[go: up one dir, main page]

WO2023095925A1 - 重合体組成物及び単層位相差材 - Google Patents

重合体組成物及び単層位相差材 Download PDF

Info

Publication number
WO2023095925A1
WO2023095925A1 PCT/JP2022/044020 JP2022044020W WO2023095925A1 WO 2023095925 A1 WO2023095925 A1 WO 2023095925A1 JP 2022044020 W JP2022044020 W JP 2022044020W WO 2023095925 A1 WO2023095925 A1 WO 2023095925A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
side chain
substituted
Prior art date
Application number
PCT/JP2022/044020
Other languages
English (en)
French (fr)
Inventor
司 藤枝
隆之 根木
友基 玉井
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023563783A priority Critical patent/JPWO2023095925A1/ja
Priority to CN202280078456.2A priority patent/CN118302462A/zh
Priority to KR1020247021028A priority patent/KR20240112908A/ko
Publication of WO2023095925A1 publication Critical patent/WO2023095925A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/26Esters of unsaturated alcohols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a composition containing a polymer and a single-layer retardation material.
  • materials having optical properties suitable for applications such as display devices and recording materials, particularly suitable for optical compensation films such as polarizing plates and retardation plates for organic electroluminescence (EL) display devices and liquid crystal displays.
  • EL organic electroluminescence
  • a composition containing the polymer, and a single-layer retardation material obtained from the composition a composition containing the polymer, and a single-layer retardation material obtained from the composition.
  • the polymerizable liquid crystal compound used here is generally a liquid crystal compound having a polymerizable group and a liquid crystal structure portion (a structure portion having a spacer portion and a mesogen portion), and an acrylic group is widely used as the polymerizable group. ing.
  • Such a polymerizable liquid crystal compound is generally made into a polymer (film) by a method of polymerizing by irradiating it with radiation such as ultraviolet rays.
  • a method of obtaining a polymer by supporting a specific polymerizable liquid crystal compound having an acrylic group between supports and irradiating the compound with radiation while maintaining the compound in a liquid crystal state Patent Document 1
  • a method of adding a photopolymerization initiator to a mixture of two types of polymerizable liquid crystal compounds or a composition obtained by mixing this mixture with a chiral liquid crystal and irradiating ultraviolet rays to obtain a polymer is known (Patent Document 2).
  • Patent Documents 7 and 8 Depending on the type of retardation plate using a polymerizable liquid crystal compound, there is a problem that the retardation changes when exposed to external light for a long time. Since deterioration of the retardation layer over time by light leads to deterioration in display quality, it is necessary to improve the light resistance of the retardation layer (Patent Documents 7 and 8).
  • the present invention has been made in view of the above problems, and a novel polymer that enables the production of a single-layer retardation material with high light resistance by a simpler process, a composition containing the polymer, and the composition
  • An object of the present invention is to provide a single-layer retardation material obtained from
  • the present inventors have made intensive studies to solve the above problems. As a result, a single-layer retardation material with high light resistance can be obtained by using a specific polymer composition without using a liquid crystal alignment film.
  • the present invention was completed by finding that
  • the present invention provides the following polymer composition and single-layer retardation material.
  • A a side chain polymer having a side chain having a photoreactive site represented by the following formula (a), and (B) an organic solvent, wherein the component (A) has a photoreactive site
  • a polymer composition that is a side chain type polymer containing chains in an amount less than 20 mole percent of the total side chains.
  • R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group.
  • R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent condensed cyclic group.
  • R is a fluorine atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group; , c ⁇ 2, each R may be the same or different.
  • a dashed line is a bond. 2.
  • the hydrogen atom of the benzene ring in formula (a1) is a fluorine atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halo group having 1 to 6 carbon atoms. It may be substituted with a substituent selected from an alkoxy group, a cyano group and a nitro group. A dashed line is a bond.
  • the polymer composition of 3, wherein the side chain that exhibits only liquid crystallinity is a liquid crystalline side chain represented by any one of the following formulas (1) to (13).
  • R 11 is —NO 2 , —CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, carbon It is an alkyl group having 1 to 12 carbon atoms or an alkyloxy group having 1 to 12 carbon atoms.
  • R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these.
  • a group selected from the group consisting of hydrogen atoms bonded thereto may be substituted with —NO 2 , —CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • R 13 is a hydrogen atom, —NO 2 , —CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon having 5 to 8 carbon atoms; , an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • d is an integer from 1 to 12;
  • k1 to k5 are each independently an integer of 0 to 2, but the sum of k1 to k5 is 2 or more.
  • k6 and k7 are each independently an integer of 0 to 2, and the sum of k6 and k7 is 1 or more.
  • m1, m2 and m3 are each independently an integer of 1-3.
  • n is 0 or 1;
  • a hydrogen atom of a benzene ring or a naphthalene ring in the formula is a fluorine atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halo group having 1 to 6 carbon atoms. It may be substituted with a substituent selected from an alkoxy group, a cyano group and a nitro group. A dashed line is a bond. ) 5. 4. The polymer composition of 4, wherein the side chain that exhibits only liquid crystallinity is a liquid crystalline side chain represented by any one of formulas (1) to (11). 6.
  • the polymer composition of the present invention has a photosensitive side-chain polymer capable of exhibiting liquid crystallinity (hereinafter also simply referred to as a side-chain polymer), and the polymer composition is used to
  • the resulting coating film is a film having a photosensitive side-chain polymer capable of exhibiting liquid crystallinity. Alignment treatment is performed on this coating film by irradiating polarized light without performing rubbing treatment. After irradiating with polarized light, the side-chain polymer film is heated to obtain a film imparted with optical anisotropy (hereinafter also referred to as a single-layer retardation material).
  • the slight anisotropy caused by polarized light irradiation becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization.
  • a highly efficient orientation treatment is realized, and a single-layer retardation material imparted with high optical anisotropy can be obtained.
  • the amount of the side chain having a photoreactive site in the component (A) is less than 20 mol %, the above effect is maintained while the light resistance is maintained. It should be noted that these include the opinion of the inventor regarding the mechanism of the present invention, and do not limit the present invention.
  • the polymer composition of the present invention comprises (A) a side chain polymer having a side chain having a photoreactive site, and (B) an organic solvent, wherein the component (A) is a side chain having a photoreactive site It is characterized as a side chain type polymer containing chains in an amount of less than 20 mol % of all side chains.
  • Component (A) is a photosensitive side chain type polymer that exhibits liquid crystallinity in a predetermined temperature range, and is a side chain having a photoreactive site represented by the following formula (a) (hereinafter referred to as a side chain (also referred to as a) in an amount of less than 20 mol % of the total side chains.
  • R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms in the alkylene group may be substituted with a fluorine atom or an organic group.
  • R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent condensed cyclic group.
  • R is a fluorine atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group; , c ⁇ 2, each R may be the same or different.
  • a is 0, 1 or 2;
  • b is 0 or 1;
  • c is an integer that satisfies 0 ⁇ c ⁇ 2b+4.
  • a dashed line is a bond.
  • the alkylene group having 1 to 30 carbon atoms represented by R 1 may be linear, branched or cyclic, and specific examples thereof include methylene group, ethylene group and propane-1,3-diyl group. , butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1, 9-diyl group, decane-1,10-diyl group and the like.
  • Examples of the divalent aromatic group represented by R 2 include a phenylene group and a biphenylylene group.
  • the divalent alicyclic group represented by R 2 includes cyclohexanediyl group and the like.
  • a divalent heterocyclic group represented by R 2 includes a furandiyl group and the like.
  • a naphthylene group etc. are mentioned as a bivalent condensed cyclic group represented by R ⁇ 2> .
  • the alkyl group having 1 to 6 carbon atoms represented by R may be linear or branched, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n- Linear or branched alkyl groups having 1 to 6 carbon atoms such as butyl group, isobutyl group, s-butyl group, tert-butyl group, n-pentyl group and n-hexyl group can be mentioned. Methyl groups are most preferred in the present invention.
  • Examples of the haloalkyl group having 1 to 6 carbon atoms represented by R include those obtained by substituting at least one hydrogen atom of the alkyl group having 1 to 6 carbon atoms with a halogen atom. is preferred, and a perfluoroalkyl group is more preferred.
  • Specific examples thereof include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, a heptafluoropropyl group, a 2,2,3,3,3- pentafluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,2-trifluoro-1-(trifluoromethyl)ethyl group, nonafluorobutyl group, 4,4,4-trifluoro butyl group, undecafluoropentyl group, 2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 2,2,3,3,4,4,5,5-octafluoro pentyl group, tridecafluorohexyl group, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl group, 2,2,3,3,4,4, 5,5,6,6-de
  • alkoxy groups having 1 to 6 carbon atoms represented by R include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy and tert-butoxy. group, n-pentoxy group, n-hexyloxy group, and the like. Methoxy groups are most preferred in the present invention.
  • the haloalkoxy group having 1 to 6 carbon atoms represented by R includes a difluoromethoxy group, a trifluoromethoxy group, a bromodifluoromethoxy group, a 2-chloroethoxy group, a 2-bromoethoxy group and a 1,1-difluoroethoxy group.
  • 2,2,2-trifluoroethoxy group 1,1,2,2-tetrafluoroethoxy group, 2-chloro-1,1,2-trifluoroethoxy group, pentafluoroethoxy group, 3-bromopropoxy group , 2,2,3,3-tetrafluoropropoxy group, 1,1,2,3,3,3-hexafluoropropoxy group, 1,1,1,3,3,3-hexafluoropropan-2-yloxy group, 3-bromo-2-methylpropoxy group, 4-bromobutoxy group, perfluoropentyloxy group and the like.
  • the side chain a is preferably represented by the following formula (a1) (hereinafter also referred to as side chain a1).
  • R 1 , R 2 and a are the same as above.
  • the benzene ring in formula (a1) is a fluorine atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, It may be substituted with a substituent selected from a cyano group and a nitro group.
  • a dashed line is a bond.
  • side chain a1 for example, those represented by the following formula (a1-1) are preferable.
  • L is a linear or branched alkylene group having 1 to 16 carbon atoms.
  • the benzene ring in formula (a1-1) may be substituted with a substituent selected from a fluorine atom, methyl group, trifluoromethyl group, methoxy group, trifluoromethoxy group, cyano group and nitro group.
  • a dashed line is a bond.
  • alkylene group having 1 to 16 carbon atoms examples include those having 1 to 16 carbon atoms among the above alkylene groups having 1 to 30 carbon atoms.
  • the side chain type polymer preferably reacts with light in the wavelength range of 250 to 400 nm and exhibits liquid crystallinity in the temperature range of 100 to 300°C.
  • the side chain type polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 to 400 nm.
  • the side-chain polymer has a photosensitive side chain attached to the main chain, and can undergo a cross-linking reaction or an isomerization reaction in response to light.
  • the structure of the photosensitive side-chain type polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such properties, but it is preferable that the side-chain structure has a rigid mesogenic component. A stable optical anisotropy can be obtained when the side chain type polymer is used as a single-layer retardation material.
  • the structure of the photosensitive side-chain polymer capable of exhibiting liquid crystallinity include (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide,
  • the structure preferably has a main chain composed of at least one selected from the group consisting of a radically polymerizable group such as norbornene and siloxane, and a side chain a.
  • the side-chain polymer (A) since the side-chain polymer (A) exhibits liquid crystallinity in the temperature range of 100 to 300° C., it preferably further has a side chain exhibiting only liquid crystallinity (hereinafter also referred to as side chain b). .
  • side chain b a side chain exhibiting only liquid crystallinity
  • the phrase "exhibits only liquid crystallinity” means that the polymer having only the side chain b can This means that it exhibits no photosensitivity and exhibits only liquid crystallinity.
  • any one liquid crystalline side chain selected from the group consisting of the following formulas (1) to (13) is preferable.
  • R 11 is —NO 2 , —CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, carbon It is an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these.
  • a group selected from the group consisting of hydrogen atoms bonded thereto may be substituted with —NO 2 , —CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • R 13 is a hydrogen atom, —NO 2 , —CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon having 5 to 8 carbon atoms; , an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
  • d is an integer from 1 to 12;
  • k1 to k5 are each independently an integer of 0 to 2, but the sum of k1 to k5 is 2 or more.
  • k6 and k7 are each independently an integer of 0 to 2, and the sum of k6 and k7 is 1 or more.
  • m1, m2 and m3 are each independently an integer of 1-3.
  • n is 0 or 1;
  • a dashed line is a bond.
  • Examples of monovalent nitrogen-containing heterocyclic groups represented by A 1 and A 2 include pyrrolidinyl, piperidinyl, piperazinyl, pyrrolyl and pyridyl groups.
  • Specific examples of the monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms include cyclopentyl and cyclohexyl groups.
  • Examples of monovalent alicyclic hydrocarbon groups having 5 to 8 carbon atoms represented by A 1 and A 2 include cyclopentyl and cyclohexyl groups.
  • alkyl groups having 1 to 12 carbon atoms represented by A 1 and A 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and tert-butyl. group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl, n-dodecyl and the like.
  • Alkoxy groups having 1 to 12 carbon atoms represented by A 1 and A 2 include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy and s-butoxy groups. , tert-butoxy group, n-pentoxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy and the like.
  • the alkyl group having 1 to 5 carbon atoms for R 12 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, tert-butyl group and n-pentyl group. etc.
  • the alkoxy group having 1 to 5 carbon atoms for R 12 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, tert-butyl group and n-pentyl group. etc.
  • the monovalent nitrogen-containing heterocyclic group, the monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, the alkyl group having 1 to 12 carbon atoms, and the alkoxy group having 1 to 12 carbon atoms represented by R 13 includes A The same groups as those exemplified in the description of 1 and A 2 can be mentioned.
  • the side chain b is preferably represented by any one of formulas (1) to (11).
  • the (A) component side-chain polymer can be obtained by polymerizing a monomer having a structure represented by formula (a) and, if desired, a monomer having a structure that exhibits only liquid crystallinity.
  • Examples of the monomer having the structure represented by formula (a) include compounds represented by the following formula (M1). (Wherein, R 1 , R 2 , R 3 , R, a, m and n are the same as above.)
  • the monomer M1 one represented by the following formula (M1A) is preferable.
  • R 1 , R 2 , R 3A and a are the same as above.
  • the benzene ring in formula (M1A) is a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a haloalkyl group having 1 to 6 carbon atoms. , an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group and a nitro group.
  • monomers M1A those represented by the following formula (M1B) are more preferable.
  • L and X are the same as above.
  • the benzene ring in formula (M1B) is selected from a fluorine atom, a methyl group, a trifluoromethyl group, a methoxy group, a trifluoromethoxy group, a cyano group and a nitro group. It may be substituted with a substituent.
  • PL is a polymerizable group represented by any one of the following formulas (PL-1) to (PL-5).
  • Q 1 , Q 2 and Q 3 are hydrogen atoms, linear or branched alkyl groups having 1 to 10 carbon atoms, or halogen-substituted It is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • a dashed line is a bond with R 1 or L.
  • Linear or branched C 1-10 alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and tert-butyl group. , n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like. A methyl group and an ethyl group are particularly preferred.
  • Examples of the halogen-substituted linear or branched alkyl group having 1 to 10 carbon atoms include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 1,1,2,2,2- pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1,2 , 2,3,3,4,4,4-nonafluorobutyl group and the like.
  • a trifluoromethyl group is particularly preferred.
  • Preferred examples of the monomer M1 include those represented by the following formulas (M1-1) to (M1-7). (Wherein, PL is the same as above. p is an integer from 2 to 9.)
  • a monomer having a structure that exhibits only liquid crystallinity (hereinafter also referred to as monomer M2) is a monomer that allows a polymer derived from the monomer to exhibit liquid crystallinity and the polymer to form a mesogenic group at the side chain site. That is.
  • the mesogenic group having a side chain even if it is a group such as biphenyl or phenylbenzoate that forms a mesogenic structure by itself, it is a group that forms a mesogenic structure by hydrogen bonding between side chains such as benzoic acid. good too.
  • the mesogenic group having a side chain the following structure is preferable.
  • monomer M2 More specific examples of monomer M2 include hydrocarbons, (meth)acrylates, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups and siloxanes.
  • a structure having a polymerizable group derived from at least one selected from the group and at least one of formulas (1) to (13) is preferred.
  • the monomer M2 preferably has a (meth)acrylate as a polymerizable group, and preferably has a side chain terminal of —COOH.
  • Preferred examples of the monomer M2 include those represented by the following formulas (M2-1) to (M2-11).
  • other monomers can be copolymerized within a range that does not impair the ability to express photoreactivity and/or liquid crystallinity.
  • Other monomers include, for example, industrially available radical polymerizable monomers.
  • Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, and vinyl compounds.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
  • acrylic acid ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl acrylates, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, 2-(2-(2-methoxyethoxy)ethoxy)ethyl methacrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2 -methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclo[5.2.1.0 ⁇ 2,6>]decyl acrylate, 8-ethyl-8
  • methacrylate compounds include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclo[5.2.1.0 ⁇ 2,6>]decyl methacrylate, 8-e
  • Examples of vinyl compounds include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • Examples of styrene compounds include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene and the like.
  • Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the content of the side chain a in the side chain type polymer of the present invention is preferably 0.1 mol% or more, more preferably 1 mol% or more, more preferably 3 mol% or more, from the viewpoint of orientation and retardation value. Preferably, 5 mol % or more is particularly preferable.
  • the content of the side chain a in the side chain type polymer of the present invention is preferably less than 20 mol%, more preferably 19 mol% or less, and 18 mol% or less from the viewpoint of light resistance. More preferably, 16 mol % or less is particularly preferable.
  • the lower limit of the content of the side chain a is particularly preferably 10 mol %.
  • the content of the side chain b in the side chain type polymer of the present invention is preferably 40 to 99.9 mol%, more preferably 60 to 99.9 mol%, from the viewpoint of orientation and retardation value, 65 to 99.9 mol % is even more preferred, 65 to 99 mol % is even more preferred, and 65 to 95 mol % is particularly preferred. Moreover, a particularly preferable upper limit of the content of the side chain b is 90 mol %.
  • the side chain polymer of the present invention may contain other side chains as described above.
  • the content of other side chains is the remainder when the total content of side chains a and b is less than 100 mol %.
  • it is preferably 40 mol% or less, more preferably 30 mol% or less, even more preferably 20 mol% or less. mol % or less is more preferable.
  • the method for producing the side-chain polymer of component (A) is not particularly limited, and a general-purpose industrial method can be used. Specifically, it can be produced by radical polymerization, cationic polymerization, or anionic polymerization utilizing the vinyl groups of the monomers M1 and M2 described above and, if desired, other monomers. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
  • radical polymerization initiators Radical thermal polymerization initiators, radical photopolymerization initiators
  • RAFT reversible addition-fragmentation chain transfer
  • a radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane etc.), alkyl peresters (peroxyneodecanoic acid -tert-butyl ester, peroxypivalic acid -tert-butyl ester, peroxy 2-ethylcyclohexanoi
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methyl
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a bulk polymerization method, a solution polymerization method, or the like can be used.
  • the organic solvent used for the polymerization reaction is not particularly limited as long as it dissolves the polymer produced.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, and tetramethylurea.
  • the above organic solvents may be used singly or in combination of two or more. Furthermore, even a solvent that does not dissolve the generated polymer may be mixed with the above-described organic solvent and used as long as the generated polymer does not precipitate. In addition, since oxygen in an organic solvent inhibits the polymerization reaction in radical polymerization, it is preferable to use an organic solvent that has been degassed to the extent possible.
  • the polymerization temperature during radical polymerization can be selected from any temperature in the range of 30 to 150°C, preferably in the range of 50 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a high-molecular-weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction can be carried out at a high concentration, and then the organic solvent can be added.
  • the ratio of the radical polymerization initiator to the monomer is large, the molecular weight of the polymer obtained will be small, and if it is small, the molecular weight of the polymer obtained will be large. It is preferably 0.1 to 20 mol % with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators, etc. may be added during polymerization.
  • the reaction solution In order to recover the polymer produced from the reaction solution obtained by the above reaction, the reaction solution should be put into a poor solvent to precipitate the polymer. Poor solvents used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water.
  • the polymer precipitated by putting it into the poor solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced by repeating the operation of redissolving the recovered polymer in an organic solvent and recovering it by reprecipitation 2 to 10 times.
  • the poor solvent in this case include alcohols, ketones, hydrocarbons, and the like. It is preferable to use three or more poor solvents selected from these, because the purification efficiency is further improved.
  • the (A) side chain polymer of the present invention has a weight average molecular weight measured by the GPC (Gel Permeation Chromatography) method. is preferably from 2,000 to 2,000,000, more preferably from 2,000 to 1,000,000, and even more preferably from 5,000 to 200,000.
  • the organic solvent of component (B) is not particularly limited as long as it dissolves the polymer component.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N- Vinyl-2-pyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, ⁇ -butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropane amide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl
  • the polymer composition of the present invention may contain components other than components (A) and (B). Examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when the polymer composition is applied, compounds that improve adhesion between the retardation material and the substrate, and the like. Not limited.
  • ethyl carbitol ethyl carbitol acetate
  • ethylene glycol ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, di Propylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether , dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutyl
  • These poor solvents may be used singly or in combination of two or more.
  • its content is preferably 5 to 80% by mass in the solvent so as not to significantly lower the solubility of the entire solvent contained in the polymer composition, and 20 to 60% by mass. % by mass is more preferred.
  • Compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples thereof include Ftop (registered trademark) 301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals), Megafac (registered trademark) F171, F173, F560, F563, R-30, R-40 (DIC company), Florard FC430, FC431 (manufactured by 3M), Asahiguard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (AGC Seimi chemical company) and the like.
  • the content of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, per 100 parts by mass of component (A).
  • the compound that improves the adhesion between the retardation material and the substrate include functional silane-containing compounds, and specific examples thereof include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • a phenoplast-based compound or an epoxy group-containing compound is added to the polymer composition for the purpose of preventing deterioration of characteristics due to backlight when the polarizing plate is constructed. may be added.
  • phenoplast additive examples include but are not limited thereto.
  • epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetra glycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane and
  • the content thereof is preferably 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, with respect to 100 parts by mass of the polymer component contained in the polymer composition. is more preferred. If the content is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive.
  • Preferred photosensitizers are colorless sensitizers and triplet sensitizers.
  • Photosensitizers include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin), ketocoumarin, carbonylbiscoumarin, aromatic 2-hydroxyketone, aromatic 2-hydroxy Ketones (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzantrone, thiazoline (2-benzoylmethylene-3-methyl- ⁇ - Naphthothiazoline, 2-( ⁇ -naphthoylmethylene)-3-methylbenzothiazoline, 2-( ⁇ -naphthoylmethylene)-3-methylbenzothiazoline, 2-(4-biphenoylmethylene)-3-methylbenzothiazoline , 2-( ⁇ -naphthoylmethylene)-3-methyl- ⁇ -naphtho
  • aromatic 2-hydroxyketones (benzophenones), coumarins, ketocoumarins, carbonylbiscoumarins, acetophenones, anthraquinones, xanthones, thioxanthones and acetophenone ketals are preferred.
  • dielectrics and A cross-linking compound may be added for the purpose of increasing the hardness and denseness of the film when used as a retardation material, as well as the conductive substance.
  • the polymer composition of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention contains the component (A), the solvent or compound that improves the uniformity of the film thickness and the surface smoothness described above, the compound that improves the adhesion between the liquid crystal alignment film and the substrate, and the like. It is preferably prepared as a solution in which component (B) is dissolved in an organic solvent.
  • the content of component (A) is preferably 1 to 30% by mass, more preferably 3 to 25% by mass in the composition of the present invention.
  • the polymer composition of the present invention may contain, in addition to the polymer of component (A), other polymers within a range that does not impair the ability to develop liquid crystals and photosensitive performance.
  • the content of the other polymer in the polymer component is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass.
  • Other polymers include, for example, polymers other than photosensitive side chain type polymers capable of exhibiting liquid crystallinity, such as poly(meth)acrylates, polyamic acids, and polyimides.
  • the single-layer retardation material of the present invention can be produced by a method including the following steps (I) to (III). (I) a step of applying the composition of the present invention onto a substrate to form a coating film; (II) a step of irradiating the coating film with polarized ultraviolet rays; and (III) a step of heating the coating film irradiated with the ultraviolet rays to obtain a retardation material.
  • Step (I) is a step of applying the composition of the present invention onto a substrate to form a coating film. More specifically, the composition of the present invention can be applied to substrates (e.g., silicon/silicon dioxide coated substrates, silicon nitride substrates, metal (e.g., aluminum, molybdenum, chromium, etc.) coated substrates, glass substrates, quartz substrates, etc.).
  • substrates e.g., silicon/silicon dioxide coated substrates, silicon nitride substrates, metal (e.g., aluminum, molybdenum, chromium, etc.) coated substrates, glass substrates, quartz substrates, etc.
  • the solvent is evaporated at 30 to 200° C., preferably 30 to 150° C., by heating means such as a hot plate, thermal circulation oven, IR (infrared) oven, etc. to obtain a coating film.
  • resin films such as triacetyl cellulose (TAC) films, cycloolefin polymer films, polyethylene terephthalate films, acrylic films, etc.
  • bar coating spin coating, flow coating, roll coating , slit coating, spin coating following slit coating, inkjet method, printing method, or the like.
  • the solvent is evaporated at 30 to 200° C., preferably 30 to 150° C., by heating means such as a hot plate, thermal circulation oven, IR (infrared) oven, etc. to obtain a coating film.
  • step (II) the coating film obtained in step (I) is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with the polarized ultraviolet rays from a certain direction through a polarizing plate.
  • the ultraviolet rays ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used.
  • ultraviolet light with a wavelength in the range of 290 to 400 nm can be selected and used so as to selectively induce a photocrosslinking reaction.
  • ultraviolet rays for example, light emitted from a high-pressure mercury lamp can be used.
  • the amount of polarized UV light depends on the coating film used.
  • the irradiation amount is 1 to 70% of the amount of polarized ultraviolet rays that realizes the maximum value of ⁇ A, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarized ultraviolet rays in the coating film. is preferably within the range of , and more preferably within the range of 1 to 50%.
  • step (III) the coating film irradiated with the polarized ultraviolet rays in step (II) is heated. Heating can impart alignment control ability to the coating film.
  • heating means such as a hot plate, thermal circulation oven, IR (infrared) oven, etc. can be used.
  • the heating temperature can be determined in consideration of the temperature at which the coating film to be used exhibits liquid crystallinity.
  • the heating temperature is preferably within the temperature range at which the polymer of component (A) contained in the composition of the present invention exhibits liquid crystallinity (hereinafter referred to as the liquid crystal display temperature).
  • the temperature at which liquid crystals appear on the surface of the coating film is expected to be lower than the temperature at which liquid crystals appear when the polymer of component (A) is observed in bulk. For this reason, the heating temperature is more preferably within the temperature range of the liquid crystal manifestation temperature of the coating film surface.
  • the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is set to a temperature 10°C lower than the lower limit of the temperature range of the liquid crystal manifestation temperature of the polymer of component (A), and a temperature lower than the upper limit of the liquid crystal temperature range by 10°C. It is preferable that the temperature is in the range with the upper limit of If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy in the coating film by heat tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film tend to approach an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
  • the liquid crystal manifestation temperature is the liquid crystal transition temperature at which the polymer or coating surface undergoes a phase transition from the solid phase to the liquid crystal phase, and is isotropic that causes the phase transition from the liquid crystal phase to the isotropic phase (isotropic phase).
  • the temperature below the phase transition temperature (Tiso) means that the liquid crystal transition temperature at which a phase transition occurs from a solid phase to a liquid crystal phase is 130° C. or lower.
  • the thickness of the coating film formed after heating can be appropriately selected in consideration of the steps of the substrate to be used and the optical and electrical properties, and is preferably 0.5 to 10 ⁇ m, for example.
  • the single-layer retardation material of the present invention thus obtained is a material having optical properties suitable for applications such as display devices and recording materials. It is suitable as an optical compensation film.
  • M1-1-1 was synthesized according to the synthetic method described in WO2011/084546.
  • M1' was synthesized according to the synthetic method described in JP-A-2012-27354.
  • M2-1-1 was synthesized according to the synthetic method described in JP-A-9-118717.
  • M2-2-1 and M2-5-1 were synthesized according to the synthetic method described in JP-A-2015-129210.
  • M3-1 a reagent purchased from Tokyo Chemical Industry Co., Ltd. was used.
  • the side chains derived from M1-1-1 and M1' correspond to side chain a
  • the side chains derived from M2-1-1 and M2-2-1, M2-5-1 correspond to side chain b. Applicable.
  • Side chains derived from M3-1 are other side chains other than side chain a and side chain b.
  • P11 had a number average molecular weight of 25,000 and a weight average molecular weight of 73,000.
  • P12 had a number average molecular weight of 23,000 and a weight average molecular weight of 66,000.
  • P13 had a number average molecular weight of 21,000 and a weight average molecular weight of 53,000.
  • P15 had a number average molecular weight of 29,000 and a weight average molecular weight of 66,000.
  • Polymer solutions T2 to T10 were obtained by mixing solvents and the like in the same proportions as in Preparation Example 1 except that the polymer solutions used were replaced with P2 to P10 from P1. These polymer solutions T2 to T10 were directly used as materials for forming retardation films.
  • Preparation Examples 12 and 13 Polymer solutions T12 and T13 were obtained in the same manner as in Preparation Example 11 except that the polymer powder used was replaced with P12 and P13 instead of P11. These polymer solutions T13 to T16 were directly used as materials for forming retardation films.
  • a polymer solution T14 was obtained by mixing the solvent and the like in the same ratio as in Preparation Example 1 except that the polymer solution used was replaced with P14 from P1. This polymer solution T14 was directly used as a material for forming a retardation film.
  • a polymer solution T15 was obtained by mixing the solvent and the like in the same ratio as in Preparation Example 11 except that the polymer powder used was replaced with P15 from P11. This polymer solution T15 was directly used as a material for forming a retardation film.
  • Example 10 Polymer solution T11 was applied on glass using a bar coater. The coated film was dried in a thermal circulation oven at 50° C. for 3 minutes, and then the substrate was irradiated with 600 mJ/cm 2 of polarized ultraviolet rays of 365 nm from a high pressure mercury lamp through a 300 nm long web length pass filter (LWPF) and a polarizing plate. (wavelength 365 nm standard). It was heated in an IR oven at 140° C. for 20 minutes to prepare a substrate S11 with a retardation film. Incidentally, the thickness of the retardation layer of S11 was 3.4 ⁇ m.
  • LWPF long web length pass filter
  • the substrates S1 to S12 and R1 to R5 with retardation films were evaluated for retardation value and light resistance by the following methods.
  • Phase difference value evaluation The linear retardation (Linear Re) at a wavelength of 550 nm was evaluated using Axo Scan manufactured by Axometrics, and the results are summarized in Table 1.
  • Retardation films (R1) to (R3) made of a polymer having a monomer M1-1-1 content of 20 mol% or more had a retardation change of 5% or more after a 500-hour light resistance test. rice field.
  • the retardation films (S1) to (S13) made of a polymer having a monomer M1-1-1 content of less than 20 mol% have a retardation change of less than 5% after a 500-hour light resistance test. and showed good light resistance.
  • a retardation film produced from a polymer containing no photoreactive monomer did not exhibit retardation (R4).
  • the retardation film was prepared from a polymer with a copolymerization ratio of M1' of 10 mol%, but the position after the light resistance test for 500 hours was low. The amount of change in phase difference was 5% or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Abstract

より簡単なプロセスにより、耐光性の高い単層位相差材作製を可能とする新規重合体として、(A)下記式(a)で表される光反応性部位を有する側鎖を有する側鎖型重合体、及び(B)有機溶媒を含み、(A)成分が、光反応性部位を有する側鎖を、全側鎖の20モル%より少ない量で含む側鎖型重合体である重合体組成物を提供する。(式中、R1は、炭素数1~30のアルキレン基等であり、R2は、2価の芳香族基等であり、R3は、単結合、-O-等であり、Rは、フッ素原子、炭素数1~6のアルキル基等であり、aは、0、1又は2であり、bは、0又は1であり、cは、0≦c≦2b+4を満たす整数であり、破線は、結合手である。)

Description

重合体組成物及び単層位相差材
 本発明は、重合体を含む組成物及び単層位相差材に関する。詳しくは、表示装置や記録材料等の用途に好適な光学特性を有する材料、特に、有機エレクトロルミネッセンス(Electroluminescence:EL)表示装置や液晶ディスプレイ用の偏光板及び位相差板等の光学補償フィルムに好適に利用できる液晶性重合体、該重合体を含む組成物、及び該組成物から得られる単層位相差材に関する。
 有機EL表示装置や液晶表示装置の表示品位の向上や軽量化等の要求から、偏光板や位相差板等の光学補償フィルムとして、内部の分子配向構造が制御された高分子フィルムの要求が高まっている。この要求に応えるべく、重合性液晶化合物が有する光学異方性を利用したフィルムの開発がなされている。ここで用いられる重合性液晶化合物は、一般に、重合性基と液晶構造部位(スペーサ部とメソゲン部とを有する構造部位)とを有する液晶化合物であり、この重合性基としてアクリル基が広く用いられている。
 このような重合性液晶化合物は、一般的に、紫外線等の放射線を照射して重合する方法で重合体(フィルム)とされる。例えば、アクリル基を有する特定の重合性液晶化合物を支持体間に担持し、この化合物を液晶状態に保持しつつ放射線を照射して重合体を得る方法(特許文献1)や、アクリル基を有する2種類の重合性液晶化合物の混合物又はこの混合物にカイラル液晶を混合した組成物に光重合開始剤を添加し、紫外線を照射して重合体を得る方法(特許文献2)が知られている。
 また、液晶配向膜を必要としない重合性液晶化合物や重合体を用いた配向フィルム(特許文献3、4)、光架橋部位を含む重合体を用いた配向フィルム(特許文献5、6)等、様々な単層塗布型配向フィルムが報告されてきた。
 重合性液晶化合物を用いた位相差板の種類によっては、長時間外光に晒された場合、位相差が変化してしまう問題がある。位相差層の経時的な光劣化は表示品質の低下に繋がるため、位相差層の耐光性を向上させる必要がある(特許文献7、8)。
特開昭62-70407号公報 特開平9-208957号公報 欧州特許出願公開第1090325号明細書 国際公開第2008/031243号 特開2008-164925号公報 特開平11-189665号公報 特開2020-34858号公報 特開2021-124625号公報
 本発明は、上記問題に鑑みなされたものであり、より簡単なプロセスにより、耐光性の高い単層位相差材作製を可能とする新規重合体、該重合体を含む組成物、及び該組成物から得られる単層位相差材を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の重合体組成物を用いることで、液晶配向膜を使用することなく、耐光性の高い単層位相差材が得られることを見出し、本発明を完成した。
 したがって、本発明は、下記重合体組成物及び単層位相差材を提供する。
1.(A)下記式(a)で表される光反応性部位を有する側鎖を有する側鎖型重合体、及び(B)有機溶媒を含み、(A)成分が、光反応性部位を有する側鎖を、全側鎖の20モル%より少ない量で含む側鎖型重合体である重合体組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。また、上記-CH2-は、R1中の末端の-CH2-であってもよい。
 R2は、2価の芳香族基、2価の脂環族基、2価の複素環式基又は2価の縮合環式基である。
 R3は、単結合、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。
 Rは、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基又はニトロ基であり、c≧2のとき、各Rは、互いに同一であってもよく、異なっていてもよい。
 aは、0、1又は2である。
 bは、0又は1である。
 cは、0≦c≦2b+4を満たす整数である。
 破線は、結合手である。
2.上記光反応性部位を有する側鎖が、下記式(a1)で表されるものである1の重合体組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、R1、R2及びaは、上記と同じ。
 R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。
 式(a1)中のベンゼン環の水素原子は、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 破線は、結合手である。)
3.(A)側鎖型重合体が、更に、液晶性のみを発現する側鎖を有する1又は2の重合体組成物。
4.上記液晶性のみを発現する側鎖が、下記式(1)~(13)のいずれかで表される液晶性側鎖である3の重合体組成物。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式中、A1、A2はそれぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。
 R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルキルオキシ基である。
 R12は、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、及びこれらを組み合わせて得られる基からなる群から選ばれる基であり、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
 R13は、水素原子、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 Eは、-C(=O)-O-又は-O-C(=O)-である。
 dは、1~12の整数である。
 k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
 k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
 m1、m2及びm3は、それぞれ独立に、1~3の整数である。
 nは、0又は1である。
 Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2O-、-CF2-である。
 式中のベンゼン環、ナフタレン環の水素原子は、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 破線は、結合手である。)
5.上記液晶性のみを発現する側鎖が、式(1)~(11)のいずれかで表される液晶性側鎖である4の重合体組成物。
6.(I)1~5のいずれかの重合体組成物を、基板上に塗布して塗膜を形成する工程、
(II)上記塗膜に、偏光した紫外線を照射する工程、及び
(III)上記紫外線を照射した塗膜を加熱して、位相差材を得る工程
を含む、単層位相差材の製造方法。
7.1~5のいずれかの組成物から得られる単層位相差材。
 本発明により、耐光性の高い単層位相差材と、それを与える重合体とを提供することができる。
 本発明者らは、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明の重合体組成物は、液晶性を発現し得る感光性の側鎖型重合体(以下、単に側鎖型重合体ともいう。)を有しており、上記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖型重合体を有する膜である。この塗膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型重合体膜を加熱する工程を経て、光学異方性が付与されたフィルム(以下、単層位相差材ともいう。)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性側鎖型重合体自体が自己組織化により効率的に再配向する。その結果、高効率な配向処理が実現し、高い光学異方性が付与された単層位相差材を得ることができる。その際、(A)成分における光反応性部位を有する側鎖の量を20モル%より少ない量とすることで、上記の効果を維持しつつ、耐光性を有する。なお、これらは本発明のメカニズムに関する発明者の見解を含むものであり、本発明を拘束するものではない。
 以下、本発明の実施形態について詳しく説明する。
[重合体組成物]
 本発明の重合体組成物は、(A)光反応性部位を有する側鎖を有する側鎖型重合体、及び(B)有機溶媒を含み、(A)成分が、光反応性部位を有する側鎖を、全側鎖の20モル%より少ない量で含む側鎖型重合体であることを特徴とする。
[(A)側鎖型重合体]
 (A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型重合体であって、下記式(a)で表される光反応性部位を有する側鎖(以下、側鎖aともいう。)を全側鎖の20モル%より少ない量で含む側鎖型重合体である。
Figure JPOXMLDOC01-appb-C000009
 式(a)中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。また、上記-CH2-は、R1中の末端の-CH2-であってもよい。R2は、2価の芳香族基、2価の脂環族基、2価の複素環式基又は2価の縮合環式基である。R3は、単結合、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。Rは、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基又はニトロ基であり、c≧2のとき、各Rは、互いに同一であってもよく、異なっていてもよい。aは、0、1又は2である。bは、0又は1である。cは、0≦c≦2b+4を満たす整数である。破線は、結合手である。
 R1で表される炭素数1~30のアルキレン基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基等が挙げられる。
 R2で表される2価の芳香族基としては、フェニレン基、ビフェニリレン基等が挙げられる。R2で表される2価の脂環族基としては、シクロヘキサンジイル基等が挙げられる。R2で表される2価の複素環式基としては、フランジイル基等が挙げられる。R2で表される2価の縮合環式基としては、ナフチレン基等が挙げられる。
 Rで表される炭素数1~6のアルキル基としては、直鎖状、分岐鎖状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等の炭素数1~6の直鎖または分岐鎖状アルキル基が挙げられる。本発明では、メチル基が最も好ましい。
 Rで表される炭素数1~6のハロアルキル基としては、上記炭素数1~6のアルキル基の水素原子の少なくとも1つを、ハロゲン原子で置換したものが挙げられるが、中でも、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましい。
 その具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、ヘプタフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、ノナフルオロブチル基、4,4,4-トリフルオロブチル基、ウンデカフルオロペンチル基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、トリデカフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシル基、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられる。本発明では、トリフルオロメチル基が最も好ましい。
 Rで表される炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、n-ヘキシルオキシ基、等が挙げられる。本発明では、メトキシ基が最も好ましい。
 Rで表される炭素数1~6のハロアルコキシ基としては、ジフルオロメトキシ基、トリフルオロメトキシ基、ブロモジフルオロメトキシ基、2-クロロエトキシ基、2-ブロモエトキシ基、1,1-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、1,1,2,2-テトラフルオロエトキシ基、2-クロロ-1,1,2-トリフルオロエトキシ基、ペンタフルオロエトキシ基、3-ブロモプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、1,1,2,3,3,3-ヘキサフルオロプロポキシ基、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イルオキシ基、3-ブロモ-2-メチルプロポキシ基、4-ブロモブトキシ基、パーフルオロペンチルオキシ基等が挙げられる。
 側鎖aとしては下記式(a1)で表されるもの(以下、側鎖a1ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(a1)中、R1、R2及びaは、上記と同じ。R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。式(a1)中のベンゼン環は、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。破線は、結合手である。
 側鎖a1としては、例えば、下記式(a1-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(a1-1)中、Lは、直鎖状又は分岐鎖状の炭素数1~16のアルキレン基である。Xは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。式(a1-1)中のベンゼン環は、フッ素原子、メチル基、トリフルオロメチル基、メトキシ基、トリフルオロメトキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。破線は、結合手である。
 炭素数1~16のアルキレン基としては、上記炭素数1~30のアルキレン基のうち炭素数1~16のものが挙げられる。
 (A)側鎖型重合体は、250~400nmの波長範囲の光で反応し、かつ100~300℃の温度範囲で液晶性を示すものが好ましい。(A)側鎖型重合体は、250~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。
 (A)側鎖型重合体は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応又は異性化反応を起こすことができる。液晶性を発現し得る感光性の側鎖型重合体の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。上記側鎖型重合体を単層位相差材とした際に、安定な光学異方性を得ることができる。
 液晶性を発現し得る感光性の側鎖型重合体の構造のより具体的な例としては、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、側鎖aとを有する構造であることが好ましい。
 また、(A)側鎖型重合体は、100~300℃の温度範囲で液晶性を示すため、更に液晶性のみを発現する側鎖(以下、側鎖bともいう。)を有することが好ましい。なお、ここで「液晶性のみを発現する」とは、側鎖bのみを有するポリマーは、本発明の位相差材の作製プロセス(すなわち、後述する工程(I)~(III))中に、感光性を示さず、液晶性のみを発現するという意味である。
 側鎖bとしては、下記式(1)~(13)からなる群から選ばれるいずれか1種の液晶性側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 式(1)~(13)中、A1、A2はそれぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。R12は、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、及びこれらを組み合わせて得られる基からなる群から選ばれる基であり、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。R13は、水素原子、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。Eは、-C(=O)-O-又は-O-C(=O)-である。dは、1~12の整数である。k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。m1、m2及びm3は、それぞれ独立に、1~3の整数である。nは、0又は1である。Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2O-、-CF2-である。破線は、結合手である。
 A1、A2で表される1価窒素含有複素環基としては、ピロリジニル基、ピペリジニル基、ピペラジニル基、ピロリル基、ピリジル基等が挙げられる。前記炭素数5~8の1価脂環式炭化水素基の具体例としては、シクロペンチル、シクロヘキシル基等が挙げられる。
 A1、A2で表される炭素数5~8の1価脂環式炭化水素基としては、シクロペンチル、シクロヘキシル基等が挙げられる。
 A1、A2で表される炭素数1~12のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル、n-ドデシル等が挙げられる。
 A1、A2で表される炭素数1~12のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、tert-ブトキシ基、n-ペントキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基等が挙げられる。
 R12で表される1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基としては、A1、A2の説明において例示した基と同様のものが挙げられる。
 R12における炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 R12における炭素数1~5のアルコキシ基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 R13で表される1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基としては、A1、A2の説明において例示した基と同様のものが挙げられる。
 これらのうち、側鎖bとしては、式(1)~(11)のいずれかで表されるものが好ましい。
 (A)成分の側鎖型重合体は、式(a)で表される構造を有するモノマー、及び所望により液晶性のみを発現する構造を有するモノマーを重合することによって得ることができる。
 式(a)で表される構造を有するモノマー(以下、モノマーM1ともいう。)としては、下記式(M1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式中、R1、R2、R3、R、a、m及びnは、上記と同じ。)
 モノマーM1としては、下記式(M1A)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000015
(式中、R1、R2、R3A及びaは、上記と同じ。式(M1A)中のベンゼン環は、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。)
 モノマーM1Aのうち、下記式(M1B)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中、L及びXは、上記と同じ。式(M1B)中のベンゼン環は、フッ素原子、メチル基、トリフルオロメチル基、メトキシ基、トリフルオロメトキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。)
 式(M1)、(M1A)及び(M1B)中、PLは、下記式(PL-1)~(PL-5)のいずれかで表される重合性基である。
Figure JPOXMLDOC01-appb-C000017
 式(PL-1)~(PL-5)中、Q1、Q2及びQ3は、水素原子、直鎖状若しくは分岐鎖状の炭素数1~10のアルキル基、又はハロゲンで置換された直鎖状若しくは分岐鎖状の炭素数1~10のアルキル基である。破線は、R1又はLとの結合手である。これらモノマーのうち、あるものは市販されており、あるものは公知物質から公知の製造方法にて製造することができる。
 直鎖状若しくは分岐鎖状の炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。特にメチル基、エチル基が好ましい。
 ハロゲンで置換された直鎖状若しくは分岐鎖状の炭素数1~10のアルキル基としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。特にトリフルオロメチル基が好ましい。
 モノマーM1の好ましい例としては、下記式(M1-1)~(M1-7)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
(式中、PLは、上記と同じ。pは、2~9の整数である。)
 液晶性のみを発現する構造を有するモノマー(以下、モノマーM2ともいう。)は、該モノマー由来のポリマーが液晶性を発現し、該ポリマーが側鎖部位にメソゲン基を形成することができるモノマーのことである。
 側鎖の有するメソゲン基としては、ビフェニルやフェニルベンゾエート等の単独でメソゲン構造となる基であっても、安息香酸等のように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては、下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000019
 モノマーM2のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種に由来する重合性基と、式(1)~(13)の少なくとも1種からなる構造を有する構造であることが好ましい。特に、モノマーM2は、重合性基として(メタ)アクリレートを有するものであるものが好ましく、側鎖の末端が-COOHであるものが好ましい。
 モノマーM2の好ましい例としては、下記式(M2-1)~(M2-11)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式中、PL及びpは、上記と同じ。)
 また、光反応性及び/又は液晶性の発現能を損なわない範囲で、その他のモノマーを共重合することができる。その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、2-(2-(2-メトキシエトキシ)エトキシ)エチルメタクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロ[5.2.1.0<2,6>]デシルアクリレート、8-エチル-8-トリシクロ[5.2.1.0<2,6>]デシルアクリレート、2-フェノキシエチルアクリレート等が挙げられる。
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロ[5.2.1.0<2,6>]デシルメタクリレート、8-エチル-8-トリシクロ[5.2.1.0<2,6>]デシルメタクリレート等が挙げられる。
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。スチレン化合物としては、例えば、スチレン、4-メチルスチレン、4-クロロスチレン、4-ブロモスチレン等が挙げられる。マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
 本発明の側鎖型重合体における側鎖aの含有量は、配向性及び位相差値の観点から、0.1モル%以上が好ましく、1モル%以上がより好ましく、3モル%以上が更に好ましく、5モル%以上が特に好ましい。また、本発明の側鎖型重合体における側鎖aの含有量は、耐光性の点から、20モル%より少ない量であるのが好ましく、19モル%以下がより好ましく、18モル%以下が更に好ましく、16モル%以下が特に好ましい。また、上記側鎖aの含有量の下限は、10モル%が特に好ましい。
 本発明の側鎖型重合体における側鎖bの含有量は、配向性及び位相差値の観点から、40~99.9モル%が好ましく、60~99.9モル%がより好ましく、65~99.9モル%がより一層好ましく、65~99モル%がさらに一層好ましく、65~95モル%が特に好ましい。また、上記側鎖bの含有量の特に好ましい上限は、90モル%である。
 本発明の側鎖型重合体は、上述したとおり、その他の側鎖を含んでいてもよい。その他の側鎖の含有量は、側鎖a及び側鎖bの含有量の合計が100モル%に満たない場合に、その残りの部分である。ただし、その他の側鎖が非液晶性化合物である場合、配向性及び位相差値の観点から、40モル%以下が好ましく、30モル%以下がより好ましく、20モル%以下がより一層好ましく、15モル%以下がさらに好ましい。
 (A)成分の側鎖型重合体の製造方法は、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、上述したモノマーM1、モノマーM2及び所望によりその他のモノマーのビニル基を利用したラジカル重合、カチオン重合又はアニオン重合により製造することができる。これらの中では、反応制御のしやすさ等の観点からラジカル重合が特に好ましい。
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤(ラジカル熱重合開始剤、ラジカル光重合開始剤)や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、2,2’-ビス(2-ヒドロキシエチル)アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル等)等が挙げられる。ラジカル熱重合開始剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ビス(エトキシカルボニルメチル)アミノフェニル]-2,6-ビス(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(メトキシカルボニル)-4,4’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ビス(メトキシカルボニル)-4,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ビス(メトキシカルボニル)-3,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等が挙げられる。ラジカル光重合開始剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 ラジカル重合法としては、特に限定されるものではなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
 重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、シクロペンタノン、シクロヘキサノン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
 上記有機溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
 ラジカル重合の際の重合温度は、30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述したラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~20モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。
 上記反応により得られた反応溶液から生成したポリマーを回収するには、反応溶液を貧溶媒に投入して、それら重合体を沈殿させればよい。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。
 本発明の(A)側鎖型重合体は、得られる塗膜の強度、塗膜形成時の作業性及び塗膜の均一性を考慮すると、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2,000~2,000,000であるものが好ましく、2,000~1,000,000であるものがより好ましく、5,000~200,000であるものがより一層好ましい。
[(B)有機溶媒]
 (B)成分の有機溶媒は、重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して使用してもよい。
[その他の成分]
 本発明の重合体組成物は、(A)、(B)成分以外の成分を含んでもよい。その例としては、重合体組成物を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、位相差材と基板との密着性を向上させる化合物等が挙げられるが、これらに限定されない。
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール等の低表面張力を有する溶媒等が挙げられる。
 これらの貧溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。上記貧溶媒を用いる場合、その含有量は、重合体組成物に含まれる溶媒全体の溶解性を著しく低下させることがないように、溶媒中5~80質量%であることが好ましく、20~60質量%であることがより好ましい。
 膜厚均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。これらの具体例としては、エフトップ(登録商標)301、EF303、EF352(三菱マテリアル電子化成社製)、メガファック(登録商標)F171、F173、F560、F563、R-30、R-40(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガード(登録商標)AG710(AGC社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の含有量は、(A)成分100質量部に対し、0.01~2質量部が好ましく、0.01~1質量部がより好ましい。
 位相差材と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物等が挙げられ、その具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリルプロピル)トリエチレンテトラミン、N-(3-トリメトキシシリルプロピル)トリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。
 さらに、基板と位相差材の密着性の向上に加え、偏光板を構成した時のバックライトによる特性の低下等を防ぐ目的で、フェノプラスト系化合物やエポキシ基含有化合物を、重合体組成物に添加してもよい。
 フェノプラスト系添加剤の具体例を以下に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000022
 エポキシ基含有化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。
 基板との密着性を向上させる化合物を使用する場合、その含有量は、重合体組成物に含まれる重合体成分100質量部に対し、0.1~30質量部が好ましく、1~20質量部がより好ましい。含有量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
 添加剤として、光増感剤を用いることもできる。光増感剤としては、無色増感剤及び三重項増感剤が好ましい。
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-又はジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン等)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン等)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン等)、ベンゾチアゾール、ニトロアニリン(m-又はp-ニトロアニリン、2,4,6-トリニトロアニリン等)、ニトロアセナフテン(5-ニトロアセナフテン等)、2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン等)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、9-アントラセンカルボン酸等)、ベンゾピラン、アゾインドリジン、メロクマリン等が挙げられる。これらのうち、好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン及びアセトフェノンケタールである。
 本発明の重合体組成物には、上述したもののほか、本発明の効果が損なわれない範囲であれば、位相差材の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差材にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。
[重合体組成物の調製]
 本発明の重合体組成物は、単層位相差材の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、(A)成分及び上述した膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等が(B)成分の有機溶媒に溶解した溶液として調製されることが好ましい。ここで、(A)成分の含有量は、本発明の組成物中1~30質量%が好ましく、より好ましくは3~25質量%である。
 本発明の重合体組成物は、(A)成分の重合体以外に、液晶発現能及び感光性能を損なわない範囲でその他の重合体が含まれていてもよい。その際、重合体成分中におけるその他の重合体の含有量は、好ましくは0.5~80質量%、より好ましくは1~50質量%である。その他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等の、液晶性を発現し得る感光性の側鎖型重合体ではない重合体等が挙げられる。
[単層位相差材]
 本発明の単層位相差材は、下記工程(I)~(III)を含む方法によって製造することができる。
(I)本発明の組成物を、基板上に塗布して塗膜を形成する工程、
(II)上記塗膜に偏光した紫外線を照射する工程、及び
(III)上記紫外線を照射した塗膜を加熱して、位相差材を得る工程。
[工程(I)]
 工程(I)は、本発明の組成物を基板上に塗布して塗膜を形成する工程である。より具体的には、本発明の組成物を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属(例えば、アルミニウム、モリブデン、クロム等)が被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、スピンコート、フローコート、ロールコート、スリットコート、スリットコートに続いたスピンコート、インクジェット法、印刷法等の方法によって塗布する。塗布した後、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により30~200℃、好ましくは30~150℃で溶媒を蒸発させて塗膜を得ることができる。
[工程(II)]
 工程(II)では、工程(I)で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。上記紫外線としては、波長100~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値を実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。
[工程(III)]
 工程(III)では、工程(II)で偏光した紫外線を照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
 加熱温度は、本発明の組成物に含まれる(A)成分の重合体が液晶性を発現する温度(以下、液晶発現温度という。)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、(A)成分の重合体をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、(A)成分の重合体の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
 なお、液晶発現温度は、重合体又は塗膜表面が固体相から液晶相に相転移が起きる液晶転移温度以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。例えば、130℃以下で液晶性を発現するとは、固体相から液晶相に相転移が起きる液晶転移温度が130℃以下であることを意味する。
 加熱後に形成される塗膜の厚みは、使用する基板の段差や光学的、電気的性質を考慮して適宜選択することができ、例えば、0.5~10μmが好適である。
 このようにして得られた本発明の単層位相差材は、表示装置や記録材料等の用途に好適な光学特性を有する材料であり、特に、液晶ディスプレイ用の偏光板及び位相差板等の光学補償フィルムとして好適である。
 以下、合成例、調製例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例に限定されない。
 実施例で使用したモノマーを以下に示す。M1-1-1は、国際公開第2011/084546号に記載された合成法に従って合成した。
 M1’は、特開2012-27354に記載された合成法に従って合成した。
 M2-1-1は、特開平9-118717号公報に記載された合成法に従って合成した。M2-2-1とM2-5-1は、特開2015-129210号公報に記載された合成法に従って合成した。M3-1は、東京化成工業株式会社から購入した試薬を用いた。なお、M1-1-1及びM1’に由来する側鎖は側鎖aに該当し、M2-1-1及びM2-2-1、M2-5-1に由来する側鎖は側鎖bに該当する。M3-1に由来する側鎖は側鎖a及び側鎖b以外となるその他の側鎖である。
Figure JPOXMLDOC01-appb-C000023
 その他、本実施例で用いた試薬の略号を以下に示す。
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
PGME:プロピレングリコーモノメチルエーテル
PB:プロピレングリコールモノブチルエーテル
CPN:シクロペンタノン
THF:テトラヒドロフラン
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
V-601:2,2’-アゾビス(2-メチルプロピオン酸)ジメチル
(界面活性剤)
R40:メガファックR-40(DIC社製)
F563:メガファックF-563(DIC社製)
(ポリマーの分子量測定)
 ポリマーの分子量測定条件は、以下の通りである。
装置:島津製作所 Nexera GPC システム (Shimadzu SCL-40)
カラム:Shodex社製カラム(LF-804、KF-801)、
カラム温度:40℃、
溶離液:テトラヒドロフラン (HPLCグレード) 
流速:1.0ml/分、
検量線作成用標準サンプル:ポリスチレン(PStQuick E/PStQuick F)(東ソー社製)
[1]ポリマーの合成
[合成例1(M1-1-1:M2-1-1=18:82)]
 NMP(22.9g)中に、M1-1-1(2.99g、9.00mmol)、M2-1-1(12.6g、41.0mmol)及びAIBN(0.821g、5.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(15.3g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P1を得た。
[合成例2(M1-1-1:M2-1-1=15:85)]
 NMP(22.9g)中に、M1-1-1(2.49g、7.50mmol)、M2-1-1(13.0g、42.5mmol)及びAIBN(0.821g、5.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(15.2g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P2を得た。
[合成例3(M1-1-1:M2-1-1=12:88)]
 NMP(22.8g)中に、M1-1-1(1.99g、6.00mmol)、M2-1-1(13.5g、44.0mmol)及びAIBN(0.821g、5.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(15.2g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P3を得た。
[合成例4(M1-1-1:M2-1-1:M3-1=15:75:10)]
 NMP(13.2g)中に、M1-1-1(1.50g、4.50mmol)、M2-1-1(6.89g、22.5mmol)、M3-1(0.577g、3.00mmol)及びAIBN(0.493g、3.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(8.8g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P4を得た。
[合成例5(M1-1-1:M2-1-1:M2-5-1=15:75:10)]
 NMP(14.0g)中に、M1-1-1(1.50g、4.50mmol)、M2-1-1(6.89g、22.5mmol)、M2-5-1(1.15g、3.00mmol)及びAIBN(0.493g、3.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(9.4g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P5を得た。
[合成例6(M1-1-1:M2-1-1=10:90)]
 NMP(22.8g)中に、M1-1-1(1.66g、5.00mmol)、M2-1-1(13.8g、45.0mmol)及びAIBN(0.821g、5.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(15.2g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P6を得た。
[合成例7(M1-1-1:M2-1-1=40:60)]
 NMP(23.3g)中に、M1-1-1(6.65g、20.0mmol)、M2-1-1(9.19g、30.0mmol)及びAIBN(0.821g、5.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(15.5g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P7を得た。
[合成例8(M1-1-1:M2-1-1=20:80)]
 NMP(23.0g)中に、M1-1-1(3.32g、10.0mmol)、M2-1-1(12.3g、40.0mmol)及びAIBN(0.821g、5.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(15.3g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P8を得た。
[合成例9(M1-1-1:M2-1-1:M2-5-1=30:60:10)]
 NMP(14.2g)中に、M1-1-1(2.99g、9.00mmol)、M2-1-1(5.51g、18.0mmol)、M2-5-1(1.15g、3.00mmol)及びAIBN(0.493g、3.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(9.5g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P9を得た。
[合成例10(M1-1-1:M2-1-1=5:95)]
 NMP(22.7g)中に、M1-1-1(0.831g、2.50mmol)、M2-1-1(14.6g、47.5mmol)及びAIBN(0.821g、5.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(15.1g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P10を得た。
[合成例11(M1-1-1:M2-1-1=15:85)]
 CPN(26.6g)中に、M1-1-1(1.50g、4.50mmol)、M2-1-1(7.81g、25.5mmol)及びV-601(0.207g、0.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、70℃で、CPN(11.4g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、70℃で12時間反応させた。反応終了後、メタノール/純水混合溶媒中に反応液を注ぎ込み、析出したポリマーを濾別し、メタノールで洗浄することでポリマー粉体P11(7.61g)を得た。P11の数平均分子量は25,000、重量平均分子量は73,000であった。
[合成例12(M1-1-1:M2-1-1=10:90)]
 CPN(26.5g)中に、M1-1-1(0.997g、3.00mmol)、M2-1-1(8.27g、27.0mmol)及びV-601(0.207g、0.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、70℃で、CPN(11.4g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、70℃で12時間反応させた。反応終了後、メタノール/純水混合溶媒中に反応液を注ぎ込み、析出したポリマーを濾別し、メタノールで洗浄することでポリマー粉体P12(7.58g)を得た。P12の数平均分子量は23,000、重量平均分子量は66,000であった。
[合成例13(M1-1-1:M2-1-1=5:95)]
 CPN(26.4g)中に、M1-1-1(0.499g、1.50mmol)、M2-1-1(8.73g、28.5mmol)及びV-601(0.207g、0.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、70℃で、CPN(11.3g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、70℃で12時間反応させた。反応終了後、メタノール/純水混合溶媒中に反応液を注ぎ込み、析出したポリマーを濾別し、メタノールで洗浄することでポリマー粉体P13(7.55g)を得た。P13の数平均分子量は21,000、重量平均分子量は53,000であった。
[合成例14(M2-1-1=100)]
 NMP(13.6g)中に、M2-1-1(9.19g、30.0mmol)及びAIBN(0.493g、3.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(9.04g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P14を得た。
[合成例15(M1’:M2-1-1=10:90)]
 CPN(23.5g)中に、M1′(1.32g、3.00mmol)、M2-1-1(8.27g、27.0mmol)及びV-601(0.207g、0.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、70℃で、CPN(15.7g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、70℃で12時間反応させた。反応終了後、メタノール/純水混合溶媒中に反応液を注ぎ込み、析出したポリマーを濾別し、メタノールで洗浄することでポリマー粉体P15(7.90g)を得た。P15の数平均分子量は29,000、重量平均分子量は66,000であった。
[2]位相差膜形成材料の調製
[調製例1]
 ポリマー溶液P1(50.0g)に、NMP(2.50g)、BCS(7.50g)、PGME(7.50g)、PB(7.50g)及びR40(7.5mg)を加えて撹拌することで、ポリマー溶液T1を得た。このポリマー溶液T1は、そのまま位相差膜を形成するための材料とした。
[調製例2~10]
 使用するポリマー溶液をP1からP2~P10に置き換えたことを除いては調製例1と同様の比率で溶媒等を混合することで、ポリマー溶液T2~T10を得た。このポリマー溶液T2~T10は、そのまま位相差膜を形成するための材料とした。
[調製例11]
 合成例11で得られたポリマー粉体P11(5.00g)に、CPN(22.8g)、及びF563(25.0mg)を加えて撹拌した。ポリマーを溶解させた後、孔径5.0μmのフィルターで濾過することでポリマー溶液T11を得た(ポリマー濃度:18質量%)。このポリマー溶液T11は、そのまま位相差膜を形成するための材料とした。
[調製例12、13]
 使用するポリマー粉体をP11からP12、P13に置き換えたことを除いては調製例11と同様に実施することで、ポリマー溶液T12、T13を得た。このポリマー溶液T13~T16は、そのまま位相差膜を形成するための材料とした。
[調製例14]
 使用するポリマー溶液をP1からP14に置き換えたことを除いては調製例1と同様の比率で溶媒等を混合することで、ポリマー溶液T14を得た。このポリマー溶液T14は、そのまま位相差膜を形成するための材料とした。
[調製例15]
 使用するポリマー粉体をP11からP15に置き換えたことを除いては調製例11と同様の比率で溶媒等を混合することで、ポリマー溶液T15を得た。このポリマー溶液T15は、そのまま位相差膜を形成するための材料とした。
[3]単層位相差膜の製造
[実施例1]
 ポリマー溶液T1を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコートし、70℃のホットプレート上で4分間乾燥し、膜厚2.0μmの位相差膜を形成した。次いで、塗膜面に空気側から波長365nm(バンドパスフィルター:BPF)直線偏光紫外線を1200mJ/cm2(波長365nm基準) 照射した。その後、140℃の循環型オーブンで20分間加熱(本焼成)し、位相差膜付きの基板S1を作製した。
[実施例2~9、比較例1~4]
 表1に示す通りのポリマー溶液、膜厚、偏光紫外線露光、本焼成温度の条件を変更した以外は実施例1と同様の手法で、位相差膜付きの基板S2~S9及びR1~R4を作製した。尚、直線偏光紫外線露光時に波長313nm(カットフィルターなし)直線偏光紫外線を用いた実施例2、7及び比較例1、2、4において、露光量は波長313nm基準とした。
[実施例10]
 ポリマー溶液T11をガラス上にバーコーターを用いて塗布した。この塗布フィルムを50℃の熱循環オーブンで3分間乾燥させ、続いて、この基板に高圧水銀灯から300nmロングウェブレングスパスフィルター(LWPF)および偏光板を介して365nmの偏光紫外線を600mJ/cm2照射(波長365nm基準)した。140℃のIR式オーブンで20分間加熱し、位相差膜付き基板S11を作製した。尚、S11の位相差層膜厚は、3.4μmであった。
[実施例11、12]
 表1に示す通りのポリマー溶液を変更した以外は実施例10と同様の手法で、位相差膜付きの基板S11、S12を作製した。
[比較例5]
 ポリマー溶液T15をガラス上にバーコーターを用いて塗布した。この塗布フィルムを50℃の熱循環オーブンで3分間乾燥させ、続いて、この基板に高圧水銀灯から275nmロングウェブレングスパスフィルター(LWPF)および偏光板を介して313nmの偏光紫外線を200mJ/cm2照射(波長313nm基準)した。150℃のIR式オーブンで20分間加熱し、位相差膜付き基板R5を作製した。尚、R5の位相差層膜厚は、2.3μmであった。
 各位相差膜付きの基板S1~S12、R1~5について、下記方法により位相差値及び耐光性について評価した。
〔位相差値評価〕
 Axometrics社製のAxo Scanを用いて波長550nmにおける直線位相差(Linear Re)を評価し、表1にまとめた。
〔耐光性試験〕
 各位相差膜付きの基板の膜表面にUVカットフィルム(波長370nm以下UVカット)を積層し、Q-Lab社製の卓上型キセノン促進耐候性試験機(放射照度:0.55W/m2(波長340nm基準)、温度:60℃、フィルター:Daylight F ilter)を用いて、耐光性試験を実施した。具体的には、UVカットフィルムを積層した各位相差膜付きの基板を上記条件のキセノン促進耐候性試験機に入れて200時間又は500時間に渡り光を露光した。露光後、UVカットフィルムを外した状態の各位相差膜付き基板の直線位相差を上記手法にて測定した。下記式に従って、Linear Re保持率を算出した。
 Linear Re変化率[%]=100-(耐光性試験後のLinear Re)/(初期のLinear Re)×100
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000024
 モノマーM1-1-1の含有量が20モル%以上のポリマーで作製した位相差膜(R1)~(R3)は、500時間の耐光性試験後の位相差の変化量は5%以上であった。一方、モノマーM1-1-1の含有量が20モル%未満のポリマーで作製した位相差膜(S1)~(S13)は、500時間の耐光性試験後の位相差の変化量は5%未満であり、良好な光耐性を示した。また、光反応性モノマーを含まないポリマーで作製した位相差膜は、位相差を発現しなかった(R4)。光反応性モノマーとして桂皮酸フェニルエステルM1’を用いた場合、M1’の共重合比が10モル%のポリマーで作製した位相差膜であるにも関わらず、500時間の耐光性試験後の位相差の変化量は5%以上であった。

Claims (7)

  1.  (A)下記式(a)で表される光反応性部位を有する側鎖を有する側鎖型重合体、及び
    (B)有機溶媒を含み、(A)成分が、光反応性部位を有する側鎖を、全側鎖の20モル%より少ない量で含む側鎖型重合体である重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。また、上記-CH2-は、R1中の末端の-CH2-であってもよい。
     R2は、2価の芳香族基、2価の脂環族基、2価の複素環式基又は2価の縮合環式基である。
     R3は、単結合、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。
     Rは、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基又はニトロ基であり、c≧2のとき、各Rは、互いに同一であってもよく、異なっていてもよい。
     aは、0、1又は2である。
     bは、0又は1である。
     cは、0≦c≦2b+4を満たす整数である。
     破線は、結合手である。
  2.  上記光反応性部位を有する側鎖が、下記式(a1)で表されるものである請求項1に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2及びaは、上記と同じ。
     R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。
     式(a1)中のベンゼン環の水素原子は、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
     破線は、結合手である。)
  3.  (A)側鎖型重合体が、更に、液晶性のみを発現する側鎖を有する請求項1に記載の重合体組成物。
  4.  上記液晶性のみを発現する側鎖が、下記式(1)~(13)のいずれかで表される液晶性側鎖である請求項3に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式中、A1、A2はそれぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。
     R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルキルオキシ基である。
     R12は、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、及びこれらを組み合わせて得られる基からなる群から選ばれる基であり、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
     R13は、水素原子、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フリル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
     Eは、-C(=O)-O-又は-O-C(=O)-である。
     dは、1~12の整数である。
     k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
     k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
     m1、m2及びm3は、それぞれ独立に、1~3の整数である。
     nは、0又は1である。
     Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2O-、-CF2-である。
     式中のベンゼン環、ナフタレン環の水素原子は、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
     破線は、結合手である。)
  5.  上記液晶性のみを発現する側鎖が、式(1)~(11)のいずれかで表される液晶性側鎖である請求項4に記載の重合体組成物。
  6.  (I)請求項1~5のいずれか1項に記載の重合体組成物を、基板上に塗布して塗膜を形成する工程、
    (II)上記塗膜に、偏光した紫外線を照射する工程、及び
    (III)上記紫外線を照射した塗膜を加熱して、位相差材を得る工程
    を含む、単層位相差材の製造方法。
  7.  請求項1~5のいずれか1項に記載の組成物から得られる単層位相差材。
PCT/JP2022/044020 2021-11-29 2022-11-29 重合体組成物及び単層位相差材 WO2023095925A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023563783A JPWO2023095925A1 (ja) 2021-11-29 2022-11-29
CN202280078456.2A CN118302462A (zh) 2021-11-29 2022-11-29 聚合物组合物和单层相位差材料
KR1020247021028A KR20240112908A (ko) 2021-11-29 2022-11-29 중합체 조성물 및 단층 위상차재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021193279 2021-11-29
JP2021-193279 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023095925A1 true WO2023095925A1 (ja) 2023-06-01

Family

ID=86539783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044020 WO2023095925A1 (ja) 2021-11-29 2022-11-29 重合体組成物及び単層位相差材

Country Status (5)

Country Link
JP (1) JPWO2023095925A1 (ja)
KR (1) KR20240112908A (ja)
CN (1) CN118302462A (ja)
TW (1) TW202336462A (ja)
WO (1) WO2023095925A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196589A1 (ja) * 2013-06-05 2014-12-11 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
JP2016103011A (ja) * 2014-11-12 2016-06-02 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2016186190A1 (ja) * 2015-05-20 2016-11-24 日産化学工業株式会社 重合体組成物、液晶配向剤、液晶配向膜、該液晶配向膜を有する基板及び該液晶配向膜を有する液晶表示素子
WO2017061542A1 (ja) * 2015-10-07 2017-04-13 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2017076045A (ja) * 2015-10-14 2017-04-20 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2017142453A (ja) * 2016-02-12 2017-08-17 日産化学工業株式会社 液晶配向膜の製造方法、液晶配向膜及び液晶表示素子
WO2017170681A1 (ja) * 2016-03-30 2017-10-05 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2017199986A1 (ja) * 2016-05-18 2017-11-23 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2019008170A (ja) * 2017-06-26 2019-01-17 Dic株式会社 液晶配向膜用ポリマー、液晶配向膜、液晶表示素子、液晶ディスプレイ、光学異方体、光学異方性フィルム及び光デバイス
WO2022071409A1 (ja) * 2020-09-30 2022-04-07 日産化学株式会社 単層位相差材の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270407A (ja) 1985-09-25 1987-03-31 Fuji Photo Film Co Ltd 配向膜の作成方法
JPH09208957A (ja) 1996-01-31 1997-08-12 Teijin Ltd 光学異方体の製造方法
JP3945790B2 (ja) 1997-12-25 2007-07-18 林テレンプ株式会社 複屈折フィルムとその製造方法
JP5462628B2 (ja) 2006-09-13 2014-04-02 ロリク アーゲー ボリューム光アラインされたリターダ
JP2008164925A (ja) 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd 位相差フィルムおよびその製造方法
KR101090325B1 (ko) 2009-03-18 2011-12-07 동방에프티엘(주) 고순도 올메사탄 메독소밀의 제조방법
JP7259232B2 (ja) 2018-08-31 2023-04-18 大日本印刷株式会社 表示パネル、画像表示装置及び表示パネルの紫外線吸収層の選別方法
JP7285227B2 (ja) 2020-02-06 2023-06-01 富士フイルム株式会社 重合性液晶組成物、化合物、光学異方性膜、光学フィルム、偏光板および画像表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196589A1 (ja) * 2013-06-05 2014-12-11 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
JP2016103011A (ja) * 2014-11-12 2016-06-02 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2016186190A1 (ja) * 2015-05-20 2016-11-24 日産化学工業株式会社 重合体組成物、液晶配向剤、液晶配向膜、該液晶配向膜を有する基板及び該液晶配向膜を有する液晶表示素子
WO2017061542A1 (ja) * 2015-10-07 2017-04-13 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2017076045A (ja) * 2015-10-14 2017-04-20 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2017142453A (ja) * 2016-02-12 2017-08-17 日産化学工業株式会社 液晶配向膜の製造方法、液晶配向膜及び液晶表示素子
WO2017170681A1 (ja) * 2016-03-30 2017-10-05 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2017199986A1 (ja) * 2016-05-18 2017-11-23 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2019008170A (ja) * 2017-06-26 2019-01-17 Dic株式会社 液晶配向膜用ポリマー、液晶配向膜、液晶表示素子、液晶ディスプレイ、光学異方体、光学異方性フィルム及び光デバイス
WO2022071409A1 (ja) * 2020-09-30 2022-04-07 日産化学株式会社 単層位相差材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOBUHIRO KAWATSUKI, TAKAYUKI KAWANISHI, EMI UCHIDA: "Photoinduced Cooperative Reorientation in Photoreactive Hydrogen-Bonded Copolymer Films and LC Alignment Using the Resultant Films", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 41, no. 13, 1 July 2008 (2008-07-01), US , pages 4642 - 4650, XP055473891, ISSN: 0024-9297, DOI: 10.1021/ma800505c *

Also Published As

Publication number Publication date
KR20240112908A (ko) 2024-07-19
JPWO2023095925A1 (ja) 2023-06-01
TW202336462A (zh) 2023-09-16
CN118302462A (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
JP7517327B2 (ja) 重合体組成物及び単層位相差材
JP7517326B2 (ja) 重合体組成物及び単層位相差材
KR20240160141A (ko) 위상차막용 조성물 및 단층 위상차재
WO2023008488A1 (ja) 重合体組成物及び単層位相差材
CN116323702B (zh) 单层相位差材料的制造方法
WO2022080378A1 (ja) 単層位相差材の製造方法
WO2023095925A1 (ja) 重合体組成物及び単層位相差材
TWI853908B (zh) 聚合物組成物及單層相位差材
WO2022210639A1 (ja) パターン化された単層位相差膜の製造方法及び単層位相差膜形成用重合体組成物
WO2022138932A1 (ja) 単層位相差膜の製造方法及び単層位相差膜形成用重合体組成物
CN114616518B (zh) 图案化单层相位差材料的制造方法
WO2024038887A1 (ja) 重合体組成物及び単層位相差材
WO2024071364A1 (ja) 重合体組成物及び単層位相差材
WO2023171757A1 (ja) 重合体組成物、単層位相差材及び液晶配向剤
KR20250048345A (ko) 중합체 조성물 및 단층 위상차재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023563783

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280078456.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247021028

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22898707

Country of ref document: EP

Kind code of ref document: A1