjust the posture of the work device to a desired posture according to the content of the work. However, it is not easy for non-experts to efficiently perform such operations. Therefore, a technology has been proposed in which a controller of a construction machine assists an operation by an operator.
  • Patent Document 1 discloses a construction machine intended to assist the operator so that the work elements can reliably reach the target values in each work.
  • the control device outputs from the operating device when the pilot pressure is less than the maximum value at the time when the working element has moved to the second predetermined position before it has moved to the first predetermined position. change the pilot pressure value to the maximum value and accelerate the work element based on the changed maximum value. Further, the control device decelerates and stops the work element using one deceleration pattern selected from a plurality of deceleration patterns based on the speed of the work element detected by the speed detector.
  • the present disclosure provides a driving device for a construction machine capable of assisting an operator's operation for adjusting the posture of a working device to a desired posture while allowing the operator's intention to intervene, a construction machine and a construction machine system including the same. intended to provide
  • the provided driving device for a construction machine includes an operation device that is operated by an operator to move the working device with respect to the machine body, and a controller, wherein the controller determines physical quantities related to the attitude of the working device.
  • a target physical quantity is set as a target
  • a current physical quantity is calculated as a physical quantity related to the actual attitude of the working device
  • a physical quantity deviation is calculated as a deviation between the target physical quantity and the current physical quantity
  • the operator's calculating an assist operation value for assisting the operation and calculating an operator operation value corresponding to the operation so that the operator correction value is smaller when the physical quantity deviation is smaller than when the physical quantity deviation is large
  • the assist operation value is corrected to the assist correction value so that the assist correction value becomes a larger value when the physical quantity deviation is smaller than when the physical quantity deviation is large.
  • FIG. 1 is a side view showing an example of a construction machine equipped with a driving device according to an embodiment of the present disclosure
  • FIG. It is a figure which shows the hydraulic circuit and controller of the said construction machine.
  • 4 is an example of a map showing a relationship between a physical quantity deviation, which is a deviation between a target physical quantity of a working device of the construction machine and a current physical quantity of the working device, and an assist rate; It is an example of the block diagram which shows the flow of control by the said controller. 4 is a flowchart showing an example of arithmetic processing by the controller;
  • FIG. 4 is a side view for explaining the operation of the working device in earth-removing work, which is an example of work performed by the construction machine; 7 is a graph showing an example of changes over time in bucket tip height and assist rate. It is another example of the block diagram which shows the flow of control by the said controller. It is still another example of a block diagram showing the flow of control by the controller. It is a figure which shows an example of the display apparatus of the said drive device. It is a figure which shows the other example of the said display apparatus.
  • the construction machine 100 includes a lower traveling body 1 and an upper turning body supported by the lower traveling body 1 so as to be able to turn relative to the lower traveling body 1 about a vertically extending Z-axis.
  • a body 2 an attachment 3 supported by the upper revolving body 2, a plurality of hydraulic actuators, a plurality of hydraulic pumps, an attitude information acquisition section, a plurality of operating devices, a plurality of control valves, and a plurality of proportional valves. and a controller 50 .
  • a construction machine 100 according to the present embodiment shown in FIG. 1 is a hydraulic excavator.
  • Attachment 3 includes boom 4, arm 5 and tip attachment.
  • the tip attachment is a bucket 6 in the example shown in FIG. 1, but may be other tip attachments such as forks, grapples, breakers, crushers (crusher).
  • the driving device includes the plurality of operating devices and the controller 50 .
  • the lower traveling body 1 is an example of the machine body, and each of the upper rotating body 2, boom 4, arm 5, and tip attachment (for example, bucket 6) is an example of a working device. Each of these working devices is operable to change its relative posture with respect to the undercarriage 1 .
  • the construction machine 100 can perform various operations at the work site.
  • Various operations include, for example, excavation operations, earth holding turning operations, dumping operations, and return turning operations.
  • the excavation work is work in which the bucket 6 is moved along an excavation target such as the ground or embankment to excavate the excavation target and hold the earth and sand in the bucket 6 .
  • the earth and sand holding and turning work is the work of moving the bucket 6 near the loading platform of the dump truck by turning the upper rotating body 2 while holding the excavated earth and sand in the bucket 6 .
  • the unloading work is the work of releasing the earth and sand held in the bucket 6 that has moved to the vicinity of the loading platform from the bucket 6, dropping it onto the loading platform of the dump truck, and loading the earth and sand onto the loading platform.
  • the return turning work is a work of turning the upper turning body 2 and adjusting the attitude of the attachment 3 to move the bucket 6 to the excavation target after the earth discharging work.
  • the lower traveling body 1 includes a pair of left and right traveling devices for causing the construction machine 100 to travel, and a lower frame connecting these traveling devices.
  • the upper revolving body 2 includes an upper frame supported by the lower frame so as to be rotatable with respect to the lower frame, and a cabin and a machine room supported by the upper frame. A driver's seat on which an operator sits is arranged in the cabin, and various devices constituting a hydraulic circuit are arranged in the machine room.
  • the boom 4 has a base end portion supported by the front portion of the upper frame of the upper rotating body 2 so that the boom 4 can rotate about a horizontal axis (boom rotation axis) with respect to the upper rotating body 2; and an opposite tip.
  • the arm 5 has a base end attached to the tip of the boom 4 so that the arm 5 can rotate about a horizontal axis (arm rotation axis) with respect to the boom 4, a tip on the opposite side, have
  • the bucket 6 has a base end attached to the tip of the arm 5 so that the bucket 6 can rotate about a horizontal axis (bucket rotation axis) with respect to the arm 5, and a base end that can accommodate and hold earth and sand. It has an accommodation part which is a part and a tip of the bucket 6 .
  • the tip of the bucket 6 is composed of at least part of a tooth for excavation.
  • the plurality of hydraulic pumps include a main pump 21 and a pilot pump 22.
  • the main pump 21 and the pilot pump 22 are driven by, for example, an engine (not shown).
  • Each of the main pump 21 and the pilot pump 22 discharges hydraulic oil by being driven by the engine.
  • the pilot pump 22 is driven by the engine to supply pilot pressure to each of the plurality of control valves.
  • the multiple hydraulic actuators include multiple hydraulic cylinders and the swing motor 11 .
  • the plurality of hydraulic cylinders includes at least one boom cylinder 7 for moving boom 4 , an arm cylinder 8 for moving arm 5 and a bucket cylinder 9 for moving bucket 6 .
  • Only one main pump 21 is illustrated in FIG. 2 , the construction machine 100 may have a plurality of main pumps 21 .
  • At least one boom cylinder 7 has one end connected to the upper swing structure 2 and the other end connected to the boom 4 . At least one boom cylinder 7 extends or contracts by being supplied with hydraulic oil discharged from the main pump 21, thereby rotating the boom 4 in the boom raising direction or the boom lowering direction.
  • the boom raising direction is the direction in which the tip of the boom 4 moves away from the ground
  • the boom lowering direction is the direction in which the tip of the boom 4 approaches the ground.
  • the arm cylinder 8 has one end connected to the boom 4 and the other end connected to the arm 5 .
  • the arm cylinder 8 is supplied with hydraulic oil discharged from the main pump 21 to extend or contract, thereby rotating the arm 5 in the arm pulling direction or the arm pushing direction.
  • the arm pushing direction is the direction in which the tip of the arm 5 moves away from the boom 4
  • the arm pulling direction is the direction in which the tip of the arm 5 approaches the boom 4 .
  • the bucket cylinder 9 has one end connected to the arm 5 and the other end connected to the bucket 6 via a link member.
  • the bucket cylinder 9 expands or contracts by being supplied with hydraulic oil discharged from the main pump 21, thereby rotating the bucket 6 in the bucket pulling direction or the bucket pushing direction.
  • the bucket pulling direction is the direction in which the tip of the bucket 6 approaches the lower traveling body 1
  • the bucket pushing direction is the direction in which the tip of the bucket 6 moves away from the lower traveling body 1 .
  • the swing motor 11 is a hydraulic motor that operates to swing the upper swing structure 2 to the right or left with respect to the lower traveling structure 1 by receiving hydraulic oil discharged from the main pump 21 .
  • the turning motor 11 has an output part (not shown) that rotates when supplied with the hydraulic oil, and the output part transmits driving force to the upper turning body 2 so as to turn the upper turning body 2 in both left and right directions. do.
  • the turning motor 11 has a pair of ports, and when hydraulic oil is supplied to one of these ports, the output portion rotates in the direction corresponding to the one port and the other port rotates. Drain the hydraulic oil from the port of
  • the attitude information acquisition unit acquires attitude information, which is information about the attitudes of a plurality of work devices including the upper rotating body 2, boom 4, arm 5, and bucket 6.
  • the posture information acquisition unit inputs the acquired posture information to the controller 50 .
  • the attitude information acquisition unit includes a boom attitude detector 31 , an arm attitude detector 32 , a bucket attitude detector 33 , and a revolving body attitude detector 34 .
  • the boom attitude detector 31 detects boom attitude information, which is information about the attitude of the boom 4 .
  • the boom attitude detector 31 inputs a detection signal corresponding to the detected boom attitude information to the controller 50 .
  • the boom attitude detector 31 may be a boom angle sensor that detects the angle of the boom 4 (an example of boom attitude information) with respect to a preset reference.
  • the reference may be, for example, the upper revolving body 2, a horizontal plane, or a straight line or plane perpendicular to the central axis of revolving (the Z axis in FIG. 1).
  • the boom attitude detector 31 may be a cylinder stroke sensor that detects the cylinder length of the boom cylinder 7 .
  • the cylinder length of the boom cylinder 7 corresponds to the attitude of the boom 4 with respect to the upper swing structure 2 .
  • the cylinder length of the boom cylinder 7 is an example of boom attitude information.
  • the arm orientation detector 32 detects arm orientation information, which is information regarding the orientation of the arm 5 .
  • the arm orientation detector 32 inputs a detection signal corresponding to the detected arm orientation information to the controller 50 .
  • the arm orientation detector 32 may be an arm angle sensor that detects the angle of the arm 5 (an example of arm orientation information) with respect to a preset reference.
  • the reference may be, for example, the boom 4, a horizontal plane, or a straight line or plane perpendicular to the pivot axis (the Z axis in FIG. 1).
  • the arm posture detector 32 may be a cylinder stroke sensor that detects the cylinder length of the arm cylinder 8 .
  • the cylinder length of arm cylinder 8 corresponds to the posture of arm 5 with respect to boom 4 .
  • the cylinder length of the arm cylinder 8 is an example of arm posture information.
  • the bucket attitude detector 33 detects bucket attitude information, which is information about the attitude of the bucket 6 .
  • the bucket attitude detector 33 inputs a detection signal corresponding to the detected bucket attitude information to the controller 50 .
  • the bucket attitude detector 33 may be a bucket angle sensor that detects the angle of the bucket 6 with respect to a preset reference (an example of bucket attitude information).
  • the reference may be, for example, the arm 5, a horizontal plane, or a straight line or plane perpendicular to the pivot axis (the Z axis in FIG. 1).
  • the bucket position detector 33 may be a cylinder stroke sensor that detects the cylinder length of the bucket cylinder 9 .
  • the cylinder length of bucket cylinder 9 corresponds to the posture of bucket 6 with respect to arm 5 .
  • the cylinder length of the bucket cylinder 9 is an example of bucket attitude information.
  • the revolving body posture detector 34 detects revolving body posture information, which is information about the posture of the upper revolving body 2 .
  • the rotating body posture detector 34 inputs a detection signal corresponding to the detected rotating body posture information to the controller 50 .
  • the revolving body posture detector 34 may be, for example, an inclination angle sensor that detects the inclination angle of the upper revolving body 2 with respect to the horizontal plane (an example of revolving body posture information).
  • a rotation angle sensor that detects the rotation angle of the revolving body 2 (an example of revolving body posture information) may be used.
  • the revolving body attitude detector 34 may include both an inclination angle sensor and a rotation angle sensor.
  • Each of the boom angle sensor, arm angle sensor, bucket angle sensor, and rotation angle sensor may be, for example, a resolver, a rotary encoder, a potentiometer, or an IMU (Inertial Measurement Unit). , or other sensors.
  • the tilt angle sensor may be, for example, an IMU.
  • the controller 50 preliminarily stores the size of each of a plurality of work devices according to the model of the construction machine 100 .
  • the controller 50 can also control, for example, the relative positional relationship between the turning center axis and the boom rotation axis, the relative positions of the boom rotation axis, the arm rotation axis, the bucket rotation axis, and the corresponding work devices. relationship, etc. may be stored in advance.
  • the controller 50 geometrically adjusts the posture of each of the plurality of work devices including the upper rotating body 2, the boom 4, the arm 5 and the bucket 6 based on the detection signals input from the detectors 31 to 34, respectively.
  • the coordinates of a specific portion SP which is a preset portion in any one of the plurality of working devices, can be calculated.
  • the specific portion SP may be set at the tip of the bucket 6 as shown in FIG. 1, for example.
  • the plurality of operating devices include a boom operating device 61, an arm operating device 62, a bucket operating device 63, and a turning operating device 64.
  • These operating devices 61 to 64 have operating levers 61A to 64A, respectively, which are operated by operators.
  • Each of the operation devices 61 to 64 may be an electric operation device that inputs an operator operation value (electrical signal), which is an operation value corresponding to the operation given to the operation lever by the operator, to the controller 50 .
  • FIG. 2 shows a circuit configuration when the operating devices 61 to 64 are configured by electric operating devices. Further, each of the operation devices 61 to 64 may be configured by an operation device (not shown) having a remote control valve.
  • a single operating lever may have a lever structure that also functions as a plurality of operating levers.
  • the right operation lever located on the right front of the driver's seat where the operator sits functions as the boom operation lever 61A when operated in the longitudinal direction, and functions as the bucket operation lever 63A when operated in the left and right direction.
  • the left operation lever arranged on the front left side of the driver's seat may function as the arm operation lever 62A when operated in the front-rear direction, and may function as the turn operation lever 64A when operated in the left-right direction.
  • the lever structure may be configured such that a combination of a plurality of operating levers can be arbitrarily changed by an operator's instruction.
  • the operation lever 61A of the boom operating device 61 is operated by the operator to raise the boom 4 in the boom raising direction and to lower the boom 4 in the boom lowering direction. and is configured to be able to receive
  • the boom operation device 61 inputs an operator operation value (Lo) corresponding to the magnitude and direction of the operation to the controller 50 when the operation lever 61A is operated to raise or lower the boom.
  • Lo operator operation value
  • the operating lever 62A of the arm operating device 62 is operated by the operator to operate the arm 5 in the arm pushing direction, and the arm pulling operation is operated by the operator to operate the arm 5 in the arm pulling direction. and is configured to be able to receive
  • the arm operation device 62 inputs an operator operation value (Lo) corresponding to the magnitude and direction of the operation to the controller 50 when the operation lever 62A is subjected to an arm push operation or an arm pull operation.
  • the operation lever 63A of the bucket operation device 63 performs a bucket pulling operation, which is an operation by the operator for moving the bucket 6 in the bucket pulling direction, and a bucket pushing operation, which is an operation by the operator for moving the bucket 6 in the bucket pushing direction. and is configured to be able to receive
  • the bucket operation device 63 inputs an operator operation value (Lo) corresponding to the magnitude and direction of the operation to the controller 50 when the operation lever 63A is subjected to a bucket pull operation or a bucket push operation.
  • the operation lever 64A of the turning operation device 64 is operated by the operator to turn the upper turning body 2 to the right and to turn the upper turning body 2 to the left. and a left turn operation.
  • the turning operation device 64 inputs an operator operation value (Lo) corresponding to the magnitude of the operation and the direction of the operation to the controller 50 when the operation lever 64A is turned right or left.
  • the plurality of control valves include a boom control valve 41, an arm control valve 42, a bucket control valve 43, and a swing control valve 44.
  • Each of the multiple control valves has a pair of pilot ports.
  • the boom control valve 41 is interposed between the main pump 21 and the boom cylinder 7, and controls the boom cylinder 7 according to the pilot pressure supplied to the pilot port corresponding to either one of the boom raising operation and the boom lowering operation. It opens and closes so as to change the direction and flow rate of the supplied hydraulic oil.
  • the arm control valve 42 is interposed between the main pump 21 and the arm cylinder 8, and controls the arm cylinder 8 according to the pilot pressure supplied to the pilot port corresponding to either one of the arm pushing operation and the arm pulling operation. It opens and closes so as to change the direction and flow rate of the supplied hydraulic oil.
  • the bucket control valve 43 is interposed between the main pump 21 and the bucket cylinder 9, and controls the bucket cylinder 9 according to the pilot pressure supplied to the pilot port corresponding to either the bucket pulling operation or the bucket pushing operation. It opens and closes so as to change the direction and flow rate of the supplied hydraulic oil.
  • the swing control valve 44 is interposed between the main pump 21 and the swing motor 11, and controls the swing motor 11 according to the pilot pressure supplied to the pilot port corresponding to either the right swing operation or the left swing operation. It opens and closes so as to change the direction and flow rate of the hydraulic oil supplied to.
  • the plurality of proportional valves include a pair of boom electromagnetic proportional valves 45, 45, a pair of arm electromagnetic proportional valves 46, 46, a pair of bucket electromagnetic proportional valves 47, 47, a pair of swing electromagnetic proportional valves 48, 48, including.
  • Each of the plurality of proportional valves reduces the pressure of the pilot oil (operating oil) discharged by the pilot pump 22 according to a control command input from the controller 50, and the pilot pressure, which is the reduced pressure, is applied to the proportional valve is supplied to the pilot port of the control valve corresponding to .
  • the control valve opens with a stroke corresponding to the magnitude of the pilot pressure in the direction corresponding to the pilot port to which the pilot pressure is supplied.
  • hydraulic fluid from the main pump 21 is supplied to the hydraulic actuator corresponding to the control valve at a flow rate corresponding to the stroke.
  • the controller 50 includes, for example, a computer including an arithmetic processing unit such as an MPU and a memory.
  • the controller 50 includes an operation command unit 51, a target physical quantity setting unit 52, a current physical quantity calculation unit 53, a physical quantity deviation calculation unit 54, an assist rate setting unit 55, an assist operation value calculation unit 56, and an operator operation value correction unit.
  • a section 57 , an assist operation value correction section 58 , and a work determination section 59 are provided.
  • an operation command unit 51, a target physical quantity setting unit 52, a current physical quantity calculation unit 53, a physical quantity deviation calculation unit 54, an assist rate setting unit 55, an assist operation value calculation unit 56, an operator operation value correction unit 57, an assist operation value correction unit 58, and the work determination unit 59 are implemented by the arithmetic processing unit executing a program.
  • the operation command unit 51 inputs the control command to each of the plurality of proportional valves. Specifically, when the operation lever 61A of the boom operating device 61 is given a boom raising operation or a boom lowering operation, the operation command unit 51 controls the boom electromagnetic proportional valves 45, 45 corresponding to the operation. A control command is input to the proportional valve 45 . When the operation lever 62A of the arm operating device 62 is subjected to an arm push operation or an arm pull operation, the operation command unit 51 controls the arm electromagnetic proportional valve 46 corresponding to the operation among the pair of arm electromagnetic proportional valves 46, 46. Enter directives.
  • the operation command unit 51 controls the bucket electromagnetic proportional valve 47 corresponding to the operation among the pair of bucket electromagnetic proportional valves 47, 47. Enter directives.
  • the operation command unit 51 controls the turning electromagnetic proportional valve 48 corresponding to the operation among the pair of turning electromagnetic proportional valves 48, 48. Input the control command.
  • the operation command unit 51 sets the operator correction value as described later.
  • a control command calculated using (Lo') and the assist correction value (La') is input to the proportional valve corresponding to the operation being performed in the target work.
  • the target work is a work set in advance as a target for assistance by the controller 50 in response to the operator's operation.
  • the operation command unit 51 controls the plurality of operation devices.
  • a command corresponding to the operator operation value (Lo) input to the controller 50 from the operating device operated in the non-target work among 61 to 64 is input as the control command to the proportional valve corresponding to the operation.
  • the target physical quantity setting unit 52 sets a target physical quantity, which is a target physical quantity related to the attitude of at least one working device.
  • the physical quantity related to the posture of the working device is the coordinates of the specific part
  • the target physical quantity is the target coordinates of the specific part.
  • the specific portion is the tip of the bucket 6 .
  • the target physical quantity setting unit 52 may set target coordinates as follows, for example.
  • the construction machine 100 further includes a memory switch 80 that can be operated by the operator.
  • the memory switch 80 is arranged at a position (for example, a position near the driver's seat) that can be operated by the operator, for example, in the cabin.
  • the memory switch 80 may be an operator operable button.
  • the memory switch 80 may be an area formed on the screen of the display and operable by the operator.
  • the operator places the tip of the bucket 6 at a desired position by operating at least one of the operating levers 61A-64A of the plurality of operating devices 61-64. With the tip of the bucket 6 positioned at the desired position, the operator performs an input operation (for example, button operation) on the memory switch 80 .
  • the target physical quantity setting unit 52 sets the coordinates at which the tip (specific portion) of the bucket 6 is arranged when the memory switch 80 is operated to be the target coordinates.
  • the coordinate system that serves as a reference for the target coordinates may be, for example, a coordinate system whose origin is a preset position on the work site, or a coordinate system whose origin is a preset portion of the construction machine 100. It may be a coordinate system with another position as the origin. Also, the coordinate system may be a three-dimensional coordinate system or a two-dimensional coordinate system.
  • the method of setting the target coordinates is not limited to the above specific example.
  • the construction machine 100 is provided with a camera that acquires an image of the work site, and a display capable of displaying an image of the work site (for example, a three-dimensional image) based on image data input from the camera to the controller 50.
  • the target physical quantity setting unit 52 sets the designated portion may be set as the target coordinates.
  • the target physical quantity setting unit 52 may also set the coordinates (a plurality of numerical values) input by the operator as the target coordinates.
  • the current physical quantity calculation unit 53 calculates a current physical quantity that is a physical quantity related to the actual posture of at least one work device.
  • the current physical quantity is the actual coordinates of the tip of the bucket 6, that is, the current coordinates at that time. Therefore, the current physical quantity calculator 53 calculates the current coordinates, which are the coordinates of the tip (specific portion) of the bucket 6 .
  • the current physical quantity calculation unit 53 calculates the current coordinates of the tip of the bucket 6 based on the posture information input from the posture information acquisition unit. Specifically, the current physical quantity calculation unit 53 calculates the attitude of the boom 4, the attitude of the arm 5, and the attitude of the bucket 6 based on the boom attitude information, the arm attitude information, and the bucket attitude information detected by the detectors 31 to 33, for example. Based on these attitudes, the current coordinates of the tip of the bucket 6 may be calculated. Further, the current physical quantity computing unit 53 may compute the current coordinates of the tip of the bucket 6 further taking into account the revolving body posture information detected by the detector 34 .
  • the attitude of the boom 4 is represented by a boom angle ⁇ 1 that is the angle of the boom 4
  • the attitude of the arm 5 is represented by an arm angle ⁇ 2 that is the angle of the arm 5
  • the attitude of the bucket 6 is represented by , a bucket angle ⁇ 3 that is the angle of the bucket 6 .
  • the boom angle ⁇ 1 is, for example, an angle between a straight line connecting the rotation center of the boom 4 at the base end of the boom 4 and the rotation center of the arm 5 at the base end of the arm 5 and a reference plane. good too.
  • the reference plane may be a horizontal plane or a plane orthogonal to the central axis of rotation (the Z axis in FIG. 1).
  • the arm angle ⁇ 2 is the angle formed by the straight line connecting the rotation center of the boom 4 and the rotation center of the arm 5 and the straight line connecting the rotation center of the arm 5 and the rotation center of the bucket 6.
  • the bucket angle ⁇ 3 is an angle formed by a straight line connecting the pivot center of the arm 5 and the pivot center of the bucket 6 and a straight line connecting the pivot center of the bucket 6 and the tip of the bucket 6. good too.
  • the physical quantity deviation calculation unit 54 calculates a physical quantity deviation, which is the deviation between the target physical quantity and the current physical quantity.
  • the physical quantity deviation calculator 54 calculates a coordinate deviation (e), which is the deviation between the target coordinates and the current coordinates.
  • the coordinate deviation (e) calculated by the above formula indicates the direction from the current coordinates to the target coordinates and the distance from the current coordinates to the target coordinates.
  • the assist rate setting unit 55 sets the assist rate so that the assist rate is larger when the physical quantity deviation is smaller than when the physical quantity deviation is large.
  • the assist rate setting unit 55 sets the assist rate so that the assist rate (r) becomes a larger value when the coordinate deviation (e) is small than when the coordinate deviation (e) is large. (r) is set.
  • the assist rate setting unit 55 uses a map (graph) in which the relationship between the coordinate deviation (e) and the assist rate (r) is preset as shown in FIG. An assist rate (r) is set based on the calculated coordinate deviation (e).
  • the horizontal axis is the magnitude of the coordinate deviation (e), that is, the distance from the current coordinates to the target coordinates
  • the vertical axis is the assist rate (r).
  • the assist rate (r) is set to the maximum value ("1" in the specific example of FIG. 3)
  • the coordinate deviation (e) is In the large area, which is a large area, the assist rate (r) is set to the minimum value ("0" in the specific example of FIG.
  • the assist rate (r) is set to r) is set so that the assist rate (r) increases as the coordinate deviation (e) decreases.
  • the assist rate (r) is set so that the assist rate (r) is larger when the coordinate deviation (e) is smaller than when the coordinate deviation (e) is large.
  • the map may, for example, represent at least part of the middle region by a curved line, or omit at least one of the small region and the large region.
  • the maximum value of the assist rate (r) may be a value larger than "1” or a value smaller than "1”
  • the minimum value of the assist rate (r) may be a value larger than "0" or "0 ” may be a smaller value.
  • the assist operation value calculation unit 56 calculates an assist operation value (La), which is an operation value for assisting the operator's operation.
  • the assist operation value calculator 56 calculates an assist operation value (La) for assisting the operator's operation based on the coordinate deviation (e).
  • the controller 50 preliminarily stores, for example, the following formula (1) for performing feedback control.
  • the assist operation value calculator 56 (PID controller) calculates the assist operation value (La) using the following equation (1) and the coordinate deviation (e).
  • "u" is an assist operation value (La)
  • Kp", “Ki”, and “Kd” are PID gains (proportional gain, integral gain and differential gain).
  • e are the coordinate deviations.
  • the assist operation value (La) is an operation value for bringing the coordinate deviation (e) closer to zero, that is, an operation value for bringing the tip (specific portion) of the bucket 6 closer to the target coordinates.
  • the controller 50 performs feedback control using an assist operation value (La) for bringing the coordinate deviation (e) closer to zero.
  • the assist operation value (La) is such that the direction in which the tip of the bucket 6 moves is closer to the target coordinates, and the speed at which the tip of the bucket 6 moves as the magnitude (distance) of the coordinate deviation (e) decreases.
  • the assist operation value (La) may be an operation value that assists the operator's operation so that the tip of the bucket 6 moves toward the target coordinates.
  • the assist operation value (La) increases the speed at which the tip of the bucket 6 moves toward the target coordinates when the coordinate deviation (e) is large, and the tip of the bucket 6 moves toward the target coordinates when the coordinate deviation (e) is small.
  • An operation value that reduces the speed of movement toward the coordinates may be used.
  • An operator operation value correction unit 57 adjusts the operator operation value (Lo) so that the operator correction value (Lo') becomes smaller when the physical quantity deviation is smaller than when the physical quantity deviation is large. Correct to the correction value (Lo').
  • the operator operation value correction unit 57 adjusts the operator operation value (Lo) to the operator correction value (Lo') so that the operator correction value (Lo') decreases as the assist rate (r) increases. to correct.
  • the operator operation value correction unit 57 multiplies the operator operation value (Lo) by a value obtained by subtracting the assist rate (r) from a preset setting value (for example, "1") to obtain the operator correction value (Lo' ) may be calculated.
  • the assist rate (r) is a value between zero and 1 (0 ⁇ r ⁇ 1). Therefore, the operator correction value (Lo') decreases as the assist rate (r) increases.
  • An assist operation value correction unit 58 corrects the assist operation value (La) so that the assist correction value (La') becomes larger when the physical quantity deviation is small than when the physical quantity deviation is large. Correct to the value (La').
  • the assist operation value correction unit 58 sets the assist operation value (La) to the assist correction value (La') so that the assist correction value (La') increases as the assist rate (r) increases. to correct.
  • the assist operation value correction unit 58 calculates an assist correction value (La') by, for example, multiplying the assist operation value (La) by the assist rate (r).
  • the assist rate (r) is a value between zero and 1 (0 ⁇ r ⁇ 1), as described above. Therefore, the assist correction value (La') increases as the assist rate (r) increases.
  • the work determination unit 59 determines the work performed by the construction machine 100 .
  • the work determination unit 59 can acquire the boom attitude, the arm attitude, the bucket attitude, and the revolving body attitude based on detection signals input to the controller 50 from the plurality of detectors 31 to 34 .
  • detection signals input to the controller 50 For example, in each of excavation work, earth and sand holding turning work, earth discharging work, and return turning work, at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2 is characteristic. Since it changes over time, the work determination unit 59 determines the work of the construction machine 100 based on data on changes over time in at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2. can judge.
  • the work determination unit 59 determines that the construction machine 100 is performing excavation work. Similarly, when the data of change over time satisfies a predetermined condition related to the turning work for holding earth and sand, the work determination unit 59 determines that the construction machine 100 is performing the turning work for holding earth and sand, and the data of change with time. satisfies a predetermined condition regarding the earth-discharging work, the work determination unit 59 determines that the construction machine 100 is performing the earth-discharging work, and the data of the change over time satisfies the predetermined condition regarding the return turning work. is satisfied, the work determination unit 59 determines that the construction machine 100 is performing the return turning work.
  • the work determination unit 59 replaces with or together with the data on at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2 with time, the above-mentioned operator operation Work performed by the construction machine 100 may be determined based on the value (Lo).
  • the work determination unit 59 may replace or together with the data on at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2 with time, and perform the work. Work performed by the construction machine 100 may be determined based on the load applied to the device.
  • the work determining unit 59 detects the detection result (detection signal) of a load sensor capable of detecting the load applied to the working device or a load sensor attached to at least one of the plurality of movable parts constituting the working device. , may be used to determine the work of the construction machine 100 .
  • the work determination unit 59 can determine the work contents input by the operator. Based on this, the work to be performed by the construction machine 100 may be determined.
  • an earth and sand loading operation including a series of operations including an excavation operation, an earth and sand holding turning operation, an earth dumping operation, and a return turning operation is repeatedly performed.
  • the earth removal work is set as the above-mentioned target work
  • the excavation work, the earth and sand holding swing work, and the return swing work are set as non-target work.
  • the specific portion is set at the tip of the bucket 6 .
  • the target physical quantity setting unit 52 of the controller 50 determines whether or not an input operation has been performed on the storage switch 80 (coordinate storage switch in this embodiment) (step S1).
  • the operator operates at least one of the operating levers 61A to 64A of the operating devices 61 to 64 as shown in the upper diagram (A) of FIG.
  • the tip of the bucket 6 is moved to the position TP (star position).
  • This asterisk position TP is a target position suitable for dropping the earth and sand held in the bucket 6 from the bucket 6 onto the bed of the dump truck during earth discharging work.
  • the operator presses the memory switch 80 after stopping the tip of the bucket 6 at the desired position TP (star position).
  • target physical quantity setting unit 52 determines that an input operation has been performed on memory switch 80 (YES in step S1). 6 is set as a target coordinate (target physical quantity) (step S2).
  • target physical quantity setting unit 52 determines that no input operation is performed on the memory switch 80 (NO in step S1), it sets the target coordinates (target physical quantity) to default values (step S3).
  • the default values may be coordinates that are set in advance as target coordinates and stored in the memory, or may be target coordinates that were previously set.
  • the work determination unit 59 of the controller 50 determines whether or not the soil removal work set as the target work is being performed (step S4).
  • the work determining unit 59 is related to the earth discharging work in which the data of changes over time of the posture of the arm 5 and the posture of the bucket 6 are predetermined based on the detection signals input to the controller 50 from the plurality of detectors 31 to 34.
  • the work determination unit 59 determines that the construction machine 100 is performing the earth removal work (YES in step S4). Specifically, it is as follows.
  • the work device is in a posture (discharging work) as shown in the second diagram (B) in FIG. 6, for example. work start posture).
  • the third diagram (C) in FIG. 6 shows the posture of the working device at the intermediate stage of the earth discharging work
  • the lower diagram (D) in FIG. 6 shows the posture of the working device at the time when the earth discharging work is completed.
  • an arm pushing operation is applied to the operating lever 62A of the arm operating device 62 so that the arm 5 moves in the arm pushing direction.
  • a bucket pushing operation is applied to the operating lever 63A of the bucket operating device 63 so that the bucket 6 moves in the bucket pushing direction. That is, in the earth removing work, the posture of the arm 5 and the posture of the bucket 6 characteristically change with time as described above. Therefore, the conditions relating to the earth-removing work are set in advance to conditions that allow determination of characteristic changes over time in the attitude of the arm 5 and the attitude of the bucket 6 as described above.
  • the current physical quantity calculation unit 53 operates based on the posture information input from the posture information acquisition unit (detectors 31 to 34).
  • the current coordinates which are the coordinates of the tip of the bucket 6 at that point in time, are calculated. is calculated (step S5).
  • the assist rate setting unit 55 sets the assist rate (r) based on, for example, the map shown in FIG. 3 and the coordinate deviation (e) calculated by the physical quantity deviation calculator 54 (step S6). .
  • the operator's operation value (Lo) at that time is input to the controller 50 .
  • the arm operating device 62 inputs an operator operation value (Lo), which is an electric signal corresponding to the magnitude of the arm pushing operation, to the controller 50
  • the bucket operation device 63 inputs an operator operation value (Lo), which is an electric signal corresponding to the magnitude of the bucket pushing operation, to the controller 50 when a bucket pushing operation is given to the operation lever 63A.
  • assist operation value calculation unit 56 uses the above equation (1) and the coordinate deviation (e) to calculate an assist operation value (La) for assisting the bucket pushing operation. .
  • the operator operation value correction unit 57 uses the above equation (2), the operator operation value (Lo) in the bucket pushing operation, and the assist rate (r) to calculate the operator correction value (Lo').
  • the assist operation value correction unit 58 uses the above equation (3), the assist operation value (La) in the bucket pushing operation, and the assist rate (r) to calculate the assist correction value (La').
  • the output control command Y is input to the proportional valve 47 corresponding to the bucket pushing operation.
  • the operation command unit 51 responds to the operation input from at least one of the plurality of operation devices 61 to 64.
  • the operator operation value (Lo) is output as a control command, which is the final operation value (step S8).
  • the controller 50 provides an operator correction value (Lo' ) and an assist correction value (La′) corrected to be larger when the coordinate deviation (e) is smaller than when the coordinate deviation (e) is large, Control the attitude of at least one work implement. That is, the controller 50 performs feedback control using the assist operation value (La) for bringing the coordinate deviation (e) closer to zero as shown in FIG. Arithmetic processing is repeated. This makes it possible to assist the operator's operation for adjusting the posture of at least one working device to a desired posture while intervening the operator's will.
  • the controller 50 sets a larger assist rate (r) when the coordinate deviation (e) is smaller than when the coordinate deviation (e) is large, and multiplies the assist operation value (La) by the assist rate (r). Assist correction value (La') is calculated, and operator correction value (Lo' ). Therefore, as the coordinate deviation (e) becomes smaller, that is, as the tip of the bucket 6 approaches the target coordinates, the operator correction value (Lo') is continuously decreased and the assist correction value (La') is continuously decreased. You can make it bigger. This enables a smooth transition from a state in which the operation by the operator is the main focus to a state in which the controller 50 is the main focus in the process in which the tip of the bucket 6 approaches the target coordinates.
  • the physical quantity related to the posture of the working device is the coordinates of the tip (specific part) of the bucket 6, but in the second embodiment, the stroke sensor (an example of the posture information acquisition unit) detects the is the length of the cylinder.
  • the target physical quantity is the target cylinder length
  • the current physical quantity is the actual cylinder length (current cylinder length) detected by the stroke sensor.
  • the physical quantity deviation is a length deviation that is the deviation between the target cylinder length and the current cylinder length.
  • the boom attitude detector 31 is a cylinder stroke sensor that detects the cylinder length of the boom cylinder 7
  • the arm attitude detector 32 is a cylinder stroke sensor that detects the cylinder length of the arm cylinder 8.
  • the bucket position detector 33 is a cylinder stroke sensor that detects the cylinder length of the bucket cylinder 9 .
  • the operator places the boom 4, the arm 5 and the bucket 6 in desired postures by operating at least one of the operating levers 61A-64A of the plurality of operating devices 61-64.
  • the desired posture differs depending on the target work.
  • the controller 50 of the driving device according to the second embodiment may perform arithmetic processing according to the flowchart shown in FIG. 5, for example, as in the first embodiment.
  • An example of arithmetic processing by the controller 50 according to the second embodiment will be described below with reference to the flowchart shown in FIG.
  • the object work is set to the earth removal work, and the excavation work, the earth and sand holding swing work, and the return swing work are set to the non-target work.
  • the target physical quantity setting unit 52 of the controller 50 determines whether or not an input operation has been performed on the memory switch 80 (step S1).
  • the operator operates at least one of the operation levers 61A to 64A of the operation devices 61 to 64 to move the arm 5 and the bucket 6 to the upper diagram (A) in FIG. 6, for example.
  • the storage switch 80 is pressed while the device is placed in the desired posture as shown.
  • the target physical quantity setting unit 52 determines that an input operation has been performed on the memory switch 80 (YES in step S1).
  • the cylinder length of the cylinder 8 is set to the target cylinder length (first target cylinder length), and the cylinder length of the bucket cylinder 9 at that time is set to the target cylinder length (second target cylinder length) (step S2).
  • target physical quantity setting unit 52 determines that an input operation to storage switch 80 has not been performed (NO in step S1)
  • target physical quantity setting unit 52 sets the target cylinder length to a default value (step S3).
  • the default values may be values preset and stored in the memory as the first target cylinder length and the second target cylinder length. It can be length.
  • the work determination unit 59 of the controller 50 determines whether or not soil removal work is being performed (step S4).
  • the work determining unit 59 is related to the earth discharging work in which the data of changes over time of the posture of the arm 5 and the posture of the bucket 6 are predetermined based on the detection signals input to the controller 50 from the plurality of detectors 31 to 34.
  • the work determination unit 59 determines that the construction machine 100 is performing the earth removal work (YES in step S4).
  • the current physical quantity calculation unit 53 determines the current arm cylinder position based on the detection signal input from the arm posture detector 32.
  • the current cylinder length (first current cylinder length), which is the cylinder length of No. 8, is calculated, and based on the detection signal input from the bucket attitude detector 33, the cylinder length of the bucket cylinder 9 at that time is calculated.
  • a current cylinder length (second current cylinder length) is calculated.
  • the controller 50 stores in advance a map (arm map) set in advance to control the attitude of the arm 5, for example, as shown in FIG. 3 (bucket map) is stored in advance. These two maps are individually set in advance so that the arm 5 and the bucket 6 perform suitable operations in the earth discharging work.
  • the horizontal axis is length deviation (first length deviation or second length deviation)
  • the vertical axis is assist rate (r).
  • the assist rate setting unit 55 sets the first length deviation (e), which is the assist rate for the arm 5, based on the arm map and the first length deviation (e) calculated by the physical quantity deviation calculation unit 54.
  • the assist rate (r) is set, and the second assist rate, which is the assist rate for the bucket 6, is calculated based on the bucket map and the second length deviation (e) calculated by the physical quantity deviation calculator 54.
  • a rate (r) is set (step S6).
  • the operator's operation value (Lo) at that time is input to the controller 50 .
  • the arm operating device 62 outputs an operator operation value (first operator operation value (Lo)), which is an electrical signal corresponding to the magnitude of the arm pushing operation. is input to the controller 50 .
  • Bucket operating device 63 inputs an operator operation value (second operator operation value (Lo)), which is an electric signal corresponding to the magnitude of the bucket pushing operation, to controller 50 when a bucket pushing operation is given to operation lever 63A. do.
  • the controller 50 preliminarily stores an equation (arm computing equation) set in advance for feedback-controlling the attitude of the arm 5, for example, as shown in the above equation (1), and controls the attitude of the bucket 6 by feedback-controlling the equation.
  • a preset formula (bucket computational formula), for example, as shown in the above formula (1), is stored in advance. These two formulas are individually set in advance so that the arm 5 and the bucket 6 perform suitable operations in the earth discharging work.
  • the assist operation value calculation unit 56 uses the above-described arm arithmetic expression and the first length deviation (e) to calculate the first assist operation value, which is an assist operation value for assisting the arm pushing operation. Calculate the value (La). Similarly, the assist operation value calculation unit 56 (PID controller) uses the bucket operation expression and the second length deviation (e) to obtain the assist operation value for assisting the bucket pushing operation. 2 Calculate an assist operation value (La).
  • the operator operation value correction unit 57 calculates the first operator correction value (Lo '), and using the above equation (2), the second operator operation value (Lo) in the bucket pushing operation, and the second assist rate (r), the second operator correction value (Lo') to calculate
  • the assist operation value correction unit 58 uses the above equation (3), the first assist operation value (La) in the arm pushing operation, and the first assist rate (r) to determine the first assist correction value (La '), and using the above equation (3), the second assist operation value (La) in the bucket pushing operation, and the second assist rate (r), the second assist correction value (La') to calculate
  • the operation command unit 51 converts the first total value, which is the sum of the first operator correction value (Lo′) and the first assist correction value (La′), into the final operation value.
  • the operation command unit 51 sets the second total value, which is the sum of the second operator correction value (Lo') and the second assist correction value (La'), as the final operation value.
  • the output first control command Y is input to the proportional valve 46 corresponding to the arm pushing operation
  • the output second control command Y is input to the proportional valve 47 corresponding to the bucket pushing operation.
  • the operation command unit 51 responds to the operation input from at least one of the plurality of operation devices 61 to 64.
  • the operator operation value (Lo) is output as a control command, which is the final operation value (step S8).
  • the controller 50 performs feedback control for each of the arm 5 and the bucket 6 using the assist operation value (La) for bringing the length deviation (e) closer to zero as shown in FIG. , the arithmetic processing shown in steps S1 to S8 in the flow chart of FIG. This makes it possible to assist the operator's operation for adjusting the attitude of the arm 5 and the attitude of the bucket 6 to desired attitudes while allowing the operator to intervene.
  • the target work is soil removal work, but the drive device according to the present disclosure is not limited to the above embodiment.
  • the target work may be, for example, the return turning work.
  • the specific portion is, for example, the tip of the bucket 6, the physical quantity related to the attitude of the work device is the height of the tip of the bucket 6, and the target physical quantity is, for example, the target height of the tip of the bucket 6 (excavation start height), the current physical quantity is, for example, the current height, which is the actual height of the tip of the bucket 6, and the physical quantity deviation is the deviation between the target height (excavation start height) and the current height.
  • the excavation start height and current height may be values based on, for example, the ground, or may be values based on a position below or above the ground.
  • FIG. 7 is a graph showing an example of temporal changes in the tip height of the bucket and the assist rate in the third embodiment
  • FIG. 8 is a block diagram showing the flow of control by the controller 50 in the third embodiment. is an example of
  • the operator places the tip of the bucket 6 at a desired position by operating at least one of the operating levers 61A-64A of the plurality of operating devices 61-64.
  • the desired position is, for example, the position of the tip of the bucket 6 when excavation is started.
  • the target physical quantity setting unit 52 sets the height at which the tip of the bucket 6 is positioned at that time. Set the excavation start height (target height).
  • the current physical quantity calculation unit 53 calculates the current height of the tip of the bucket 6 (attachment tip height) based on the posture information input from the posture information acquisition unit.
  • the current physical quantity calculator 53 calculates, for example, the boom angle ⁇ 1, the arm angle ⁇ 2, and the bucket angle ⁇ 3 detected by the detectors 31 to 33, and the inclination angle of the upper swing structure 2 with respect to the horizontal plane detected by the swing structure attitude detector . and the current height may be calculated based on. Specifically, for example, when the current physical quantity calculation unit 53 assumes that the ground on which the lower traveling body 1 is arranged and the ground located below the bucket 6 are included in the same plane, the detector 31 34, the height of the tip of the bucket 6 from the ground can be geometrically calculated.
  • the assist rate setting unit 55 sets the assist rate (r) so that the assist rate (r) is larger when the height deviation is small than when the height deviation is large. Specifically, as shown in FIG. The assist rate (r) is set based on the height deviation obtained.
  • the assist operation value calculation unit 56 calculates an assist operation value (La) for assisting the operator's operation.
  • the assist operation value calculator 56 is an assist operation value ( Calculate La).
  • the angle ⁇ 4 is the arm ground angle, which is the angle of the arm 5 with respect to the ground
  • the angle ⁇ 5 is the bucket ground angle, which is the angle of the bucket 6 with respect to the ground.
  • the arm-to-ground angle ⁇ 4 may be the angle between the ground and a straight line connecting the center of rotation of the arm 5 with respect to the boom 4 and the center of rotation of the bucket 6 with respect to the arm 5, as shown in FIG.
  • the bucket-to-ground angle ⁇ 5 may be the angle between the ground and a straight line connecting the center of rotation of the bucket 6 with respect to the arm 5 and the tip of the bucket 6, as shown in FIG. 1, for example.
  • the assist operation value calculation unit 56 stores a map in which the relationship between the arm-to-ground angle ⁇ 4 and the target angle (target bucket angle) of the bucket 6 is set in advance, such as the graph drawn at the left end of FIG. The target bucket angle is set based on the actual arm ground angle ⁇ 4.
  • the assist operation value calculation unit 56 (PID controller) calculates the assist operation value (La) using, for example, Equation (1) as described above and the angular deviation.
  • the calculated operator correction value (Lo') decreases as the assist rate (r) increases.
  • the calculated assist correction value (La') increases as the assist rate (r) increases.
  • the output control command Y is input to the proportional valve corresponding to at least one of the operating devices operated during the return swing operation.
  • the assist rate is set using the height deviation, which is the deviation between the excavation start height of the bucket 6 and the current height of the tip of the bucket 6 . Therefore, when the height deviation is large, the operator's intention can be greatly intervened. On the other hand, when the height deviation is small, that is, when the tip of the bucket 6 approaches the excavation start height (target height) and the posture of the work equipment is to be finely adjusted, the operator's intentional intervention is large. The tip of the bucket 6 can be easily adjusted to the digging start height with the assistance of the controller 50. As a result, it is possible to achieve both the intentional intervention of the operator and the easy adjustment of the posture of the working device.
  • the height deviation is the deviation between the excavation start height of the bucket 6 and the current height of the tip of the bucket 6 . Therefore, when the height deviation is large, the operator's intention can be greatly intervened.
  • the height deviation is small, that is, when the tip of the bucket 6 approaches the excavation start height (target height) and the posture of the work equipment is to be finely adjusted
  • the assist operation value (La) is calculated using the angular deviation that is the deviation between the target bucket angle and the actual bucket angle ⁇ 3.
  • This assist operation value (La) is an operation value calculated using the above equation (1), for example, in order to bring the angular deviation closer to zero. Therefore, in the third embodiment, the controller 50 performs feedback control using an assist operation value (La) for bringing the angular deviation closer to zero as shown in FIG.
  • the desired angle is preferably an angle (for example, an angle of about 90 degrees) such that the tip of the bucket 6 is positioned directly below the center of rotation of the bucket 6 with respect to the arm 5 .
  • FIG. 9 is an example of a block diagram showing the flow of control by the controller 50 according to the fourth embodiment.
  • the physical quantity related to the attitude of the working device is the angle detected by the angle sensor
  • the target physical quantity is the target angle of the working device
  • the current physical quantity is the angle sensor.
  • is the current angle which is the actual angle detected by
  • the attitude of the boom 4 , the attitude of the arm 5 and the attitude of the bucket 6 are controlled using the angle of the boom 4 , the angle of the arm 5 and the angle of the bucket 6 .
  • the boom attitude detector 31 is a boom angle sensor
  • the arm attitude detector 32 is an arm angle sensor
  • the bucket attitude detector 33 is a bucket angle sensor.
  • the target physical quantity includes first to third target physical quantities
  • the current physical quantity includes first to third current physical quantities
  • the physical quantity deviation includes the first to third physical quantity deviations.
  • the first target physical quantity is the first target angle (boom target angle) that is the target of the angle of the boom 4
  • the second target physical quantity is the second target angle that is the target of the angle of the arm 5 ( arm target angle)
  • the third target physical quantity is the third target angle (bucket target angle) that is the target angle of the bucket 6
  • the first current physical quantity is the first current angle that is the actual angle of the boom 4 detected by the boom attitude detector 31
  • the second current physical quantity is the actual angle of the arm 5 that is detected by the arm attitude detector 32.
  • the third current physical quantity is the third current angle that is the actual angle of the bucket 6 detected by the bucket attitude detector 33 .
  • the first physical quantity deviation is the first angle deviation that is the deviation between the first target angle and the first current angle
  • the second physical quantity deviation is the second angle that is the deviation between the second target angle and the second current angle.
  • the third physical quantity deviation is the third angle deviation that is the deviation between the third target angle and the third current angle.
  • the controller 50 of the driving device according to the fourth embodiment may perform arithmetic processing according to the flowchart shown in FIG. 5, for example, as in the first embodiment.
  • An example of arithmetic processing by the controller 50 according to the fourth embodiment will be described below with reference to the flowchart shown in FIG.
  • the target work is set to the earth removal work, and the excavation work, the earth and sand holding turning work, and the return turning work are set to the non-target work.
  • the operator operates at least one of the operating levers 61A to 64A of the operating devices 61 to 64 to move the boom 4, the arm 5 and the bucket 6, for example, to the upper diagram in FIG.
  • the storage switch 80 is pressed while the device is placed in the desired posture as shown in A).
  • the target physical quantity setting unit 52 determines that an input operation has been performed on the memory switch 80 (step YES in S1), the angle of the boom 4 at that time is set to the first target angle, the angle of the arm 5 at that time is set to the second target angle, and the angle of the bucket 6 at that time is set to the third target angle.
  • Set step S2
  • the target physical quantity setting unit 52 determines that no input operation is performed on the memory switch 80 (NO in step S1), it sets the first to third target angles to default values (step S3).
  • the default values may be values preset and stored in the memory as the first to third target angles, or may be the previously set first to third target angles.
  • the work determination unit 59 of the controller 50 determines whether or not earth removal work is being performed as described above (step S4).
  • the current physical quantity calculation unit 53 determines the boom 4 at that time based on the detection signal input from the boom attitude detector 31. Based on the detection signal input from the arm attitude detector 32, the second current angle that is the angle of the arm 5 at that time is calculated. A third current angle, which is the angle of the bucket 6 at that time, is calculated based on the input detection signal.
  • the controller 50 stores in advance a map (boom map) set in advance to control the attitude of the boom 4, for example, as shown in FIG. 3 (arm map) is stored in advance, and a map (bucket map) set in advance to control the posture of the bucket 6, for example, as shown in FIG. 3, is stored in advance.
  • a map bucket map
  • These three maps are individually set in advance so that the boom 4, the arm 5, and the bucket 6 perform suitable operations in the earth discharging work.
  • the horizontal axis is the angular deviation (the first angular deviation, the second angular deviation, or the third angular deviation)
  • the vertical axis is the assist rate (r).
  • the assist rate setting unit 55 sets the first assist rate, which is the assist rate for the boom 4, based on the boom map and the first angular deviation (e) calculated by the physical quantity deviation calculating unit 54. Set the rate (r). Similarly, the assist rate setting unit 55 sets the second assist rate, which is the assist rate for the arm 5, based on the arm map and the second angular deviation (e) calculated by the physical quantity deviation calculator 54. rate (r) is set, and a third assist rate ( r) is set (step S6).
  • the operator's operation value (Lo) at that time is input to the controller 50 .
  • the boom operation device 61 is an operator operation value ( A first operator manipulated value (Lo)) is input to the controller 50 .
  • the arm operating device 62 inputs an operator operation value (second operator operation value (Lo)), which is an electrical signal corresponding to the magnitude of the arm pushing operation, to the controller 50.
  • Bucket operating device 63 inputs an operator operation value (third operator operation value (Lo)), which is an electric signal corresponding to the magnitude of the bucket pushing operation, to controller 50 when a bucket pushing operation is given to operation lever 63A. do.
  • the controller 50 stores in advance a formula (computational formula for boom) such as the above formula (1) set in advance for feedback control of the attitude of the boom 4,
  • a formula computational formula for boom
  • a preset equation arm operation equation
  • a preset equation such as the above equation (1) is stored for feedback control of the attitude of the bucket 6.
  • Formulas (calculation formulas for buckets) are stored in advance. These three formulas are individually set in advance so that the boom 4, the arm 5 and the bucket 6 perform suitable operations in the earth discharging work.
  • the assist operation value calculation unit 56 uses the boom operation expression and the first angle deviation (e) to calculate a first assist operation value ( Calculate La). Similarly, the assist operation value calculation unit 56 (PID controller) uses the arm operation formula and the second angle deviation (e) to obtain the second angle deviation, which is the assist operation value for assisting the arm pushing operation. The assist operation value (La) is calculated, and the third assist operation value (La ).
  • the operator operation value correction unit 57 calculates the first operator correction value (Lo' ). Similarly, the operator operation value correction unit 57 uses the above equation (2), the second operator operation value (Lo) in the arm pushing operation, and the second assist rate (r) to perform the second operator correction value (Lo') is calculated, and the third operator correction value ( Lo').
  • the assist operation value correction unit 58 uses the above equation (3), the first assist operation value (La) in the boom operation, and the first assist rate (r) to determine the first assist correction value (La' ). Similarly, the assist operation value correction unit 58 uses the above equation (3), the second assist operation value (La) in the arm pushing operation, and the second assist rate (r) to perform the second assist correction. value (La') is calculated, and the third assist correction value ( La') is calculated.
  • the operation command unit 51 sets the third total value, which is the sum of the third operator correction value (Lo') and the third assist correction value (La'), as the final operation value.
  • the output first control command Y is input to the proportional valve 45 corresponding to the boom operation (boom down operation or boom up operation), and the output second control command Y is input to the proportional valve 46 corresponding to the arm pushing operation.
  • the third control command Y input to and output from is input to the proportional valve 47 corresponding to the bucket pushing operation.
  • the operation command unit 51 responds to the operation input from at least one of the plurality of operation devices 61 to 64.
  • the operator operation value (Lo) is output as a control command, which is the final operation value (step S8).
  • the controller 50 performs feedback control using the assist operation value (La) for bringing the angular deviation (e) closer to zero as shown in FIG.
  • the arithmetic processing shown in steps S1 to S8 in the flowchart of FIG. 5 is repeatedly performed for each of the boom 4, arm 5 and bucket 6.
  • FIG. This makes it possible to assist the operator's operation for adjusting the posture of the boom 4, the posture of the arm 5, and the posture of the bucket 6 to desired postures while intervening the operator's will.
  • the physical quantity related to the posture of the working device is the coordinates of the tip of the bucket 6, and the posture of the bucket 6 is controlled using the coordinates of the tip of the bucket 6, but in the first embodiment. is not limited to such specific examples.
  • at least one of coordinates of a specific portion of the boom 4 for example, the tip of the boom 4
  • coordinates of a specific portion of the arm 5 for example, the tip of the arm 5
  • coordinates of a specific portion of the bucket 6 for example, the tip of the bucket 6
  • the coordinates of the tip of the arm 5 may be used to control the attitude of the arm 5
  • the coordinates of the tip of the bucket 6 may be used to control the attitude of the bucket 6
  • the attitude of the boom 4 is controlled using the coordinates of the tip of the boom 4
  • the attitude of the arm 5 is controlled using the coordinates of the tip of the arm 5, and the coordinates of the tip of the bucket 6 are used.
  • Attitude may be controlled.
  • the controller 50 sets the actual coordinates of the tip of the arm 5 to the current coordinates.
  • a target physical quantity that is a target coordinate of the tip of the arm 5 a physical quantity deviation that is a deviation of these, an operator operation value, an assist operation value, an operator correction value, and an assist correction value
  • the attitude of the arm 5 is controlled, and the current physical quantity that is the actual coordinates of the tip of the bucket 6, the target physical quantity that is the target of the coordinates of the tip of the bucket 6, the physical quantity deviation that is the deviation of these, the operator operation value, It is preferable to control the attitude of the bucket 6 using the assist operation value, the operator correction value, and the assist correction value.
  • the physical quantity related to the attitude of the working device is the cylinder length
  • the cylinder length of the arm cylinder 8 is used to control the attitude of the arm 5
  • the cylinder length of the bucket cylinder 9 is
  • the attitude of the bucket 6 is controlled using the height
  • the second embodiment is not limited to such a specific example.
  • at least one of the cylinder length of the boom cylinder 7, the cylinder length of the arm cylinder 8, and the cylinder length of the bucket cylinder 9 may be used to control the posture of the working device.
  • the physical quantity related to the posture of the working device is the height of the tip of the bucket 6, and the height of the tip of the bucket 6 is used to control the posture of the working device.
  • the height of a specific portion of the boom 4 for example, the tip of the boom 4
  • the height of a specific portion of the arm 5 for example, the tip of the arm 5
  • the height of a specific portion of the bucket 6 for example, the tip of the bucket 6
  • the attitude of the working device may be controlled using at least one of
  • the physical quantity related to the posture of the work device may include at least one of boom angle ⁇ 1, arm angle ⁇ 2, bucket angle ⁇ 3, and inclination angle of upper swing body 2, for example.
  • the driving device can also be applied to construction machine systems.
  • the construction machine system includes the construction machine 100 and remote controllers 61 to 64 which are controllers 61 to 64 arranged at positions separated from the construction machine 100 .
  • the construction machine 100 may include part or all of the controller 50, and part or all of the controller 50 may be remotely located.
  • Construction machine 100 is configured to operate based on operator's operations given to remote control devices 61-64.
  • Operator operation values (Lo) output from the remote control devices 61 to 64 are transmitted to the construction machine 100 by wireless communication or wired communication.
  • An image of the work site where the construction machine 100 is working is captured by a camera (not shown), and the captured data is transmitted to a remote location by wireless or wired communication.
  • each of the operation devices 61 to 64 is configured by an operation device having a remote control valve
  • the construction machine 100 can be operated by the magnitude of the operation given to the operation lever of each of the operation devices 61 to 64.
  • a plurality of pilot pressure sensors are provided to detect the pressure of the pilot oil output from the remote control valve according to the lever operation amount.
  • Each of the plurality of pilot pressure sensors inputs an operation value, which is a signal corresponding to the detected pilot oil pressure, to the controller 50 as an operator operation value.
  • an electromagnetic proportional valve is arranged between each remote control valve and the corresponding control valve, and the electromagnetic proportional valve reduces the pressure of the pilot oil based on a control command from the controller 50, Supply pressure to the pilot port of the corresponding control valve.
  • the controller 50 controls the second electromagnetic valve different from the electromagnetic proportional valve.
  • the second electromagnetic proportional valve may be controlled such that the secondary pressure of the proportional valve is selected at a high level by a shuttle valve (not shown) to be supplied to the pilot port of the control valve.
  • the driving device further includes an input device 90 (see FIG. 2) for receiving operator input for correcting the assist rate (r). It may be configured to correct the assist rate (r) based on. In this configuration, the operator can correct the assist rate (r), so that the degree of intervention of the operator's will can be adjusted according to the operator's preference.
  • the operator inputs an input value (r') to the input device 90 for correcting the assist rate (r).
  • the operator operation value correction unit 57 of the controller 50 calculates the operator correction value (Lo′) using, for example, the formula “Lo ⁇ (1 ⁇ min(r,r′))”, and the assist operation value correction unit 58
  • the assist correction value (La') may be calculated using the formula "La ⁇ min(r, r')".
  • min (r, r') in the above expression means that the smaller one of the assist rate (r) and the input value (r') is adopted for calculation.
  • the driving device further includes a notification device 70 (an example of a teaching device) for informing the operator of the control status by the controller 50 as shown in FIG. ), the operation of the notification device 70 may be controlled so that the output from the notification device 70 changes according to the condition.
  • the notification device 70 outputs, for example, sound, image, vibration (for example, vibration of an operation lever).
  • the controller 50 is preferably configured to control the operation of the notification device so that the output from the notification device 70 changes according to the magnitude of the assist rate (r).
  • the operator can perform work for adjusting the posture of the working device to a desired posture while more accurately grasping the state of control by the controller 50 based on the assist rate (r).
  • the controller 50 may be configured to control the operation of the notification device 70 so that the output from the notification device 70 changes according to the physical quantity deviation (e).
  • the operator can perform the work for adjusting the attitude of the working device to a desired attitude while roughly grasping the state of control by the controller based on the physical quantity deviation (e).
  • the operator can operate the operation device while grasping the distance until the work device reaches a desired posture (target posture), so that the operator's sense of security during operation is improved.
  • a desired posture target posture
  • an improvement in the ability of the unskilled operator to grasp the sense of distance can be expected.
  • the controller 50 notifies that the output from the notification device 70 changes according to the magnitude of the physical quantity deviation (eg, coordinate deviation, height deviation, distance deviation, length deviation, angle deviation, etc.).
  • the controller 50 is arranged to control the operation of the device.
  • the operator can perform the work for adjusting the posture of the working device to a desired posture while more accurately grasping the physical quantity deviation (e), that is, the sense of distance.
  • the controller 50 controls the operation of the notification device 70 so that the alarm sound from the alarm sound notification device as the notification device 70 changes according to the angular deviation.
  • the controller 50 may be configured to change the type of sound depending on the deviation (e). As a result, the operator can recognize the distance until the working device reaches a desired posture (target posture) through changes in the type of sound, thereby improving the sense of security.
  • the controller 50 may be configured to change the type of sound according to the assist rate (r). As a result, the operator can recognize that the assist control is being performed by the controller 50, thereby improving the operator's sense of security during the operation.
  • the controller 50 sets a plurality of target physical quantities, determines the work being performed by the construction machine 100, and selects the target physical quantity according to the determined work from among the plurality of target physical quantities.
  • the earth removal work and return turning work are subject to the above-mentioned targets. work, and the excavation work and the earth-and-sand holding turning work may be set as non-target work.
  • the controller 50 sets and stores the target physical quantity for the dumping work and the target physical quantity for the return turning work.
  • the work determining unit 59 of the controller 50 determines the work being performed by the construction machine 100, and the operation command unit 51 determines whether the earth discharging work or the return turning work is being performed.
  • the operation command unit 51 sets the operator operation value ( Lo) is output as a control command that is the final manipulated value.
  • the controller 50 calculates the assist correction value (La') by multiplying the assist operation value (La) by the assist rate (r), and the operator operation value (Lo) is set in advance.
  • the operator correction value (Lo') is calculated by multiplying the value obtained by subtracting the assist rate (r) from the set value (for example, "1"), but the configuration is not limited to this.
  • the controller 50 may calculate the assist correction value (La') and the operator correction value (Lo') without using the assist rate. That is, the controller 50 operates based on a preset map so that the operator correction value (Lo') is smaller when the physical quantity deviation (e) is smaller than when the physical quantity deviation (e) is large.
  • the operator operation value (Lo) corresponding to the operator's operation may be corrected to the operator correction value (Lo').
  • the controller 50 is based on a preset map so that the assist correction value (La') is larger when the physical quantity deviation (e) is smaller than when the physical quantity deviation (e) is large. , the assist operation value (La) may be corrected to the assist correction value (La').
  • the drive device for the construction machine 100 in each of the above-described embodiments further includes a display device (an example of a teaching device), and the controller 50 controls at least one of the plurality of work devices on the display device. It may be configured to display an actual attitude image, which is an image relating to the actual attitudes of one working device, and a desired attitude image, which is an image relating to a target orientation of the at least one working device.
  • the display device may be, for example, a display arranged at a position that can be seen by the operator in the cabin of the upper swing structure 2, or a head-mounted display that can be worn by the operator. Also, the display device may be, for example, a device capable of displaying an image on the windshield of the cabin.
  • the display device may be arranged at a remote location.
  • the display device may be a device that can be seen by the operator who operates the remote control devices 61 to 64 located at a distance from the construction machine 100 .
  • FIG. 10 is a diagram showing an example of the display device 92.
  • the controller 50 displays a side view image of the entire construction machine 100 including a plurality of work devices.
  • the images drawn with solid lines in FIG. 10 include actual attitude images, which are images of the actual attitudes of the lower traveling body 1, the upper rotating body 2, the boom 4, the arm 5, and the bucket 6 at that time.
  • the actual posture video may be, for example, an actual video of at least one work device captured by a camera, and is a video created by the controller 50 based on the posture information input to the controller 50 from the posture information acquisition unit. There may be.
  • the 10 are a boom target attitude image about the target attitude of the boom 4, an arm target attitude image about the target attitude of the arm 5, a bucket target attitude image about the target attitude of the bucket 6, including.
  • the boom target attitude image is an image corresponding to the target physical quantity (boom target physical quantity) related to the attitude of the boom 4 set by the target physical quantity setting unit 52 .
  • the arm target orientation image is an image corresponding to the target physical quantity (arm target physical quantity) related to the orientation of the arm 5 set by the target physical quantity setting unit 52 .
  • the bucket target orientation image is an image corresponding to the target physical quantity (bucket target physical quantity) related to the orientation of the bucket 6 set by the target physical quantity setting unit 52 .
  • the controller 50 causes the display device 92 to display the boom target posture video, arm target posture video, and bucket target posture video superimposed on the actual posture video of the boom 4, arm 5, and bucket 6.
  • the operator can recognize the gap between the target attitudes of the boom 4 , the arm 5 and the bucket 6 and their actual attitudes through the image displayed on the display device 92 .
  • the unskilled person can effectively improve the operation technique by operating the operation device while recognizing the gap through the image displayed on the display device 92 .
  • FIG. 11 is a diagram showing another example of the display device 92.
  • the controller 50 displays an image assuming the viewpoint of an operator sitting in the driver's seat of the cabin.
  • the image on the left drawn with a solid line in FIG. 11 is an image (actual attitude image) of the actual attitudes of the arm 5 and the bucket 6 at that time.
  • the actual posture video may be, for example, an actual video of at least one work device captured by a camera, or may be a video created by the controller 50 based on the posture information.
  • the display device is a device capable of displaying an image on the windshield of the cabin
  • the actual attitude image may be an image created by the controller 50 based on the attitude information. It may also be a real image of the arm 5 and bucket 6 seen through.
  • the image on the right drawn with a broken line in FIG. 11 is a bucket target attitude image related to the target attitude of bucket 6.
  • the bucket target orientation image is an image corresponding to the target physical quantity related to the orientation of the bucket 6 set by the target physical quantity setting unit 52 .
  • 11 is an intermediate attitude image (bucket intermediate attitude image) relating to an intermediate attitude between the actual attitude of the bucket 6 and the target attitude of the bucket 6.
  • the controller 50 causes the display device 92 to display the actual attitude image of the arm 5 and the bucket 6, the bucket target attitude image, and the bucket intermediate attitude image.
  • the operator can recognize the gap between the target attitude of the bucket 6 and the actual attitude of the bucket 6 through the image displayed on the display device 92 .
  • the operator can recognize through the bucket intermediate posture image displayed on the display device 92 what intermediate postures the bucket 6 passes through from the actual posture to the target posture.
  • the controller 50 may cause the display device 92 to display an image of an object existing around the bucket 6 in addition to the image of the actual posture of the bucket 6 , the target bucket posture image, and the intermediate bucket posture image. In this case, the operator determines whether or not the bucket 6 collides with an object existing around the bucket 6 while the bucket 6 reaches the target posture from the actual posture through the intermediate posture. be able to.
  • the controller 50 may, for example, calculate the intermediate posture based on information related to the operating speed of the bucket 6. This allows the controller 50 to predict the intermediate posture relatively accurately.
  • the movement speed of bucket 6 includes the direction in which bucket 6 moves and the speed at which bucket 6 moves.
  • the controller 50 uses information related to the operating speed of the bucket 6 at that point in time and, for example, a preset set time or a set time set based on an operator's input, to determine the lapse of the set time from that point.
  • the subsequent attitude of the bucket 6 may be calculated as the intermediate attitude.
  • the calculation of the intermediate posture by the controller 50 is not limited to the above specific example.
  • the controller 50 may compute the attitude at the midpoint between the actual attitude of the bucket 6 and the target attitude of the bucket 6 using a technique such as linear interpolation.
  • the information related to the operating speed of the bucket 6 may be an operator operation value corresponding to the operation given to at least one operating device among the plurality of operating devices 61-64. Further, the information related to the operating speed of the bucket 6 may be the sum of the operator correction value (Lo') and the assist correction value (La'). Also, the information related to the operating speed of the bucket 6 may be the operating speed of the bucket 6 actually detected by a speed sensor (not shown).
  • the controller 50 performs the assist control for controlling the attitude of the working device using the total value
  • the non-assist condition which is a predetermined condition
  • the assist control may be switched to control (normal control) based on the operation given to the operating device.
  • the controller 50 switches from the assist control to the normal control.
  • the assist by the controller 50 is released, and the working device performs the operation corresponding to the operation given to the operating device by the operator. This makes it possible to cancel the assist and operate the working device appropriately as the operator intends when a situation arises in which it is not desirable to continue the assist control.
  • Situations in which it is not desirable to continue the assist control as it is include, for example, situations in which the working device needs to avoid obstacles, and when the posture of the working device reaches the target posture while earth-discharging work is being performed. For example, a situation where the bucket has been completely unloaded before.
  • the non-assist condition may include switching from the operation given to the operating device in the assist control to another preset operation.
  • the operator often switches from the operation given to the operating device to another operation in the assist control.
  • the operator operates the work device in a different direction (for example, in the opposite direction) from the direction of lever operation that has been given to the work device so far. Try to avoid contact between work equipment and obstacles by switching. By canceling the assistance by the controller 50 under such circumstances, contact between the work device and the obstacle can be more effectively avoided.
  • the non-assist condition is not limited to the above specific example. exceeding a time threshold of .
  • a driving device for a construction machine that can assist the operator's operation for adjusting the posture of the working device to a desired posture while allowing the operator's intention to intervene.
  • a construction machine and construction machine system are provided.
  • the provided driving device for a construction machine includes an operation device that is operated by an operator to move the working device with respect to the machine body, and a controller, wherein the controller determines physical quantities related to the posture of the working device.
  • a target physical quantity is set as a target
  • a current physical quantity is calculated as a physical quantity related to the actual attitude of the working device
  • a physical quantity deviation is calculated as a deviation between the target physical quantity and the current physical quantity
  • the operator's calculating an assist operation value for assisting the operation and calculating an operator operation value corresponding to the operation so that the operator correction value is smaller when the physical quantity deviation is smaller than when the physical quantity deviation is large
  • the assist operation value is corrected to the assist correction value so that the assist correction value becomes a larger value when the physical quantity deviation is smaller than when the physical quantity deviation is large.
  • This construction machine controller has an operator correction value that is corrected so that it becomes a smaller value when the physical quantity deviation is smaller than when the physical quantity deviation is large, and a larger value when the physical quantity deviation is smaller than when the physical quantity deviation is large.
  • the posture of the working device is controlled using the total value obtained by adding the assist correction value corrected so as to be Therefore, the controller of this construction machine can assist the operator's operation for adjusting the posture of the working device to a desired posture while allowing the operator's intention to intervene. Specifically, when the physical quantity deviation is large, the ratio of the operator operation value contributing to the total value can be increased, and when the physical quantity deviation is small, the ratio of the assist operation value contributing to the total value can be increased. can be done.
  • the operator's intention can be greatly intervened. is smaller than when the physical quantity deviation is large, and the posture of the working device can be easily adjusted to the target posture with the assistance of the controller. As a result, it is possible to achieve both the intentional intervention of the operator and the easy adjustment of the posture of the working device.
  • the controller sets the assist rate so that the assist rate is larger when the physical quantity deviation is smaller than when the physical quantity deviation is large, and multiplies the assist operation value by the assist rate. It is preferable to calculate the operator correction value by calculating the assist correction value and multiplying the operator operation value by a value obtained by subtracting the assist rate from a preset setting value. With this configuration, the operator correction value can be continuously decreased and the assist correction value can be continuously increased as the physical quantity deviation becomes smaller, that is, as the posture of the working device approaches the target posture. This enables a smooth transition from a state in which the operation by the operator is the main subject to a state in which the controller mainly assists, in the process in which the posture of the working device approaches the target posture.
  • the driving device may further include an input device for receiving input by the operator for correcting the assist rate, and the controller may correct the assist rate based on the input by the operator.
  • the operator can correct the assist rate, so the degree of intervention of the operator's intention can be adjusted according to the operator's preference.
  • the driving device further includes a notification device for informing the operator of the control status of the controller, and the controller operates the notification device so that the output from the notification device changes according to the assist rate. is preferably controlled.
  • the operator can perform the work for adjusting the posture of the working device to a desired posture while roughly grasping the state of control by the controller based on the assist rate.
  • the driving device further includes a notification device for informing the operator of the control status of the controller, and the controller operates the notification device so that the output from the notification device changes according to the physical quantity deviation. may be controlled.
  • the operator can perform the work for adjusting the posture of the working device to a desired posture while roughly grasping the state of control by the controller based on the physical quantity deviation.
  • the controller may calculate the assist operation value based on the physical quantity deviation so that the physical quantity deviation approaches zero. With this configuration, the controller can effectively assist in bringing the posture of the working device closer to the target posture.
  • the controller sets a plurality of target physical quantities including the target physical quantity, determines the work being performed by the construction machine, and selects a target physical quantity according to the determined work from among the plurality of target physical quantities.
  • the controller can select an appropriate target physical quantity for each task. Therefore, in this configuration, for example, when a plurality of different works are performed in succession, the operator does not need to select the target physical quantity for each work, thus reducing the burden on the operator.
  • the controller determines whether or not a target work, which is a task preset to be assisted by the controller, is being performed, and if the target work is being performed, the total value is used to Preferably, the attitude of the device is controlled, and the attitude of the work device is controlled using the operator operation value when the target work is not being performed.
  • the controller can perform control according to the determination result as to whether or not the target work is being performed. This allows the operator to smoothly perform a series of multiple operations including the target operation and other operations.
  • the work device may include a bucket, and the physical quantity deviation may be a value corresponding to the distance between the tip of the bucket and the work surface.
  • the drive device further includes a display device, and the controller controls the display device to display an actual posture video image representing an actual posture of the work device and a desired posture video image representing a target posture of the work device. and may be displayed. Thereby, the operator can recognize the gap between the target attitude and the actual attitude of the work implement through the image displayed on the display device.
  • the operator is an unskilled person, it is expected that the unskilled person can effectively improve the operation technique by operating the operation device while recognizing the gap through the image displayed on the display device.
  • the controller may cause the display device to further display an intermediate posture image, which is an image relating to an intermediate posture between the actual posture and the target posture.
  • an intermediate posture image which is an image relating to an intermediate posture between the actual posture and the target posture.
  • the controller may calculate the intermediate posture based on information related to the operating speed of the work device. This allows the controller to predict the intermediate pose relatively accurately.
  • the controller When a non-assist condition, which is a predetermined condition, is satisfied while performing assist control for controlling the posture of the working device using the total value, the controller performs the assist control. , it is preferable to switch to control (normal control) based on the operation given to the operating device. In this configuration, when the non-assist condition is satisfied while the assist control is being performed, the controller switches from the assist control to the normal control, so that the assist by the controller is canceled and the work device is operated by the operator. performs an action corresponding to the operation given to the operating device. Accordingly, when a situation arises in which it is not desirable to continue the assist control as it is, the assist can be canceled and the working device can be appropriately operated as the operator intends.
  • the non-assist condition preferably includes switching from the operation given to the operating device in the assist control to another preset operation.
  • the operator often switches from the operation given to the operating device to another operation in the assist control. Therefore, switching from the operation given to the operating device to another preset operation in the assist control serves as an indicator for determining that a situation where it is not preferable to continue the assist control has occurred.
  • the provided construction machine includes the machine body, the work device, and the drive device described above. This construction machine can assist the operator's operation for adjusting the posture of the working device to a desired posture while allowing the operator's intention to intervene.
  • the provided construction machine system includes the drive device described above, and the operating device is a remote control device arranged at a location remote from the construction machine.
  • the controller can assist the operator's operation while allowing the operator's intention to intervene. .
  • the drive device according to the present disclosure to such a system for remote control, the effect of reducing the burden on the operator due to the assistance of the drive device in the work of adjusting the working device to a predetermined posture is more remarkable. become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A controller (50) of a driving device sets a target physical quantity relating to the orientation of a work device, calculates a present physical quantity relating to the actual orientation of the work device, calculates a physical quantity deviation between the target physical quantity and the present physical quantity, calculates an assist operation value for assisting in operation of an operator, corrects an operator operation value to an operator correction value so as to attain a small value when the physical quantity deviation is small as compared with when the physical quantity deviation is large, corrects the assist operation value to an assist correction value so as to attain a large value when the physical quantity deviation is small as compared with when the physical quantity deviation is large, and controls the orientation of the work device using a total value obtained by adding the operator correction value and the assist correction value.

Description

建設機械の駆動装置、これを備えた建設機械及び建設機械システムDriving device for construction machine, construction machine and construction machine system provided with the same

 本開示は、建設機械の駆動装置、これを備えた建設機械及び建設機械システムに関するものである。 The present disclosure relates to a construction machine driving device, a construction machine having the same, and a construction machine system.

 建設機械は、機体と、機体に対する姿勢を変えることが可能な作業装置と、を備える。建設機械が例えば油圧ショベルである場合、機体は下部走行体により構成され、作業装置は、上部旋回体、ブーム、アーム及びバケットを含む。建設機械は、作業現場において様々な作業を行う。オペレータは、作業の内容に応じて作業装置の姿勢を所望の姿勢に調整するためのレバー操作を頻繁に行う。しかし、このような操作を効率よく行うことは、非熟練者にとって容易ではない。従って、建設機械のコントローラがオペレータによる操作をアシストする技術が提案されている。 A construction machine is equipped with a machine body and a working device that can change its attitude with respect to the machine body. When the construction machine is, for example, a hydraulic excavator, the machine body is composed of a lower traveling body, and the working device includes an upper rotating body, a boom, an arm and a bucket. Construction machines perform various operations at work sites. An operator frequently operates a lever to adjust the posture of the work device to a desired posture according to the content of the work. However, it is not easy for non-experts to efficiently perform such operations. Therefore, a technology has been proposed in which a controller of a construction machine assists an operation by an operator.

 特許文献1は、作業要素が個々の作業における目標値に確実に到達できるようにオペレータをアシストすることを目的とする建設機械を開示している。この建設機械では、制御装置は、作業要素が第1の所定の位置まで移動する前の第2の所定の位置まで移動した時点において、パイロット圧が最大値未満の場合に、操作装置から出力されるパイロット圧の値を最大値に変更し、変更した最大値に基づいて作業要素を加速させる。また、制御装置は、速度検出器が検出した作業要素の速度に基づいて複数の減速パターンのうちから選択した一つの減速パターンを用いて作業要素を減速して停止させる。 Patent Document 1 discloses a construction machine intended to assist the operator so that the work elements can reliably reach the target values in each work. In this construction machine, the control device outputs from the operating device when the pilot pressure is less than the maximum value at the time when the working element has moved to the second predetermined position before it has moved to the first predetermined position. change the pilot pressure value to the maximum value and accelerate the work element based on the changed maximum value. Further, the control device decelerates and stops the work element using one deceleration pattern selected from a plurality of deceleration patterns based on the speed of the work element detected by the speed detector.

 上記の特許文献1のアシスト技術では、作業要素の加速時には、オペレータによる操作の大きさであるレバー操作量にかかわらずパイロット圧が最大値に変更され、作業要素の停止時には、予め設定された何れかの減速パターンに従って作業要素が減速して停止する。すなわち、特許文献1のアシスト制御では、作業要素の加速時及び停止時の何れにおいてもオペレータの意思が介入しないので、オペレータの操作技術が向上しにくいという問題がある。 In the assist technique of Patent Document 1, when the work element is accelerating, the pilot pressure is changed to the maximum value regardless of the lever operation amount, which is the magnitude of the operation by the operator. The work element decelerates to a stop according to the deceleration pattern. That is, in the assist control of Patent Document 1, since the operator's intention does not intervene either when the work element is accelerating or when it is stopped, there is a problem that it is difficult for the operator's operation skill to improve.

特開2011-157789号公報JP 2011-157789 A

 本開示は、オペレータの意思を介入させながら、作業装置の姿勢を所望の姿勢に調整するためのオペレータによる操作をアシストすることができる建設機械の駆動装置、これを備えた建設機械及び建設機械システムを提供することを目的とする。 DISCLOSURE OF THE INVENTION The present disclosure provides a driving device for a construction machine capable of assisting an operator's operation for adjusting the posture of a working device to a desired posture while allowing the operator's intention to intervene, a construction machine and a construction machine system including the same. intended to provide

 提供される建設機械の駆動装置は、機体に対して作業装置を動かすためのオペレータによる操作が与えられる操作装置と、コントローラと、を備え、前記コントローラは、前記作業装置の姿勢に関連する物理量の目標である目標物理量を設定し、前記作業装置の実際の姿勢に関連する物理量である現在物理量を演算し、前記目標物理量と前記現在物理量との偏差である物理量偏差を演算し、前記オペレータの前記操作をアシストするためのアシスト操作値を演算し、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がオペレータ補正値が小さな値になるように、前記操作に対応するオペレータ操作値を前記オペレータ補正値に補正し、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がアシスト補正値が大きな値になるように、前記アシスト操作値を前記アシスト補正値に補正し、前記オペレータ補正値と前記アシスト補正値とを足した合計値を用いて前記作業装置の前記姿勢を制御する。 The provided driving device for a construction machine includes an operation device that is operated by an operator to move the working device with respect to the machine body, and a controller, wherein the controller determines physical quantities related to the attitude of the working device. A target physical quantity is set as a target, a current physical quantity is calculated as a physical quantity related to the actual attitude of the working device, a physical quantity deviation is calculated as a deviation between the target physical quantity and the current physical quantity, and the operator's calculating an assist operation value for assisting the operation, and calculating an operator operation value corresponding to the operation so that the operator correction value is smaller when the physical quantity deviation is smaller than when the physical quantity deviation is large; is corrected to the operator correction value, and the assist operation value is corrected to the assist correction value so that the assist correction value becomes a larger value when the physical quantity deviation is smaller than when the physical quantity deviation is large. and controlling the attitude of the working device by using the total value obtained by adding the operator correction value and the assist correction value.

本開示の実施形態に係る駆動装置を備える建設機械の一例を示す側面図である。1 is a side view showing an example of a construction machine equipped with a driving device according to an embodiment of the present disclosure; FIG. 前記建設機械の油圧回路及びコントローラを示す図である。It is a figure which shows the hydraulic circuit and controller of the said construction machine. 前記建設機械の作業装置の目標物理量と前記作業装置の現在物理量との偏差である物理量偏差と、アシスト率との関係を示すマップの一例である。4 is an example of a map showing a relationship between a physical quantity deviation, which is a deviation between a target physical quantity of a working device of the construction machine and a current physical quantity of the working device, and an assist rate; 前記コントローラによる制御の流れを示すブロック線図の一例である。It is an example of the block diagram which shows the flow of control by the said controller. 前記コントローラによる演算処理の一例を示すフローチャートである。4 is a flowchart showing an example of arithmetic processing by the controller; 前記建設機械が行う作業の一例である排土作業において作業装置の動作を説明するための側面図である。FIG. 4 is a side view for explaining the operation of the working device in earth-removing work, which is an example of work performed by the construction machine; バケットの先端高さ及びアシスト率の経時変化の一例を示すグラフである。7 is a graph showing an example of changes over time in bucket tip height and assist rate. 前記コントローラによる制御の流れを示すブロック線図の他の例である。It is another example of the block diagram which shows the flow of control by the said controller. 前記コントローラによる制御の流れを示すブロック線図のさらに他の例である。It is still another example of a block diagram showing the flow of control by the controller. 前記駆動装置の表示装置の一例を示す図である。It is a figure which shows an example of the display apparatus of the said drive device. 前記表示装置の他の例を示す図である。It is a figure which shows the other example of the said display apparatus.

 以下、本開示の実施形態に係る建設機械の駆動装置及びこれを備えた建設機械について図面を参照して説明する。 A driving device for a construction machine according to an embodiment of the present disclosure and a construction machine equipped with the same will be described below with reference to the drawings.

 [第1実施形態]
 図1及び図2に示すように、建設機械100は、下部走行体1と、上下に延びるZ軸回りに下部走行体1に対して旋回可能なように下部走行体1に支持される上部旋回体2と、上部旋回体2に支持されるアタッチメント3と、複数の油圧アクチュエータと、複数の油圧ポンプと、姿勢情報取得部と、複数の操作装置と、複数の制御弁と、複数の比例弁と、コントローラ50と、を備える。図1に示す本実施形態に係る建設機械100は油圧ショベルである。アタッチメント3は、ブーム4、アーム5及び先端アタッチメントを含む。先端アタッチメントは、図1に示す具体例ではバケット6であるが、フォーク、グラップル、ブレーカ、圧砕機(破砕機)などの他の先端アタッチメントであってもよい。前記駆動装置は、前記複数の操作装置と、前記コントローラ50と、を含む。
[First embodiment]
As shown in FIGS. 1 and 2, the construction machine 100 includes a lower traveling body 1 and an upper turning body supported by the lower traveling body 1 so as to be able to turn relative to the lower traveling body 1 about a vertically extending Z-axis. A body 2, an attachment 3 supported by the upper revolving body 2, a plurality of hydraulic actuators, a plurality of hydraulic pumps, an attitude information acquisition section, a plurality of operating devices, a plurality of control valves, and a plurality of proportional valves. and a controller 50 . A construction machine 100 according to the present embodiment shown in FIG. 1 is a hydraulic excavator. Attachment 3 includes boom 4, arm 5 and tip attachment. The tip attachment is a bucket 6 in the example shown in FIG. 1, but may be other tip attachments such as forks, grapples, breakers, crushers (crusher). The driving device includes the plurality of operating devices and the controller 50 .

 下部走行体1は機体の一例であり、上部旋回体2、ブーム4、アーム5及び先端アタッチメント(例えばバケット6)のそれぞれは、作業装置の一例である。これらの作業装置のそれぞれは、下部走行体1に対する相対的な姿勢が変わるように動作可能な装置である。 The lower traveling body 1 is an example of the machine body, and each of the upper rotating body 2, boom 4, arm 5, and tip attachment (for example, bucket 6) is an example of a working device. Each of these working devices is operable to change its relative posture with respect to the undercarriage 1 .

 建設機械100は、作業現場において種々の作業を行うことができる。種々の作業は、例えば、掘削作業、土砂保持旋回作業、排土作業、及び戻り旋回作業を含む。掘削作業は、バケット6を地盤、盛り土などの掘削対象に沿って移動させることにより前記掘削対象を掘削して土砂をバケット6に保持する作業である。土砂保持旋回作業は、掘削された土砂をバケット6に保持しながら上部旋回体2を旋回させてダンプトラックの荷台の近くまでバケット6を移動させる作業である。排土作業は、荷台の近くに移動したバケット6に保持された土砂をバケット6から解放してダンプトラックの荷台に落下させ、当該土砂を荷台に積み込む作業である。戻り旋回作業は、排土作業の後に、上部旋回体2を旋回させるとともにアタッチメント3の姿勢を調節することにより前記掘削対象のところまでバケット6を移動させる作業である。 The construction machine 100 can perform various operations at the work site. Various operations include, for example, excavation operations, earth holding turning operations, dumping operations, and return turning operations. The excavation work is work in which the bucket 6 is moved along an excavation target such as the ground or embankment to excavate the excavation target and hold the earth and sand in the bucket 6 . The earth and sand holding and turning work is the work of moving the bucket 6 near the loading platform of the dump truck by turning the upper rotating body 2 while holding the excavated earth and sand in the bucket 6 . The unloading work is the work of releasing the earth and sand held in the bucket 6 that has moved to the vicinity of the loading platform from the bucket 6, dropping it onto the loading platform of the dump truck, and loading the earth and sand onto the loading platform. The return turning work is a work of turning the upper turning body 2 and adjusting the attitude of the attachment 3 to move the bucket 6 to the excavation target after the earth discharging work.

 下部走行体1は、建設機械100を走行させるための左右一対の走行装置と、これらの走行装置を連結する下部フレームと、を備える。上部旋回体2は、下部フレームに対して旋回可能なように下部フレームに支持される上部フレームと、上部フレームに支持されるキャビン及び機械室と、を備える。キャビンには、オペレータが座る運転席などが配置され、機械室には、油圧回路を構成する種々の機器が配置されている。 The lower traveling body 1 includes a pair of left and right traveling devices for causing the construction machine 100 to travel, and a lower frame connecting these traveling devices. The upper revolving body 2 includes an upper frame supported by the lower frame so as to be rotatable with respect to the lower frame, and a cabin and a machine room supported by the upper frame. A driver's seat on which an operator sits is arranged in the cabin, and various devices constituting a hydraulic circuit are arranged in the machine room.

 ブーム4は、上部旋回体2に対してブーム4が水平軸(ブーム回動軸)回りに回動可能となるように上部旋回体2の上部フレームの前部に支持される基端部と、その反対側の先端部と、を有する。アーム5は、ブーム4に対してアーム5が水平軸(アーム回動軸)回りに回動可能となるようにブーム4の先端部に取り付けられる基端部と、その反対側の先端部と、を有する。バケット6は、アーム5に対してバケット6が水平軸(バケット回動軸)回りに回動可能となるようにアーム5の先端部に取り付けられる基端部と、土砂を収容して保持可能な部分である収容部と、バケット6の先端と、を有する。本実施形態では、バケット6の先端は、掘削用のツースの少なくとも一部により構成される。 The boom 4 has a base end portion supported by the front portion of the upper frame of the upper rotating body 2 so that the boom 4 can rotate about a horizontal axis (boom rotation axis) with respect to the upper rotating body 2; and an opposite tip. The arm 5 has a base end attached to the tip of the boom 4 so that the arm 5 can rotate about a horizontal axis (arm rotation axis) with respect to the boom 4, a tip on the opposite side, have The bucket 6 has a base end attached to the tip of the arm 5 so that the bucket 6 can rotate about a horizontal axis (bucket rotation axis) with respect to the arm 5, and a base end that can accommodate and hold earth and sand. It has an accommodation part which is a part and a tip of the bucket 6 . In this embodiment, the tip of the bucket 6 is composed of at least part of a tooth for excavation.

 複数の油圧ポンプは、メインポンプ21と、パイロットポンプ22と、を含む。メインポンプ21及びパイロットポンプ22は、例えば図略のエンジンによって駆動される。メインポンプ21及びパイロットポンプ22のそれぞれは、エンジンにより駆動されることで作動油を吐出する。パイロットポンプ22は、エンジンにより駆動されることで複数の制御弁のそれぞれにパイロット圧を供給する。 The plurality of hydraulic pumps include a main pump 21 and a pilot pump 22. The main pump 21 and the pilot pump 22 are driven by, for example, an engine (not shown). Each of the main pump 21 and the pilot pump 22 discharges hydraulic oil by being driven by the engine. The pilot pump 22 is driven by the engine to supply pilot pressure to each of the plurality of control valves.

 複数の油圧アクチュエータは、複数の油圧シリンダと、旋回モータ11と、を含む。複数の油圧シリンダは、ブーム4を動かすための少なくとも一つのブームシリンダ7と、アーム5を動かすためのアームシリンダ8と、バケット6を動かすためのバケットシリンダ9と、を含む。図2では、1つのメインポンプ21のみが図示されているが、建設機械100は、複数のメインポンプ21を備えていてもよい。 The multiple hydraulic actuators include multiple hydraulic cylinders and the swing motor 11 . The plurality of hydraulic cylinders includes at least one boom cylinder 7 for moving boom 4 , an arm cylinder 8 for moving arm 5 and a bucket cylinder 9 for moving bucket 6 . Although only one main pump 21 is illustrated in FIG. 2 , the construction machine 100 may have a plurality of main pumps 21 .

 少なくとも一つのブームシリンダ7は、上部旋回体2に接続された一端部と、ブーム4に接続された他端部と、を有する。少なくとも一つのブームシリンダ7は、メインポンプ21から吐出される作動油の供給を受けることにより伸長又は収縮し、これにより、ブーム4をブーム上げ方向又はブーム下げ方向に回動させる。ブーム上げ方向は、ブーム4の先端部が地盤から遠ざかる方向であり、ブーム下げ方向は、ブーム4の先端部が地盤に近づく方向である。 At least one boom cylinder 7 has one end connected to the upper swing structure 2 and the other end connected to the boom 4 . At least one boom cylinder 7 extends or contracts by being supplied with hydraulic oil discharged from the main pump 21, thereby rotating the boom 4 in the boom raising direction or the boom lowering direction. The boom raising direction is the direction in which the tip of the boom 4 moves away from the ground, and the boom lowering direction is the direction in which the tip of the boom 4 approaches the ground.

 アームシリンダ8は、ブーム4に接続された一端部と、アーム5に接続された他端部と、を有する。アームシリンダ8は、メインポンプ21から吐出される作動油の供給を受けることにより伸長又は収縮し、これにより、アーム5をアーム引き方向又はアーム押し方向に回動させる。アーム押し方向は、アーム5の先端部がブーム4から遠ざかる方向であり、アーム引き方向は、アーム5の先端部がブーム4に近づく方向である。 The arm cylinder 8 has one end connected to the boom 4 and the other end connected to the arm 5 . The arm cylinder 8 is supplied with hydraulic oil discharged from the main pump 21 to extend or contract, thereby rotating the arm 5 in the arm pulling direction or the arm pushing direction. The arm pushing direction is the direction in which the tip of the arm 5 moves away from the boom 4 , and the arm pulling direction is the direction in which the tip of the arm 5 approaches the boom 4 .

 バケットシリンダ9は、アーム5に接続された一端部と、バケット6にリンク部材を介して接続された他端部と、を有する。バケットシリンダ9は、メインポンプ21から吐出される作動油の供給を受けることにより伸長又は収縮し、これにより、バケット6をバケット引き方向又はバケット押し方向に回動させる。バケット引き方向は、バケット6の先端が下部走行体1に近づく方向であり、バケット押し方向は、バケット6の先端が下部走行体1から遠ざかる方向である。 The bucket cylinder 9 has one end connected to the arm 5 and the other end connected to the bucket 6 via a link member. The bucket cylinder 9 expands or contracts by being supplied with hydraulic oil discharged from the main pump 21, thereby rotating the bucket 6 in the bucket pulling direction or the bucket pushing direction. The bucket pulling direction is the direction in which the tip of the bucket 6 approaches the lower traveling body 1 , and the bucket pushing direction is the direction in which the tip of the bucket 6 moves away from the lower traveling body 1 .

 旋回モータ11は、メインポンプ21から吐出される作動油の供給を受けることにより下部走行体1に対して上部旋回体2を右方向又は左方向に旋回させるように作動する油圧モータである。旋回モータ11は、前記作動油の供給を受けて回転する図略の出力部を有し、当該出力部は上部旋回体2を左右双方向に旋回させるように上部旋回体2に駆動力を伝達する。具体的に、旋回モータ11は、一対のポートを有し、これらのうちの一方のポートへの作動油の供給を受けることにより当該一方のポートに対応する方向に前記出力部が回転するとともに他方のポートから作動油を排出する。 The swing motor 11 is a hydraulic motor that operates to swing the upper swing structure 2 to the right or left with respect to the lower traveling structure 1 by receiving hydraulic oil discharged from the main pump 21 . The turning motor 11 has an output part (not shown) that rotates when supplied with the hydraulic oil, and the output part transmits driving force to the upper turning body 2 so as to turn the upper turning body 2 in both left and right directions. do. Specifically, the turning motor 11 has a pair of ports, and when hydraulic oil is supplied to one of these ports, the output portion rotates in the direction corresponding to the one port and the other port rotates. Drain the hydraulic oil from the port of

 姿勢情報取得部は、上部旋回体2、ブーム4、アーム5及びバケット6を含む複数の作業装置の姿勢に関する情報である姿勢情報を取得する。姿勢情報取得部は、取得した姿勢情報をコントローラ50に入力する。本実施形態では、姿勢情報取得部は、ブーム姿勢検出器31と、アーム姿勢検出器32と、バケット姿勢検出器33と、旋回体姿勢検出器34と、を含む。 The attitude information acquisition unit acquires attitude information, which is information about the attitudes of a plurality of work devices including the upper rotating body 2, boom 4, arm 5, and bucket 6. The posture information acquisition unit inputs the acquired posture information to the controller 50 . In this embodiment, the attitude information acquisition unit includes a boom attitude detector 31 , an arm attitude detector 32 , a bucket attitude detector 33 , and a revolving body attitude detector 34 .

 ブーム姿勢検出器31は、ブーム4の姿勢に関する情報であるブーム姿勢情報を検出する。ブーム姿勢検出器31は、検出したブーム姿勢情報に対応する検出信号をコントローラ50に入力する。具体的には、ブーム姿勢検出器31は、予め設定された基準に対するブーム4の角度(ブーム姿勢情報の一例)を検出するブーム角度センサであってもよい。この場合、前記基準は、例えば、上部旋回体2であってもよく、水平面であってもよく、旋回中心軸(図1のZ軸)に垂直な直線又は平面であってもよい。また、ブーム姿勢検出器31は、ブームシリンダ7のシリンダ長さを検出するシリンダストロークセンサであってもよい。ブームシリンダ7のシリンダ長さは、上部旋回体2に対するブーム4の姿勢に対応する。ブームシリンダ7のシリンダ長さは、ブーム姿勢情報の一例である。 The boom attitude detector 31 detects boom attitude information, which is information about the attitude of the boom 4 . The boom attitude detector 31 inputs a detection signal corresponding to the detected boom attitude information to the controller 50 . Specifically, the boom attitude detector 31 may be a boom angle sensor that detects the angle of the boom 4 (an example of boom attitude information) with respect to a preset reference. In this case, the reference may be, for example, the upper revolving body 2, a horizontal plane, or a straight line or plane perpendicular to the central axis of revolving (the Z axis in FIG. 1). Also, the boom attitude detector 31 may be a cylinder stroke sensor that detects the cylinder length of the boom cylinder 7 . The cylinder length of the boom cylinder 7 corresponds to the attitude of the boom 4 with respect to the upper swing structure 2 . The cylinder length of the boom cylinder 7 is an example of boom attitude information.

 アーム姿勢検出器32は、アーム5の姿勢に関する情報であるアーム姿勢情報を検出する。アーム姿勢検出器32は、検出したアーム姿勢情報に対応する検出信号をコントローラ50に入力する。具体的に、アーム姿勢検出器32は、予め設定された基準に対するアーム5の角度(アーム姿勢情報の一例)を検出するアーム角度センサであってもよい。この場合、前記基準は、例えば、ブーム4であってもよく、水平面であってもよく、旋回中心軸(図1のZ軸)に垂直な直線又は平面であってもよい。また、アーム姿勢検出器32は、アームシリンダ8のシリンダ長さを検出するシリンダストロークセンサであってもよい。アームシリンダ8のシリンダ長さは、ブーム4に対するアーム5の姿勢に対応する。アームシリンダ8のシリンダ長さは、アーム姿勢情報の一例である。 The arm orientation detector 32 detects arm orientation information, which is information regarding the orientation of the arm 5 . The arm orientation detector 32 inputs a detection signal corresponding to the detected arm orientation information to the controller 50 . Specifically, the arm orientation detector 32 may be an arm angle sensor that detects the angle of the arm 5 (an example of arm orientation information) with respect to a preset reference. In this case, the reference may be, for example, the boom 4, a horizontal plane, or a straight line or plane perpendicular to the pivot axis (the Z axis in FIG. 1). Also, the arm posture detector 32 may be a cylinder stroke sensor that detects the cylinder length of the arm cylinder 8 . The cylinder length of arm cylinder 8 corresponds to the posture of arm 5 with respect to boom 4 . The cylinder length of the arm cylinder 8 is an example of arm posture information.

 バケット姿勢検出器33は、バケット6の姿勢に関する情報であるバケット姿勢情報を検出する。バケット姿勢検出器33は、検出したバケット姿勢情報に対応する検出信号をコントローラ50に入力する。具体的には、バケット姿勢検出器33は、予め設定された基準に対するバケット6の角度(バケット姿勢情報の一例)を検出するバケット角度センサであってもよい。この場合、前記基準は、例えば、アーム5であってもよく、水平面であってもよく、旋回中心軸(図1のZ軸)に垂直な直線又は平面であってもよい。また、バケット姿勢検出器33は、バケットシリンダ9のシリンダ長さを検出するシリンダストロークセンサであってもよい。バケットシリンダ9のシリンダ長さは、アーム5に対するバケット6の姿勢に対応する。バケットシリンダ9のシリンダ長さは、バケット姿勢情報の一例である。 The bucket attitude detector 33 detects bucket attitude information, which is information about the attitude of the bucket 6 . The bucket attitude detector 33 inputs a detection signal corresponding to the detected bucket attitude information to the controller 50 . Specifically, the bucket attitude detector 33 may be a bucket angle sensor that detects the angle of the bucket 6 with respect to a preset reference (an example of bucket attitude information). In this case, the reference may be, for example, the arm 5, a horizontal plane, or a straight line or plane perpendicular to the pivot axis (the Z axis in FIG. 1). Also, the bucket position detector 33 may be a cylinder stroke sensor that detects the cylinder length of the bucket cylinder 9 . The cylinder length of bucket cylinder 9 corresponds to the posture of bucket 6 with respect to arm 5 . The cylinder length of the bucket cylinder 9 is an example of bucket attitude information.

 旋回体姿勢検出器34は、上部旋回体2の姿勢に関する情報である旋回体姿勢情報を検出する。旋回体姿勢検出器34は、検出した旋回体姿勢情報に対応する検出信号をコントローラ50に入力する。具体的には、旋回体姿勢検出器34は、例えば、水平面に対する上部旋回体2の傾斜角度(旋回体姿勢情報の一例)を検出する傾斜角度センサであってもよく、下部走行体1に対する上部旋回体2の回転角度(旋回体姿勢情報の一例)を検出する回転角度センサであってもよい。また、旋回体姿勢検出器34は、傾斜角度センサ及び回転角度センサの両方を含んでいてもよい。 The revolving body posture detector 34 detects revolving body posture information, which is information about the posture of the upper revolving body 2 . The rotating body posture detector 34 inputs a detection signal corresponding to the detected rotating body posture information to the controller 50 . Specifically, the revolving body posture detector 34 may be, for example, an inclination angle sensor that detects the inclination angle of the upper revolving body 2 with respect to the horizontal plane (an example of revolving body posture information). A rotation angle sensor that detects the rotation angle of the revolving body 2 (an example of revolving body posture information) may be used. Also, the revolving body attitude detector 34 may include both an inclination angle sensor and a rotation angle sensor.

 ブーム角度センサ、アーム角度センサ、バケット角度センサ、及び回転角度センサのそれぞれは、例えば、レゾルバであってもよく、ロータリーエンコーダであってもよく、ポテンショメータであってもよく、IMU(Inertial Measurement Unit)であってもよく、他のセンサであってもよい。傾斜角度センサは、例えば、IMUであってもよい。 Each of the boom angle sensor, arm angle sensor, bucket angle sensor, and rotation angle sensor may be, for example, a resolver, a rotary encoder, a potentiometer, or an IMU (Inertial Measurement Unit). , or other sensors. The tilt angle sensor may be, for example, an IMU.

 コントローラ50は、建設機械100の機種に応じた複数の作業装置のそれぞれのサイズを予め記憶している。また、コントローラ50は、例えば、旋回中心軸とブーム回動軸との相対的な位置関係、ブーム回動軸、アーム回動軸及びバケット回動軸と、対応する作業装置との相対的な位置関係など、を予め記憶していてもよい。これにより、コントローラ50は、検出器31~34のそれぞれから入力される検出信号に基づいて、上部旋回体2、ブーム4、アーム5及びバケット6を含む複数の作業装置のそれぞれの姿勢を幾何学的に演算することができ、また、複数の作業装置のうちの何れかの作業装置において予め設定された部位である特定部位SPの座標を演算することができる。特定部位SPは、例えば図1に示すようにバケット6の先端に設定されていてもよい。 The controller 50 preliminarily stores the size of each of a plurality of work devices according to the model of the construction machine 100 . In addition, the controller 50 can also control, for example, the relative positional relationship between the turning center axis and the boom rotation axis, the relative positions of the boom rotation axis, the arm rotation axis, the bucket rotation axis, and the corresponding work devices. relationship, etc. may be stored in advance. Thereby, the controller 50 geometrically adjusts the posture of each of the plurality of work devices including the upper rotating body 2, the boom 4, the arm 5 and the bucket 6 based on the detection signals input from the detectors 31 to 34, respectively. In addition, the coordinates of a specific portion SP, which is a preset portion in any one of the plurality of working devices, can be calculated. The specific portion SP may be set at the tip of the bucket 6 as shown in FIG. 1, for example.

 図2に示すように、複数の操作装置は、ブーム操作装置61と、アーム操作装置62と、バケット操作装置63と、旋回操作装置64と、を含む。これらの操作装置61~64は、オペレータの操作を受ける操作レバー61A~64Aをそれぞれ有する。操作装置61~64のそれぞれは、オペレータによって操作レバーに与えられる操作に対応する操作値であるオペレータ操作値(電気信号)をコントローラ50に入力する電気式の操作装置により構成されていてもよい。図2は、前記操作装置61~64が電気式の操作装置により構成される場合の回路構成を示している。また、操作装置61~64のそれぞれは、リモコン弁を備えた操作装置(図示省略)により構成されていてもよい。 As shown in FIG. 2, the plurality of operating devices include a boom operating device 61, an arm operating device 62, a bucket operating device 63, and a turning operating device 64. These operating devices 61 to 64 have operating levers 61A to 64A, respectively, which are operated by operators. Each of the operation devices 61 to 64 may be an electric operation device that inputs an operator operation value (electrical signal), which is an operation value corresponding to the operation given to the operation lever by the operator, to the controller 50 . FIG. 2 shows a circuit configuration when the operating devices 61 to 64 are configured by electric operating devices. Further, each of the operation devices 61 to 64 may be configured by an operation device (not shown) having a remote control valve.

 一つの操作レバーが複数の操作レバーの機能を兼ねるようなレバー構造を有していてもよい。例えば、オペレータが着座する運転席の右側前方に配置された右側操作レバーは、前後方向に操作された場合にブーム操作レバー61Aとして機能し、左右方向に操作された場合にバケット操作レバー63Aとして機能してもよい。また、運転席の左側前方に配置された左側操作レバーは、前後方向に操作された場合にアーム操作レバー62Aとして機能し、左右方向に操作された場合に旋回操作レバー64Aとして機能してもよい。レバー構造は、複数の操作レバーを兼ねる組み合わせをオペレータの指示によって任意に変更可能なように構成されていてもよい。 A single operating lever may have a lever structure that also functions as a plurality of operating levers. For example, the right operation lever located on the right front of the driver's seat where the operator sits functions as the boom operation lever 61A when operated in the longitudinal direction, and functions as the bucket operation lever 63A when operated in the left and right direction. You may Further, the left operation lever arranged on the front left side of the driver's seat may function as the arm operation lever 62A when operated in the front-rear direction, and may function as the turn operation lever 64A when operated in the left-right direction. . The lever structure may be configured such that a combination of a plurality of operating levers can be arbitrarily changed by an operator's instruction.

 ブーム操作装置61の操作レバー61Aは、ブーム上げ方向にブーム4を動作させるためのオペレータによる操作であるブーム上げ操作と、ブーム下げ方向にブーム4を動作させるためのオペレータによる操作であるブーム下げ操作と、を受けることが可能なように構成される。ブーム操作装置61は、操作レバー61Aにブーム上げ操作又はブーム下げ操作が与えられると、当該操作の大きさ及び当該操作の方向に対応するオペレータ操作値(Lo)をコントローラ50に入力する。 The operation lever 61A of the boom operating device 61 is operated by the operator to raise the boom 4 in the boom raising direction and to lower the boom 4 in the boom lowering direction. and is configured to be able to receive The boom operation device 61 inputs an operator operation value (Lo) corresponding to the magnitude and direction of the operation to the controller 50 when the operation lever 61A is operated to raise or lower the boom.

 アーム操作装置62の操作レバー62Aは、アーム押し方向にアーム5を動作させるためのオペレータによる操作であるアーム押し操作と、アーム引き方向にアーム5を動作させるためのオペレータによる操作であるアーム引き操作と、を受けることが可能なように構成される。アーム操作装置62は、操作レバー62Aにアーム押し操作又はアーム引き操作が与えられると、当該操作の大きさ及び当該操作の方向に対応するオペレータ操作値(Lo)をコントローラ50に入力する。 The operating lever 62A of the arm operating device 62 is operated by the operator to operate the arm 5 in the arm pushing direction, and the arm pulling operation is operated by the operator to operate the arm 5 in the arm pulling direction. and is configured to be able to receive The arm operation device 62 inputs an operator operation value (Lo) corresponding to the magnitude and direction of the operation to the controller 50 when the operation lever 62A is subjected to an arm push operation or an arm pull operation.

 バケット操作装置63の操作レバー63Aは、バケット引き方向にバケット6を動作させるためのオペレータによる操作であるバケット引き操作と、バケット押し方向にバケット6を動作させるためのオペレータによる操作であるバケット押し操作と、を受けることが可能なように構成される。バケット操作装置63は、操作レバー63Aにバケット引き操作又はバケット押し操作が与えられると、当該操作の大きさ及び当該操作の方向に対応するオペレータ操作値(Lo)をコントローラ50に入力する。 The operation lever 63A of the bucket operation device 63 performs a bucket pulling operation, which is an operation by the operator for moving the bucket 6 in the bucket pulling direction, and a bucket pushing operation, which is an operation by the operator for moving the bucket 6 in the bucket pushing direction. and is configured to be able to receive The bucket operation device 63 inputs an operator operation value (Lo) corresponding to the magnitude and direction of the operation to the controller 50 when the operation lever 63A is subjected to a bucket pull operation or a bucket push operation.

 旋回操作装置64の操作レバー64Aは、右方向に上部旋回体2を旋回動作させるためのオペレータによる操作である右旋回操作と、左方向に上部旋回体2を旋回動作させるためのオペレータによる操作である左旋回操作と、を受けることが可能なように構成される。旋回操作装置64は、操作レバー64Aに右旋回操作又は左旋回操作が与えられると、当該操作の大きさ及び当該操作の方向に対応するオペレータ操作値(Lo)をコントローラ50に入力する。 The operation lever 64A of the turning operation device 64 is operated by the operator to turn the upper turning body 2 to the right and to turn the upper turning body 2 to the left. and a left turn operation. The turning operation device 64 inputs an operator operation value (Lo) corresponding to the magnitude of the operation and the direction of the operation to the controller 50 when the operation lever 64A is turned right or left.

 複数の制御弁は、ブーム制御弁41と、アーム制御弁42と、バケット制御弁43と、旋回制御弁44と、を含む。複数の制御弁のそれぞれは、一対のパイロットポートを有する。 The plurality of control valves include a boom control valve 41, an arm control valve 42, a bucket control valve 43, and a swing control valve 44. Each of the multiple control valves has a pair of pilot ports.

 ブーム制御弁41は、メインポンプ21とブームシリンダ7との間に介在し、ブーム上げ操作及びブーム下げ操作の何れか一方に対応するパイロットポートに供給されるパイロット圧に応じて、ブームシリンダ7に供給される作動油の方向及び流量を変化させるように開閉作動する。 The boom control valve 41 is interposed between the main pump 21 and the boom cylinder 7, and controls the boom cylinder 7 according to the pilot pressure supplied to the pilot port corresponding to either one of the boom raising operation and the boom lowering operation. It opens and closes so as to change the direction and flow rate of the supplied hydraulic oil.

 アーム制御弁42は、メインポンプ21とアームシリンダ8との間に介在し、アーム押し操作及びアーム引き操作の何れか一方に対応するパイロットポートに供給されるパイロット圧に応じて、アームシリンダ8に供給される作動油の方向及び流量を変化させるように開閉作動する。 The arm control valve 42 is interposed between the main pump 21 and the arm cylinder 8, and controls the arm cylinder 8 according to the pilot pressure supplied to the pilot port corresponding to either one of the arm pushing operation and the arm pulling operation. It opens and closes so as to change the direction and flow rate of the supplied hydraulic oil.

 バケット制御弁43は、メインポンプ21とバケットシリンダ9との間に介在し、バケット引き操作及びバケット押し操作の何れか一方に対応するパイロットポートに供給されるパイロット圧に応じて、バケットシリンダ9に供給される作動油の方向及び流量を変化させるように開閉作動する。 The bucket control valve 43 is interposed between the main pump 21 and the bucket cylinder 9, and controls the bucket cylinder 9 according to the pilot pressure supplied to the pilot port corresponding to either the bucket pulling operation or the bucket pushing operation. It opens and closes so as to change the direction and flow rate of the supplied hydraulic oil.

 旋回制御弁44は、メインポンプ21と旋回モータ11との間に介在し、右旋回操作及び左旋回操作の何れか一方に対応するパイロットポートに供給されるパイロット圧に応じて、旋回モータ11に供給される作動油の方向及び流量を変化させるように開閉作動する。 The swing control valve 44 is interposed between the main pump 21 and the swing motor 11, and controls the swing motor 11 according to the pilot pressure supplied to the pilot port corresponding to either the right swing operation or the left swing operation. It opens and closes so as to change the direction and flow rate of the hydraulic oil supplied to.

 複数の比例弁は、一対のブーム電磁比例弁45,45と、一対のアーム電磁比例弁46,46と、一対のバケット電磁比例弁47,47と、一対の旋回電磁比例弁48,48と、を含む。複数の比例弁のそれぞれは、パイロットポンプ22が吐出するパイロット油(作動油)の圧力をコントローラ50から入力される制御指令に応じて減圧するとともに、減圧された圧力であるパイロット圧が当該比例弁に対応する制御弁のパイロットポートに供給されるように開閉作動する。これにより、当該制御弁は、パイロット圧が供給されるパイロットポートに対応する方向に、前記パイロット圧の大きさに対応するストロークで開弁する。その結果、メインポンプ21からの作動油が、前記ストロークに対応する流量で当該制御弁に対応する油圧アクチュエータに供給される。 The plurality of proportional valves include a pair of boom electromagnetic proportional valves 45, 45, a pair of arm electromagnetic proportional valves 46, 46, a pair of bucket electromagnetic proportional valves 47, 47, a pair of swing electromagnetic proportional valves 48, 48, including. Each of the plurality of proportional valves reduces the pressure of the pilot oil (operating oil) discharged by the pilot pump 22 according to a control command input from the controller 50, and the pilot pressure, which is the reduced pressure, is applied to the proportional valve is supplied to the pilot port of the control valve corresponding to . As a result, the control valve opens with a stroke corresponding to the magnitude of the pilot pressure in the direction corresponding to the pilot port to which the pilot pressure is supplied. As a result, hydraulic fluid from the main pump 21 is supplied to the hydraulic actuator corresponding to the control valve at a flow rate corresponding to the stroke.

 コントローラ50は、例えば、MPUなどの演算処理装置と、メモリと、を含むコンピュータを備える。コントローラ50は、動作指令部51と、目標物理量設定部52と、現在物理量演算部53と、物理量偏差演算部54と、アシスト率設定部55と、アシスト操作値演算部56と、オペレータ操作値補正部57と、アシスト操作値補正部58と、作業判定部59と、を備える。動作指令部51、目標物理量設定部52、現在物理量演算部53、物理量偏差演算部54、アシスト率設定部55、アシスト操作値演算部56、オペレータ操作値補正部57、アシスト操作値補正部58、及び作業判定部59のそれぞれは、前記演算処理装置がプログラムを実行することにより実現される。 The controller 50 includes, for example, a computer including an arithmetic processing unit such as an MPU and a memory. The controller 50 includes an operation command unit 51, a target physical quantity setting unit 52, a current physical quantity calculation unit 53, a physical quantity deviation calculation unit 54, an assist rate setting unit 55, an assist operation value calculation unit 56, and an operator operation value correction unit. A section 57 , an assist operation value correction section 58 , and a work determination section 59 are provided. an operation command unit 51, a target physical quantity setting unit 52, a current physical quantity calculation unit 53, a physical quantity deviation calculation unit 54, an assist rate setting unit 55, an assist operation value calculation unit 56, an operator operation value correction unit 57, an assist operation value correction unit 58, and the work determination unit 59 are implemented by the arithmetic processing unit executing a program.

 動作指令部51は、複数の比例弁のそれぞれに前記制御指令を入力する。具体的には、動作指令部51は、ブーム操作装置61の操作レバー61Aにブーム上げ操作又はブーム下げ操作が与えられると、一対のブーム電磁比例弁45,45のうち当該操作に対応するブーム電磁比例弁45に制御指令を入力する。動作指令部51は、アーム操作装置62の操作レバー62Aにアーム押し操作又はアーム引き操作が与えられると、一対のアーム電磁比例弁46,46のうち当該操作に対応するアーム電磁比例弁46に制御指令を入力する。動作指令部51は、バケット操作装置63の操作レバー63Aにバケット引き操作又はバケット押し操作が与えられると、一対のバケット電磁比例弁47,47のうち当該操作に対応するバケット電磁比例弁47に制御指令を入力する。動作指令部51は、旋回操作装置64の操作レバー64Aに右旋回操作又は左旋回操作が与えられると、一対の旋回電磁比例弁48,48のうち当該操作に対応する旋回電磁比例弁48に制御指令を入力する。 The operation command unit 51 inputs the control command to each of the plurality of proportional valves. Specifically, when the operation lever 61A of the boom operating device 61 is given a boom raising operation or a boom lowering operation, the operation command unit 51 controls the boom electromagnetic proportional valves 45, 45 corresponding to the operation. A control command is input to the proportional valve 45 . When the operation lever 62A of the arm operating device 62 is subjected to an arm push operation or an arm pull operation, the operation command unit 51 controls the arm electromagnetic proportional valve 46 corresponding to the operation among the pair of arm electromagnetic proportional valves 46, 46. Enter directives. When the operation lever 63A of the bucket operation device 63 is given a bucket pull operation or a bucket push operation, the operation command unit 51 controls the bucket electromagnetic proportional valve 47 corresponding to the operation among the pair of bucket electromagnetic proportional valves 47, 47. Enter directives. When the operation lever 64A of the turning operation device 64 is given a right turning operation or a left turning operation, the operation command unit 51 controls the turning electromagnetic proportional valve 48 corresponding to the operation among the pair of turning electromagnetic proportional valves 48, 48. Input the control command.

 より具体的には、動作指令部51は、建設機械100が行うことが可能な複数の作業のうち、予め定められた対象作業が行われている場合には、後述するように、オペレータ補正値(Lo’)とアシスト補正値(La’)を用いて演算された制御指令を、対象作業において行われている操作に対応する比例弁に入力する。対象作業は、オペレータの操作に対するコントローラ50によるアシストの対象として予め設定された作業である。 More specifically, when a predetermined target work is being performed among a plurality of tasks that can be performed by the construction machine 100, the operation command unit 51 sets the operator correction value as described later. A control command calculated using (Lo') and the assist correction value (La') is input to the proportional valve corresponding to the operation being performed in the target work. The target work is a work set in advance as a target for assistance by the controller 50 in response to the operator's operation.

 一方、動作指令部51は、前記複数の作業のうち、前記対象作業が行われていない場合、すなわち前記対象作業以外の作業である非対象作業が行われている場合には、複数の操作装置61~64のうち非対象作業において操作されている操作装置からコントローラ50に入力されるオペレータ操作値(Lo)に対応する指令を、前記制御指令として当該操作に対応する比例弁に入力する。 On the other hand, if the target work is not being performed among the plurality of tasks, that is, if a non-target work that is work other than the target work is being performed, the operation command unit 51 controls the plurality of operation devices. A command corresponding to the operator operation value (Lo) input to the controller 50 from the operating device operated in the non-target work among 61 to 64 is input as the control command to the proportional valve corresponding to the operation.

 目標物理量設定部52は、少なくとも一つの作業装置の姿勢に関連する物理量の目標である目標物理量を設定する。本実施形態では、作業装置の姿勢に関連する物理量は、特定部位の座標であり、目標物理量は、特定部位の目標座標である。本実施形態では、特定部位はバケット6の先端である。目標物理量設定部52は、例えば次のように目標座標を設定してもよい。 The target physical quantity setting unit 52 sets a target physical quantity, which is a target physical quantity related to the attitude of at least one working device. In this embodiment, the physical quantity related to the posture of the working device is the coordinates of the specific part, and the target physical quantity is the target coordinates of the specific part. In this embodiment, the specific portion is the tip of the bucket 6 . The target physical quantity setting unit 52 may set target coordinates as follows, for example.

 本実施形態では、建設機械100は、オペレータが操作可能な記憶スイッチ80をさらに備える。記憶スイッチ80は、例えばキャビンにおいてオペレータが操作可能な位置(例えば運転席の近くの位置)に配置されている。記憶スイッチ80は、オペレータが操作可能なボタンであってもよい。また、記憶スイッチ80は、ディスプレイの画面上に形成され、オペレータが操作可能な領域であってもよい。オペレータは、複数の操作装置61~64の操作レバー61A~64Aの少なくとも一つを操作することによりバケット6の先端を所望の位置に配置する。バケット6の先端が所望の位置に配置された状態で、オペレータは、記憶スイッチ80に対して入力操作(例えばボタン操作)を行う。目標物理量設定部52は、記憶スイッチ80に対して入力操作が行われた時点でバケット6の先端(特定部位)が配置されている座標を目標座標に設定する。目標座標の基準となる座標系は、例えば、作業現場における予め設定された位置を原点とする座標系であってもよく、建設機械100における予め設定された部位を原点とする座標系であってもよく、他の位置を原点とする座標系であってもよい。また、座標系は、三次元座標系であってもよく、二次元座標系であってもよい。 In this embodiment, the construction machine 100 further includes a memory switch 80 that can be operated by the operator. The memory switch 80 is arranged at a position (for example, a position near the driver's seat) that can be operated by the operator, for example, in the cabin. The memory switch 80 may be an operator operable button. Alternatively, the memory switch 80 may be an area formed on the screen of the display and operable by the operator. The operator places the tip of the bucket 6 at a desired position by operating at least one of the operating levers 61A-64A of the plurality of operating devices 61-64. With the tip of the bucket 6 positioned at the desired position, the operator performs an input operation (for example, button operation) on the memory switch 80 . The target physical quantity setting unit 52 sets the coordinates at which the tip (specific portion) of the bucket 6 is arranged when the memory switch 80 is operated to be the target coordinates. The coordinate system that serves as a reference for the target coordinates may be, for example, a coordinate system whose origin is a preset position on the work site, or a coordinate system whose origin is a preset portion of the construction machine 100. It may be a coordinate system with another position as the origin. Also, the coordinate system may be a three-dimensional coordinate system or a two-dimensional coordinate system.

 なお、目標座標の設定方法は、上記の具体例に限られない。例えば、建設機械100が作業現場の映像を取得するカメラと、当該カメラからコントローラ50に入力される映像データに基づいて作業現場の映像(例えば三次元映像)を表示可能なディスプレイと、を備える場合において、オペレータがディスプレイに表示されている映像における所望の部位を指定すると(具体的には、例えばオペレータが画面上の前記所望の部位をタッチすると)、目標物理量設定部52は、指定された部位に対応する座標を目標座標に設定してもよい。また、目標物理量設定部52は、オペレータにより入力された座標(複数の数値)を目標座標に設定してもよい。 It should be noted that the method of setting the target coordinates is not limited to the above specific example. For example, when the construction machine 100 is provided with a camera that acquires an image of the work site, and a display capable of displaying an image of the work site (for example, a three-dimensional image) based on image data input from the camera to the controller 50. , when the operator designates a desired portion in the image displayed on the display (specifically, for example, when the operator touches the desired portion on the screen), the target physical quantity setting unit 52 sets the designated portion may be set as the target coordinates. The target physical quantity setting unit 52 may also set the coordinates (a plurality of numerical values) input by the operator as the target coordinates.

 現在物理量演算部53は、少なくとも一つの作業装置の実際の姿勢に関連する物理量である現在物理量を演算する。本実施形態では、現在物理量は、バケット6の先端の実際の座標、すなわちその時点での座標である現在座標である。従って、現在物理量演算部53は、バケット6の先端(特定部位)の座標である現在座標を演算する。現在物理量演算部53は、姿勢情報取得部から入力される姿勢情報に基づいてバケット6の先端の現在座標を演算する。具体的には、現在物理量演算部53は、例えば検出器31~33が検出するブーム姿勢情報、アーム姿勢情報及びバケット姿勢情報に基づいてブーム4の姿勢、アーム5の姿勢及びバケット6の姿勢を演算し、これらの姿勢に基づいてバケット6の先端の現在座標を演算してもよい。また、現在物理量演算部53は、検出器34が検出する旋回体姿勢情報をさらに考慮してバケット6の先端の現在座標を演算してもよい。 The current physical quantity calculation unit 53 calculates a current physical quantity that is a physical quantity related to the actual posture of at least one work device. In this embodiment, the current physical quantity is the actual coordinates of the tip of the bucket 6, that is, the current coordinates at that time. Therefore, the current physical quantity calculator 53 calculates the current coordinates, which are the coordinates of the tip (specific portion) of the bucket 6 . The current physical quantity calculation unit 53 calculates the current coordinates of the tip of the bucket 6 based on the posture information input from the posture information acquisition unit. Specifically, the current physical quantity calculation unit 53 calculates the attitude of the boom 4, the attitude of the arm 5, and the attitude of the bucket 6 based on the boom attitude information, the arm attitude information, and the bucket attitude information detected by the detectors 31 to 33, for example. Based on these attitudes, the current coordinates of the tip of the bucket 6 may be calculated. Further, the current physical quantity computing unit 53 may compute the current coordinates of the tip of the bucket 6 further taking into account the revolving body posture information detected by the detector 34 .

 図1に示すように、ブーム4の姿勢は、ブーム4の角度であるブーム角度θ1で表され、アーム5の姿勢は、アーム5の角度であるアーム角度θ2で表され、バケット6の姿勢は、バケット6の角度であるバケット角度θ3で表されていてもよい。ブーム角度θ1は、例えば、ブーム4の基端部におけるブーム4の回動中心とアーム5の基端部におけるアーム5の回動中心とを結ぶ直線と、基準面と、のなす角度であってもよい。基準面は、水平面であってもよく、旋回中心軸(図1のZ軸)に直交する平面であってもよい。アーム角度θ2は、ブーム4の前記回動中心とアーム5の前記回動中心とを結ぶ前記直線と、アーム5の前記回動中心とバケット6の回動中心とを結ぶ直線と、のなす角度であってもよい。バケット角度θ3は、アーム5の前記回動中心とバケット6の前記回動中心とを結ぶ直線と、バケット6の前記回動中心とバケット6の先端とを結ぶ直線と、のなす角度であってもよい。 As shown in FIG. 1, the attitude of the boom 4 is represented by a boom angle θ1 that is the angle of the boom 4, the attitude of the arm 5 is represented by an arm angle θ2 that is the angle of the arm 5, and the attitude of the bucket 6 is represented by , a bucket angle θ3 that is the angle of the bucket 6 . The boom angle θ1 is, for example, an angle between a straight line connecting the rotation center of the boom 4 at the base end of the boom 4 and the rotation center of the arm 5 at the base end of the arm 5 and a reference plane. good too. The reference plane may be a horizontal plane or a plane orthogonal to the central axis of rotation (the Z axis in FIG. 1). The arm angle θ2 is the angle formed by the straight line connecting the rotation center of the boom 4 and the rotation center of the arm 5 and the straight line connecting the rotation center of the arm 5 and the rotation center of the bucket 6. may be The bucket angle θ3 is an angle formed by a straight line connecting the pivot center of the arm 5 and the pivot center of the bucket 6 and a straight line connecting the pivot center of the bucket 6 and the tip of the bucket 6. good too.

 物理量偏差演算部54は、前記目標物理量と前記現在物理量との偏差である物理量偏差を演算する。本実施形態では、物理量偏差演算部54は、前記目標座標と前記現在座標との偏差である座標偏差(e)を演算する。具体的には、物理量偏差演算部54は、例えば式「座標偏差(e)=目標座標-現在座標」を用いて座標偏差(e)を演算する。上記の式により演算される座標偏差(e)は、現在座標から目標座標への方向と現在座標から目標座標までの距離とを示している。 The physical quantity deviation calculation unit 54 calculates a physical quantity deviation, which is the deviation between the target physical quantity and the current physical quantity. In this embodiment, the physical quantity deviation calculator 54 calculates a coordinate deviation (e), which is the deviation between the target coordinates and the current coordinates. Specifically, the physical quantity deviation calculator 54 calculates the coordinate deviation (e) using, for example, the formula “coordinate deviation (e)=target coordinates−current coordinates”. The coordinate deviation (e) calculated by the above formula indicates the direction from the current coordinates to the target coordinates and the distance from the current coordinates to the target coordinates.

 アシスト率設定部55は、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がアシスト率が大きな値になるようにアシスト率を設定する。本実施形態では、アシスト率設定部55は、前記座標偏差(e)が大きいときに比べて前記座標偏差(e)が小さいときの方がアシスト率(r)が大きな値になるようにアシスト率(r)を設定する。具体的には、アシスト率設定部55は、例えば図3に示すように座標偏差(e)とアシスト率(r)との関係が予め設定されたマップ(グラフ)と、物理量偏差演算部54により演算された座標偏差(e)と、に基づいて、アシスト率(r)を設定する。 The assist rate setting unit 55 sets the assist rate so that the assist rate is larger when the physical quantity deviation is smaller than when the physical quantity deviation is large. In the present embodiment, the assist rate setting unit 55 sets the assist rate so that the assist rate (r) becomes a larger value when the coordinate deviation (e) is small than when the coordinate deviation (e) is large. (r) is set. Specifically, the assist rate setting unit 55 uses a map (graph) in which the relationship between the coordinate deviation (e) and the assist rate (r) is preset as shown in FIG. An assist rate (r) is set based on the calculated coordinate deviation (e).

 図3に示すグラフでは、横軸は、座標偏差(e)の大きさ、すなわち、現在座標から目標座標までの距離であり、縦軸は、アシスト率(r)である。図3に示すように、座標偏差(e)が小さい領域である小領域では、アシスト率(r)は最大値(図3の具体例では「1」)に設定され、座標偏差(e)が大きい領域である大領域では、アシスト率(r)は最小値(図3の具体例では「0」)に設定され、小領域と大領域との中間の領域である中領域では、アシスト率(r)は、座標偏差(e)が小さくなるほどアシスト率(r)が大きくなるように設定される。ただし、図3に示すマップは、座標偏差(e)が大きいときに比べて座標偏差(e)が小さいときの方がアシスト率(r)が大きな値になるようにアシスト率(r)を設定するために予め作成されたマップの一例であり、座標偏差(e)とアシスト率(r)との関係を表すマップは、図3に示す具体例に限られない。当該マップは、例えば、中領域の少なくとも一部が曲線によって表されていてもよく、小領域及び大領域の少なくとも一方が省略されたものであってもよい。また、アシスト率(r)の最大値は、「1」より大きな値又は「1」より小さな値であってもよく、アシスト率(r)の最小値は、「0」より大きな値又は「0」より小さな値であってもよい。 In the graph shown in FIG. 3, the horizontal axis is the magnitude of the coordinate deviation (e), that is, the distance from the current coordinates to the target coordinates, and the vertical axis is the assist rate (r). As shown in FIG. 3, in the small area where the coordinate deviation (e) is small, the assist rate (r) is set to the maximum value ("1" in the specific example of FIG. 3), and the coordinate deviation (e) is In the large area, which is a large area, the assist rate (r) is set to the minimum value ("0" in the specific example of FIG. 3), and in the medium area, which is an intermediate area between the small area and the large area, the assist rate (r) is set to r) is set so that the assist rate (r) increases as the coordinate deviation (e) decreases. However, in the map shown in FIG. 3, the assist rate (r) is set so that the assist rate (r) is larger when the coordinate deviation (e) is smaller than when the coordinate deviation (e) is large. This is an example of a map prepared in advance to do so, and the map showing the relationship between the coordinate deviation (e) and the assist rate (r) is not limited to the specific example shown in FIG. The map may, for example, represent at least part of the middle region by a curved line, or omit at least one of the small region and the large region. Further, the maximum value of the assist rate (r) may be a value larger than "1" or a value smaller than "1", and the minimum value of the assist rate (r) may be a value larger than "0" or "0 ” may be a smaller value.

 アシスト操作値演算部56は、前記オペレータの操作をアシストするための操作値であるアシスト操作値(La)を演算する。本実施形態では、アシスト操作値演算部56は、前記オペレータの操作をアシストするためのアシスト操作値(La)を、前記座標偏差(e)に基づいて演算する。具体的には、コントローラ50は、フィードバック制御を行うための例えば下記のような式(1)を予め記憶している。例えば図4に示すように、アシスト操作値演算部56(PIDコントローラ)は、下記の式(1)と、座標偏差(e)と、を用いてアシスト操作値(La)を演算する。なお、下記式(1)において、「u」は、アシスト操作値(La)であり、「Kp」、「Ki」、「Kd」は、PIDゲイン(比例ゲイン、積分ゲイン及び微分ゲイン)であり、「e」は、座標偏差である。 The assist operation value calculation unit 56 calculates an assist operation value (La), which is an operation value for assisting the operator's operation. In this embodiment, the assist operation value calculator 56 calculates an assist operation value (La) for assisting the operator's operation based on the coordinate deviation (e). Specifically, the controller 50 preliminarily stores, for example, the following formula (1) for performing feedback control. For example, as shown in FIG. 4, the assist operation value calculator 56 (PID controller) calculates the assist operation value (La) using the following equation (1) and the coordinate deviation (e). In the following formula (1), "u" is an assist operation value (La), and "Kp", "Ki", and "Kd" are PID gains (proportional gain, integral gain and differential gain). , “e” are the coordinate deviations.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 アシスト操作値(La)は、座標偏差(e)をゼロに近づけるための操作値、すなわち、バケット6の先端(特定部位)を目標座標に近づけるための操作値である。コントローラ50は、座標偏差(e)をゼロに近づけるためのアシスト操作値(La)を用いたフィードバック制御を行う。例えば、アシスト操作値(La)は、バケット6の先端が移動する方向を目標座標に近づけることと、座標偏差(e)の大きさ(距離)が小さくなるにつれてバケット6の先端が移動する速さを小さくすること、の少なくとも一方を実現するような操作値であってもよい。アシスト操作値(La)は、バケット6の先端が目標座標に向かって移動するようにオペレータの操作をアシストするような操作値であってもよい。また、アシスト操作値(La)は、座標偏差(e)が大きいときにはバケット6の先端が目標座標に向かって移動する速さを大きくし、座標偏差(e)が小さいときにはバケット6の先端が目標座標に向かって移動する速さを小さくするような操作値であってもよい。 The assist operation value (La) is an operation value for bringing the coordinate deviation (e) closer to zero, that is, an operation value for bringing the tip (specific portion) of the bucket 6 closer to the target coordinates. The controller 50 performs feedback control using an assist operation value (La) for bringing the coordinate deviation (e) closer to zero. For example, the assist operation value (La) is such that the direction in which the tip of the bucket 6 moves is closer to the target coordinates, and the speed at which the tip of the bucket 6 moves as the magnitude (distance) of the coordinate deviation (e) decreases. may be an operation value that realizes at least one of reducing The assist operation value (La) may be an operation value that assists the operator's operation so that the tip of the bucket 6 moves toward the target coordinates. The assist operation value (La) increases the speed at which the tip of the bucket 6 moves toward the target coordinates when the coordinate deviation (e) is large, and the tip of the bucket 6 moves toward the target coordinates when the coordinate deviation (e) is small. An operation value that reduces the speed of movement toward the coordinates may be used.

 オペレータ操作値補正部57は、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がオペレータ補正値(Lo’)が小さな値になるように、前記オペレータ操作値(Lo)をオペレータ補正値(Lo’)に補正する。本実施形態では、オペレータ操作値補正部57は、アシスト率(r)が大きいほどオペレータ補正値(Lo’)が小さな値になるようにオペレータ操作値(Lo)をオペレータ補正値(Lo’)に補正する。オペレータ操作値補正部57は、例えば、オペレータ操作値(Lo)に、予め設定された設定値(例えば「1」)からアシスト率(r)を引いた値をかけることによりオペレータ補正値(Lo’)を演算してもよい。具体的には、例えば、オペレータ操作値補正部57は、式(2)「Lo’=Lo×(1-r)」を用いて、オペレータ補正値(Lo’)を演算する。この式(2)において、アシスト率(r)は、ゼロ以上1以下の値(0≦r≦1)である。従って、オペレータ補正値(Lo’)は、アシスト率(r)が大きいほど小さくなる。 An operator operation value correction unit 57 adjusts the operator operation value (Lo) so that the operator correction value (Lo') becomes smaller when the physical quantity deviation is smaller than when the physical quantity deviation is large. Correct to the correction value (Lo'). In this embodiment, the operator operation value correction unit 57 adjusts the operator operation value (Lo) to the operator correction value (Lo') so that the operator correction value (Lo') decreases as the assist rate (r) increases. to correct. For example, the operator operation value correction unit 57 multiplies the operator operation value (Lo) by a value obtained by subtracting the assist rate (r) from a preset setting value (for example, "1") to obtain the operator correction value (Lo' ) may be calculated. Specifically, for example, the operator operation value correction unit 57 calculates the operator correction value (Lo') using the equation (2) "Lo'=Lo×(1−r)". In this formula (2), the assist rate (r) is a value between zero and 1 (0≦r≦1). Therefore, the operator correction value (Lo') decreases as the assist rate (r) increases.

 アシスト操作値補正部58は、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がアシスト補正値(La’)が大きな値になるように、アシスト操作値(La)をアシスト補正値(La’)に補正する。本実施形態では、アシスト操作値補正部58は、アシスト率(r)が大きいほどアシスト補正値(La’)が大きな値になるようにアシスト操作値(La)をアシスト補正値(La’)に補正する。アシスト操作値補正部58は、例えば、アシスト操作値(La)にアシスト率(r)をかけることによりアシスト補正値(La’)を演算する。具体的には、例えば、アシスト操作値補正部58は、次の式(3)「La’=La×r」を用いて、アシスト補正値(La’)を演算する。この式(3)において、アシスト率(r)は、上記と同様に、ゼロ以上1以下の値(0≦r≦1)である。従って、アシスト補正値(La’)は、アシスト率(r)が大きいほど大きくなる。 An assist operation value correction unit 58 corrects the assist operation value (La) so that the assist correction value (La') becomes larger when the physical quantity deviation is small than when the physical quantity deviation is large. Correct to the value (La'). In the present embodiment, the assist operation value correction unit 58 sets the assist operation value (La) to the assist correction value (La') so that the assist correction value (La') increases as the assist rate (r) increases. to correct. The assist operation value correction unit 58 calculates an assist correction value (La') by, for example, multiplying the assist operation value (La) by the assist rate (r). Specifically, for example, the assist operation value correction unit 58 calculates the assist correction value (La') using the following equation (3) "La'=La×r". In this equation (3), the assist rate (r) is a value between zero and 1 (0≦r≦1), as described above. Therefore, the assist correction value (La') increases as the assist rate (r) increases.

 上述したように、動作指令部51は、前記複数の作業のうち、対象作業が行われている場合には、オペレータ補正値(Lo’)とアシスト補正値(La’)を用いて演算された制御指令を、対象作業において行われている操作に対応する比例弁に入力する。具体的には、動作指令部51は、対象作業が行われている場合には、オペレータ補正値(Lo’)とアシスト補正値(La’)とを足した合計値を、最終的な操作値である制御指令Y(Y=Lo×(1-r)+La×r)として出力する。出力された制御指令Yは、対象作業において操作されている操作装置のうちの少なくとも一つの操作装置に対応する比例弁に入力される。 As described above, when the target work is being performed among the plurality of works, the operation command unit 51 uses the operator correction value (Lo') and the assist correction value (La') to calculate A control command is input to the proportional valve corresponding to the operation being performed in the target operation. Specifically, when the target work is being performed, the operation command unit 51 adds the operator correction value (Lo') and the assist correction value (La') to the final operation value. is output as a control command Y (Y=Lo×(1−r)+La×r). The output control command Y is input to the proportional valve corresponding to at least one of the operating devices operated in the target work.

 作業判定部59は、建設機械100が行う作業を判定する。作業判定部59は、複数の検出器31~34からコントローラ50に入力される検出信号に基づいて、ブーム姿勢、アーム姿勢、バケット姿勢及び旋回体姿勢を取得することができる。例えば、掘削作業、土砂保持旋回作業、排土作業、及び戻り旋回作業のそれぞれでは、ブーム4の姿勢、アーム5の姿勢、バケット6の姿勢及び上部旋回体2の姿勢の少なくとも一つが特徴的に経時変化するので、作業判定部59は、ブーム4の姿勢、アーム5の姿勢、バケット6の姿勢及び上部旋回体2の姿勢の少なくとも一つの経時変化のデータに基づいて、建設機械100の作業を判定することができる。 The work determination unit 59 determines the work performed by the construction machine 100 . The work determination unit 59 can acquire the boom attitude, the arm attitude, the bucket attitude, and the revolving body attitude based on detection signals input to the controller 50 from the plurality of detectors 31 to 34 . For example, in each of excavation work, earth and sand holding turning work, earth discharging work, and return turning work, at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2 is characteristic. Since it changes over time, the work determination unit 59 determines the work of the construction machine 100 based on data on changes over time in at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2. can judge.

 具体的には、例えば、前記経時変化のデータが予め定められた掘削作業に関する条件を満たす場合、作業判定部59は、建設機械100が掘削作業を行っていると判定する。同様に、前記経時変化のデータが予め定められた土砂保持旋回作業に関する条件を満たす場合、作業判定部59は、建設機械100が土砂保持旋回作業を行っていると判定し、前記経時変化のデータが予め定められた排土作業に関する条件を満たす場合、作業判定部59は、建設機械100が排土作業を行っていると判定し、前記経時変化のデータが予め定められた戻り旋回作業に関する条件を満たす場合、作業判定部59は、建設機械100が戻り旋回作業を行っていると判定する。 Specifically, for example, when the data of changes over time satisfies a predetermined condition regarding excavation work, the work determination unit 59 determines that the construction machine 100 is performing excavation work. Similarly, when the data of change over time satisfies a predetermined condition related to the turning work for holding earth and sand, the work determination unit 59 determines that the construction machine 100 is performing the turning work for holding earth and sand, and the data of change with time. satisfies a predetermined condition regarding the earth-discharging work, the work determination unit 59 determines that the construction machine 100 is performing the earth-discharging work, and the data of the change over time satisfies the predetermined condition regarding the return turning work. is satisfied, the work determination unit 59 determines that the construction machine 100 is performing the return turning work.

 作業判定部59は、ブーム4の姿勢、アーム5の姿勢、バケット6の姿勢及び上部旋回体2の姿勢の少なくとも一つの経時変化のデータに代えて、又は当該経時変化のデータとともに、前記オペレータ操作値(Lo)に基づいて、建設機械100による作業を判定してもよい。また、作業判定部59は、ブーム4の姿勢、アーム5の姿勢、バケット6の姿勢及び上部旋回体2の姿勢の少なくとも一つの経時変化のデータに代えて、又は当該経時変化のデータとともに、作業装置に加わる荷重に基づいて、建設機械100による作業を判定してもよい。この場合、作業判定部59は、例えば、作業装置に加わる荷重を検出可能な荷重センサ又は作業装置を構成する複数の可動部の少なくとも一つに取り付けられた荷重センサの検出結果(検出信号)を、建設機械100の作業の判定に用いてもよい。 The work determination unit 59 replaces with or together with the data on at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2 with time, the above-mentioned operator operation Work performed by the construction machine 100 may be determined based on the value (Lo). In addition, the work determination unit 59 may replace or together with the data on at least one of the attitude of the boom 4, the attitude of the arm 5, the attitude of the bucket 6, and the attitude of the upper rotating body 2 with time, and perform the work. Work performed by the construction machine 100 may be determined based on the load applied to the device. In this case, the work determining unit 59, for example, detects the detection result (detection signal) of a load sensor capable of detecting the load applied to the working device or a load sensor attached to at least one of the plurality of movable parts constituting the working device. , may be used to determine the work of the construction machine 100 .

 また、建設機械100の駆動装置が、オペレータが作業の種類を入力することが可能な入力装置90(図2参照)を備える場合には、作業判定部59は、オペレータによって入力された作業内容に基づいて建設機械100が行う作業を判定してもよい。 In addition, when the driving device of the construction machine 100 is provided with an input device 90 (see FIG. 2) that allows the operator to input the type of work, the work determination unit 59 can determine the work contents input by the operator. Based on this, the work to be performed by the construction machine 100 may be determined.

 以下、図5に示すフローチャートを参照しながら、コントローラ50による演算処理の一例について説明する。以下の具体例では、作業現場において、掘削作業、土砂保持旋回作業、排土作業、及び戻り旋回作業を含む一連の作業を含む土砂積込作業が繰り返し行われる。これらの作業のうち、排土作業は、上述した対象作業に設定されており、掘削作業、土砂保持旋回作業、及び戻り旋回作業は、非対象作業に設定されている。特定部位は、バケット6の先端に設定されている。 An example of arithmetic processing by the controller 50 will be described below with reference to the flowchart shown in FIG. In the following specific example, at a work site, an earth and sand loading operation including a series of operations including an excavation operation, an earth and sand holding turning operation, an earth dumping operation, and a return turning operation is repeatedly performed. Among these works, the earth removal work is set as the above-mentioned target work, and the excavation work, the earth and sand holding swing work, and the return swing work are set as non-target work. The specific portion is set at the tip of the bucket 6 .

 コントローラ50の目標物理量設定部52は、記憶スイッチ80(本実施形態では座標記憶スイッチ)に対する入力操作が行われたか否かを判定する(ステップS1)。 The target physical quantity setting unit 52 of the controller 50 determines whether or not an input operation has been performed on the storage switch 80 (coordinate storage switch in this embodiment) (step S1).

 オペレータは、土砂積込作業を開始する時点において、例えば図6における上図(A)に示すように、操作装置61~64の操作レバー61A~64Aの少なくとも一つを操作することにより、所望の位置TP(星印の位置)までバケット6の先端を移動させる。この星印の位置TPは、排土作業においてバケット6に保持された土砂をバケット6からダンプトラックの荷台に落下させるのに適した目標の位置である。オペレータは、バケット6の先端を所望の位置TP(星印の位置)に停止させた後、記憶スイッチ80を押す。 At the time of starting the earth and sand loading work, the operator operates at least one of the operating levers 61A to 64A of the operating devices 61 to 64 as shown in the upper diagram (A) of FIG. The tip of the bucket 6 is moved to the position TP (star position). This asterisk position TP is a target position suitable for dropping the earth and sand held in the bucket 6 from the bucket 6 onto the bed of the dump truck during earth discharging work. The operator presses the memory switch 80 after stopping the tip of the bucket 6 at the desired position TP (star position).

 記憶スイッチ80が押されたことを示す信号がコントローラ50に入力されると、目標物理量設定部52は、記憶スイッチ80に対する入力操作が行われたと判定し(ステップS1においてYES)、その時点でバケット6の先端が位置する座標を目標座標(目標物理量)に設定する(ステップS2)。一方、目標物理量設定部52は、記憶スイッチ80に対する入力操作が行われていないと判定すると(ステップS1においてNO)、目標座標(目標物理量)をデフォルト値に設定する(ステップS3)。デフォルト値は、目標座標として予め設定されてメモリに記憶された座標であってもよく、前回に設定された目標座標であってもよい。 When a signal indicating that memory switch 80 has been pressed is input to controller 50, target physical quantity setting unit 52 determines that an input operation has been performed on memory switch 80 (YES in step S1). 6 is set as a target coordinate (target physical quantity) (step S2). On the other hand, when the target physical quantity setting unit 52 determines that no input operation is performed on the memory switch 80 (NO in step S1), it sets the target coordinates (target physical quantity) to default values (step S3). The default values may be coordinates that are set in advance as target coordinates and stored in the memory, or may be target coordinates that were previously set.

 次に、コントローラ50の作業判定部59は、対象作業として設定されている排土作業が行われているか否かを判定する(ステップS4)。作業判定部59は、複数の検出器31~34からコントローラ50に入力される検出信号に基づいて、例えばアーム5の姿勢及びバケット6の姿勢の経時変化のデータが予め定められた排土作業に関する条件を満たす場合、作業判定部59は、建設機械100が排土作業を行っていると判定する(ステップS4においてYES)。具体的には次の通りである。 Next, the work determination unit 59 of the controller 50 determines whether or not the soil removal work set as the target work is being performed (step S4). The work determining unit 59 is related to the earth discharging work in which the data of changes over time of the posture of the arm 5 and the posture of the bucket 6 are predetermined based on the detection signals input to the controller 50 from the plurality of detectors 31 to 34. When the condition is satisfied, the work determination unit 59 determines that the construction machine 100 is performing the earth removal work (YES in step S4). Specifically, it is as follows.

 排土作業の前に行われる土砂保持旋回作業が終了し、排土作業が開始される時点の作業装置は、例えば図6における2つ目の図(B)に示されるような姿勢(排土作業開始姿勢)で配置される。図6における3つ目の図(C)は、排土作業の中間段階における作業装置の姿勢であり、図6における下図(D)は、排土作業が終了する時点の作業装置の姿勢である。これらの図(B)~(D)に示されるように、排土作業では、アーム5がアーム押し方向に移動するようにアーム操作装置62の操作レバー62Aに対してアーム押し操作が与えられるとともに、バケット6がバケット押し方向に移動するようにバケット操作装置63の操作レバー63Aに対してバケット押し操作が与えられる。すなわち、排土作業では、上記のようにアーム5の姿勢及びバケット6の姿勢が特徴的に経時変化する。従って、排土作業に関する条件は、上記のようなアーム5の姿勢及びバケット6の姿勢の特徴的な経時変化を判定可能な条件に予め設定される。 At the time when the earth-removing work is started after the earth-retaining turning work performed before the earth-removing work is completed, the work device is in a posture (discharging work) as shown in the second diagram (B) in FIG. 6, for example. work start posture). The third diagram (C) in FIG. 6 shows the posture of the working device at the intermediate stage of the earth discharging work, and the lower diagram (D) in FIG. 6 shows the posture of the working device at the time when the earth discharging work is completed. . As shown in these figures (B) to (D), in the earth removal work, an arm pushing operation is applied to the operating lever 62A of the arm operating device 62 so that the arm 5 moves in the arm pushing direction. , a bucket pushing operation is applied to the operating lever 63A of the bucket operating device 63 so that the bucket 6 moves in the bucket pushing direction. That is, in the earth removing work, the posture of the arm 5 and the posture of the bucket 6 characteristically change with time as described above. Therefore, the conditions relating to the earth-removing work are set in advance to conditions that allow determination of characteristic changes over time in the attitude of the arm 5 and the attitude of the bucket 6 as described above.

 排土作業が行われていると作業判定部59が判定すると(ステップS4においてYES)、現在物理量演算部53は、姿勢情報取得部(検出器31~34)から入力される姿勢情報に基づいてバケット6の先端のその時点での座標である現在座標を演算し、物理量偏差演算部54は、例えば上記の式(座標偏差(e)=目標座標-現在座標)を用いて座標偏差(e)を演算する(ステップS5)。 When the work determination unit 59 determines that the earth-removing work is being performed (YES in step S4), the current physical quantity calculation unit 53 operates based on the posture information input from the posture information acquisition unit (detectors 31 to 34). The current coordinates, which are the coordinates of the tip of the bucket 6 at that point in time, are calculated. is calculated (step S5).

 次に、アシスト率設定部55は、例えば図3に示すマップと、物理量偏差演算部54により演算された座標偏差(e)と、に基づいて、アシスト率(r)を設定する(ステップS6)。 Next, the assist rate setting unit 55 sets the assist rate (r) based on, for example, the map shown in FIG. 3 and the coordinate deviation (e) calculated by the physical quantity deviation calculator 54 (step S6). .

 次に、その時点におけるオペレータ操作値(Lo)がコントローラ50に入力される。具体的には、アーム操作装置62は、操作レバー62Aにアーム押し操作が与えられると、当該アーム押し操作の大きさに対応する電気信号であるオペレータ操作値(Lo)をコントローラ50に入力し、バケット操作装置63は、操作レバー63Aにバケット押し操作が与えられると、当該バケット押し操作の大きさに対応する電気信号であるオペレータ操作値(Lo)をコントローラ50に入力する。 Next, the operator's operation value (Lo) at that time is input to the controller 50 . Specifically, when an arm pushing operation is given to the operating lever 62A, the arm operating device 62 inputs an operator operation value (Lo), which is an electric signal corresponding to the magnitude of the arm pushing operation, to the controller 50, and The bucket operation device 63 inputs an operator operation value (Lo), which is an electric signal corresponding to the magnitude of the bucket pushing operation, to the controller 50 when a bucket pushing operation is given to the operation lever 63A.

 また、アシスト操作値演算部56(PIDコントローラ)は、上記の式(1)と、座標偏差(e)と、を用いて、バケット押し操作をアシストするためのアシスト操作値(La)を演算する。 Further, the assist operation value calculation unit 56 (PID controller) uses the above equation (1) and the coordinate deviation (e) to calculate an assist operation value (La) for assisting the bucket pushing operation. .

 オペレータ操作値補正部57は、上記の式(2)と、バケット押し操作におけるオペレータ操作値(Lo)と、アシスト率(r)と、を用いて、オペレータ補正値(Lo’)を演算する。 The operator operation value correction unit 57 uses the above equation (2), the operator operation value (Lo) in the bucket pushing operation, and the assist rate (r) to calculate the operator correction value (Lo').

 アシスト操作値補正部58は、上記の式(3)と、バケット押し操作におけるアシスト操作値(La)と、アシスト率(r)と、を用いて、アシスト補正値(La’)を演算する。 The assist operation value correction unit 58 uses the above equation (3), the assist operation value (La) in the bucket pushing operation, and the assist rate (r) to calculate the assist correction value (La').

 動作指令部51は、バケット押し操作に関し、オペレータ補正値(Lo’)とアシスト補正値(La’)とを足した合計値を、最終的な操作値である制御指令Y(Y=Lo×(1-r)+La×r)として出力する(ステップS7)。出力された制御指令Yは、バケット押し操作に対応する比例弁47に入力される。 Regarding the bucket pushing operation, the operation command unit 51 converts the total value obtained by adding the operator correction value (Lo') and the assist correction value (La') to the control command Y (Y=Lo×( 1−r)+La×r) (step S7). The output control command Y is input to the proportional valve 47 corresponding to the bucket pushing operation.

 一方、排土作業が行われていないと作業判定部59が判定すると(ステップS4においてNO)、動作指令部51は、複数の操作装置61~64の少なくとも一つから入力される操作に対応するオペレータ操作値(Lo)を、最終的な操作値である制御指令として出力する(ステップS8)。 On the other hand, when the work determination unit 59 determines that the earth removal work is not being performed (NO in step S4), the operation command unit 51 responds to the operation input from at least one of the plurality of operation devices 61 to 64. The operator operation value (Lo) is output as a control command, which is the final operation value (step S8).

 以上説明したように、この建設機械では、コントローラ50は、座標偏差(e)が大きいときに比べて座標偏差(e)が小さいときに小さな値になるように補正されたオペレータ補正値(Lo’)と、座標偏差(e)が大きいときに比べて座標偏差(e)が小さいときに大きな値になるように補正されたアシスト補正値(La’)と、を足した合計値を用いて、少なくとも一つの作業装置の姿勢を制御する。すなわち、コントローラ50は、図4に示すように座標偏差(e)をゼロに近づけるためのアシスト操作値(La)を用いたフィードバック制御を行うとともに、図5のフローチャートのステップS1~S8に示すような演算処理を繰り返し行う。このことは、オペレータの意思を介入させながら、少なくとも一つの作業装置の姿勢を所望の姿勢に調整するためのオペレータによる操作をアシストすることを可能にする。 As described above, in this construction machine, the controller 50 provides an operator correction value (Lo' ) and an assist correction value (La′) corrected to be larger when the coordinate deviation (e) is smaller than when the coordinate deviation (e) is large, Control the attitude of at least one work implement. That is, the controller 50 performs feedback control using the assist operation value (La) for bringing the coordinate deviation (e) closer to zero as shown in FIG. Arithmetic processing is repeated. This makes it possible to assist the operator's operation for adjusting the posture of at least one working device to a desired posture while intervening the operator's will.

 コントローラ50は、座標偏差(e)が大きいときに比べて座標偏差(e)が小さいときに大きなアシスト率(r)を設定し、アシスト操作値(La)にアシスト率(r)をかけることによりアシスト補正値(La’)を演算し、オペレータ操作値(Lo)に、予め設定された設定値である「1」からアシスト率(r)を引いた値をかけることによりオペレータ補正値(Lo’)を演算する。従って、座標偏差(e)が小さくなるにつれて、すなわち、バケット6の先端が目標座標に近づくにつれて、オペレータ補正値(Lo’)を連続的に小さくするとともにアシスト補正値(La’)を連続的に大きくすることができる。このことは、バケット6の先端が目標座標に近づく過程において、オペレータによる操作が主体となる状態からコントローラ50によるアシストが主体となる状態へスムーズに移行させることを可能にする。 The controller 50 sets a larger assist rate (r) when the coordinate deviation (e) is smaller than when the coordinate deviation (e) is large, and multiplies the assist operation value (La) by the assist rate (r). Assist correction value (La') is calculated, and operator correction value (Lo' ). Therefore, as the coordinate deviation (e) becomes smaller, that is, as the tip of the bucket 6 approaches the target coordinates, the operator correction value (Lo') is continuously decreased and the assist correction value (La') is continuously decreased. You can make it bigger. This enables a smooth transition from a state in which the operation by the operator is the main focus to a state in which the controller 50 is the main focus in the process in which the tip of the bucket 6 approaches the target coordinates.

 [第2実施形態]
 前記第1実施形態では、作業装置の姿勢に関連する物理量は、バケット6の先端(特定部位)の座標であるが、第2実施形態では前記ストロークセンサ(姿勢情報取得部の一例)により検出されるシリンダ長さである。第2実施形態では、目標物理量は、目標シリンダ長さであり、現在物理量は、ストロークセンサにより検出される実際のシリンダ長さ(現在シリンダ長さ)である。物理量偏差は、目標シリンダ長さと現在シリンダ長さとの偏差である長さ偏差である。
[Second embodiment]
In the first embodiment, the physical quantity related to the posture of the working device is the coordinates of the tip (specific part) of the bucket 6, but in the second embodiment, the stroke sensor (an example of the posture information acquisition unit) detects the is the length of the cylinder. In the second embodiment, the target physical quantity is the target cylinder length, and the current physical quantity is the actual cylinder length (current cylinder length) detected by the stroke sensor. The physical quantity deviation is a length deviation that is the deviation between the target cylinder length and the current cylinder length.

 この第2実施形態では、ブーム姿勢検出器31は、ブームシリンダ7のシリンダ長さを検出するシリンダストロークセンサであり、アーム姿勢検出器32は、アームシリンダ8のシリンダ長さを検出するシリンダストロークセンサであり、バケット姿勢検出器33は、バケットシリンダ9のシリンダ長さを検出するシリンダストロークセンサである。 In this second embodiment, the boom attitude detector 31 is a cylinder stroke sensor that detects the cylinder length of the boom cylinder 7, and the arm attitude detector 32 is a cylinder stroke sensor that detects the cylinder length of the arm cylinder 8. and the bucket position detector 33 is a cylinder stroke sensor that detects the cylinder length of the bucket cylinder 9 .

 この第2実施形態では、オペレータは、複数の操作装置61~64の操作レバー61A~64Aの少なくとも一つを操作することによりブーム4、アーム5及びバケット6を所望の姿勢に配置する。所望の姿勢は、対象作業に応じて異なる。 In this second embodiment, the operator places the boom 4, the arm 5 and the bucket 6 in desired postures by operating at least one of the operating levers 61A-64A of the plurality of operating devices 61-64. The desired posture differs depending on the target work.

 第2実施形態に係る駆動装置のコントローラ50は、第1実施形態と同様に例えば図5に示すフローチャートに沿って演算処理を行ってもよい。以下、図5に示すフローチャートを参照しながら、第2実施形態に係るコントローラ50による演算処理の一例について説明する。以下の具体例においても、対象作業は、排土作業に設定されており、掘削作業、土砂保持旋回作業、及び戻り旋回作業は、非対象作業には設定されている。 The controller 50 of the driving device according to the second embodiment may perform arithmetic processing according to the flowchart shown in FIG. 5, for example, as in the first embodiment. An example of arithmetic processing by the controller 50 according to the second embodiment will be described below with reference to the flowchart shown in FIG. Also in the following specific examples, the object work is set to the earth removal work, and the excavation work, the earth and sand holding swing work, and the return swing work are set to the non-target work.

 コントローラ50の目標物理量設定部52は、記憶スイッチ80に対する入力操作が行われたか否かを判定する(ステップS1)。 The target physical quantity setting unit 52 of the controller 50 determines whether or not an input operation has been performed on the memory switch 80 (step S1).

 オペレータは、土砂積込作業を開始する時点において、操作装置61~64の操作レバー61A~64Aの少なくとも一つを操作することにより、アーム5及びバケット6を例えば図6における上図(A)に示すような所望の姿勢に配置した状態で記憶スイッチ80を押す。 At the time of starting the earth and sand loading work, the operator operates at least one of the operation levers 61A to 64A of the operation devices 61 to 64 to move the arm 5 and the bucket 6 to the upper diagram (A) in FIG. 6, for example. The storage switch 80 is pressed while the device is placed in the desired posture as shown.

 記憶スイッチ80が押されたことを示す信号がコントローラ50に入力されると、目標物理量設定部52は、記憶スイッチ80に対する入力操作が行われたと判定し(ステップS1においてYES)、その時点におけるアームシリンダ8のシリンダ長さを目標シリンダ長さ(第1目標シリンダ長さ)に設定し、その時点におけるバケットシリンダ9のシリンダ長さを目標シリンダ長さ(第2目標シリンダ長さ)に設定する(ステップS2)。一方、目標物理量設定部52は、記憶スイッチ80に対する入力操作が行われていないと判定すると(ステップS1においてNO)、目標シリンダ長さをデフォルト値に設定する(ステップS3)。デフォルト値は、第1目標シリンダ長さ及び第2目標シリンダ長さとして予め設定されてメモリに記憶された値であってもよく、前回に設定された第1目標シリンダ長さ及び第2目標シリンダ長さであってもよい。 When a signal indicating that the memory switch 80 has been pressed is input to the controller 50, the target physical quantity setting unit 52 determines that an input operation has been performed on the memory switch 80 (YES in step S1). The cylinder length of the cylinder 8 is set to the target cylinder length (first target cylinder length), and the cylinder length of the bucket cylinder 9 at that time is set to the target cylinder length (second target cylinder length) ( step S2). On the other hand, when target physical quantity setting unit 52 determines that an input operation to storage switch 80 has not been performed (NO in step S1), target physical quantity setting unit 52 sets the target cylinder length to a default value (step S3). The default values may be values preset and stored in the memory as the first target cylinder length and the second target cylinder length. It can be length.

 次に、コントローラ50の作業判定部59は、排土作業が行われているか否かを判定する(ステップS4)。作業判定部59は、複数の検出器31~34からコントローラ50に入力される検出信号に基づいて、例えばアーム5の姿勢及びバケット6の姿勢の経時変化のデータが予め定められた排土作業に関する条件を満たす場合、作業判定部59は、建設機械100が排土作業を行っていると判定する(ステップS4においてYES)。 Next, the work determination unit 59 of the controller 50 determines whether or not soil removal work is being performed (step S4). The work determining unit 59 is related to the earth discharging work in which the data of changes over time of the posture of the arm 5 and the posture of the bucket 6 are predetermined based on the detection signals input to the controller 50 from the plurality of detectors 31 to 34. When the condition is satisfied, the work determination unit 59 determines that the construction machine 100 is performing the earth removal work (YES in step S4).

 排土作業が行われていると作業判定部59が判定すると(ステップS4においてYES)、現在物理量演算部53は、アーム姿勢検出器32から入力される検出信号に基づいてその時点でのアームシリンダ8のシリンダ長さである現在シリンダ長さ(第1現在シリンダ長さ)を演算し、バケット姿勢検出器33から入力される検出信号に基づいてその時点でのバケットシリンダ9のシリンダ長さである現在シリンダ長さ(第2現在シリンダ長さ)を演算する。そして、物理量偏差演算部54は、例えば式(第1長さ偏差=第1目標シリンダ長さ-第1現在シリンダ長さ)を用いてアーム5の姿勢に関連する第1長さ偏差(e)を演算し、例えば式(第2長さ偏差=第2目標シリンダ長さ-第2現在シリンダ長さ)を用いてバケット6の姿勢に関連する第2長さ偏差(e)を演算する(ステップS5)。 When the work determination unit 59 determines that the earth-removing work is being performed (YES in step S4), the current physical quantity calculation unit 53 determines the current arm cylinder position based on the detection signal input from the arm posture detector 32. The current cylinder length (first current cylinder length), which is the cylinder length of No. 8, is calculated, and based on the detection signal input from the bucket attitude detector 33, the cylinder length of the bucket cylinder 9 at that time is calculated. A current cylinder length (second current cylinder length) is calculated. Then, the physical quantity deviation calculator 54 calculates the first length deviation (e) related to the posture of the arm 5 using, for example, the formula (first length deviation=first target cylinder length−first current cylinder length). and calculate a second length deviation (e) related to the attitude of the bucket 6 using, for example, the formula (second length deviation=second target cylinder length−second current cylinder length) (step S5).

 コントローラ50は、アーム5の姿勢を制御するために予め設定された例えば図3に示すようなマップ(アーム用マップ)を予め記憶し、バケット6の姿勢を制御するために予め設定された例えば図3に示すようなマップ(バケット用マップ)を予め記憶している。これら2つのマップは、排土作業においてアーム5及びバケット6のそれぞれが適した動作を行うように予め個別に設定されたものである。第2実施形態では、図3に示すグラフにおいて、横軸は、長さ偏差(第1長さ偏差又は第2長さ偏差)であり、縦軸は、アシスト率(r)である。 The controller 50 stores in advance a map (arm map) set in advance to control the attitude of the arm 5, for example, as shown in FIG. 3 (bucket map) is stored in advance. These two maps are individually set in advance so that the arm 5 and the bucket 6 perform suitable operations in the earth discharging work. In the second embodiment, in the graph shown in FIG. 3, the horizontal axis is length deviation (first length deviation or second length deviation), and the vertical axis is assist rate (r).

 次に、アシスト率設定部55は、前記アーム用マップと、物理量偏差演算部54により演算された第1長さ偏差(e)と、に基づいて、アーム5のためのアシスト率である第1アシスト率(r)を設定し、前記バケット用マップと、物理量偏差演算部54により演算された第2長さ偏差(e)と、に基づいて、バケット6のためのアシスト率である第2アシスト率(r)を設定する(ステップS6)。 Next, the assist rate setting unit 55 sets the first length deviation (e), which is the assist rate for the arm 5, based on the arm map and the first length deviation (e) calculated by the physical quantity deviation calculation unit 54. The assist rate (r) is set, and the second assist rate, which is the assist rate for the bucket 6, is calculated based on the bucket map and the second length deviation (e) calculated by the physical quantity deviation calculator 54. A rate (r) is set (step S6).

 次に、その時点におけるオペレータ操作値(Lo)がコントローラ50に入力される。具体的には、アーム操作装置62は、操作レバー62Aにアーム押し操作が与えられると、当該アーム押し操作の大きさに対応する電気信号であるオペレータ操作値(第1オペレータ操作値(Lo))をコントローラ50に入力する。バケット操作装置63は、操作レバー63Aにバケット押し操作が与えられると、当該バケット押し操作の大きさに対応する電気信号であるオペレータ操作値(第2オペレータ操作値(Lo))をコントローラ50に入力する。 Next, the operator's operation value (Lo) at that time is input to the controller 50 . Specifically, when an arm pushing operation is applied to the operating lever 62A, the arm operating device 62 outputs an operator operation value (first operator operation value (Lo)), which is an electrical signal corresponding to the magnitude of the arm pushing operation. is input to the controller 50 . Bucket operating device 63 inputs an operator operation value (second operator operation value (Lo)), which is an electric signal corresponding to the magnitude of the bucket pushing operation, to controller 50 when a bucket pushing operation is given to operation lever 63A. do.

 コントローラ50は、アーム5の姿勢をフィードバック制御するために予め設定された例えば上記式(1)に示すような式(アーム用演算式)を予め記憶し、バケット6の姿勢をフィードバック制御するために予め設定された例えば上記式(1)に示すような式(バケット用演算式)を予め記憶している。これら2つの式は、排土作業においてアーム5及びバケット6のそれぞれが適した動作を行うように予め個別に設定されたものである。 The controller 50 preliminarily stores an equation (arm computing equation) set in advance for feedback-controlling the attitude of the arm 5, for example, as shown in the above equation (1), and controls the attitude of the bucket 6 by feedback-controlling the equation. A preset formula (bucket computational formula), for example, as shown in the above formula (1), is stored in advance. These two formulas are individually set in advance so that the arm 5 and the bucket 6 perform suitable operations in the earth discharging work.

 アシスト操作値演算部56(PIDコントローラ)は、前記アーム用演算式と、第1長さ偏差(e)と、を用いて、アーム押し操作をアシストするためのアシスト操作値である第1アシスト操作値(La)を演算する。同様に、アシスト操作値演算部56(PIDコントローラ)は、前記バケット用演算式と、第2長さ偏差(e)と、を用いて、バケット押し操作をアシストするためのアシスト操作値である第2アシスト操作値(La)を演算する。 The assist operation value calculation unit 56 (PID controller) uses the above-described arm arithmetic expression and the first length deviation (e) to calculate the first assist operation value, which is an assist operation value for assisting the arm pushing operation. Calculate the value (La). Similarly, the assist operation value calculation unit 56 (PID controller) uses the bucket operation expression and the second length deviation (e) to obtain the assist operation value for assisting the bucket pushing operation. 2 Calculate an assist operation value (La).

 オペレータ操作値補正部57は、上記の式(2)と、アーム押し操作における第1オペレータ操作値(Lo)と、第1アシスト率(r)と、を用いて、第1オペレータ補正値(Lo’)を演算し、上記の式(2)と、バケット押し操作における第2オペレータ操作値(Lo)と、第2アシスト率(r)と、を用いて、第2オペレータ補正値(Lo’)を演算する。 The operator operation value correction unit 57 calculates the first operator correction value (Lo '), and using the above equation (2), the second operator operation value (Lo) in the bucket pushing operation, and the second assist rate (r), the second operator correction value (Lo') to calculate

 アシスト操作値補正部58は、上記の式(3)と、アーム押し操作における第1アシスト操作値(La)と、第1アシスト率(r)と、を用いて、第1アシスト補正値(La’)を演算し、上記の式(3)と、バケット押し操作における第2アシスト操作値(La)と、第2アシスト率(r)と、を用いて、第2アシスト補正値(La’)を演算する。 The assist operation value correction unit 58 uses the above equation (3), the first assist operation value (La) in the arm pushing operation, and the first assist rate (r) to determine the first assist correction value (La '), and using the above equation (3), the second assist operation value (La) in the bucket pushing operation, and the second assist rate (r), the second assist correction value (La') to calculate

 動作指令部51は、アーム押し操作に関し、第1オペレータ補正値(Lo’)と第1アシスト補正値(La’)とを足した合計値である第1合計値を、最終的な操作値である第1制御指令Y(Y=Lo×(1-r)+La×r)として出力する。また、動作指令部51は、バケット押し操作に関し、第2オペレータ補正値(Lo’)と第2アシスト補正値(La’)とを足した合計値である第2合計値を、最終的な操作値である第2制御指令Y(Y=Lo×(1-r)+La×r)として出力する(ステップS7)。出力された第1制御指令Yは、アーム押し操作に対応する比例弁46に入力され、出力された第2制御指令Yは、バケット押し操作に対応する比例弁47に入力される。 Regarding the arm pushing operation, the operation command unit 51 converts the first total value, which is the sum of the first operator correction value (Lo′) and the first assist correction value (La′), into the final operation value. A certain first control command Y (Y=Lo×(1−r)+La×r) is output. In addition, regarding the bucket pushing operation, the operation command unit 51 sets the second total value, which is the sum of the second operator correction value (Lo') and the second assist correction value (La'), as the final operation value. A second control command Y (Y=Lo×(1−r)+La×r), which is a value, is output (step S7). The output first control command Y is input to the proportional valve 46 corresponding to the arm pushing operation, and the output second control command Y is input to the proportional valve 47 corresponding to the bucket pushing operation.

 一方、排土作業が行われていないと作業判定部59が判定すると(ステップS4においてNO)、動作指令部51は、複数の操作装置61~64の少なくとも一つから入力される操作に対応するオペレータ操作値(Lo)を、最終的な操作値である制御指令として出力する(ステップS8)。 On the other hand, when the work determination unit 59 determines that the earth removal work is not being performed (NO in step S4), the operation command unit 51 responds to the operation input from at least one of the plurality of operation devices 61 to 64. The operator operation value (Lo) is output as a control command, which is the final operation value (step S8).

 以上のように、コントローラ50は、図4に示すように長さ偏差(e)をゼロに近づけるためのアシスト操作値(La)を用いたフィードバック制御を、アーム5及びバケット6のそれぞれについて行うとともに、図5のフローチャートのステップS1~S8に示すような演算処理を、アーム5及びバケット6のそれぞれについて繰り返し行う。このことは、オペレータの意思を介入させながら、アーム5の姿勢及びバケット6の姿勢を所望の姿勢に調整するためのオペレータによる操作をアシストすることを可能にする。 As described above, the controller 50 performs feedback control for each of the arm 5 and the bucket 6 using the assist operation value (La) for bringing the length deviation (e) closer to zero as shown in FIG. , the arithmetic processing shown in steps S1 to S8 in the flow chart of FIG. This makes it possible to assist the operator's operation for adjusting the attitude of the arm 5 and the attitude of the bucket 6 to desired attitudes while allowing the operator to intervene.

 [第3実施形態]
 前記実施形態に係る駆動装置では、対象作業が排土作業であるが、本開示に係る駆動装置は、前記実施形態に限られない。対象作業は、例えば前記戻り旋回作業であってもよい。この場合、特定部位は、例えばバケット6の先端であり、作業装置の姿勢に関連する物理量は、バケット6の先端の高さであり、目標物理量は、例えばバケット6の先端の目標高さ(掘削開始高さ)であり、現在物理量は、例えばバケット6の先端の実際の高さである現在高さであり、物理量偏差は、目標高さ(掘削開始高さ)と現在高さとの偏差である高さ偏差である(例えばバケット6の先端と施工面との距離)。掘削開始高さ及び現在高さは、例えば地面を基準とする値であってもよく、地面よりも下方又は上方の位置を基準とする値であってもよい。図7は、この第3実施形態におけるバケットの先端高さ及びアシスト率の経時変化の一例を示すグラフであり、図8は、この第3実施形態におけるコントローラ50による制御の流れを示すブロック線図の例である。
[Third embodiment]
In the drive device according to the above embodiment, the target work is soil removal work, but the drive device according to the present disclosure is not limited to the above embodiment. The target work may be, for example, the return turning work. In this case, the specific portion is, for example, the tip of the bucket 6, the physical quantity related to the attitude of the work device is the height of the tip of the bucket 6, and the target physical quantity is, for example, the target height of the tip of the bucket 6 (excavation start height), the current physical quantity is, for example, the current height, which is the actual height of the tip of the bucket 6, and the physical quantity deviation is the deviation between the target height (excavation start height) and the current height. It is the height deviation (for example, the distance between the tip of the bucket 6 and the construction surface). The excavation start height and current height may be values based on, for example, the ground, or may be values based on a position below or above the ground. FIG. 7 is a graph showing an example of temporal changes in the tip height of the bucket and the assist rate in the third embodiment, and FIG. 8 is a block diagram showing the flow of control by the controller 50 in the third embodiment. is an example of

 この第3実施形態では、オペレータは、複数の操作装置61~64の操作レバー61A~64Aの少なくとも一つを操作することによりバケット6の先端を所望の位置に配置する。所望の位置は、例えば掘削を開始するときのバケット6の先端の位置である。バケット6の先端が所望の位置に配置された状態でオペレータが記憶スイッチ80に対して入力操作を行うと、目標物理量設定部52は、その時点でバケット6の先端が配置されている高さを掘削開始高さ(目標高さ)に設定する。 In this third embodiment, the operator places the tip of the bucket 6 at a desired position by operating at least one of the operating levers 61A-64A of the plurality of operating devices 61-64. The desired position is, for example, the position of the tip of the bucket 6 when excavation is started. When the operator performs an input operation on the memory switch 80 with the tip of the bucket 6 positioned at a desired position, the target physical quantity setting unit 52 sets the height at which the tip of the bucket 6 is positioned at that time. Set the excavation start height (target height).

 現在物理量演算部53は、姿勢情報取得部から入力される姿勢情報に基づいてバケット6の先端の現在高さ(アタッチメント先端高さ)を演算する。現在物理量演算部53は、例えば、検出器31~33により検出されるブーム角度θ1、アーム角度θ2及びバケット角度θ3と、旋回体姿勢検出器34により検出される水平面に対する上部旋回体2の傾斜角度と、に基づいて、前記現在高さを演算してもよい。具体的には、例えば、現在物理量演算部53は、下部走行体1が配置されている地面とバケット6の下方に位置する地面とが同一平面に含まれると仮定した場合には、検出器31~34から入力される検出信号に基づいて、地面からのバケット6の先端の高さを幾何学的に演算することができる。 The current physical quantity calculation unit 53 calculates the current height of the tip of the bucket 6 (attachment tip height) based on the posture information input from the posture information acquisition unit. The current physical quantity calculator 53 calculates, for example, the boom angle θ1, the arm angle θ2, and the bucket angle θ3 detected by the detectors 31 to 33, and the inclination angle of the upper swing structure 2 with respect to the horizontal plane detected by the swing structure attitude detector . and the current height may be calculated based on. Specifically, for example, when the current physical quantity calculation unit 53 assumes that the ground on which the lower traveling body 1 is arranged and the ground located below the bucket 6 are included in the same plane, the detector 31 34, the height of the tip of the bucket 6 from the ground can be geometrically calculated.

 物理量偏差演算部54は、例えば式「高さ偏差=掘削開始高さ-現在高さ」を用いて、前記掘削開始高さと前記現在高さとの偏差である前記高さ偏差を演算する。 The physical quantity deviation calculation unit 54 calculates the height deviation, which is the deviation between the excavation start height and the current height, using the formula "height deviation = excavation start height - current height", for example.

 アシスト率設定部55は、前記高さ偏差が大きいときに比べて前記高さ偏差が小さいときの方がアシスト率(r)が大きな値になるようにアシスト率(r)を設定する。具体的には、アシスト率設定部55は、例えば図8に示すように高さ偏差(e)とアシスト率(r)との関係が予め設定されたマップと、物理量偏差演算部54により演算された高さ偏差と、に基づいて、アシスト率(r)を設定する。 The assist rate setting unit 55 sets the assist rate (r) so that the assist rate (r) is larger when the height deviation is small than when the height deviation is large. Specifically, as shown in FIG. The assist rate (r) is set based on the height deviation obtained.

 アシスト操作値演算部56は、前記オペレータの操作をアシストするためのアシスト操作値(La)を演算する。具体的には、この第3実施形態では、アシスト操作値演算部56は、目標バケット角度と実際のバケット角度θ3との偏差である角度偏差をゼロに近づけるための操作値であるアシスト操作値(La)を演算する。 The assist operation value calculation unit 56 calculates an assist operation value (La) for assisting the operator's operation. Specifically, in the third embodiment, the assist operation value calculator 56 is an assist operation value ( Calculate La).

 図1において、角度θ4は、地面に対するアーム5の角度であるアーム対地角度であり、角度θ5は、地面に対するバケット6の角度であるバケット対地角度である。アーム対地角度θ4は、例えば図1に示すように、ブーム4に対するアーム5の回動中心とアーム5に対するバケット6の回動中心とを結ぶ直線と、地面との角度であってもよい。バケット対地角度θ5は、例えば図1に示すように、アーム5に対するバケット6の回動中心とバケット6の先端とを結ぶ直線と、地面との角度であってもよい。 In FIG. 1, the angle θ4 is the arm ground angle, which is the angle of the arm 5 with respect to the ground, and the angle θ5 is the bucket ground angle, which is the angle of the bucket 6 with respect to the ground. The arm-to-ground angle θ4 may be the angle between the ground and a straight line connecting the center of rotation of the arm 5 with respect to the boom 4 and the center of rotation of the bucket 6 with respect to the arm 5, as shown in FIG. The bucket-to-ground angle θ5 may be the angle between the ground and a straight line connecting the center of rotation of the bucket 6 with respect to the arm 5 and the tip of the bucket 6, as shown in FIG. 1, for example.

 アシスト操作値演算部56は、例えば図8の左端に描かれたグラフのようなアーム対地角度θ4とバケット6の目標の角度(目標バケット角度)との関係が予め設定されたマップと、その時の実際のアーム対地角度θ4と、に基づいて、目標バケット角度を設定する。次に、アシスト操作値演算部56(PIDコントローラ)は、例えば上述したような式(1)と、前記角度偏差と、を用いてアシスト操作値(La)を演算する。 The assist operation value calculation unit 56 stores a map in which the relationship between the arm-to-ground angle θ4 and the target angle (target bucket angle) of the bucket 6 is set in advance, such as the graph drawn at the left end of FIG. The target bucket angle is set based on the actual arm ground angle θ4. Next, the assist operation value calculation unit 56 (PID controller) calculates the assist operation value (La) using, for example, Equation (1) as described above and the angular deviation.

 オペレータ操作値補正部57は、上記と同様の式(2)「Lo’=Lo×(1-r)」を用いて、オペレータ補正値(Lo’)を演算する。演算されたオペレータ補正値(Lo’)は、アシスト率(r)が大きいほど小さくなる。 The operator operation value correction unit 57 calculates the operator correction value (Lo') using the same equation (2) "Lo'=Lo×(1−r)" as above. The calculated operator correction value (Lo') decreases as the assist rate (r) increases.

 アシスト操作値補正部58は、上記と同様の式(3)「La’=La×r」を用いて、アシスト補正値(La’)を演算する。演算されたアシスト補正値(La’)は、アシスト率(r)が大きいほど大きくなる。 The assist operation value correction unit 58 calculates the assist correction value (La') using the same formula (3) "La'=La×r" as described above. The calculated assist correction value (La') increases as the assist rate (r) increases.

 動作指令部51は、対象作業(この第3実施形態では戻り旋回作業)が行われている場合には、オペレータ補正値(Lo’)とアシスト補正値(La’)とを足した合計値を、最終的な操作値である制御指令Y(Y=Lo×(1-r)+La×r)として出力する。出力された制御指令Yは、戻り旋回作業において操作されている操作装置のうちの少なくとも一つの操作装置に対応する比例弁に入力される。 When the target work (return turning work in the third embodiment) is being performed, the motion command unit 51 calculates the sum of the operator correction value (Lo') and the assist correction value (La'). , is output as a control command Y (Y=Lo×(1−r)+La×r), which is the final manipulated value. The output control command Y is input to the proportional valve corresponding to at least one of the operating devices operated during the return swing operation.

 この第3実施形態では、バケット6の掘削開始高さとバケット6の先端の現在高さとの偏差である高さ偏差を用いてアシスト率が設定される。従って、高さ偏差が大きいときにはオペレータの意思を大きく介入させることができる。一方で、高さ偏差が小さいとき、すなわち、バケット6の先端が掘削開始高さ(目標高さ)に近づいて作業装置の姿勢を微調整するときには、オペレータの意思の介入を高さ偏差が大きいときに比べて小さくし、コントローラ50によるアシストによってバケット6の先端を掘削開始高さに容易に調整することができる。これにより、オペレータの意思の介入と作業装置の姿勢の容易な調整とを両立させることができる。 In this third embodiment, the assist rate is set using the height deviation, which is the deviation between the excavation start height of the bucket 6 and the current height of the tip of the bucket 6 . Therefore, when the height deviation is large, the operator's intention can be greatly intervened. On the other hand, when the height deviation is small, that is, when the tip of the bucket 6 approaches the excavation start height (target height) and the posture of the work equipment is to be finely adjusted, the operator's intentional intervention is large. The tip of the bucket 6 can be easily adjusted to the digging start height with the assistance of the controller 50. As a result, it is possible to achieve both the intentional intervention of the operator and the easy adjustment of the posture of the working device.

 また、この第3実施形態では、目標バケット角度と実際のバケット角度θ3との偏差である角度偏差を用いてアシスト操作値(La)が演算される。このアシスト操作値(La)は、前記角度偏差をゼロに近づけるために例えば上記の式(1)を用いて演算される操作値である。従って、この第3実施形態では、コントローラ50は、図8に示すように前記角度偏差をゼロに近づけるためのアシスト操作値(La)を用いたフィードバック制御を行うとともに、例えば図5のフローチャートのステップS1~S8に示すような演算処理を繰り返し行うことで、オペレータの意思を介入させながら、掘削開始時のバケット対地角度θ5を所望の角度に近づけることができる。所望の角度は、バケット6の先端がアーム5に対するバケット6の回動中心の真下に位置するような角度(例えば90度程度の角度)であることが好ましい。 Also, in the third embodiment, the assist operation value (La) is calculated using the angular deviation that is the deviation between the target bucket angle and the actual bucket angle θ3. This assist operation value (La) is an operation value calculated using the above equation (1), for example, in order to bring the angular deviation closer to zero. Therefore, in the third embodiment, the controller 50 performs feedback control using an assist operation value (La) for bringing the angular deviation closer to zero as shown in FIG. By repeating the arithmetic processing shown in S1 to S8, the bucket-to-ground angle θ5 at the start of excavation can be brought close to a desired angle while intervening the operator's will. The desired angle is preferably an angle (for example, an angle of about 90 degrees) such that the tip of the bucket 6 is positioned directly below the center of rotation of the bucket 6 with respect to the arm 5 .

 [第4実施形態]
 図9は、第4実施形態に係るコントローラ50による制御の流れを示すブロック線図の一例である。この第4実施形態では、作業装置の姿勢に関連する物理量は、角度センサにより検出される角度であり、目標物理量は、作業装置の角度の目標である目標角度であり、現在物理量は、角度センサにより検出される実際の角度である現在角度である。具体的には、第4実施形態では、ブーム4の姿勢、アーム5の姿勢及びバケット6の姿勢がブーム4の角度、アーム5の角度及びバケット6の角度を用いて制御される。第4実施形態では、ブーム姿勢検出器31は、ブーム角度センサであり、アーム姿勢検出器32は、アーム角度センサであり、バケット姿勢検出器33は、バケット角度センサである。
[Fourth embodiment]
FIG. 9 is an example of a block diagram showing the flow of control by the controller 50 according to the fourth embodiment. In the fourth embodiment, the physical quantity related to the attitude of the working device is the angle detected by the angle sensor, the target physical quantity is the target angle of the working device, and the current physical quantity is the angle sensor. is the current angle, which is the actual angle detected by Specifically, in the fourth embodiment, the attitude of the boom 4 , the attitude of the arm 5 and the attitude of the bucket 6 are controlled using the angle of the boom 4 , the angle of the arm 5 and the angle of the bucket 6 . In the fourth embodiment, the boom attitude detector 31 is a boom angle sensor, the arm attitude detector 32 is an arm angle sensor, and the bucket attitude detector 33 is a bucket angle sensor.

 この第4実施形態では、目標物理量は、第1~第3目標物理量を含み、現在物理量は、第1~第3現在物理量を含み、物理量偏差は、第1~第3物理量偏差を含む。具体的には、第1目標物理量は、ブーム4の角度の目標である第1目標角度(ブーム目標角度)であり、第2目標物理量は、アーム5の角度の目標である第2目標角度(アーム目標角度)であり、第3目標物理量は、バケット6の角度の目標である第3目標角度(バケット目標角度)である。第1現在物理量は、ブーム姿勢検出器31により検出される実際のブーム4の角度である第1現在角度であり、第2現在物理量は、アーム姿勢検出器32により検出される実際のアーム5の角度である第2現在角度であり、第3現在物理量は、バケット姿勢検出器33により検出される実際のバケット6の角度である第3現在角度である。第1物理量偏差は、第1目標角度と第1現在角度との偏差である第1角度偏差であり、第2物理量偏差は、第2目標角度と第2現在角度との偏差である第2角度偏差であり、第3物理量偏差は、第3目標角度と第3現在角度との偏差である第3角度偏差である。 In this fourth embodiment, the target physical quantity includes first to third target physical quantities, the current physical quantity includes first to third current physical quantities, and the physical quantity deviation includes the first to third physical quantity deviations. Specifically, the first target physical quantity is the first target angle (boom target angle) that is the target of the angle of the boom 4, and the second target physical quantity is the second target angle that is the target of the angle of the arm 5 ( arm target angle), and the third target physical quantity is the third target angle (bucket target angle) that is the target angle of the bucket 6 . The first current physical quantity is the first current angle that is the actual angle of the boom 4 detected by the boom attitude detector 31, and the second current physical quantity is the actual angle of the arm 5 that is detected by the arm attitude detector 32. The third current physical quantity is the third current angle that is the actual angle of the bucket 6 detected by the bucket attitude detector 33 . The first physical quantity deviation is the first angle deviation that is the deviation between the first target angle and the first current angle, and the second physical quantity deviation is the second angle that is the deviation between the second target angle and the second current angle. The third physical quantity deviation is the third angle deviation that is the deviation between the third target angle and the third current angle.

 第4実施形態に係る駆動装置のコントローラ50は、第1実施形態と同様に例えば図5に示すフローチャートに沿って演算処理を行ってもよい。以下、図5に示すフローチャートを参照しながら、第4実施形態に係るコントローラ50による演算処理の一例について説明する。第4実施形態では、対象作業は、排土作業に設定されており、掘削作業、土砂保持旋回作業、及び戻り旋回作業は、非対象作業には設定されている。 The controller 50 of the driving device according to the fourth embodiment may perform arithmetic processing according to the flowchart shown in FIG. 5, for example, as in the first embodiment. An example of arithmetic processing by the controller 50 according to the fourth embodiment will be described below with reference to the flowchart shown in FIG. In the fourth embodiment, the target work is set to the earth removal work, and the excavation work, the earth and sand holding turning work, and the return turning work are set to the non-target work.

 オペレータは、土砂積込作業を開始する時点において、操作装置61~64の操作レバー61A~64Aの少なくとも一つを操作することにより、ブーム4、アーム5及びバケット6を例えば図6における上図(A)に示すような所望の姿勢に配置した状態で、記憶スイッチ80を押す。 At the time of starting the earth and sand loading work, the operator operates at least one of the operating levers 61A to 64A of the operating devices 61 to 64 to move the boom 4, the arm 5 and the bucket 6, for example, to the upper diagram in FIG. The storage switch 80 is pressed while the device is placed in the desired posture as shown in A).

 記憶スイッチ80が押されたことを示す信号がコントローラ50に入力されると、目標物理量設定部52(図9における目標姿勢設定装置)は、記憶スイッチ80に対する入力操作が行われたと判定し(ステップS1においてYES)、その時点におけるブーム4の角度を第1目標角度に設定し、その時点におけるアーム5の角度を第2目標角度に設定し、その時点におけるバケット6の角度を第3目標角度に設定する(ステップS2)。一方、目標物理量設定部52は、記憶スイッチ80に対する入力操作が行われていないと判定すると(ステップS1においてNO)、第1~第3目標角度をデフォルト値に設定する(ステップS3)。デフォルト値は、第1~第3目標角度として予め設定されてメモリに記憶された値であってもよく、前回に設定された第1~第3目標角度であってもよい。 When a signal indicating that the memory switch 80 has been pressed is input to the controller 50, the target physical quantity setting unit 52 (the target posture setting device in FIG. 9) determines that an input operation has been performed on the memory switch 80 (step YES in S1), the angle of the boom 4 at that time is set to the first target angle, the angle of the arm 5 at that time is set to the second target angle, and the angle of the bucket 6 at that time is set to the third target angle. Set (step S2). On the other hand, when the target physical quantity setting unit 52 determines that no input operation is performed on the memory switch 80 (NO in step S1), it sets the first to third target angles to default values (step S3). The default values may be values preset and stored in the memory as the first to third target angles, or may be the previously set first to third target angles.

 次に、コントローラ50の作業判定部59は、上述したように排土作業が行われているか否かを判定する(ステップS4)。排土作業が行われていると作業判定部59が判定すると(ステップS4においてYES)、現在物理量演算部53は、ブーム姿勢検出器31から入力される検出信号に基づいてその時点でのブーム4の角度である第1現在角度を演算し、アーム姿勢検出器32から入力される検出信号に基づいてその時点でのアーム5の角度である第2現在角度を演算し、バケット姿勢検出器33から入力される検出信号に基づいてその時点でのバケット6の角度である第3現在角度を演算する。そして、物理量偏差演算部54は、例えば式(第1角度偏差=第1目標角度-第1現在角度)を用いて、ブーム4に関する偏差である第1角度偏差を演算し、例えば式(第2角度偏差=第2目標角度-第2現在角度)を用いて、アーム5に関する偏差である第2角度偏差を演算し、例えば式(第3角度偏差=第3目標角度-第3現在角度)を用いて、バケット6に関する偏差である第3角度偏差を演算する(ステップS5)。 Next, the work determination unit 59 of the controller 50 determines whether or not earth removal work is being performed as described above (step S4). When the work determination unit 59 determines that the earth removal work is being performed (YES in step S4), the current physical quantity calculation unit 53 determines the boom 4 at that time based on the detection signal input from the boom attitude detector 31. Based on the detection signal input from the arm attitude detector 32, the second current angle that is the angle of the arm 5 at that time is calculated. A third current angle, which is the angle of the bucket 6 at that time, is calculated based on the input detection signal. Then, the physical quantity deviation calculation unit 54 calculates the first angle deviation that is the deviation regarding the boom 4 using, for example, the formula (first angle deviation=first target angle−first current angle), and for example, the formula (second Angular deviation = 2nd target angle - 2nd current angle) is used to calculate the 2nd angle deviation which is the deviation with respect to the arm 5, for example, the formula (3rd angle deviation = 3rd target angle - 3rd current angle) is used to calculate the third angular deviation that is the deviation of the bucket 6 (step S5).

 コントローラ50は、ブーム4の姿勢を制御するために予め設定された例えば図3に示すようなマップ(ブーム用マップ)を予め記憶し、アーム5の姿勢を制御するために予め設定された例えば図3に示すようなマップ(アーム用マップ)を予め記憶し、バケット6の姿勢を制御するために予め設定された例えば図3に示すようなマップ(バケット用マップ)を予め記憶している。これら3つのマップは、排土作業においてブーム4、アーム5及びバケット6のそれぞれが適した動作を行うように予め個別に設定されたものである。第4実施形態では、図3に示すグラフにおいて、横軸は、角度偏差(第1角度偏差、第2角度偏差又は第3角度偏差)であり、縦軸は、アシスト率(r)である。 The controller 50 stores in advance a map (boom map) set in advance to control the attitude of the boom 4, for example, as shown in FIG. 3 (arm map) is stored in advance, and a map (bucket map) set in advance to control the posture of the bucket 6, for example, as shown in FIG. 3, is stored in advance. These three maps are individually set in advance so that the boom 4, the arm 5, and the bucket 6 perform suitable operations in the earth discharging work. In the fourth embodiment, in the graph shown in FIG. 3, the horizontal axis is the angular deviation (the first angular deviation, the second angular deviation, or the third angular deviation), and the vertical axis is the assist rate (r).

 次に、アシスト率設定部55は、前記ブーム用マップと、物理量偏差演算部54により演算された第1角度偏差(e)と、に基づいて、ブーム4のためのアシスト率である第1アシスト率(r)を設定する。同様に、アシスト率設定部55は、前記アーム用マップと、物理量偏差演算部54により演算された第2角度偏差(e)と、に基づいて、アーム5のためのアシスト率である第2アシスト率(r)を設定し、前記バケット用マップと、物理量偏差演算部54により演算された第3角度偏差(e)と、に基づいて、バケット6のためのアシスト率である第3アシスト率(r)を設定する(ステップS6)。 Next, the assist rate setting unit 55 sets the first assist rate, which is the assist rate for the boom 4, based on the boom map and the first angular deviation (e) calculated by the physical quantity deviation calculating unit 54. Set the rate (r). Similarly, the assist rate setting unit 55 sets the second assist rate, which is the assist rate for the arm 5, based on the arm map and the second angular deviation (e) calculated by the physical quantity deviation calculator 54. rate (r) is set, and a third assist rate ( r) is set (step S6).

 次に、その時点におけるオペレータ操作値(Lo)がコントローラ50に入力される。具体的には、ブーム操作装置61は、操作レバー61Aにブーム操作(ブーム下げ操作又はブーム上げ操作)が与えられると、当該ブーム操作の方向及び大きさに対応する電気信号であるオペレータ操作値(第1オペレータ操作値(Lo))をコントローラ50に入力する。アーム操作装置62は、操作レバー62Aにアーム押し操作が与えられると、当該アーム押し操作の大きさに対応する電気信号であるオペレータ操作値(第2オペレータ操作値(Lo))をコントローラ50に入力する。バケット操作装置63は、操作レバー63Aにバケット押し操作が与えられると、当該バケット押し操作の大きさに対応する電気信号であるオペレータ操作値(第3オペレータ操作値(Lo))をコントローラ50に入力する。 Next, the operator's operation value (Lo) at that time is input to the controller 50 . Specifically, when a boom operation (boom down operation or boom up operation) is given to the operation lever 61A, the boom operation device 61 is an operator operation value ( A first operator manipulated value (Lo)) is input to the controller 50 . When an arm pushing operation is applied to the operating lever 62A, the arm operating device 62 inputs an operator operation value (second operator operation value (Lo)), which is an electrical signal corresponding to the magnitude of the arm pushing operation, to the controller 50. do. Bucket operating device 63 inputs an operator operation value (third operator operation value (Lo)), which is an electric signal corresponding to the magnitude of the bucket pushing operation, to controller 50 when a bucket pushing operation is given to operation lever 63A. do.

 コントローラ50は、ブーム4の姿勢をフィードバック制御するために予め設定された例えば上記式(1)に示すような式(ブーム用演算式)を予め記憶し、アーム5の姿勢をフィードバック制御するために予め設定された例えば上記式(1)に示すような式(アーム用演算式)を予め記憶し、バケット6の姿勢をフィードバック制御するために予め設定された例えば上記式(1)に示すような式(バケット用演算式)を予め記憶している。これら3つの式は、排土作業においてブーム4、アーム5及びバケット6のそれぞれが適した動作を行うように予め個別に設定されたものである。 The controller 50 stores in advance a formula (computational formula for boom) such as the above formula (1) set in advance for feedback control of the attitude of the boom 4, For example, a preset equation (arm operation equation) as shown in the above equation (1) is stored in advance, and a preset equation such as the above equation (1) is stored for feedback control of the attitude of the bucket 6. Formulas (calculation formulas for buckets) are stored in advance. These three formulas are individually set in advance so that the boom 4, the arm 5 and the bucket 6 perform suitable operations in the earth discharging work.

 アシスト操作値演算部56(PIDコントローラ)は、前記ブーム用演算式と、第1角度偏差(e)と、を用いて、ブーム操作をアシストするためのアシスト操作値である第1アシスト操作値(La)を演算する。同様に、アシスト操作値演算部56(PIDコントローラ)は、前記アーム用演算式と、第2角度偏差(e)と、を用いて、アーム押し操作をアシストするためのアシスト操作値である第2アシスト操作値(La)を演算し、前記バケット用演算式と、第3角度偏差(e)と、を用いて、バケット押し操作をアシストするためのアシスト操作値である第3アシスト操作値(La)を演算する。 The assist operation value calculation unit 56 (PID controller) uses the boom operation expression and the first angle deviation (e) to calculate a first assist operation value ( Calculate La). Similarly, the assist operation value calculation unit 56 (PID controller) uses the arm operation formula and the second angle deviation (e) to obtain the second angle deviation, which is the assist operation value for assisting the arm pushing operation. The assist operation value (La) is calculated, and the third assist operation value (La ).

 オペレータ操作値補正部57は、上記の式(2)と、ブーム操作における第1オペレータ操作値(Lo)と、第1アシスト率(r)と、を用いて、第1オペレータ補正値(Lo’)を演算する。同様に、オペレータ操作値補正部57は、上記の式(2)と、アーム押し操作における第2オペレータ操作値(Lo)と、第2アシスト率(r)と、を用いて、第2オペレータ補正値(Lo’)を演算し、上記の式(2)と、バケット押し操作における第3オペレータ操作値(Lo)と、第3アシスト率(r)と、を用いて、第3オペレータ補正値(Lo’)を演算する。 The operator operation value correction unit 57 calculates the first operator correction value (Lo' ). Similarly, the operator operation value correction unit 57 uses the above equation (2), the second operator operation value (Lo) in the arm pushing operation, and the second assist rate (r) to perform the second operator correction value (Lo') is calculated, and the third operator correction value ( Lo').

 アシスト操作値補正部58は、上記の式(3)と、ブーム操作における第1アシスト操作値(La)と、第1アシスト率(r)と、を用いて、第1アシスト補正値(La’)を演算する。同様に、アシスト操作値補正部58は、上記の式(3)と、アーム押し操作における第2アシスト操作値(La)と、第2アシスト率(r)と、を用いて、第2アシスト補正値(La’)を演算し、上記の式(3)と、バケット押し操作における第3アシスト操作値(La)と、第3アシスト率(r)と、を用いて、第3アシスト補正値(La’)を演算する。 The assist operation value correction unit 58 uses the above equation (3), the first assist operation value (La) in the boom operation, and the first assist rate (r) to determine the first assist correction value (La' ). Similarly, the assist operation value correction unit 58 uses the above equation (3), the second assist operation value (La) in the arm pushing operation, and the second assist rate (r) to perform the second assist correction. value (La') is calculated, and the third assist correction value ( La') is calculated.

 動作指令部51は、ブーム操作に関し、第1オペレータ補正値(Lo’)と第1アシスト補正値(La’)とを足した合計値である第1合計値を、最終的な操作値である第1制御指令Y(Y=Lo×(1-r)+La×r)として出力する。また、動作指令部51は、アーム押し操作に関し、第2オペレータ補正値(Lo’)と第2アシスト補正値(La’)とを足した合計値である第2合計値を、最終的な操作値である第2制御指令Y(Y=Lo×(1-r)+La×r)として出力する。また、動作指令部51は、バケット押し操作に関し、第3オペレータ補正値(Lo’)と第3アシスト補正値(La’)とを足した合計値である第3合計値を、最終的な操作値である第3制御指令Y(Y=Lo×(1-r)+La×r)として出力する(ステップS7)。出力された第1制御指令Yは、ブーム操作(ブーム下げ操作又はブーム上げ操作)に対応する比例弁45に入力され、出力された第2制御指令Yは、アーム押し操作に対応する比例弁46に入力され、出力された第3制御指令Yは、バケット押し操作に対応する比例弁47に入力される。 Regarding the boom operation, the operation command unit 51 sets the first total value, which is the sum of the first operator correction value (Lo') and the first assist correction value (La'), as the final operation value. Output as the first control command Y (Y=Lo×(1−r)+La×r). In addition, regarding the arm pushing operation, the operation command unit 51 sets the second total value, which is the sum of the second operator correction value (Lo') and the second assist correction value (La'), as the final operation value. is output as a second control command Y (Y=Lo×(1−r)+La×r). In addition, regarding the bucket pushing operation, the operation command unit 51 sets the third total value, which is the sum of the third operator correction value (Lo') and the third assist correction value (La'), as the final operation value. A third control command Y (Y=Lo×(1−r)+La×r), which is a value, is output (step S7). The output first control command Y is input to the proportional valve 45 corresponding to the boom operation (boom down operation or boom up operation), and the output second control command Y is input to the proportional valve 46 corresponding to the arm pushing operation. The third control command Y input to and output from is input to the proportional valve 47 corresponding to the bucket pushing operation.

 一方、排土作業が行われていないと作業判定部59が判定すると(ステップS4においてNO)、動作指令部51は、複数の操作装置61~64の少なくとも一つから入力される操作に対応するオペレータ操作値(Lo)を、最終的な操作値である制御指令として出力する(ステップS8)。 On the other hand, when the work determination unit 59 determines that the earth removal work is not being performed (NO in step S4), the operation command unit 51 responds to the operation input from at least one of the plurality of operation devices 61 to 64. The operator operation value (Lo) is output as a control command, which is the final operation value (step S8).

 以上のように、コントローラ50は、図4に示すように角度偏差(e)をゼロに近づけるためのアシスト操作値(La)を用いたフィードバック制御を、ブーム4、アーム5及びバケット6のそれぞれについて行うとともに、図5のフローチャートのステップS1~S8に示すような演算処理を、ブーム4、アーム5及びバケット6のそれぞれについて繰り返し行う。このことは、オペレータの意思を介入させながら、ブーム4の姿勢、アーム5の姿勢及びバケット6の姿勢を所望の姿勢に調整するためのオペレータによる操作をアシストすることを可能にする。 As described above, the controller 50 performs feedback control using the assist operation value (La) for bringing the angular deviation (e) closer to zero as shown in FIG. At the same time, the arithmetic processing shown in steps S1 to S8 in the flowchart of FIG. 5 is repeatedly performed for each of the boom 4, arm 5 and bucket 6. FIG. This makes it possible to assist the operator's operation for adjusting the posture of the boom 4, the posture of the arm 5, and the posture of the bucket 6 to desired postures while intervening the operator's will.

 [変形例]
 以上、本開示の実施形態に係る建設機械の駆動装置について説明したが、本開示は、上記の実施形態に限定されるものではなく、例えば以下のような変形例を含む。
[Modification]
Although the construction machine driving device according to the embodiment of the present disclosure has been described above, the present disclosure is not limited to the above embodiment, and includes, for example, the following modifications.

 (A)第1実施形態では、作業装置の姿勢に関連する物理量がバケット6の先端の座標であり、バケット6の先端の座標を用いてバケット6の姿勢が制御されるが、第1実施形態は、このような具体例に限られない。例えば、ブーム4における特定部位(例えばブーム4の先端)の座標、アーム5における特定部位(例えばアーム5の先端)の座標、及びバケット6における特定部位(例えばバケット6の先端)の座標の少なくとも一つを用いて作業装置の姿勢が制御されてもよい。具体的には、例えば、アーム5の先端の座標を用いてアーム5の姿勢が制御され、かつ、バケット6の先端の座標を用いてバケット6の姿勢が制御されてもよい。また、ブーム4の先端の座標を用いてブーム4の姿勢が制御され、アーム5の先端の座標を用いてアーム5の姿勢が制御され、かつ、バケット6の先端の座標を用いてバケット6の姿勢が制御されてもよい。具体的には、第1実施形態においてアーム5の先端が特定部位として設定されるとともにバケット6の先端が特定部位として設定される場合、コントローラ50は、アーム5の先端の実際の座標である現在物理量と、アーム5の先端の座標の目標である目標物理量と、これらの偏差である物理量偏差と、オペレータ操作値と、アシスト操作値と、オペレータ補正値と、アシスト補正値と、を用いて、アーム5の姿勢を制御し、バケット6の先端の実際の座標である現在物理量と、バケット6の先端の座標の目標である目標物理量と、これらの偏差である物理量偏差と、オペレータ操作値と、アシスト操作値と、オペレータ補正値と、アシスト補正値と、を用いて、バケット6の姿勢を制御することが好ましい。 (A) In the first embodiment, the physical quantity related to the posture of the working device is the coordinates of the tip of the bucket 6, and the posture of the bucket 6 is controlled using the coordinates of the tip of the bucket 6, but in the first embodiment. is not limited to such specific examples. For example, at least one of coordinates of a specific portion of the boom 4 (for example, the tip of the boom 4), coordinates of a specific portion of the arm 5 (for example, the tip of the arm 5), and coordinates of a specific portion of the bucket 6 (for example, the tip of the bucket 6). may be used to control the attitude of the work device. Specifically, for example, the coordinates of the tip of the arm 5 may be used to control the attitude of the arm 5 , and the coordinates of the tip of the bucket 6 may be used to control the attitude of the bucket 6 . In addition, the attitude of the boom 4 is controlled using the coordinates of the tip of the boom 4, the attitude of the arm 5 is controlled using the coordinates of the tip of the arm 5, and the coordinates of the tip of the bucket 6 are used. Attitude may be controlled. Specifically, in the first embodiment, when the tip of the arm 5 is set as the specific part and the tip of the bucket 6 is set as the specific part, the controller 50 sets the actual coordinates of the tip of the arm 5 to the current coordinates. Using a physical quantity, a target physical quantity that is a target coordinate of the tip of the arm 5, a physical quantity deviation that is a deviation of these, an operator operation value, an assist operation value, an operator correction value, and an assist correction value, The attitude of the arm 5 is controlled, and the current physical quantity that is the actual coordinates of the tip of the bucket 6, the target physical quantity that is the target of the coordinates of the tip of the bucket 6, the physical quantity deviation that is the deviation of these, the operator operation value, It is preferable to control the attitude of the bucket 6 using the assist operation value, the operator correction value, and the assist correction value.

 (B)第2実施形態では、作業装置の姿勢に関連する物理量がシリンダ長さであり、アームシリンダ8のシリンダ長さを用いてアーム5の姿勢が制御され、かつ、バケットシリンダ9のシリンダ長さを用いてバケット6の姿勢が制御されるが、第2実施形態は、このような具体例に限られない。例えば、ブームシリンダ7のシリンダ長さ、アームシリンダ8のシリンダ長さ、及びバケットシリンダ9のシリンダ長さの少なくとも一つを用いて作業装置の姿勢が制御されてもよい。 (B) In the second embodiment, the physical quantity related to the attitude of the working device is the cylinder length, the cylinder length of the arm cylinder 8 is used to control the attitude of the arm 5, and the cylinder length of the bucket cylinder 9 is Although the attitude of the bucket 6 is controlled using the height, the second embodiment is not limited to such a specific example. For example, at least one of the cylinder length of the boom cylinder 7, the cylinder length of the arm cylinder 8, and the cylinder length of the bucket cylinder 9 may be used to control the posture of the working device.

 (C)第3実施形態では、作業装置の姿勢に関連する物理量がバケット6の先端の高さであり、バケット6の先端の高さを用いて作業装置の姿勢が制御されるが、このような具体例に限られない。例えば、ブーム4における特定部位(例えばブーム4の先端)の高さ、アーム5における特定部位(例えばアーム5の先端)の高さ、及びバケット6における特定部位(例えばバケット6の先端)の高さの少なくとも一つを用いて作業装置の姿勢が制御されてもよい。 (C) In the third embodiment, the physical quantity related to the posture of the working device is the height of the tip of the bucket 6, and the height of the tip of the bucket 6 is used to control the posture of the working device. is not limited to specific examples. For example, the height of a specific portion of the boom 4 (for example, the tip of the boom 4), the height of a specific portion of the arm 5 (for example, the tip of the arm 5), and the height of a specific portion of the bucket 6 (for example, the tip of the bucket 6) The attitude of the working device may be controlled using at least one of

 (D)作業装置の姿勢に関連する物理量は、例えば、ブーム角度θ1、アーム角度θ2、バケット角度θ3、及び上部旋回体2の傾斜角度の少なくとも一つを含んでいてもよい。 (D) The physical quantity related to the posture of the work device may include at least one of boom angle θ1, arm angle θ2, bucket angle θ3, and inclination angle of upper swing body 2, for example.

 (E)建設機械システムについて
 本開示に係る駆動装置は、建設機械システムにも適用することができる。当該建設機械システムは、前記建設機械100と、当該建設機械100に対して離れた位置に配置された操作装置61~64である遠隔操作装置61~64と、を備える。建設機械100は、コントローラ50の一部又は全部を含んでいてもよく、コントローラ50の一部又は全部は、遠隔地に配置されていてもよい。建設機械100は、遠隔操作装置61~64に与えられるオペレータによる操作に基づいて動作するように構成される。遠隔操作装置61~64から出力されるオペレータ操作値(Lo)は、無線通信又は有線通信によって建設機械100に送信される。また、建設機械100が作業を行う作業現場の像は、図略のカメラにより撮像され、撮像されたデータは、無線通信又は有線通信によって遠隔地に送信され、遠隔地に配置された表示装置は、送信されたデータを用いて作業現場の映像をリアルタイムで表示する。オペレータは、遠隔地において表示装置を見ながら遠隔操作装置61~64を操作する。このように遠隔地において遠隔操作装置61~64を操作する場合には、建設機械100(実機)に搭乗して操作装置を操作する場合に比べて、オペレータは作業現場の遠近感などの作業現場の状況を把握し難くなる。従って、このような遠隔操作のためのシステムに本開示に係る前記駆動装置が適用されることで、作業装置を所定の姿勢に調整する作業において前記駆動装置のアシストによるオペレータの負担軽減効果がより顕著になる。
(E) Construction machine system The driving device according to the present disclosure can also be applied to construction machine systems. The construction machine system includes the construction machine 100 and remote controllers 61 to 64 which are controllers 61 to 64 arranged at positions separated from the construction machine 100 . The construction machine 100 may include part or all of the controller 50, and part or all of the controller 50 may be remotely located. Construction machine 100 is configured to operate based on operator's operations given to remote control devices 61-64. Operator operation values (Lo) output from the remote control devices 61 to 64 are transmitted to the construction machine 100 by wireless communication or wired communication. An image of the work site where the construction machine 100 is working is captured by a camera (not shown), and the captured data is transmitted to a remote location by wireless or wired communication. , and displays images of the work site in real time using the transmitted data. An operator operates the remote controllers 61 to 64 while looking at the display device at a remote location. When operating the remote control devices 61 to 64 at a remote location in this way, compared to the case where the operator rides on the construction machine 100 (actual machine) and operates the operating device, the operator can feel the perspective of the work site. It becomes difficult to grasp the situation of Therefore, by applying the drive device according to the present disclosure to such a system for remote control, the effect of reducing the burden on the operator due to the assistance of the drive device in the work of adjusting the work device to a predetermined posture is further enhanced. become prominent.

 (F)操作装置について
 前記操作装置61~64のそれぞれがリモコン弁を備えた操作装置により構成されている場合、建設機械100は、操作装置61~64のそれぞれの操作レバーに与えられる操作の大きさであるレバー操作量に応じて前記リモコン弁から出力されるパイロット油の圧力を検出する図略の複数のパイロット圧センサを備える。複数のパイロット圧センサのそれぞれは、検出したパイロット油の圧力に対応する信号である操作値を、オペレータ操作値としてコントローラ50に入力する。また、各リモコン弁とそれに対応する制御弁との間には電磁比例弁が配置され、当該電磁比例弁は、コントローラ50からの制御指令に基づいてパイロット油の圧力を減圧し、減圧されたパイロット圧を対応する制御弁のパイロットポートに供給する。レバー操作量に応じて前記リモコン弁から出力されるパイロット油の圧力よりも大きな圧力を制御弁のパイロットポートに対して供給する場合には、コントローラ50は、前記電磁比例弁とは異なる第2電磁比例弁の2次圧が図略のシャトル弁において高位選択されることで制御弁のパイロットポートに供給されるように第2電磁比例弁を制御してもよい。
(F) Operation Device When each of the operation devices 61 to 64 is configured by an operation device having a remote control valve, the construction machine 100 can be operated by the magnitude of the operation given to the operation lever of each of the operation devices 61 to 64. A plurality of pilot pressure sensors (not shown) are provided to detect the pressure of the pilot oil output from the remote control valve according to the lever operation amount. Each of the plurality of pilot pressure sensors inputs an operation value, which is a signal corresponding to the detected pilot oil pressure, to the controller 50 as an operator operation value. Further, an electromagnetic proportional valve is arranged between each remote control valve and the corresponding control valve, and the electromagnetic proportional valve reduces the pressure of the pilot oil based on a control command from the controller 50, Supply pressure to the pilot port of the corresponding control valve. When a pressure greater than the pressure of the pilot oil output from the remote control valve is supplied to the pilot port of the control valve in accordance with the lever operation amount, the controller 50 controls the second electromagnetic valve different from the electromagnetic proportional valve. The second electromagnetic proportional valve may be controlled such that the secondary pressure of the proportional valve is selected at a high level by a shuttle valve (not shown) to be supplied to the pilot port of the control valve.

 (G)入力装置について
 前記駆動装置は、アシスト率(r)を補正するためのオペレータによる入力を受ける入力装置90(図2参照)をさらに備え、コントローラ50は、入力装置90に対するオペレータによる入力に基づいてアシスト率(r)を補正するように構成されていてもよい。この構成では、オペレータがアシスト率(r)を補正できるので、オペレータの意思の介入の度合いをオペレータの好みに応じて調整することができる。
(G) Input Device The driving device further includes an input device 90 (see FIG. 2) for receiving operator input for correcting the assist rate (r). It may be configured to correct the assist rate (r) based on. In this configuration, the operator can correct the assist rate (r), so that the degree of intervention of the operator's will can be adjusted according to the operator's preference.

 具体的には、例えば、オペレータは、入力装置90にアシスト率(r)を補正するための入力値(r’)を入力する。コントローラ50のオペレータ操作値補正部57は、例えば式「Lo×(1-min(r,r’))」を用いてオペレータ補正値(Lo’)を演算し、アシスト操作値補正部58は、例えば式「La×min(r,r’)」を用いて、アシスト補正値(La’)を演算してもよい。そして、動作指令部51は、オペレータ補正値(Lo’)とアシスト補正値(La’)とを足した合計値を、最終的な操作値である制御指令Y(Y=Lo×(1-min(r,r’))+La×min(r,r’))として出力してもよい。なお、上記式の「min(r,r’)」は、アシスト率(r)と入力値(r’)のうち、小さい方が演算に採用されることを意味する。 Specifically, for example, the operator inputs an input value (r') to the input device 90 for correcting the assist rate (r). The operator operation value correction unit 57 of the controller 50 calculates the operator correction value (Lo′) using, for example, the formula “Lo×(1−min(r,r′))”, and the assist operation value correction unit 58 For example, the assist correction value (La') may be calculated using the formula "La×min(r, r')". Then, the operation command unit 51 calculates the total value obtained by adding the operator correction value (Lo') and the assist correction value (La') to the control command Y (Y=Lo×(1−min (r, r′))+La×min(r, r′)). Note that "min (r, r')" in the above expression means that the smaller one of the assist rate (r) and the input value (r') is adopted for calculation.

 また、コントローラ50のオペレータ操作値補正部57は、例えば式「Lo×(1-r)×(1-r’)」を用いてオペレータ補正値(Lo’)を演算し、アシスト操作値補正部58は、例えば式「La×r×r’」を用いて、アシスト補正値(La’)を演算してもよい。そして、動作指令部51は、オペレータ補正値(Lo’)とアシスト補正値(La’)とを足した合計値を、最終的な操作値である制御指令Y(Y=Lo×(1-r)×(1-r’)+La×r×r’)として出力してもよい。 Further, the operator operation value correction unit 57 of the controller 50 calculates the operator correction value (Lo′) using, for example, the formula “Lo×(1−r)×(1−r′)”, and the assist operation value correction unit 58 may calculate the assist correction value (La') using, for example, the formula "La×r×r'". Then, the operation command unit 51 calculates the total value obtained by adding the operator correction value (Lo') and the assist correction value (La') to the control command Y (Y=Lo×(1−r )×(1−r′)+La×r×r′).

 (H)報知装置について
 前記駆動装置は、図2に示すようにコントローラ50による制御の状況をオペレータに知らせるための報知装置70(教示装置の一例)をさらに備え、コントローラ50は、アシスト率(r)に応じて報知装置70からの出力が変化するように報知装置の動作を制御するように構成されていてもよい。報知装置70は、例えば音、映像、振動(例えば操作レバーの振動)などの出力を行う。この構成では、オペレータは、作業装置の姿勢を所望の姿勢に調整するための作業を、アシスト率(r)に基づいたコントローラ50による制御の状況をおおまかに把握しながら行うことができる。これにより、オペレータはコントローラ50によるアシスト制御が行われていることを認識できるので、操作時におけるオペレータの安心感が向上する。この場合、コントローラ50は、アシスト率(r)の大きさに応じて報知装置70からの出力が変化するように報知装置の動作を制御するように構成されているのが好ましい。これにより、オペレータは、作業装置の姿勢を所望の姿勢に調整するための作業を、アシスト率(r)に基づいたコントローラ50による制御の状況をより正確に把握しながら行うことができる。
(H) Notification Device The driving device further includes a notification device 70 (an example of a teaching device) for informing the operator of the control status by the controller 50 as shown in FIG. ), the operation of the notification device 70 may be controlled so that the output from the notification device 70 changes according to the condition. The notification device 70 outputs, for example, sound, image, vibration (for example, vibration of an operation lever). With this configuration, the operator can perform work for adjusting the posture of the working device to a desired posture while roughly grasping the state of control by the controller 50 based on the assist rate (r). As a result, the operator can recognize that the assist control is being performed by the controller 50, thereby improving the operator's sense of security during the operation. In this case, the controller 50 is preferably configured to control the operation of the notification device so that the output from the notification device 70 changes according to the magnitude of the assist rate (r). As a result, the operator can perform work for adjusting the posture of the working device to a desired posture while more accurately grasping the state of control by the controller 50 based on the assist rate (r).

 また、コントローラ50は、前記物理量偏差(e)に応じて報知装置70からの出力が変化するように報知装置70の動作を制御するように構成されていてもよい。この構成では、オペレータは、作業装置の姿勢を所望の姿勢に調整するための作業を、物理量偏差(e)に基づいたコントローラによる制御の状況をおおまかに把握しながら行うことができる。これにより、オペレータは作業装置が所望の姿勢(目標の姿勢)に到達するまでの距離感をつかみながら操作装置を操作できるので、操作時におけるオペレータの安心感が向上する。特に、オペレータが非熟練者である場合、非熟練者の距離感をつかむ能力の向上が期待できる。 Further, the controller 50 may be configured to control the operation of the notification device 70 so that the output from the notification device 70 changes according to the physical quantity deviation (e). With this configuration, the operator can perform the work for adjusting the attitude of the working device to a desired attitude while roughly grasping the state of control by the controller based on the physical quantity deviation (e). As a result, the operator can operate the operation device while grasping the distance until the work device reaches a desired posture (target posture), so that the operator's sense of security during operation is improved. In particular, when the operator is an unskilled operator, an improvement in the ability of the unskilled operator to grasp the sense of distance can be expected.

 また、この場合、コントローラ50は、前記物理量偏差(例えば座標偏差、高さ偏差、距離偏差、長さ偏差、角度偏差など)の大きさに応じて報知装置70からの出力が変化するように報知装置の動作を制御するように構成されているのが好ましい。これにより、オペレータは、作業装置の姿勢を所望の姿勢に調整するための作業を、前記物理量偏差(e)、すなわち前記距離感をより正確に把握しながら行うことができる。 In this case, the controller 50 notifies that the output from the notification device 70 changes according to the magnitude of the physical quantity deviation (eg, coordinate deviation, height deviation, distance deviation, length deviation, angle deviation, etc.). Preferably, it is arranged to control the operation of the device. Thereby, the operator can perform the work for adjusting the posture of the working device to a desired posture while more accurately grasping the physical quantity deviation (e), that is, the sense of distance.

 図9に示す具体例では、コントローラ50は、角度偏差に応じて報知装置70としてのアラーム音発報装置からのアラーム音が変化するように報知装置70の動作を制御する。コントローラ50は、偏差(e)に応じて音の種類を変化させるように構成されていてもよい。これにより、オペレータは、作業装置が所望の姿勢(目標の姿勢)に到達するまでの距離を音の種類の変化を通じて認識することができるので、安心感が向上する。また、コントローラ50は、アシスト率(r)に応じて音の種類を変化させるように構成されていてもよい。これにより、オペレータはコントローラ50によるアシスト制御が行われていることを認識できるので、操作時におけるオペレータの安心感が向上する。 In the specific example shown in FIG. 9, the controller 50 controls the operation of the notification device 70 so that the alarm sound from the alarm sound notification device as the notification device 70 changes according to the angular deviation. The controller 50 may be configured to change the type of sound depending on the deviation (e). As a result, the operator can recognize the distance until the working device reaches a desired posture (target posture) through changes in the type of sound, thereby improving the sense of security. Also, the controller 50 may be configured to change the type of sound according to the assist rate (r). As a result, the operator can recognize that the assist control is being performed by the controller 50, thereby improving the operator's sense of security during the operation.

 (I)目標物理量について
 コントローラ50は、複数の目標物理量を設定し、建設機械100により行われている作業を判定し、前記複数の目標物理量のうち、判定された作業に応じた目標物理量を選択するように構成されていてもよい。この構成では、例えば複数の異なる作業が連続して行われるような場合に、オペレータは作業ごとに目標物理量を選択する必要がないので、オペレータの負担が軽減される。具体的を挙げると次の通りである。
(I) Target Physical Quantities The controller 50 sets a plurality of target physical quantities, determines the work being performed by the construction machine 100, and selects the target physical quantity according to the determined work from among the plurality of target physical quantities. may be configured to With this configuration, for example, when a plurality of different tasks are performed in succession, the operator does not need to select the target physical quantity for each task, thus reducing the burden on the operator. Specific examples are as follows.

 作業現場において、掘削作業、土砂保持旋回作業、排土作業、及び戻り旋回作業を含む一連の作業である土砂積込作業が繰り返し行われる場合において、排土作業及び戻り旋回作業は、上述した対象作業に設定されており、掘削作業及び土砂保持旋回作業は、非対象作業に設定されていてもよい。この場合、前記一連の作業が開始される前に、コントローラ50は、排土作業のための目標物理量と、戻り旋回作業のための目標物理量と、を設定して記憶する。そして、前記一連の作業において、コントローラ50の作業判定部59は、建設機械100により行われている作業を判定し、動作指令部51は、排土作業又は戻り旋回作業が行われている場合には、オペレータ補正値(Lo’)とアシスト補正値(La’)とを足した合計値を、最終的な操作値である制御指令Y(Y=Lo×(1-r)+La×r)として出力する。一方、動作指令部51は、排土作業及び戻り旋回作業の何れもが行われていない場合には、複数の操作装置61~64の少なくとも一つから入力される操作に対応するオペレータ操作値(Lo)を、最終的な操作値である制御指令として出力する。 In the case where earth and sand loading work, which is a series of operations including excavation work, earth holding and turning work, earth removal work, and return turning work, is repeatedly performed at a work site, the earth removal work and return turning work are subject to the above-mentioned targets. work, and the excavation work and the earth-and-sand holding turning work may be set as non-target work. In this case, before the series of work is started, the controller 50 sets and stores the target physical quantity for the dumping work and the target physical quantity for the return turning work. In the series of work described above, the work determining unit 59 of the controller 50 determines the work being performed by the construction machine 100, and the operation command unit 51 determines whether the earth discharging work or the return turning work is being performed. is the total value obtained by adding the operator correction value (Lo') and the assist correction value (La') as the control command Y (Y=Lo×(1−r)+La×r), which is the final operation value. Output. On the other hand, when neither the earth discharging work nor the return turning work is being performed, the operation command unit 51 sets the operator operation value ( Lo) is output as a control command that is the final manipulated value.

 (J)前記実施形態では、コントローラ50は、アシスト操作値(La)にアシスト率(r)をかけることによりアシスト補正値(La’)を演算し、オペレータ操作値(Lo)に、予め設定された設定値(例えば「1」)からアシスト率(r)を引いた値をかけることによりオペレータ補正値(Lo’)を演算するが、このような形態に限られない。コントローラ50は、アシスト率を用いずにアシスト補正値(La’)及びオペレータ補正値(Lo’)を演算してもよい。すなわち、コントローラ50は、物理量偏差(e)が大きいときに比べて物理量偏差(e)が小さいときの方がオペレータ補正値(Lo’)が小さな値になるように予め設定されたマップに基づいて、オペレータによる操作に対応するオペレータ操作値(Lo)をオペレータ補正値(Lo’)に補正してもよい。また、コントローラ50は、物理量偏差(e)が大きいときに比べて物理量偏差(e)が小さいときの方がアシスト補正値(La’)が大きな値になるように予め設定されたマップに基づいて、アシスト操作値(La)をアシスト補正値(La’)に補正してもよい。 (J) In the above embodiment, the controller 50 calculates the assist correction value (La') by multiplying the assist operation value (La) by the assist rate (r), and the operator operation value (Lo) is set in advance. The operator correction value (Lo') is calculated by multiplying the value obtained by subtracting the assist rate (r) from the set value (for example, "1"), but the configuration is not limited to this. The controller 50 may calculate the assist correction value (La') and the operator correction value (Lo') without using the assist rate. That is, the controller 50 operates based on a preset map so that the operator correction value (Lo') is smaller when the physical quantity deviation (e) is smaller than when the physical quantity deviation (e) is large. , the operator operation value (Lo) corresponding to the operator's operation may be corrected to the operator correction value (Lo'). In addition, the controller 50 is based on a preset map so that the assist correction value (La') is larger when the physical quantity deviation (e) is smaller than when the physical quantity deviation (e) is large. , the assist operation value (La) may be corrected to the assist correction value (La').

 (K)映像によるアシストについて
 上述した各実施形態における建設機械100の駆動装置は、表示装置(教示装置の一例)をさらに備え、コントローラ50は、前記表示装置において、前記複数の作業装置の少なくとも一つの作業装置の実際の姿勢に関する映像である実姿勢映像と、前記少なくとも一つの作業装置の目標の姿勢に関する映像である目標姿勢映像と、を表示させるように構成されていてもよい。表示装置は、例えば、上部旋回体2のキャビン内においてオペレータが見ることが可能な位置に配置されたディスプレイであってもよく、オペレータが装着可能なヘッドマウントディスプレイであってもよい。また、表示装置は、例えば、キャビンの前面ガラスに映像を表示することが可能な装置であってもよい。また、本開示に係る駆動装置が上述したような建設機械システムに適用される場合には、表示装置は、遠隔地に配置されていてもよい。すなわち、表示装置は、建設機械100に対して離れた位置に配置された遠隔操作装置61~64を操作するオペレータが見ることが可能な装置であってもよい。
(K) Image Assistance The drive device for the construction machine 100 in each of the above-described embodiments further includes a display device (an example of a teaching device), and the controller 50 controls at least one of the plurality of work devices on the display device. It may be configured to display an actual attitude image, which is an image relating to the actual attitudes of one working device, and a desired attitude image, which is an image relating to a target orientation of the at least one working device. The display device may be, for example, a display arranged at a position that can be seen by the operator in the cabin of the upper swing structure 2, or a head-mounted display that can be worn by the operator. Also, the display device may be, for example, a device capable of displaying an image on the windshield of the cabin. Moreover, when the driving device according to the present disclosure is applied to the construction machine system as described above, the display device may be arranged at a remote location. In other words, the display device may be a device that can be seen by the operator who operates the remote control devices 61 to 64 located at a distance from the construction machine 100 .

 図10は、表示装置92の一例を示す図である。図10に示す具体例では、コントローラ50は、複数の作業装置を含む建設機械100全体が側面視されたような映像を表示する。図10において実線で描かれた映像は、その時点における下部走行体1、上部旋回体2、ブーム4、アーム5及びバケット6のそれぞれの実際の姿勢に関する映像である実姿勢映像を含む。実姿勢映像は、例えばカメラにより撮像された少なくとも一つの作業装置の実際の映像であってもよく、姿勢情報取得部からコントローラ50に入力された前記姿勢情報に基づいてコントローラ50が作成した映像であってもよい。 FIG. 10 is a diagram showing an example of the display device 92. FIG. In the specific example shown in FIG. 10, the controller 50 displays a side view image of the entire construction machine 100 including a plurality of work devices. The images drawn with solid lines in FIG. 10 include actual attitude images, which are images of the actual attitudes of the lower traveling body 1, the upper rotating body 2, the boom 4, the arm 5, and the bucket 6 at that time. The actual posture video may be, for example, an actual video of at least one work device captured by a camera, and is a video created by the controller 50 based on the posture information input to the controller 50 from the posture information acquisition unit. There may be.

 図10において破線で描かれた映像は、ブーム4の目標の姿勢に関するブーム目標姿勢映像と、アーム5の目標の姿勢に関するアーム目標姿勢映像と、バケット6の目標の姿勢に関するバケット目標姿勢映像と、を含む。ブーム目標姿勢映像は、目標物理量設定部52により設定されたブーム4の姿勢に関連する目標物理量(ブーム目標物理量)に対応する映像である。アーム目標姿勢映像は、目標物理量設定部52により設定されたアーム5の姿勢に関連する目標物理量(アーム目標物理量)に対応する映像である。バケット目標姿勢映像は、目標物理量設定部52により設定されたバケット6の姿勢に関連する目標物理量(バケット目標物理量)に対応する映像である。 10 are a boom target attitude image about the target attitude of the boom 4, an arm target attitude image about the target attitude of the arm 5, a bucket target attitude image about the target attitude of the bucket 6, including. The boom target attitude image is an image corresponding to the target physical quantity (boom target physical quantity) related to the attitude of the boom 4 set by the target physical quantity setting unit 52 . The arm target orientation image is an image corresponding to the target physical quantity (arm target physical quantity) related to the orientation of the arm 5 set by the target physical quantity setting unit 52 . The bucket target orientation image is an image corresponding to the target physical quantity (bucket target physical quantity) related to the orientation of the bucket 6 set by the target physical quantity setting unit 52 .

 コントローラ50は、表示装置92において、ブーム4、アーム5及びバケット6の実姿勢映像にブーム目標姿勢映像、アーム目標姿勢映像及びバケット目標姿勢映像を重ねて表示させる。これにより、オペレータは、ブーム4、アーム5及びバケット6の目標の姿勢とこれらの実際の姿勢とのギャップを、表示装置92に表示される映像を通じて認識することができる。特にオペレータが非熟練者である場合には、当該非熟練者が表示装置92に表示される映像を通じて前記ギャップを認識しながら操作装置を操作することで操作技術の効果的な向上が見込まれる。 The controller 50 causes the display device 92 to display the boom target posture video, arm target posture video, and bucket target posture video superimposed on the actual posture video of the boom 4, arm 5, and bucket 6. Thereby, the operator can recognize the gap between the target attitudes of the boom 4 , the arm 5 and the bucket 6 and their actual attitudes through the image displayed on the display device 92 . In particular, when the operator is an unskilled person, the unskilled person can effectively improve the operation technique by operating the operation device while recognizing the gap through the image displayed on the display device 92 .

 図11は、表示装置92の他の例を示す図である。図11に示す具体例では、コントローラ50は、キャビンの運転席に座るオペレータからの視点を想定した映像を表示する。図11において実線で描かれた左の映像は、その時点におけるアーム5及びバケット6のそれぞれの実際の姿勢に関する映像(実姿勢映像)である。実姿勢映像は、例えばカメラにより撮像された少なくとも一つの作業装置の実際の映像であってもよく、前記姿勢情報に基づいてコントローラ50が作成した映像であってもよい。また、表示装置がキャビンの前面ガラスに映像を表示することが可能な装置である場合には、実姿勢映像は、前記姿勢情報に基づいてコントローラ50が作成した映像であってもよく、前面ガラスを通して見えるアーム5及びバケット6の実際の像であってもよい。 FIG. 11 is a diagram showing another example of the display device 92. FIG. In the specific example shown in FIG. 11, the controller 50 displays an image assuming the viewpoint of an operator sitting in the driver's seat of the cabin. The image on the left drawn with a solid line in FIG. 11 is an image (actual attitude image) of the actual attitudes of the arm 5 and the bucket 6 at that time. The actual posture video may be, for example, an actual video of at least one work device captured by a camera, or may be a video created by the controller 50 based on the posture information. Further, when the display device is a device capable of displaying an image on the windshield of the cabin, the actual attitude image may be an image created by the controller 50 based on the attitude information. It may also be a real image of the arm 5 and bucket 6 seen through.

 図11において破線で描かれた右の映像は、バケット6の目標の姿勢に関するバケット目標姿勢映像である。バケット目標姿勢映像は、目標物理量設定部52により設定されたバケット6の姿勢に関連する目標物理量に対応する映像である。図11において二点鎖線で描かれた中央の映像は、バケット6の実際の姿勢とバケット6の目標の姿勢との間の中間姿勢に関する中間姿勢映像(バケット中間姿勢映像)である。コントローラ50は、表示装置92において、アーム5及びバケット6の実姿勢映像と、バケット目標姿勢映像と、バケット中間姿勢映像と、を表示させる。これにより、オペレータは、バケット6の目標の姿勢とバケット6の実際の姿勢とのギャップを、表示装置92に表示される映像を通じて認識することができる。しかも、オペレータは、バケット6が実際の姿勢から目標の姿勢に到達するまでにどのような中間姿勢を経るのかについて、表示装置92に表示されるバケット中間姿勢映像を通じて認識することができる。 The image on the right drawn with a broken line in FIG. 11 is a bucket target attitude image related to the target attitude of bucket 6. The bucket target orientation image is an image corresponding to the target physical quantity related to the orientation of the bucket 6 set by the target physical quantity setting unit 52 . 11 is an intermediate attitude image (bucket intermediate attitude image) relating to an intermediate attitude between the actual attitude of the bucket 6 and the target attitude of the bucket 6. In FIG. The controller 50 causes the display device 92 to display the actual attitude image of the arm 5 and the bucket 6, the bucket target attitude image, and the bucket intermediate attitude image. Thereby, the operator can recognize the gap between the target attitude of the bucket 6 and the actual attitude of the bucket 6 through the image displayed on the display device 92 . Moreover, the operator can recognize through the bucket intermediate posture image displayed on the display device 92 what intermediate postures the bucket 6 passes through from the actual posture to the target posture.

 また、コントローラ50は、表示装置92において、バケット6の実姿勢映像、バケット目標姿勢映像、及びバケット中間姿勢映像に加え、さらに、バケット6の周辺に存在する物の映像を表示させてもよい。この場合には、オペレータは、バケット6が実際の姿勢から中間姿勢を経て目標の姿勢に到達するまでの間に、バケット6が当該バケット6の周辺に存在する物に衝突するかどうかについて判断することができる。 Further, the controller 50 may cause the display device 92 to display an image of an object existing around the bucket 6 in addition to the image of the actual posture of the bucket 6 , the target bucket posture image, and the intermediate bucket posture image. In this case, the operator determines whether or not the bucket 6 collides with an object existing around the bucket 6 while the bucket 6 reaches the target posture from the actual posture through the intermediate posture. be able to.

 コントローラ50は、例えば、バケット6の動作速度に関連する情報に基づいて前記中間姿勢を演算してもよい。これにより、コントローラ50は、前記中間姿勢を比較的正確に予測することができる。具体的には、バケット6の動作速度は、バケット6が動作する方向とバケット6が動作するスピードとを含む。コントローラ50は、その時点におけるバケット6の動作速度に関連する情報と、例えば予め設定された設定時間又はオペレータの入力に基づいて設定された設定時間と、を用いて、その時点から当該設定時間経過後におけるバケット6の姿勢を前記中間姿勢として演算してもよい。ただし、コントローラ50による前記中間姿勢の演算は、上記の具体例に限られない。例えば、コントローラ50は、バケット6の実際の姿勢と、バケット6の目標の姿勢と、の間の中央の地点における姿勢を、例えば線形補間などの手法を用いて演算してもよい。 The controller 50 may, for example, calculate the intermediate posture based on information related to the operating speed of the bucket 6. This allows the controller 50 to predict the intermediate posture relatively accurately. Specifically, the movement speed of bucket 6 includes the direction in which bucket 6 moves and the speed at which bucket 6 moves. The controller 50 uses information related to the operating speed of the bucket 6 at that point in time and, for example, a preset set time or a set time set based on an operator's input, to determine the lapse of the set time from that point. The subsequent attitude of the bucket 6 may be calculated as the intermediate attitude. However, the calculation of the intermediate posture by the controller 50 is not limited to the above specific example. For example, the controller 50 may compute the attitude at the midpoint between the actual attitude of the bucket 6 and the target attitude of the bucket 6 using a technique such as linear interpolation.

 バケット6の動作速度に関連する情報は、複数の操作装置61~64のうちの少なくとも一つの操作装置に与えられる操作に対応するオペレータ操作値であってもよい。また、バケット6の動作速度に関連する情報は、前記オペレータ補正値(Lo’)と前記アシスト補正値(La’)とを足した合計値であってもよい。また、バケット6の動作速度に関連する情報は、図略の速度センサにより実際に検出されるバケット6の動作速度であってもよい。 The information related to the operating speed of the bucket 6 may be an operator operation value corresponding to the operation given to at least one operating device among the plurality of operating devices 61-64. Further, the information related to the operating speed of the bucket 6 may be the sum of the operator correction value (Lo') and the assist correction value (La'). Also, the information related to the operating speed of the bucket 6 may be the operating speed of the bucket 6 actually detected by a speed sensor (not shown).

 (L)アシスト制御の解除について
 コントローラ50は、前記合計値を用いて前記作業装置の前記姿勢を制御するアシスト制御を行っているときに、予め定められた条件である非アシスト条件が満たされた場合には、前記アシスト制御から、操作装置に与えられる操作に基づく制御(通常制御)に切り替えるように構成されていてもよい。この変形例では、アシスト制御が行われているときに前記非アシスト条件が満たされた場合、コントローラ50は、前記アシスト制御から前記通常制御に切り替える。これにより、コントローラ50によるアシストが解除され、前記作業装置は、オペレータが操作装置に与える前記操作に対応する動作を行う。このことは、アシスト制御がそのまま継続されることが好ましくない状況が生じた場合にアシストを解除して作業装置をオペレータの意思通りに適切に動作させることを可能にする。
(L) Cancellation of Assist Control When the controller 50 performs the assist control for controlling the attitude of the working device using the total value, the non-assist condition, which is a predetermined condition, is satisfied. In some cases, the assist control may be switched to control (normal control) based on the operation given to the operating device. In this modification, if the non-assist condition is satisfied while the assist control is being performed, the controller 50 switches from the assist control to the normal control. As a result, the assist by the controller 50 is released, and the working device performs the operation corresponding to the operation given to the operating device by the operator. This makes it possible to cancel the assist and operate the working device appropriately as the operator intends when a situation arises in which it is not desirable to continue the assist control.

 アシスト制御がそのまま継続されることが好ましくない状況としては、例えば、作業装置が障害物を避ける必要がある状況、排土作業が行われているときに作業装置の姿勢が目標の姿勢に到達する前にバケットからの排土が完了したという状況、などを挙げることができる。 Situations in which it is not desirable to continue the assist control as it is include, for example, situations in which the working device needs to avoid obstacles, and when the posture of the working device reaches the target posture while earth-discharging work is being performed. For example, a situation where the bucket has been completely unloaded before.

 前記非アシスト条件は、前記アシスト制御において前記操作装置に与えられる前記操作から、予め設定された別の操作に切り替わることを含んでいてもよい。上記のような状況が生じた場合、オペレータは、アシスト制御において操作装置に与える操作から別の操作に切り替えることが多い。具体的には、例えば、作業装置が障害物を避ける必要がある状況が生じると、オペレータは、それまで作業装置に与えていたレバー操作の方向とは別の方向(例えば逆方向)に操作を切り替えて作業装置と障害物との接触を避けようとする。このような状況下でコントローラ50によるアシストが解除されることで、作業装置と障害物との接触がより効果的に回避される。また、排土作業中にバケットからの排土が完了したという状況が生じると、オペレータは、次の作業(例えば戻り旋回作業)を行うために、それまで作業装置に与えていたアーム押し操作とは逆方向のアーム引き操作に切り替える。このような状況下でコントローラ50によるアシストが解除されることで、複数の作業の連続性がより効果的に担保される。上記のように前記アシスト制御において前記操作装置に与えられる前記操作から予め設定された別の操作に切り替わることは、アシスト制御がそのまま継続されることが好ましくない状況が生じたことを判定する指標となる。 The non-assist condition may include switching from the operation given to the operating device in the assist control to another preset operation. When the situation as described above occurs, the operator often switches from the operation given to the operating device to another operation in the assist control. Specifically, for example, when a situation arises in which the work device needs to avoid an obstacle, the operator operates the work device in a different direction (for example, in the opposite direction) from the direction of lever operation that has been given to the work device so far. Try to avoid contact between work equipment and obstacles by switching. By canceling the assistance by the controller 50 under such circumstances, contact between the work device and the obstacle can be more effectively avoided. In addition, when a situation arises in which the earth has been unloaded from the bucket during the earth unloading work, the operator must perform the arm pushing operation that has been given to the work device until then in order to perform the next work (for example, return turning work). switches to the arm pulling operation in the opposite direction. By canceling the assist by the controller 50 in such a situation, the continuity of a plurality of tasks is more effectively secured. As described above, switching from the operation given to the operating device in the assist control to another preset operation is an indicator for determining that a situation where it is not desirable to continue the assist control as it is has occurred. Become.

 ただし、前記非アシスト条件は、上記の具体例に限られず、例えば、前記物理量偏差が減少する状態から前記物理量偏差が増加する状態に切り替わり、かつ、切り替わってからの経過時間が予め設定された閾値である時間閾値を超えたことを含んでいてもよい。 However, the non-assist condition is not limited to the above specific example. exceeding a time threshold of .

 以上説明したように、本開示によれば、オペレータの意思を介入させながら、作業装置の姿勢を所望の姿勢に調整するためのオペレータによる操作をアシストすることができる建設機械の駆動装置、これを備えた建設機械及び建設機械システムが提供される。 As described above, according to the present disclosure, there is provided a driving device for a construction machine that can assist the operator's operation for adjusting the posture of the working device to a desired posture while allowing the operator's intention to intervene. A construction machine and construction machine system are provided.

 提供される建設機械の駆動装置は、機体に対して作業装置を動かすためのオペレータによる操作が与えられる操作装置と、コントローラと、を備え、前記コントローラは、前記作業装置の姿勢に関連する物理量の目標である目標物理量を設定し、前記作業装置の実際の姿勢に関連する物理量である現在物理量を演算し、前記目標物理量と前記現在物理量との偏差である物理量偏差を演算し、前記オペレータの前記操作をアシストするためのアシスト操作値を演算し、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がオペレータ補正値が小さな値になるように、前記操作に対応するオペレータ操作値を前記オペレータ補正値に補正し、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がアシスト補正値が大きな値になるように、前記アシスト操作値を前記アシスト補正値に補正し、前記オペレータ補正値と前記アシスト補正値とを足した合計値を用いて前記作業装置の前記姿勢を制御する。 The provided driving device for a construction machine includes an operation device that is operated by an operator to move the working device with respect to the machine body, and a controller, wherein the controller determines physical quantities related to the posture of the working device. A target physical quantity is set as a target, a current physical quantity is calculated as a physical quantity related to the actual attitude of the working device, a physical quantity deviation is calculated as a deviation between the target physical quantity and the current physical quantity, and the operator's calculating an assist operation value for assisting the operation, and calculating an operator operation value corresponding to the operation so that the operator correction value is smaller when the physical quantity deviation is smaller than when the physical quantity deviation is large; is corrected to the operator correction value, and the assist operation value is corrected to the assist correction value so that the assist correction value becomes a larger value when the physical quantity deviation is smaller than when the physical quantity deviation is large. and controlling the attitude of the working device by using the total value obtained by adding the operator correction value and the assist correction value.

 この建設機械のコントローラは、物理量偏差が大きいときに比べて物理量偏差が小さいときに小さな値になるように補正されたオペレータ補正値と物理量偏差が大きいときに比べて物理量偏差が小さいときに大きな値になるように補正されたアシスト補正値とを足した合計値を用いて作業装置の姿勢を制御する。従って、この建設機械のコントローラは、オペレータの意思を介入させながら、作業装置の姿勢を所望の姿勢に調整するためのオペレータによる操作をアシストすることができる。具体的には、物理量偏差が大きいときには、合計値のうちオペレータ操作値が寄与する割合を大きくすることができ、物理量偏差が小さいときには、合計値のうちアシスト操作値が寄与する割合を大きくすることができる。従って、物理量偏差が大きいときにはオペレータの意思を大きく介入させることができ、物理量偏差が小さいとき、すなわち、作業装置の姿勢が目標の姿勢に近づいて作業装置の姿勢を微調整するときには、オペレータの意思の介入を物理量偏差が大きいときに比べて小さくし、コントローラによるアシストによって作業装置の姿勢を目標の姿勢に容易に調整することができる。これにより、オペレータの意思の介入と作業装置の姿勢の容易な調整とを両立させることができる。 This construction machine controller has an operator correction value that is corrected so that it becomes a smaller value when the physical quantity deviation is smaller than when the physical quantity deviation is large, and a larger value when the physical quantity deviation is smaller than when the physical quantity deviation is large. The posture of the working device is controlled using the total value obtained by adding the assist correction value corrected so as to be Therefore, the controller of this construction machine can assist the operator's operation for adjusting the posture of the working device to a desired posture while allowing the operator's intention to intervene. Specifically, when the physical quantity deviation is large, the ratio of the operator operation value contributing to the total value can be increased, and when the physical quantity deviation is small, the ratio of the assist operation value contributing to the total value can be increased. can be done. Therefore, when the physical quantity deviation is large, the operator's intention can be greatly intervened. is smaller than when the physical quantity deviation is large, and the posture of the working device can be easily adjusted to the target posture with the assistance of the controller. As a result, it is possible to achieve both the intentional intervention of the operator and the easy adjustment of the posture of the working device.

 前記コントローラは、前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がアシスト率が大きな値になるように前記アシスト率を設定し、前記アシスト操作値に前記アシスト率をかけることにより前記アシスト補正値を演算し、前記オペレータ操作値に、予め設定された設定値から前記アシスト率を引いた値をかけることにより前記オペレータ補正値を演算することが好ましい。この構成では、物理量偏差が小さくなるにつれて、すなわち、作業装置の姿勢が目標の姿勢に近づくにつれて、オペレータ補正値を連続的に小さくするとともにアシスト補正値を連続的に大きくすることができる。このことは、作業装置の姿勢が目標の姿勢に近づく過程において、オペレータによる操作が主体となる状態からコントローラによるアシストが主体となる状態へスムーズに移行させることを可能にする。 The controller sets the assist rate so that the assist rate is larger when the physical quantity deviation is smaller than when the physical quantity deviation is large, and multiplies the assist operation value by the assist rate. It is preferable to calculate the operator correction value by calculating the assist correction value and multiplying the operator operation value by a value obtained by subtracting the assist rate from a preset setting value. With this configuration, the operator correction value can be continuously decreased and the assist correction value can be continuously increased as the physical quantity deviation becomes smaller, that is, as the posture of the working device approaches the target posture. This enables a smooth transition from a state in which the operation by the operator is the main subject to a state in which the controller mainly assists, in the process in which the posture of the working device approaches the target posture.

 前記駆動装置は、前記アシスト率を補正するための前記オペレータによる入力を受ける入力装置をさらに備え、前記コントローラは、前記オペレータによる前記入力に基づいて前記アシスト率を補正してもよい。この構成では、オペレータがアシスト率を補正できるので、オペレータの意思の介入の度合いをオペレータの好みに応じて調整することができる。 The driving device may further include an input device for receiving input by the operator for correcting the assist rate, and the controller may correct the assist rate based on the input by the operator. In this configuration, the operator can correct the assist rate, so the degree of intervention of the operator's intention can be adjusted according to the operator's preference.

 前記駆動装置は、前記コントローラによる制御の状況を前記オペレータに知らせるための報知装置をさらに備え、前記コントローラは、前記アシスト率に応じて前記報知装置からの出力が変化するように前記報知装置の動作を制御することが好ましい。この構成では、オペレータは、作業装置の姿勢を所望の姿勢に調整するための作業を、アシスト率に基づいたコントローラによる制御の状況をおおまかに把握しながら行うことができる。 The driving device further includes a notification device for informing the operator of the control status of the controller, and the controller operates the notification device so that the output from the notification device changes according to the assist rate. is preferably controlled. With this configuration, the operator can perform the work for adjusting the posture of the working device to a desired posture while roughly grasping the state of control by the controller based on the assist rate.

 前記駆動装置は、前記コントローラによる制御の状況を前記オペレータに知らせるための報知装置をさらに備え、前記コントローラは、前記物理量偏差に応じて前記報知装置からの出力が変化するように前記報知装置の動作を制御してもよい。この構成では、オペレータは、作業装置の姿勢を所望の姿勢に調整するための作業を、物理量偏差に基づいたコントローラによる制御の状況をおおまかに把握しながら行うことができる。 The driving device further includes a notification device for informing the operator of the control status of the controller, and the controller operates the notification device so that the output from the notification device changes according to the physical quantity deviation. may be controlled. With this configuration, the operator can perform the work for adjusting the posture of the working device to a desired posture while roughly grasping the state of control by the controller based on the physical quantity deviation.

 前記コントローラは、前記物理量偏差がゼロに近づくように前記物理量偏差に基づいて前記アシスト操作値を演算してもよい。この構成では、コントローラは、作業装置の姿勢を目標の姿勢に近づけるためのアシストを効果的に行うことができる。 The controller may calculate the assist operation value based on the physical quantity deviation so that the physical quantity deviation approaches zero. With this configuration, the controller can effectively assist in bringing the posture of the working device closer to the target posture.

 前記コントローラは、前記目標物理量を含む複数の目標物理量を設定し、前記建設機械により行われている作業を判定し、前記複数の目標物理量のうち、判定された作業に応じた目標物理量を選択してもよい。この構成では、コントローラが作業ごとに適切な目標物理量を選択することができる。従って、この構成では、例えば複数の異なる作業が連続して行われるような場合に、オペレータは作業ごとに目標物理量を選択する必要がないので、オペレータの負担が軽減される。 The controller sets a plurality of target physical quantities including the target physical quantity, determines the work being performed by the construction machine, and selects a target physical quantity according to the determined work from among the plurality of target physical quantities. may With this configuration, the controller can select an appropriate target physical quantity for each task. Therefore, in this configuration, for example, when a plurality of different works are performed in succession, the operator does not need to select the target physical quantity for each work, thus reducing the burden on the operator.

 前記コントローラは、当該コントローラによるアシストの対象として予め設定されている作業である対象作業が行われているか否かを判定し、前記対象作業が行われている場合、前記合計値を用いて前記作業装置の前記姿勢を制御し、前記対象作業が行われていない場合、前記オペレータ操作値を用いて前記作業装置の前記姿勢を制御することが好ましい。この構成では、コントローラは、対象作業が行われているか否かの判定結果に応じた制御を行うことができる。これにより、オペレータは、対象作業とそれ以外の作業を含む複数の一連の作業を円滑に行うことができる。 The controller determines whether or not a target work, which is a task preset to be assisted by the controller, is being performed, and if the target work is being performed, the total value is used to Preferably, the attitude of the device is controlled, and the attitude of the work device is controlled using the operator operation value when the target work is not being performed. With this configuration, the controller can perform control according to the determination result as to whether or not the target work is being performed. This allows the operator to smoothly perform a series of multiple operations including the target operation and other operations.

 前記作業装置は、バケットを含み、前記物理量偏差は、前記バケットの先端と施工面との距離に対応する値であってもよい。この構成では、オペレータは、例えば掘削作業を行う場合に、コントローラによるアシストを受けながら、バケットの先端を施工面の掘削開始位置である所望の位置に容易に配置することができる。 The work device may include a bucket, and the physical quantity deviation may be a value corresponding to the distance between the tip of the bucket and the work surface. With this configuration, the operator can easily place the tip of the bucket at a desired position, which is the excavation start position, on the construction surface while receiving assistance from the controller when performing excavation work, for example.

 前記駆動装置は、表示装置をさらに備え、前記コントローラは、前記表示装置において、前記作業装置の実際の姿勢に関する映像である実姿勢映像と、前記作業装置の目標の姿勢に関する映像である目標姿勢映像と、を表示させてもよい。これにより、オペレータは、作業装置の目標の姿勢と実際の姿勢とのギャップを、表示装置に表示される映像を通じて認識することができる。特にオペレータが非熟練者である場合には、当該非熟練者が表示装置に表示される映像を通じて前記ギャップを認識しながら操作装置を操作することで操作技術の効果的な向上が見込まれる。 The drive device further includes a display device, and the controller controls the display device to display an actual posture video image representing an actual posture of the work device and a desired posture video image representing a target posture of the work device. and may be displayed. Thereby, the operator can recognize the gap between the target attitude and the actual attitude of the work implement through the image displayed on the display device. In particular, when the operator is an unskilled person, it is expected that the unskilled person can effectively improve the operation technique by operating the operation device while recognizing the gap through the image displayed on the display device.

 前記コントローラは、前記表示装置において、前記実際の姿勢と前記目標の姿勢との間の中間姿勢に関する映像である中間姿勢映像をさらに表示させてもよい。これにより、オペレータは、作業装置が実際の姿勢から目標の姿勢に到達するまでにどのような中間姿勢を経るのかについて、表示装置に表示される映像を通じて認識することができる。 The controller may cause the display device to further display an intermediate posture image, which is an image relating to an intermediate posture between the actual posture and the target posture. Thus, the operator can recognize through the image displayed on the display device what intermediate postures the working device passes through from the actual posture to the target posture.

 前記コントローラは、前記作業装置の動作速度に関連する情報に基づいて前記中間姿勢を演算してもよい。これにより、コントローラは、前記中間姿勢を比較的正確に予測することができる。 The controller may calculate the intermediate posture based on information related to the operating speed of the work device. This allows the controller to predict the intermediate pose relatively accurately.

 前記コントローラは、前記合計値を用いて前記作業装置の前記姿勢を制御するアシスト制御を行っているときに、予め定められた条件である非アシスト条件が満たされた場合には、前記アシスト制御から、前記操作装置に与えられる操作に基づく制御(通常制御)に切り替えることが好ましい。この構成では、アシスト制御が行われているときに前記非アシスト条件が満たされた場合、コントローラは、前記アシスト制御から前記通常制御に切り替えるので、コントローラによるアシストが解除され、前記作業装置は、オペレータが操作装置に与える前記操作に対応する動作を行う。これにより、アシスト制御がそのまま継続されることが好ましくない状況が生じた場合にアシストを解除して作業装置をオペレータの意思通りに適切に動作させることができる。 When a non-assist condition, which is a predetermined condition, is satisfied while performing assist control for controlling the posture of the working device using the total value, the controller performs the assist control. , it is preferable to switch to control (normal control) based on the operation given to the operating device. In this configuration, when the non-assist condition is satisfied while the assist control is being performed, the controller switches from the assist control to the normal control, so that the assist by the controller is canceled and the work device is operated by the operator. performs an action corresponding to the operation given to the operating device. Accordingly, when a situation arises in which it is not desirable to continue the assist control as it is, the assist can be canceled and the working device can be appropriately operated as the operator intends.

 前記非アシスト条件は、前記アシスト制御において前記操作装置に与えられる前記操作から、予め設定された別の操作に切り替わることを含むことが好ましい。上記のような状況が生じた場合、オペレータは、アシスト制御において操作装置に与える操作から別の操作に切り替えることが多い。従って、前記アシスト制御において前記操作装置に与えられる前記操作から予め設定された別の操作に切り替わることは、アシスト制御がそのまま継続されることが好ましくない状況が生じたことを判定する指標となる。 The non-assist condition preferably includes switching from the operation given to the operating device in the assist control to another preset operation. When the situation as described above occurs, the operator often switches from the operation given to the operating device to another operation in the assist control. Therefore, switching from the operation given to the operating device to another preset operation in the assist control serves as an indicator for determining that a situation where it is not preferable to continue the assist control has occurred.

 提供される建設機械は、前記機体と、前記作業装置と、上述した駆動装置と、を備える。この建設機械は、オペレータの意思を介入させながら、作業装置の姿勢を所望の姿勢に調整するためのオペレータによる操作をアシストすることができる。 The provided construction machine includes the machine body, the work device, and the drive device described above. This construction machine can assist the operator's operation for adjusting the posture of the working device to a desired posture while allowing the operator's intention to intervene.

 提供される建設機械システムは、上述した駆動装置を備え、前記操作装置は、前記建設機械から離れた場所に配置された遠隔操作装置である。この建設機械システムでは、オペレータが遠隔地において遠隔操作装置を操作することによって作業現場において建設機械に作業を行わせる場合、コントローラは、オペレータの意思を介入させながらオペレータによる操作をアシストすることができる。具体的には、遠隔地において遠隔操作装置を操作する場合には、建設機械(実機)に搭乗して操作装置を操作する場合に比べて、オペレータは、作業現場の遠近感などの作業現場の状況を把握し難くなる。従って、このような遠隔操作のためのシステムに本開示に係る駆動装置が適用されることで、作業装置を所定の姿勢に調整する作業において前記駆動装置のアシストによるオペレータの負担軽減効果がより顕著になる。

 
The provided construction machine system includes the drive device described above, and the operating device is a remote control device arranged at a location remote from the construction machine. In this construction machine system, when the operator remotely operates the remote control device to cause the construction machine to perform work at the work site, the controller can assist the operator's operation while allowing the operator's intention to intervene. . Specifically, when operating a remote control device at a remote location, compared to operating the operating device while riding on a construction machine (actual machine), the operator can feel the perspective of the work site. It becomes difficult to grasp the situation. Therefore, by applying the drive device according to the present disclosure to such a system for remote control, the effect of reducing the burden on the operator due to the assistance of the drive device in the work of adjusting the working device to a predetermined posture is more remarkable. become.

Claims (16)

 機体に対して作業装置を動かすためのオペレータによる操作が与えられる操作装置と、
 コントローラと、を備え、
 前記コントローラは、
 前記作業装置の姿勢に関連する物理量の目標である目標物理量を設定し、
 前記作業装置の実際の姿勢に関連する物理量である現在物理量を演算し、
 前記目標物理量と前記現在物理量との偏差である物理量偏差を演算し、
 前記オペレータの前記操作をアシストするためのアシスト操作値を演算し、
 前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がオペレータ補正値が小さな値になるように、前記操作に対応するオペレータ操作値を前記オペレータ補正値に補正し、
 前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がアシスト補正値が大きな値になるように、前記アシスト操作値を前記アシスト補正値に補正し、
 前記オペレータ補正値と前記アシスト補正値とを足した合計値を用いて前記作業装置の前記姿勢を制御する、建設機械の駆動装置。
an operation device that is operated by an operator to move the work device relative to the machine body;
a controller;
The controller is
setting a target physical quantity, which is a target physical quantity related to the attitude of the working device;
calculating a current physical quantity, which is a physical quantity related to the actual posture of the working device;
calculating a physical quantity deviation that is a deviation between the target physical quantity and the current physical quantity;
calculating an assist operation value for assisting the operation of the operator;
correcting an operator operation value corresponding to the operation to the operator correction value so that the operator correction value becomes a smaller value when the physical quantity deviation is smaller than when the physical quantity deviation is large;
correcting the assist operation value to the assist correction value so that the assist correction value becomes a larger value when the physical quantity deviation is smaller than when the physical quantity deviation is large;
A driving device for a construction machine, wherein the total value obtained by adding the operator correction value and the assist correction value is used to control the posture of the work device.
 前記コントローラは、
 前記物理量偏差が大きいときに比べて前記物理量偏差が小さいときの方がアシスト率が大きな値になるように前記アシスト率を設定し、
 前記アシスト操作値に前記アシスト率をかけることにより前記アシスト補正値を演算し、
 前記オペレータ操作値に、予め設定された設定値から前記アシスト率を引いた値をかけることにより前記オペレータ補正値を演算する、請求項1に記載の建設機械の駆動装置。
The controller is
setting the assist rate so that the assist rate is larger when the physical quantity deviation is smaller than when the physical quantity deviation is large;
calculating the assist correction value by multiplying the assist operation value by the assist rate;
2. The drive system for a construction machine according to claim 1, wherein said operator correction value is calculated by multiplying said operator operation value by a value obtained by subtracting said assist rate from a preset set value.
 前記アシスト率を補正するための前記オペレータによる入力を受ける入力装置をさらに備え、
 前記コントローラは、前記オペレータによる前記入力に基づいて前記アシスト率を補正する、請求項2に記載の建設機械の駆動装置。
further comprising an input device for receiving input by the operator for correcting the assist rate;
3. The driving device for a construction machine according to claim 2, wherein said controller corrects said assist rate based on said input by said operator.
 前記コントローラによる制御の状況を前記オペレータに知らせるための報知装置をさらに備え、
 前記コントローラは、前記アシスト率に応じて前記報知装置からの出力が変化するように前記報知装置の動作を制御する、請求項2又は3に記載の建設機械の駆動装置。
further comprising a notification device for informing the operator of the status of control by the controller;
4. The driving device for a construction machine according to claim 2, wherein said controller controls the operation of said notification device such that the output from said notification device changes according to said assist rate.
 前記コントローラによる制御の状況を前記オペレータに知らせるための報知装置をさらに備え、
 前記コントローラは、前記物理量偏差に応じて前記報知装置からの出力が変化するように前記報知装置の動作を制御する、請求項1~3の何れか1項に記載の建設機械の駆動装置。
further comprising a notification device for informing the operator of the status of control by the controller;
The construction machine driving device according to any one of claims 1 to 3, wherein said controller controls the operation of said notification device so that the output from said notification device changes according to said physical quantity deviation.
 前記コントローラは、前記物理量偏差がゼロに近づくように前記物理量偏差に基づいて前記アシスト操作値を演算する、請求項1~5の何れか1項に記載の建設機械の駆動装置。 The driving device for the construction machine according to any one of claims 1 to 5, wherein said controller calculates said assist operation value based on said physical quantity deviation so that said physical quantity deviation approaches zero.  前記コントローラは、
 前記目標物理量を含む複数の目標物理量を設定し、
 前記建設機械により行われている作業を判定し、
 前記複数の目標物理量のうち、判定された作業に応じた目標物理量を選択する、請求項1~6の何れか1項に記載の建設機械の駆動装置。
The controller is
setting a plurality of target physical quantities including the target physical quantity;
determining the work being performed by said construction machine;
The construction machine driving device according to any one of claims 1 to 6, wherein, from among the plurality of target physical quantities, a target physical quantity corresponding to the determined work is selected.
 前記コントローラは、
 当該コントローラによるアシストの対象として予め設定されている作業である対象作業が行われているか否かを判定し、
 前記対象作業が行われている場合、前記合計値を用いて前記作業装置の前記姿勢を制御し、
 前記対象作業が行われていない場合、前記オペレータ操作値を用いて前記作業装置の前記姿勢を制御する、請求項1~6の何れか1項に記載の建設機械の駆動装置。
The controller is
Determining whether or not a target work, which is a work preset as a target for assistance by the controller, is being performed,
controlling the posture of the work device using the total value when the target work is being performed;
The driving device for a construction machine according to any one of claims 1 to 6, wherein the posture of the work device is controlled using the operator operation value when the target work is not being performed.
 前記作業装置は、バケットを含み、
 前記物理量偏差は、前記バケットの先端と施工面との距離に対応する値である、請求項1~8の何れか1項に記載の建設機械の駆動装置。
the working device includes a bucket;
The driving device for construction machinery according to any one of claims 1 to 8, wherein said physical quantity deviation is a value corresponding to a distance between said bucket tip and a construction surface.
 表示装置をさらに備え、
 前記コントローラは、前記表示装置において、前記作業装置の実際の姿勢に関する映像である実姿勢映像と、前記作業装置の目標の姿勢に関する映像である目標姿勢映像と、を表示させる、請求項1~9の何れか1項に記載の建設機械の駆動装置。
further comprising a display device,
10. The controller causes the display device to display, on the display device, an actual attitude image that is an image about an actual attitude of the work device and a target attitude image that is an image about a target attitude of the work device. The driving device for construction machinery according to any one of the above.
 前記コントローラは、前記表示装置において、前記実際の姿勢と前記目標の姿勢との間の中間姿勢に関する映像である中間姿勢映像をさらに表示させる、請求項10に記載の建設機械の駆動装置。 11. The driving device for the construction machine according to claim 10, wherein said controller causes said display device to further display an intermediate posture image, which is an image relating to an intermediate posture between said actual posture and said target posture.  前記コントローラは、前記作業装置の動作速度に関連する情報に基づいて前記中間姿勢を演算する、請求項11に記載の建設機械の駆動装置。 The driving device for the construction machine according to claim 11, wherein said controller calculates said intermediate posture based on information relating to the operating speed of said work device.  前記コントローラは、前記合計値を用いて前記作業装置の前記姿勢を制御するアシスト制御を行っているときに、予め定められた条件である非アシスト条件が満たされた場合には、前記アシスト制御から、前記操作装置に与えられる操作に基づく制御に切り替える、請求項1~12の何れか1項に記載の建設機械の駆動装置。 When a non-assist condition, which is a predetermined condition, is satisfied while performing assist control for controlling the posture of the working device using the total value, the controller performs the assist control. , the driving device for the construction machine according to any one of claims 1 to 12, wherein the control is switched to the control based on the operation given to the operating device.  前記非アシスト条件は、前記アシスト制御において前記操作装置に与えられる前記操作から、予め設定された別の操作に切り替わることを含む、請求項13に記載の建設機械の駆動装置。 14. The driving device for construction machinery according to claim 13, wherein said non-assist condition includes switching from said operation given to said operating device in said assist control to another preset operation.  前記機体と、前記作業装置と、請求項1~14の何れか1項に記載の駆動装置と、を備えた建設機械。 A construction machine comprising the machine body, the working device, and the driving device according to any one of claims 1 to 14.  請求項1~14の何れか1項に記載の駆動装置を備え、
 前記操作装置は、前記建設機械から離れた場所に配置された遠隔操作装置である、建設機械システム。
A driving device according to any one of claims 1 to 14,
The construction machine system, wherein the operation device is a remote control device arranged at a location remote from the construction machine.
PCT/JP2022/042839 2021-12-03 2022-11-18 Construction machine driving device, and construction machine and construction machine system provided with same WO2023100689A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22901122.6A EP4421247A4 (en) 2021-12-03 2022-11-18 CONSTRUCTION MACHINE DRIVE DEVICE, CONSTRUCTION MACHINE, AND CONSTRUCTION MACHINE SYSTEM COMPRISING SAME
CN202280078501.4A CN118339345A (en) 2021-12-03 2022-11-18 Driving device for construction machinery, construction machinery equipped with the driving device, and construction machinery system
US18/712,083 US20250019938A1 (en) 2021-12-03 2022-11-18 Construction machine driving device, and construction machine and construction machine system provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021196857A JP7677129B2 (en) 2021-12-03 2021-12-03 Construction machine drive device, construction machine equipped with the same, and construction machine system
JP2021-196857 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100689A1 true WO2023100689A1 (en) 2023-06-08

Family

ID=86612125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042839 WO2023100689A1 (en) 2021-12-03 2022-11-18 Construction machine driving device, and construction machine and construction machine system provided with same

Country Status (5)

Country Link
US (1) US20250019938A1 (en)
EP (1) EP4421247A4 (en)
JP (1) JP7677129B2 (en)
CN (1) CN118339345A (en)
WO (1) WO2023100689A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240018746A1 (en) * 2022-07-12 2024-01-18 Caterpillar Inc. Industrial machine remote operation systems, and associated devices and methods
JP2024126462A (en) * 2023-03-07 2024-09-20 株式会社小松製作所 How to check the working machine and hydraulic oil level

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157789A (en) 2010-02-03 2011-08-18 Sumitomo Heavy Ind Ltd Construction machine
JP2021050584A (en) * 2019-09-26 2021-04-01 日立建機株式会社 Work machine
JP2021085179A (en) * 2019-11-26 2021-06-03 コベルコ建機株式会社 Measurement device, operation support system, and construction machine
JP2021152307A (en) * 2020-03-24 2021-09-30 日立建機株式会社 Work machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6581136B2 (en) * 2017-03-21 2019-09-25 日立建機株式会社 Work machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157789A (en) 2010-02-03 2011-08-18 Sumitomo Heavy Ind Ltd Construction machine
JP2021050584A (en) * 2019-09-26 2021-04-01 日立建機株式会社 Work machine
JP2021085179A (en) * 2019-11-26 2021-06-03 コベルコ建機株式会社 Measurement device, operation support system, and construction machine
JP2021152307A (en) * 2020-03-24 2021-09-30 日立建機株式会社 Work machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4421247A4

Also Published As

Publication number Publication date
JP2023082876A (en) 2023-06-15
JP7677129B2 (en) 2025-05-15
CN118339345A (en) 2024-07-12
EP4421247A4 (en) 2025-03-19
EP4421247A1 (en) 2024-08-28
US20250019938A1 (en) 2025-01-16

Similar Documents

Publication Publication Date Title
CN109689978B (en) Working machine
KR102118386B1 (en) Working machine
JP4776640B2 (en) Front control device of hydraulic excavator
US11821163B2 (en) Shovel
WO2023100689A1 (en) Construction machine driving device, and construction machine and construction machine system provided with same
KR20190112057A (en) Construction machinery
KR20190087617A (en) Control method of working vehicle and working vehicle
JP6843039B2 (en) Work machine
KR102378264B1 (en) working machine
CN115917090A (en) work machinery
JP4444884B2 (en) Construction machine and control device used for construction machine
JPH09256405A (en) Interference prevention device for construction machinery
WO2022186215A1 (en) Work machine
JP6871946B2 (en) Work vehicle and control method of work vehicle
JP2022157472A (en) Construction machine
KR102378805B1 (en) construction machinery
WO2023145609A1 (en) Drive control device for construction machine and construction machine provided with same
WO2020202393A1 (en) Work machine
JP7562429B2 (en) Construction Machinery
WO2024171607A1 (en) Work machine
JP2024132386A (en) Work Machine
WO2025109881A1 (en) Automatic driving information processing device, automatic driving system, automatic driving method, and automatic driving program
WO2025115549A1 (en) Control system for work machine
JP2023050081A (en) Trajectory generation system
JP2022126348A (en) working machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18712083

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022901122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280078501.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022901122

Country of ref document: EP

Effective date: 20240524

NENP Non-entry into the national phase

Ref country code: DE