[go: up one dir, main page]

WO2023093455A1 - 一种进气分配机构及具有其的 cvd 反应设备 - Google Patents

一种进气分配机构及具有其的 cvd 反应设备 Download PDF

Info

Publication number
WO2023093455A1
WO2023093455A1 PCT/CN2022/128159 CN2022128159W WO2023093455A1 WO 2023093455 A1 WO2023093455 A1 WO 2023093455A1 CN 2022128159 W CN2022128159 W CN 2022128159W WO 2023093455 A1 WO2023093455 A1 WO 2023093455A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
uniform
chamber
wall
distribution
Prior art date
Application number
PCT/CN2022/128159
Other languages
English (en)
French (fr)
Inventor
张俊杰
Original Assignee
无锡先为科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡先为科技有限公司 filed Critical 无锡先为科技有限公司
Publication of WO2023093455A1 publication Critical patent/WO2023093455A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber

Definitions

  • the invention relates to the field of film deposition, in particular to a gas distribution mechanism and CVD reaction equipment with the same.
  • Thin film deposition is one of the more popular surface treatment methods at present, and can be widely used in the surface treatment of decorations, tableware, knives, molds, semiconductor components, photovoltaics, etc. And the process of growing a layer of homogeneous or heterogeneous material film on the surface of the wafer substrate, in order to obtain beautiful wear resistance, heat resistance, corrosion resistance and other characteristics.
  • thin film deposition can be divided into physical vapor deposition (Physical Vapor Deposition, abbreviated as PVD) and chemical vapor deposition (Chemical Vapor Deposition, abbreviated as CVD) according to whether there is a chemical reaction in the deposition process.
  • the CVD method is to introduce metal chlorides, hydrocarbons, nitrogen and other gases into a closed container, and heat the working environment to about 1000°C under vacuum, low pressure, plasma and other atmosphere conditions and keep it for 2 to 8 hours.
  • Columnar crystal films such as carbides, nitrides, oxides, and borides are deposited on the surface of the workpiece. The thickness of the deposited film is about 1-30 ⁇ m, and the bonding is good. More complex shapes and small gaps can be evaporated and deposited to form a film.
  • CVD technology has the advantages of a wide range of film formation and good reproducibility, and is widely used in various forms of film formation.
  • the CVD process device is mainly composed of a reaction chamber, a gas supply system and a heating system.
  • the reaction chamber is the most basic part of CVD, and there is a built-in inlet device for introducing deposition process gas, and the existing inlet device is in the deposition reaction process.
  • the following technical problems still exist: when the deposition process gas is sprayed inside the reaction chamber, due to the difference in the injection pressure in each direction, the deposition process gas cannot achieve uniform deposition and it is difficult to form a high-quality deposited film.
  • Embodiments of the present invention provide an air distribution mechanism and a CVD reaction device having the same, so as to ensure that the air distribution mechanism provides airflow with uniform pressure in all directions, so as to achieve uniform deposition and form a high-quality deposited film.
  • an air intake distribution mechanism comprising: at least two uniform gas chambers arranged in layers along the axial direction; and at least two intake pipes, each of which is connected to a corresponding The gas chambers are in fluid communication; each of the uniform gas chambers includes: a partition plate; a gas distribution wall, which is circumferentially arranged on the outer periphery of the partition plate to form a gas distribution chamber around, and a gas distribution wall is opened on the gas distribution wall There are a plurality of distribution holes communicating with the inside and outside thereof; and at least two gas distribution walls concentrically arranged in the gas distribution chamber, and each of the gas distribution walls is provided with a plurality of gas distribution channels communicating with the inside and outside; Among them, the definition: the distance between two adjacent said gas uniform walls is ⁇ h; the gas uniform walls arranged outward step by step from the center of the gas distribution cavity are the first level gas uniform walls, and the second level gas uniform walls.
  • Gas wall ..., the nth level of uniform gas wall, wherein the radius of the first level of uniform gas wall is r 1 , the radius of the second level of uniform gas wall is r 2 , ..., the radius of the nth level of uniform gas wall is r n , the distance between the nth level gas uniform wall and the gas distribution wall is ⁇ H, then ⁇ h ⁇ r 1 and ⁇ H ⁇ h.
  • the gas uniform wall is arranged to be composed of at least one pair of gas uniform sub-sets, each gas uniform sub-set includes a pair of adjacently arranged stop blocks And the gas uniform channel between the stop blocks, the gas uniform channel in the gas uniform sub-set of each pre-stage gas uniform wall and the stop block in the gas uniform sub-set of the adjacent rear gas uniform wall Arranged opposite to each other in the direction.
  • it also includes a cooling base plate, and a cooling chamber extending laterally is opened in the cooling base plate, wherein the cooling base plate is connected with a vertically extending
  • the cooling pipe is in fluid communication with the cooling chamber at the bottom of the cooling pipe; the uniform gas chamber is sequentially sheathed on the cooling pipe at the center of the gas distribution chamber.
  • the air intake ducts extend longitudinally around the cooling duct, so that each of the air intake ducts is relatively opposite to the gas in a corresponding one of the uniform gas chambers.
  • the distribution chamber is arranged eccentrically.
  • the first-stage gas uniform wall of each gas uniform chamber is configured as a near arc segment and a far arc segment, and the near arc segment is close to the gas uniform
  • the inlet pipe corresponding to the chamber, the far arc section is far away from the inlet pipe corresponding to the uniform gas chamber, wherein the linear density of the uniform gas channel of the near arc section is smaller than the uniform gas passage of the far arc section The linear density of the gas channel.
  • it also includes a sealing layer, wherein the gas distribution chamber of the next layer of gas uniform chamber is sealed by the partition plate of the upper layer of gas uniform chamber, and finally The gas distribution chamber of the gas uniform chamber on the top layer is sealed by the sealing layer.
  • ⁇ h r 1 /2.
  • a CVD device is further disclosed.
  • the CVD reaction device includes: a reaction chamber, which is isolated and closed from the outside; a rotating support shaft, which Arranged in the reaction chamber; a base, arranged in the reaction chamber and supported by the rotating support shaft; an exhaust pipe, selectively fluidly communicating the reaction chamber with the outside world; and any of the above
  • the air distribution mechanism according to one item is arranged in the reaction chamber, the air distribution mechanism is connected to the top wall of the reaction chamber and hangs downward.
  • the CVD equipment further includes a heating assembly, which is arranged below the base; a plurality of carrier disks are arranged circumferentially on the top surface of the base .
  • One of the above-mentioned technical solutions has the following advantages or beneficial effects: Since the distance between two adjacent gas uniform walls is smaller than the radius of the first-level gas uniform wall, and the n-th gas uniform wall is distributed with the gas The distance between the walls is greater than the distance between two adjacent said gas uniform walls, so that the deposition process gas can flow in the upstream of the gas path, that is, in the chamber surrounded by the first-level gas uniform wall, before entering the multi-stage gas uniform wall of the gas flow.
  • Fig. 1 is a longitudinal sectional view of a CVD reaction apparatus in which an embodiment of the present invention can be practiced.
  • Fig. 2 is a longitudinal sectional view of the air distribution mechanism provided by the embodiment of the present invention.
  • Fig. 3 is a cross-sectional view of the air intake distribution mechanism provided by Embodiment 1 of the present invention in the direction of A-A in Fig. 2 .
  • Fig. 4 is a cross-sectional view of the air intake distribution mechanism provided by Embodiment 2 of the present invention in the direction of A-A in Fig. 2 .
  • FIG. 5 is an enlarged view of area S in FIG. 3 or FIG. 4 .
  • FIG. 2 is a longitudinal sectional view of the air intake distribution mechanism 20 provided by Embodiment 1 of the present invention.
  • the air distribution mechanism 20 provided in this embodiment is to ensure that the air distribution mechanism provides airflow with uniform pressure in all directions, so as to achieve uniform deposition and form a high-quality deposited film.
  • the intake air distribution mechanism 20 includes: at least two uniform gas chambers 23 arranged in layers along the axial direction T; and at least two intake ducts 234, each of which is connected to a corresponding one
  • the gas uniform chambers 23 are in fluid communication; each of the gas uniform chambers 23 includes: a partition plate 231; a gas distribution wall 232, which is arranged around the periphery of the partition plate 231 to form a gas distribution chamber 236 , the gas distribution wall 232 is provided with a plurality of distribution holes 2321 communicating with its inside and outside; and at least two gas uniform walls 233 concentrically arranged in the gas distribution chamber 236, each of There are a plurality of gas-distribution channels 2331 connected to the inside and outside thereof; wherein, the definition: the distance between two adjacent gas-distribution walls 233 is ⁇ h;
  • the gas uniform wall 233 is the first level gas uniform wall, the second level gas uniform wall, ..., the nth level gas uniform wall, wherein the radius of the first level gas
  • ⁇ h r 1 /2; in other preferred embodiments, ⁇ H ⁇ 2 ⁇ h.
  • the distance between two adjacent gas uniform walls 233 is smaller than the radius of the first-stage gas uniform wall, and the distance between the nth stage gas uniform wall and the gas distribution wall 232 is greater than that of the two adjacent gas uniform walls
  • the distance between the walls 233 enables the deposition process gas to be fully diffused in the upstream of the gas path, that is, the chamber surrounded by the first-level gas uniform wall, before entering the gas flow multi-stage gas uniform wall, reducing the gas flow in all directions.
  • the deposition process gas When the deposition process gas enters the downstream of the gas path from the multi-level gas uniform wall, that is, between the nth level gas uniform wall and the gas distribution wall, it is further fully diffused, thereby further reducing the gas flow in the
  • the pressure difference in each direction makes the amount of deposition process gas that finally enters the reaction equipment homogenized, realizing uniform deposition and forming a high-quality deposited film.
  • a plurality of distribution holes 2321 are spaced apart from each other and uniformly arranged in the circumferential direction, and a plurality of gas uniform channels 2331 are spaced apart from each other and uniformly arranged in the circumferential direction, and the gas uniform wall 233
  • the gas uniform wall 233 arranged outward step by step from the center of the gas distribution chamber 236 is the first stage uniform gas wall, the second stage gas uniform wall, and the first stage uniform gas wall.
  • the radius of the gas wall is r 1
  • the radius of the second-stage gas uniform wall is r 2
  • the distance between two adjacent gas uniform walls 233 is ⁇ h
  • the distance between the second-stage gas uniform wall and the gas distribution wall 232 The distance is ⁇ H, then ⁇ h ⁇ r 1 and ⁇ H ⁇ h.
  • the gas uniform wall 233 has three levels in total. In short, no matter how many levels the gas uniform wall 233 has, the requirements of ⁇ h ⁇ r1 and ⁇ H ⁇ h must be met.
  • the gas uniform wall 233 is arranged to be composed of at least one pair of gas uniform subsets, and each gas uniform subset includes a pair of adjacently arranged stop blocks 2339 and a gas uniform channel between the stop blocks 2339 2331 , the gas homogenization channels 2331 in the gas homogenization sub-set of each pre-stage gas homogenization wall 233 and the stop blocks 2339 in the gas homogenization sub-set of the adjacent rear-stage gas homogenization wall 233 are arranged opposite to each other in the radial direction R.
  • the gas uniform wall 233 is provided with two stages, and the first-stage gas uniform wall and the second-stage gas uniform wall are arranged concentrically from the inside to the outside.
  • the gas uniform channel 2331 and the stopper 2339 of the second-stage gas uniform wall are arranged opposite to each other in the radial direction R.
  • one of the gas uniform channels 2331' on the first-stage gas uniform wall is defined
  • the radial direction of the uniform gas channel 2331'' is L 1
  • the gas uniform channel closest to the gas uniform channel 2331' on the second-stage gas uniform wall is the gas uniform channel 2331''
  • the radial direction of the gas uniform channel 2331'' is L 2 , then It can be clearly seen from Fig. 5 that L1 and L2 are staggered by a certain angle.
  • the distribution hole on the gas distribution wall 232 that is closest to the uniform gas channel 2331'' is defined as the distribution hole 2321', and the distribution hole The radial direction of the hole 2321' is L 3 , so L 1 , L 2 and L 3 are not on a straight line, that is, L 1 , L 2 and L 3 are arranged staggered from each other.
  • the airflow passing through the upper level of gas uniformity wall (such as the first gas uniformity wall) passes through the next level of gas uniformity wall (such as the second gas uniformity wall), it needs to be in the radial direction
  • the upper deflection is at a certain angle, so that the gas flow can be prevented from passing through the next level of uniform gas wall before the uniform diffusion, which further improves the homogenization of the deposition process gas.
  • the intake air distribution mechanism 20 also includes a sealing layer 24, wherein the gas distribution chamber 236 of the next layer of uniform gas chamber 23 is sealed by the partition plate 231 of the upper layer of uniform gas chamber 23, and the top layer
  • the gas distribution chamber 236 of the uniform gas chamber 23 is sealed by the sealing layer 24. It can be understood from the above description that the gas distribution chamber 236 of the gas uniform chamber 23 of the next layer is sealed by the partition plate 231 of the gas uniform chamber 23 of the upper layer, so that the gas uniform chambers 23 arranged in layers can pass through a common partition
  • the plate 231 realizes the sealing between two adjacent layers of gas distribution chambers 236.
  • This arrangement not only reduces the possibility of gas leakage between layers, but also further reduces the stacking height of the intake distribution mechanism 20, so that at a certain height
  • the intake air distribution mechanism 20 can stack more uniform gas chambers 23, which improves the gas distribution efficiency.
  • FIG. 2 further shows another intake air distribution mechanism 20 provided by an embodiment of the present invention.
  • the air intake distribution mechanism 20 provided in this embodiment can expand a more optimal gas distribution method, so as to further improve the effect of gas uniformity.
  • the air intake distribution mechanism 20 provided in this embodiment also includes a cooling base plate 2, and a cooling chamber 211 extending laterally is opened in the cooling base plate 21, wherein the cooling base plate 21 There is a cooling pipe 22 extending vertically, and the cooling pipe 22 is in fluid communication with the cooling chamber 211 at its bottom; Above the cooling pipe 22 , and furthermore, the uniform gas chamber 23 is supported by the cooling substrate 2 .
  • the cooling gas can be continuously injected into the cooling chamber 211 through the cooling pipeline 22 , so as to realize the cooling of the uniform gas chamber 23 .
  • the air intake ducts 234 extend longitudinally around the cooling duct 22 , so that each of the air intake ducts 234 is arranged eccentrically relative to the gas distribution chamber 236 of a corresponding one of the uniform gas chambers 23 .
  • the extending direction of the intake pipe 234 is substantially parallel to the extending direction of the cooling pipe 22 , and the substantially parallel used herein refers to completely parallel or almost completely parallel (for example, within a 10° angle range of being completely parallel).
  • the air inlet pipe 234 is arranged eccentrically. With such an arrangement, the introduced deposition process gas will be further distributed in the chamber surrounded by the first-stage uniform gas wall.
  • the intake air distribution mechanism 20 has been further improved as shown in Figure 4.
  • the first-stage gas uniform wall of each gas uniform chamber 23 is configured to be close to the arc segment 233a With the far arc section 233b, the near arc section 233a is close to the air inlet pipe 234 corresponding to the gas uniform chamber 23, and the air inlet pipe 234' is the air inlet pipe of the next layer of uniform gas chamber.
  • the arc section 233b is far away from the intake pipe 234 corresponding to the gas uniform chamber 23, wherein the linear density of the gas homogeneous channels 2331a of the near arc segment 233a is smaller than the linear density of the gas homogeneous channels 2331b of the far arc segment 233b (that is, the number of gas-distributing channels provided per unit arc length), in a preferred embodiment, the linear density of the gas-distributing channels 2331b in the far arc segment 233b is equal to the linear density of the gas-distributing channels 2331a in the near arc segment 233a 2-3 times. For example, in the embodiment shown in FIG. 4 , 10 gas distribution channels 2331b are opened in the far arc segment 233b, while only 5 gas distribution channels 2331a are opened in the near arc segment 233a of the same length.
  • the function of the intake distribution mechanism 20 provided by this embodiment corresponds to the function realized by Embodiment 1, so for other structures and functions of this embodiment, please refer to the content in Embodiment 1 , which will not be repeated here.
  • FIG. 1 shows a longitudinal sectional view of a CVD reaction apparatus 10 that can implement Embodiment 1 or 2 of the present invention.
  • the CVD reaction device 10 provided in this embodiment adopts the gas distribution mechanism 20 in Embodiment 1 or 2 to improve the gas uniformity effect.
  • the CVD reaction device 10 includes: a reaction chamber 11, which is isolated and closed from the outside world; a rotating support shaft 13, which is partially arranged in the reaction chamber 11; a base 12, which is arranged in the reaction chamber 11 and Supported by the rotating support shaft 13; an exhaust pipe 112, which selectively connects the reaction chamber 11 with the external fluid; and the intake distribution mechanism 20 as described in Embodiment 1 or 2, which is arranged in the In the reaction chamber 11, the air distribution mechanism 20 is connected to the top wall 111 of the reaction chamber 11 and hangs downward.
  • a reaction chamber 11 which is isolated and closed from the outside world
  • a rotating support shaft 13 which is partially arranged in the reaction chamber 11
  • a base 12 which is arranged in the reaction chamber 11 and Supported by the rotating support shaft 13
  • an exhaust pipe 112 which selectively connects the reaction chamber 11 with the external fluid
  • the intake distribution mechanism 20 as described in Embodiment 1 or 2
  • the air distribution mechanism 20 is connected to the top wall 111 of the reaction chamber 11 and hangs downward.
  • the fixing part 113 extends into the reaction chamber 11 through the top wall 111 of the reaction chamber 11, and the intake air distribution mechanism 20 is installed on the top wall 111 of the reaction chamber 11, further
  • the cooling duct 22 and the intake duct 234 of the intake distribution mechanism 20 both pass through the fixing portion 113 to communicate with the outside world.
  • the CVD reaction device 10 also includes a heating assembly 14, which is arranged below the base 12; the top surface of the base 12 is circumferentially A plurality of carrying trays 121 are arranged, and the carrying trays 121 are used to carry workpieces to be deposited.
  • the function of the intake distribution mechanism 20 provided by this embodiment corresponds to the function realized by embodiment 1 and/or embodiment 2, so other structures of this embodiment are related to For the functions, reference may be made to the content in Embodiment 1, and details will not be repeated here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明的实施例公开了一种进气分配机构及具有其的CVD反应设备,该进气分配机构,包括:至少两个沿轴向依次层叠布置的匀气腔室;以及至少两条进气管道,每条所述进气管道与相应一个所述匀气腔室流体连通;每个所述匀气腔室包括:分隔板;气体分配壁,其环绕地布置在所述分隔板的外周以围绕形成气体分配腔,所述气体分配壁上开设有多个连通其内外侧的分配孔;以及至少两个同心布置在所述气体分配腔中的匀气壁,每个所述匀气壁上开设有多个连通其内外侧的匀气通道。根据本发明,其保证了进气分配机构在各个方向上提供均匀气压的气流,以实现均匀的沉积并形成高品质的沉积薄膜。

Description

一种进气分配机构及具有其的CVD反应设备 技术领域
本发明涉及薄膜沉积领域,特别涉及一种进气分配机构及具有其的CVD反应设备。
背景技术
薄膜沉积是目前较流行的表面处理法之一,可广泛应用于装饰品、餐具、刀具、模具、半导体元器件、光伏等的表面处理,泛指在各种金属材料、超硬合金、陶瓷材料及晶圆基板的表面上成长一层同质或异质材料薄膜的制程,以期获得美观耐磨、耐热、耐蚀等特性。一般,依据沉积过程中是否含有化学反应可以将薄膜沉积分为物理气相沉积(Physical Vapor Deposition,缩写为PVD)和化学气相沉积(Chemical Vapor Deposition,缩写为CVD)。CVD法是将金属氯化物、碳化氢、氮气等气体导入密闭之容器内,在真空、低压、电浆等气氛状况下把工作环境加热之1000℃左右并保持2~8小时,将所需之碳化物、氮化物、氧化物、硼化物等柱状晶薄膜沉积在工件表面,沉积后的薄膜厚约1~30μm,结合性良好,较复杂的形状及细小空隙都能蒸镀沉积成膜,由于CVD技术具有成膜范围广、重现性好等优点,被广泛用于多种不同形态的成膜。CVD工艺装置主要由反应室、供气系统和加热系统组成,反应室是CVD中最基本的部分,其中内置有用于引入沉积工艺气体的进气装置,而现有的进气装置在沉积反应过程中仍存在以下技术问题:在反应室内部喷射沉积工艺气体时,由于每个方向上的喷射气压存在差异,从而导致沉积工艺气体无法实现均匀的沉积并难以形成高品质的沉积薄膜。
有鉴于此,实有必要开发一种进气分配机构及具有其的CVD反应设备,用以保证进气分配机构在各个方向上提供均匀气压的气流,以实现均匀的沉积并形成高品质的沉积薄膜。
技术解决方案
本发明的实施例提供一种进气分配机构及具有其的CVD反应设备,用以保证进气分配机构在各个方向上提供均匀气压的气流,以实现均匀的沉积并形成高品质的沉积薄膜。
为了解决上述技术问题,本发明的实施例公开了如下技术方案:
一方面,提供了一种进气分配机构,包括:至少两个沿轴向依次层叠布置的匀气腔室;以及至少两条进气管道,每条所述进气管道与相应一个所述匀气腔室流体连通;每个所述匀气腔室包括:分隔板;气体分配壁,其环绕地布置在所述分隔板的外周以围绕形成气体分配腔,所述气体分配壁上开设有多个连通其内外侧的分配孔;以及至少两个同心布置在所述气体分配腔中的匀气壁,每个所述匀气壁上开设有多个连通其内外侧的匀气通道;其中,定义:相邻两个所述匀气壁间的距离为Δh;从所述气体分配腔的圆心出发逐级向外布置的匀气壁依次为第1级匀气壁,第2级匀气壁,…,第n级匀气壁,其中所述第1级匀气壁的半径为r 1,第2级匀气壁的半径为r 2,…,第n级匀气壁的半径为r n,第n级匀气壁与所述气体分配壁间的距离为ΔH,则Δh≤r 1并且ΔH≥Δh。
除了上述公开的一个或多个特征之外,或者作为替代,所述匀气壁被布置为由至少一对匀气子集构成,每个匀气子集包括相邻布置的一对止挡块及位于所述止挡块之间的匀气通道,每个前级匀气壁的匀气子集中的匀气通道与相邻的后级匀气壁的匀气子集中的止挡块在径向方向上彼此相对布置。
除了上述公开的一个或多个特征之外,或者作为替代,还包括冷却基板,所述冷却基板内开设有横向延伸的冷却腔室,其中,所述冷却基板上连接有沿竖直方向延伸的冷却管道,所述冷却管道在其底部与所述冷却腔室流体连通;所述匀气腔室在其气体分配腔的圆心处依次穿套于所述冷却管道之上。
除了上述公开的一个或多个特征之外,或者作为替代,所述进气管道围绕着所述冷却管道纵向延伸,以使得每条所述进气管道相对相应一个所述匀气腔室的气体分配腔偏心地布置。
除了上述公开的一个或多个特征之外,或者作为替代,每个匀气腔室的第1级匀气壁被配置成近弧段与远弧段,所述近弧段靠近与该匀气腔室相对应的进气管道,所述远弧段远离与该匀气腔室相对应的进气管道,其中,所述近弧段的匀气通道的线密度小于所述远弧段的匀气通道的线密度。
除了上述公开的一个或多个特征之外,或者作为替代,还包括密封层,其中,下一层匀气腔室的气体分配腔被上一层匀气腔室的分隔板所密封,最顶层的匀气腔室的气体分配腔被所述密封层密封。
除了上述公开的一个或多个特征之外,或者作为替代,Δh=r 1/2。
除了上述公开的一个或多个特征之外,或者作为替代,ΔH≥2Δh。
另一方面,进一步公开了一种CVD设备,除了上述公开的一个或多个特征之外,或者作为替代,所述CVD反应设备包括:反应腔,其与外界隔绝且封闭;旋转支撑轴,其布置于所述反应腔中;基座,其布置于所述反应腔中并由所述旋转支撑轴所支撑;排气管,其选择性地将所述反应腔与外界流体连通;以及如上任一项所述的进气分配机构,其布置于所述反应腔中,所述进气分配机构连接于所述反应腔的顶壁上并且向下悬垂。
除了上述公开的一个或多个特征之外,或者作为替代,CVD设备还包括加热组件,其布置于所述基座的下方;所述基座的顶面上周向地布置有多个承载盘。
上述技术方案中的一个技术方案具有如下优点或有益效果:由于相邻两个所述匀气壁间的距离小于第1级匀气壁的半径,且第n级匀气壁与所述气体分配壁间的距离大于相邻两个所述匀气壁间的距离,使得沉积工艺气体在进入气流多级匀气壁间之前能够在气路上游即第1级匀气壁包围的腔室中能够得到充分的扩散,减小了各个方向上的压力差异,而在沉积工艺气体从多级匀气壁间进入到气路下游即第n级匀气壁与所述气体分配壁间时,得到进一步充分扩散,从而进一步减小了各个方向上的压力差异,使得最终进入反应设备的沉积工艺气体量均质化,实现了均匀的沉积并形成高品质的沉积薄膜。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
图1为可实施本发明实施例的CVD反应设备的纵向剖视图。
图2为本发明实施例提供的进气分配机构的纵向剖视图。
图3为本发明实施例1提供的进气分配机构在图2中的A-A方向下的剖视图。
图4为本发明实施例2提供的进气分配机构在图2中的A-A方向下的剖视图。
图5为图3或图4中S区域的放大图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
实施例 1
请参见图2所示,图2所示的本发明实施例1提供的进气分配机构20的纵向剖视图。本实施例提供的进气分配机构20为了保证进气分配机构在各个方向上提供均匀气压的气流,以实现均匀的沉积并形成高品质的沉积薄膜。本实施例提供的进气分配机构20包括:至少两个沿轴向T依次层叠布置的匀气腔室23;以及至少两条进气管道234,每条所述进气管道234与相应一个所述匀气腔室23流体连通;每个所述匀气腔室23包括:分隔板231;气体分配壁232,其环绕地布置在所述分隔板231的外周以围绕形成气体分配腔236,所述气体分配壁232上开设有多个连通其内外侧的分配孔2321;以及至少两个同心布置在所述气体分配腔236中的匀气壁233,每个所述匀气壁233上开设有多个连通其内外侧的匀气通道2331;其中,定义:相邻两个所述匀气壁233间的距离为Δh;从所述气体分配腔236的圆心出发逐级向外布置的匀气壁233依次为第1级匀气壁,第2级匀气壁,…,第n级匀气壁,其中所述第1级匀气壁的半径为r 1,第2级匀气壁的半径为r 2,…,第n级匀气壁的半径为r n,第n级匀气壁与所述气体分配壁232间的距离为ΔH,则Δh≤r 1并且ΔH≥Δh。
在优选的实施方式中,Δh=r 1/2;在优选的其他实施方式中ΔH≥2Δh。
由于相邻两个所述匀气壁233间的距离小于第1级匀气壁的半径,且第n级匀气壁与所述气体分配壁232间的距离大于相邻两个所述匀气壁233间的距离,使得沉积工艺气体在进入气流多级匀气壁间之前能够在气路上游即第1级匀气壁包围的腔室中能够得到充分的扩散,减小了气流在各个方向上的压力差异,而在沉积工艺气体从多级匀气壁间进入到气路下游即第n级匀气壁与所述气体分配壁间时,得到进一步充分扩散,从而进一步减小了气流在各个方向上的压力差异,使得最终进入反应设备的沉积工艺气体量均质化,实现了均匀的沉积并形成高品质的沉积薄膜。
在图2及图3示出的实施方式中,多个分配孔2321在周向方向上彼此间隔且均匀布置,多个匀气通道2331在周向方向上彼此间隔且均匀布置,匀气壁233共设有两级,分别为从所述气体分配腔236的圆心出发逐级向外布置的匀气壁233依次为第1级匀气壁,第2级匀气壁,所述第1级匀气壁的半径为r 1,第2级匀气壁的半径为r 2,相邻两个所述匀气壁233间的距离为Δh,第2级匀气壁与所述气体分配壁232间的距离为ΔH,则有Δh≤r 1且ΔH≥Δh。在其他实施方式中,匀气壁233共设有三级,总之,不管匀气壁233设有多少层级,都需满足Δh≤r 1且ΔH≥Δh的要求。
所述匀气壁233被布置为由至少一对匀气子集构成,每个匀气子集包括相邻布置的一对止挡块2339及位于所述止挡块2339之间的匀气通道2331,每个前级匀气壁233的匀气子集中的匀气通道2331与相邻的后级匀气壁233的匀气子集中的止挡块2339在径向方向R上彼此相对布置。在图3示出的实施方式中,匀气壁233共设置有两级,及从内到外依次同心布置的第1级匀气壁和第2级匀气壁,第1级匀气壁上的匀气通道2331与第2级匀气壁的止挡块2339在径向方向R上彼此相对布置,具体地,参照图5,定义第1级匀气壁上的其中一个匀气通道2331’的径向方向为L 1,第2级匀气壁上距离匀气通道2331’最近的匀气通道为匀气通道2331’’,而匀气通道2331’’的径向方向为L 2,则从图5中可以明显看出L 1与L 2彼此错开一定角度,在优选的实施方式中,定义气体分配壁232上距离匀气通道2331’’最近的分配孔为分配孔2321’,而分配孔2321’的径向方向为L 3,则L 1、L 2及L 3三者均不在一条直线上,即L 1、L 2及L 3三者彼此错开布置。采用这种结构设计,使得从上一级匀气壁(例如第1匀气壁)穿出的气流在穿过下一级匀气壁(例如第2匀气壁)时,需要在径向方向上偏转一定角度,如此则能够防止气流在匀质扩散之前就之间穿过下一级匀气壁,进一步提高了沉积工艺气体的匀质化。
再次参照图2,进气分配机构20还包括密封层24,其中,下一层匀气腔室23的气体分配腔236被上一层匀气腔室23的分隔板231所密封,最顶层的匀气腔室23的气体分配腔236则被所述密封层24所密封。从上述描述可以理解,下一层匀气腔室23的气体分配腔236被上一层匀气腔室23的分隔板231所密封,进而使得层叠布置的匀气腔室23通过共用分隔板231实现了相邻两层气体分配腔236之间的密封,这样的布置方式不仅降低了气体在层间泄露的可能性,还进一步降低了进气分配机构20的堆叠高度,使得在高度一定的情况下,进气分配机构20能够堆叠更多的匀气腔室23,提高了气体分配效率。
实施例 2
再次参照图2,图2进一步示出了本发明实施例提供的另一种进气分配机构20。本实施例提供的进气分配机构20相对实施例1可扩展出更优的气体分配方式,以对匀气效果进一步提升。实施例2与实施例1的区别在于,本实施例提供的进气分配机构20还包括冷却基板2,所述冷却基板21内开设有横向延伸的冷却腔室211,其中,所述冷却基板21有沿竖直方向延伸的冷却管道22,所述冷却管道22在其底部与所述冷却腔室211流体连通;所述匀气腔室23在其气体分配腔236的圆心处依次穿套于所述冷却管道22之上,进而使得,匀气腔室23被冷却基板2所承托。在具体应用时,可通过冷却管道22向冷却腔室211中连续地注入冷却气体,从而实现对匀气腔室23的冷却。
具体地,所述进气管道234围绕着所述冷却管道22纵向延伸,以使得每条所述进气管道234相对相应一个所述匀气腔室23的气体分配腔236偏心地布置。其中,进气管道234的延伸方向与冷却管道22的延伸方向基本平行,本文中所使用的基本平行是指完全平行或几乎完全平行(例如,在完全平行的10°角度范围内)。
在实践中发现,为了适应中心布置的冷却管道22,进气管道234则进行了偏心布置,采用如此布置方式,会进一步使得引进的沉积工艺气体在第1级匀气壁所围绕的腔室内分配不均匀,为解决这一问题,对进气分配机构20作了如图4所示的进一步改进,具体地,每个匀气腔室23的第1级匀气壁被配置成近弧段233a与远弧段233b,所述近弧段233a靠近与该匀气腔室23相对应的进气管道234,进气管道234’则为下一层匀气腔室的进气管道,所述远弧段233b远离与该匀气腔室23相对应的进气管道234,其中,所述近弧段233a的匀气通道2331a的线密度小于所述远弧段233b的匀气通道2331b的线密度(即单位弧长下,其设置的匀气通道的个数),在优选的实施方式中,远弧段233b的匀气通道2331b的线密度为近弧段233a的匀气通道2331a的线密度2-3倍,例如在图4所示的实施方式中,远弧段233b的匀气通道2331b开设了10个,而同样长度的近弧段233a的匀气通道2331a仅开设了5个。
在图2所示的实施例中,本实施例提供的进气分配机构20的功能与实施例1实现的功能相对应,所以关于本实施例的其他结构与功能可参见实施例1中的内容,在此不再一一赘述。
实施例 3
参照图1,图1示出了可实施本发明实施例1或2的CVD反应设备10的纵向剖视图。本实施例提供的CVD反应设备10采用了实施例1或2中的进气分配机构20,以对匀气效果进行提升。具体地,CVD反应设备10包括:反应腔11,其与外界隔绝且封闭;旋转支撑轴13,其部分布置于所述反应腔11中;基座12,其布置于所述反应腔11中并由所述旋转支撑轴13所支撑;排气管112,其选择性地将所述反应腔11与外界流体连通;以及如实施例1或2所述的进气分配机构20,其布置于所述反应腔11中,所述进气分配机构20连接于所述反应腔11的顶壁111上并且向下悬垂。在图1示出的实施方式中,固定部113穿过反应腔11的顶壁111伸入到反应腔11中,进气分配机构20安装于所述反应腔11的顶壁111上,进一步地,进气分配机构20的冷却管道22及进气管道234均穿过所述固定部113以与外界相连通。
作为进一步改进,为了将反应腔11维持在工艺所需的温度,CVD反应设备10还包括加热组件14,其布置于所述基座12的下方;所述基座12的顶面上周向地布置有多个承载盘121,承载盘121用于承载待沉积的工件。
在图1及图2所示的实施例中,本实施例提供的进气分配机构20的功能与实施例1和/或实施例2实现的功能相对应,所以关于本实施例的其他结构与功能可参见实施例1中的内容,在此不再一一赘述。
以上对本发明实施例所提供的一种进气分配机构及具有其的CVD反应设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。

Claims (10)

  1. 一种进气分配机构,包括:
    至少两个沿轴向依次层叠布置的匀气腔室;以及
    至少两条进气管道,每条所述进气管道与相应一个所述匀气腔室流体连通;其特征在于,每个所述匀气腔室包括:
    分隔板;
    气体分配壁,其环绕地布置在所述分隔板的外周以围绕形成气体分配腔,所述气体分配壁上开设有多个连通其内外侧的分配孔;以及
    至少两个同心布置在所述气体分配腔中的匀气壁,每个所述匀气壁上开设有多个连通其内外侧的匀气通道;
    其中,定义:相邻两个所述匀气壁间的距离为Δh;从所述气体分配腔的圆心出发逐级向外布置的匀气壁依次为第1级匀气壁,第2级匀气壁,…,第n级匀气壁,其中所述第1级匀气壁的半径为r 1,第2级匀气壁的半径为r 2,…,第n级匀气壁的半径为r n,第n级匀气壁与所述气体分配壁间的距离为ΔH,则Δh≤r 1并且ΔH≥Δh。
  2. 如权利要求1所述的进气分配机构,其特征在于,所述匀气壁被布置为由至少一对匀气子集构成,每个匀气子集包括相邻布置的一对止挡块及位于所述止挡块之间的匀气通道,每个前级匀气壁的匀气子集中的匀气通道与相邻的后级匀气壁的匀气子集中的止挡块在径向方向上彼此相对布置。
  3. 如权利要求2所述的进气分配机构,其特征在于,还包括冷却基板,所述冷却基板内开设有横向延伸的冷却腔室,其中,所述冷却基板上连接有沿竖直方向延伸的冷却管道,所述冷却管道在其底部与所述冷却腔室流体连通;所述匀气腔室在其气体分配腔的圆心处依次穿套于所述冷却管道之上。
  4. 如权利要求3所述的进气分配机构,其特征在于,所述进气管道围绕着所述冷却管道纵向延伸,以使得每条所述进气管道相对相应一个所述匀气腔室的气体分配腔偏心地布置。
  5. 如权利要求4所述的进气分配机构,其特征在于,每个匀气腔室的第1级匀气壁被配置成近弧段与远弧段,所述近弧段靠近与该匀气腔室相对应的进气管道,所述远弧段远离与该匀气腔室相对应的进气管道,其中,所述近弧段的匀气通道的线密度小于所述远弧段的匀气通道的线密度。
  6. 如权利要求1~5任一项所述的进气分配机构,其特征在于,还包括密封层,其中,下一层匀气腔室的气体分配腔被上一层匀气腔室的分隔板所密封,最顶层的匀气腔室的气体分配腔被所述密封层密封。
  7. 如权利要求1~5任一项所述的进气分配机构,其特征在于,Δh=r 1/2。
  8. 如权利要求1~5任一项所述的进气分配机构,其特征在于,ΔH≥2Δh。
  9. 一种CVD设备,其特征在于,包括:
    反应腔,其与外界隔绝且封闭;
    旋转支撑轴,其部分布置于所述反应腔中;
    基座,其布置于所述反应腔中并由所述旋转支撑轴所支撑;
    排气管,其选择性地将所述反应腔与外界流体连通;以及
    如权利要求1~8任一项所述的进气分配机构,其布置于所述反应腔中,所述进气分配机构连接于所述反应腔的顶壁上并且向下悬垂。
  10. 如权利要求9所述的CVD设备,其特征在于,还包括加热组件,其布置于所述基座的下方;所述基座的顶面上周向地布置有多个承载盘。
PCT/CN2022/128159 2021-11-24 2022-10-28 一种进气分配机构及具有其的 cvd 反应设备 WO2023093455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111403097.7A CN115852343A (zh) 2021-11-24 2021-11-24 一种进气分配机构及具有其的cvd反应设备
CN202111403097.7 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023093455A1 true WO2023093455A1 (zh) 2023-06-01

Family

ID=85653225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128159 WO2023093455A1 (zh) 2021-11-24 2022-10-28 一种进气分配机构及具有其的 cvd 反应设备

Country Status (2)

Country Link
CN (1) CN115852343A (zh)
WO (1) WO2023093455A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116672909A (zh) * 2023-07-27 2023-09-01 托伦斯半导体设备启东有限公司 一种半导体等级密闭腔式匀气盘

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117418218B (zh) * 2023-12-19 2025-02-25 北京北方华创微电子装备有限公司 进气组件、进气装置及半导体工艺腔室

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090013930A1 (en) * 2005-01-31 2009-01-15 Markus Reinhold Gas distributor with pre-chambers disposed in planes
DE102019133023A1 (de) * 2019-12-04 2021-06-10 Aixtron Se Gaseinlassvorrichtung für einen CVD-Reaktor
TW202126849A (zh) * 2019-11-25 2021-07-16 德商愛思強歐洲公司 用於cvd反應器之壁冷式氣體入口構件
CN113330142A (zh) * 2018-11-28 2021-08-31 艾克斯特朗欧洲公司 用于cvd-反应器的进气设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465802B2 (en) * 2008-07-17 2013-06-18 Gang Li Chemical vapor deposition reactor and method
CN101914761B (zh) * 2010-08-16 2012-04-25 江苏中晟半导体设备有限公司 用于mocvd反应腔中反应气体输送与均匀分布控制的装置
CN105331953B (zh) * 2014-07-23 2019-04-23 北京北方华创微电子装备有限公司 进气装置以及半导体加工设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090013930A1 (en) * 2005-01-31 2009-01-15 Markus Reinhold Gas distributor with pre-chambers disposed in planes
CN113330142A (zh) * 2018-11-28 2021-08-31 艾克斯特朗欧洲公司 用于cvd-反应器的进气设备
TW202126849A (zh) * 2019-11-25 2021-07-16 德商愛思強歐洲公司 用於cvd反應器之壁冷式氣體入口構件
DE102019133023A1 (de) * 2019-12-04 2021-06-10 Aixtron Se Gaseinlassvorrichtung für einen CVD-Reaktor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116672909A (zh) * 2023-07-27 2023-09-01 托伦斯半导体设备启东有限公司 一种半导体等级密闭腔式匀气盘
CN116672909B (zh) * 2023-07-27 2023-12-01 托伦斯半导体设备启东有限公司 一种半导体等级密闭腔式匀气盘

Also Published As

Publication number Publication date
CN115852343A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
TWI671792B (zh) 基板處理設備
TW202127567A (zh) 基板處理設備
US9624603B2 (en) Vapor phase growth apparatus having shower plate with multi gas flow passages and vapor phase growth method using the same
WO2023093455A1 (zh) 一种进气分配机构及具有其的 cvd 反应设备
US7981472B2 (en) Methods of providing uniform gas delivery to a reactor
JP2017226863A (ja) ガス混合装置および基板処理装置
JP5444599B2 (ja) ガス供給装置及び成膜装置
US20150114295A1 (en) Deposition apparatus
US11078568B2 (en) Pumping apparatus and method for substrate processing chambers
US20010054391A1 (en) Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US20040127067A1 (en) Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
KR20040101400A (ko) 기체 구동에 의한 행성형 회전 장치 및 실리콘카바이드층들의 형성 방법
CN116334590A (zh) 反应腔室的进气机构、反应腔室及外延生长设备
TW202445677A (zh) 半導體製程裝置及用於蝕刻層的方法
JP2020061549A (ja) 基板処理装置
CN106498368A (zh) 一种用于mocvd设备的喷淋头
TWI860390B (zh) 用於供應氣體的裝置及使用其處理基板的裝置
TWI502096B (zh) 用於化學氣相沉積的反應裝置及反應製程
CN116411256A (zh) 一种化学气相沉积设备的腔室
CN112687596A (zh) 晶舟、工艺腔室及半导体工艺设备
CN218812237U (zh) 一种提高成膜质量的进气结构
WO2024125354A1 (zh) 喷淋板、喷淋方法及处理装置
TW202413708A (zh) 腔室組件、進氣裝置及基板處理設備
CN117418218A (zh) 进气组件、进气装置及半导体工艺腔室
KR20120096026A (ko) 기상 성장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22897538

Country of ref document: EP

Kind code of ref document: A1