WO2023100420A1 - 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 - Google Patents
電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 Download PDFInfo
- Publication number
- WO2023100420A1 WO2023100420A1 PCT/JP2022/029562 JP2022029562W WO2023100420A1 WO 2023100420 A1 WO2023100420 A1 WO 2023100420A1 JP 2022029562 W JP2022029562 W JP 2022029562W WO 2023100420 A1 WO2023100420 A1 WO 2023100420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel strip
- electromagnetic steel
- joint
- friction stir
- stir welding
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 410
- 239000010959 steel Substances 0.000 title claims abstract description 410
- 238000003466 welding Methods 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000003756 stirring Methods 0.000 title claims abstract description 95
- 238000004519 manufacturing process Methods 0.000 title abstract description 34
- 239000000463 material Substances 0.000 claims description 158
- 238000005304 joining Methods 0.000 claims description 104
- 238000010438 heat treatment Methods 0.000 claims description 77
- 229910000859 α-Fe Inorganic materials 0.000 claims description 67
- 239000000523 sample Substances 0.000 claims description 52
- 239000010953 base metal Substances 0.000 claims description 38
- 238000005097 cold rolling Methods 0.000 claims description 18
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 15
- 230000006698 induction Effects 0.000 claims description 11
- 239000010960 cold rolled steel Substances 0.000 claims description 4
- 230000006866 deterioration Effects 0.000 abstract description 11
- 230000014509 gene expression Effects 0.000 abstract description 11
- 238000010276 construction Methods 0.000 abstract description 8
- 230000007547 defect Effects 0.000 description 51
- 210000001503 joint Anatomy 0.000 description 43
- 235000013339 cereals Nutrition 0.000 description 42
- 239000012071 phase Substances 0.000 description 22
- 238000005259 measurement Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 19
- 238000012545 processing Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000004927 fusion Effects 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- UOACKFBJUYNSLK-XRKIENNPSA-N Estradiol Cypionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H](C4=CC=C(O)C=C4CC3)CC[C@@]21C)C(=O)CCC1CCCC1 UOACKFBJUYNSLK-XRKIENNPSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
Definitions
- the present invention relates to a friction stir welding method for an electromagnetic steel strip and a method for manufacturing an electromagnetic steel strip.
- coil joining In steel sheet production lines, for example, pickling, cold rolling, annealing, and plating production lines, in order to improve productivity and yield, so-called coil joining is performed before the steel strip is threaded. is common.
- the coil joining refers to the end (rear end) of the preceding steel strip (hereinafter also referred to as the preceding steel strip) and the steel strip following the preceding steel strip (hereinafter also referred to as the following steel strip) in the production line. ) and the end (tip).
- a joint formed by coil joining is also referred to as a coil joint.
- the tip is the end of the steel strip on the traveling direction side in the production line.
- the rear end is the end opposite to the direction of travel of the steel strip in the production line.
- Patent Document 1 When welding high-Si steel, a filler wire whose main component is Ni or a filler powder whose main component is Ni is supplied so that the chemical composition of the weld metal satisfies the following formula (1).
- [%Ni], [%Si], [%Cr] and [%Mo] represent the contents (% by weight) of Ni, Si, Cr and Mo in the weld metal, respectively. ” is disclosed.
- the present invention has been developed in view of the above-mentioned current situation, and suppresses the occurrence of breakage of the coil joint in the production line due to deterioration of the mechanical properties and shape of the coil joint under high construction efficiency. It is an object of the present invention to provide a method for friction stir welding of electromagnetic steel strips, which is advantageous in terms of durability of a rotating tool. Another object of the present invention is to provide a method for manufacturing an electromagnetic steel strip using the friction stir welding method for an electromagnetic steel strip.
- the chemical composition of the electrical steel sheet contains a large amount of Si, for example, about 2.0 to 5.0% by mass.
- Si is a ferrite stabilizing element. Therefore, when general laser welding is applied to coil joining of electromagnetic steel strips, the ferrite crystal grains of the coil joint portion, which is the fusion zone, and further the ferrite crystal grains of the heat affected zone are coarsened. As a result, the mechanical properties of the coil joints, particularly the toughness and bending strength, are significantly degraded, leading to breakage of the coil joints in the production line.
- the variation in the butt gap between the preceding steel strip and the following steel strip affects the height of the weld reinforcement.
- the welding portion has an excessively convex shape due to the height of the weld reinforcement, stress is concentrated on the weld toe when a load is applied to the welding portion. Therefore, the variation in the abutment gap between the leading steel strip and the trailing steel strip described above also causes breakage of the coil joints in the production line.
- the surplus of the welded portion can be removed by grinding or the like. However, such an increase in the number of steps causes a drastic decrease in productivity.
- the friction stir welding is solid phase welding utilizing frictional heat between a rotary tool and the material to be welded and plastic flow of the material to be welded. That is, the unwelded portion (to-be-welded region) of the material to be welded is friction-stirred by a rotating tool. When the unjoined portion of the material to be joined is heated by frictional heat, plastic flow starts. Then, the interface between the plastic flow region and the base material portion is greatly elongated. As a result, clean interfaces free of oxide come into contact with each other, and a joint is formed without melting the materials to be joined.
- the welded portion is a region that is subjected to hot working due to frictional heat and plastic flow between the rotary tool and the material to be welded and becomes a recrystallized structure, and is sometimes called an agitated portion.
- the thermal processing affected zone In the region adjacent to the joint, although it is affected by hot working due to frictional heat and plastic flow, there is formed a region where the temperature and working are insufficient and the structure does not lead to recrystallization. This area is called the thermal processing affected zone.
- the materials to be joined also have areas that are not affected by hot working due to frictional heat and plastic flow. This region is called a base material portion. Techniques related to friction stir welding are disclosed, for example, in Patent Documents 4 to 19 and Non-Patent Document 1, but none of these are applicable to coil joining of electromagnetic steel strips.
- the double-sided friction stir welding in which the materials to be welded are preheated is also referred to as preheating double-sided friction stir welding. 4 x TJs ⁇ D.
- TJ is When the unjoined portion is a butt portion, the average value (mm) of the plate thickness of the first electromagnetic steel strip and the plate thickness of the second electromagnetic steel strip, When the unbonded portion is the overlapped portion, it is the thickness (mm) of the overlapped portion.
- the steel structure of the joint and the heat-affected zone is made mainly of ferrite, and the joint and the heat-work-affected zone It is preferable to simultaneously achieve refinement of the steel structure of the joint and reduction of the difference in hardness between the joint and the base material. Specifically, it is preferable to simultaneously satisfy the relationships of the following equations (1) to (4). As a result, even when an electromagnetic steel strip is used as the material to be joined, the mechanical properties of the coil joint are improved without causing deterioration in the shape of the coil joint, and breakage of the coil joint in the production line is prevented. more effectively deterred.
- Dsz is the average value ( ⁇ m) of the ferrite grain size at the junction
- Dhaz1 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the first electromagnetic steel strip side
- Dhaz2 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the second electromagnetic steel strip side
- Dbm1 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the first electromagnetic steel strip
- Dbm2 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the second electromagnetic steel strip
- Hsz is the average hardness of the joint
- Hbm1 is the average hardness of the base metal portion of the first magnetic steel strip
- Hbm2 is the average hard hardness of the joint
- the use of a rotary tool without a probe is extremely advantageous in terms of the durability and life extension of the rotary tool, as well as the reduction of the joint failure rate (due to wear and breakage of the rotary tool).
- the rotary tool without a probe includes, for example, a rotary tool without a probe in which the tip surface of the rotary tool (the contact surface with the workpiece) is a flat surface, a convex curved surface, or a concave curved surface. be done.
- a friction stir welding method for electromagnetic steel strips wherein a first electromagnetic steel strip and a second electromagnetic steel strip, which are materials to be joined, are joined by a pair of rotating tools facing each other, a preheating step of preheating an unbonded portion of the material to be bonded by a heating device disposed in front of the rotating tool in the bonding direction on at least one surface of the material to be bonded;
- the rotating tool is pressed against the unjoined portion of the material to be joined from both sides while being rotated in opposite directions, and the rotating tool is moved in the joining direction, thereby forming the first electromagnetic steel strip and the second
- a joining step for joining the electromagnetic steel strip The unjoined portion of the material to be joined is a butt portion or overlapping portion between the end portion of the first electromagnetic steel strip and the end portion of the second electromagnetic steel strip following the first electromagnetic steel strip.
- the preheating step and the joining step are continuously performed by moving the heating device in the joining direction in conjunction with the rotating tool, Further, the diameter D (mm) of the shoulder portion of the rotary tool satisfies the relationship of the following formula (7), and RS ⁇ D 3 /JS represented by the rotational speed RS (rotations/minute) of the rotary tool, the diameter D (mm) of the shoulder portion of the rotary tool, and the welding speed JS (mm/min) is given by the following formula (8 ), a friction stir welding method for electromagnetic steel strips. 4 x TJs ⁇ D.
- TJ is When the unjoined portion is a butt portion, the average value (mm) of the plate thickness of the first electromagnetic steel strip and the plate thickness of the second electromagnetic steel strip, When the unbonded portion is the overlapped portion, it is the thickness (mm) of the overlapped portion.
- the steel structures of the joined portion and the heat-affected zone formed by joining the first electromagnetic steel strip and the second electromagnetic steel strip each become a ferrite phase-based structure, and the following formula 2.
- Dsz is the average value ( ⁇ m) of the ferrite grain size at the junction
- Dhaz1 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the first electromagnetic steel strip side
- Dhaz2 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the second electromagnetic steel strip side
- Dbm1 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the first electromagnetic steel strip
- Dbm2 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the second electromagnetic steel strip
- Hsz is the average hardness of the joint
- Hbm1 is the average hardness of the base metal portion of the first magnetic steel strip
- Hbm2 is the average hard hardness of the joint
- TszL is the minimum thickness of the joint (mm); TszH is the maximum thickness of the joint (mm); TbmL is the plate thickness (mm) of the thinner one of the first magnetic steel strip and the second magnetic steel strip, TbmH is the plate thickness (mm) of the thicker magnetic steel strip of the first magnetic steel strip and the second magnetic steel strip; is.
- TbmL TbmH.
- the mechanical properties and shape of the coil joint do not deteriorate, and the coil joint does not break on the production line. effectively suppressed.
- the welding speed can be increased while suppressing the occurrence of defects. It is also extremely advantageous in terms of productivity.
- excellent durability of the rotary tool prolonged life of the rotary tool
- the productivity of the electrical steel sheet can be further improved, and the industrial utility value is extremely large.
- a rotating tool without a probe can be used in preheating double-sided friction stir welding according to one embodiment of the present invention, it is extremely advantageous in terms of further improving the durability of the rotating tool and thus reducing the rate of defective welding.
- FIG. 1 is a schematic diagram for explaining a friction stir welding method for electromagnetic steel strips according to an embodiment of the present invention, and is a side perspective view showing an example of butt welding by preheating double-sided friction stir welding.
- FIG. 1B is a view taken along line AA of FIG. 1A.
- 1B is a top view of FIG. 1A;
- FIG. 1B is a cross-sectional view at the joint centerline position of FIG. 1A;
- FIG. 1 is a schematic diagram showing an example of the shape of a rotary tool with a probe used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention
- FIG. 1 is a schematic diagram showing an example of the shape of a rotary tool with a probe used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention
- BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of the shape of a probe-less rotating tool (flat tip rotating tool) used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention.
- FIG. 1 is a schematic diagram showing an example of the shape of a probe-less rotating tool (flat tip rotating tool) used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention.
- FIG. 1 is a schematic diagram showing an example of the shape of a probe-less rotary tool (concave tip rotary tool) used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram showing an example of the shape of a rotating tool without a probe (flat tip rotating tool provided with a stepped portion) used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram showing an example of the shape of a rotary tool without a probe (protruding rotary tool with a step) used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram showing an example of the shape of a rotary tool without a probe (a rotary tool with a recessed tip provided with a stepped portion) used in the friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention.
- FIG. 10 is a diagram for explaining a method of arranging (depicting) the vortices at equal intervals when there are two vortices that define the stepped portion; FIG.
- FIG. 3 is a diagram for explaining a method of arranging (depicting) the vortices at equal intervals, with three vortices defining a stepped portion;
- FIG. 4 is a diagram illustrating a method of arranging (depicting) the vortices at equal intervals, with four vortices defining a stepped portion;
- FIG. 5 is a diagram for explaining a method of arranging (depicting) the vortices at equal intervals, with five vortices defining the stepped portion.
- FIG. 6 is a diagram illustrating a method of arranging (depicting) the vortices at equal intervals, with six vortices defining a stepped portion;
- FIG. 3 is a schematic diagram showing an example of a rotating tool with a convex tip provided with a stepped stepped portion.
- FIG. 3 is a schematic diagram showing an example of a rotary tool with a convex tip provided with a groove-shaped stepped portion.
- FIG. 10 is a schematic diagram showing an example of a tip plane rotating tool provided with a groove-shaped stepped portion.
- FIGS. 1A to 1D are schematic diagrams illustrating a friction stir welding method for electromagnetic steel strips according to one embodiment of the present invention, FIG. 1A being a side perspective view, FIG. 1C is a top view of FIG. 1A, and FIG. 1D is a cross-sectional view at the joining center line position of FIG. 1A.
- reference numeral 1 denotes a first electromagnetic steel strip (material to be welded)
- 2 denotes a second electromagnetic steel strip (material to be welded)
- 3-1 is a rotating tool (front side rotating tool)
- 3 -2 is a rotating tool (back side rotating tool)
- 4 is a joint
- 5-1 and 5-2 are shoulders
- 6-1 and 6-2 are probes (pins)
- 7 is a gripping device
- 9 -1 and 9-2 are the tip
- 10-1 is a heating device (front side heating device)
- 10-2 is a heating device (back side heating device)
- 11 is a rotary tool driving device
- 12 is It is a motion control device. It should be noted that illustration of the gripping device is omitted in FIG. 1A.
- ⁇ is the inclination angle (°) of the rotating tool
- a is the diameter of the probe portion (hereinafter also referred to as pin diameter) (mm)
- b is the length of the probe portion (hereinafter also referred to as pin length) (mm).
- D is the diameter of the shoulder of the rotary tool (mm)
- g is the gap between the probes (mm)
- G is the gap between the shoulders of the rotary tool
- H and I are the preheating (expected) areas by the heating device. represent. From the viewpoint of visibility, in FIGS. 1B and 1C, the heating device 10-1 (front side heating device) and/or the heating device 10-2 (back side heating device) are indicated by dashed lines. Also, regarding the description of the front side (side), in order to distinguish it from the front side, it is written as the front side in the first appearance.
- Welding direction (traveling direction of rotating tool),
- the joining vertical direction (the direction perpendicular to the joining direction and perpendicular to the plate thickness direction, which in FIG. 1 coincides with the width direction of the joint and the traveling direction of the electromagnetic steel strip), and Thickness direction (perpendicular to the surface of the material to be joined) indicates the arrangement of each part.
- the vertical direction is the plate thickness direction.
- the horizontal direction is the junction vertical direction.
- the direction toward the front side of the paper is the joining direction. That is, the plane shown in FIG. 1B includes the joining vertical direction and the plate thickness direction.
- the heating devices 10-1 and 10-2 indicated by dashed lines are located in front of the rotating tools 3-1 and 3-2.
- electromagnetic steel strip as used herein means an intermediate product that is used as a raw material for manufacturing an electromagnetic steel sheet. It refers to an intermediate product in the stage before crystal annealing).
- the electromagnetic steel strip manufactured by the method for manufacturing an electromagnetic steel strip according to one embodiment of the present invention is cold-rolled after joining the first and second electromagnetic steel strips, as described later. It is obtained by rolling.
- an electromagnetic steel strip in which the first and second electromagnetic steel strips are joined together is called a joined steel strip, and an electromagnetic steel strip obtained by cold rolling the joined steel strip is also called a cold rolled steel strip.
- the friction stir welding method for an electromagnetic steel strip is preferably carried out, for example, in an electromagnetic steel strip production line, particularly a continuous cold rolling line.
- the continuous cold rolling line is a production line in which a steel strip is continuously cold rolled by a cold rolling device.
- a continuous cold rolling line includes, for example, a steel strip conveying device and a cold rolling device.
- the continuous cold rolling line may optionally be further accompanied by pickling equipment, annealing furnaces, coating equipment and the like.
- the friction stir welding method for electromagnetic steel strips applies preheating double-sided friction stir welding for coil welding of electromagnetic steel strips.
- ⁇ The diameter D (mm) of the shoulder portion of the rotating tool satisfies the relationship of the following formula (7), and
- TJ is When the unjoined portion is a butt portion, the average value (mm) of the plate thickness of the first electromagnetic steel strip and the plate thickness of the second electromagnetic steel strip, When the unbonded portion is the overlapped portion, it is the thickness (mm) of the overlapped portion.
- the friction stir welding method for electromagnetic steel strips comprises: A friction stir welding method for electromagnetic steel strips, wherein a first electromagnetic steel strip and a second electromagnetic steel strip, which are materials to be joined, are joined by a pair of rotating tools facing each other, a preheating step of preheating an unbonded portion of the material to be bonded by a heating device disposed in front of the rotating tool in the bonding direction on at least one surface of the material to be bonded;
- the rotating tool is pressed against the unjoined portion of the material to be joined from both sides while being rotated in opposite directions, and the rotating tool is moved in the joining direction, thereby forming the first electromagnetic steel strip and the second
- a joining step for joining the electromagnetic steel strip The unjoined portion of the material to be joined is a butt portion or overlapping portion between the end portion of the first electromagnetic steel strip and the end portion of the second electromagnetic steel strip following the first electromagnetic steel strip.
- the preheating step and the joining step are continuously performed by moving the heating device in the joining direction in conjunction with the rotating tool, Further, the diameter D (mm) of the shoulder portion of the rotary tool satisfies the relationship of the above formula (7), and RS ⁇ D 3 /JS represented by the number of revolutions RS (rotations/minute) of the rotary tool, the diameter D (mm) of the shoulder portion of the rotary tool, and the joining speed JS (mm/min) is given by the above formula ( 8) is satisfied.
- Suitable examples of joint types include butt joints and lap joints.
- Butt joint is a state in which the end surfaces of the first electromagnetic steel strip and the second electromagnetic steel strip are opposed to each other, and the end surfaces (butting surfaces) of the first electromagnetic steel strip and the second electromagnetic steel strip are butted together. The part is pressed while rotating the rotary tool. Then, in this state, the first electromagnetic steel strip and the second electromagnetic steel strip are joined by moving the rotary tool in the joining direction.
- Lap-joining means that at least part of the end portions of the first electromagnetic steel strip and the second electromagnetic steel strip are overlapped, and the overlapped portion is pressed while a rotating tool is rotated. Then, in this state, the first electromagnetic steel strip and the second electromagnetic steel strip are joined by moving the rotary tool in the joining direction.
- a preheating double-sided friction stir welding method is a friction stir welding method in which a first electromagnetic steel strip and a second electromagnetic steel strip, which are materials to be welded, are preheated and then joined using a pair of rotating tools facing each other. is. That is, a pair of rotating tools facing each other are pressed while rotating in opposite directions from both sides of the unjoined portion of the preheated member to be joined. Then, in this state, the first electromagnetic steel strip and the second electromagnetic steel strip are joined by moving the rotary tool in the joining direction.
- a gripping device (not shown) that grips the material to be joined; a pair of rotating tools facing each other; a drive for the rotary tool; a heating device arranged in front of the rotating tool in the joining direction on at least one surface of the workpiece;
- a friction stir welding apparatus including the gripping device, the drive device for the rotating tool, and the operation control device for the heating device is used.
- the tilt angle ⁇ of the rotary tool, the position of the tip of the rotary tool and the distance g between the tips (probes) (hereinafter also referred to as the gap g between the probes), the shoulder of the rotary tool It controls the gap G, welding speed (and moving speed in the welding direction of the heating device that moves in conjunction with the rotating tool), indentation load, rotational speed of the rotating tool, rotational torque, output of the heating device, etc. .
- a rotating tool of a friction stir welding apparatus is placed on both sides of a first electromagnetic steel strip and a second electromagnetic steel strip (hereinafter simply referred to as welded materials), which are the materials to be welded. Deploy.
- the heating device is arranged in front of the rotary tool in the joining direction on at least one surface of the workpiece.
- the rotating tool arranged on the surface side (upper side in the vertical direction) of the material to be welded is called the front side rotating tool
- the rotating tool arranged on the back side (lower side in the vertical direction) of the material to be welded is called the back side.
- a rotating tool Sometimes referred to as a rotating tool.
- a heating device arranged on the surface side (upper side in the vertical direction) of the material to be joined is called a front side heating device
- a heating device arranged on the back side (lower side in the vertical direction) of the material to be joined is called a back side heating device. It may be called a heating device.
- the first electromagnetic steel strip and the second electromagnetic steel strip are arranged parallel to the joining center line shown in the drawing, and held by a holding device.
- the welding center line is a line that connects the passage set (target) positions (on the surface of the workpiece) of the rotary shaft of the rotary tool during welding, and is parallel to the welding direction.
- the welding center line can also be said to be the trajectory (on the surface of the material to be welded) of the rotation axis of the rotating tool during welding, and usually passes through the center position of the welded portion in the width direction.
- butt joint for example, as shown in FIG. It becomes the center position in the vertical direction.
- the position is the middle point between the end (rear end) of the first magnetic steel strip and the end (front end) of the second magnetic steel strip in the joining vertical direction.
- the position is, for example, the width of the overlapping portion of the end (rear end) of the first electromagnetic steel strip and the end (front end) of the second electromagnetic steel strip (joining vertical direction width).
- the unjoined portion of the preheated member to be joined is pressed from both sides while rotating the rotary tool in opposite directions. Then, in that state, the rotary tool is moved in the joining direction.
- the materials to be welded are softened by the heat input to the materials to be welded by this preheating and the frictional heat between the materials to be welded and the rotary tool.
- the heating device is arranged on at least one surface of the material to be bonded in front of the rotary tool in the direction in which the bonding proceeds, and the unbonded portion of the material to be bonded is preheated by the heating device.
- the preheating step and the joining step which will be described later, can be performed continuously.
- preheating the materials to be welded facilitates softening of unbonded portions, thereby promoting agitation with the rotary tool.
- excellent durability of the rotary tool can be obtained.
- the preheating temperature of the material to be bonded is the surface temperature (not the internal temperature but the surface temperature) of the material to be bonded at the end of preheating (when the material passes through the heating device). It is preferable that the preheating temperature of the materials to be bonded satisfies the following requirements on both surfaces of the materials to be bonded.
- the preheating temperature of the material to be joined satisfies the following requirements on both sides of the material to be joined. If satisfied, the same effect can be obtained. Therefore, description of an example of single-sided arrangement is omitted.
- preheating region I region of 0 ⁇ W ⁇ 0.1 ⁇ D on the surface of the material to be bonded
- preheating region H region of 0 ⁇ W ⁇ 0.1 ⁇ D on the surface of the material to be bonded
- the preheating temperature of the materials to be joined so as to satisfy the relationships of the above expressions (11) to (13).
- W is the distance (mm) from the joint center line of the material to be welded in the joint vertical direction
- D is the diameter D (mm) of the shoulder of the rotating tool.
- the preheating area is a surface area of the material to be joined that is preheated by the heating device.
- the preheating temperature of the material to be joined satisfies the relationships of the above expressions (11) to (13), and further satisfies the relationships of the above expressions (14) and (15). is more preferable. That is, in order to obtain the effect of promoting plastic flow by preheating, it is effective to raise the preheating temperature of the materials to be joined. However, if the preheating temperature of the material to be joined is excessively increased, the microstructure may deteriorate around the preheated region.
- TPW 0 .
- the heating device used in the preheating step is not particularly limited, but examples thereof include a high-frequency induction heating device and a laser irradiation heating device.
- the operating frequency is adjusted within the range of 20 kHz or more and 360 kHz or less, and the output is variously adjusted within the range of 10 kW or more and 200 kW or less.
- the surface temperature of the members to be joined can be controlled so as to satisfy the relationships of the above expressions (11) to (15).
- the wavelength of the laser light is adjusted within the range of 0.3 ⁇ m or more and 11 ⁇ m or less, and the output is variously adjusted within the range of 2 kW or more and 50 kW or less.
- the surface temperature of the members to be joined can be controlled so as to satisfy the relationships of the above expressions (11) to (15).
- a device combining a plurality of types of heating devices for example, a device combining a high-frequency induction heating device and a laser irradiation heating device may be used.
- the distance between the heating device and the rotating tool and the range of the preheating area is not particularly limited.
- the distance between the heating device and the rotating tool is too small, the rotating tool may be damaged by heat from the heating device. Therefore, it is preferable to determine the positional relationship between the heating device and the rotary tool in consideration of the heating efficiency and the influence on the workpieces.
- the distance between the heating device and the rotating tool is preferably in the range of 1 mm to 100 mm.
- the preheating range is not particularly limited, but from the viewpoint of satisfying the relationships of the above formulas (11) to (15), the center position of the preheating range in the vertical direction of the bonding should be set to 0 ⁇ W ⁇ 0.1
- the range of xD is preferable.
- the preheating range can be controlled, for example, by adjusting the placement, output and frequency of the heating device.
- the shoulder diameter D satisfies the relationship of the above formula (7).
- the shoulder diameter D is preferably 5 ⁇ TJ (mm) or more.
- the shoulder diameter D is preferably 9 ⁇ TJ (mm) or less.
- the shoulder diameter D can also be called the tip diameter as shown in FIGS.
- the tip diameter is the diameter of the tip surface of the rotary tool in a plane perpendicular to the rotation axis (the diameter of the projection area when the tip surface of the rotation tool is projected in the direction parallel to the rotation axis).
- RS ⁇ D 3 /JS is a parameter that correlates with the amount of heat generated per unit junction length. Then, by setting the range of RS ⁇ D 3 /JS to 180 ⁇ TJ to 1500 ⁇ TJ, the friction generated between the rotating tool and the first and second electromagnetic steel strips, which are the materials to be welded, A temperature rise due to heat and a shear stress due to frictional force can be effectively applied to the materials to be joined.
- RS ⁇ D 3 /JS is less than 180 ⁇ TJ, the calorific value may be insufficient. Therefore, it may be difficult to form a joint interface in a state of being metallurgically joined to the mating surfaces of the first magnetic steel strip and the second magnetic steel strip.
- RS ⁇ D 3 /JS exceeds 1500 ⁇ TJ, the amount of heat generated by friction stirring becomes excessive, and an excessive amount of heat is applied to the joint. As a result, the peak temperature (maximum attainable temperature) of the joint increases, the cooling rate decreases, and the recrystallized structure of the joint coarsens. Therefore, from the viewpoint of satisfying the predetermined relationship, RS ⁇ D 3 /JS satisfies the relationship of the above formula (8).
- RS ⁇ D 3 /JS is more preferably 240 ⁇ TJ or more. Also, RS ⁇ D 3 /JS is more preferably 1200 ⁇ TJ or less.
- the steel structures of the joint formed by joining the first electromagnetic steel strip and the second electromagnetic steel strip and the thermal processing affected zone are respectively It is preferable that the joining is performed under the condition that the ferrite phase-based structure is obtained and the relationships of the following formulas (1) to (4) are satisfied.
- the mechanical properties of the coil joint are improved without causing deterioration in the shape of the coil joint, and breakage of the coil joint in the production line is prevented. more effectively deterred.
- Dsz is the average value ( ⁇ m) of the ferrite grain size at the junction
- Dhaz1 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the first electromagnetic steel strip side
- Dhaz2 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the second electromagnetic steel strip side
- Dbm1 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the first electromagnetic steel strip
- Dbm2 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the second electromagnetic steel strip
- Hsz is the average hardness of the joint
- Hbm1 is the average hardness of the base metal portion of the first magnetic steel strip
- Hbm2 is the average hard hardness of the joint
- TszL is the minimum thickness of the joint (mm); TszH is the maximum thickness of the joint (mm); TbmL is the plate thickness (mm) of the thinner one of the first magnetic steel strip and the second magnetic steel strip, TbmH is the plate thickness (mm) of the thicker magnetic steel strip of the first magnetic steel strip and the second magnetic steel strip; is.
- TbmL TbmH.
- the materials to be joined (the first electromagnetic steel strip and the second electromagnetic steel strip), the joint and the thermal processing affected zone, and the above formulas (1) to (6) will be described later [ 2] As described in the joints for electromagnetic steel strips.
- the gap G (mm) between the shoulder portions of the rotary tool satisfies the relationship of the following formula (9). 0.4 ⁇ TJ ⁇ G ⁇ 0.9 ⁇ TJ (9)
- the gap G between the shoulders of the rotating tool (hereinafter also simply referred to as the gap G between the shoulders) It is advantageous to properly control the .
- the shoulder-to-shoulder gap G can also be said to be the separation distance between the shoulder of the front-side rotary tool and the shoulder of the back-side rotary tool in the plate thickness direction.
- the shoulder gap G is within the range of 0.4 ⁇ TJ to 0.9 ⁇ TJ, the shoulders of the rotating tools facing each other are applied with a sufficient load on the front side and the back side of the workpiece. By pressing, heat generation at the joint and plastic flow in the plate thickness direction are sufficiently promoted.
- the inclination angle ⁇ of the rotating tool is not particularly limited. ) is preferably satisfied. 0° ⁇ 4° (10)
- ⁇ is the plate thickness direction of the rotation axis of the rotary tool (hereinafter also referred to as the tool rotation axis) in the plane containing the welding direction and the plate thickness direction (the direction perpendicular to the surface of the workpiece) This is the angle of inclination from (the direction perpendicular to the surface of the material to be joined).
- the direction (the angle) in which the tip of the rotary tool precedes the welding direction is defined as +.
- both the front side rotating tool and the back side rotating tool are inclined, that is, 0 ° ⁇ ⁇ is more preferable.
- the load on the rotating tool can be received by the rotating tool as a component of force compressed in the direction of the rotation axis.
- bending forces are reduced and the risk of breaking the rotary tool is reduced. Therefore, when using a rotary tool with a probe, it is more preferable to set 0° ⁇ . Further, it is more preferable to set ⁇ 2°.
- the inclination angle ⁇ of the rotary tool is set to 0°, that is, the plane including the welding direction and the plate thickness direction (the direction perpendicular to the surface of the workpiece)
- the front and back surfaces of the joint become concave, and the ratio of the thickness of the joint to the thickness of the material to be joined is reduced.
- the tendency to adversely affect joint strength can be avoided.
- the control mechanism of the device for giving and setting the tilt angle ⁇ of the rotary tool can be omitted.
- the inclination angle ⁇ of the rotary tool is allowed ⁇ 0.3°.
- the rotational speed of the rotary tool is preferably 200-6000 r/min (rounds/minute). By setting the number of revolutions of the rotating tool within this range, it is possible to suppress deterioration in mechanical properties due to the application of a problematic amount of heat while maintaining a good surface shape, which is advantageous.
- the rotational speed of the rotating tool is more preferably 300 r/min or higher. Further, the rotational speed of the rotating tool is more preferably 5000 r/min or less.
- the bonding speed is preferably 1000 to 10000 mm/min (mm/min).
- the welding speed is more preferably 2000 mm/min or higher, still more preferably 3500 mm/min or higher, still more preferably 4000 mm/min or higher, and even more preferably 5000 mm/min or higher.
- the position of the tip of the rotating tool, the pressing load, the rotating torque, the gap between the probes, etc. may be appropriately set in accordance with conventional methods.
- the rotation direction of the front-side rotating tool and the rotation direction of the back-side rotating tool are different from each other when viewed from the front side (or back side) of the material to be welded. preferably in the opposite direction.
- the number of revolutions of the front-side rotating tool and the number of revolutions of the back-side rotating tool be the same.
- the rotational torques applied to the workpieces from the front-side rotating tool and the back-side rotating tool can be canceled out.
- it is possible to simplify the structure of the jig for restraining the materials to be welded compared to the single-sided friction stir welding method in which the unwelded parts are pressed from one side to be welded.
- the rotation direction of the front side rotary tool and the rotation of the back side rotary tool It is preferable that the direction is the opposite direction when viewed from the surface side (or the back side) of the material to be joined.
- the rotary tool used in the friction stir welding method for electrical steel strips is not particularly limited as long as it satisfies the relationship of the above formula (7), and can be used in accordance with the usual method. Just do it.
- the tip of the rotating tool contacts the first and second electromagnetic steel strips, which are the materials to be joined, during joining. Therefore, the tip of the rotary tool is made of a material harder than the first and second magnetic steel strips in a high-temperature state exposed during joining.
- the rotary tool can apply deformation to the first and second magnetic steel strips while maintaining the shape of the tip portion during joining. As a result, it is possible to achieve a high agitation performance continuously, and proper joining becomes possible.
- the hardness of the tip portion of the rotary tool, the first magnetic steel strip and the second magnetic steel strip may be measured by a high temperature Vickers hardness test method and compared. Note that only the tip of the rotating tool may be made of a material harder than the first and second magnetic steel strips. Also, the entire rotary tool may be made of a harder material than the first electromagnetic steel strip and the second electromagnetic steel strip.
- FIGS. 2A and B Examples of rotary tools with probes are shown in FIGS. 2A and B, respectively.
- the tip portion of the rotating tool is arranged on a shoulder (the range indicated by the diameter of the shoulder in the drawings) and on the shoulder. and a probe (range indicated by the pin diameter in the figure) sharing the axis of rotation with the .
- the shape of the rotary tool is shoulder diameter D: 13 mm, pin diameter: 4 mm, pin length: 0.6 mm, concave depth (not shown): 0.3 mm.
- the shape of the rotating tool is shoulder diameter D: 20 mm, pin diameter: 6.7 mm, pin length: 0.9 mm, concave depth (not shown): 0.3 mm. be.
- the shoulder has a flat shape formed by a substantially flat surface or a gently curved surface.
- the shoulder has a function of generating frictional heat by contacting the first and second magnetic steel strips while rotating during joining.
- the shoulder has a function of pressing the portion softened by heat to prevent the material from scattering and promoting plastic flow in the direction of rotation.
- the probe has a shape that is discontinuous with the shoulder portion, and has a shape that protrudes substantially vertically toward the workpiece (not shown).
- the probe has a function of improving the stirring ability near the center of the thickness of the sheet by penetrating the softened portions of the first and second magnetic steel strips toward the center of the thickness during welding. Also, the probe is usually centrally located on the shoulder.
- the shoulder diameter D (mm) satisfies the relationship of the above formula (7) as described above.
- the pin diameter and pin length of the rotating tool are not particularly limited, and may be appropriately set according to a conventional method. For example, when butt-joining a first electromagnetic steel strip and a second electromagnetic steel strip having different thicknesses, the average value of the thicknesses of the first and second electromagnetic steel strips is considered. Then, the pin diameter, pin length, etc. of the rotary tool can be set according to the usual method. Further, when lap-joining the first electromagnetic steel strip and the second electromagnetic steel strip, the total thickness of the first electromagnetic steel strip and the second electromagnetic steel strip is taken into consideration, and a conventional method is followed. Then, the pin diameter and pin length of the rotary tool can be set.
- the probe penetrates in the thickness center direction of the softened portions of the first and second magnetic steel strips, thereby reducing the stirring ability in the vicinity of the thickness center. It has the ability to improve However, the probe is under more stress than the shoulder.
- so-called preheating double-sided friction stir welding is applied as the welding method, and the relationships of the above expressions (7) and (8) are simultaneously satisfied. Thereby, the stirring ability is further enhanced. Therefore, it is possible to use rotary tools without probes.
- Rotary tools without probes are more durable than rotary tools with probes. Therefore, it is preferable to use a probeless rotary tool in terms of the durability and life extension of the rotary tool, and thus the reduction of the joint failure rate (due to wear and breakage of the rotary tool).
- FIG. 3 shows an example of a rotary tool without a probe having a flat tip surface (hereinafter also referred to as a flat tip rotary tool).
- FIG. 4 shows an example of a rotating tool without a probe (hereinafter also referred to as a convex tip rotating tool) whose distal end surface is a convex curved surface.
- FIG. 5 shows an example of a rotary tool without a probe (hereinafter also referred to as a concave tip rotary tool) having a concave curved tip surface.
- the tip of a rotary tool without a probe consists only of a shoulder. That is, the tip of the rotating tool without a probe has a shape that is discontinuous with the shoulder, and does not have a portion (probe) protruding substantially vertically toward the workpiece.
- the tip surface of the rotating tool is preferably a flat surface as shown in FIG. 3, a convex curved surface as shown in FIG. 4, or a concave curved surface as shown in FIG.
- the shape of the tip in a plane perpendicular to the tool rotation axis is circular.
- the tip face that comes into contact with the workpiece consists of one plane perpendicular to the rotation axis of the tool.
- the tip surface that comes into contact with the material to be welded has a continuous shape without a probe and has a substantially uniform inclined surface. More specifically, the tip surface constitutes one curved surface (paraboloid, prolate sphere, or spherical surface) protruding from the outer periphery toward the center.
- the cross section of the distal end surface (the cross section including the rotation axis and parallel to the rotation axis) becomes a curve with a substantially uniform radius of curvature.
- the curved surface height dv (mm) and the shoulder diameter D (mm) satisfy the following equation (16).
- dv/D ⁇ 0.06 (16) That is, by setting dv/D to 0.06 or less, when the tip portion of the rotating tool contacts the workpiece, the pressure can be effectively applied to the flow portion, and plastic flow can be generated more effectively. be able to. On the other hand, if dv/D exceeds 0.06, the front and back surfaces of the joint may become excessively concave, and the thickness of the joint may become smaller than the thickness of the steel strip. In such a case, it becomes difficult to secure joint strength, which is not preferable. Although the lower limit of dv/D is not particularly limited, dv/D is preferably 0.01 or more from the viewpoint of effectively applying pressure to the fluidized portion.
- the tip surface that comes into contact with the material to be welded has a continuous shape without a probe and has a substantially uniform inclined surface. More specifically, the tip surface constitutes one curved surface (paraboloid, prolate sphere, or spherical surface) that is depressed from the outer periphery toward the center. Further, as shown in FIG. 5, the cross-section of the distal end surface (the cross-section including the rotation axis and parallel to the rotation axis) becomes a curve with a substantially uniform radius of curvature. In addition, it is preferable that the curved surface depth dc (mm) and the shoulder diameter D (mm) satisfy the following equation (17).
- the tip surface of the rotating tool has a spiral (spiral) stepped portion in the opposite direction of rotation.
- the spiral stepped portion for example, starts from the center of the tip surface of the rotary tool or the periphery of the center circle of the tip surface of the rotary tool as shown in FIGS. It is defined by radial curves (vortices).
- the center circle of the tip end face of the rotary tool is a circle with an arbitrary diameter centered at the center of the tip end face of the rotary tool.
- the number of vortices is four.
- the number of vortices that define the stepped portion should be one or more. However, if the number of eddies defining the stepped portion exceeds six, the effect of promoting the material flow becomes poor. In addition, there is a possibility that the shape becomes more complicated and it becomes easy to break. Therefore, it is preferable that the number of vortices defining the stepped portion is six or less. 9 to 13 respectively show examples in which the number of vortices defining the stepped portion is two to six.
- the number of vortices that define the step according to the shoulder diameter it is preferable to increase the number of vortices defining the stepped portion as the shoulder diameter increases, and decrease the number of vortices defining the stepped portion as the shoulder diameter decreases.
- the shoulder diameter is less than 6 mm, it is preferable that the number of vortices defining the stepped portion is two or less.
- the shoulder diameter is 6 mm or more, it is preferable that the number of vortices defining the stepped portion is 3 to 6.
- a regular n-gon is drawn as shown in FIGS.
- the number of vortices may be one. 9, 11 and 13, the number of vortices may be two and the vortices may be formed at regular intervals. In the case of FIGS. 10 and 13, the number of vortices may be three and the vortices may be formed at regular intervals.
- the length of each vortex is preferably 0.5 to 2 turns of the circumference of the tip surface. It is also preferable to adjust the length of the vortex according to the shoulder diameter. For example, it is preferable to lengthen the length of the vortex as the shoulder diameter increases, and shorten the length of the vortex as the shoulder diameter decreases.
- the stepped portion changes the height position stepwise for each region between vortices, as shown in FIG. It is constructed by
- the stepped portion is formed by gradually increasing the height from the center of the tip surface toward the outer periphery.
- the shape of such a stepped portion is also referred to as a stepped shape.
- the number of steps of the step portion may be one or more.
- each stepped portion may be, for example, substantially horizontal.
- the stepped portion is formed by providing a region (hereinafter also referred to as a groove portion) recessed from the tip surface at the position of the vortex, as shown in FIG.
- a stepped portion that gradually lowers from the center of the tip surface toward the outer periphery is formed.
- a stepped portion is formed that gradually rises from the center of the tip surface toward the outer periphery.
- the shape of such a stepped portion is also referred to as a groove shape.
- examples of the cross-sectional shape of the groove include U-shape, V-shape, L-shape, and the like.
- the number of steps of the step portion may be one or more.
- the stepped portion is configured by providing a groove portion at the position of the vortex, as shown in FIG.
- the shape of the groove include U-shape, V-shape, L-shape, and the like.
- the number of steps of the step portion may be one or more.
- the metal material softened by frictional heat flows from the outside to the inside of the rotating tool when the workpieces are pressed and stirred by the rotating tool.
- the metal material flows out of the pressed portion by the rotary tool.
- the plastic flow of the pressing portion is promoted.
- the root portion on the side opposite to the tip portion of the rotary tool may be attached to a generally used double-sided friction stir welding apparatus, and the shape of the root portion is not particularly limited. .
- FIG. 17 is a cross-sectional view of a joint of electromagnetic steel strips in the plate thickness direction.
- the vertical direction is the plate thickness direction.
- the horizontal direction is the junction vertical direction.
- the direction toward the front side of the paper is the joining direction. That is, the plane shown in FIG. 17 (the cross section in the plate thickness direction) includes the joining vertical direction and the plate thickness direction.
- the joining joint of the above electromagnetic steel strip is An electromagnetic steel strip joining joint for joining a first electromagnetic steel strip and a second electromagnetic steel strip,
- the joint of the electromagnetic steel strip has a joint and a thermal processing affected zone adjacent to the joint,
- the steel structures of the joint and the thermal processing affected zone are structures mainly composed of ferrite phase, It satisfies the relationships of the following expressions (1) to (4).
- Dsz is the average value ( ⁇ m) of the ferrite grain size at the junction
- Dhaz1 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the first electromagnetic steel strip side
- Dhaz2 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the second electromagnetic steel strip side
- Dbm1 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the first electromagnetic steel strip
- Dbm2 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the second electromagnetic steel strip
- Hsz is the average hardness of the joint
- Hbm1 is the average hardness of the base metal portion of the first magnetic steel strip
- Hbm2 is the average hard hardness of the joint
- first electromagnetic steel strip and second electromagnetic steel strip are electromagnetic steel strips to be joined.
- the chemical composition of the first magnetic steel strip and the second magnetic steel strip is not particularly limited as long as it is a common cold-rolled magnetic steel strip (magnetic steel sheet).
- a chemical composition containing Si in the range of 2.0 to 5.0% by mass can be exemplified.
- a component composition of S: 0.01% by mass or less, N: 0.01% by mass or less, and the balance being Fe and unavoidable impurities can be exemplified.
- the above component composition in mass%, optionally, Sn: 0.2% or less, Sb: 0.2% or less, Ca: 0.01% or less, REM: 0.05% or less, and Mg: At least one selected from the group consisting of 0.01% or less can be contained.
- the above component composition may optionally contain at least one selected from the group consisting of Cr: 1% or less, Ni: 1% or less, and Cu: 1% or less in mass%. .
- Elements other than Si and Fe may all be 0%.
- the chemical composition of the first magnetic steel strip and the second magnetic steel strip may be the same or different.
- the thickness t1 of the first electromagnetic steel strip and the thickness t2 of the second electromagnetic steel strip are not particularly limited, but t1 and t2 are preferably 1.2 to 3.2 mm, respectively. Note that t1 and t2 may be the same or different.
- the regions that are not affected by hot working due to frictional heat and plastic flow are called base material portions.
- the base material portion, and the joint portion and the thermal processing affected zone are defined as follows. That is, the joint of the electromagnetic steel strip is cut in the plate thickness (vertical) direction so that the plane shown in FIG. Then, the cut surface is polished and etched with a saturated aqueous solution of picric acid, nital (a solution of nitric acid and ethanol) or aqua regia (a mixed solution of concentrated hydrochloric acid and concentrated nitric acid at a volume ratio of 3:1). Then, the cut surface is observed with an optical microscope, and the base material portion, the joint portion, and the thermal processing affected portion are defined based on the degree of etching and the like.
- the welded portion is a region that undergoes hot working due to frictional heat and plastic flow between the rotating tool and the material to be welded and becomes a recrystallized structure.
- the joint is composed of a ferrite phase-based steel structure, specifically, a ferrite phase with an area ratio of 95% or more.
- the area ratio of the ferrite phase may be 100%.
- the area ratio of the residual structure other than the ferrite phase is 5% or less.
- Examples of residual structures other than the ferrite phase include secondary phases such as martensite, sulfides, nitrides, and carbides.
- the area ratio of the residual tissue may be 0%.
- the area ratio of the ferrite phase is measured as follows. That is, a test piece is cut out from the joint of the electromagnetic steel strip so that the measurement area of the joint, which will be described later, is included in the observation surface.
- the observation plane is the plane shown in FIG. 17 (that is, the plane including the joining vertical direction and the plate thickness direction). Then, after polishing the observation surface of the test piece, 3 vol. % nital, a picric acid saturated aqueous solution, or aqua regia to expose the tissue. Then, within the measurement area of the joint portion described later, a total of 10 fields of view are photographed with an optical microscope at a magnification of 500 times.
- the area of the ferrite phase is calculated for 10 fields of view from the obtained tissue image using Adobe Photoshop of Adobe Systems.
- the area of the ferrite phase calculated for each field of view is divided by the area of each field of view and multiplied by 100. Then, the arithmetic mean value of those values is taken as the area ratio of the ferrite phase.
- Dsz is measured according to JIS G 0551. Specifically, it is measured as follows. That is, the joint of the electromagnetic steel strip is cut in the plate thickness (vertical) direction so that the plane shown in FIG. In the cut plane, the direction perpendicular to the joint is the X-axis, and the plate thickness direction is the Y-axis.
- the origin of the X-axis and the Y-axis is the center position of the joint portion in the direction perpendicular to the joining and the center position of the plate thickness of the member to be joined in the plate thickness (vertical) direction.
- the center position of the joint in the joint vertical direction is, for example, the center position of the butt gap in the case of a butt joint and the center position of the lap in the case of a lap joint.
- the thickness center position of the material to be joined in the thickness (vertical) direction is, for example, in the case of a butt joint, the thickness of the first electromagnetic steel strip or the second electromagnetic steel strip, whichever has the smaller thickness. It is the center position, and in the case of a lap joint, it is the plate thickness center position of the lapped portion.
- t is the average value (mm) of the plate thickness of the first magnetic steel strip and the plate thickness of the second magnetic steel strip.
- the above measurement area includes an area that is not a joint, such as a thermal processing affected zone or a base material, the area is excluded from the measurement area.
- the X-axis and the Y-axis + and - may be arbitrarily set.
- a cutting method the number of grains captured per 1 mm of the test line or the number of intersections P Evaluation
- the ferrite grain size at the junction is measured five times in total, and the average value of these measurements is taken as Dsz.
- the measurement area of the ferrite grain size of the joint is hereinafter simply referred to as the measurement area of the joint.
- Hsz, Hbm1 and Hbm2 are measured according to JIS Z 2244. Specifically, each is measured as follows. That is, the Vickers hardness (HV) is measured at arbitrary five points within the measurement region of the joint on the cut surface under the condition of a test force of 4.9N. And let these average values be Hsz.
- HV Vickers hardness
- HV Vickers hardness
- TszL and TszH may be measured, for example, as follows. That is, the joint of the electromagnetic steel strip is cut in the plate thickness (vertical) direction so that the plane shown in FIG. Then, TszL and TszH are measured on the cut surface using vernier calipers or the like.
- the heat-work-affected zone is a region adjacent to the joint, which is affected by hot working due to frictional heat and plastic flow but does not reach a recrystallized structure due to insufficient temperature and working. Also, the thermal processing affected zones are formed on both sides of the first magnetic steel strip and the second magnetic steel strip adjacent to the joint.
- the heat-work-affected zone is composed of a ferrite phase-based steel structure, specifically, a ferrite phase with an area ratio of 95% or more.
- the area ratio of the ferrite phase may be 100%.
- the area ratio of the residual structure other than the ferrite phase is 5% or less.
- Examples of residual structures other than the ferrite phase include secondary phases such as martensite, sulfides, nitrides, and carbides.
- the area ratio of the residual tissue may be 0%.
- the area ratio of the ferrite phase may be measured in the same manner as described above.
- Dhaz1 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the first electromagnetic steel strip side
- Dhaz2 is the average value ( ⁇ m) of the ferrite grain size in the heat-affected zone on the second electromagnetic steel strip side
- Dbm1 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the first electromagnetic steel strip
- Dbm2 is the average value ( ⁇ m) of the ferrite grain size in the base metal portion of the second electromagnetic steel strip; is.
- Dhaz1, Dhaz2, Dbm1 and Dbm2 are measured in accordance with JIS G 0551 in the same manner as Dsz, which is the average value of ferrite grain sizes in the joint.
- the measurement area of the ferrite grain size in the heat-affected zone on the first electromagnetic steel strip side (hereinafter also referred to as the measurement area on the heat-affected zone on the first electromagnetic steel strip side) is set as follows. . That is, the joint of the electromagnetic steel strip is cut in the plate thickness (vertical) direction so that the plane shown in FIG. In the above cut plane, the direction perpendicular to the joint is the X-axis, and the plate thickness direction is the Y-axis.
- the origin of the X-axis and the Y-axis is defined as the boundary position between the joint portion at the plate thickness center position (level) of the first electromagnetic steel strip and the heat-affected zone on the side of the first electromagnetic steel strip.
- t1 is the plate thickness of the first electromagnetic steel strip.
- + and - may be arbitrarily set. However, if the above measurement region includes a region that is not a heat-work-affected zone on the side of the first electrical steel strip, such as a joint portion or base metal portion, the region is excluded from the measurement region.
- the joint refers to the area that becomes a recrystallized structure after being subjected to hot working due to frictional heat and plastic flow between the rotating tool and the material to be welded.
- the heat-work-affected zone is a region adjacent to the joint and is affected by hot working due to frictional heat and plastic flow, but is a region where the temperature and working are insufficient and the structure does not lead to recrystallization.
- the base material refers to a region that is not affected by hot working due to frictional heat and plastic flow.
- the measurement area of the ferrite grain size in the heat-affected zone of the second electromagnetic steel strip (hereinafter also referred to as the measurement area of the heat-affected zone of the second electromagnetic steel strip) is set as follows. do. That is, the joint of the electromagnetic steel strip is cut in the plate thickness (vertical) direction so that the plane shown in FIG. In the above cut plane, the direction perpendicular to the joint is the X-axis, and the plate thickness direction is the Y-axis.
- the origin of the X-axis and the Y-axis is defined as the boundary position between the joint portion at the plate thickness center position (level) of the second electromagnetic steel strip and the heat-affected zone on the side of the second electromagnetic steel strip.
- t2 is the plate thickness of the second electromagnetic steel strip.
- + and - may be arbitrarily set. However, if the above measurement region includes a region that is not a heat-work-affected zone on the side of the second electrical steel strip, such as a joint or a base material, the region is excluded from the measurement region.
- the measurement area of the ferrite grain size of the base material portion of the first electromagnetic steel strip and the second electromagnetic steel strip are the thickness center position ⁇ 0.2 ⁇ t1 area (level in the thickness (vertical) direction) of the base material portion of the first electromagnetic steel strip in the above cut surface and the second electromagnetic steel strip of the thickness center position of the base material portion ⁇ 0.2 ⁇ t2 (level in the thickness (vertical) direction).
- the position in the vertical (horizontal) direction of joining may be selected arbitrarily as long as it is the base material portion.
- t1 and t2 are the plate thicknesses of the first and second magnetic steel strips, respectively.
- butt joints and lap joints can be exemplified.
- a method for manufacturing an electromagnetic steel strip according to one embodiment of the present invention comprises: a step of joining the first magnetic steel strip and the second magnetic steel strip by the friction stir welding method for magnetic steel strips according to one embodiment of the present invention to obtain a joined steel strip; and cold-rolling the joined steel strip to obtain a cold-rolled steel strip.
- the joined steel strip preferably has a first electromagnetic steel strip, a second electromagnetic steel strip, and the joining joint of the above [2] electromagnetic steel strip, and the first electromagnetic steel strip and a second electromagnetic steel strip are joined via a joining joint of the electromagnetic steel strip.
- the cold rolling conditions are not particularly limited, and may be in accordance with conventional methods.
- pickling may optionally be performed before cold rolling.
- the electromagnetic steel strips having the composition shown in Table 1 (the balance being Fe and unavoidable impurities) were used as the materials to be joined (first and second electromagnetic steel strips). Then, by preheating friction stir welding under the preheating conditions shown in Table 2 and the welding conditions shown in Tables 3 and 4, the first electromagnetic steel strip (preceding steel strip) was formed by simulating being on a continuous cold rolling line. ) and a second electromagnetic steel strip (subsequent step) were preheated and joined to produce a joined joint of the electromagnetic steel strips.
- Table 1 the balance being Fe and unavoidable impurities
- the groove is a so-called I-shaped groove that does not have a groove angle on the end faces of the two electromagnetic steel strips that are the materials to be joined, and the two electromagnetic steel strips are joined in a milling-like surface condition.
- the steel strips were butted and joined.
- Table 1 also shows the average ferrite grain size, the average hardness, and the Erichsen value of the base material of the magnetic steel strip.
- the average value of ferrite grain size and the average value of hardness of the base metal portion of the electrical steel strip are obtained by the above-described method.
- the Erichsen value is a value measured according to the Erichsen test method specified in JIS Z 2247.
- the conditions not specified were set according to the ordinary method.
- the heating device was interlocked with the rotary tool (at the same speed as the welding speed) and moved in the welding direction.
- a high-frequency induction heating device was used as the heating device. More specifically, a high-frequency power source with a maximum output of 100 kW and a frequency band of 70 to 90 kHz was connected to a rectangular induction heating coil with a length of 100 mm and a width of 30 mm. Then, the induction heating coil was placed so that the 100 mm long side was parallel to the direction in which the welding progressed, and was positioned 10 mm away from the surface on one or both sides of the material to be welded in the plate thickness direction.
- “single side” means that the heating device is arranged only on one side (front side) of the material to be joined, and “both sides” is described.
- the one with a bonding means that a heating device is arranged on both sides (both the front side and the back side) of the material to be joined.
- the preheating temperature was measured on both surfaces of the materials to be welded by a thermography provided in the friction stir welding apparatus.
- Table 2 also shows the measured preheating temperatures of the materials to be joined.
- the rotating direction of the front-side rotary tool arranged on the upper side in the vertical direction is rotated clockwise when viewed from the upper side in the vertical direction
- the rotating direction of the back-side rotary tool arranged on the lower side in the vertical direction is rotated as seen from the upper side in the vertical direction. rotated counterclockwise. In other words, both were rotated counterclockwise when the tip of each rotating tool was viewed from the front.
- any of the rotary tools having the configurations shown in FIGS. 2-8 were used.
- rotary tools having the same cross-sectional dimensions and shape were used as the front-side rotating tool and the back-side rotating tool.
- These rotating tools are all made of tungsten carbide (WC) with a Vickers hardness of HV1090, which is harder than the material to be joined.
- WC tungsten carbide
- HV1090 Vickers hardness of HV1090
- the first electromagnetic steel strip (preceding steel strip) was joined to the upper side of the lap, and the second magnetic steel strip (following steel strip) was joined to the lower side of the lap.
- the direction of rotation of the rotating tool, the shape of the rotating tool, and the like are the same as in the case of butt joint.
- a welded portion, a thermal processing-affected portion, and a base material portion were defined according to the procedure described above.
- Dsz average value of ferrite grain size at the junction ( ⁇ m);
- Dhaz1 average value ( ⁇ m) of ferrite grain size in the heat-affected zone on the first electromagnetic steel strip side;
- Dhaz2 average value ( ⁇ m) of ferrite grain size in the heat-affected zone on the second electromagnetic steel strip side;
- Dbm1 average value ( ⁇ m) of ferrite grain size in the base metal portion of the first electrical steel strip;
- Dbm2 average value ( ⁇ m) of ferrite grain size in the base metal portion of the second electromagnetic steel strip;
- Hsz average hardness of the joint,
- Hbm1 Average hardness of the base metal portion of the first magnetic steel strip
- Hbm2 Average hardness of the base metal portion of the second magnetic steel strip was measured.
- TszL the thickness of the joint Minimum value (mm)
- TszH The maximum value (mm) of the joint thickness was measured. Table 5 shows the results. In addition, when defects were confirmed in the confirmation of surface defects and internal defects, which will be described later, the above measurements were omitted. Further, when surface defects were confirmed, confirmation of internal defects was also omitted.
- the welded joint of the obtained electromagnetic steel strip was measured so that the surface shown in FIG. A test piece was taken by cutting in the vertical direction.
- the cutting positions in the joining direction are a position 20 mm from the end of the material to be joined on the joining (welding) start side, a position 20 mm from the end of the material to be joined on the joining (welding) end side, and a position 20 mm from the end of the material to be joined. It was positioned midway between both ends of the Then, a total of three test pieces were collected so that the cut surface at the cut position was the observation surface. Then, the observed surface of the obtained test piece was observed with an optical microscope (magnification: 10 times).
- breakage suppressing effect the effect of suppressing breakage of the coil joints in the production line.
- the joint of the obtained electromagnetic steel strip includes the joint, the thermal processing affected zone and base metal on the first electromagnetic steel strip side, and the thermal processing affected zone and base metal on the second electromagnetic steel strip side.
- a test piece was taken as follows. Then, using the sampled test piece, the Erichsen value of the bonded joint was measured according to the Erichsen test method specified in JIS Z 2247. Then, the ratio of the Erichsen value of the joined joint to the Erichsen value of the base material portion (hereinafter also referred to as the ratio of the Erichsen value) was used to evaluate the fracture prevention effect according to the following criteria. Table 6 shows the results.
- the durability of the rotary tool was evaluated in the following manner. In other words, when the rotary tool is damaged or worn, there is a high probability that defective joining due to internal defects will occur. Therefore, under the same conditions as above, each joint with a joint length of 0.5 m was repeatedly welded, and the presence or absence of an internal defect was determined by the determination method shown in the above "(II) Presence or absence of internal defects" for the resulting welded joint. Judged. Then, the durability of the rotary tool was evaluated based on the maximum number of times of welding at which 90% or more of the joints judged to have no internal defects were maintained (hereinafter also referred to as the maximum number of times of welding at 90% maintenance). Table 6 also shows the maximum number of times of joining at 90% maintenance.
- the 90% maintenance maximum number of times of welding is defined by the following formula (a ) is the maximum value of N that satisfies [Number of welded joints determined to have no internal defects among welded joints confirmed for internal defects] ⁇ [Number of welded joints confirmed for internal defects] ⁇ 100 ⁇ 90 Formula (a)
- the 90% maintenance maximum number of times of bonding is 0 when it is determined that there is a defect in the above (I) presence or absence of surface defects or (II) presence or absence of internal defects.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
「高Si鋼を溶接するに際し、Niを主成分とするフィラーワイヤを用い、あるいはNiを主成分とする粉末フィラーを供給して溶接金属の化学組成が下記 (1)式を満足するように溶接を行うことを特徴とする高Si鋼のレーザー溶接方法。
X=[%Ni]-[%Si]×2.5 -([%Cr]+[%Mo])×0.4 ≧0・・(1)
ただし、[%Ni]、[%Si]、[%Cr]および[%Mo]は、それぞれ、溶接金属中のNi、Si、CrおよびMoの含有量(重量%)を表す。」
が開示されている。
「先行板と後行板とを突合せてフィラーワイヤーを用いてレーザー溶接する方法において、溶接初期の前記先行板と後行板の突合せギャップ(Gap)と溶接金属の平均巾(DEPO)との比(Gap/DEPO)が0.3~0.8であることを特徴とするレーザー溶接方法。」
が開示されている。
「連続冷間圧延ライン上を搬送される特殊鋼からなる先行薄板と後行薄板とをレーザー溶接して形成された溶接部において、
冷間圧延によって母材の上面側に延び出た溶接金属からなる上側延出部の下側に存在する前記母材の最小厚みをL1とし、冷間圧延によって前記母材の下面側に延び出た溶接金属からなる下側延出部と前記上側延出部に挟まれた前記母材の最小厚みをL2とすると、L1及びL2の少なくともいずれかがゼロより大きいことを特徴とする薄板の溶接部。」
が開示されている。
また、本発明は、上記の電磁鋼帯の摩擦攪拌接合方法を用いた電磁鋼帯の製造方法を提供することを目的とする。
ここで、摩擦攪拌接合とは、回転ツールと被接合材との摩擦熱、および、被接合材の塑性流動を利用した固相接合である。すなわち、回転ツールにより被接合材の未接合部(接合予定領域)を摩擦攪拌する。被接合材の未接合部が摩擦熱により加熱されると、塑性流動が開始する。そして、塑性流動域と母材部との界面が大きく伸長される。これにより、酸化物の無い清浄な界面同士が接触し、被接合材が溶融することなく接合部が形成される。ここで、接合部は、回転ツールと被接合材との摩擦熱と塑性流動による熱間加工を受け再結晶組織となる領域であり、撹拌部と呼ばれる場合もある。また、接合部に隣接する領域には、摩擦熱と塑性流動による熱間加工の影響を受けるものの、温度や加工が不十分で再結晶に至らない組織となる領域が形成される。この領域を熱加工影響部という。さらに、被接合材には、摩擦熱と塑性流動による熱間加工の影響を受けない領域も存在する。この領域を母材部という。なお、摩擦攪拌接合に関する技術が、例えば、特許文献4~19および非特許文献1に開示されているが、これらはいずれも、電磁鋼帯のコイル接合に適用するものではない。
(d)上記(a)~(c)の問題を有利に解決するには、以下の点が重要である。
・被接合材に予熱処理を行う。
・接合方式としていわゆる両面摩擦攪拌接合を適用する。
・そのうえで、回転ツールの肩部の直径D(mm)について、次式(7)の関係を満足させる。
・さらに、接合条件を適切に制御する。特には、回転ツールの回転数RS(回/分)、回転ツールの肩部の直径D(mm)および接合速度JS(mm/分)により表されるRS×D3/JSについて、次式(8)の関係を満足させる。
これにより、被接合材として電磁鋼帯を用いる場合であっても、コイル接合部の形状の劣化を招くことなくコイル接合部の機械的特性が高まり、製造ラインでのコイル接合部の破断発生が有効に抑止される。また、欠陥発生を抑制しつつ接合速度を高速度化することができるので、施工能率に優れ、生産性の点でも極めて有利である。さらに、回転ツールの耐久性の点でも有利である。なお、以下、被接合材への予熱処理を行う両面摩擦攪拌接合を、予熱式両面摩擦攪拌接合ともいう。
4×TJ ≦ D ≦ 10×TJ ・・・(7)
180×TJ ≦ RS×D3/JS ≦ 1500×TJ ・・・(8)
ここで、TJは、
未接合部が突合せ部の場合、第1の電磁鋼帯の板厚および第2の電磁鋼帯の板厚の平均値(mm)であり、
未接合部が重ね合せ部の場合、重ね合せ部の厚さ(mm)である。
これにより、被接合材として電磁鋼帯を用いる場合であっても、コイル接合部の形状の劣化を招くことなくコイル接合部の機械的特性が高まり、製造ラインでのコイル接合部の破断発生がより有効に抑止される。
Dsz ≦ 200μm ・・・(1)
Dhaz1 ≦ Dbm1 ・・・(2)
Dhaz2 ≦ Dbm2 ・・・(3)
0.9×(Hbm1+Hbm2)/2 ≦ Hsz ≦ 1.2 ×(Hbm1+Hbm2)/2 ・・・(4)
ここで、
Dszは、接合部のフェライト粒径の平均値(μm)、
Dhaz1は、第1の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dhaz2は、第2の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dbm1は、第1の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Dbm2は、第2の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Hszは、接合部の硬さの平均値、
Hbm1は、第1の電磁鋼帯の母材部の硬さの平均値
Hbm2は、第2の電磁鋼帯の母材部の硬さの平均値
である。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
1.被接合材である第1の電磁鋼帯と第2の電磁鋼帯とを、互いに対向する一対の回転ツールにより接合する、電磁鋼帯の摩擦撹拌接合方法であって、
前記被接合材の未接合部を、前記被接合材の少なくとも一方の面において前記回転ツールの接合方向の前方に配置される加熱装置により、予熱する、予熱工程と、
前記被接合材の未接合部に、前記回転ツールを両面から互いに逆方向に回転させながら押圧し、前記回転ツールを接合方向に移動させることにより、前記第1の電磁鋼帯と前記第2の電磁鋼帯とを接合する、接合工程と、をそなえ、
前記被接合材の未接合部は、前記第1の電磁鋼帯の端部と、前記第1の電磁鋼帯に続く前記第2の電磁鋼帯の端部との突合せ部または重ね合せ部であり、
前記加熱装置を前記回転ツールに連動させて接合方向に移動させることにより、前記予熱工程と前記接合工程とを連続して行い、
また、前記回転ツールの肩部の直径D(mm)が、次式(7)の関係を満足し、かつ、
前記回転ツールの回転数RS(回/分)、前記回転ツールの肩部の直径D(mm)および接合速度JS(mm/分)により表されるRS×D3/JSが、次式(8)の関係を満足する、電磁鋼帯の摩擦撹拌接合方法。
4×TJ ≦ D ≦ 10×TJ ・・・(7)
180×TJ ≦ RS×D3/JS ≦ 1500×TJ ・・・(8)
ここで、TJは、
未接合部が突合せ部の場合、第1の電磁鋼帯の板厚および第2の電磁鋼帯の板厚の平均値(mm)であり、
未接合部が重ね合せ部の場合、重ね合せ部の厚さ(mm)である。
Dsz ≦ 200μm ・・・(1)
Dhaz1 ≦ Dbm1 ・・・(2)
Dhaz2 ≦ Dbm2 ・・・(3)
0.9×(Hbm1+Hbm2)/2 ≦ Hsz ≦ 1.2 ×(Hbm1+Hbm2)/2 ・・・(4)
ここで、
Dszは、接合部のフェライト粒径の平均値(μm)、
Dhaz1は、第1の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dhaz2は、第2の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dbm1は、第1の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Dbm2は、第2の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Hszは、接合部の硬さの平均値、
Hbm1は、第1の電磁鋼帯の母材部の硬さの平均値
Hbm2は、第2の電磁鋼帯の母材部の硬さの平均値
である。
0.8×TbmL ≦ TszL ・・・(5)
TszH ≦ 1.3×TbmH ・・・(6)
ここで、
TszLは、接合部の厚さの最小値(mm)、
TszHは、接合部の厚さの最大値(mm)、
TbmLは、第1の電磁鋼帯と第2の電磁鋼帯のうち、薄い方の電磁鋼帯の板厚(mm)、
TbmHは、第1の電磁鋼帯と第2の電磁鋼帯のうち、厚い方の電磁鋼帯の板厚(mm)、
である。ただし、第1の電磁鋼帯と第2の電磁鋼帯の板厚が同じ場合には、TbmL= TbmHとなる。
0.4×TJ ≦ G ≦ 0.9×TJ ・・・(9)
100 ≦ TPW=0 ≦ 1000 ・・・(11)
100 ≦ TPW=0.2D ≦ 1000 ・・・(12)
50 ≦ TPW=0.5D ≦ 800 ・・・(13)
ここで、Wは被溶接材の接合中央線から接合垂直方向に離間する距離(mm)であり、TPW=0、TPW=0.2DおよびTPW=0.5Dはそれぞれ、W=0、0.2×Dおよび0.5×Dの位置における被接合材の表面での予熱温度(℃)である。また、Dは、回転ツールの肩部の直径D(mm)である。
0.70 ≦ TPW=0.2D/TPW=0 ≦ 1.00 ・・・(14)
TPW=0.5D/TPW=0 ≦ 0.45 ・・・(15)
該接合鋼帯に冷間圧延を施し、冷延鋼帯を得る工程と、をそなえる、電磁鋼帯の製造方法。
[1]電磁鋼帯の摩擦撹拌接合方法
まず、本発明の一実施形態に従う電磁鋼帯の摩擦撹拌接合方法を、図1A~Dを用いて説明する。図1A~Dは、本発明の一実施形態に従う電磁鋼帯の摩擦撹拌接合方法を説明する概略図であり、図1Aは側面斜視図、図1Bは図1AのA-A矢視図、図1Cは図1Aの上面図、図1Dは図1Aの接合中央線位置における断面図である。
図中、符号1が第1の電磁鋼帯(被接合材)、2が第2の電磁鋼帯(被接合材)、3-1が回転ツール(表(オモテ)面側回転ツール)、3-2が回転ツール(裏面側回転ツール)、4が接合部、5-1および5-2が肩部(ショルダー)、6-1および6-2がプローブ(ピン)、7が把持装置、9-1および9-2が先端部、10-1が加熱装置(表(オモテ)面側加熱装置)、10-2が加熱装置(裏面側加熱装置)、11が回転ツールの駆動装置、12が動作制御装置である。なお、図1Aでは、把持装置の図示は省略している。また、αは回転ツールの傾斜角度(°)、aはプローブ部の直径(以下、ピン径ともいう)(mm)、bはプローブ部の長さ(以下、ピン長さともいう)(mm)、Dは回転ツールの肩部の直径(mm)、gはプローブ間の隙間(mm)、Gは回転ツールの肩部間の隙間であり、HおよびIは加熱装置による予熱(予定)領域を表している。なお、見やすさの観点から、図1Bおよび図1Cでは、10-1の加熱装置(表面側加熱装置)および/または10-2の加熱装置(裏面側加熱装置)を破線で表している。また、表(オモテ)面(側)の記載について、表面(ヒョウメン)と区別するために、初出箇所などでは表(オモテ)面と表記している。
接合方向(回転ツールの進行方向)、
接合垂直方向(接合方向に垂直でかつ、板厚方向に垂直な方向、図1では接合部の幅方向および電磁鋼帯の進行方向と一致する)、および、
板厚方向(被接合材の表面に対して垂直な方向)
により、各部の配置などを示している。
例えば、図1Bでは、鉛直方向が板厚方向である。水平方向が、接合垂直方向である。紙面手前側の方向が、接合方向である。すなわち、図1Bに示す面内には、接合垂直方向と板厚方向とが含まれる。また、破線で示す10-1および10-2の加熱装置は、3-1および3-2の回転ツールより紙面手前側に位置する。同様に、図1Cにおいて破線で示す10-1の加熱装置は、予熱領域HおよびIより紙面手前側に位置する。
・回転ツールの肩部の直径D(mm)について、次式(7)の関係を満足させ、かつ、
・回転ツールの回転数RS(回/分)、回転ツールの肩部の直径D(mm)および接合速度JS(mm/分)により表されるRS×D3/JSについて、次式(8)の関係を満足させる、ことを特徴とするものである。
4×TJ ≦ D ≦ 10×TJ ・・・(7)
180×TJ ≦ RS×D3/JS ≦ 1500×TJ ・・・(8)
ここで、TJは、
未接合部が突合せ部の場合、第1の電磁鋼帯の板厚および第2の電磁鋼帯の板厚の平均値(mm)であり、
未接合部が重ね合せ部の場合、重ね合せ部の厚さ(mm)である。
被接合材である第1の電磁鋼帯と第2の電磁鋼帯とを、互いに対向する一対の回転ツールにより接合する、電磁鋼帯の摩擦撹拌接合方法であって、
前記被接合材の未接合部を、前記被接合材の少なくとも一方の面において前記回転ツールの接合方向の前方に配置される加熱装置により、予熱する、予熱工程と、
前記被接合材の未接合部に、前記回転ツールを両面から互いに逆方向に回転させながら押圧し、前記回転ツールを接合方向に移動させることにより、前記第1の電磁鋼帯と前記第2の電磁鋼帯とを接合する、接合工程と、をそなえ、
前記被接合材の未接合部は、前記第1の電磁鋼帯の端部と、前記第1の電磁鋼帯に続く前記第2の電磁鋼帯の端部との突合せ部または重ね合せ部であり、
前記加熱装置を前記回転ツールに連動させて接合方向に移動させることにより、前記予熱工程と前記接合工程とを連続して行い、
また、前記回転ツールの肩部の直径D(mm)が、上掲式(7)の関係を満足し、かつ、
前記回転ツールの回転数RS(回/分)、前記回転ツールの肩部の直径D(mm)および接合速度JS(mm/分)により表されるRS×D3/JSが、上掲式(8)の関係を満足する、というものである。
突合せ接合とは、第1の電磁鋼帯と第2の電磁鋼帯の端面同士を対向させた状態で、第1の電磁鋼帯と第2の電磁鋼帯の端面(突合せ面)を含む突合せ部に回転ツールを回転させながら押圧する。そして、その状態で、回転ツールを接合方向に移動させることにより、第1の電磁鋼帯と第2の電磁鋼帯を接合するものである。
重ね接合とは、第1の電磁鋼帯と第2の電磁鋼帯の端部の少なくとも一部を重ね合せ、重ね合せ部に回転ツールを回転させながら押圧する。そして、その状態で、回転ツールを接合方向に移動させることにより、第1の電磁鋼帯と第2の電磁鋼帯を接合するものである。
被接合材を把持する、把持装置(図示せず)と、
互いに対向する一対の回転ツールと、
前記回転ツールの駆動装置と、
前記被接合材の少なくとも一方の面において前記回転ツールの接合方向の前方に配置される、加熱装置と、
前記把持装置、前記回転ツールの駆動装置および前記加熱装置の動作制御装置と、をそなえる摩擦撹拌接合装置を用いる。
動作制御装置では、例えば、回転ツールの傾斜角度α、回転ツールの先端部の位置および先端部(プローブ)同士の間の距離g(以下、プローブ間の隙間gともいう)、回転ツールの肩部間の隙間G、接合速度(および回転ツールに連動して移動する加熱装置の接合方向への移動速度)、押込み荷重、回転ツールの回転数、回転トルク、ならびに、加熱装置の出力等を制御する。
予熱工程では、加熱装置を、被接合材の少なくとも一方の面において回転ツールの接合進行方向の前方に配置し、被接合材の未接合部を加熱装置により予熱する。なお、加熱装置を回転ツールに連動させて接合方向に移動させることにより、予熱工程と後述する接合工程とを連続して行うことができる。また、被接合材を予熱することで未接合部の軟化が容易になり、回転ツールでの撹拌が促進される。その結果、製造ラインでのコイル接合部の破断発生および欠陥発生を有効に抑止しつつ接合速度を高速度化することができ、高い施工能率を実現することが可能となる。また、接合速度を高速化しても、優れた回転ツールの耐久性(回転ツールの長寿命化)が得られる。
100 ≦ TPW=0.2D ≦ 1000 ・・・(12)
50 ≦ TPW=0.5D ≦ 800 ・・・(13)
予熱式両面摩擦攪拌接合では、予熱による被接合材への入熱と、被接合材と回転ツールの摩擦熱とにより、被接合材を軟化させ、回転ツールでの撹拌を促進することが重要である。そのためには、図1Cに示す予熱領域I(被接合材の表面における0 ≦ W ≦ 0.1×Dの領域)および予熱領域H(被接合材の表面における0.1×D < W ≦ 0.5×D)の予熱温度、特にこれらの加熱領域の代表位置であるW=0、0.2×Dおよび0.5×Dの位置における被接合材の予熱温度を適切に制御することが効果的である。このような観点から、被接合材の予熱温度を上掲式(11)~(13)の関係を満足するように制御することが好適である。ここで、Wは被溶接材の接合中央線から接合垂直方向に離間する距離(mm)であり、TPW=0、TPW=0.2DおよびTPW=0.5Dはそれぞれ、W=0、0.2×Dおよび0.5×Dの位置における被接合材の表面での予熱温度(℃)である。また、Dは、回転ツールの肩部の直径D(mm)である。なお、予熱領域は、加熱装置により予熱される被接合材の表面領域である。
TPW=0.5D/TPW=0 ≦ 0.45 ・・・(15)
また、予熱工程では、被接合材の予熱温度について、上掲式(11)~(13)の関係を満足させたうえで、さらに、上掲式(14)および(15)の関係を満足させることがより好ましい。すなわち、予熱による塑性流動促進効果を得るためには、被接合材の予熱温度を高めることが有効である。しかし、被接合材の予熱温度を過度に高めると、予熱領域の周辺においてミクロ組織の変質が生じる場合がある。そのため、接合中央線近傍の予熱領域Iでは予熱温度を高める一方、接合中央線から離れた予熱領域Hでは予熱温度を抑制することがより有効である。特に、予熱領域Iおよび予熱領域Hの代表位置であるW=0、0.2×Dおよび0.5×Dの位置における被接合材の予熱温度について、TPW=0に対するTPW=0.2Dの比であるTPW=0.2D/TPW=0を0.70~1.00の範囲とし、かつ、TPW=0に対するTPW=0.5Dの比であるTPW=0.5D/TPW=0を0.45以下に制御することが効果的である。そのため、予熱工程では、被接合材の予熱温度について上掲式(14)および(15)の関係を満足させることがより好ましい。
上記の予熱工程において、被接合材の未接合部を予熱したのち、被接合材の未接合部に、回転ツールを両面から互いに逆方向に回転させながら押圧する。そして、その状態で、回転ツールを接合方向に移動させることにより、被接合材である第1の電磁鋼帯と第2の電磁鋼帯とを接合する。
・回転ツールの肩部の直径D(mm)について、上掲式(7)の関係を満足させ、かつ、
・回転ツールの回転数RS(回/分)、回転ツールの肩部の直径D(mm)および接合速度JS(mm/分)により表されるRS×D3/JSについて、上掲式(8)の関係を満足させる、
ことが重要である。これにより、被接合材として電磁鋼帯を用いる場合であっても、コイル接合部の形状の劣化を招くことなくコイル接合部の機械的特性が高まり、製造ラインでのコイル接合部の破断発生が有効に抑止される。
Dsz ≦ 200μm ・・・(1)
Dhaz1 ≦ Dbm1 ・・・(2)
Dhaz2 ≦ Dbm2 ・・・(3)
0.9×(Hbm1+Hbm2)/2 ≦ Hsz ≦ 1.2 ×(Hbm1+Hbm2)/2 ・・・(4)
ここで、
Dszは、接合部のフェライト粒径の平均値(μm)、
Dhaz1は、第1の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dhaz2は、第2の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dbm1は、第1の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Dbm2は、第2の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Hszは、接合部の硬さの平均値、
Hbm1は、第1の電磁鋼帯の母材部の硬さの平均値
Hbm2は、第2の電磁鋼帯の母材部の硬さの平均値
である。
0.8×TbmL ≦ TszL ・・・(5)
TszH ≦ 1.3×TbmH ・・・(6)
ここで、
TszLは、接合部の厚さの最小値(mm)、
TszHは、接合部の厚さの最大値(mm)、
TbmLは、第1の電磁鋼帯と第2の電磁鋼帯のうち、薄い方の電磁鋼帯の板厚(mm)、
TbmHは、第1の電磁鋼帯と第2の電磁鋼帯のうち、厚い方の電磁鋼帯の板厚(mm)、
である。ただし、第1の電磁鋼帯と第2の電磁鋼帯の板厚が同じ場合には、TbmL= TbmHとなる。
0.4×TJ ≦ G ≦ 0.9×TJ ・・・(9)
0°≦α≦4° ・・・(10)
ここで、αは、接合方向と板厚方向(被接合材の表面に対して垂直な方向)とを含む面における、回転ツールの回転軸(以下、ツールの回転軸ともいう)の板厚方向(被接合材の表面に対して垂直な方向)からの傾斜角度である。なお、回転ツールの先端部が接合方向に対して先行する向き(の角度)を+とする。
例えば、回転ツールの回転数は、好ましくは200~6000r/min(回/分)である。回転ツールの回転数を当該範囲内とすることにより、表面形状を良好に保ちつつ課題な熱量の投入による機械特性の低下を抑制できるので、有利である。回転ツールの回転数は、より好ましくは300r/min以上である。また、回転ツールの回転数は、より好ましくは5000r/min以下である。
接合速度は、好ましくは1000~10000mm/min(mm/分)である。接合速度は、より好ましくは2000mm/min以上、さらに好ましくは3500mm/min以上、よりさらに好ましくは4000mm/min以上、よりさらに好ましくは5000mm/min以上である。
回転ツールの先端部の位置や押込み荷重、回転トルク、プローブ間の隙間などは、常法に従い、適宜、設定すればよい。
例えば、回転ツールの先端部は、接合時に被接合材である第1の電磁鋼帯および第2の電磁鋼帯と接触する。そのため、回転ツールの先端部は、接合時に晒される高温状態において、第1の電磁鋼帯および第2の電磁鋼帯よりも硬い材質で形成される。これにより、接合時に回転ツールは、先端部の形状を保持したまま、第1の電磁鋼帯および第2の電磁鋼帯に変形を加えることができる。その結果、高い撹拌能を持続的に実現することができ、適正な接合が可能となる。なお、回転ツールの先端部、第1の電磁鋼帯および第2の電磁鋼帯の硬さは、高温ビッカース硬さ試験方法により測定して、比較すればよい。なお、回転ツールの先端部のみを、第1の電磁鋼帯および第2の電磁鋼帯よりも硬い材質で形成してもよい。また、回転ツール全体を、第1の電磁鋼帯および第2の電磁鋼帯よりも硬い材質で形成してもよい。
図2Aに示す回転ツールの例では、回転ツールの形状は、肩径D:13mm、ピン径:4mm、ピン長さ:0.6mm、凹面深さ(図示せず):0.3mmである。
図2Bに示す回転ツールの例では、回転ツールの形状は、肩径D:20mm、ピン径:6.7mm、ピン長さ:0.9mm、凹面深さ(図示せず):0.3mmである。
dv/D ≦0.06 ・・・(16)
すなわち、dv/Dを0.06以下とすることにより、回転ツールの先端部が被接合材と接触する際に、流動部により有効に圧力を加えることができ、より有効に塑性流動を生じさせることができる。一方、dv/Dが0.06を超えると、接合部の表面および裏面が過度な凹状となり、接合部の厚さが鋼帯の厚さに対して小さくなる場合がある。このような場合、継手強度の確保が困難となるので、好ましくない。なお、dv/Dの下限は特に限定されるものではないが、流動部により有効に圧力を加える観点から、dv/Dは0.01以上が好ましい。
dc/D ≦ 0.03 ・・・(17)
すなわち、dc/Dを0.03以下とすることにより、接合中に、軟化した金属が先端部の凹型の曲面内に充満する。これにより、回転ツールの先端部が被接合材と接触する際に、流動部により有効に圧力を加えることができ、より有効に塑性流動を生じさせることができる。一方、dc/Dが0.03を超えると、流動部に有効に圧力を加えて十分な塑性流動を生じさせることが困難となる場合があり、好ましくない。なお、dc/Dの下限は特に限定されるものではないが、流動部により有効に圧力を加える観点から、dv/Dは0.01以上が好ましい。
次に、電磁鋼帯の接合継手を、図17を用いて説明する。図中、符号1が第1の電磁鋼帯(被接合材)、2が第2の電磁鋼帯(被接合材)、4が接合部、4-1が熱加工影響部(第1の電磁鋼帯側)、4-2が熱加工影響部(第2の電磁鋼帯側)である。なお、図17は、電磁鋼帯の接合継手の板厚方向の断面図である。図中、鉛直方向が板厚方向である。水平方向が、接合垂直方向である。紙面手前側の方向が、接合方向である。すなわち、図17に示す面(ここでいう板厚方向の断面)内には、接合垂直方向と板厚方向とが含まれる。
第1の電磁鋼帯と第2の電磁鋼帯とを接合する、電磁鋼帯の接合継手であって、
該電磁鋼帯の接合継手は、接合部と、該接合部に隣接する熱加工影響部とをそなえ、
該接合部および該熱加工影響部の鋼組織はそれぞれ、フェライト相主体の組織であり、
次式(1)~(4)の関係を満足する、というものである。
Dsz ≦ 200μm ・・・(1)
Dhaz1 ≦ Dbm1 ・・・(2)
Dhaz2 ≦ Dbm2 ・・・(3)
0.9×(Hbm1+Hbm2)/2 ≦ Hsz ≦ 1.2 ×(Hbm1+Hbm2)/2 ・・・(4)
ここで、
Dszは、接合部のフェライト粒径の平均値(μm)、
Dhaz1は、第1の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dhaz2は、第2の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dbm1は、第1の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Dbm2は、第2の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Hszは、接合部の硬さの平均値、
Hbm1は、第1の電磁鋼帯の母材部の硬さの平均値
Hbm2は、第2の電磁鋼帯の母材部の硬さの平均値
である。
また、上記の電磁鋼帯の接合継手は、例えば、上述した本発明の一実施形態に従う電磁鋼帯の摩擦撹拌接合方法により得る(製造する)ことができる。
第1の電磁鋼帯および第2の電磁鋼帯は、被接合材である電磁鋼帯である。第1の電磁鋼帯および第2の電磁鋼帯の成分組成は、冷間圧延段階の電磁鋼帯(電磁鋼板)として一般的なものであれば特に限定されない。
また、第1の電磁鋼帯と第2の電磁鋼帯の成分組成は、同じであっても、異なっていてもよい。
すなわち、電磁鋼帯の接合継手を、図17に示す面(すなわち、接合垂直方向と板厚方向とが含まれる面)が切断面となるように、板厚(鉛直)方向に切断する。ついで、切断面を研磨し、ピクリン酸飽和水溶液、ナイタール(硝酸とエタノールの溶液)または王水(濃塩酸と濃硝酸を3:1の体積比で混合した溶液)でエッチングする。ついで、当該切断面を光学顕微鏡で観察しエッチングの度合いなどから、母材部、ならびに、接合部および熱加工影響部を画定する。
接合部は、回転ツールと被接合材との摩擦熱と塑性流動による熱間加工を受け再結晶組織となる領域である。
すなわち、後述する接合部の測定領域が観察面に含まれるように、電磁鋼帯の接合継手から試験片を切り出す。なお、観察面は、図17に示す面(すなわち、接合垂直方向と板厚方向とが含まれる面)とする。ついで、試験片の観察面を研磨後、3vol.%ナイタール、ピクリン酸飽和水溶液または王水でエッチングし、組織を現出させる。ついで、後述する接合部の測定領域内において、合計10視野を、光学顕微鏡により、倍率:500倍で撮影する。ついで、得られた組織画像から、Adobe Systems社のAdobe Photoshopを用いて、フェライト相の面積を10視野分算出する。ついで、視野ごとに算出したフェライト相の面積をそれぞれの視野領域の面積で除し、100を乗じる。そして、それらの値の算術平均値を、フェライト相の面積率とする。
Dsz ≦ 200μm ・・・(1)
ここで、
Dszは、接合部のフェライト粒径の平均値(μm)、
である。
すなわち、電磁鋼帯の接合継手を、図17に示す面(すなわち、接合垂直方向と板厚方向とが含まれる面)が切断面となるように、板厚(鉛直)方向に切断する。当該切断面において、接合垂直方向をX軸、板厚方向をY軸とする。そして、接合垂直方向における接合部の中心位置で、かつ、板厚(鉛直)方向における被接合材の板厚中心位置を、X軸とY軸の原点とする。接合垂直方向における接合部の中心位置は、例えば、突合せ継手の場合には、突合せギャップの中心位置であり、重ね継手の場合には、重ね合せ部の中心位置である。板厚(鉛直)方向における被接合材の板厚中心位置は、例えば、突合せ継手の場合には、第1の電磁鋼帯と第2の電磁鋼帯のうち、板厚が小さい方の板厚中心位置であり、重ね継手の場合には、重ね合せ部の板厚中心位置である。そして、X=-0.2×t~+0.2×t、Y=-0.2×t~+0.2×tの領域を測定領域とする。ここで、tは、第1の電磁鋼帯の板厚および第2の電磁鋼帯の板厚の平均値(mm)である。ただし、上記の測定領域に、熱加工影響部や母材部といった接合部ではない領域が含まれる場合には、当該領域を測定領域から除くものとする。なお、X軸およびY軸については、+および-を任意に設定すればよい。
そして、上記の測定領域内の任意の位置において、JIS G 0551「鋼-結晶粒度の顕微鏡試験方法」に準拠した切断法(試験線1mm当たりの捕捉した結晶粒数、または、交点の数Pによって評価する)により、接合部のフェライト粒径を計5回測定し、これらの平均値をDszとする。なお、接合部のフェライト粒径の測定領域を、以下、単に、接合部の測定領域ともいう。
0.9×(Hbm1+Hbm2)/2 ≦ Hsz ≦ 1.2 ×(Hbm1+Hbm2)/2 ・・・(4)
ここで、
Hszは、接合部の硬さの平均値、
Hbm1は、第1の電磁鋼帯の母材部の硬さの平均値
Hbm2は、第2の電磁鋼帯の母材部の硬さの平均値
である。
すなわち、上記の切断面における上記の接合部の測定領域内の任意の5か所で、試験力:4.9Nの条件でビッカース硬さ(HV)を測定する。そして、これらの平均値をHszとする。
また、上記の切断面において、第1の電磁鋼帯の母材部の板厚中心位置±0.2×t1の領域(板厚(鉛直)方向)のレベル)内、および、第2の電磁鋼帯の母材部の板厚中心位置±0.2×t2の領域(板厚(鉛直)方向)のレベル)内の任意の5か所でそれぞれ、試験力:4.9Nの条件でビッカース硬さ(HV)を測定する。なお、接合垂直(水平)方向の位置については、母材部であればよく、任意に選択すればよい。そして、第1の電磁鋼帯の母材部および第2の電磁鋼帯の母材部で測定したビッカース硬さ(HV)の平均値をそれぞれ、Hbm1およびHbm2とする。ここで、t1およびt2はそれぞれ、第1および第2の電磁鋼帯の板厚である。
0.8×TbmL ≦ TszL ・・・(5)
TszH ≦ 1.3×TbmH ・・・(6)
ここで、
TszLは、接合部の厚さの最小値(mm)、
TszHは、接合部の厚さの最大値(mm)、
TbmLは、第1の電磁鋼帯と第2の電磁鋼帯のうち、薄い方の電磁鋼帯の板厚(mm)、
TbmHは、第1の電磁鋼帯と第2の電磁鋼帯のうち、厚い方の電磁鋼帯の板厚(mm)、
である。ただし、第1の電磁鋼帯と第2の電磁鋼帯の板厚が同じ場合には、TbmL= TbmHとなる。
熱加工影響部は、接合部に隣接し、摩擦熱と塑性流動による熱間加工の影響を受けるものの温度や加工が不十分で再結晶組織に至らない領域である。また、熱加工影響部は、接合部に隣接して、第1の電磁鋼帯および第2の電磁鋼帯の両側に形成される。
Dhaz1 ≦ Dbm1 ・・・(2)
Dhaz2 ≦ Dbm2 ・・・(3)
ここで、
Dhaz1は、第1の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dhaz2は、第2の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dbm1は、第1の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Dbm2は、第2の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
である。
また、第1の電磁鋼帯側の熱加工影響部のフェライト粒径の測定領域(以下、第1の電磁鋼帯側の熱加工影響部の測定領域ともいう)は、以下のように設定する。すなわち、電磁鋼帯の接合継手を、図17に示す面(すなわち、接合垂直方向と板厚方向とが含まれる面)が切断面となるように、板厚(鉛直)方向に切断する。上記の切断面において、接合垂直方向をX軸、板厚方向をY軸とする。そして、第1の電磁鋼帯の板厚中心位置(レベル)における接合部と第1の電磁鋼帯側の熱加工影響部との境界位置を、X軸とY軸の原点とする。X軸については、第1の電磁鋼帯側を+、接合部側を-とし、X=0~+0.4×t1、Y=-0.2×t1~+0.2×t1の領域を測定領域する。ここで、t1は、第1の電磁鋼帯の板厚である。なお、Y軸については、+および-を任意に設定すればよい。ただし、上記の測定領域に、接合部や母材部といった第1の電磁鋼帯側の熱加工影響部ではない領域が含まれる場合には、当該領域を測定領域から除くものとする。
次に、本発明の一実施形態に従う電磁鋼帯の製造方法を、説明する。
本発明の一実施形態に従う電磁鋼帯の製造方法は、
上記の本発明の一実施形態に従う電磁鋼帯の摩擦撹拌接合方法により第1の電磁鋼帯と第2の電磁鋼帯とを接合し、接合鋼帯を得る工程と、
該接合鋼帯に冷間圧延を施し、冷延鋼帯を得る工程と、をそなえる。
ここで、接合鋼帯は、好適には、第1の電磁鋼帯と、第2の電磁鋼帯と、上記[2]の電磁鋼帯の接合継手とを有し、第1の電磁鋼帯および第2の電磁鋼帯が当該電磁鋼帯の接合継手を介して接合されている。
また、冷間圧延条件については特に限定されず、常法に従えばよい。また、第1の電磁鋼帯と第2の電磁鋼帯の接合後、冷間圧延を行う前に、任意に、酸洗を行ってもよい。
また、重ね接合の場合は、第1の電磁鋼帯(先行鋼帯)を重ねの上側、第2の電磁鋼帯(後行鋼帯)を重ねの下側となるように接合した。回転ツールの回転方向および回転ツールの形状などは、突合せ接合の場合と同様である。
また、上述の要領により、
Dsz:接合部のフェライト粒径の平均値(μm)、
Dhaz1:第1の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dhaz2:第2の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dbm1:第1の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Dbm2:第2の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Hsz:接合部の硬さの平均値、
Hbm1:第1の電磁鋼帯の母材部の硬さの平均値
Hbm2:第2の電磁鋼帯の母材部の硬さの平均値
を測定した。
さらに、得られた電磁鋼帯の接合継手の鉛直方向の切断面(図17に示す面(すなわち、接合垂直方向と板厚方向とが含まれる面))において、TszL:接合部の厚さの最小値(mm)およびTszH:接合部の厚さの最大値(mm)を測定した。
結果を表5に示す。なお、後述する表面欠陥および内部欠陥の確認において、欠陥が確認された場合には、上記の測定を省略した。また、表面欠陥が確認された場合には、内部欠陥の確認も省略した。
得られた電磁鋼帯の接合継手の接合部および熱加工影響部(レーザ溶接の場合は、溶接部および熱影響部)の表面および裏面において、未接合状態および割れの有無を目視により確認した。そして、以下の基準により、表面欠陥の有無を判定した。
表面欠陥無し:未接合状態および割れがいずれも確認されない。
表面欠陥有り:未接合状態および割れの少なくとも一方が確認される。
得られた電磁鋼帯の接合継手を、図17に示す面(すなわち、接合垂直方向と板厚方向とが含まれる面)が観察面となるように、板厚(鉛直)方向に切断して試験片を採取した。なお、接合方向における切断位置は、接合(溶接)開始側の被接合材の端部から20mmの位置、接合(溶接)終了側の被接合材の端部から20mmの位置、および、被接合材の両端部の中間となる位置とした。そして、当該切断位置での切断面が観察面となるように、合計3枚の試験片を採取した。ついで、得られた試験片の観察面を、光学顕微鏡(倍率:10倍)で観察した。そして、以下の基準により、内部欠陥の有無を判定した。
内部欠陥無し:3枚の試験片全てにおいて、接合部に未接合状態および割れがいずれも確認されない。
内部欠陥有り:少なくとも1枚の試験片において、接合部に未接合状態および割れの少なくとも一方が確認される。
[エリクセン値の比率(%)]=[接合継手のエリクセン値]/[母材部のエリクセン値]×100
〇(合格):エリクセン値の比率が80%以上
×(不合格):エリクセン値の比率が80%未満
なお、第1の電磁鋼帯の母材部のエリクセン値と第2の電磁鋼帯の母材部のエリクセン値が異なる場合、母材部のエリクセン値は、第1の電磁鋼帯の母材部のエリクセン値と第2の電磁鋼帯の母材部のエリクセン値のうち小さい方の値とする。
すなわち、回転ツールの破損や摩耗が生じると、内部欠陥による接合不良が高い確率で発生する。そこで、上記と同じ条件でそれぞれ、接合長0.5mの接合を繰り返し行い、得られた接合継手について、上記の「(II)内部欠陥の有無」に示した判定方法により、内部欠陥の有無を判定した。
そして、内部欠陥無しと判定される継手の数が全体の90%以上を維持する最大接合回数(以下、90%維持最大接合回数ともいう)により、回転ツールの耐久性の評価をした。90%維持最大接合回数を表6に併記する。なお、90%維持最大接合回数が35回以上の場合:回転ツールの耐久性(寿命)が特に優れている(◎)、90%維持最大接合回数が35回未満25回以上の場合:回転ツールの耐久性(寿命)が優れている(〇)、90%維持最大接合回数が25回未満の場合:回転ツールの耐久性(寿命)が十分とはいえない(×)、と判定した。
[内部欠陥の有無を確認した接合継手のうち、内部欠陥無しと判定された接合継手の数]÷[内部欠陥の有無を確認した接合継手の数]×100≧90 ・・・式(a)
N=4では、
[内部欠陥の有無を確認した接合継手のうち、内部欠陥無しの接合継手の合計数]÷[内部欠陥を確認した接合継手の数N]×100
=4÷4×100=100≧90
となり、
N=5では、
[内部欠陥の有無を確認した接合継手のうち、内部欠陥無しの接合継手の合計数]÷[内部欠陥を確認した接合継手の数N]×100
=4÷5×100=80<90
となる。
すなわち、この場合では、N=4までは式(a)を満足し、N=5の際にはじめて式(a)を満足しなくなるので、90%維持最大接合回数は4となる。
N=11では、
[内部欠陥の有無を確認した接合継手のうち、内部欠陥無しの接合継手の合計数]÷[内部欠陥を確認した接合継手の数N]×100
=10÷11×100≒90.9≧90
となり、
N=20では、
[内部欠陥の有無を確認した接合継手のうち、内部欠陥無しの接合継手の合計数]÷[内部欠陥を確認した接合継手の数N]×100
=18÷20×100=90≧90
となり、
N=21では、
[内部欠陥の有無を確認した接合継手のうち、内部欠陥無しの接合継手の合計数]÷[内部欠陥を確認した接合継手の数N]×100
=18÷21×100=85.7<90
となる。
すなわち、この場合では、N=20までは式(a)を満足し、N=21の際にはじめて式(a)を満足しなくなるので、90%維持最大接合回数は20となる。
一方、比較例では、接合速度:3500mm/分以上の接合を行った場合、欠陥が生じたり、十分な破断抑止効果が得られなかったり、回転ツールの耐久性が十分ではなかった。
2 第2の電磁鋼帯(被接合材)
3-1 回転ツール(表面側回転ツール)
3-2 回転ツール(裏面側回転ツール)
4 接合部
4-1 熱加工影響部(第1の電磁鋼帯側)
4-2 熱加工影響部(第2の電磁鋼帯側)
5-1、5-2 肩部
6-1、6-2 プローブ
7 把持装置
9-1、9-2 先端部
10-1 加熱装置(表面側加熱装置)
10-2 加熱装置(裏面側加熱装置)
11 回転ツールの駆動装置
12 動作制御装置
Claims (14)
- 被接合材である第1の電磁鋼帯と第2の電磁鋼帯とを、互いに対向する一対の回転ツールにより接合する、電磁鋼帯の摩擦撹拌接合方法であって、
前記被接合材の未接合部を、前記被接合材の少なくとも一方の面において前記回転ツールの接合方向の前方に配置される加熱装置により、予熱する、予熱工程と、
前記被接合材の未接合部に、前記回転ツールを両面から互いに逆方向に回転させながら押圧し、前記回転ツールを接合方向に移動させることにより、前記第1の電磁鋼帯と前記第2の電磁鋼帯とを接合する、接合工程と、をそなえ、
前記被接合材の未接合部は、前記第1の電磁鋼帯の端部と、前記第1の電磁鋼帯に続く前記第2の電磁鋼帯の端部との突合せ部または重ね合せ部であり、
前記加熱装置を前記回転ツールに連動させて接合方向に移動させることにより、前記予熱工程と前記接合工程とを連続して行い、
また、前記回転ツールの肩部の直径D(mm)が、次式(7)の関係を満足し、かつ、
前記回転ツールの回転数RS(回/分)、前記回転ツールの肩部の直径D(mm)および接合速度JS(mm/分)により表されるRS×D3/JSが、次式(8)の関係を満足する、電磁鋼帯の摩擦撹拌接合方法。
4×TJ ≦ D ≦ 10×TJ ・・・(7)
180×TJ ≦ RS×D3/JS ≦ 1500×TJ ・・・(8)
ここで、TJは、
未接合部が突合せ部の場合、第1の電磁鋼帯の板厚および第2の電磁鋼帯の板厚の平均値(mm)であり、
未接合部が重ね合せ部の場合、重ね合せ部の厚さ(mm)である。 - 前記接合工程において、前記第1の電磁鋼帯と前記第2の電磁鋼帯の接合により形成される接合部および熱加工影響部の鋼組織がそれぞれ、フェライト相主体の組織となり、かつ、次式(1)~(4)の関係を満足する条件で、接合を行う、請求項1に記載の電磁鋼帯の摩擦撹拌接合方法。
Dsz ≦ 200μm ・・・(1)
Dhaz1 ≦ Dbm1 ・・・(2)
Dhaz2 ≦ Dbm2 ・・・(3)
0.9×(Hbm1+Hbm2)/2 ≦ Hsz ≦ 1.2 ×(Hbm1+Hbm2)/2 ・・・(4)
ここで、
Dszは、接合部のフェライト粒径の平均値(μm)、
Dhaz1は、第1の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dhaz2は、第2の電磁鋼帯側の熱加工影響部のフェライト粒径の平均値(μm)、
Dbm1は、第1の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Dbm2は、第2の電磁鋼帯の母材部のフェライト粒径の平均値(μm)、
Hszは、接合部の硬さの平均値、
Hbm1は、第1の電磁鋼帯の母材部の硬さの平均値
Hbm2は、第2の電磁鋼帯の母材部の硬さの平均値
である。 - 前記接合工程において、次式(5)および(6)の関係を満足する条件で接合を行う、請求項1または2に記載の電磁鋼帯の摩擦撹拌接合方法。
0.8×TbmL ≦ TszL ・・・(5)
TszH ≦ 1.3×TbmH ・・・(6)
ここで、
TszLは、接合部の厚さの最小値(mm)、
TszHは、接合部の厚さの最大値(mm)、
TbmLは、第1の電磁鋼帯と第2の電磁鋼帯のうち、薄い方の電磁鋼帯の板厚(mm)、
TbmHは、第1の電磁鋼帯と第2の電磁鋼帯のうち、厚い方の電磁鋼帯の板厚(mm)、
である。ただし、第1の電磁鋼帯と第2の電磁鋼帯の板厚が同じ場合には、TbmL= TbmHとなる。 - 前記接合工程において、前記回転ツールの肩部間の隙間G(mm)が次式(9)の関係を満足する、請求項1~3のいずれかに記載の電磁鋼帯の摩擦撹拌接合方法。
0.4×TJ ≦ G ≦ 0.9×TJ ・・・(9) - 前記回転ツールが、プローブなしの回転ツールである、請求項1~4のいずれかに記載の電磁鋼帯の摩擦撹拌接合方法。
- 前記回転ツールの先端面が、平面、凸型の曲面、または、凹型の曲面である、請求項5に記載の電磁鋼帯の摩擦撹拌接合方法。
- 前記回転ツールの先端面が、回転反対方向の渦状の段差部を有する、請求項5または6に記載の電磁鋼帯の両面摩擦撹拌接合方法。
- 前記渦状の段差部が、前記回転ツールの先端面の中心から外周に向かって徐々に低くなる、請求項7に記載の電磁鋼帯の両面摩擦撹拌接合方法。
- 前記渦状の段差部が、前記回転ツールの先端面の中心から外周に向かって徐々に高くなる、請求項7に記載の電磁鋼帯の両面摩擦撹拌接合方法。
- 前記回転ツールの傾斜角度αが0°である、請求項5~9のいずれかに記載の電磁鋼帯の摩擦撹拌接合方法。
- 前記予熱工程において、前記被接合材の予熱温度が次式(11)~(13)の関係を満足する、請求項1~10のいずれかに記載の電磁鋼帯の摩擦撹拌接合方法。
100 ≦ TPW=0 ≦ 1000 ・・・(11)
100 ≦ TPW=0.2D ≦ 1000 ・・・(12)
50 ≦ TPW=0.5D ≦ 800 ・・・(13)
ここで、Wは被溶接材の接合中央線から接合垂直方向に離間する距離(mm)であり、TPW=0、TPW=0.2DおよびTPW=0.5Dはそれぞれ、W=0、0.2×Dおよび0.5×Dの位置における被接合材の表面での予熱温度(℃)である。また、Dは、回転ツールの肩部の直径D(mm)である。 - 前記予熱工程において、前記被接合材の予熱温度が次式(14)および(15)の関係を満足する、請求項11に記載の電磁鋼帯の摩擦撹拌接合方法。
0.70 ≦ TPW=0.2D/TPW=0 ≦ 1.00 ・・・(14)
TPW=0.5D/TPW=0 ≦ 0.45 ・・・(15) - 前記加熱装置が、高周波誘導加熱装置、レーザ照射加熱装置、または、高周波誘導加熱装置およびレーザ照射加熱装置を組み合わせた装置である、請求項1~12のいずれかに記載の電磁鋼帯の摩擦撹拌接合方法。
- 請求項1~13のいずれかに記載の電磁鋼帯の摩擦撹拌接合方法により第1の電磁鋼帯と第2の電磁鋼帯とを接合し、接合鋼帯を得る工程と、
該接合鋼帯に冷間圧延を施し、冷延鋼帯を得る工程と、をそなえる、電磁鋼帯の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247013030A KR20240058192A (ko) | 2021-11-30 | 2022-08-01 | 전자 강대의 마찰 교반 접합 방법 및, 전자 강대의 제조 방법 |
JP2022566735A JP7231130B1 (ja) | 2021-11-30 | 2022-08-01 | 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 |
EP22900855.2A EP4400246A4 (en) | 2021-11-30 | 2022-08-01 | FRICTION STIR WELDING METHOD FOR ELECTROMAGNETIC STEEL STRIP AND METHOD FOR MANUFACTURING ELECTROMAGNETIC STEEL STRIP |
CN202280074382.5A CN118265589A (zh) | 2021-11-30 | 2022-08-01 | 电磁钢带的摩擦搅拌接合方法以及电磁钢带的制造方法 |
US18/704,917 US20240424598A1 (en) | 2021-11-30 | 2022-08-01 | Electrical steel strip friction stir welding method and method of producing electrical steel strip |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-194988 | 2021-11-30 | ||
JP2021194988 | 2021-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023100420A1 true WO2023100420A1 (ja) | 2023-06-08 |
Family
ID=86611864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029562 WO2023100420A1 (ja) | 2021-11-30 | 2022-08-01 | 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI815601B (ja) |
WO (1) | WO2023100420A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7568177B1 (ja) | 2023-07-25 | 2024-10-16 | Jfeスチール株式会社 | 摩擦攪拌接合継手 |
WO2025022798A1 (ja) * | 2023-07-25 | 2025-01-30 | Jfeスチール株式会社 | 摩擦攪拌接合継手 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024042774A1 (ja) * | 2022-08-23 | 2024-02-29 | Jfeスチール株式会社 | 電磁鋼帯の摩擦撹拌接合方法、電磁鋼帯の製造方法、摩擦撹拌接合装置および電磁鋼帯の製造装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993010935A1 (en) | 1991-12-06 | 1993-06-10 | The Welding Institute | Improvements relating to friction welding |
JP2000334577A (ja) | 1999-05-25 | 2000-12-05 | Kawasaki Heavy Ind Ltd | 接合装置及び接合方法 |
JP2003170280A (ja) * | 2001-12-04 | 2003-06-17 | Nippon Steel Corp | 異種金属材料の接合方法 |
WO2011024320A1 (ja) * | 2009-08-31 | 2011-03-03 | 三菱日立製鉄機械株式会社 | 両面摩擦攪拌接合方法、接合装置、冷間圧延設備の金属板接合方法及び冷間圧延設備 |
WO2018070317A1 (ja) * | 2016-10-11 | 2018-04-19 | Jfeスチール株式会社 | 摩擦撹拌接合方法および装置 |
JP2018095956A (ja) * | 2016-12-09 | 2018-06-21 | Jfeスチール株式会社 | 摩擦攪拌接合向け構造用低合金厚鋼材および構造用摩擦攪拌接合継手 |
WO2021060176A1 (ja) * | 2019-09-25 | 2021-04-01 | Jfeスチール株式会社 | 両面摩擦攪拌接合方法、冷延鋼帯及びめっき鋼帯の製造方法、両面摩擦攪拌接合装置、並びに冷延鋼帯及びめっき鋼帯の製造設備 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4190179B2 (ja) * | 2001-12-18 | 2008-12-03 | 住友軽金属工業株式会社 | 摩擦撹拌接合方法 |
CN102085598B (zh) * | 2009-12-03 | 2015-10-14 | 鸿富锦精密工业(深圳)有限公司 | 摩擦搅拌接合方法 |
EP3653329B1 (en) * | 2017-09-13 | 2023-10-11 | JFE Steel Corporation | Double-sided friction stir welding method for metal plate |
CN111867777B (zh) * | 2018-03-20 | 2022-04-19 | 杰富意钢铁株式会社 | 双面摩擦搅拌接合用旋转工具、双面摩擦搅拌接合装置以及双面摩擦搅拌接合方法 |
JP6992773B2 (ja) * | 2019-02-06 | 2022-01-13 | Jfeスチール株式会社 | 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置 |
JP7247996B2 (ja) * | 2019-09-25 | 2023-03-29 | Jfeスチール株式会社 | 両面摩擦撹拌接合用回転ツール及び両面摩擦撹拌接合方法 |
-
2022
- 2022-08-01 WO PCT/JP2022/029562 patent/WO2023100420A1/ja active Application Filing
- 2022-08-10 TW TW111130115A patent/TWI815601B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993010935A1 (en) | 1991-12-06 | 1993-06-10 | The Welding Institute | Improvements relating to friction welding |
JPH07505090A (ja) | 1991-12-06 | 1995-06-08 | ザ ウェルディング インスティテュート | 摩擦溶接方法 |
JP2000334577A (ja) | 1999-05-25 | 2000-12-05 | Kawasaki Heavy Ind Ltd | 接合装置及び接合方法 |
JP2003170280A (ja) * | 2001-12-04 | 2003-06-17 | Nippon Steel Corp | 異種金属材料の接合方法 |
WO2011024320A1 (ja) * | 2009-08-31 | 2011-03-03 | 三菱日立製鉄機械株式会社 | 両面摩擦攪拌接合方法、接合装置、冷間圧延設備の金属板接合方法及び冷間圧延設備 |
WO2018070317A1 (ja) * | 2016-10-11 | 2018-04-19 | Jfeスチール株式会社 | 摩擦撹拌接合方法および装置 |
JP2018095956A (ja) * | 2016-12-09 | 2018-06-21 | Jfeスチール株式会社 | 摩擦攪拌接合向け構造用低合金厚鋼材および構造用摩擦攪拌接合継手 |
WO2021060176A1 (ja) * | 2019-09-25 | 2021-04-01 | Jfeスチール株式会社 | 両面摩擦攪拌接合方法、冷延鋼帯及びめっき鋼帯の製造方法、両面摩擦攪拌接合装置、並びに冷延鋼帯及びめっき鋼帯の製造設備 |
Non-Patent Citations (1)
Title |
---|
CUI, L.FUJII, H.TSUJI, N.NOGI, K., SCRIPTA MATER, vol. 56, 2007, pages 637 - 640 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7568177B1 (ja) | 2023-07-25 | 2024-10-16 | Jfeスチール株式会社 | 摩擦攪拌接合継手 |
WO2025022798A1 (ja) * | 2023-07-25 | 2025-01-30 | Jfeスチール株式会社 | 摩擦攪拌接合継手 |
Also Published As
Publication number | Publication date |
---|---|
TWI815601B (zh) | 2023-09-11 |
TW202322947A (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7099621B2 (ja) | 両面摩擦攪拌接合方法、冷延鋼帯及びめっき鋼帯の製造方法、両面摩擦攪拌接合装置、並びに冷延鋼帯及びめっき鋼帯の製造設備 | |
WO2023100420A1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 | |
JP7279866B1 (ja) | 電磁鋼帯の摩擦撹拌接合方法および電磁鋼帯の製造方法 | |
JP7231130B1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 | |
WO2023037786A1 (ja) | 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法 | |
JP7230977B1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 | |
JP7347723B1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、電磁鋼帯の製造方法、摩擦撹拌接合装置および電磁鋼帯の製造装置 | |
WO2023037785A1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 | |
WO2023100419A1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、電磁鋼帯の製造方法、摩擦撹拌接合装置および電磁鋼帯の製造装置 | |
JP7230976B1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、および、電磁鋼帯の製造方法 | |
JP7230975B1 (ja) | 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法 | |
JP7230978B1 (ja) | 電磁鋼帯の接合継手および摩擦撹拌接合方法、ならびに、電磁鋼帯の製造方法 | |
WO2024042774A1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、電磁鋼帯の製造方法、摩擦撹拌接合装置および電磁鋼帯の製造装置 | |
JP7347722B1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、電磁鋼帯の製造方法、摩擦撹拌接合装置および電磁鋼帯の製造装置 | |
WO2024042773A1 (ja) | 電磁鋼帯の摩擦撹拌接合方法、電磁鋼帯の製造方法、摩擦撹拌接合装置および電磁鋼帯の製造装置 | |
WO2024157513A1 (ja) | テーラードブランク材、ならびに、テーラードブランク材の製造方法および製造設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022566735 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22900855 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022900855 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20247013030 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: KR1020247013030 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2022900855 Country of ref document: EP Effective date: 20240409 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18704917 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417034353 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280074382.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |