WO2023095654A1 - モジュール及び半導体複合装置 - Google Patents
モジュール及び半導体複合装置 Download PDFInfo
- Publication number
- WO2023095654A1 WO2023095654A1 PCT/JP2022/042187 JP2022042187W WO2023095654A1 WO 2023095654 A1 WO2023095654 A1 WO 2023095654A1 JP 2022042187 W JP2022042187 W JP 2022042187W WO 2023095654 A1 WO2023095654 A1 WO 2023095654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor array
- capacitor
- connection terminal
- layer
- hole conductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 116
- 239000002131 composite material Substances 0.000 title claims abstract description 91
- 239000003990 capacitor Substances 0.000 claims abstract description 422
- 239000004020 conductor Substances 0.000 claims abstract description 256
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 372
- 239000000463 material Substances 0.000 description 48
- 239000011347 resin Substances 0.000 description 39
- 229920005989 resin Polymers 0.000 description 39
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- 239000000470 constituent Substances 0.000 description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 20
- 229910052802 copper Inorganic materials 0.000 description 20
- 239000010949 copper Substances 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000000945 filler Substances 0.000 description 12
- 238000007747 plating Methods 0.000 description 10
- 238000009413 insulation Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 238000003491 array Methods 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 239000007784 solid electrolyte Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000032798 delamination Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011231 conductive filler Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- -1 poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/023—Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
- H05K1/0231—Capacitors or dielectric substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/02—Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors (thin- or thick-film circuits; capacitors without a potential-jump or surface barrier specially adapted for integrated circuits, details thereof, multistep manufacturing processes therefor)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/38—Multiple capacitors, i.e. structural combinations of fixed capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/141—One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10507—Involving several components
- H05K2201/10515—Stacked components
Definitions
- the present invention relates to modules and semiconductor composite devices.
- Patent Document 1 discloses a semiconductor device having a package substrate in which part or all of passive elements such as inductors and capacitors are embedded, and a voltage regulator (voltage control device) including active elements such as switching elements.
- a voltage regulator and a load to which a power supply voltage is to be supplied are mounted on a package substrate.
- a DC voltage adjusted by a voltage regulator is smoothed by a passive element in a package substrate and supplied to a load.
- the semiconductor device described in Patent Document 1 if the wiring path for electrically connecting the voltage regulator and the load via the passive element in the package substrate becomes long, the inductor component and the resistance component due to the wiring increase. Loss due to wiring increases.
- the semiconductor device described in Patent Document 1 when a capacitor array in which a plurality of capacitors are arranged in an array is used as a passive element in the package substrate, the wiring path between the voltage regulator and each capacitor and the load and each capacitor, and as a result, it becomes difficult to shorten the wiring path between the voltage regulator and the load. If there are a plurality of capacitor arrays, it becomes more difficult to shorten the wiring path between the voltage regulator and the load.
- a module according to the present invention is a module used in a semiconductor composite device that supplies a load with a DC voltage adjusted by a voltage regulator that includes semiconductor active elements, and includes a capacitor array composed of a plurality of capacitor units arranged in a plane. a through-hole conductor provided to penetrate the capacitor portion in the thickness direction of the capacitor array and used for electrical connection between the capacitor portion and at least one of the voltage regulator and the load; a connection terminal layer electrically connected to a conductor and used for electrical connection between the capacitor section and at least one of the voltage regulator and the load, wherein the capacitor array includes a first capacitor array; and a second capacitor array, wherein when viewed from the mounting surface of the connection terminal layer, at least a portion of the first capacitor array and at least a portion of the second capacitor array overlap each other. characterized by
- a semiconductor composite device of the present invention is characterized by comprising the module of the present invention, the voltage regulator, and the load.
- a module that has a plurality of capacitor arrays and is capable of reducing loss due to wiring when incorporated in a semiconductor composite device. Further, according to the present invention, a composite semiconductor device having the above module can be provided.
- FIG. 1 is a circuit configuration diagram showing an example of the circuit configuration of the semiconductor composite device of the present invention.
- FIG. 2 is a schematic cross-sectional view showing an example of the composite semiconductor device according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic plan view of the semiconductor composite device shown in FIG. 2 as viewed from one mounting surface side of the module.
- FIG. 4 is a schematic plan view of the composite semiconductor device shown in FIG. 2 as viewed from the other mounting surface side of the module.
- FIG. 5 is a schematic cross-sectional view showing an example of an anode through-hole conductor electrically connected to the anode of the capacitor section and its surroundings.
- FIG. 6 is a schematic cross-sectional view showing a projection state along line segment A1-A2 in FIG. FIG.
- FIG. 7 is a schematic cross-sectional view showing an example of a cathode through-hole conductor electrically connected to the cathode of the capacitor section and its surroundings.
- FIG. 8 is a schematic cross-sectional view showing a projection state along line segment B1-B2 in FIG.
- FIG. 9 is a schematic cross-sectional view showing an example of a composite semiconductor device according to Embodiment 2 of the present invention.
- FIG. 10 is a schematic cross-sectional view showing an example of a composite semiconductor device according to Embodiment 3 of the present invention.
- FIG. 11 is a circuit configuration diagram showing another example of the circuit configuration of the semiconductor composite device of the present invention.
- the module of the present invention and the semiconductor composite device of the present invention will be described below. It should be noted that the present invention is not limited to the following configurations, and may be modified as appropriate without departing from the gist of the present invention.
- the present invention also includes a combination of a plurality of individual preferred configurations described below.
- a semiconductor composite device of the present invention includes the module of the present invention, a voltage regulator, and a load.
- FIG. 1 is a circuit configuration diagram showing an example of the circuit configuration of the semiconductor composite device of the present invention.
- the semiconductor composite device 1 shown in FIG. 1 has a module 10, a voltage regulator 20, and a load 30.
- a first channel CH1 and a second channel CH2 are provided, and the number of channels is two. Note that the number of channels may be one, or three or more. That is, the number of channels may be one or plural.
- the voltage regulator 20 includes semiconductor active elements. Voltage regulator 20 adjusts the DC voltage supplied from the outside to a voltage level suitable for load 30 by controlling the duty of the semiconductor active element.
- the voltage regulator 20 includes a switching element SW1, a switching element SW2, a switching element SW3, and a switching element SW4 as semiconductor active elements.
- the switching element SW1 is provided in the first channel CH1.
- the switching element SW2, the switching element SW3, and the switching element SW4 are provided in the second channel CH2.
- the load 30 is supplied with a DC voltage regulated by the voltage regulator 20 .
- Examples of the load 30 include a logic operation circuit, a semiconductor integrated circuit (IC) such as a memory circuit, and the like.
- IC semiconductor integrated circuit
- the module of the present invention is used in a semiconductor composite device that supplies a load with a DC voltage regulated by a voltage regulator that includes semiconductor active elements.
- the module 10 is provided between the voltage regulator 20 and the load 30.
- the module 10 is used in the semiconductor composite device 1 that supplies the DC voltage adjusted by the voltage regulator 20 to the load 30 .
- the module 10 has a capacitor section C1, a capacitor section C2, a capacitor section C3, and a capacitor section C4.
- the capacitor section C1 and the capacitor section C3 are provided in the first channel CH1. More specifically, the capacitor section C1 and the capacitor section C3 are provided between a point between the switching element SW1 and the load 30 and the ground terminal.
- the capacitor section C1 and the capacitor section C3 may be connected in parallel as shown in FIG. 1, or may be connected in series.
- the capacitor section C2 and the capacitor section C4 are provided in the second channel CH2. More specifically, the capacitor section C2 and the capacitor section C4 are provided between the same point between the switching element SW2, the switching element SW3, and the switching element SW4 and the load 30 and the ground terminal.
- the capacitor section C2 and the capacitor section C4 may be connected in parallel as shown in FIG. 1, or may be connected in series.
- the semiconductor composite device 1 may further include an inductor L1, an inductor L2, an inductor L3, and an inductor L4.
- the inductor L1 is provided in the first channel CH1. More specifically, inductor L1 is provided between switching element SW1 and load 30 . In this case, as shown in FIG. 1, the capacitor section C1 and the capacitor section C3 are provided between a point between the inductor L1 and the load 30 and the ground terminal.
- the inductor L2, inductor L3, and inductor L4 are provided in the second channel CH2. More specifically, the inductor L2 is provided between the switching element SW2 and the load 30, the inductor L3 is provided between the switching element SW3 and the load 30, and the inductor L4 is provided between the switching element SW4 and the load 30. is provided in In this case, as shown in FIG. 1, the capacitor section C2 and the capacitor section C4 are provided between the same point between the inductor L2, the inductor L3, and the inductor L4 and the load 30 and the ground terminal. Become.
- inductor L1, the inductor L2, the inductor L3, and the inductor L4 may be included in the module 10.
- the semiconductor composite device 1 may further include electronic devices such as a decoupling capacitor for noise countermeasures, a choke inductor, a diode element for surge protection, and a resistive element for voltage division.
- electronic devices such as a decoupling capacitor for noise countermeasures, a choke inductor, a diode element for surge protection, and a resistive element for voltage division.
- FIG. 2 is a schematic cross-sectional view showing an example of the composite semiconductor device according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic plan view of the semiconductor composite device shown in FIG. 2 as viewed from one mounting surface side of the module.
- FIG. 4 is a schematic plan view of the composite semiconductor device shown in FIG. 2 as viewed from the other mounting surface side of the module.
- the thickness direction is the direction defined by T, as shown in FIG.
- the surface direction orthogonal to the thickness direction be the direction defined by U, as shown in FIG.
- U there are a plurality of plane directions U, one of them is representatively shown in FIG. 2 and the like.
- the composite semiconductor device 1A shown in FIGS. 2, 3, and 4 has a module 10A, a voltage regulator 20, and a load 30.
- a load 30 is provided on one mounting surface side of the module 10A.
- a voltage regulator 20 including a switching element SW1, a switching element SW2, a switching element SW3, and a switching element SW4 is provided on the other mounting surface side of the module 10A. .
- an inductor L1, an inductor L2, an inductor L3, and an inductor L4 are further provided on the other mounting surface side of the module 10A.
- the inductor L1, the inductor L2, the inductor L3, and the inductor L4 are electrically connected to the switching element SW1, the switching element SW2, the switching element SW3, and the switching element SW4 through the circuit layer 45 including wiring. ing.
- a module of the present invention includes a capacitor array composed of a plurality of capacitor sections arranged in a plane, and a capacitor section provided to pass through the capacitor section in a thickness direction of the capacitor array, and the capacitor section, the voltage regulator and the a through-hole conductor used for electrical connection with at least one of the load, electrically connected to the through-hole conductor, and for electrical connection between the capacitor section and at least one of the voltage regulator and the load and a connection terminal layer used.
- the capacitor array includes at least a first capacitor array and a second capacitor array.
- the module 10A shown in FIGS. 2, 3, and 4 includes a first capacitor array 11a, a second capacitor array 11b, a first through-hole conductor 12a, a second through-hole conductor 12b, and first connection terminals. It has a layer 13a and a second connection terminal layer 13b.
- the first capacitor array 11a is composed of a plurality of planarly arranged capacitor portions. In the examples shown in FIGS. 2, 3, and 4, the first capacitor array 11a is composed of two planarly arranged capacitor portions, more specifically, capacitor portions C1 and C2.
- the areas of the capacitor portion C1 and the capacitor portion C2 when viewed from the thickness direction T may be the same as each other, or may be different from each other.
- the first capacitor array 11a may be composed of three or more capacitor units arranged in a plane.
- the first through-hole conductor 12a is provided so as to pass through the capacitor section C1 or the capacitor section C2 in the thickness direction T of the first capacitor array 11a.
- the first through-hole conductor 12a includes a first through-hole conductor 12aa and a first through-hole conductor 12ab.
- the first through-hole conductor 12aa and the first through-hole conductor 12ab are provided so as to penetrate the capacitor portion C1 in the thickness direction T, and are provided so as to penetrate the capacitor portion C2 in the thickness direction T.
- the first through-hole conductor 12a is used for electrical connection between the capacitor section C1 and at least one of the voltage regulator 20 and the load 30.
- the first through-hole conductor 12aa and the first through-hole conductor 12ab included in the first through-hole conductor 12a corresponding to the capacitor portion C1 are electrically connected between the capacitor portion C1 and the load 30, respectively. used for
- the first through-hole conductor 12a is used for electrical connection between the capacitor section C2 and at least one of the voltage regulator 20 and the load 30.
- the first through-hole conductor 12aa and the first through-hole conductor 12ab included in the first through-hole conductor 12a corresponding to the capacitor portion C2 are electrically connected between the capacitor portion C2 and the load 30, respectively. used for
- the first connection terminal layer 13a is electrically connected to the first through-hole conductor 12a.
- the first connection terminal layer 13a includes a first connection terminal layer 13aa and a first connection terminal layer 13ab.
- the first connection terminal layers 13aa are provided on both ends of the first through-hole conductors 12aa and connected to the first through-hole conductors 12aa.
- the first connection terminal layer 13ab is provided on both ends of the first through-hole conductor 12ab and connected to the first through-hole conductor 12ab.
- the first connection terminal layer 13a is used for electrical connection between the capacitor section C1 and at least one of the voltage regulator 20 and the load 30.
- the connection terminal layer existing on the load 30 side (see FIG. 2 Then, the upper first connection terminal layer 13 aa and the first connection terminal layer 13 ab) are used for electrical connection between the capacitor portion C 1 and the load 30 .
- the first connection terminal layer 13a is used for electrical connection between the capacitor section C2 and at least one of the voltage regulator 20 and the load 30.
- the connection terminal layer existing on the load 30 side (Then, the upper first connection terminal layer 13aa and the first connection terminal layer 13ab) are used for electrical connection between the capacitor portion C2 and the load 30.
- the second capacitor array 11b is composed of a plurality of planarly arranged capacitor portions.
- the second capacitor array 11b is composed of two planarly arranged capacitor sections, more specifically, a capacitor section C3 and a capacitor section C4.
- the areas of the capacitor portion C3 and the capacitor portion C4 when viewed from the thickness direction T may be the same or different.
- the second capacitor array 11b may be composed of three or more capacitor units arranged in a plane.
- the second through-hole conductor 12b is provided so as to pass through the capacitor section C3 or the capacitor section C4 in the thickness direction T of the second capacitor array 11b.
- the second through-hole conductor 12b includes a second through-hole conductor 12ba and a second through-hole conductor 12bb.
- the second through-hole conductor 12ba and the second through-hole conductor 12bb are provided so as to penetrate the capacitor portion C3 in the thickness direction T, and are provided so as to penetrate the capacitor portion C4 in the thickness direction T.
- the second through-hole conductor 12b is used for electrical connection between the capacitor section C3 and at least one of the voltage regulator 20 and the load 30.
- the second through-hole conductor 12ba included in the second through-hole conductor 12b corresponding to the capacitor portion C3 is used for electrical connection between the capacitor portion C3 and the voltage regulator 20.
- the second through-hole conductor 12b is used for electrical connection between the capacitor section C4 and at least one of the voltage regulator 20 and the load 30.
- the second through-hole conductor 12ba included in the second through-hole conductor 12b corresponding to the capacitor section C4 is used for electrical connection between the capacitor section C4 and the voltage regulator 20.
- the second connection terminal layer 13b is electrically connected to the second through-hole conductor 12b.
- the second connection terminal layer 13b includes a second connection terminal layer 13ba and a second connection terminal layer 13bb.
- the second connection terminal layer 13ba is provided on both ends of the second through-hole conductor 12ba and connected to the second through-hole conductor 12ba.
- the second connection terminal layer 13bb is provided on both ends of the second through-hole conductor 12bb and connected to the second through-hole conductor 12bb.
- the second connection terminal layer 13b is used for electrical connection between the capacitor section C3 and at least one of the voltage regulator 20 and the load 30.
- the second connection terminal layer 13ba included in the second connection terminal layer 13b corresponding to the capacitor section C3 and present on the side of the voltage regulator 20 (in FIG. A layer 13ba) is used for electrical connection between the capacitor section C3 and the voltage regulator 20.
- the second connection terminal layer 13b is used for electrical connection between the capacitor section C4 and at least one of the voltage regulator 20 and the load 30.
- the second connection terminal layer 13ba included in the second connection terminal layer 13b corresponding to the capacitor section C4 and present on the side of the voltage regulator 20 (in FIG. A layer 13ba) is used for electrical connection between the capacitor section C4 and the voltage regulator 20.
- the voltage regulator 20 and the load 30 are electrically connected via the through-hole conductors and connection terminal layers of the module 10A. Accordingly, in the semiconductor composite device 1A, the wiring path between the voltage regulator 20 and the load 30 is likely to be shortened, and as a result, loss due to wiring can be reduced.
- the module 10A when viewed from the mounting surface of the first connection terminal layer 13a or the second connection terminal layer 13b, at least part of the first through-hole conductor 12aa, at least part of the first connection terminal layer 13aa, and At least part of the two through-hole conductors 12ba and at least part of the second connection terminal layer 13ba preferably overlap each other.
- the first through-hole conductor 12aa, the first connection terminal layer 13aa, and the second through-hole conductor 12ba , and the second connection terminal layer 13ba are preferably positioned on the same straight line along the thickness direction T. As shown in FIG.
- the module 10A when viewed from the mounting surface of the first connection terminal layer 13a or the second connection terminal layer 13b, at least part of the first through-hole conductor 12ab, at least part of the first connection terminal layer 13ab, and At least part of the two through-hole conductors 12bb and at least part of the second connection terminal layer 13bb preferably overlap each other.
- the first through-hole conductor 12ab, the first connection terminal layer 13ab, and the second through-hole conductor 12bb , and the second connection terminal layer 13bb are preferably positioned on the same straight line along the thickness direction T. As shown in FIG.
- the module of the present invention when viewed from the mounting surface of the connection terminal layer, at least a portion of the first capacitor array and at least a portion of the second capacitor array overlap each other.
- the capacitor portion (example shown in FIGS. 3 and 4) forming the first capacitor array 11a
- at least part of the capacitor part C1 and the capacitor part C2) and at least part of the capacitor part constituting the second capacitor array 11b are on top of each other.
- part of the first capacitor array 11a and part of the second capacitor array 11b overlap each other.
- all of the first capacitor array 11a and part of the second capacitor array 11b may overlap each other, or part of the first capacitor array 11a and all of the second capacitor array 11b may overlap each other.
- the first capacitor array 11a and the second capacitor array 11b overlap each other. Accordingly, the first capacitor array 11a and the second capacitor array 11b are not arranged on the same plane extending in the surface direction U. Therefore, the wiring path between the first capacitor array 11a and the second capacitor array 11b tends to be shortened, and as a result, loss due to wiring can be reduced.
- the module of the present invention by using an X-ray CT device or the like to sequentially observe the cross section along the surface direction along the thickness direction, it is possible to determine the depth and the surface direction of the capacitor array. You can check whether it has the size of In this manner, in the module of the present invention, it can be confirmed that at least a portion of the first capacitor array and at least a portion of the second capacitor array overlap each other when viewed from the mounting surface of the connection terminal layer.
- the module 10A while having a plurality of capacitor arrays, it is possible to reduce loss due to wiring while being incorporated in the semiconductor composite device 1A.
- the mounting area of the module 10A when assembled in the semiconductor composite device 1A is small. becomes smaller, and as a result, the size of the semiconductor composite device 1A can be reduced.
- each capacitor array is connected in parallel, thereby increasing the capacitance density.
- Each capacitor array can be connected in series to increase the withstand voltage, or multiple voltage channels can be supported by arranging capacitor arrays with different withstand voltages. becomes.
- the difference between the withstand voltage of the first capacitor array and the withstand voltage of the second capacitor array is preferably 1 V or more.
- the difference between the withstand voltage of the first capacitor array 11a and the withstand voltage of the second capacitor array 11b is preferably 1 V or more.
- the withstand voltage of the first capacitor array 11a may be higher than the withstand voltage of the second capacitor array 11b. Alternatively, it may be smaller than the withstand voltage of the second capacitor array 11b.
- the difference between the withstand voltage of the first capacitor array 11a and the withstand voltage of the second capacitor array 11b is preferably 48V or less.
- the composite semiconductor device of the present invention when viewed from the mounting surface of the connection terminal layer, at least a portion of the semiconductor active element included in the voltage regulator overlaps the first capacitor array and the second capacitor array. preferably.
- the semiconductor composite device 1A when viewed from the mounting surface of the first connection terminal layer 13a or the second connection terminal layer 13b, at least a portion of the semiconductor active elements included in the voltage regulator 20 are the first capacitor array 11a and the second capacitor array 11a. It preferably overlaps with the capacitor array 11b.
- the switching element SW1, the switching element SW2, the switching element SW3, and the switching element SW3 provided as semiconductor active elements included in the voltage regulator 20 All of the elements SW4 overlap the first capacitor array 11a and the second capacitor array 11b.
- all of the semiconductor active elements included in the voltage regulator 20 are the first capacitor array 11a and the second capacitor array 11a. It is particularly preferred that it overlaps the two-capacitor array 11b.
- part of the semiconductor active elements included in the voltage regulator 20 are the first capacitor array 11a and the second capacitor array 11a. It may overlap with the capacitor array 11b.
- the above-mentioned "part of the semiconductor active elements included in the voltage regulator 20" may mean a partial number of the plurality of semiconductor active elements. Alternatively, it may mean a partial area of the arrangement area of a plurality of semiconductor active elements.
- the semiconductor active elements included in the voltage regulator 20 are the first capacitor array 11a and the second capacitor.
- the first capacitor array 11a and the second capacitor array 11b can be provided at positions adjacent to each other in the thickness direction T of the semiconductor active element. Therefore, in the semiconductor composite device 1A, the first capacitor array 11a and the second capacitor array 11b can form a POL (Point Of Load) integrated with a power supply function element such as a switching element as a semiconductor active element.
- POL Point Of Load
- At least part of the first capacitor array and at least part of the second capacitor array may overlap the load. preferable.
- the composite semiconductor device 1A when viewed from the mounting surface of the first connection terminal layer 13a or the second connection terminal layer 13b, at least a portion of the first capacitor array 11a and at least a portion of the second capacitor array 11b are connected to the load. 30 is preferred.
- the entire first capacitor array 11a and the entire second capacitor array 11b are connected to the load. Overlaps 30. As described above, in the composite semiconductor device 1A, when viewed from the mounting surface of the first connection terminal layer 13a or the second connection terminal layer 13b, the entire first capacitor array 11a and the entire second capacitor array 11b serve as a load. 30 is particularly preferred.
- a portion of the first capacitor array 11a and a portion of the second capacitor array 11b are load 30.
- the entire first capacitor array 11a and a portion of the second capacitor array 11b may overlap the load 30, or a portion of the first capacitor array 11a and a portion of the second capacitor array 11b may overlap the load 30. may overlap the load 30.
- the first capacitor array 11a and the load 30 serve as a load 30.
- the first capacitor array 11a and the load 30 are not arranged on the same plane extending in the planar direction U, and furthermore, the second capacitor array 11b and the load 30 are not disposed on the same plane extending in the planar direction U. Not laid out on a plane. Therefore, in the semiconductor composite device 1A, the wiring path between the multi-layered capacitor array including the first capacitor array 11a and the second capacitor array 11b and the load 30 tends to be shortened, and as a result, the wiring loss is reduced. It becomes possible. Furthermore, in the semiconductor composite device 1A, the mounting area of the multi-layered capacitor array and the load 30 tends to be small, and as a result, the size of the semiconductor composite device 1A can be reduced.
- the composite semiconductor device of the present invention may further include a wiring board electrically connected to the voltage regulator and the load.
- the composite semiconductor device 1A may further include a wiring board 40.
- FIG. 1 A wiring board 40.
- the wiring board 40 is electrically connected to the voltage regulator 20 and the load 30 .
- the load 30 is electrically connected to one mounting surface of the wiring board 40 via the first through-hole conductors 12a and the first connection terminal layer 13a.
- the switching element SW1, the switching element SW2, the switching element SW3, and the switching element SW4 provided as semiconductor active elements included in the voltage regulator 20 are mounted on the wiring board 40 on the other side. electrically connected to the surface.
- inductor L 1 , inductor L 2 , inductor L 3 and inductor L 4 are also electrically connected to the other mounting surface of wiring board 40 .
- one of the first capacitor array and the second capacitor array may be provided on the mounting surface of the wiring substrate, and the other may be built in the wiring substrate.
- one of the first capacitor array 11a and the second capacitor array 11b may be provided on the mounting surface of the wiring board 40 and the other may be built in the wiring board 40.
- the first capacitor array 11a is provided on one mounting surface of the wiring board 40, and the second capacitor array 11b is built in the wiring board 40.
- a second through-hole conductor 12b and a second connection terminal layer 13b corresponding to the second capacitor array 11b are also embedded in the wiring substrate 40.
- first capacitor array 11 a may be built in the wiring board 40 .
- second capacitor array 11b may be provided on one or the other mounting surface of the wiring board 40 .
- first capacitor array 11 a may be embedded in the wiring board 40 and the second capacitor array 11 b may be provided on the other mounting surface of the wiring board 40 .
- both the first capacitor array 11a and the second capacitor array 11b are mounted on the mounting surface of the wiring board 40.
- the semiconductor composite device 1A is provided in the .
- capacitor section through-hole conductors, and connection terminal layers in the module of the present invention are shown below.
- the through-hole conductor is provided, for example, on at least the inner wall surface of the anode through-hole that penetrates the capacitor section in the thickness direction, and is electrically connected to the anode of the capacitor section. including anode through-hole conductors.
- the anode through-hole conductor is electrically connected to the anode of the capacitor section at the inner wall surface of the anode through-hole.
- connection terminal layer includes, for example, an anode connection terminal layer provided on the surface of the anode through-hole conductor.
- FIG. 5 is a cross-sectional schematic diagram showing an example of an anode through-hole conductor electrically connected to the anode of the capacitor section and its surroundings.
- FIG. 6 is a schematic cross-sectional view showing a projection state along line segment A1-A2 in FIG.
- the module 110 shown in FIG. 5 has a capacitor array 111, an anode through-hole conductor 112A, and an anode connection terminal layer 113A.
- the capacitor array 111 is composed of a capacitor section 150 .
- FIG. 5 shows a part of the capacitor array 111, the capacitor array 111 has a plurality of capacitor sections 150 arranged in a plane.
- the capacitor section 150 has an anode plate 151 , a dielectric layer (not shown), and a cathode layer 156 .
- the anode plate 151 constitutes the anode of the capacitor section 150 .
- the anode plate 151 has a core portion 152 and a porous layer 154 .
- the core portion 152 is preferably made of metal, and more preferably made of valve action metal.
- valve action metals include single metals such as aluminum, tantalum, niobium, titanium, and zirconium, and alloys containing at least one of these single metals. Among them, aluminum or an aluminum alloy is preferable.
- the porous layer 154 is provided on at least one main surface of the core portion 152 . That is, the porous layer 154 may be provided only on one main surface of the core portion 152, or may be provided on both main surfaces of the core portion 152 as shown in FIG. Thus, anode plate 151 has porous layer 154 on at least one main surface.
- the porous layer 154 is preferably an etching layer obtained by etching the surface of the anode plate 151 .
- the shape of the anode plate 151 is preferably flat plate-like, more preferably foil-like.
- plate-like also includes “foil-like”.
- a dielectric layer is provided on the surface of the porous layer 154 . More specifically, the dielectric layer is provided along the surface (contour) of each hole present in the porous layer 154 .
- the dielectric layer is preferably made of an oxide film of the valve action metal described above.
- the anode plate 151 is an aluminum foil
- the anode plate 151 is anodized (also called a chemical conversion treatment) in an aqueous solution containing ammonium adipate or the like, thereby forming an oxide film that becomes a dielectric layer. It is formed. Since the dielectric layer is formed along the surface of the porous layer 154, the dielectric layer is provided with pores (recesses).
- the cathode layer 156 constitutes the cathode of the capacitor section 150 .
- a cathode layer 156 is provided on the surface of the dielectric layer.
- the cathode layer 156 preferably has a solid electrolyte layer 156A provided on the surface of the dielectric layer and a conductor layer 156B provided on the surface of the solid electrolyte layer 156A. .
- constituent materials of the solid electrolyte layer 156A include conductive polymers such as polypyrroles, polythiophenes, and polyanilines. Among them, polythiophenes are preferred, and poly(3,4-ethylenedioxythiophene) (PEDOT) is particularly preferred. Also, the conductive polymer may contain a dopant such as polystyrene sulfonic acid (PSS).
- conductive polymers such as polypyrroles, polythiophenes, and polyanilines.
- PEDOT poly(3,4-ethylenedioxythiophene)
- PES polystyrene sulfonic acid
- the solid electrolyte layer 156A preferably includes an inner layer that fills the pores (recesses) of the dielectric layer and an outer layer that covers the surface of the dielectric layer.
- the conductor layer 156B preferably includes at least one of a conductive resin layer and a metal layer. That is, the conductor layer 156B may include only the conductive resin layer, may include only the metal layer, or may include both the conductive resin layer and the metal layer.
- the conductive resin layer examples include a conductive adhesive layer containing at least one conductive filler selected from the group consisting of silver filler, copper filler, nickel filler, and carbon filler.
- metal layers include metal plating films and metal foils.
- the metal layer is preferably made of at least one metal selected from the group consisting of nickel, copper, silver, and an alloy containing at least one of these metals as a main component.
- the main component means the element component with the highest weight ratio.
- the conductor layer 156B may include, for example, a carbon layer provided on the surface of the solid electrolyte layer 156A and a copper layer provided on the surface of the carbon layer.
- the carbon layer is formed in a predetermined area by applying carbon paste to the surface of the solid electrolyte layer 156A by, for example, a sponge transfer method, screen printing method, dispenser coating method, inkjet printing method, or the like.
- the copper layer is formed in a predetermined area by applying copper paste to the surface of the carbon layer by, for example, a sponge transfer method, screen printing method, spray coating method, dispenser coating method, inkjet printing method, or the like.
- capacitor section 150 shown in FIG. and a cathode layer 156 provided on the surface of the substrate.
- the capacitor part 150 constitutes an electrolytic capacitor.
- capacitor section 150 constitutes a solid electrolytic capacitor.
- the capacitor section may be a ceramic capacitor using barium titanate, or a thin film capacitor using silicon nitride (SiN), silicon dioxide (SiO 2 ), hydrogen fluoride (HF), or the like.
- the capacitor part is made of a metal such as aluminum as a base material. It is more preferable to construct an electrolytic capacitor using a metal such as aluminum as a base material, and it is even more preferable to construct an electrolytic capacitor using aluminum or an aluminum alloy as a base material.
- the anode through-hole conductor 112A is provided so as to penetrate the capacitor section 150 in the thickness direction T of the capacitor array 111 .
- the anode through-hole conductor 112A is provided on at least the inner wall surface of the anode through-hole 161 penetrating the capacitor section 150 in the thickness direction T, and is electrically connected to the anode plate 151. ing.
- the anode through-hole conductor 112A is preferably electrically connected to the anode plate 151 on the inner wall surface of the anode through-hole 161 .
- the anode through-hole conductor 112A is electrically connected to the end surface of the anode plate 151 facing the inner wall surface of the anode through-hole 161 in the plane direction U. As shown in FIG.
- the core portion 152 and the porous layer 154 are exposed on the end face of the anode plate 151 electrically connected to the anode through-hole conductor 112A.
- the core portion 152 and the porous layer 154 are electrically connected to the anode through-hole conductor 112A.
- the anode through-hole conductor 112A is formed, for example, as follows. First, the anode through-hole 161 is formed by performing drilling, laser processing, or the like on the portion where the anode through-hole conductor 112A is to be formed. Then, the inner wall surface of the anode through-hole 161 is metallized with a low-resistance metal such as copper, gold, or silver to form the anode through-hole conductor 112A. When forming the anode through-hole conductor 112A, for example, the inner wall surface of the anode through-hole 161 is metallized by electroless copper plating, electrolytic copper plating, or the like, thereby facilitating processing.
- a low-resistance metal such as copper, gold, or silver
- the method of forming the anode through-hole conductor 112A in addition to the method of metallizing the inner wall surface of the anode through-hole 161, the method of filling the anode through-hole 161 with a metal, a composite material of metal and resin, or the like. may be
- the module 110 preferably further has an anode connection layer 170 provided between the anode through-hole conductor 112A and the end surface of the anode plate 151. As shown in FIG. In the example shown in FIG. 5 , the anode connection layer 170 is in contact with both the anode through-hole conductor 112A and the end surface of the anode plate 151 .
- anode connection layer 170 is provided between anode through-hole conductor 112A and the end surface of anode plate 151, anode connection layer 170 serves as a barrier layer for anode plate 151, more specifically core portion 152. and a barrier layer against the porous layer 154 .
- anode connection layer 170 By using such an anode connection layer 170, dissolution of the end surface of the anode plate 151 that occurs during chemical treatment for forming an anode connection terminal layer 113A and the like, which will be described later, is suppressed. intrusion is suppressed. Therefore, the reliability of the capacitor section 150 is likely to be improved, and thus the reliability of the module 110 is likely to be improved.
- the anode through-hole conductor 112A and the end surface of the anode plate 151 are preferably electrically connected via the anode connection layer 170. As shown in FIG. 5, the anode through-hole conductor 112A and the end surface of the anode plate 151 are preferably electrically connected via the anode connection layer 170. As shown in FIG. 5, the anode through-hole conductor 112A and the end surface of the anode plate 151 are preferably electrically connected via the anode connection layer 170. As shown in FIG.
- the anode connection layer 170 may include a first anode connection layer 170A and a second anode connection layer 170B in order from the end face side of the anode plate 151 .
- the first anode connection layer 170A may be a layer containing zinc as a main component
- the second anode connection layer 170B may be a layer containing nickel or copper as a main component.
- the first anode connection layer 170A is formed on the end surface of the anode plate 151 by, for example, zincate displacement deposition, and then the second anode connection layer 170B is formed by, for example, electroless nickel plating.
- it is formed on the surface of the first anode connection layer 170A by electroless copper plating.
- the first anode connection layer 170A may disappear during the formation of the second anode connection layer 170B.
- the anode connection layer 170 may consist of only the second anode connection layer 170B.
- the anode connection layer 170 preferably contains a layer containing nickel as a main component. In this case, damage to the metal (eg, aluminum) constituting the anode plate 151 is reduced, so the barrier properties of the anode connection layer 170 against the anode plate 151 are likely to be improved.
- damage to the metal (eg, aluminum) constituting the anode plate 151 is reduced, so the barrier properties of the anode connection layer 170 against the anode plate 151 are likely to be improved.
- the dimensions of the anode connection layer 170 in the thickness direction T are preferably larger than the dimensions of the anode plate 151 .
- the barrier properties of the anode connection layer 170 against the anode plate 151 are likely to be improved.
- the dimension of the anode connection layer 170 in the thickness direction T is preferably greater than 100% and less than or equal to 200% of the dimension of the anode plate 151 .
- the dimensions of the anode connection layer 170 in the thickness direction T may be the same as the dimensions of the anode plate 151 or may be smaller than the dimensions of the anode plate 151 .
- anode connection layer 170 may not be provided between the anode through-hole conductor 112A and the end surface of the anode plate 151 .
- anode through-hole conductor 112 ⁇ /b>A may be directly connected to the end surface of anode plate 151 .
- the anode through-hole conductor 112A when viewed from the thickness direction T, is preferably electrically connected to the end face of the anode plate 151 over the entire circumference of the anode through-hole 161.
- the anode connection layer 170 is provided between the anode through-hole conductor 112A and the end surface of the anode plate 151, when viewed from the thickness direction T, the anode through-hole conductor 112A covers the entire anode through-hole 161. It is preferably connected to the anode connection layer 170 over the circumference.
- the contact area between the anode through-hole conductor 112A and the anode connection layer 170 is increased, so the connection resistance between the anode through-hole conductor 112A and the anode connection layer 170 is easily reduced.
- the connection resistance between the anode through-hole conductor 112A and the anode plate 151 is easily reduced, so that the equivalent series resistance (ESR) of the capacitor section 150 is easily reduced.
- ESR equivalent series resistance
- the anode connection terminal layer 113A is electrically connected to the anode through-hole conductor 112A.
- the anode connection terminal layer 113A is provided on the surface of the anode through-hole conductor 112A.
- the anode connection terminal layer 113 ⁇ /b>A functions as a connection terminal of the capacitor section 150 .
- constituent materials of the anode connection terminal layer 113A include low-resistance metals such as silver, gold, and copper.
- the anode connection terminal layer 113A is formed, for example, by plating the surface of the anode through-hole conductor 112A.
- the anode connection terminal layer 113A As a constituent material of 113A, a mixed material of resin and at least one conductive filler selected from the group consisting of silver filler, copper filler, nickel filler, and carbon filler may be used.
- the module 110 preferably further includes a first resin filling portion 171A in which the anode through-hole 161 is filled with a resin material.
- the first resin-filled portion 171A is provided in a space surrounded by the anode through-hole conductor 112A on the inner wall surface of the anode through-hole 161.
- the space in the anode through-hole 161 is eliminated by providing the first resin-filled portion 171A, the occurrence of delamination of the anode through-hole conductor 112A is suppressed.
- the coefficient of thermal expansion of the first resin-filled portion 171A is preferably larger than that of the anode through-hole conductor 112A. More specifically, the coefficient of thermal expansion of the resin material filled in the anode through-hole 161 is preferably higher than the coefficient of thermal expansion of the constituent material (for example, copper) of the anode through-hole conductor 112A.
- the first resin-filled portion 171A more specifically, the resin material filled in the anode through-hole 161 expands in a high-temperature environment, causing the anode through-hole conductor 112A to move out of the anode through-hole 161. Since it is pressed against the inner wall surface of the anode through-hole 161 from the inside toward the outside, the occurrence of delamination of the anode through-hole conductor 112A is sufficiently suppressed.
- the thermal expansion coefficient of the first resin-filled portion 171A may be the same as the thermal expansion coefficient of the anode through-hole conductor 112A, or may be smaller than the thermal expansion coefficient of the anode through-hole conductor 112A. More specifically, the coefficient of thermal expansion of the resin material filled in the anode through-hole 161 may be the same as that of the constituent material of the anode through-hole conductor 112A. It may be smaller than the coefficient of thermal expansion of the constituent material of 112A.
- the module 110 may not have the first resin filling portion 171A.
- the anode through-hole conductor 112A is preferably provided not only on the inner wall surface of the anode through-hole 161 but also in the entire interior of the anode through-hole 161 .
- the module 110 preferably further includes a first insulating layer 180A formed by filling the porous layer 154 with an insulating material.
- a first insulating layer 180A formed by filling the porous layer 154 with an insulating material. In this case, the insulation between the anode plate 151 and the cathode layer 156 is ensured, and a short circuit between them is prevented.
- the first insulating layer 180A has a cathode layer 156 not only inside the porous layer 154 but also on the surface of the capacitor array 111, more specifically, on the surface of the capacitor section 150. It is preferably provided also on the surface of the dielectric layer which is not covered. In this case, sufficient insulation is ensured between the anode plate 151 and the cathode layer 156, and short circuits between the two are sufficiently prevented.
- the first insulating layer 180A is preferably provided around the anode through-hole conductor 112A. In this case, sufficient insulation is ensured between the anode plate 151 and the cathode layer 156, and short circuits between the two are sufficiently prevented. Furthermore, since the first insulating layer 180A functions as a barrier layer for the anode plate 151, more specifically, as a barrier layer for the core portion 152 and the porous layer 154, the chemical solution for forming the anode connection terminal layer 113A and the like is used. Dissolution of the end surface of the anode plate 151 that occurs during processing is suppressed, and thus penetration of the chemical solution into the capacitor section 150 is suppressed. Therefore, the reliability of the capacitor section 150 is likely to be improved, and thus the reliability of the module 110 is likely to be improved.
- the dimension of the first insulating layer 180A in the thickness direction T is larger than the dimension of the porous layer 154, as shown in FIG.
- Examples of materials constituting the first insulating layer 180A include resin materials such as epoxy, phenol, and polyimide, or mixed materials of resin materials such as epoxy, phenol, and polyimide and inorganic fillers such as silica and alumina. be done.
- the module 110 preferably further has an insulating section 181 provided on the surface of the capacitor array 111, more specifically, on the surface of the capacitor section 150. As shown in FIG. 5, the module 110 preferably further has an insulating section 181 provided on the surface of the capacitor array 111, more specifically, on the surface of the capacitor section 150. As shown in FIG.
- the insulating portion 181 includes a first insulating portion 181A provided on the surface of the capacitor portion 150 and a second insulating portion 181B provided on the surface of the first insulating portion 181A. is preferred.
- the constituent materials of the first insulating portion 181A and the second insulating portion 181B include, for example, resin materials such as epoxy, phenol, and polyimide, or resin materials such as epoxy, phenol, and polyimide, and inorganic fillers such as silica and alumina. and the like.
- the constituent material of the first insulating portion 181A and the constituent material of the second insulating portion 181B may be the same as or different from each other.
- the through-hole conductor is provided, for example, on at least the inner wall surface of the cathode through-hole that penetrates the capacitor section in the thickness direction, and is electrically connected to the cathode of the capacitor section. including cathode through-hole conductors.
- the connection terminal layer includes, for example, a cathode connection terminal layer provided on the surface of the cathode through-hole conductor.
- FIG. 7 is a schematic cross-sectional view showing an example of a cathode through-hole conductor electrically connected to the cathode of the capacitor section and its surroundings.
- FIG. 8 is a schematic cross-sectional view showing a projection state along line segment B1-B2 in FIG.
- a module 110 shown in FIG. 7 has a capacitor array 111, a cathode through-hole conductor 112B, and a cathode connection terminal layer 113B.
- the cathode through-hole conductor 112B is provided so as to penetrate the capacitor section 150 in the thickness direction T of the capacitor array 111 .
- the cathode through-hole conductor 112B is provided on at least the inner wall surface of the cathode through-hole 162 that penetrates the capacitor section 150 in the thickness direction T, and is electrically connected to the cathode layer 156. ing.
- the cathode connection terminal layer 113B is formed on the surface of the cathode through-hole conductor 112B. and functions as a connection terminal of the capacitor section 150 .
- via conductors 182 are provided so as to pass through insulating portion 181 in thickness direction T and be connected to cathode connection terminal layer 113B and cathode layer 156 . Therefore, in the example shown in FIG.
- the cathode through-hole conductor 112B is electrically connected to the cathode layer 156 through the cathode connection terminal layer 113B and the via conductor 182 . In this case, miniaturization of the module 110 is possible.
- the cathode through-hole conductor 112B is formed, for example, as follows. First, a through-hole is formed by drilling, laser processing, or the like in a portion where the cathode through-hole conductor 112B is to be formed. Next, an insulating layer is formed by filling the formed through-hole with a constituent material (for example, a resin material) of the second insulating portion 181B. Then, the cathode through-hole 162 is formed by performing drilling, laser processing, or the like on the formed insulating layer.
- a through-hole is formed by drilling, laser processing, or the like in a portion where the cathode through-hole conductor 112B is to be formed.
- an insulating layer is formed by filling the formed through-hole with a constituent material (for example, a resin material) of the second insulating portion 181B.
- the cathode through-hole 162 is formed by performing drilling, laser processing, or the like on the formed insulating layer.
- the constituent material of the second insulating portion 181B exists between the previously formed through-hole and the cathode through-hole 162. to be in a state to After that, the inner wall surface of the cathode through-hole 162 is metallized with a low-resistance metal such as copper, gold, or silver to form the cathode through-hole conductor 112B.
- a low-resistance metal such as copper, gold, or silver.
- the method of forming the cathode through-hole conductor 112B in addition to the method of metallizing the inner wall surface of the cathode through-hole 162, the method of filling the cathode through-hole 162 with a metal, a composite material of metal and resin, or the like. may be
- Examples of constituent materials of the cathode connection terminal layer 113B include low-resistance metals such as silver, gold, and copper.
- the cathode connection terminal layer 113B is formed, for example, by plating the surface of the cathode through-hole conductor 112B.
- the cathode connection terminal layer 113B As a constituent material of 113B, a mixed material of resin and at least one conductive filler selected from the group consisting of silver filler, copper filler, nickel filler, and carbon filler may be used.
- Examples of the constituent material of the via conductor 182 include those similar to those of the cathode connection terminal layer 113B.
- the inner wall surface of the through-hole provided to penetrate the insulating portion 181 in the thickness direction T is subjected to a plating process, or a heat treatment is performed after being filled with a conductive paste. Formed by
- the module 110 preferably further includes a second resin filling portion 171B in which the cathode through-hole 162 is filled with a resin material.
- the second resin filling portion 171B is provided in a space surrounded by the cathode through-hole conductor 112B on the inner wall surface of the cathode through-hole 162.
- the space in the cathode through-hole 162 is eliminated by providing the second resin filling portion 171B, the occurrence of delamination of the cathode through-hole conductor 112B is suppressed.
- the thermal expansion coefficient of the second resin-filled portion 171B is preferably larger than that of the cathode through-hole conductor 112B. More specifically, the thermal expansion coefficient of the resin material filled in the cathode through-holes 162 is preferably higher than the thermal expansion coefficient of the constituent material (for example, copper) of the cathode through-hole conductors 112B.
- the second resin-filled portion 171B more specifically, the resin material filled in the cathode through-hole 162 expands in a high-temperature environment, causing the cathode through-hole conductor 112B to move out of the cathode through-hole 162. Since it is pressed against the inner wall surface of the cathode through-hole 162 from the inside toward the outside, the occurrence of delamination of the cathode through-hole conductor 112B is sufficiently suppressed.
- the thermal expansion coefficient of the second resin-filled portion 171B may be the same as the thermal expansion coefficient of the cathode through-hole conductor 112B, or may be smaller than the thermal expansion coefficient of the cathode through-hole conductor 112B. More specifically, the coefficient of thermal expansion of the resin material filled in the cathode through-holes 162 may be the same as the coefficient of thermal expansion of the constituent material of the cathode through-hole conductors 112B. It may be smaller than the coefficient of thermal expansion of the constituent material of 112B.
- the module 110 may not have the second resin filling portion 171B.
- the cathode through-hole conductor 112B is preferably provided not only on the inner wall surface of the cathode through-hole 162 but also in the entire interior of the cathode through-hole 162 .
- the module 110 preferably further includes a second insulating layer 180B made by filling the porous layer 154 with an insulating material.
- a second insulating layer 180B made by filling the porous layer 154 with an insulating material. In this case, the insulation between the anode plate 151 and the cathode layer 156 is ensured, and a short circuit between them is prevented.
- the second insulating layer 180B has a cathode layer 156 not only inside the porous layer 154 but also on the surface of the capacitor array 111, more specifically, on the surface of the capacitor section 150. It is preferably provided also on the surface of the dielectric layer which is not covered. In this case, sufficient insulation is ensured between the anode plate 151 and the cathode layer 156, and short circuits between the two are sufficiently prevented.
- the second insulating layer 180B is preferably provided around the cathode through-hole conductor 112B. In this case, sufficient insulation is ensured between the anode plate 151 and the cathode layer 156, and short circuits between the two are sufficiently prevented. Furthermore, since the second insulating layer 180B functions as a barrier layer for the anode plate 151, more specifically, as a barrier layer for the core portion 152 and the porous layer 154, the chemical solution for forming the cathode connection terminal layer 113B and the like is used. Dissolution of the end surface of the anode plate 151 that occurs during processing is suppressed, and thus penetration of the chemical solution into the capacitor section 150 is suppressed. Therefore, the reliability of the capacitor section 150 is likely to be improved, and thus the reliability of the module 110 is likely to be improved.
- the dimension of the second insulating layer 180B in the thickness direction T is larger than the dimension of the porous layer 154, as shown in FIG.
- Examples of the constituent material of the second insulating layer 180B include resin materials such as epoxy, phenol, and polyimide, or mixed materials of resin materials such as epoxy, phenol, and polyimide, and inorganic fillers such as silica and alumina. be done.
- the second insulating portion 181B extends between the anode plate 151 and the cathode through-hole conductor 112B. preferably present. In the example shown in FIG. 7, the second insulating portion 181B is in contact with both the anode plate 151 and the cathode through-hole conductor 112B.
- the second insulating portion 181B extends between the anode plate 151 and the cathode through-hole conductor 112B, the insulation between the anode plate 151 and the cathode through-hole conductor 112B and the anode plate 151 and the cathode layer 156 to prevent a short circuit therebetween.
- the portion 152 and the porous layer 154 are exposed.
- problems such as peeling between the second insulating portion 181B and the porous layer 154 occur. becomes less likely to occur.
- a second insulating layer 180B that spreads inside the porous layer 154 by entering is provided around the cathode through-hole conductor 112B.
- the insulation between the anode plate 151 and the cathode through-hole conductor 112B and the insulation between the anode plate 151 and the cathode layer 156 are sufficiently ensured, and the short circuit between them is sufficiently prevented. be.
- the constituent material of the second insulating portion 181B enters the pores of the porous layer 154.
- the mechanical strength of the porous layer 154 is improved, the occurrence of delamination caused by the pores of the porous layer 154 is suppressed.
- the coefficient of thermal expansion of the second insulating portion 181B is preferably larger than the coefficient of thermal expansion of the cathode through-hole conductor 112B. More specifically, the thermal expansion coefficient of the constituent material of the second insulating portion 181B is preferably higher than the thermal expansion coefficient of the constituent material (for example, copper) of the cathode through-hole conductor 112B. In this case, the porous layer 154 and the cathode through-hole conductor 112B are pressed down by expansion of the second insulating portion 181B, more specifically, the constituent material of the second insulating portion 181B, in a high-temperature environment. The occurrence of lamination is sufficiently suppressed.
- the thermal expansion coefficient of the second insulating portion 181B may be the same as the thermal expansion coefficient of the cathode through-hole conductor 112B, or may be smaller than the thermal expansion coefficient of the cathode through-hole conductor 112B. More specifically, the coefficient of thermal expansion of the constituent material of the second insulating portion 181B may be the same as the coefficient of thermal expansion of the constituent material of the cathode through-hole conductor 112B. It may be smaller than the coefficient of thermal expansion of the material.
- the first through-hole conductors 12a are, for example, at least one of the anode through-hole conductors 112A shown in FIGS. 5 and 6 and the cathode through-hole conductors 112B shown in FIGS. including.
- the first through-hole conductor 12aa is one of the anode through-hole conductor 112A and the cathode through-hole conductor 112B
- the first through-hole conductor 12ab is the anode through-hole conductor 112A. It may be the other of the hole conductor 112A and the cathode through-hole conductor 112B.
- the module 10A includes a through-hole conductor electrically connected to the capacitor section C1 or the capacitor section C2 that constitutes the first capacitor array 11a, the module 10A is not electrically connected to the capacitor section C1 or the capacitor section C2.
- a through-hole conductor may also be included.
- Through-hole conductors that are not electrically connected to the capacitor section include, for example, through-hole conductors for I/O lines.
- An insulating material is filled between the through-hole conductor for the I/O line and the through-hole provided with the through-hole conductor and passing through the capacitor portion in the thickness direction.
- the module 10A includes, for example, through-hole conductors for I/O lines as through-hole conductors that are not electrically connected to the capacitor section C1 and the capacitor section C2, thereby improving the design flexibility of the semiconductor composite device 1A. As a result, the size of the semiconductor composite device 1A can be reduced.
- the first connection terminal layer 13a includes, for example, at least one of the anode connection terminal layer 113A shown in FIGS. 5 and 6 and the cathode connection terminal layer 113B shown in FIGS. including.
- the first connection terminal layer 13aa is one of the anode connection terminal layer 113A and the cathode connection terminal layer 113B
- the first connection terminal layer 13ab is for anode connection. It may be the other of the terminal layer 113A and the cathode connection terminal layer 113B.
- the second through-hole conductors 12b are, for example, at least one of the anode through-hole conductors 112A shown in FIGS. 5 and 6 and the cathode through-hole conductors 112B shown in FIGS. including.
- the second through-hole conductor 12ba is one of the anode through-hole conductor 112A and the cathode through-hole conductor 112B
- the second through-hole conductor 12bb is the anode through-hole conductor 112B. It may be the other of the hole conductor 112A and the cathode through-hole conductor 112B.
- the module 10A includes a through-hole conductor electrically connected to the capacitor section C3 or the capacitor section C4 that constitutes the second capacitor array 11b, the module 10A is not electrically connected to the capacitor section C3 or the capacitor section C4.
- a through-hole conductor may also be included.
- the module 10A includes, for example, through-hole conductors for I/O lines as through-hole conductors that are not electrically connected to the capacitor section C3 and the capacitor section C4, thereby improving the design flexibility of the semiconductor composite device 1A. As a result, the size of the semiconductor composite device 1A can be reduced.
- the second connection terminal layer 13b is, for example, at least one of the anode connection terminal layer 113A shown in FIGS. 5 and 6 and the cathode connection terminal layer 113B shown in FIGS. including.
- the second connection terminal layer 13ba is one of the anode connection terminal layer 113A and the cathode connection terminal layer 113B
- the second connection terminal layer 13bb is for anode connection. It may be the other of the terminal layer 113A and the cathode connection terminal layer 113B.
- the wiring board may include a first wiring board and a second wiring board, and the first capacitor array may be incorporated in the first wiring board.
- the second capacitor array may be embedded in the second wiring board.
- FIG. 9 is a cross-sectional schematic diagram showing an example of a semiconductor composite device according to Embodiment 2 of the present invention.
- a module 10B includes a first capacitor array 11a, a second capacitor array 11b, a first through-hole conductor 12a, a second through-hole conductor 12a, and a second through-hole conductor 12a, similarly to the module 10A shown in FIG. It has a conductor 12b, a first connection terminal layer 13a, and a second connection terminal layer 13b.
- the first capacitor array 11a is built in the first wiring board 40a
- the second capacitor array 11b is built in the second wiring board 40b.
- a first through-hole conductor 12a and a first connection terminal layer 13a corresponding to the first capacitor array 11a are built in the first wiring board 40a, and a second through-hole conductor 12b and a second through-hole conductor 12b corresponding to the second capacitor array 11b are built in the first wiring board 40a.
- the connection terminal layer 13b is embedded in the second wiring board 40b.
- the capacitor array may further include a third capacitor array, the first capacitor array may be provided on one mounting surface of the wiring board, and the first capacitor array may be provided on one mounting surface of the wiring board.
- the two capacitor arrays may be built in the wiring board, and the third capacitor array may be provided on the other mounting surface of the wiring board.
- FIG. 10 is a schematic cross-sectional view showing an example of a semiconductor composite device according to Embodiment 3 of the present invention.
- a module 10C includes a first capacitor array 11a, a second capacitor array 11b, a third capacitor array 11c, a first through-hole conductor 12a, and a second through-hole conductor 12b. , a third through-hole conductor 12c, a first connection terminal layer 13a, a second connection terminal layer 13b, and a third connection terminal layer 13c.
- the third capacitor array 11c is composed of a plurality of planarly arranged capacitor portions.
- the third capacitor array 11c is composed of two planarly arranged capacitor sections, more specifically, a capacitor section C5 and a capacitor section C6.
- the areas of the capacitor portion C5 and the capacitor portion C6 when viewed from the thickness direction T may be the same or different.
- the third capacitor array 11c may be composed of three or more capacitor units arranged in a plane.
- the third through-hole conductor 12c is provided so as to pass through the capacitor section C5 or the capacitor section C6 in the thickness direction T of the third capacitor array 11c.
- the third through-hole conductor 12c includes a third through-hole conductor 12ca and a third through-hole conductor 12cb.
- the third through-hole conductor 12ca and the third through-hole conductor 12cb are provided so as to penetrate the capacitor portion C5 in the thickness direction T, and are provided so as to penetrate the capacitor portion C6 in the thickness direction T.
- the third through-hole conductor 12c is used for electrical connection between the capacitor section C5 and at least one of the voltage regulator 20 (see FIG. 4) and the load 30.
- the third through-hole conductor 12ca and the third through-hole conductor 12cb included in the third through-hole conductor 12c corresponding to the capacitor section C5 are electrically connected between the capacitor section C5 and the voltage regulator 20, respectively. Used for connection.
- the third through-hole conductor 12c is used for electrical connection between the capacitor section C6 and at least one of the voltage regulator 20 (see FIG. 4) and the load 30.
- the third through-hole conductor 12ca and the third through-hole conductor 12cb included in the third through-hole conductor 12c corresponding to the capacitor section C6 are electrically connected between the capacitor section C6 and the voltage regulator 20, respectively. Used for connection.
- the third through-hole conductor 12c includes, for example, at least one of the anode through-hole conductor 112A shown in FIGS. 5 and 6 and the cathode through-hole conductor 112B shown in FIGS.
- the third through-hole conductor 12ca is one of the anode through-hole conductor 112A and the cathode through-hole conductor 112B
- the third through-hole conductor 12cb is one of the anode through-hole conductor 112A and the cathode through-hole conductor 112A. It may be the other of the cathode through-hole conductors 112B.
- the module 10C includes a through-hole conductor electrically connected to the capacitor section C5 or the capacitor section C6 that constitutes the third capacitor array 11c, the module 10C is not electrically connected to the capacitor section C5 or the capacitor section C6.
- a through-hole conductor may also be included.
- the module 10C includes, for example, through-hole conductors for I/O lines as through-hole conductors that are not electrically connected to the capacitor section C5 and the capacitor section C6, thereby improving the design flexibility of the semiconductor composite device 1C. As a result, it is possible to miniaturize the composite semiconductor device 1C.
- the third connection terminal layer 13c is electrically connected to the third through-hole conductor 12c.
- the third connection terminal layer 13c includes a third connection terminal layer 13ca and a third connection terminal layer 13cb.
- the third connection terminal layer 13ca is provided on both ends of the third through-hole conductor 12ca and connected to the third through-hole conductor 12ca.
- the third connection terminal layer 13cb is provided on both ends of the third through-hole conductor 12cb and connected to the third through-hole conductor 12cb.
- the third connection terminal layer 13c is used for electrical connection between the capacitor section C5 and at least one of the voltage regulator 20 (see FIG. 4) and the load 30.
- the connection terminal layer existing on the voltage regulator 20 side 10
- the lower third connection terminal layer 13ca and the third connection terminal layer 13cb are used for electrical connection between the capacitor section C5 and the voltage regulator 20.
- the third connection terminal layer 13c is used for electrical connection between the capacitor section C6 and at least one of the voltage regulator 20 (see FIG. 4) and the load 30.
- the connection terminal layer existing on the voltage regulator 20 side 10
- the lower third connection terminal layer 13ca and the third connection terminal layer 13cb are used for electrical connection between the capacitor section C6 and the voltage regulator 20.
- the third connection terminal layer 13c includes, for example, at least one of the anode connection terminal layer 113A shown in FIGS. 5 and 6 and the cathode connection terminal layer 113B shown in FIGS.
- the third connection terminal layer 13ca is one of the anode connection terminal layer 113A and the cathode connection terminal layer 113B
- the third connection terminal layer 13cb is one of the anode connection terminal layer 113A and the cathode connection terminal layer 113B. It may be the other of the cathode connection terminal layers 113B.
- the first through-hole conductor 12aa, the first connection terminal layer 13aa, and the second through-hole conductor 12ba , the second connection terminal layer 13ba, the third through-hole conductor 12ca, and the third connection terminal layer 13ca are preferably positioned on the same straight line along the thickness direction T.
- At least part of the first through-hole conductor 12ab, at least part of the first connection terminal layer 13ab, and At least part of the second through-hole conductor 12bb, at least part of the second connection terminal layer 13bb, at least part of the third through-hole conductor 12cb, and at least part of the third connection terminal layer 13cb overlap each other. preferably.
- the first through-hole conductor 12ab, the first connection terminal layer 13ab, and the second through-hole conductor 12bb , the second connection terminal layer 13bb, the third through-hole conductor 12cb, and the third connection terminal layer 13cb are preferably positioned on the same straight line along the thickness direction T.
- the capacitor array may further include a third capacitor array, and when viewed from the mounting surface of the connection terminal layer, at least part of the first capacitor array and the second capacitor At least part of the array and at least part of the third capacitor array preferably overlap each other.
- the capacitor portion in the example shown in FIG. 10, the capacitor (C1 and C2), at least a part of the capacitors constituting the second capacitor array 11b (the capacitors C3 and C4 in the example shown in FIG. 10), and the third capacitor array 11c (in the example shown in FIG. 10, the capacitor section C5 and the capacitor section C6) that constitute the .
- all of the first capacitor array 11a, all of the second capacitor array 11b, and all of the third capacitor array 11c are particularly preferably superimposed on each other.
- the module 10C when viewed from the mounting surface of the first connection terminal layer 13a or the third connection terminal layer 13c, at least part of the first capacitor array 11a, at least part of the second capacitor array 11b, and the third capacitor
- the first capacitor array 11a, the second capacitor array 11b, and the third capacitor array 11c are not arranged on the same plane extending in the planar direction U because at least part of the array 11c overlaps with each other. Therefore, the wiring path between the first capacitor array 11a and the second capacitor array 11b and the wiring path between the second capacitor array 11b and the third capacitor array 11c tend to be shortened. Loss can be reduced.
- the capacitor array further includes a third capacitor array, the first capacitor array is provided on one mounting surface of the wiring board, and the second capacitor array is provided on the wiring board. and the third capacitor array may be provided on the other mounting surface of the wiring board.
- the first capacitor array 11a is provided on one mounting surface of the wiring board 40
- the second capacitor array 11b is built in the wiring board 40
- the third capacitor array 11c is mounted on the other mounting surface of the wiring board 40. provided on the mounting surface.
- the first capacitor array 11 a may be built in the wiring board 40 or may be built in a wiring board different from the wiring board 40 .
- the second capacitor array 11b may be provided on one or the other mounting surface of the wiring board 40 .
- the third capacitor array 11 c may be built in the wiring board 40 or may be built in a wiring board different from the wiring board 40 .
- the module of the present invention has two or three capacitor arrays, but the module of the present invention may have four or more capacitor arrays.
- the circuit configuration of the semiconductor composite device of the present invention may be other than the circuit configuration shown in FIG.
- FIG. 11 is a circuit configuration diagram showing another example of the circuit configuration of the semiconductor composite device of the present invention.
- the voltage regulator 20 may include a transformer TR in addition to the switching element SW.
- the voltage regulator 20 may not include the switching element SW in the preceding stage (left side in FIG. 11) of the transformer TR. Further, in the semiconductor composite device 1', the voltage regulator 20 may include the switching element SW or the inductor L provided in the first channel CH1.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Integrated Circuits (AREA)
- Dc-Dc Converters (AREA)
Abstract
モジュール10Aは、半導体アクティブ素子を含むボルテージレギュレータ20によって調整された直流電圧を負荷30に供給する半導体複合装置1Aに用いられるモジュールであって、平面配置された複数のコンデンサ部で構成されるコンデンサアレイと、コンデンサアレイの厚み方向Tにコンデンサ部を貫通するように設けられ、かつ、コンデンサ部とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられるスルーホール導体と、スルーホール導体に電気的に接続され、かつ、コンデンサ部とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる接続端子層と、を備え、コンデンサアレイは、第1コンデンサアレイ11aと、第2コンデンサアレイ11bと、を少なくとも含み、接続端子層の実装面から見たとき、第1コンデンサアレイ11aの少なくとも一部と第2コンデンサアレイ11bの少なくとも一部とは、互いに重なっている。
Description
本発明は、モジュール及び半導体複合装置に関する。
特許文献1には、インダクタ、コンデンサ等の受動素子の一部又は全部が埋め込まれたパッケージ基板、及び、スイッチング素子等の能動素子を含むボルテージレギュレータ(電圧制御装置)を有する半導体装置が開示されている。特許文献1に記載の半導体装置において、ボルテージレギュレータ、及び、電源電圧を供給すべき負荷は、パッケージ基板上に実装されている。特許文献1に記載の半導体装置において、ボルテージレギュレータで調整された直流電圧は、パッケージ基板内の受動素子で平滑化されて負荷に供給されている。
特許文献1に記載の半導体装置において、ボルテージレギュレータと負荷とがパッケージ基板内の受動素子を介して電気的に接続される配線経路が長くなると、配線によるインダクタ成分及び抵抗成分が増加する等の、配線による損失が大きくなる。特に、特許文献1に記載の半導体装置において、パッケージ基板内の受動素子として、複数のコンデンサがアレイ状にされたコンデンサアレイを用いる場合、ボルテージレギュレータと各コンデンサとの間の配線経路、及び、負荷と各コンデンサとの間の配線経路をともに短くすることが困難となり、結果的に、ボルテージレギュレータと負荷との間の配線経路を短くすることが困難となる。コンデンサアレイが複数である場合は、ボルテージレギュレータと負荷との間の配線経路を短くすることが更に困難となる。
本発明は、上記の問題を解決するためになされたものであり、複数のコンデンサアレイを有しつつも、半導体複合装置に組み込まれた状態で配線による損失を低減可能なモジュールを提供することを目的とするものである。また、本発明は、上記モジュールを有する半導体複合装置を提供することを目的とするものである。
本発明のモジュールは、半導体アクティブ素子を含むボルテージレギュレータによって調整された直流電圧を負荷に供給する半導体複合装置に用いられるモジュールであって、平面配置された複数のコンデンサ部で構成されるコンデンサアレイと、上記コンデンサアレイの厚み方向に上記コンデンサ部を貫通するように設けられ、かつ、上記コンデンサ部と上記ボルテージレギュレータ及び上記負荷の少なくとも一方との電気的接続に用いられるスルーホール導体と、上記スルーホール導体に電気的に接続され、かつ、上記コンデンサ部と上記ボルテージレギュレータ及び上記負荷の少なくとも一方との電気的接続に用いられる接続端子層と、を備え、上記コンデンサアレイは、第1コンデンサアレイと、第2コンデンサアレイと、を少なくとも含み、上記接続端子層の実装面から見たとき、上記第1コンデンサアレイの少なくとも一部と上記第2コンデンサアレイの少なくとも一部とは、互いに重なっている、ことを特徴とする。
本発明の半導体複合装置は、本発明のモジュールと、上記ボルテージレギュレータと、上記負荷と、を備える、ことを特徴とする。
本発明によれば、複数のコンデンサアレイを有しつつも、半導体複合装置に組み込まれた状態で配線による損失を低減可能なモジュールを提供できる。また、本発明によれば、上記モジュールを有する半導体複合装置を提供できる。
以下、本発明のモジュールと本発明の半導体複合装置とについて説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更されてもよい。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。
本発明の半導体複合装置は、本発明のモジュールと、ボルテージレギュレータと、負荷と、を備える。
図1は、本発明の半導体複合装置の回路構成の一例を示す回路構成図である。
図1に示す半導体複合装置1は、モジュール10と、ボルテージレギュレータ20と、負荷30と、を有している。
図1に示す例では、第1チャネルCH1及び第2チャネルCH2が設けられており、チャネル数が2つである。なお、チャネル数は、1つであってもよいし、3つ以上であってもよい。つまり、チャネル数は、1つであってもよいし、複数であってもよい。
ボルテージレギュレータ20は、半導体アクティブ素子を含んでいる。ボルテージレギュレータ20は、半導体アクティブ素子のデューティを制御することにより、外部から供給される直流電圧を負荷30に適した電圧レベルに調整する。
図1に示す例では、ボルテージレギュレータ20が、半導体アクティブ素子として、スイッチング素子SW1と、スイッチング素子SW2と、スイッチング素子SW3と、スイッチング素子SW4と、を含んでいる。
スイッチング素子SW1は、第1チャネルCH1に設けられている。
スイッチング素子SW2、スイッチング素子SW3、及び、スイッチング素子SW4は、第2チャネルCH2に設けられている。
負荷30は、ボルテージレギュレータ20によって調整された直流電圧が供給されるものである。
負荷30としては、例えば、論理演算回路、記憶回路等の半導体集積回路(IC)等が挙げられる。
本発明のモジュールは、半導体アクティブ素子を含むボルテージレギュレータによって調整された直流電圧を負荷に供給する半導体複合装置に用いられる。
モジュール10は、ボルテージレギュレータ20と負荷30との間に設けられている。これにより、モジュール10は、ボルテージレギュレータ20によって調整された直流電圧を負荷30に供給する半導体複合装置1に用いられる。
モジュール10は、コンデンサ部C1と、コンデンサ部C2と、コンデンサ部C3と、コンデンサ部C4と、を有している。
コンデンサ部C1及びコンデンサ部C3は、第1チャネルCH1に設けられている。より具体的には、コンデンサ部C1及びコンデンサ部C3は、スイッチング素子SW1と負荷30との間の地点と、接地端子との間に設けられている。
コンデンサ部C1及びコンデンサ部C3は、図1に示すように並列接続されていてもよいし、直列接続されていてもよい。
コンデンサ部C2及びコンデンサ部C4は、第2チャネルCH2に設けられている。より具体的には、コンデンサ部C2及びコンデンサ部C4は、スイッチング素子SW2、スイッチング素子SW3、及び、スイッチング素子SW4と負荷30との間の同一地点と、接地端子との間に設けられている。
コンデンサ部C2及びコンデンサ部C4は、図1に示すように並列接続されていてもよいし、直列接続されていてもよい。
図1に示すように、半導体複合装置1は、インダクタL1と、インダクタL2と、インダクタL3と、インダクタL4と、を更に有していてもよい。
インダクタL1は、第1チャネルCH1に設けられている。より具体的には、インダクタL1は、スイッチング素子SW1と負荷30との間に設けられている。この場合、図1に示すように、コンデンサ部C1及びコンデンサ部C3は、インダクタL1と負荷30との間の地点と、接地端子との間に設けられることになる。
インダクタL2、インダクタL3、及び、インダクタL4は、第2チャネルCH2に設けられている。より具体的には、インダクタL2はスイッチング素子SW2と負荷30との間に設けられ、インダクタL3はスイッチング素子SW3と負荷30との間に設けられ、インダクタL4はスイッチング素子SW4と負荷30との間に設けられている。この場合、図1に示すように、コンデンサ部C2及びコンデンサ部C4は、インダクタL2、インダクタL3、及び、インダクタL4と負荷30との間の同一地点と、接地端子との間に設けられることになる。
なお、インダクタL1、インダクタL2、インダクタL3、及び、インダクタL4は、モジュール10に含まれていてもよい。
半導体複合装置1は、ノイズ対策のためのデカップリング用コンデンサ、チョークインダクタ、サージ保護用のダイオード素子、分圧用の抵抗素子等の電子機器を更に有していてもよい。
以下では、本発明のモジュールと本発明の半導体複合装置との構成の詳細について、実施形態を挙げて説明する。
以下に示す各実施形態は例示であり、異なる実施形態で示す構成の部分的な置換又は組み合わせが可能であることは言うまでもない。実施形態2以降では、実施形態1と共通の事項についての記載は省略し、異なる点を主に説明する。特に、同様の構成による同様の作用効果については、実施形態毎に逐次言及しない。
以下の説明において、各実施形態を特に区別しない場合、単に「本発明のモジュール」及び「本発明の半導体複合装置」と言う。
以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。
[実施形態1]
図2は、本発明の実施形態1の半導体複合装置の一例を示す断面模式図である。図3は、図2に示す半導体複合装置を、モジュールの一方の実装面側から見た状態を示す平面模式図である。図4は、図2に示す半導体複合装置を、モジュールの他方の実装面側から見た状態を示す平面模式図である。
図2は、本発明の実施形態1の半導体複合装置の一例を示す断面模式図である。図3は、図2に示す半導体複合装置を、モジュールの一方の実装面側から見た状態を示す平面模式図である。図4は、図2に示す半導体複合装置を、モジュールの他方の実装面側から見た状態を示す平面模式図である。
本明細書中、厚み方向を、図2等に示すように、Tで定められる方向とする。また、厚み方向に直交する面方向を、図2等に示すように、Uで定められる方向とする。なお、面方向Uは複数存在するが、図2等ではそのうちの1方向を代表的に示している。
図2、図3、及び、図4に示す半導体複合装置1Aは、モジュール10Aと、ボルテージレギュレータ20と、負荷30と、を有している。
図2及び図3に示すように、半導体複合装置1Aでは、負荷30が、モジュール10Aの一方の実装面側に設けられている。
図4に示すように、半導体複合装置1Aでは、スイッチング素子SW1、スイッチング素子SW2、スイッチング素子SW3、及び、スイッチング素子SW4を含むボルテージレギュレータ20が、モジュール10Aの他方の実装面側に設けられている。
図4に示すように、半導体複合装置1Aでは、モジュール10Aの他方の実装面側に、インダクタL1、インダクタL2、インダクタL3、及び、インダクタL4が更に設けられている。インダクタL1、インダクタL2、インダクタL3、及び、インダクタL4は、各々、配線を含む回路層45を介して、スイッチング素子SW1、スイッチング素子SW2、スイッチング素子SW3、及び、スイッチング素子SW4に電気的に接続されている。
本発明のモジュールは、平面配置された複数のコンデンサ部で構成されるコンデンサアレイと、上記コンデンサアレイの厚み方向に上記コンデンサ部を貫通するように設けられ、かつ、上記コンデンサ部と上記ボルテージレギュレータ及び上記負荷の少なくとも一方との電気的接続に用いられるスルーホール導体と、上記スルーホール導体に電気的に接続され、かつ、上記コンデンサ部と上記ボルテージレギュレータ及び上記負荷の少なくとも一方との電気的接続に用いられる接続端子層と、を備える。
本発明のモジュールにおいて、上記コンデンサアレイは、第1コンデンサアレイと、第2コンデンサアレイと、を少なくとも含む。
図2、図3、及び、図4に示すモジュール10Aは、第1コンデンサアレイ11aと、第2コンデンサアレイ11bと、第1スルーホール導体12aと、第2スルーホール導体12bと、第1接続端子層13aと、第2接続端子層13bと、を有している。
第1コンデンサアレイ11aは、平面配置された複数のコンデンサ部で構成されている。図2、図3、及び、図4に示す例では、第1コンデンサアレイ11aが、平面配置された2つのコンデンサ部、より具体的には、コンデンサ部C1及びコンデンサ部C2で構成されている。
厚み方向Tから見たときの、コンデンサ部C1及びコンデンサ部C2の面積は、互いに同じであってもよいし、互いに異なっていてもよい。
なお、第1コンデンサアレイ11aは、平面配置された3つ以上のコンデンサ部で構成されてもよい。
第1スルーホール導体12aは、第1コンデンサアレイ11aの厚み方向Tにコンデンサ部C1又はコンデンサ部C2を貫通するように設けられている。図2に示す例では、第1スルーホール導体12aが、第1スルーホール導体12aa及び第1スルーホール導体12abを含んでいる。第1スルーホール導体12aa及び第1スルーホール導体12abは、コンデンサ部C1を厚み方向Tに貫通するように設けられ、また、コンデンサ部C2を厚み方向Tに貫通するように設けられている。
第1スルーホール導体12aは、コンデンサ部C1とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C1に対応する第1スルーホール導体12aに含まれる第1スルーホール導体12aa及び第1スルーホール導体12abが、各々、コンデンサ部C1と負荷30との電気的接続に用いられる。
第1スルーホール導体12aは、コンデンサ部C2とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C2に対応する第1スルーホール導体12aに含まれる第1スルーホール導体12aa及び第1スルーホール導体12abが、各々、コンデンサ部C2と負荷30との電気的接続に用いられる。
第1接続端子層13aは、第1スルーホール導体12aに電気的に接続されている。図2に示す例では、第1接続端子層13aが、第1接続端子層13aa及び第1接続端子層13abを含んでいる。第1接続端子層13aaは、第1スルーホール導体12aaの両端上に設けられ、第1スルーホール導体12aaに接続されている。第1接続端子層13abは、第1スルーホール導体12abの両端上に設けられ、第1スルーホール導体12abに接続されている。
第1接続端子層13aは、コンデンサ部C1とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C1に対応する第1接続端子層13aに含まれる第1接続端子層13aa及び第1接続端子層13abのうち、負荷30側に存在する接続端子層(図2では、上側の第1接続端子層13aa及び第1接続端子層13ab)が、コンデンサ部C1と負荷30との電気的接続に用いられる。
第1接続端子層13aは、コンデンサ部C2とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C2に対応する第1接続端子層13aに含まれる第1接続端子層13aa及び第1接続端子層13abのうち、負荷30側に存在する接続端子層(図2では、上側の第1接続端子層13aa及び第1接続端子層13ab)が、コンデンサ部C2と負荷30との電気的接続に用いられる。
第2コンデンサアレイ11bは、平面配置された複数のコンデンサ部で構成されている。図2、図3、及び、図4に示す例では、第2コンデンサアレイ11bが、平面配置された2つのコンデンサ部、より具体的には、コンデンサ部C3及びコンデンサ部C4で構成されている。
厚み方向Tから見たときの、コンデンサ部C3及びコンデンサ部C4の面積は、互いに同じであってもよいし、互いに異なっていてもよい。
なお、第2コンデンサアレイ11bは、平面配置された3つ以上のコンデンサ部で構成されてもよい。
第2スルーホール導体12bは、第2コンデンサアレイ11bの厚み方向Tにコンデンサ部C3又はコンデンサ部C4を貫通するように設けられている。図2に示す例では、第2スルーホール導体12bが、第2スルーホール導体12ba及び第2スルーホール導体12bbを含んでいる。第2スルーホール導体12ba及び第2スルーホール導体12bbは、コンデンサ部C3を厚み方向Tに貫通するように設けられ、また、コンデンサ部C4を厚み方向Tに貫通するように設けられている。
第2スルーホール導体12bは、コンデンサ部C3とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C3に対応する第2スルーホール導体12bに含まれる第2スルーホール導体12baが、コンデンサ部C3とボルテージレギュレータ20との電気的接続に用いられる。
第2スルーホール導体12bは、コンデンサ部C4とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C4に対応する第2スルーホール導体12bに含まれる第2スルーホール導体12baが、コンデンサ部C4とボルテージレギュレータ20との電気的接続に用いられる。
第2接続端子層13bは、第2スルーホール導体12bに電気的に接続されている。図2に示す例では、第2接続端子層13bが、第2接続端子層13ba及び第2接続端子層13bbを含んでいる。第2接続端子層13baは、第2スルーホール導体12baの両端上に設けられ、第2スルーホール導体12baに接続されている。第2接続端子層13bbは、第2スルーホール導体12bbの両端上に設けられ、第2スルーホール導体12bbに接続されている。
第2接続端子層13bは、コンデンサ部C3とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C3に対応する第2接続端子層13bに含まれ、かつ、ボルテージレギュレータ20側に存在する第2接続端子層13ba(図2では、下側の第2接続端子層13ba)が、コンデンサ部C3とボルテージレギュレータ20との電気的接続に用いられる。
第2接続端子層13bは、コンデンサ部C4とボルテージレギュレータ20及び負荷30の少なくとも一方との電気的接続に用いられる。図2に示す例では、コンデンサ部C4に対応する第2接続端子層13bに含まれ、かつ、ボルテージレギュレータ20側に存在する第2接続端子層13ba(図2では、下側の第2接続端子層13ba)が、コンデンサ部C4とボルテージレギュレータ20との電気的接続に用いられる。
以上のように、半導体複合装置1Aにおいて、ボルテージレギュレータ20と負荷30とは、モジュール10Aのスルーホール導体及び接続端子層を介して電気的に接続されている。これにより、半導体複合装置1Aにおいて、ボルテージレギュレータ20と負荷30との間の配線経路が短くなりやすく、結果的に、配線による損失が低減可能となる。
モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1スルーホール導体12aaの少なくとも一部と、第1接続端子層13aaの少なくとも一部と、第2スルーホール導体12baの少なくとも一部と、第2接続端子層13baの少なくとも一部とは、互いに重なっていることが好ましい。あるいは、モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1スルーホール導体12aaと、第1接続端子層13aaと、第2スルーホール導体12baと、第2接続端子層13baとは、厚み方向Tに沿う同一直線上に位置していることが好ましい。
モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1スルーホール導体12abの少なくとも一部と、第1接続端子層13abの少なくとも一部と、第2スルーホール導体12bbの少なくとも一部と、第2接続端子層13bbの少なくとも一部とは、互いに重なっていることが好ましい。あるいは、モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1スルーホール導体12abと、第1接続端子層13abと、第2スルーホール導体12bbと、第2接続端子層13bbとは、厚み方向Tに沿う同一直線上に位置していることが好ましい。
本発明のモジュールにおいて、上記接続端子層の実装面から見たとき、上記第1コンデンサアレイの少なくとも一部と上記第2コンデンサアレイの少なくとも一部とは、互いに重なっている。
モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの少なくとも一部と第2コンデンサアレイ11bの少なくとも一部とは、互いに重なっている。より具体的には、モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aを構成するコンデンサ部(図3及び図4に示す例では、コンデンサ部C1及びコンデンサ部C2)の少なくとも一部と、第2コンデンサアレイ11bを構成するコンデンサ部(図3及び図4に示す例では、コンデンサ部C3及びコンデンサ部C4)の少なくとも一部とは、互いに重なっている。
図3及び図4に示す例では、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの全部と第2コンデンサアレイ11bの全部とが、互いに重なっている。このように、モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの全部と第2コンデンサアレイ11bの全部とは、互いに重なっていることが好ましい。
なお、モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの一部と第2コンデンサアレイ11bの一部とが互いに重なっていてもよいし、第1コンデンサアレイ11aの全部と第2コンデンサアレイ11bの一部とが互いに重なっていてもよいし、第1コンデンサアレイ11aの一部と第2コンデンサアレイ11bの全部とが互いに重なっていてもよい。
モジュール10Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの少なくとも一部と第2コンデンサアレイ11bの少なくとも一部とが互いに重なっていることにより、第1コンデンサアレイ11a及び第2コンデンサアレイ11bが、面方向Uに広がる同一平面に配置されない。そのため、第1コンデンサアレイ11aと第2コンデンサアレイ11bとの間の配線経路が短くなりやすく、結果的に、配線による損失が低減可能となる。
本発明のモジュールに対しては、X線CT装置等を用いて、面方向に沿う断面を厚み方向に沿って逐次観察することにより、コンデンサアレイが、どの程度の深さにどの程度の面方向の大きさを有しているのかを確認できる。このようにして、本発明のモジュールにおいて、接続端子層の実装面から見たとき、第1コンデンサアレイの少なくとも一部と第2コンデンサアレイの少なくとも一部とが互いに重なっていることを確認できる。
以上により、モジュール10Aによれば、複数のコンデンサアレイを有しつつも、半導体複合装置1Aに組み込まれた状態で配線による損失を低減可能である。
また、モジュール10Aによれば、第1コンデンサアレイ11a及び第2コンデンサアレイ11bが、面方向Uに広がる同一平面に配置されないために、半導体複合装置1Aに組み込まれた状態でのモジュール10Aの実装面積が小さくなりやすく、結果的に、半導体複合装置1Aの小型化が可能となる。
更に、モジュール10Aによれば、第1コンデンサアレイ11a及び第2コンデンサアレイ11bを含む多層化されたコンデンサアレイが設けられていることにより、各々のコンデンサアレイが並列接続されることで容量密度が増加したり、各々のコンデンサアレイが直列接続されることで耐電圧が増加したり、異なる耐電圧のコンデンサアレイが配置されることで複数の電圧チャネルに対応可能となったり、等の多様化が可能となる。
本発明のモジュールにおいて、上記第1コンデンサアレイの耐電圧と上記第2コンデンサアレイの耐電圧との差は、1V以上であることが好ましい。
モジュール10Aにおいて、第1コンデンサアレイ11aの耐電圧と第2コンデンサアレイ11bの耐電圧との差は、1V以上であることが好ましい。
第1コンデンサアレイ11aの耐電圧と第2コンデンサアレイ11bの耐電圧との差が1V以上である場合、第1コンデンサアレイ11aの耐電圧は、第2コンデンサアレイ11bの耐電圧よりも大きくてもよいし、第2コンデンサアレイ11bの耐電圧よりも小さくてもよい。
一方、第1コンデンサアレイ11aの耐電圧と第2コンデンサアレイ11bの耐電圧との差は、48V以下であることが好ましい。
本発明の半導体複合装置において、上記接続端子層の実装面から見たとき、上記ボルテージレギュレータに含まれる上記半導体アクティブ素子の少なくとも一部は、上記第1コンデンサアレイ及び上記第2コンデンサアレイに重なっていることが好ましい。
半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、ボルテージレギュレータ20に含まれる半導体アクティブ素子の少なくとも一部は、第1コンデンサアレイ11a及び第2コンデンサアレイ11bに重なっていることが好ましい。
図4に示す例では、第2接続端子層13bの実装面から見たとき、ボルテージレギュレータ20に含まれる半導体アクティブ素子として設けられた、スイッチング素子SW1、スイッチング素子SW2、スイッチング素子SW3、及び、スイッチング素子SW4の全部が、第1コンデンサアレイ11a及び第2コンデンサアレイ11bに重なっている。このように、半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、ボルテージレギュレータ20に含まれる半導体アクティブ素子の全部が第1コンデンサアレイ11a及び第2コンデンサアレイ11bに重なっていることが特に好ましい。
なお、半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、ボルテージレギュレータ20に含まれる半導体アクティブ素子の一部が第1コンデンサアレイ11a及び第2コンデンサアレイ11bに重なっていてもよい。
ボルテージレギュレータ20が複数の半導体アクティブ素子を含む場合、上記「ボルテージレギュレータ20に含まれる半導体アクティブ素子の一部」は、複数の半導体アクティブ素子のうちの一部個数の半導体アクティブ素子を意味してもよいし、複数の半導体アクティブ素子の配置領域のうちの一部領域を意味してもよい。
半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、ボルテージレギュレータ20に含まれる半導体アクティブ素子の少なくとも一部が第1コンデンサアレイ11a及び第2コンデンサアレイ11bに重なっていることにより、第1コンデンサアレイ11a及び第2コンデンサアレイ11bが、半導体アクティブ素子に厚み方向Tで隣り合う位置に設けられることが可能となる。そのため、半導体複合装置1Aにおいて、第1コンデンサアレイ11a及び第2コンデンサアレイ11bは、半導体アクティブ素子としてのスイッチング素子といった電源機能素子と一体化したPOL(Point Of Load)を形成できる。
本発明の半導体複合装置において、上記接続端子層の実装面から見たとき、上記第1コンデンサアレイの少なくとも一部と上記第2コンデンサアレイの少なくとも一部とは、上記負荷に重なっていることが好ましい。
半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの少なくとも一部と第2コンデンサアレイ11bの少なくとも一部とは、負荷30に重なっていることが好ましい。
図3及び図4に示す例では、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの全部と第2コンデンサアレイ11bの全部とが、負荷30に重なっている。このように、半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの全部と第2コンデンサアレイ11bの全部とが、負荷30に重なっていることが特に好ましい。
なお、半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの一部と第2コンデンサアレイ11bの一部とが負荷30に重なっていてもよいし、第1コンデンサアレイ11aの全部と第2コンデンサアレイ11bの一部とが負荷30に重なっていてもよいし、第1コンデンサアレイ11aの一部と第2コンデンサアレイ11bの全部とが負荷30に重なっていてもよい。
半導体複合装置1Aにおいて、第1接続端子層13a又は第2接続端子層13bの実装面から見たとき、第1コンデンサアレイ11aの少なくとも一部と第2コンデンサアレイ11bの少なくとも一部とが負荷30に重なっていることにより、第1コンデンサアレイ11aと負荷30とが、面方向Uに広がる同一平面に配置されず、更には、第2コンデンサアレイ11bと負荷30とが、面方向Uに広がる同一平面に配置されない。そのため、半導体複合装置1Aにおいて、第1コンデンサアレイ11a及び第2コンデンサアレイ11bを含む多層化されたコンデンサアレイと負荷30との間の配線経路が短くなりやすく、結果的に、配線による損失が低減可能となる。更に、半導体複合装置1Aにおいて、多層化されたコンデンサアレイと負荷30との実装面積が小さくなりやすく、結果的に、半導体複合装置1Aの小型化が可能となる。
本発明の半導体複合装置は、上記ボルテージレギュレータ及び上記負荷に電気的に接続された配線基板を更に備えていてもよい。
図2、図3、及び、図4に示すように、半導体複合装置1Aは、配線基板40を更に備えていてもよい。
配線基板40は、ボルテージレギュレータ20及び負荷30に電気的に接続されている。
図2及び図3に示す例では、負荷30が、第1スルーホール導体12a及び第1接続端子層13aを介して、配線基板40の一方の実装面に電気的に接続されている。
図2及び図4に示す例では、ボルテージレギュレータ20に含まれる半導体アクティブ素子として設けられた、スイッチング素子SW1、スイッチング素子SW2、スイッチング素子SW3、及び、スイッチング素子SW4が、配線基板40の他方の実装面に電気的に接続されている。同様に、インダクタL1、インダクタL2、インダクタL3、及び、インダクタL4も、配線基板40の他方の実装面に電気的に接続されている。
本発明の半導体複合装置において、上記第1コンデンサアレイ及び上記第2コンデンサアレイは、一方が上記配線基板の実装面に設けられ、他方が上記配線基板に内蔵されていてもよい。
半導体複合装置1Aにおいて、第1コンデンサアレイ11a及び第2コンデンサアレイ11bは、一方が配線基板40の実装面に設けられ、他方が配線基板40に内蔵されていてもよい。
図2に示す例では、第1コンデンサアレイ11aが配線基板40の一方の実装面に設けられ、第2コンデンサアレイ11bが配線基板40に内蔵されている。また、第2コンデンサアレイ11bに対応する第2スルーホール導体12b及び第2接続端子層13bも、配線基板40に内蔵されている。
なお、第1コンデンサアレイ11aは、配線基板40に内蔵されていてもよい。また、第2コンデンサアレイ11bは、配線基板40の一方又は他方の実装面に設けられていてもよい。例えば、第1コンデンサアレイ11aが配線基板40に内蔵され、第2コンデンサアレイ11bが配線基板40の他方の実装面に設けられていてもよい。
半導体複合装置1Aにおいて、第1コンデンサアレイ11a及び第2コンデンサアレイ11bの一方が配線基板40に内蔵されている場合、第1コンデンサアレイ11a及び第2コンデンサアレイ11bの両方が配線基板40の実装面に設けられている場合と比較して、半導体複合装置1Aの小型化が可能となる。
以下では、本発明のモジュールにおける、コンデンサ部、スルーホール導体、及び、接続端子層の具体例を示す。
本発明のモジュールにおいて、上記スルーホール導体は、例えば、上記コンデンサ部を上記厚み方向に貫通する陽極用貫通孔の少なくとも内壁面上に設けられ、かつ、上記コンデンサ部の陽極に電気的に接続された陽極用スルーホール導体を含む。この場合、上記陽極用スルーホール導体は、上記陽極用貫通孔の上記内壁面で、上記コンデンサ部の陽極に電気的に接続されていることが好ましい。
本発明のモジュールにおいて、上記スルーホール導体が上記陽極用スルーホール導体を含む場合、上記接続端子層は、例えば、上記陽極用スルーホール導体の表面上に設けられた陽極用接続端子層を含む。
図5は、コンデンサ部の陽極に電気的に接続された陽極用スルーホール導体及びその周辺の一例を示す断面模式図である。図6は、図5中の線分A1-A2に沿った投影状態を示す断面模式図である。
図5に示すモジュール110は、コンデンサアレイ111と、陽極用スルーホール導体112Aと、陽極用接続端子層113Aと、を有している。
コンデンサアレイ111は、コンデンサ部150で構成されている。図5では、コンデンサアレイ111の一部を示しているが、コンデンサアレイ111では、コンデンサ部150が複数かつ平面配置されている。
コンデンサ部150は、陽極板151と、誘電体層(図示せず)と、陰極層156と、を有している。
陽極板151は、コンデンサ部150の陽極を構成している。
陽極板151は、芯部152と、多孔質層154と、を有している。
芯部152は、金属からなることが好ましく、中でも弁作用金属からなることが好ましい。
弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム等の金属単体、これらの金属単体の少なくとも1種を含有する合金等が挙げられる。中でも、アルミニウム又はアルミニウム合金が好ましい。
多孔質層154は、芯部152の少なくとも一方の主面に設けられている。つまり、多孔質層154は、芯部152の一方の主面のみに設けられていてもよいし、図5に示すように芯部152の両方の主面に設けられていてもよい。このように、陽極板151は、少なくとも一方の主面に多孔質層154を有している。
多孔質層154は、陽極板151の表面がエッチング処理されてなるエッチング層であることが好ましい。
陽極板151の形状は、平板状であることが好ましく、箔状であることがより好ましい。このように、本明細書中では、「板状」に「箔状」も含まれる。
誘電体層は、多孔質層154の表面上に設けられている。より具体的には、誘電体層は、多孔質層154に存在する各孔の表面(輪郭)に沿って設けられている。
誘電体層は、上述した弁作用金属の酸化皮膜からなることが好ましい。例えば、陽極板151がアルミニウム箔である場合、陽極板151に対して、アジピン酸アンモニウム等を含む水溶液中で陽極酸化処理(化成処理とも呼ばれる)を行うことにより、誘電体層となる酸化皮膜が形成される。誘電体層は多孔質層154の表面に沿って形成されるため、誘電体層には、細孔(凹部)が設けられることになる。
陰極層156は、コンデンサ部150の陰極を構成している。
陰極層156は、誘電体層の表面上に設けられている。
図5に示すように、陰極層156は、誘電体層の表面上に設けられた固体電解質層156Aと、固体電解質層156Aの表面上に設けられた導電体層156Bと、を有することが好ましい。
固体電解質層156Aの構成材料としては、例えば、ポリピロール類、ポリチオフェン類、ポリアニリン類等の導電性高分子等が挙げられる。中でも、ポリチオフェン類が好ましく、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が特に好ましい。また、導電性高分子は、ポリスチレンスルホン酸(PSS)等のドーパントを含んでいてもよい。
固体電解質層156Aは、誘電体層の細孔(凹部)に充填される内層と、誘電体層の表面を覆う外層と、を含むことが好ましい。
導電体層156Bは、導電性樹脂層及び金属層の少なくとも一方を含むことが好ましい。つまり、導電体層156Bは、導電性樹脂層のみを含んでいてもよいし、金属層のみを含んでいてもよいし、導電性樹脂層及び金属層の両方を含んでいてもよい。
導電性樹脂層としては、例えば、銀フィラー、銅フィラー、ニッケルフィラー、及び、カーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーを含む導電性接着剤層等が挙げられる。
金属層としては、例えば、金属めっき膜、金属箔等が挙げられる。金属層は、ニッケル、銅、銀、及び、これらの金属の少なくとも1種を主成分とする合金からなる群より選択される少なくとも1種の金属からなることが好ましい。
本明細書中、主成分は、重量割合が最も大きい元素成分を意味する。
導電体層156Bは、例えば、固体電解質層156Aの表面上に設けられたカーボン層と、カーボン層の表面上に設けられた銅層と、を含んでいてもよい。
カーボン層は、例えば、カーボンペーストを、スポンジ転写法、スクリーン印刷法、ディスペンサ塗布法、インクジェット印刷法等で固体電解質層156Aの表面に塗工することにより、所定の領域に形成される。
銅層は、例えば、銅ペーストを、スポンジ転写法、スクリーン印刷法、スプレー塗布法、ディスペンサ塗布法、インクジェット印刷法等でカーボン層の表面に塗工することにより、所定の領域に形成される。
以上のように、図5に示すコンデンサ部150は、少なくとも一方の主面に多孔質層154を有する陽極板151と、多孔質層154の表面上に設けられた誘電体層と、誘電体層の表面上に設けられた陰極層156と、を有している。これにより、コンデンサ部150は、電解コンデンサを構成している。なお、陰極層156が固体電解質層156Aを有する場合、コンデンサ部150は、固体電解コンデンサを構成することになる。
なお、コンデンサ部は、チタン酸バリウムを用いたセラミックコンデンサ、あるいは、窒化ケイ素(SiN)、二酸化ケイ素(SiO2)、フッ化水素(HF)等を用いた薄膜コンデンサを構成してもよい。しかしながら、コンデンサ部の薄型化及び大面積化、並びに、コンデンサ部の剛性、柔軟性等の機械特性向上の観点から、コンデンサ部は、アルミニウム等の金属を基材とするコンデンサを構成することが好ましく、アルミニウム等の金属を基材とする電解コンデンサを構成することがより好ましく、アルミニウム又はアルミニウム合金を基材とする電解コンデンサを構成することが更に好ましい。
陽極用スルーホール導体112Aは、コンデンサアレイ111の厚み方向Tにコンデンサ部150を貫通するように設けられている。図5に示す例では、陽極用スルーホール導体112Aが、コンデンサ部150を厚み方向Tに貫通する陽極用貫通孔161の少なくとも内壁面上に設けられ、かつ、陽極板151に電気的に接続されている。
陽極用スルーホール導体112Aは、陽極用貫通孔161の内壁面で、陽極板151に電気的に接続されていることが好ましい。図5に示す例では、陽極用スルーホール導体112Aが、面方向Uにおいて陽極用貫通孔161の内壁面に対向する陽極板151の端面に電気的に接続されている。
図5に示すように、陽極用スルーホール導体112Aに電気的に接続する陽極板151の端面には、芯部152及び多孔質層154が露出していることが好ましい。この場合、芯部152に加えて多孔質層154でも、陽極用スルーホール導体112Aとの電気的な接続がなされる。
陽極用スルーホール導体112Aは、例えば、以下のようにして形成される。まず、陽極用スルーホール導体112Aを形成しようとする部分に対して、ドリル加工、レーザー加工等を行うことにより、陽極用貫通孔161を形成する。そして、陽極用貫通孔161の内壁面を、銅、金、銀等の低抵抗の金属でメタライズすることにより、陽極用スルーホール導体112Aを形成する。陽極用スルーホール導体112Aを形成する際、例えば、陽極用貫通孔161の内壁面を、無電解銅めっき処理、電解銅めっき処理等でメタライズすることにより、加工が容易になる。なお、陽極用スルーホール導体112Aを形成する方法については、陽極用貫通孔161の内壁面をメタライズする方法以外に、金属、金属と樹脂との複合材料等を陽極用貫通孔161に充填する方法であってもよい。
図5に示すように、モジュール110は、陽極用スルーホール導体112Aと陽極板151の端面との間に設けられた陽極接続層170を更に有していることが好ましい。図5に示す例では、陽極接続層170が、陽極用スルーホール導体112Aと陽極板151の端面との両方に接している。
陽極接続層170が陽極用スルーホール導体112Aと陽極板151の端面との間に設けられていることにより、陽極接続層170が、陽極板151に対するバリア層、より具体的には、芯部152及び多孔質層154に対するバリア層として機能する。このような陽極接続層170を利用することにより、後述する陽極用接続端子層113A等を形成するための薬液処理時に生じる陽極板151の端面の溶解が抑制され、ひいては、コンデンサ部150への薬液の浸入が抑制される。そのため、コンデンサ部150の信頼性が向上しやすくなり、ひいては、モジュール110の信頼性が向上しやすくなる。
図5に示すように、陽極用スルーホール導体112Aと陽極板151の端面とは、陽極接続層170を介して電気的に接続されていることが好ましい。
図5に示すように、陽極接続層170は、陽極板151の端面側から順に、第1陽極接続層170Aと、第2陽極接続層170Bと、を含んでいてもよい。
陽極接続層170において、例えば、第1陽極接続層170Aは亜鉛を主成分とする層であってもよく、第2陽極接続層170Bはニッケル又は銅を主成分とする層であってもよい。この場合、第1陽極接続層170Aは、例えば、ジンケート処理で亜鉛を置換析出させることにより陽極板151の端面上に形成され、その後、第2陽極接続層170Bは、例えば、無電解ニッケルめっき処理又は無電解銅めっき処理により第1陽極接続層170Aの表面上に形成される。なお、第2陽極接続層170Bの形成時に第1陽極接続層170Aが消失する場合があり、この場合は、陽極接続層170が第2陽極接続層170Bのみからなってもよい。
陽極接続層170は、ニッケルを主成分とする層を含むことが好ましい。この場合、陽極板151を構成する金属(例えば、アルミニウム)等へのダメージが低減されるため、陽極板151に対する陽極接続層170のバリア性が向上しやすくなる。
図5に示すように、厚み方向Tにおいて、陽極接続層170の寸法は、陽極板151の寸法よりも大きいことが好ましい。この場合、陽極板151の端面全体が陽極接続層170で覆われるため、陽極板151に対する陽極接続層170のバリア性が向上しやすくなる。
厚み方向Tにおいて、陽極接続層170の寸法は、好ましくは陽極板151の寸法の100%よりも大きく、200%以下である。
厚み方向Tにおいて、陽極接続層170の寸法は、陽極板151の寸法と同じであってもよいし、陽極板151の寸法よりも小さくてもよい。
なお、陽極用スルーホール導体112Aと陽極板151の端面との間には、陽極接続層170が設けられていなくてもよい。この場合、陽極用スルーホール導体112Aは、陽極板151の端面に直に接続されていてもよい。
図6に示すように、厚み方向Tから見たとき、陽極用スルーホール導体112Aは、陽極用貫通孔161の全周にわたって陽極板151の端面に電気的に接続されていることが好ましい。陽極用スルーホール導体112Aと陽極板151の端面との間に陽極接続層170が設けられている場合、厚み方向Tから見たとき、陽極用スルーホール導体112Aは、陽極用貫通孔161の全周にわたって陽極接続層170に接続されていることが好ましい。この場合、陽極用スルーホール導体112Aと陽極接続層170との接触面積が大きくなるため、陽極用スルーホール導体112Aと陽極接続層170との接続抵抗が低減しやすくなる。その結果、陽極用スルーホール導体112Aと陽極板151との接続抵抗が低減しやすくなるため、コンデンサ部150の等価直列抵抗(ESR)が低減しやすくなる。更に、陽極用スルーホール導体112Aと陽極接続層170との間の密着性が向上しやすくなるため、熱応力による陽極用スルーホール導体112Aと陽極接続層170との間の剥離等の不具合が生じにくくなる。
陽極用接続端子層113Aは、陽極用スルーホール導体112Aに電気的に接続されている。図5に示す例では、陽極用接続端子層113Aが、陽極用スルーホール導体112Aの表面上に設けられている。陽極用接続端子層113Aは、コンデンサ部150の接続端子として機能する。
陽極用接続端子層113Aの構成材料としては、例えば、銀、金、銅等の低抵抗の金属が挙げられる。この場合、陽極用接続端子層113Aは、例えば、陽極用スルーホール導体112Aの表面にめっき処理を行うことにより形成される。
陽極用接続端子層113Aと他の部材との間の密着性、ここでは、陽極用接続端子層113Aと陽極用スルーホール導体112Aとの間の密着性を向上させるために、陽極用接続端子層113Aの構成材料として、銀フィラー、銅フィラー、ニッケルフィラー、及び、カーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーと樹脂との混合材料が用いられてもよい。
図5及び図6に示すように、モジュール110は、陽極用貫通孔161に樹脂材料が充填されてなる第1樹脂充填部171Aを更に有していることが好ましい。図5及び図6に示す例では、第1樹脂充填部171Aが、陽極用貫通孔161の内壁面上の陽極用スルーホール導体112Aで囲まれた空間に設けられている。第1樹脂充填部171Aが設けられることで陽極用貫通孔161内の空間が解消されると、陽極用スルーホール導体112Aのデラミネーションの発生が抑制される。
第1樹脂充填部171Aの熱膨張率は、陽極用スルーホール導体112Aの熱膨張率よりも大きいことが好ましい。より具体的には、陽極用貫通孔161に充填された樹脂材料の熱膨張率は、陽極用スルーホール導体112Aの構成材料(例えば、銅)の熱膨張率よりも大きいことが好ましい。この場合、第1樹脂充填部171A、より具体的には、陽極用貫通孔161に充填された樹脂材料が高温環境下で膨張することにより、陽極用スルーホール導体112Aが陽極用貫通孔161の内側から外側に向かって陽極用貫通孔161の内壁面に押さえつけられるため、陽極用スルーホール導体112Aのデラミネーションの発生が充分に抑制される。
第1樹脂充填部171Aの熱膨張率は、陽極用スルーホール導体112Aの熱膨張率と同じであってもよいし、陽極用スルーホール導体112Aの熱膨張率よりも小さくてもよい。より具体的には、陽極用貫通孔161に充填された樹脂材料の熱膨張率は、陽極用スルーホール導体112Aの構成材料の熱膨張率と同じであってもよいし、陽極用スルーホール導体112Aの構成材料の熱膨張率よりも小さくてもよい。
モジュール110は、第1樹脂充填部171Aを有していなくてもよい。この場合、陽極用スルーホール導体112Aは、陽極用貫通孔161の内壁面上だけではなく、陽極用貫通孔161の内部全体に設けられていることが好ましい。
図5に示すように、モジュール110は、多孔質層154に絶縁材料が充填されてなる第1絶縁層180Aを更に有していることが好ましい。この場合、陽極板151と陰極層156との間の絶縁性が確保され、両者間の短絡が防止される。
図5に示すように、第1絶縁層180Aは、多孔質層154の内部だけではなく、コンデンサアレイ111の表面上、より具体的には、コンデンサ部150の表面上で、陰極層156が存在していない誘電体層の表面上にも設けられていることが好ましい。この場合、陽極板151と陰極層156との間の絶縁性が充分に確保され、両者間の短絡が充分に防止される。
図5及び図6に示すように、第1絶縁層180Aは、陽極用スルーホール導体112Aの周囲に設けられていることが好ましい。この場合、陽極板151と陰極層156との間の絶縁性が充分に確保され、両者間の短絡が充分に防止される。更に、第1絶縁層180Aが陽極板151に対するバリア層、より具体的には、芯部152及び多孔質層154に対するバリア層として機能するため、陽極用接続端子層113A等を形成するための薬液処理時に生じる陽極板151の端面の溶解が抑制され、ひいては、コンデンサ部150への薬液の浸入が抑制される。そのため、コンデンサ部150の信頼性が向上しやすくなり、ひいては、モジュール110の信頼性が向上しやすくなる。
上述した効果を高める観点から、図5に示すように、厚み方向Tにおいて、第1絶縁層180Aの寸法は、多孔質層154の寸法よりも大きいことが好ましい。
第1絶縁層180Aの構成材料としては、例えば、エポキシ、フェノール、ポリイミド等の樹脂材料、あるいは、エポキシ、フェノール、ポリイミド等の樹脂材料と、シリカ、アルミナ等の無機フィラーとの混合材料等が挙げられる。
図5に示すように、モジュール110は、コンデンサアレイ111の表面上、より具体的には、コンデンサ部150の表面上に設けられた絶縁部181を更に有していることが好ましい。
図5に示すように、絶縁部181は、コンデンサ部150の表面上に設けられた第1絶縁部181Aと、第1絶縁部181Aの表面上に設けられた第2絶縁部181Bと、を含むことが好ましい。
第1絶縁部181A及び第2絶縁部181Bの構成材料としては、例えば、エポキシ、フェノール、ポリイミド等の樹脂材料、あるいは、エポキシ、フェノール、ポリイミド等の樹脂材料と、シリカ、アルミナ等の無機フィラーとの混合材料等が挙げられる。
第1絶縁部181Aの構成材料と第2絶縁部181Bの構成材料とは、互いに同じであってもよいし、互いに異なっていてもよい。
本発明のモジュールにおいて、上記スルーホール導体は、例えば、上記コンデンサ部を上記厚み方向に貫通する陰極用貫通孔の少なくとも内壁面上に設けられ、かつ、上記コンデンサ部の陰極に電気的に接続された陰極用スルーホール導体を含む。
本発明のモジュールにおいて、上記スルーホール導体が上記陰極用スルーホール導体を含む場合、上記接続端子層は、例えば、上記陰極用スルーホール導体の表面上に設けられた陰極用接続端子層を含む。
図7は、コンデンサ部の陰極に電気的に接続された陰極用スルーホール導体及びその周辺の一例を示す断面模式図である。図8は、図7中の線分B1-B2に沿った投影状態を示す断面模式図である。
図7に示すモジュール110は、コンデンサアレイ111と、陰極用スルーホール導体112Bと、陰極用接続端子層113Bと、を有している。
陰極用スルーホール導体112Bは、コンデンサアレイ111の厚み方向Tにコンデンサ部150を貫通するように設けられている。図7に示す例では、陰極用スルーホール導体112Bが、コンデンサ部150を厚み方向Tに貫通する陰極用貫通孔162の少なくとも内壁面上に設けられ、かつ、陰極層156に電気的に接続されている。
ここで、図7に示す例では、陰極用接続端子層113Bが陰極用スルーホール導体112Bに電気的に接続されている態様として、陰極用接続端子層113Bが、陰極用スルーホール導体112Bの表面上に設けられており、コンデンサ部150の接続端子として機能する。また、図7に示す例では、ビア導体182が、絶縁部181を厚み方向Tに貫通して陰極用接続端子層113Bと陰極層156とに接続されるように設けられている。よって、図7に示す例では、陰極用スルーホール導体112Bが、陰極用接続端子層113B及びビア導体182を介して陰極層156に電気的に接続されている。この場合、モジュール110の小型化が可能となる。
陰極用スルーホール導体112Bは、例えば、以下のようにして形成される。まず、陰極用スルーホール導体112Bを形成しようとする部分に対して、ドリル加工、レーザー加工等を行うことにより、貫通孔を形成する。次に、形成された貫通孔に、第2絶縁部181Bの構成材料(例えば、樹脂材料)を充填することにより、絶縁層を形成する。そして、形成された絶縁層に対して、ドリル加工、レーザー加工等を行うことにより、陰極用貫通孔162を形成する。この際、陰極用貫通孔162の直径を絶縁層の直径よりも小さくすることにより、先に形成された貫通孔と陰極用貫通孔162との間に、第2絶縁部181Bの構成材料が存在する状態にする。その後、陰極用貫通孔162の内壁面を、銅、金、銀等の低抵抗の金属でメタライズすることにより、陰極用スルーホール導体112Bを形成する。陰極用スルーホール導体112Bを形成する際、例えば、陰極用貫通孔162の内壁面を、無電解銅めっき処理、電解銅めっき処理等でメタライズすることにより、加工が容易になる。なお、陰極用スルーホール導体112Bを形成する方法については、陰極用貫通孔162の内壁面をメタライズする方法以外に、金属、金属と樹脂との複合材料等を陰極用貫通孔162に充填する方法であってもよい。
陰極用接続端子層113Bの構成材料としては、例えば、銀、金、銅等の低抵抗の金属が挙げられる。この場合、陰極用接続端子層113Bは、例えば、陰極用スルーホール導体112Bの表面にめっき処理を行うことにより形成される。
陰極用接続端子層113Bと他の部材との間の密着性、ここでは、陰極用接続端子層113Bと陰極用スルーホール導体112Bとの間の密着性を向上させるために、陰極用接続端子層113Bの構成材料として、銀フィラー、銅フィラー、ニッケルフィラー、及び、カーボンフィラーからなる群より選択される少なくとも1種の導電性フィラーと樹脂との混合材料が用いられてもよい。
ビア導体182の構成材料としては、例えば、陰極用接続端子層113Bの構成材料と同様のものが挙げられる。
ビア導体182は、例えば、絶縁部181を厚み方向Tに貫通するように設けられた貫通孔に対して、内壁面にめっき処理を行ったり、導電性ペーストを充填した後に熱処理を行ったりすることにより形成される。
図7及び図8に示すように、モジュール110は、陰極用貫通孔162に樹脂材料が充填されてなる第2樹脂充填部171Bを更に有していることが好ましい。図7及び図8に示す例では、第2樹脂充填部171Bが、陰極用貫通孔162の内壁面上の陰極用スルーホール導体112Bで囲まれた空間に設けられている。第2樹脂充填部171Bが設けられることで陰極用貫通孔162内の空間が解消されると、陰極用スルーホール導体112Bのデラミネーションの発生が抑制される。
第2樹脂充填部171Bの熱膨張率は、陰極用スルーホール導体112Bの熱膨張率よりも大きいことが好ましい。より具体的には、陰極用貫通孔162に充填された樹脂材料の熱膨張率は、陰極用スルーホール導体112Bの構成材料(例えば、銅)の熱膨張率よりも大きいことが好ましい。この場合、第2樹脂充填部171B、より具体的には、陰極用貫通孔162に充填された樹脂材料が高温環境下で膨張することにより、陰極用スルーホール導体112Bが陰極用貫通孔162の内側から外側に向かって陰極用貫通孔162の内壁面に押さえつけられるため、陰極用スルーホール導体112Bのデラミネーションの発生が充分に抑制される。
第2樹脂充填部171Bの熱膨張率は、陰極用スルーホール導体112Bの熱膨張率と同じであってもよいし、陰極用スルーホール導体112Bの熱膨張率よりも小さくてもよい。より具体的には、陰極用貫通孔162に充填された樹脂材料の熱膨張率は、陰極用スルーホール導体112Bの構成材料の熱膨張率と同じであってもよいし、陰極用スルーホール導体112Bの構成材料の熱膨張率よりも小さくてもよい。
モジュール110は、第2樹脂充填部171Bを有していなくてもよい。この場合、陰極用スルーホール導体112Bは、陰極用貫通孔162の内壁面上だけではなく、陰極用貫通孔162の内部全体に設けられていることが好ましい。
図7に示すように、モジュール110は、多孔質層154に絶縁材料が充填されてなる第2絶縁層180Bを更に有していることが好ましい。この場合、陽極板151と陰極層156との間の絶縁性が確保され、両者間の短絡が防止される。
図7に示すように、第2絶縁層180Bは、多孔質層154の内部だけではなく、コンデンサアレイ111の表面上、より具体的には、コンデンサ部150の表面上で、陰極層156が存在していない誘電体層の表面上にも設けられていることが好ましい。この場合、陽極板151と陰極層156との間の絶縁性が充分に確保され、両者間の短絡が充分に防止される。
図7及び図8に示すように、第2絶縁層180Bは、陰極用スルーホール導体112Bの周囲に設けられていることが好ましい。この場合、陽極板151と陰極層156との間の絶縁性が充分に確保され、両者間の短絡が充分に防止される。更に、第2絶縁層180Bが陽極板151に対するバリア層、より具体的には、芯部152及び多孔質層154に対するバリア層として機能するため、陰極用接続端子層113B等を形成するための薬液処理時に生じる陽極板151の端面の溶解が抑制され、ひいては、コンデンサ部150への薬液の浸入が抑制される。そのため、コンデンサ部150の信頼性が向上しやすくなり、ひいては、モジュール110の信頼性が向上しやすくなる。
上述した効果を高める観点から、図7に示すように、厚み方向Tにおいて、第2絶縁層180Bの寸法は、多孔質層154の寸法よりも大きいことが好ましい。
第2絶縁層180Bの構成材料としては、例えば、エポキシ、フェノール、ポリイミド等の樹脂材料、あるいは、エポキシ、フェノール、ポリイミド等の樹脂材料と、シリカ、アルミナ等の無機フィラーとの混合材料等が挙げられる。
モジュール110が第1絶縁部181A及び第2絶縁部181Bを有している場合、図7に示すように、第2絶縁部181Bは、陽極板151と陰極用スルーホール導体112Bとの間に延在していることが好ましい。図7に示す例では、第2絶縁部181Bが、陽極板151と陰極用スルーホール導体112Bとの両方に接している。第2絶縁部181Bが陽極板151と陰極用スルーホール導体112Bとの間に延在していることにより、陽極板151と陰極用スルーホール導体112Bとの間の絶縁性、ひいては、陽極板151と陰極層156との間の絶縁性が確保され、両者間の短絡が防止される。
第2絶縁部181Bが陽極板151と陰極用スルーホール導体112Bとの間に延在している場合、図7に示すように、第2絶縁部181Bに接する陽極板151の端面には、芯部152及び多孔質層154が露出していることが好ましい。この場合、第2絶縁部181Bと多孔質層154との接触面積が大きくなることで両者間の密着性が向上するため、第2絶縁部181Bと多孔質層154との間の剥離等の不具合が生じにくくなる。
第2絶縁部181Bに接する陽極板151の端面に、芯部152及び多孔質層154が露出している場合、図7及び図8に示すように、絶縁材料が多孔質層154の空孔に入り込むことで多孔質層154の内部に広がった第2絶縁層180Bが、陰極用スルーホール導体112Bの周囲に設けられていることが好ましい。この場合、陽極板151と陰極用スルーホール導体112Bとの間の絶縁性、ひいては、陽極板151と陰極層156との間の絶縁性が充分に確保され、両者間の短絡が充分に防止される。
第2絶縁部181Bに接する陽極板151の端面に、芯部152及び多孔質層154が露出している場合、第2絶縁部181Bの構成材料は、多孔質層154の空孔に入り込んでいることが好ましい。この場合、多孔質層154の機械的強度が向上しつつ、多孔質層154の空孔に起因するデラミネーションの発生が抑制される。
第2絶縁部181Bの熱膨張率は、陰極用スルーホール導体112Bの熱膨張率よりも大きいことが好ましい。より具体的には、第2絶縁部181Bの構成材料の熱膨張率は、陰極用スルーホール導体112Bの構成材料(例えば、銅)の熱膨張率よりも大きいことが好ましい。この場合、第2絶縁部181B、より具体的には、第2絶縁部181Bの構成材料が高温環境下で膨張することにより、多孔質層154及び陰極用スルーホール導体112Bが押さえつけられるため、デラミネーションの発生が充分に抑制される。
第2絶縁部181Bの熱膨張率は、陰極用スルーホール導体112Bの熱膨張率と同じであってもよいし、陰極用スルーホール導体112Bの熱膨張率よりも小さくてもよい。より具体的には、第2絶縁部181Bの構成材料の熱膨張率は、陰極用スルーホール導体112Bの構成材料の熱膨張率と同じであってもよいし、陰極用スルーホール導体112Bの構成材料の熱膨張率よりも小さくてもよい。
図2に示すモジュール10Aにおいて、第1スルーホール導体12aは、例えば、図5及び図6に示す陽極用スルーホール導体112Aと、図7及び図8に示す陰極用スルーホール導体112Bとの少なくとも一方を含む。例えば、モジュール10Aにおいて、第1スルーホール導体12aのうち、第1スルーホール導体12aaは陽極用スルーホール導体112A及び陰極用スルーホール導体112Bの一方であり、第1スルーホール導体12abは陽極用スルーホール導体112A及び陰極用スルーホール導体112Bの他方であってもよい。
モジュール10Aは、第1コンデンサアレイ11aを構成するコンデンサ部C1又はコンデンサ部C2に電気的に接続されたスルーホール導体を含んでいれば、コンデンサ部C1及びコンデンサ部C2に電気的に接続されていないスルーホール導体を更に含んでいてもよい。
コンデンサ部に電気的に接続されていないスルーホール導体としては、例えば、I/Oライン用のスルーホール導体等が挙げられる。I/Oライン用のスルーホール導体と、そのスルーホール導体が設けられ、かつ、コンデンサ部を厚み方向に貫通する貫通孔との間には、絶縁材料が充填される。
モジュール10Aが、コンデンサ部C1及びコンデンサ部C2に電気的に接続されていないスルーホール導体として、例えば、I/Oライン用のスルーホール導体を含むことにより、半導体複合装置1Aの設計自由度が向上し、半導体複合装置1Aの小型化が可能となる。
図2に示すモジュール10Aにおいて、第1接続端子層13aは、例えば、図5及び図6に示す陽極用接続端子層113Aと、図7及び図8に示す陰極用接続端子層113Bとの少なくとも一方を含む。例えば、モジュール10Aにおいて、第1接続端子層13aのうち、第1接続端子層13aaは陽極用接続端子層113A及び陰極用接続端子層113Bの一方であり、第1接続端子層13abは陽極用接続端子層113A及び陰極用接続端子層113Bの他方であってもよい。
図2に示すモジュール10Aにおいて、第2スルーホール導体12bは、例えば、図5及び図6に示す陽極用スルーホール導体112Aと、図7及び図8に示す陰極用スルーホール導体112Bとの少なくとも一方を含む。例えば、モジュール10Aにおいて、第2スルーホール導体12bのうち、第2スルーホール導体12baは陽極用スルーホール導体112A及び陰極用スルーホール導体112Bの一方であり、第2スルーホール導体12bbは陽極用スルーホール導体112A及び陰極用スルーホール導体112Bの他方であってもよい。
モジュール10Aは、第2コンデンサアレイ11bを構成するコンデンサ部C3又はコンデンサ部C4に電気的に接続されたスルーホール導体を含んでいれば、コンデンサ部C3及びコンデンサ部C4に電気的に接続されていないスルーホール導体を更に含んでいてもよい。
モジュール10Aが、コンデンサ部C3及びコンデンサ部C4に電気的に接続されていないスルーホール導体として、例えば、I/Oライン用のスルーホール導体を含むことにより、半導体複合装置1Aの設計自由度が向上し、半導体複合装置1Aの小型化が可能となる。
図2に示すモジュール10Aにおいて、第2接続端子層13bは、例えば、図5及び図6に示す陽極用接続端子層113Aと、図7及び図8に示す陰極用接続端子層113Bとの少なくとも一方を含む。例えば、モジュール10Aにおいて、第2接続端子層13bのうち、第2接続端子層13baは陽極用接続端子層113A及び陰極用接続端子層113Bの一方であり、第2接続端子層13bbは陽極用接続端子層113A及び陰極用接続端子層113Bの他方であってもよい。
[実施形態2]
本発明の半導体複合装置において、上記配線基板は、第1配線基板と、第2配線基板と、を含んでいてもよく、上記第1コンデンサアレイは、上記第1配線基板に内蔵されていてもよく、上記第2コンデンサアレイは、上記第2配線基板に内蔵されていてもよい。このような態様の半導体複合装置を、本発明の実施形態2の半導体複合装置として以下に説明する。
本発明の半導体複合装置において、上記配線基板は、第1配線基板と、第2配線基板と、を含んでいてもよく、上記第1コンデンサアレイは、上記第1配線基板に内蔵されていてもよく、上記第2コンデンサアレイは、上記第2配線基板に内蔵されていてもよい。このような態様の半導体複合装置を、本発明の実施形態2の半導体複合装置として以下に説明する。
図9は、本発明の実施形態2の半導体複合装置の一例を示す断面模式図である。
図9に示す半導体複合装置1Bにおいて、モジュール10Bは、図2に示すモジュール10Aと同様に、第1コンデンサアレイ11aと、第2コンデンサアレイ11bと、第1スルーホール導体12aと、第2スルーホール導体12bと、第1接続端子層13aと、第2接続端子層13bと、を有している。
半導体複合装置1Bにおいて、第1コンデンサアレイ11aは第1配線基板40aに内蔵され、第2コンデンサアレイ11bは第2配線基板40bに内蔵されている。
また、第1コンデンサアレイ11aに対応する第1スルーホール導体12a及び第1接続端子層13aが第1配線基板40aに内蔵され、第2コンデンサアレイ11bに対応する第2スルーホール導体12b及び第2接続端子層13bが第2配線基板40bに内蔵されている。
[実施形態3]
本発明の半導体複合装置において、上記コンデンサアレイは、第3コンデンサアレイを更に含んでいてもよく、上記第1コンデンサアレイは、上記配線基板の一方の実装面に設けられていてもよく、上記第2コンデンサアレイは、上記配線基板に内蔵されていてもよく、上記第3コンデンサアレイは、上記配線基板の他方の実装面に設けられていてもよい。このような態様の半導体複合装置を、本発明の実施形態3の半導体複合装置として以下に説明する。
本発明の半導体複合装置において、上記コンデンサアレイは、第3コンデンサアレイを更に含んでいてもよく、上記第1コンデンサアレイは、上記配線基板の一方の実装面に設けられていてもよく、上記第2コンデンサアレイは、上記配線基板に内蔵されていてもよく、上記第3コンデンサアレイは、上記配線基板の他方の実装面に設けられていてもよい。このような態様の半導体複合装置を、本発明の実施形態3の半導体複合装置として以下に説明する。
図10は、本発明の実施形態3の半導体複合装置の一例を示す断面模式図である。
図10に示す半導体複合装置1Cにおいて、モジュール10Cは、第1コンデンサアレイ11aと、第2コンデンサアレイ11bと、第3コンデンサアレイ11cと、第1スルーホール導体12aと、第2スルーホール導体12bと、第3スルーホール導体12cと、第1接続端子層13aと、第2接続端子層13bと、第3接続端子層13cと、を有している。
第3コンデンサアレイ11cは、平面配置された複数のコンデンサ部で構成されている。図10に示す例では、第3コンデンサアレイ11cが、平面配置された2つのコンデンサ部、より具体的には、コンデンサ部C5及びコンデンサ部C6で構成されている。
厚み方向Tから見たときの、コンデンサ部C5及びコンデンサ部C6の面積は、互いに同じであってもよいし、互いに異なっていてもよい。
なお、第3コンデンサアレイ11cは、平面配置された3つ以上のコンデンサ部で構成されてもよい。
第3スルーホール導体12cは、第3コンデンサアレイ11cの厚み方向Tにコンデンサ部C5又はコンデンサ部C6を貫通するように設けられている。図10に示す例では、第3スルーホール導体12cが第3スルーホール導体12ca及び第3スルーホール導体12cbを含んでいる。第3スルーホール導体12ca及び第3スルーホール導体12cbは、コンデンサ部C5を厚み方向Tに貫通するように設けられ、また、コンデンサ部C6を厚み方向Tに貫通するように設けられている。
第3スルーホール導体12cは、コンデンサ部C5とボルテージレギュレータ20(図4参照)及び負荷30の少なくとも一方との電気的接続に用いられる。図10に示す例では、コンデンサ部C5に対応する第3スルーホール導体12cに含まれる第3スルーホール導体12ca及び第3スルーホール導体12cbが、各々、コンデンサ部C5とボルテージレギュレータ20との電気的接続に用いられる。
第3スルーホール導体12cは、コンデンサ部C6とボルテージレギュレータ20(図4参照)及び負荷30の少なくとも一方との電気的接続に用いられる。図10に示す例では、コンデンサ部C6に対応する第3スルーホール導体12cに含まれる第3スルーホール導体12ca及び第3スルーホール導体12cbが、各々、コンデンサ部C6とボルテージレギュレータ20との電気的接続に用いられる。
第3スルーホール導体12cは、例えば、図5及び図6に示す陽極用スルーホール導体112Aと、図7及び図8に示す陰極用スルーホール導体112Bとの少なくとも一方を含む。例えば、第3スルーホール導体12cのうち、第3スルーホール導体12caは陽極用スルーホール導体112A及び陰極用スルーホール導体112Bの一方であり、第3スルーホール導体12cbは陽極用スルーホール導体112A及び陰極用スルーホール導体112Bの他方であってもよい。
モジュール10Cは、第3コンデンサアレイ11cを構成するコンデンサ部C5又はコンデンサ部C6に電気的に接続されたスルーホール導体を含んでいれば、コンデンサ部C5及びコンデンサ部C6に電気的に接続されていないスルーホール導体を更に含んでいてもよい。
モジュール10Cが、コンデンサ部C5及びコンデンサ部C6に電気的に接続されていないスルーホール導体として、例えば、I/Oライン用のスルーホール導体を含むことにより、半導体複合装置1Cの設計自由度が向上し、半導体複合装置1Cの小型化が可能となる。
第3接続端子層13cは、第3スルーホール導体12cに電気的に接続されている。図10に示す例では、第3接続端子層13cが第3接続端子層13ca及び第3接続端子層13cbを含んでいる。第3接続端子層13caは、第3スルーホール導体12caの両端上に設けられ、第3スルーホール導体12caに接続されている。第3接続端子層13cbは、第3スルーホール導体12cbの両端上に設けられ、第3スルーホール導体12cbに接続されている。
第3接続端子層13cは、コンデンサ部C5とボルテージレギュレータ20(図4参照)及び負荷30の少なくとも一方との電気的接続に用いられる。図10に示す例では、コンデンサ部C5に対応する第3接続端子層13cに含まれる第3接続端子層13ca及び第3接続端子層13cbのうち、ボルテージレギュレータ20側に存在する接続端子層(図10では、下側の第3接続端子層13ca及び第3接続端子層13cb)が、コンデンサ部C5とボルテージレギュレータ20との電気的接続に用いられる。
第3接続端子層13cは、コンデンサ部C6とボルテージレギュレータ20(図4参照)及び負荷30の少なくとも一方との電気的接続に用いられる。図10に示す例では、コンデンサ部C6に対応する第3接続端子層13cに含まれる第3接続端子層13ca及び第3接続端子層13cbのうち、ボルテージレギュレータ20側に存在する接続端子層(図10では、下側の第3接続端子層13ca及び第3接続端子層13cb)が、コンデンサ部C6とボルテージレギュレータ20との電気的接続に用いられる。
第3接続端子層13cは、例えば、図5及び図6に示す陽極用接続端子層113Aと、図7及び図8に示す陰極用接続端子層113Bとの少なくとも一方を含む。例えば、第3接続端子層13cのうち、第3接続端子層13caは陽極用接続端子層113A及び陰極用接続端子層113Bの一方であり、第3接続端子層13cbは陽極用接続端子層113A及び陰極用接続端子層113Bの他方であってもよい。
モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1スルーホール導体12aaの少なくとも一部と、第1接続端子層13aaの少なくとも一部と、第2スルーホール導体12baの少なくとも一部と、第2接続端子層13baの少なくとも一部と、第3スルーホール導体12caの少なくとも一部と、第3接続端子層13caの少なくとも一部とは、互いに重なっていることが好ましい。あるいは、モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1スルーホール導体12aaと、第1接続端子層13aaと、第2スルーホール導体12baと、第2接続端子層13baと、第3スルーホール導体12caと、第3接続端子層13caとは、厚み方向Tに沿う同一直線上に位置していることが好ましい。
モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1スルーホール導体12abの少なくとも一部と、第1接続端子層13abの少なくとも一部と、第2スルーホール導体12bbの少なくとも一部と、第2接続端子層13bbの少なくとも一部と、第3スルーホール導体12cbの少なくとも一部と、第3接続端子層13cbの少なくとも一部とは、互いに重なっていることが好ましい。あるいは、モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1スルーホール導体12abと、第1接続端子層13abと、第2スルーホール導体12bbと、第2接続端子層13bbと、第3スルーホール導体12cbと、第3接続端子層13cbとは、厚み方向Tに沿う同一直線上に位置していることが好ましい。
本発明のモジュールにおいて、上記コンデンサアレイは、第3コンデンサアレイを更に含んでいてもよく、上記接続端子層の実装面から見たとき、上記第1コンデンサアレイの少なくとも一部と、上記第2コンデンサアレイの少なくとも一部と、上記第3コンデンサアレイの少なくとも一部とは、互いに重なっていることが好ましい。
モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1コンデンサアレイ11aの少なくとも一部と、第2コンデンサアレイ11bの少なくとも一部と、第3コンデンサアレイ11cの少なくとも一部とは、互いに重なっていることが好ましい。より具体的には、モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1コンデンサアレイ11aを構成するコンデンサ部(図10に示す例では、コンデンサ部C1及びコンデンサ部C2)の少なくとも一部と、第2コンデンサアレイ11bを構成するコンデンサ部(図10に示す例では、コンデンサ部C3及びコンデンサ部C4)の少なくとも一部と、第3コンデンサアレイ11cを構成するコンデンサ部(図10に示す例では、コンデンサ部C5及びコンデンサ部C6)の少なくとも一部とは、互いに重なっていることが好ましい。
モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1コンデンサアレイ11aの全部と、第2コンデンサアレイ11bの全部と、第3コンデンサアレイ11cの全部とは、互いに重なっていることが特に好ましい。
モジュール10Cにおいて、第1接続端子層13a又は第3接続端子層13cの実装面から見たとき、第1コンデンサアレイ11aの少なくとも一部と、第2コンデンサアレイ11bの少なくとも一部と、第3コンデンサアレイ11cの少なくとも一部とが互いに重なっていることにより、第1コンデンサアレイ11a、第2コンデンサアレイ11b、及び、第3コンデンサアレイ11cが、面方向Uに広がる同一平面に配置されない。そのため、第1コンデンサアレイ11aと第2コンデンサアレイ11bとの間の配線経路、及び、第2コンデンサアレイ11bと第3コンデンサアレイ11cとの間の配線経路が短くなりやすく、結果的に、配線による損失が低減可能となる。
本発明の半導体複合装置において、上記コンデンサアレイは、第3コンデンサアレイを更に含み、上記第1コンデンサアレイは、上記配線基板の一方の実装面に設けられ、上記第2コンデンサアレイは、上記配線基板に内蔵され、上記第3コンデンサアレイは、上記配線基板の他方の実装面に設けられていてもよい。
図10に示す例では、第1コンデンサアレイ11aが配線基板40の一方の実装面に設けられ、第2コンデンサアレイ11bが配線基板40に内蔵され、第3コンデンサアレイ11cが配線基板40の他方の実装面に設けられている。
なお、第1コンデンサアレイ11aは、配線基板40に内蔵されていてもよいし、配線基板40とは別の配線基板に内蔵されていてもよい。また、第2コンデンサアレイ11bは、配線基板40の一方又は他方の実装面に設けられていてもよい。また、第3コンデンサアレイ11cは、配線基板40に内蔵されていてもよいし、配線基板40とは別の配線基板に内蔵されていてもよい。
以上の実施形態では、本発明のモジュールが2つ又は3つのコンデンサアレイを有する態様の例を示したが、本発明のモジュールは4つ以上のコンデンサアレイを有していてもよい。
本発明の半導体複合装置の回路構成は、図1に示す回路構成以外であってもよい。
図11は、本発明の半導体複合装置の回路構成の別の一例を示す回路構成図である。
図11に示す半導体複合装置1’のように、ボルテージレギュレータ20は、スイッチング素子SWに加えて、トランスTRを含んでいてもよい。
なお、半導体複合装置1’において、ボルテージレギュレータ20は、トランスTRの前段(図11では、左側)のスイッチング素子SWを含んでいなくてもよい。また、半導体複合装置1’において、ボルテージレギュレータ20は、第1チャネルCH1に設けられたスイッチング素子SW又はインダクタLを含んでいてもよい。
1、1’、1A、1B、1C 半導体複合装置
10、10A、10B、10C、110 モジュール
11a 第1コンデンサアレイ
11b 第2コンデンサアレイ
11c 第3コンデンサアレイ
12a、12aa、12ab 第1スルーホール導体
12b、12ba、12bb 第2スルーホール導体
12c、12ca、12cb 第3スルーホール導体
13a、13aa、13ab 第1接続端子層
13b、13ba、13bb 第2接続端子層
13c、13ca、13cb 第3接続端子層
20 ボルテージレギュレータ
30 負荷
40 配線基板
40a 第1配線基板
40b 第2配線基板
45 回路層
111 コンデンサアレイ
112A 陽極用スルーホール導体
112B 陰極用スルーホール導体
113A 陽極用接続端子層
113B 陰極用接続端子層
150 コンデンサ部
151 陽極板
152 芯部
154 多孔質層
156 陰極層
156A 固体電解質層
156B 導電体層
161 陽極用貫通孔
162 陰極用貫通孔
170 陽極接続層
170A 第1陽極接続層
170B 第2陽極接続層
171A 第1樹脂充填部
171B 第2樹脂充填部
180A 第1絶縁層
180B 第2絶縁層
181 絶縁部
181A 第1絶縁部
181B 第2絶縁部
182 ビア導体
C1、C2、C3、C4、C5、C6 コンデンサ部
CH1 第1チャネル
CH2 第2チャネル
L、L1、L2、L3、L4 インダクタ
SW、SW1、SW2、SW3、SW4 スイッチング素子
T 厚み方向
TR トランス
U 面方向
10、10A、10B、10C、110 モジュール
11a 第1コンデンサアレイ
11b 第2コンデンサアレイ
11c 第3コンデンサアレイ
12a、12aa、12ab 第1スルーホール導体
12b、12ba、12bb 第2スルーホール導体
12c、12ca、12cb 第3スルーホール導体
13a、13aa、13ab 第1接続端子層
13b、13ba、13bb 第2接続端子層
13c、13ca、13cb 第3接続端子層
20 ボルテージレギュレータ
30 負荷
40 配線基板
40a 第1配線基板
40b 第2配線基板
45 回路層
111 コンデンサアレイ
112A 陽極用スルーホール導体
112B 陰極用スルーホール導体
113A 陽極用接続端子層
113B 陰極用接続端子層
150 コンデンサ部
151 陽極板
152 芯部
154 多孔質層
156 陰極層
156A 固体電解質層
156B 導電体層
161 陽極用貫通孔
162 陰極用貫通孔
170 陽極接続層
170A 第1陽極接続層
170B 第2陽極接続層
171A 第1樹脂充填部
171B 第2樹脂充填部
180A 第1絶縁層
180B 第2絶縁層
181 絶縁部
181A 第1絶縁部
181B 第2絶縁部
182 ビア導体
C1、C2、C3、C4、C5、C6 コンデンサ部
CH1 第1チャネル
CH2 第2チャネル
L、L1、L2、L3、L4 インダクタ
SW、SW1、SW2、SW3、SW4 スイッチング素子
T 厚み方向
TR トランス
U 面方向
Claims (10)
- 半導体アクティブ素子を含むボルテージレギュレータによって調整された直流電圧を負荷に供給する半導体複合装置に用いられるモジュールであって、
平面配置された複数のコンデンサ部で構成されるコンデンサアレイと、
前記コンデンサアレイの厚み方向に前記コンデンサ部を貫通するように設けられ、かつ、前記コンデンサ部と前記ボルテージレギュレータ及び前記負荷の少なくとも一方との電気的接続に用いられるスルーホール導体と、
前記スルーホール導体に電気的に接続され、かつ、前記コンデンサ部と前記ボルテージレギュレータ及び前記負荷の少なくとも一方との電気的接続に用いられる接続端子層と、を備え、
前記コンデンサアレイは、第1コンデンサアレイと、第2コンデンサアレイと、を少なくとも含み、
前記接続端子層の実装面から見たとき、前記第1コンデンサアレイの少なくとも一部と前記第2コンデンサアレイの少なくとも一部とは、互いに重なっている、ことを特徴とするモジュール。 - 前記第1コンデンサアレイの耐電圧と前記第2コンデンサアレイの耐電圧との差は、1V以上である、請求項1に記載のモジュール。
- 前記コンデンサアレイは、第3コンデンサアレイを更に含み、
前記接続端子層の実装面から見たとき、前記第1コンデンサアレイの少なくとも一部と、前記第2コンデンサアレイの少なくとも一部と、前記第3コンデンサアレイの少なくとも一部とは、互いに重なっている、請求項1又は2に記載のモジュール。 - 請求項1~3のいずれかに記載のモジュールと、
前記ボルテージレギュレータと、
前記負荷と、を備える、ことを特徴とする半導体複合装置。 - 前記接続端子層の実装面から見たとき、前記ボルテージレギュレータに含まれる前記半導体アクティブ素子の少なくとも一部は、前記第1コンデンサアレイ及び前記第2コンデンサアレイに重なっている、請求項4に記載の半導体複合装置。
- 前記接続端子層の実装面から見たとき、前記第1コンデンサアレイの少なくとも一部と前記第2コンデンサアレイの少なくとも一部とは、前記負荷に重なっている、請求項4又は5に記載の半導体複合装置。
- 前記ボルテージレギュレータ及び前記負荷に電気的に接続された配線基板を更に備える、請求項4~6のいずれかに記載の半導体複合装置。
- 前記第1コンデンサアレイ及び前記第2コンデンサアレイは、一方が前記配線基板の実装面に設けられ、他方が前記配線基板に内蔵されている、請求項7に記載の半導体複合装置。
- 前記配線基板は、第1配線基板と、第2配線基板と、を含み、
前記第1コンデンサアレイは、前記第1配線基板に内蔵され、
前記第2コンデンサアレイは、前記第2配線基板に内蔵されている、請求項7に記載の半導体複合装置。 - 前記コンデンサアレイは、第3コンデンサアレイを更に含み、
前記第1コンデンサアレイは、前記配線基板の一方の実装面に設けられ、
前記第2コンデンサアレイは、前記配線基板に内蔵され、
前記第3コンデンサアレイは、前記配線基板の他方の実装面に設けられている、請求項7に記載の半導体複合装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280078205.4A CN118318306A (zh) | 2021-11-25 | 2022-11-14 | 模块以及半导体复合装置 |
US18/671,139 US20240334591A1 (en) | 2021-11-25 | 2024-05-22 | Module and semiconductor composite apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021191266 | 2021-11-25 | ||
JP2021-191266 | 2021-11-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/671,139 Continuation US20240334591A1 (en) | 2021-11-25 | 2024-05-22 | Module and semiconductor composite apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023095654A1 true WO2023095654A1 (ja) | 2023-06-01 |
Family
ID=86539544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042187 WO2023095654A1 (ja) | 2021-11-25 | 2022-11-14 | モジュール及び半導体複合装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240334591A1 (ja) |
CN (1) | CN118318306A (ja) |
WO (1) | WO2023095654A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05243745A (ja) * | 1992-03-02 | 1993-09-21 | Murata Mfg Co Ltd | 多層セラミック基板 |
JP2007173439A (ja) * | 2005-12-21 | 2007-07-05 | Matsushita Electric Ind Co Ltd | コンデンサ内蔵基板 |
WO2019130746A1 (ja) * | 2017-12-27 | 2019-07-04 | 株式会社村田製作所 | 半導体複合装置およびそれに用いられるパッケージ基板 |
-
2022
- 2022-11-14 WO PCT/JP2022/042187 patent/WO2023095654A1/ja active Application Filing
- 2022-11-14 CN CN202280078205.4A patent/CN118318306A/zh active Pending
-
2024
- 2024-05-22 US US18/671,139 patent/US20240334591A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05243745A (ja) * | 1992-03-02 | 1993-09-21 | Murata Mfg Co Ltd | 多層セラミック基板 |
JP2007173439A (ja) * | 2005-12-21 | 2007-07-05 | Matsushita Electric Ind Co Ltd | コンデンサ内蔵基板 |
WO2019130746A1 (ja) * | 2017-12-27 | 2019-07-04 | 株式会社村田製作所 | 半導体複合装置およびそれに用いられるパッケージ基板 |
Also Published As
Publication number | Publication date |
---|---|
CN118318306A (zh) | 2024-07-09 |
US20240334591A1 (en) | 2024-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7180561B2 (ja) | コンデンサアレイ、及び、複合電子部品 | |
US20220278035A1 (en) | Module | |
TWI811697B (zh) | 半導體複合裝置及半導體複合裝置之製造方法 | |
US12237118B2 (en) | Capacitor array and composite electronic component | |
US20250054705A1 (en) | Capacitor | |
WO2022264575A1 (ja) | コンデンサアレイ | |
US20250104933A1 (en) | Capacitor element | |
US20240332346A1 (en) | Module and semiconductor composite device | |
WO2023095654A1 (ja) | モジュール及び半導体複合装置 | |
WO2023238681A1 (ja) | コンデンサアレイ | |
TWI831226B (zh) | 電容器 | |
US20250087429A1 (en) | Capacitor array | |
JP7619541B1 (ja) | コンデンサ素子 | |
WO2024009824A1 (ja) | 固体電解コンデンサ及びコンデンサアレイ | |
WO2023238528A1 (ja) | コンデンサアレイ | |
WO2024019144A1 (ja) | コンデンサ素子 | |
WO2023157705A1 (ja) | 固体電解コンデンサ及びコンデンサアレイ | |
WO2024257531A1 (ja) | コンデンサ素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22898438 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280078205.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22898438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |